+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Ветряные электростанции для дома: особенности строительства

Установка ветряной электростанции на даче или в частном доме помогает решить множество проблем, связанных с электроснабжением. Данный агрегат способен перерабатывать и накапливать энергию ветра, используя ее во благо человека. Процесс изготовления ветряной электростанции достаточно простой — он требует минимального количества материалов и прежде всего желания достичь заданной цели. О том как сделать ветряную электростанцию для дома рассмотрим далее.

Оглавление:

  1. Ветряные электростанции для частного дома: особенности и характеристика
  2. Преимущества и недостатки ветряных электростанций
  3. Сфера использования и виды ветряных электростанций для дома
  4. Солнечно ветряная электростанция — общие сведения
  5. Самодельная ветряная электростанция — особенности изготовления
  6. Ветряная электростанция своими руками: выбор генератора

Ветряные электростанции для частного дома: особенности и характеристика

Ветряные электростанции предназначены для преобразования энергии ветра в электрическую энергию. В соотношении с внешним видом и конструктивными особенностями ветряные электростанции для дома бывают расположенными:

  • горизонтально;
  • вертикально.

Первый вариант менее зависим от ветра, но отличается меньшей популярностью, нежели второй. Так как он способен работать лишь при сильном ветре, а для его запуска требуется наличие внешнего источника. Вертикальные ветряные электростанции способны функционировать более качественно и отличаются высоким КПД. Для их работы достаточно силы ветра в 2-4 м/с.

Среди основных компонентов ветровых электростанций следует отметить:

  • мачту, которая бывает простой, телескопической или монолитной;
  • редуктор — часть электростанции, на которой располагаются лопасти;
  • контейнер — подвижная часть ветроэлектростанции, которая двигается в соотношении с ветром;
  • генератор — прибор, который преобразует энергию.

Выбор конструкции и мощности ветряка напрямую зависит от особенностей его эксплуатации.

Более простыми являются приборы, мощностью до 300 Вт. Такие агрегаты способны легко поместиться даже в автомобиль. Для их установки достаточно одного человека, а мощность, которую они вырабатывают, достаточно для зарядки телефона, обеспечения освещения или работы телевизора. Данный вариант отлично подходит для семейного отдыха на даче, в лесу или на море.

С помощью 2, 5, 10 кВт ветровых электростанций осуществляется обеспечение целого дома электроэнергией. Если существует излишняя энергия, то она помещается в аккумуляторах, которые ее расходуют при слабом ветре или при его отсутствии.

Более мощные варианты ветровых электростанций, мощность которых составляет более двадцати киловатт, способны снабдить электроэнергией несколько домов, коттеджей или даже частное предприятие.

Ветряные электростанции фото:

Главным преимуществом ветровой электростанции является экологичность, ведь ее работа никак не влияет на окружающую среду. При этом, энергию получить достаточно легко, главное условие — наличие стабильного ветра.

Среди недостатков ветровых электростанций отмечают их зависимость от ветра. Для работы ветряка ветер должен иметь скорость минимум два метра в секунду. Для достижения номинальной мощности потребуется сила ветра в 10 м/с.

Чтобы накапливать электричество и использовать его во время отсутствия ветра используют аккумуляторы. Срок их службы составляет около 10 лет. Кроме того, использование мощных ветровых электростанций отличается высокой шумопроизводительностью, что снижает комфорт проживания вблизи данного агрегата.

Ветровая электростанция способна препятствовать нормальной работе телевизора, радио и других подобных приборов.

Самыми главными составляющими любой ветроэлектростанции выступает генератор, устройство выпрямительного назначения, аккумулятор-батарея, инвертор, то есть преобразователь напряжения. Для осуществления общего контроля за работой устройства рекомендуется использование микропроцессорного контролера или простых логических схем.

Если планируется покупать ветровую электростанцию, то наиболее оптимальными вариантами станут устройства, имеющие низкий уровень начальной скорости ротора, скорости заряда батареи и выхода на рабочий процесс. Так как от широты восприятия рабочего диапазона ветра зависит количество энергии, которую воспроизводит установка.

Преимущества и недостатки ветряных электростанций

Среди преимущества использования ветровых электростанций отмечают:

1. Длительность применения ветровой энергии еще в древнеримские времена.

2. Экологичность и безвредность для окружающей среды.

3. Дешевизна получения качественной электроэнергии.

4. С помощью использования энергии ветра снижается расход электричества, вырабатываемого на ТЭС, поэтому выбросы парникового газа значительно снижаются.

5. Доступность, так как ветер присутствует в любом уголке всей планеты.

6. Размер ветряной турбины небольшой, поэтому для их установки не потребуется много места.

7. Особо востребованные ветровые установки в местах, которые отдалены от центрального электроснабжения, таких как леса, поля, моря или океаны.

8. Использование ветровой электростанции позволяет существенно снизить материальные расходы на оплату электроснабжения.

Несмотря на большое количество преимуществ, использование частных ветряных электростанций отличается такими недостатками:

1. Ветер отличается переменчивостью в разное время года в разных регионах поэтому кроме ветряной электростанции следует устанавливать накопительные устройства для электроэнергии, а их покупка — процесс весьма дорогостоящий. Кроме того, они требуют периодической замены.

2. Некоторым людям не нравится внешний вид ветряных электростанций и высокий уровень шума, который они производят.

3. Перед постройкой ветряной электростанции следует провести ряд исследований, направленных на определение силы и интенсивности ветра на определенной местности.

4. Цена на покупку ветровых электростанций довольно высокая, хотя и затраты со временем окупаются, первоначальный вклад довольно высокий.

5. Лопасти, которые находятся на ветряке приносят вред определенным насекомым и птицам, обитающих вблизи электростанции.

Сфера использования и виды ветряных электростанций для дома

Если мощность ветряной электростанции не превышает одного киловатта, то для изготовления ее корпуса требуется алюминиевый сплав. Поэтому, такие устройства характеризуются высокой тепловой отдачей и небольшим весом.

Чем ниже расчетная скорость ветра, тем выше уровень электроэнергии, которую преобразует ветряк. Тихоходный ветрогенератор позволяет не использовать редуктор, а, значит, шум, воспроизводимый ветряком уменьшается, а количество энергии — увеличивается.

Еще одним важным параметром ветряной электростанции выступает показатель энергоэффективности. Она зависит от размера, конструкции и уровня наклона лопастей. Если лопасти изготавливаются серийно, то их себестоимость снижается, а надежность находится на высоком уровне.

Минимальная мощность ветровой электростанции, применяемой в частном доме, составляет полкиловата.

Если мощность ветряка будет меньше, этой энергии не хватит для полноценного функционирования здания.

Применение малых ветряков актуально в походе, на отдыхе или на яхте. Если рассматривать высокую шумопроизводительность ветряков и их вред для насекомых, то к установкам домашнего использования данные недостатки не относятся, так как данные только большие промышленные установки создают инфранизкочастотное колебание, вредное для вблизи обитающих животных.

Солнечно ветряная электростанция — общие сведения

Данный тип электростанций отличается более высокой выгодой, так как является комбинацией солнечных батарей с ветряком. Если на улице отсутствует солнце или ночью, работает ветряк. В другое время энергоснабжением занимаются солнечные батареи.

Таким образом, удается получить полную энергетическую независимость от центрального электроснабжения. Данные электростанции используют в регионах, с достаточно высокой интенсивностью солнечного и ветрового излучения.

В состав солнечно ветровой электростанции входит наличие:

  • ветрового генератора;
  • башни;
  • солнечных панелей;
  • солнечного контролера;
  • инвертора;
  • аккумуляторов гелиевого типа;
  • температурного батарейного датчика;
  • разного рода кабелей и соединителей.

Самодельная ветряная электростанция — особенности изготовления

Процесс сооружения ветряной электростанции следует начинать с крыльчатки, так как именно данный элемент отвечает за улавливание энергии ветра. Для изготовления лопастей следует приобрести фанеру или металлический лист. Кроме того, возможен вариант применения материалов, таких как дюралюминий или пластик.

Основные требования к лопастям:

  • легкость;
  • строгая симметричность;
  • отсутствие толчков во время вращения.

Учтите, что от количества лопастей не зависит конечный результат работы. То, если некоторые ветроустановки с тремя лопастями способны переработать такое же количество энергии, как и устройства, имеющие пять лопастей.

Самым оптимальным вариантом является сооружение ветряка с четырьмя лопастями. Обеспечить жесткость конструкции поможет шестимиллиметровая проволока, которой обрабатывают торцевые участки каждой лопасти. Данная процедура актуальна для изделий, изготовленных из металла. Если де лопасти у ветряка деревянные, то ее торцы пропитываются с помощью горячей олифы.

Для сооружения четырех крестовин, на которых фиксируются лопасти, следует использовать металлические полоски, размером 5х6 см. Срок их службы будет значительно дольше, чем у деталей изготовленных из дерева.

Вертикальной опорой для электростанции послужит стальная труба, минимальный диаметр которой составляет 30 см, а длина — 200 см. На нижнюю часть трубы крепятся два разных по диаметру шкива, таким образом, с помощью ремня, вращение передается к генератору.

Кроме того, следует обязательно позаботиться об укрытии всех элементов в коробке, выполненной из дерева или металла.

С помощью варочного аппарата, металлическая крестовина ротора приваривается к оси. Не забудьте тщательно измерить интервал между лопастями и осью. Когда роторная часть ветряка собрана, ее следует покрыть с помощью масляной краски.

Станина — довольно важный элемент ветряной электростанции, так как именно на нее крепится установка. Поэтому станина должна быть мощной и обеспечивающей прочность крепления.

Для фиксации четырех точек соприкосновения с поверхностью следует провести их заливку с помощью бетонного раствора.

Если сила ветра не будет превышать 10 м/с, то мощность ветряка составит около 1 кВт. Учтите, что ветрогенератор должен быть снабжен с помощью аккумулятора, в котором будет храниться энергия, используемая в безветренную погоду.

Ветряная электростанция должна располагаться на открытой местности, вдали от деревьев, предпочтительно на возвышенности.

Ветряная электростанция своими руками: выбор генератора

От типа генератора, используемого для переработки энергии, зависит КПД ветровой установки. Довольно высокой популярностью отличаются устройства асинхронного типа. Принцип их работы состоит в несовпадении момента вращения ротора с вращением статорного магнитного поля. Ветер обеспечивает вращение ротора генераторной установки, когда вышеприведенные поля между собой не совпадают, происходит образование дополнительной электрической энергии. Поэтому, КПД ветряка увеличивается.

Затраты на покупку данного генератора вполне себя окупают его высокой производительностью. В сравнении с обычными генераторами, устройства асинхронного типа отличаются более низким весом, более высокой мощностью и доступной стоимостью.

Они не нуждаются в дополнительном источнике питания, так как у них нету электрических щеток, которые требуют периодической замены в процессе работы обычного генератора.

Принцип работы асинхронных двигателей состоит в следующем. В процессе движения ротора с помощью ветра, статор находится под воздействием магнитного поля. Каждая обмотка статора подключена к конденсатору, поэтому происходит появление небольшого количества тока. Он и заряжает конденсатор. Далее происходит образование магнитного поля, воздействующего на вторую обмотку, которая способствует еще более сильному заряду конденсатора. Ротор насыщается и самостоятельно производит энергию.

Асинхронный ветрогенератор, при скорости ветра в 4 метра за секунду способен произвести электричество, мощностью в 3 кВт.

Среди преимущества данного генератора следует отметить:

  • простоту в эксплуатации;
  • материальную и техническую доступность;
  • наличие постоянного устойчивого тока;
  • получение высокой мощности за небольшие деньги.

Среди преимущества синхронных генераторов следует отметить наличие устойчивого и стабильного напряжения. Но в то же время, данные генераторы отличаются необходимостью в периодической замене щеток и высокой стоимостью.

Асинхронные же генераторы довольно просты в работе, кроме того, они не подвержены возникновению короткого замыкания.

В процессе изготовления ветровой электростанции своими руками наилучшим вариантом станет использование автомобильного генератора, который станет отличным прибором, преобразовывающим энергию ветра в электричество.

Ветряные электростанции видео:

Как сделать вертикальный ветрогенератор. Как сделать ветряную электростанцию своими руками Ветрогенератор из

Время чтения ≈ 4 минут

Существенно уменьшить счета за электричество и обеспечить себя резервным источником энергии на даче можно, сделав ветрогенератор своими руками.

Покупка готового ветряного генератора экономически оправдана, только, если нет никакой возможности подключения к электросетям. Стоимость оборудования и его техническое обслуживание зачастую оказывается выше, чем цена киловатт, которые вы купите у энергосбытовой компании в течение ближайших лет. Хотя, если сравнивать с использованием бензиновых или дизельных генераторов небольшой мощности, тут экологичный источник энергии выигрывает по стоимости обслуживания, уровню шума, отсутствию вредных выхлопов. Временное отсутствие ветра можно компенсировать, используя аккумуляторы с преобразователем напряжения.

Ветрогенератор, собранный с использованием некоторых деталей, сделанных своими руками, может оказаться в несколько раз дешевле, готового комплекта. Если вы серьезно решили сделать свой загородный дом энергонезависимым, при этом не хотите никому переплачивать — самодельный ветрогенератор — правильное решение.

Мощность ветрогенератора

Прежде чем приступать к работе, надо определиться, есть ли реальная необходимость в мощном ветрогенераторе, например, для приготовления пищи, использования электроинструмента, нагрева воды или отопления. Может быть вам достаточно подключить освещение, небольшой холодильник, телевизор, подзарядить телефон? В первом случае вам нужен ветряк мощностью от 2 до 6 кВт, а во втором, можно ограничиться в 1-1,5 кВт.

Также существуют горизонтальные и вертикальные ветрогенераторы. При вертикальном расположении оси можно использовать лопасти самой разнообразной формы, это могут быть плоские или выгнутые листы металла, вращающиеся на удлинителях. Существует вариант с одной скрученной лопастью. Сам генератор располагается у земли. Поскольку обороты лопастей невысокие, двигатель имеет большую массу и, соответственно, стоимость. Преимуществом вертикальной конструкции является простота и возможность работы при слабом ветре.

В этом обзоре будет рассмотрен вопрос, как сделать горизонтальный ветрогенератор своими руками. Для него можно использовать различные типы доступных генераторов и переделанные электродвигатели.

Конструкция ветрогенератора на 220В:

  1. Электрогенератор промышленного производства.
  2. Лопасти для ветрогенератора и поворотный механизм на мачте.
  3. Схема управления зарядкой аккумулятора.
  4. Соединительные провода.
  5. Установочная мачта.
  6. Растяжки.

Мы будем использовать двигатель постоянного тока от «беговой дорожки», он имеет параметры: 260V, 5A. Эффект генератора мы получим за счет обратимости магнитных полей данного типа электродвигателей.

Необходимые материалы и комплектующие

Все детали вы легко найдете в хозяйственных или строительных магазинах. Нам потребуется:

  • нарезная втулка нужного размера;
  • мост диодный, рассчитанный на ток 30-50A;
  • ПВХ трубка.

Хвостовик и корпус ветряка можно сделать из следующих материалов:

  • Стальная профильная труба 25 мм;
  • Маскирующий фланец;
  • Патрубки;
  • Болты;
  • Шайбы;
  • Саморезы;
  • Скотч.

Сборка ветряного генератора согласно чертежам

Лопасти ветряка можно изготовить из дюраля по приведенным чертежам. Деталь надо качественно зашкурить, при этом переднюю кромку сделать закругленной, а заднюю заточить. Для хвостовика подойдет кусок жести достаточной жесткости.

К электродвигателю закрепляем втулку, а на ее корпусе высверливаем три отверстия на равном расстоянии друг от друга. В них надо нарезать резьбу под болты.

Трубку ПВХ разрежем вдоль, и будем использовать в качестве уплотнителя между квадратной трубой и корпусом генератора.

Диодный мост также закрепим возле мотора с помощью саморезов.

Черный провод от двигателя подключим к плюсу диодного моста, а красный к минусу.

Хвостовик прикручиваем саморезами на противоположный конец трубы.

Лопасти соединяем с втулкой при помощи болтов, обязательно используем по две шайбы и гровер на каждый болт.

Втулку закручиваем на вал двигателя против часовой стрелки, удерживая ось пассатижами.

Патрубок приворачиваем к маскирующему фланцу при помощи газового ключа.

Надо обязательно найти точку равновесия на трубе с закрепленным двигателем и хвостовиком. По этой точке закрепляем конструкцию на мачту.

Все металлические детали, которые могут подвергнуться коррозии желательно покрыть качественной эмалью.

Ветрогенератор для частного дома стоит установить на некотором расстоянии от основных строений, мачту обязательно закрепить растяжками из стального троса. Высота зависит от возможной силы ветра, рельефа и искусственных препятствий, окружающих электростанцию.

Электрический ток после диодного моста должен через контрольный амперметр поступать на электронную схему зарядки аккумулятора. Напрямую к такому генератору можно подключить маломощные лампы накаливания. Заряженные батареи выдают стабильное постоянное напряжение. Его рекомендуется использовать для освещения (галогенные лампы и светодиодные ленты), либо вывести на инвертор, чтобы получить 220В переменного тока и подключить любые бытовые приборы, мощность которых не превышает параметры инвертора.

Представленная фото и видео информация даст вам более наглядное представление о сборке ветрогенератора своими руками.

Видео изготовления ветрогенератора своими руками





Электроэнергия неуклонно дорожает. Чтобы чувствовать себя комфортно за городом в жаркую летнюю погоду и морозным зимним днем, необходимо или основательно потратиться, или заняться поиском альтернативных источников энергии. Россия – огромная по площади страна, имеющая большие равнинные территории. Хотя в большинстве регионов у нас преобладают медленные ветры, малообжитая местность обдувается мощными и буйными воздушными потоками. Поэтому присутствие ветрогенератора в хозяйстве владельца загородной недвижимости чаще всего оправдано. Подходящую модель выбирают, исходя из местности применения и фактических целей использования.

Ветряк #1 — конструкция роторного типа

Можно сделать своими руками несложный ветряк роторного типа. Конечно, снабдить электроэнергией большой коттедж ему вряд ли будет под силу, зато обеспечить электричеством скромный садовый домик вполне под силу. С его помощью можно снабдить светом в вечернее время суток хозяйственные постройки, осветить садовые дорожки и придомовую территорию.

Подробнее о других видах альтернативных источников энергии можно прочитать в данной статье:

Так или почти так выглядит роторный ветрогенератор, сделанный своими руками. Как видите, в конструкции этого оборудования нет ничего сверхсложного

Подготовка деталей и расходников

Чтобы собрать ветрогенератор, мощность которого не будет превышать 1,5 КВт, нам понадобятся:

  • генератор от автомобиля 12 V;
  • кислотный или гелиевый аккумулятор 12 V;
  • преобразователь 12V – 220V на 700 W – 1500 W;
  • большая ёмкость из алюминия или нержавеющей стали: ведро или объёмистая кастрюля;
  • автомобильное реле зарядки аккумулятора и контрольной лампы заряда;
  • полугерметичный выключатель типа «кнопка» на 12 V;
  • вольтметр от любого ненужного измерительного устройства, можно автомобильный;
  • болты с шайбами и гайками;
  • провода сечением 2,5 мм 2 и 4 мм 2 ;
  • два хомута, которыми генератор будет крепиться к мачте.

Для выполнения работы нам будут нужны ножницы по металлу или болгарка, рулетка, маркер или строительный карандаш, отвертка, ключи, дрель, сверло, кусачки.

Большинство владельцев частных домов не признают использование геотермального отопления, однако подобная система имеет перспективы. Подробнее о преимуществах и недостатках данного комплекса можно прочитать в следующем материале:

Ход конструкторских работ

Мы собираемся изготовить ротор и переделать шкив генератора. Для начала работы нам понадобится металлическая ёмкость цилиндрической формы. Чаще всего для этих целей приспосабливают кастрюлю или ведро. Возьмем рулетку и маркер или строительный карандаш и поделим ёмкость на четыре равные части. Если будем резать металл ножницами, то, чтобы их вставить, нужно сначала сделать отверстия. Можно воспользоваться и болгаркой, если ведро не выполнено из крашеной жести или оцинкованной стали. В этих случаях металл неминуемо перегреется. Вырезаем лопасти, не прорезая их до конца.

Чтобы не ошибиться с размерами лопастей, которые мы прорезаем в ёмкости, необходимо сделать тщательные замеры и тщательно всё пересчитать

В днище и в шкиве размечаем и высверливаем отверстия для болтов. На этой стадии важно не торопиться и расположить отверстия с соблюдением симметрии, чтобы при вращении избежать дисбаланса. Лопасти следует отогнуть, но не слишком сильно. При выполнении этой части работы учитываем направление вращения генератора. Обычно он крутится по движению часовой стрелке. В зависимости от угла изгиба увеличивается и площадь воздействия потоков ветра, а, значит, и скорость вращения.

Это ещё один из вариантов лопастей. В данном случае каждая деталь существует отдельно, а не в составе ёмкости, из которой вырезалась

Раз каждая из лопастей ветряка существует отдельно, прикручивать нужно каждую. Преимущество такой конструкции в её повышенной ремонтопригодности

Ведро с готовыми лопастями следует закрепить на шкиве, используя болты. На мачту при помощи хомутов устанавливаем генератор, затем подсоединяем провода и собираем цепь. Схему, цвета проводов и маркировку контактов лучше заранее переписать. Провода тоже нужно зафиксировать на мачте.

Чтобы подсоединить аккумулятор, используем провода 4 мм 2 , длина которых не должна быть более 1-го метра. Нагрузку (электроприборы и освещение) подключаем с помощью проводов сечением 2,5 мм 2 . Не забываем поставить преобразователь (инвертер). Его включают в сеть к контактам 7,8 проводом 4 мм 2 .

Конструкция ветряной установки состоит из резистора (1), обмотки стартера генератора (2), ротора генератора (3), регулятора напряжения (4), реле обратного тока (5), амперметра (6), аккумулятора (7), предохранителя (8), выключателя (9)

Достоинства и недостатки такой модели

Если всё сделано правильно, работать этот ветрогенератор будет, не создавая вам проблем. При аккумуляторе 75А и с преобразователем 1000 W он может питать уличное освещение, приборы видеонаблюдения и т.д.

Схема работы установки наглядно демонстрирует то, как именно энергия ветра преобразуется в электричество и то, как она используется по назначению

Достоинства такой модели очевидны: это весьма экономичное изделие, хорошо поддаётся ремонту, не требует особых условий для своего функционирования, работает надежно и не нарушает ваш акустический комфорт. К недостаткам можно отнести невысокую производительность и значительную зависимость от сильных порывов ветра: лопасти могут быть сорваны воздушными потоками.

Ветряк #2 — аксиальная конструкция на магнитах

Аксиальные ветряки с безжелезными статорами на неодимовых магнитах в России до последнего времени не делали по причине недоступности последних. Но теперь они есть и в нашей стране, причем стоят они дешевле, чем изначально. Поэтому и наши умельцы стали изготавливать ветрогенераторы этого типа.

Со временем, когда возможности роторного ветрогенератора уже не будут обеспечивать все потребности хозяйства, можно сделать аксиальную модель на неодимовых магнитах

Что необходимо подготовить?

За основу аксиального генератора нужно взять ступицу от автомобиля с тормозными дисками. Если эта деталь была в эксплуатации, её необходимо разобрать, подшипники поверить и смазать, ржавчину счистить. Готовый генератор будет покрашен.

Чтобы качественно отчистить ступицу от ржавчины, воспользуйтесь металлической щеткой, которую можно насадить на электродрель. Ступица снова будет выглядеть отлично

Распределение и закрепление магнитов

Нам предстоит наклеивать магниты на диски ротора. В данном случае используются 20 магнитов размером 25х8мм. Если вы решите сделать другое количество полюсов, то используйте правило: в однофазном генераторе должно быть сколько полюсов, столько и магнитов, а в трехфазном необходимо соблюдать соотношение 4/3 или 2/3 полюса к катушкам. Размещать магниты следует, чередуя полюса. Чтобы их расположение было правильным, используйте шаблон с секторами, нанесенными на бумаге или на самом диске.

Если есть такая возможность, магниты лучше использовать прямоугольные, а не круглые, потому что у круглых магнитное поле сосредоточено в центре, а у прямоугольных – по их длине. Противостоящие магниты должны иметь разные полюса. Чтобы ничего не перепутать, маркером нанесите на их поверхность «+» или «-». Для определения полюса возьмите один магнит и подносите к нему другие. На притягивающихся поверхностях ставьте плюс, а на отталкивающихся – минус. На дисках полюса должны чередоваться.

Магниты правильно размещены. Перед их фиксацией эпоксидной смолой, необходимо сделать бортики из пластилина, чтобы клейкая масса могла застыть, а не стекла на стол или пол

Для закрепления магнитов нужно использовать сильный клей, после чего прочность склейки дополнительно усиливают эпоксидной смолой. Ею заливают магниты. Чтобы предотвратить растекание смолы можно сделать бордюры из пластилина или просто обмотать диск скотчем.

Трехфазные и однофазные генераторы

Однофазный статор хуже трехфазного, потому что при нагрузке он даёт вибрацию. Это происходит из-за разницы в амплитуде тока, которая возникает по причине непостоянной отдачи его за момент времени. Трехфазная модель этим недостатком не страдает. Мощность в ней всегда постоянна, потому что фазы друг друга компенсируют: если в одной ток падает, а в другой он нарастает.

В споре однофазного и трехфазного вариантов последний выходит победителем, потому что дополнительная вибрация не продлевает срок службы оборудования и раздражает слух

В результате отдача трехфазной модели на 50% превышает тот же показатель однофазной. Другим плюсом отсутствия ненужной вибрации является акустический комфорт при работе под нагрузкой: генератор не гудит во время его эксплуатации. Кроме того, вибрация всегда выводит ветрогенератор из строя до истечения срока его эксплуатации.

Процесс наматывания катушек

Любой специалист вам скажет, что перед наматыванием катушек нужно произвести тщательный расчет. А любой практик все сделает интуитивно. Наш генератор не будет слишком быстроходным. Нам нужно, чтобы процесс зарядки 12-вольтового аккумулятора начался при 100-150 оборотах в минуту. При таких исходных данных общее число витков во всех катушках должно составлять 1000-1200шт. Осталось разделить эту цифру на количество катушек и узнать, сколько витков будет в каждой.

Чтобы сделать ветрогенератор на низких оборотах мощнее, нужно увеличить число полюсов. При этом в катушках возрастет частота колебания тока. Для намотки катушек лучше использовать толстый провод. Это уменьшит сопротивление, а, значит, сила тока возрастет. Следует учесть, что при большом напряжении ток может оказаться «съеденным» сопротивлением обмотки. Простой самодельный станочек поможет быстро и аккуратно намотать качественные катушки.

Статор размечен, катушки уложены на свои места. Для их фиксации используется эпоксидная смола, стеканию которой снова противостоят пластилиновые бортики

Из-за числа и толщины магнитов, расположенных на дисках, генераторы могут значительно различаться по своим рабочим параметрам. Чтобы узнать, какую мощность ждать в результате, можно намотать одну катушку и прокрутить её в генераторе. Для определения будущей мощности, следует измерить напряжение на определенных оборотах без нагрузки.

Например, при 200 оборотах в минуту получается 30 вольт при сопротивлении 3 Ом. Отнимаем от 30 вольт напряжение аккумулятора в 12 вольт, а получившиеся 18 вольт делим на 3 Ом. Результат – 6 ампер. Это тот объём, который отправится на аккумулятор. Хотя практически, конечно, выходит меньше из-за потерь на диодном мосту и в проводах.

Чаще всего катушки делают круглыми, но лучше их чуть вытянуть. При этом меди в секторе получается больше, а витки катушек оказываются прямее. Диаметр внутреннего отверстия катушки должен соответствовать размеру магнита или быть немногим больше его.

Проводятся предварительные испытания получившегося оборудования, которые подтверждают его отличную работоспособность. Со временем и эту модель можно будет усовершенствовать

Делая статор, учтите, что его толщина должна соответствовать толще магнитов. Если число витков в катушках увеличить и сделать статор толще, междисковое пространство увеличится, а магнитопоток уменьшится. В результате может образоваться то же напряжение, но меньший ток из-за возросшего сопротивления катушек.

В качестве формы для статора используют фанеру, но можно на бумаге разметить сектора для катушек, а бордюры сделать из пластилина. Прочность изделия увеличит стеклоткань, помещенная на дно формы и поверх катушек. Эпоксидная смола не должна прилипать к форме. Для этого её смазывают воском или вазелином. Для тех же целей можно использовать пленку или скотч. Катушки закрепляют между собой неподвижно, концы фаз выводят наружу. Потом все шесть проводов соединяют треугольником или звездой.

Генератор в сборе тестируют, используя вращение рукой. Получившееся напряжение составляет 40 вольт, сила тока при этом составляет примерно 10 Ампер.

Заключительный этап — мачта и винт

Фактическая высота готовой мачты составила 6 метров, но лучше было бы сделать её 10-12 метров. Основание для неё нуждается в бетонировании. Необходимо сделать такое крепление, чтобы трубу можно было поднимать и опускать при помощи ручной лебедки. На верхнюю часть трубы крепится винт.

Труба ПВХ – надежный и достаточно легкий материал, используя который можно сделать винт ветряка с заранее предусмотренным изгибом

Для изготовления винта нужна ПВХ труба, диаметр которой составляет 160 мм. Из неё предстоит вырезать шестилопастной двухметровый винт. С формой лопастей имеет смысл поэкспериментировать, чтобы усилить крутящий момент на низких оборотах. От сильного ветра винт нужно уводить. Эта функция выполняется с помощью складывающегося хвоста. Выработанная энергия копится в аккумуляторах.

Мачта должна подниматься и опускаться с помощью ручной лебедки. Дополнительную устойчивость конструкции можно придать, используя натяжные тросы

Вашему вниманию предоставлены два варианта ветрогенераторов, которые чаще всего используются дачниками и владельцами загородной недвижимости. Каждый из них по-своему эффективен. Особенно результат применения такого оборудования проявляется в местности с сильными ветрами. В любом случае, такой помощник в хозяйстве не помешает никогда.

Сложно не заметить, насколько стабильность поставок электроэнергии загородным объектам отличается от обеспечения городских зданий и предприятий электроэнергией. Признайтесь, что вы как владелец частного дома или дачи не раз сталкивались с перебоями, связанными с ними неудобствами и порчей техники.

Перечисленные негативные ситуации вместе с последствиями перестанут осложнять жизнь любителей природных просторов. Причем с минимальными трудовыми и финансовыми затратами. Для этого нужно всего лишь сделать ветряной генератор электроэнергии, о чем мы детально рассказываем в статье.

Мы подробно описали варианты изготовления полезной в хозяйстве системы, избавляющей от энергетической зависимости. Согласно нашим советам соорудить ветрогенератор своими руками сможет неопытный домашний мастер. Практичное устройство поможет существенно сократить ежедневные расходы.

Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.

Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.

Ветрогенератор – отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом

Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?

Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно , мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.

Содержание:

Воздушные массы обладают неисчерпаемыми запасами энергии, которую человечество использовало еще в давние времена. В основном сила ветра обеспечивала движение судов под парусами и работу ветряных мельниц. После изобретения паровых двигателей данный вид энергии потерял свою актуальность.

Лишь в современных условиях ветровая энергия вновь стала востребованной в качестве движущей силы, прикладываемой к электрическим генераторам. Они еще не получили широкого распространения в промышленных масштабах, но становятся все более популярными в частном секторе. Иногда бывает просто невозможно подключиться к линии электропередачи. В таких ситуациях многие хозяева конструируют и изготавливают ветрогенератор для частного дома своими руками из подручных материалов. В дальнейшем они используются в качестве основных или вспомогательных источников электроэнергии.

Теория идеального ветряка

Данная теория разрабатывалась в разное время учеными и специалистами в области механики. Впервые она была разработана В.П. Ветчинкиным в 1914 году, а в качестве основы использовалась теория идеального гребного винта. В этих исследованиях был впервые выведен коэффициент использования ветряной энергии идеальным ветряком.

Работы в этой области были продолжены Н.Е. Жуковским, который вывел максимальное значение данного коэффициента, равное 0,593. В более поздних работах другого профессора — Сабинина Г.Х. уточненное значение коэффициента составило 0,687.

В соответствии с разработанными теориями, идеальное ветряное колесо должно обладать следующими параметрами:

  • Ось вращения колеса должна быть параллельна со скоростью ветрового потока.
  • Количество лопастей бесконечно большое, с очень малой шириной.
  • Нулевое значение профильного сопротивления крыльев при наличии постоянной циркуляции вдоль лопастей.
  • Вся сметаемая поверхность ветряка обладает постоянной потерянной скоростью воздушного потока на колесе.
  • Стремление угловой скорости к бесконечности.

Выбор ветроустановки

Выбирая модель ветрогенератор для частного дома следует учитывать необходимую мощность, обеспечивающую работу приборов и оборудования с учетом графика и периодичности включения. Она определяется путем ежемесячного учета потребляемой электроэнергии. Дополнительно значение мощности может определяться в соответствии с техническими характеристиками потребителей.

Следует учитывать и тот фактор, что питание всех электроприборов осуществляется не напрямую от ветрогенератора, а от инвертора и комплекта аккумуляторных батарей. Таким образом, генератор мощностью в 1 кВт способен обеспечить нормальное функционирование аккумуляторов, питающих четырехкиловаттный инвертор. В результате, бытовые приборы с аналогичной мощностью обеспечиваются электроэнергией в полном объеме. Большое значение имеет правильный выбор батарей. Особое внимание следует обратить на такие параметры, как и ток зарядки.

При выборе конструкции ветряного двигателя учитываются следующие факторы:

  • Направление вращения ветряного колеса — вертикальное или горизонтальное.
  • Форма лопаток для вентилятора может быть в виде паруса, с прямой или криволинейной поверхностью. В некоторых случаях используются комбинированные варианты.
  • Материал для лопаток и технология их изготовления.
  • Размещение вентиляторных лопастей с различным наклоном, относительно потока проходящего воздуха.
  • Количество лопастей, включенных в вентилятор.
  • Необходимая мощность, передаваемая от ветряного двигателя к генератору.

Кроме того, необходимо учесть среднегодовую скорость ветра для конкретной местности, уточненную в метеослужбе. Уточнять направление ветра не требуется, поскольку современные конструкции ветрогенераторов самостоятельно поворачиваются в другую сторону.

Для большинства местностей Российской Федерации наиболее оптимальным вариантом будет горизонтальная ориентация оси вращения, поверхность лопаток криволинейная вогнутая, которую воздушный поток обтекает под острым углом. На величину мощности, забираемой от ветра, влияет площадь лопасти. Для обычного дома вполне достаточно площади 1,25 м 2 .

Число оборотов ветряка зависит от количества лопастей. Быстрее всего вращаются ветрогенераторы с одной лопастью. В таких конструкциях для уравновешивания используется противовес. Следует учитывать и тот факт, что при низкой скорости ветра, ниже 3 м/с, ветряные установки становятся неспособными забирать энергию. Для того чтобы агрегат воспринимал слабый ветер, площадь его лопастей должна быть увеличена как минимум до 2 м 2 .

Расчет ветрогенератора

Перед выбором ветрогенератора необходимо определить скорость и направление ветра, наиболее характерные в месте предполагаемого монтажа. Следует помнить, что вращение лопастей начинается при минимальной скорости ветра 2 м/с. Максимального КПД удается достичь, когда этот показатель достигает значения от 9 до 12 м/с. То есть, для того чтобы обеспечить электричеством небольшой загородный дом, потребуется генератор с минимальной мощностью 1 кВт/ч и ветер со скоростью не менее 8 м/с.

Скорость ветра и диаметр винта оказывают непосредственное влияние на мощность, вырабатываемую ветряной электроустановкой. Точно рассчитать эксплуатационные характеристики той или иной модели возможно с помощью следующих формул:

  1. Расчеты в соответствии с площадью вращения выполняются следующим образом: P = 0,6 х S х V 3 ,где S — площадь, перпендикулярная направлению ветра (м 2), V — скорость ветра (м/с), Р — мощность генераторной установки (кВт).
  2. Для расчетов электроустановки по диаметру винта применяется формула:Р = D 2 х V 3 /7000, в которой D является диаметром винта (м), V — скорость ветра (м/с), Р — мощность генератора (кВт).
  3. При более сложных вычислениях учитывается плотность воздушного потока. Для этих целей существует формула: P = ξ х π х R 2 х 0,5 х V 3 х ρ х η ред х η ген,где ξ является коэффициентом использования ветровой энергии (безмерная величина), π = 3,14, R — радиус ротора (м), V — скорость воздушного потока (м/с), ρ — плотность воздуха (кг/м 3), η ред — КПД редуктора (%), η ген — КПД генератора (%).

Таким образом, электроэнергия, производимая ветрогенератором, возрастает количественно в кубическом соотношении с повышающейся скоростью ветрового потока. Например, при повышении скорости ветра в 2 раза, выработка ротором кинетической энергии возрастет в 8 раз.

При выборе места установки ветрогенератора необходимо отдавать предпочтение участкам без больших построек и высоких деревьев, которые создают преграду для ветра. Минимальное расстояние от жилых домов составляет от 25 до 30 метров, в противном случае шум во время работы будет создавать неудобства и дискомфорт. Ротор ветряка должен быть расположен на высоте, превышающей ближайшие постройки не менее чем на 3-5 м.

Если подключение загородного дома к общей сети не планируется, в этом случае можно воспользоваться вариантами комбинированных систем. Работа ветряной установки будет значительно эффективнее при использовании ее совместно с дизель-генератором или солнечной батареей.

Как сделать ветрогенератор своими руками

Независимо от типа и конструкции ветрогенератора, каждое устройство в качестве основы, оборудуется похожими элементами. Во всех моделях имеются генераторы, лопасти из различных материалов, подъемники, обеспечивающие нужный уровень установки, а также дополнительные аккумуляторы и система электронного управления. Наиболее простыми для изготовления считаются агрегаты роторного типа либо аксиальные конструкции с использованием магнитов.

Вариант 1. Роторная конструкция ветрогенератора.

В конструкции роторного ветряного генератора используется две, четыре или более лопастей. Подобные ветрогенераторы не в состоянии полностью обеспечить электроэнергией большие загородные дома. Они используются преимущественно в качестве вспомогательного источника электричества.

В зависимости от расчетной мощности ветряка, подбираются необходимые материалы и комплектующие:

  • Генератор с автомобиля на 12 вольт и автомобильный аккумулятор.
  • Регулятор напряжения, преобразующий переменный ток с 12 до 220 вольт.
  • Емкость с большими размерами. Лучше всего подойдет алюминиевое ведро или кастрюля из нержавеющей стали.
  • В качестве зарядного устройства можно воспользоваться реле, снятым с автомобиля.
  • Потребуется выключатель на 12 В, лампа заряда с контроллером, болты с гайками и шайбами, а также металлические хомуты с прорезиненными прокладками.
  • Трехжильный кабель с минимальным сечением 2,5 мм 2 и обычный вольтметр, снятый с любого измерительного устройства.

В первую очередь выполняется подготовка ротора из имеющейся металлической емкости — кастрюли или ведра. Она размечается на четыре равные части, на концах линий проделываются отверстия, чтобы облегчить разделение на составные части. Затем емкость разрезается ножницами по металлу или болгаркой. Из получившихся заготовок вырезаются лопасти ротора. Все замеры должны тщательно проверяться на соответствие размерам, в противном случае конструкция будет работать неправильно.

Далее определяется сторона вращения шкива генератора. Как правило, он вращается по часовой стрелке, но лучше это проверить. После этого роторная часть соединяется с генератором. Во избежание дисбаланса в движении ротора, отверстия для креплений в обеих конструкциях должны располагаться симметрично.

Чтобы увеличить скорость вращения края лопастей следует немного выгнуть. С возрастанием угла изгиба, потоки воздуха будут более эффективно восприниматься роторной установкой. В качестве лопастей используются не только элементы разрезанной емкости, но и отдельные детали, соединяемые с металлической заготовкой, имеющей форму окружности.

После крепления емкости к генератору, всю полученную конструкцию нужно целиком установить на мачте с помощью металлических хомутов. Затем монтируется проводка и собирается . Каждый контакт должен включаться в собственный разъем. После подключения проводка крепится к мачте проволокой.

По окончании сборки осуществляется подключение инвертора, аккумулятора и нагрузки. Аккумулятор подключается кабелем с сечением 3 мм 2 , для всех остальных подключений вполне достаточно сечения 2 мм 2 . После этого ветрогенератор можно эксплуатировать.

Вариант 2. Аксиальная конструкция ветрогенератора с применением магнитов.

Аксиальные ветряки для дома представляют собой конструкцию, одним из основных элементов которой являются неодимовые магниты. По своим эксплуатационным качествам они значительно опережают обычные роторные агрегаты.

Ротор является основным элементом всей конструкции ветрогенератора. Для его изготовления лучше всего подойдет ступица автомобильного колеса в комплекте с тормозными дисками. Деталь, находившуюся в эксплуатации, следует подготовить — очистить от грязи и ржавчины, смазать подшипники.

Далее необходимо правильно распределить и закрепить магниты. Всего их понадобится 20 штук, размером 25 х 8 мм. Магнитное поле в них расположено по длине. Четные магниты будут полюсами, они располагаются по всей плоскости диска, с чередованием через один. Затем определяются плюсы и минусы. Один магнит поочередно касается других магнитов на диске. Если они притягиваются, значит полюс положительный.

При увеличенном количестве полюсов, необходимо соблюдать определенные правила. В однофазных генераторах число полюсов совпадает с количеством магнитов. В трехфазных генераторах соблюдается пропорция 4/3 между магнитами и полюсами, а также соотношение 2/3 между полюсами и катушками. Установка магнитов выполняется перпендикулярно окружности диска. Для их равномерного распределения используется бумажный шаблон. Вначале магниты закрепляются сильным клеем, а потом окончательно фиксируются эпоксидной смолой.

Если сравнивать однофазные и трехфазные генераторы, то эксплуатационные качества первых будут несколько хуже по сравнению со вторыми. Это связано с высокими амплитудными колебаниями в сети из-за нестабильной отдачи тока. Поэтому в однофазных устройствах возникает вибрация. В трехфазных конструкциях этот недостаток компенсируется нагрузками тока из одной фазы в другую. За счет этого в сети всегда обеспечивается постоянное значение мощности. Из-за вибрации срок эксплуатации однофазных систем значительно ниже, чем у трехфазных. Кроме того, у трехфазных моделей во время работы отсутствует шум.

Высота мачты составляет примерно 6-12 м. Она устанавливается в центр опалубки и заливается бетоном. Затем на мачту устанавливается готовая конструкция, на которую крепится винт. Крепление самой мачты осуществляется с помощью тросов.

Лопасти для ветрогенератора

Эффективность работы ветровых электроустановок во многом зависит от конструкции лопастей. Прежде всего, это их количество и размеры, а также материал, из которого будут изготовлены лопасти для ветрогенератора.

Факторы, влияющие на конструкцию лопастей:

  • Даже самый слабый ветер сможет привести в движение длинные лопасти. Однако слишком большая длина может привести к замедлению скорости вращения ветряного колеса.
  • Увеличение общего количества лопастей делает ветряное колесо более чутким. То есть, чем больше лопастей, тем лучше запускается вращение. Однако мощность и скорость будут снижаться, что делает подобное устройство непригодным для выработки электроэнергии.
  • Диаметр и скорость вращения ветряного колеса оказывает влияние на уровень шума, создаваемого устройством.

Количество лопастей должно сочетаться с местом установки всей конструкции. В наиболее оптимальных условиях правильно подобранные лопасти способны обеспечить максимальную отдачу ветрогенератора.

Прежде всего, нужно заранее определить необходимую мощность и функциональность устройства. Чтобы правильно изготовить ветрогенератор, нужно изучить возможные конструкции, а также климатические условия, в которых он будут эксплуатироваться.

Кроме общей мощности рекомендуется определить значение выходной мощности, известной еще как пиковая нагрузка. Она представляет собой общее количество приборов и оборудования, которые будут включаться одновременно с работой ветрогенератора. При необходимости увеличить этот показатель, рекомендуется использовать сразу несколько инверторов.

Ветряной генератор своими руками 24в — 2500ватт

С давних пор человечество использует силу ветра в своих целях. Ветряные мельницы, парусные корабли знакомы многим, про них пишут в книгах и снимают исторические фильмы. В наше время ветряной электрогенератор не потерял свою актуальность, т.к. с его помощью можно получить бесплатное электричество на даче, которое может пригодиться, если отключат свет. Поговорим о самодельных ветряках, которые можно собрать из подручных материалов и доступных деталей с минимумом затрат. Для вас мы предоставили одну подробную инструкцию с картинками, а также видео идеи еще нескольких вариантов сборки. Итак, давайте рассмотрим, как сделать ветрогенератор своими руками в домашних условиях.

Инструкция по сборке

Существуют несколько типов ветряных установок, а именно – горизонтальный, вертикальный и турбина. У них есть принципиальные различия, свои плюсы и минусы. Однако принцип работы всех ветрогенераторов одинаков — энергия ветра преобразуется в электрическую и накапливается в аккумуляторах, а уже с них уходит на нужды человека. Самый распространенный вид — это горизонтальный.

Он знаком и узнаваем. Преимущество горизонтального ветрогенератора — более высокий КПД по сравнению с другими, так как лопасти ветряка всегда находятся под действием воздушного потока. К недостаткам можно отнести высокое требование к ветру – он должен быть сильнее 5 метров в секунду. Этот тип ветряка сделать проще всего, поэтому его часто берут за основу домашние мастера.

Если вы решили попробовать свои силы в сборке ветрогенератора своими руками, вот несколько рекомендаций.

Начинать нужно с генератора — это сердце системы, от его параметров будет зависеть конструкция винтового узла. Для этого подойдут автомобильные генераторы отечественного и импортного производства, есть сведения о использовании шаговых двигателей от принтеров или прочей оргтехники. Велосипедное мотор-колесо также можно использовать, чтобы самому сделать ветряк для получения электричества. В целом, может подойти практический любой мотор или генератор, однако его обязательно необходимо проверить на эффективность.

Определившись с преобразователем энергии, нужно собрать редукторный узел для повышения оборотов на валу генератора. Один оборот пропеллера должен равняться 4-5 оборотам на валу генераторного узла. Однако эти параметры подбираются индивидуально, исходя из мощности и особенностей вашего генератора и лопастного узла. В качестве редуктора может выступать деталь от болгарки или система ремней и роликов.

Когда собран узел редуктор-генератор, приступают к выяснению его сопротивления крутящему моменту (грамм на миллиметр). Для этого нужно сделать плечо с противовесом на валу будущей установки, и с помощью груза выяснить при каком весе плечо пойдет вниз. Приемлемым результатом считается менее 200 грамм на метр. Размер плеча в этом случае принимается за длину лопасти.

Многие думают, что чем больше лопастей, тем лучше. Это не совсем верно. Нам нужны большие обороты, а много винтов создают большее сопротивление ветру, так как изготавливаем мы их в домашних условиях, в результате чего в какой-то момент набегающий поток тормозит винт и КПД установки падает. Вы можете использовать двухлопастной винт. Такой пропеллер при нормальном ветре может раскрутиться более 1000 оборотов в минуту. Сделать лопасти самодельного ветрогенератора можно из подручных средств — от фанеры и оцинковки, до пластика от водопроводных труб (как на фото ниже). Главное условие – материал должен быть легким и прочным.

Легкий винт повысит КПД ветряка и чувствительность к воздушному потоку. Не забудьте сбалансировать воздушное колесо и убрать неровности, иначе во время работы генератора будете слушать завывание и вой, а вибрации приведут к быстрому износу деталей.

Следующий важный элемент, это хвост. Он будет держать колесо в потоке ветра, и поворачивать конструкцию в случае изменения его направления.

Делать токосъемник или нет, решать вам. Это усложнит конструкцию, однако избавит от частых скручиваний провода, что чревато обрывами кабеля. Конечно, при его отсутствии вам придется иногда самостоятельно раскручивать провод. Во время пробного запуска ветрогенератора не забудьте о технике безопасности, крутящиеся лопасти представляют большую опасность.

Настроенный и сбалансированный ветряк устанавливают на мачту, высотой не ниже 7 метров от земли, закрепленную распорными тросами. Далее не менее важный узел — накопительный аккумулятор. Чаще всего используют автомобильный кислотный аккумулятор. Подключать выход самодельного ветрогенератора непосредственно к батарее нельзя, это нужно сделать через реле зарядки или контроллер, который можно собрать самому или же приобрести готовый.

Принцип работы реле сводится к контролю за зарядом и нагрузкой. В случае полного заряда батареи, оно переключает генератор и аккумулятор на нагрузочный балласт, система стремится всегда быть заряженной, не допуская перезаряда, и не оставляет генератор без нагрузки. Ветряк без нагрузки может достаточно сильно раскрутиться и повредить выработанным потенциалом изоляцию в обмотках. К тому же высокие обороты могут стать причиной механического разрушения элементов ветряного генератора. Далее стоит преобразователь напряжения с 12 на 220 вольт 50 Гц для подключения бытовых приборов.

Сейчас в интернете полно схем и чертежей, где мастера показывают, как сделать ветрогенератор на мощных магнитах самостоятельно. Настолько ли они эффективны, как обещают – вопрос спорный. Но попробовать собрать ветряную электрогенерирующую установку для дома стоит, а потом решить, как ее улучшить. Важно получить опыт и тогда уже можно замахнуться на более серьезный аппарат. Свобода и многообразие самодельных ветряков настолько обширна, а элементная база разнообразна, что нет смысла описывать их все, основной смысл остался тем же — поток ветра раскручивает винт, редуктор повышает обороты вала, генератор выдает напряжение, далее контроллер держит уровень заряда на аккумуляторе, а с него уже идет отбор энергии для различных нужд. Вот по такому принципу можно сделать ветрогенератор своими руками в домашних условиях. Надеемся, наша подробная инструкция с фото примерами разъяснила вам, как изготовить подходящую модель ветряка для дома или дачи. Также рекомендуем ознакомиться с мастер-классами по сборке самодельного устройства в видео формате.

Наглядные видеоуроки

Чтобы легко сделать ветрогенератор для получения электричества в домашних условиях, рекомендуем ознакомиться с готовыми идеями на видео примерах:

Вот мы и предоставили все наиболее простые и доступные идеи сборки самодельного ветряка. Как вы видите, некоторые модели устройств сможет легко изготовить даже ребенок. Существует множество других вариантов самоделок: на мощных магнитах, со сложными лопастями и т.д. Эти конструкции стоит повторять только при наличии некоторого опыта в этом деле, начинать следует с простых схем. Если вы хотите сделать ветрогенератор, чтобы он работал и использовался по назначению, действуйте согласно предоставленной нами инструкции. Если у вас остались вопросы – оставляйте их в комментариях.

Климат и экология: Среда обитания: Lenta.ru

Власти Японии решили построить плавучие ветряные электростанции в прибрежных водах, чтобы добывать энергию прямо «из воздуха» вместо того, чтобы использовать ископаемое топливо. Первым будет сконструирован объект мощностью 16,8 мегаватт рядом с городом Гото в префектуре Нагасаки, пишет CNBC.

Компании RWE Renewables и Kansai Electric Power подписали соглашение, по которому оба предприятия «совместно изучат осуществимость крупномасштабного морского ветроэнергетического проекта» в водах у побережья Японии. RWE Renewables заявила, что видит «большой потенциал для плавучих ветряных электростанций по всему миру, но особенно в странах с более глубокими прибрежными водами, таких как Япония».

Кроме того, в июле фирма BW Ideol, которая называет себя «компанией чистых технологий», заявила о подписании соглашения для строительства еще одной плавучей ветряной турбины в японских водах. Проект будет реализован вместе с энергетической фирмой ENEOS Corporation.

Материалы по теме

00:01 — 3 августа

Убийственная мгла.

Как месторождение угля разрушило благополучие американского города и погубило его жителей

00:01 — 16 августа

Точка невозврата.

Глобальную климатическую катастрофу признали неизбежной. Что человечество может сделать для спасения?

В июне правительство Японии заявило, что консорциум из шести компаний — среди них Toda Corporation, Osaka Gas, Kansai Electric Power, ENEOS Corporation, INPEX Corporation и Chubu Electric Power — был выбран для реализации государственного проекта по строительству плавучей морской ветряной электростанции мощностью 16,8 мегаватт.

Плавучие морские ветряные турбины отличаются устройством от морских ветровых турбин, закрепленных на дне водоема. Компания RWE рассказала, что новые электростанции устанавливаются «поверх плавучих конструкций, которые прикреплены к морскому дну с помощью швартовных канатов и якорей». Одним из преимуществ таких турбин по сравнению с их более старым аналогом является то, что они могут быть установлены гораздо дальше от берега. Консалтинговая фирма Carbon Trust отмечает, что на таких участках «можно получить более стабильные ветровые ресурсы, а это означает, что плавучие ветровые турбины могут обеспечить более высокую продуктивность».

Такие установки все еще находятся на ранних стадиях разработки, и в будущем необходимо будет снизить расходы на их создание. Первая плавучая турбина была открыта лишь в 2017 году норвежской энергетической компанией Equinor. Объект Hywind Scotland имеет мощность в 30 мегаватт. Компания назвала его «первой полномасштабной плавучей морской ветряной электростанцией».

Сотрудничество компаний RWE и Kansai Electric Power началось после того, как власти Японии объявили о масштабных реформах в экологической политике. К 2030 году страна планирует удвоить долю выработки энергии возобновляемыми источниками. Потенциальными ресурсами могут стать водород и аммиак.

Удивительные ветрогенераторы — Энергетика и промышленность России — № 21 (353) ноябрь 2018 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 21 (353) ноябрь 2018 года

Объединяет их лишь одно: рабочей силой является движение воздушных масс. О некоторых оригинальных агрегатах мы и хотим рассказать в этом материале.

Ветрогенераторы становятся все более популярными. Их используют не только как дополнительный источник электричества, но зачастую и как основной, например, при обустройстве загородного дома. Тому способствует удобство эксплуатации и вполне хороший эстетичный вид ветряков. К тому же это вполне экологичные конструкции, не требующие затрат на природные ресурсы: ветер бесплатен. К тому же нынче промышленность выпускает контроллеры энергии, обеспечивающие работу даже при слабом ветре, собирающие энергию «порциями», и конструкции с автоматически изменяющимся углом атаки лопастей в зависимости от направления и силы ветра.

В настоящее время различают три основных типа конструкции ВЭС: пропеллерные, где вращающийся вал расположен горизонтально относительно направления ветра и с самым высоким КПД, барабанные и карусельные, в которых вал, вращающий лопасти, расположен вертикально и которые монтируется в местах, где направление ветра не имеет большого значения (например, в горах).

Главная проблема – нерегулярность работы поставщика энергии, то есть самого ветра. Ветряные электростанции напрямую зависят от этого фактора, и работа узлов, получающих электроэнергию подобным способом, не может быть непрерывной. Положение усугубляется еще и тем, что сила ветра может служить как на пользу, так и во вред – нарастание силы ветра способно вывести установки из строя.

Достоинства ВЭС – простота конструкции, экономичность и возобновляемость источника энергии. Кроме того – доступность (ветер дует везде) и независимость источника энергии (например, от цен на топливо).

Недостатки – зависимость от ветра, шумность и необходимость использования больших площадей (в случае постройки крупных электростанций). Кроме того, стартовая стоимость и дальнейшее использование – вполне затратны (необходимы накопители энергии, которые имеют ограниченный срок эксплуатации).

Как и среди производителей, лидер по строительству ВЭС – Германия. Европа вообще переживает бум строительства ветроустановок, их число растет в скандинавских странах и Греции.

В Азии наибольший практический интерес испытывается со стороны Китая. Программа строительства предусматривает обязательный монтаж таких установок при возведении новых зданий.

Это касается, в первую очередь, так называемых «традиционных» ветряков. Но среди всего разнообразия установок есть и оригинальные, не вписывающиеся в обычные представления о них.

Дерево-ветрогенератор

Например, французская группа инженеров создала искусственное дерево, способное генерировать электричество с помощью ветра. Устройство производит энергию даже при небольшом движении воздуха.

Идея пришла автору изобретения Жерому Мишо-Ларивьеру, когда он наблюдал шелест листьев в безветренную погоду. Устройство использует небольшие пластины в форме скрученных листьев, которые преобразуют ветряную энергию в электрическую. Причем независимо от направления движения воздуха. Дополнительное преимущество «дерева» заключается в его полностью бесшумной работе.

На создание 8‑метрового прототипа инженеры потратили три года. Энергогенерирующее «дерево» установлено в коммуне Плюмер-Боду на северо-западе Франции.

Новая установка, Wind Tree, эффективнее обычного ветрогенератора, поскольку вырабатывает энергию даже при скорости ветра всего 4 м / с.

Мишо-Ларивьер надеется, что «дерево» будет использовано для питания уличных фонарей или зарядных станций для электромобилей. В будущем он планирует усовершенствовать установку и подключить ее к энергоэффективным домам. Идеальное электрогенерирующее «дерево», по словам изобретателя, должно иметь листья из натуральных волокон, «корни» в виде геотермального генератора и «кору» с фотоэлементами.

Биоразлагаемые лопасти

Ахиллесова пята быстрорастущей индустрии ветроэнергетики – физические компоненты ветрогенераторов, которые изготавливаются из нефтяных смол и в конечном итоге оказываются на свалках.

Чем больше ветрогенераторов, тем больше выбрасывается использованных лопастей. Чтобы положить конец этой расточительности, исследовательской группе UMass Lowell был выделен грант для решения этой проблемы путем создания биоразлагаемых лопастей.

Для конструирования новых ветрогенераторов они планируют использовать «полимеры на биологической основе», примером которых является растительное масло.

Кроме всего прочего, рассматривается возможность замены нефтяных смол устойчивыми. Ученые надеются найти новый материал, который обладает теми же свойствами, что и ныне используемый.

Одна из трудностей состоит в том, что необходимо проверить, могут ли эти экологичные лопасти выдерживать суровые погодные условия и при этом иметь конкурентоспособные цены.

Использование биоразлагаемых лопастей сделает индустрию еще более «зеленой» за счет сокращения отходов.

Крылья стрекозы

Несколько исследователей из Франции попробовали сделать ветряную турбину еще эффективней за счет изменения ее компонентов. Насекомые, а именно стрекозы, вдохновили их на создание гибких лопастей. Ветровая турбина на сегодняшний день работает только при оптимальных скоростях ветров, но новый био-дизайн может дать способ обойти этот факт.

Исследователи построили прототипы с обычными жесткими лопастями, умеренно гибкими лопастями и очень гибкими лопастями турбины. Последний дизайн оказался слишком гибким, но умеренно гибкие лопасти превосходят жесткие, создавая на целых 35 % больше мощности. Кроме того, они продолжали работать в условиях слабого ветра и не были подвержены повреждениям при сильном ветре.

Теперь ученым предстоит найти оптимальный материал, который не был бы слишком гибким, но и не являлся жестким.

Воздушная ветроэнергетика

Воздушная ветроэнергетика (Airborne Wind Energy, сокращенно AWE) запускает в небеса летающие ветряные электростанции – дирижабли, «воздушные змеи», дроны и прочие летательные аппараты, оснащенные ветряными турбинами или приводящие в действие наземные генераторы с помощью своих «поводков».

Летающие ветрогенераторы не требуют фундаментов и значительных транспортных издержек. При этом они работают с хорошим «коммерческим» ветром – на высотах в несколько сотен метров ветер стабильнее и сильнее. Поэтому коэффициент использования установленной мощности воздушных ветряных электростанций достигает 70 %.

Например, это шотландский ветроэнергетический проект Kite Power Systems, технологии которого обеспечивают выработку энергии с помощью «воздушных змеев», парящих на высоте до 450 м.

А ветроэнергетическая система Airborne Wind Energy System использует для добычи энергии следующую схему. Автономный самолет, привязанный к основанию, летает по восьмерке на высоте от 200 до 450 метров. Когда самолет движется, он тянет тросик, который приводит в действие генератор. Как только трос намотан до установленной длины (~750 м), самолет автоматически опускается на более низкую высоту. Затем он поднимается и повторяет процесс. Самолет взлетает с платформы, летает и приземляется автономно, используя набор сенсоров, которые обеспечивают информацию для безопасного выполнения задачи.

Ветрогенератор закрытого типа

Компания «Оптифлейм Солюшенз», реализующая в рамках «Сколково» проект по созданию нового поколения малых и средних ветрогенераторов закрытого типа, создала предсерийный образец ветроустановки для подготовки к промышленному производству.

Традиционные ветрогенераторы открытого типа обладают высоким уровнем потенциальной опасности и поэтому располагаются преимущественно в нежилых зонах на удалении. Ветрогенераторы закрытого типа, оснащенные турбиной наподобие самолетной, можно размещать в любых местах, например на крышах жилых или коммерческих зданий.

Установочная мощность образца – 1 / 2 кВт. Он протестирован в аэродинамической трубе и в реальных условиях. В дальнейшем планируется создать и более мощные разработки.

Вместо обычного двух- или трехлопастного вентилятора здесь используется осевая турбина самолетного типа. Это повышает КПД и снижает стоимость изготовления, т. к. сами лопатки существенно меньше вентиляторных. Конструкция имеет внешний направляющий аппарат, который дополнительно повышает КПД и служит защитой от птиц, а также имеются внешний и внутренний обтекатели, служащие защитой в случае разрушения лопаток.

В итоге получен ветрогенератор с рекордно низкой стоимостью генерации кВт-часа, который принципиально возможно размещать в жилой зоне, в том числе – на крышах городских домов. Обычный ветряк там ставить невозможно, так как в пределах десяти диаметров от него должно быть свободное пространство.

По сравнению с обычными ветрогенераторами данная конструкция безопасна в рабочем состоянии для обслуживающего персонала и летающих животных. Также оно работает при более низком уровне шума и не является значительной угрозой для безопасности людей и строений в округе. При аварии обычного ветрогенератора массивные лопасти, двигающиеся с большой скоростью, как правило, разрушают всю конструкцию при повреждении одной из них.

Безредукторный ветроагрегат

В проекте безредукторного ветроагрегата энергия вырабатывается «кончиками» лопастей. Здесь отсутствует традиционный вал от пропеллера к генератору, а электричество снимается с обода пропеллера.

Его ротор в форме ферромагнитного обода закреплен на крыльях ветроколеса. По конструкции он прост, легко изготавливается и монтируется. Но размещение постоянных магнитов на концах крыльчатки намного утяжеляет ее, что снижает общий КПД установки. Зато агрегат удобен в эксплуатации, потому что простая конструкция не требует излишнего внимания. Такие ветрогенераторы могут работать везде при любых климатических условиях.

«Водонапорная башня»

Самый фантастический проект представили американцы. С дальнего расстояния этот ветрогенератор похож, скорее, на водонапорную башню. Лишь поблизости можно увидеть медленное вращение лопастей.

Такую гигантскую турбину собирается серийно выпускать компания в Аризоне под руководством инженера Мазура. По его расчетам, она одна должна поставлять столько электроэнергии, что ее хватит для мегаполиса в 750 тысяч домов. В 2007 году инженер поставил себе цель – многократно увеличить КПД ветрогенератора на вертикальной оси и приближался к своей цели все эти годы.

Изобретатель работал в двух направлениях: первое – сделать как можно больший захват лопастями воздушного потока и второе – свести к нулю трение опоры ветролопастей. Огромных размеров вертикальный ротор должен выполнить первую задачу, а вращающаяся турбина на магнитной подушке – вторую.

О второй задаче надо сказать более подробно. Вращение без трения достигается за счет магнитной левитации. Весь вертикальный роторный блок при вращении поднимается на своей оси и совершенно не касается нижнего опорного подшипника. Он установлен только для старта, для разгона турбины. Как только она набирает обороты, становится как бы невесомой и отрывается от подшипника. В результате трение сводится к нулю, если не считать трения самой турбины о воздух.

Гигантская турбина очень чувствительна и реагирует на малейшее дуновение ветерка. Такая способность подниматься во время вращения за счет магнитной левитации давно занимала ученые и изобретательские умы планеты. Это такое явление, при котором любая вещь или предмет, имея вес, отрывается от поверхности и парит в пространстве без всякого применения отталкивающей силы.

В проекте Мазура виден «плавающий» ротор на магнитной подушке, а вместо генератора установлен линейный синхронный двигатель. Ветрогенератор на магнитной подушке множеством лопастей максимально захватывает воздушный поток. По предположению, такая турбина будет вырабатывать электроэнергию по сказочно мизерной цене.

Это, конечно, лишь часть необычных для традиционного взгляда проектов. Некоторые из них, например, относящиеся к воздушной ветроэнергетике, уже успешно используются. Некоторым – еще предстоит найти свое место в истории. Понятно одно – на традиционных ветряках ветроэнергетика вовсе не заканчивается, она, как и любое направление техники, неуклонно продолжает развиваться.

Вертикальный ветряк своими руками (5 кВт). Как сделать ветряную электростанцию своими руками Ветрогенератор из

Вертикальный ветрогенератор своими руками, чертежи, фото, видео ветряка с вертикальной осью.

Ветрогенераторы подразделяются по типу размещения вращающейся оси (ротора) на вертикальные и горизонтальные. Конструкцию ветрогенератора с горизонтальным ротором мы рассматривали в прошлой статье, теперь поговорим о ветрогенераторе с вертикальным ротором.

Схема аксиального генератора для ветрогенератора.

Изготовление ветроколеса.

Ветроколесо (турбина) вертикального ветрогенератора состоит из двух опор верхней и нижней, а также из лопастей.

Ветроколесо изготовляется из листов алюминия или нержавейки, также ветроколесо можно вырезать из тонкостенной бочки. Высота ветроколеса должна быть не менее 1 метра.

В этом ветроколесе угол изгиба лопастей задаёт скорость вращения ротора, чем больше изгиб, тем больше скорость вращения.

Ветроколесо крепится болтами сразу к шкиву генератора.

Для установки вертикального ветрогенератора можно использовать любую мачту, изготовление мачты подробно описано в этой .

Схема подключения ветогенератора.

Генератор подключается к контроллеру, тот в свою очередь к аккумулятору. В качестве накопителя энергии практичней использовать автомобильный аккумулятор. Поскольку бытовые приборы работают от переменного тока, нам понадобится инвертор для преобразования постоянного тока 12 V в переменный 220V.

Для подключения используется медный провод сечением до 2,5 квадрата. Схема подключения подробно описана .

Видео где показан ветрогенератор в работе.

Время чтения ≈ 4 минут

Существенно уменьшить счета за электричество и обеспечить себя резервным источником энергии на даче можно, сделав ветрогенератор своими руками.

Покупка готового ветряного генератора экономически оправдана, только, если нет никакой возможности подключения к электросетям. Стоимость оборудования и его техническое обслуживание зачастую оказывается выше, чем цена киловатт, которые вы купите у энергосбытовой компании в течение ближайших лет. Хотя, если сравнивать с использованием бензиновых или дизельных генераторов небольшой мощности, тут экологичный источник энергии выигрывает по стоимости обслуживания, уровню шума, отсутствию вредных выхлопов. Временное отсутствие ветра можно компенсировать, используя аккумуляторы с преобразователем напряжения.

Ветрогенератор, собранный с использованием некоторых деталей, сделанных своими руками, может оказаться в несколько раз дешевле, готового комплекта. Если вы серьезно решили сделать свой загородный дом энергонезависимым, при этом не хотите никому переплачивать — самодельный ветрогенератор — правильное решение.

Мощность ветрогенератора

Прежде чем приступать к работе, надо определиться, есть ли реальная необходимость в мощном ветрогенераторе, например, для приготовления пищи, использования электроинструмента, нагрева воды или отопления. Может быть вам достаточно подключить освещение, небольшой холодильник, телевизор, подзарядить телефон? В первом случае вам нужен ветряк мощностью от 2 до 6 кВт, а во втором, можно ограничиться в 1-1,5 кВт.

Также существуют горизонтальные и вертикальные ветрогенераторы. При вертикальном расположении оси можно использовать лопасти самой разнообразной формы, это могут быть плоские или выгнутые листы металла, вращающиеся на удлинителях. Существует вариант с одной скрученной лопастью. Сам генератор располагается у земли. Поскольку обороты лопастей невысокие, двигатель имеет большую массу и, соответственно, стоимость. Преимуществом вертикальной конструкции является простота и возможность работы при слабом ветре.

В этом обзоре будет рассмотрен вопрос, как сделать горизонтальный ветрогенератор своими руками. Для него можно использовать различные типы доступных генераторов и переделанные электродвигатели.

Конструкция ветрогенератора на 220В:

  1. Электрогенератор промышленного производства.
  2. Лопасти для ветрогенератора и поворотный механизм на мачте.
  3. Схема управления зарядкой аккумулятора.
  4. Соединительные провода.
  5. Установочная мачта.
  6. Растяжки.

Мы будем использовать двигатель постоянного тока от «беговой дорожки», он имеет параметры: 260V, 5A. Эффект генератора мы получим за счет обратимости магнитных полей данного типа электродвигателей.

Необходимые материалы и комплектующие

Все детали вы легко найдете в хозяйственных или строительных магазинах. Нам потребуется:

  • нарезная втулка нужного размера;
  • мост диодный, рассчитанный на ток 30-50A;
  • ПВХ трубка.

Хвостовик и корпус ветряка можно сделать из следующих материалов:

  • Стальная профильная труба 25 мм;
  • Маскирующий фланец;
  • Патрубки;
  • Болты;
  • Шайбы;
  • Саморезы;
  • Скотч.

Сборка ветряного генератора согласно чертежам

Лопасти ветряка можно изготовить из дюраля по приведенным чертежам. Деталь надо качественно зашкурить, при этом переднюю кромку сделать закругленной, а заднюю заточить. Для хвостовика подойдет кусок жести достаточной жесткости.

К электродвигателю закрепляем втулку, а на ее корпусе высверливаем три отверстия на равном расстоянии друг от друга. В них надо нарезать резьбу под болты.

Трубку ПВХ разрежем вдоль, и будем использовать в качестве уплотнителя между квадратной трубой и корпусом генератора.

Диодный мост также закрепим возле мотора с помощью саморезов.

Черный провод от двигателя подключим к плюсу диодного моста, а красный к минусу.

Хвостовик прикручиваем саморезами на противоположный конец трубы.

Лопасти соединяем с втулкой при помощи болтов, обязательно используем по две шайбы и гровер на каждый болт.

Втулку закручиваем на вал двигателя против часовой стрелки, удерживая ось пассатижами.

Патрубок приворачиваем к маскирующему фланцу при помощи газового ключа.

Надо обязательно найти точку равновесия на трубе с закрепленным двигателем и хвостовиком. По этой точке закрепляем конструкцию на мачту.

Все металлические детали, которые могут подвергнуться коррозии желательно покрыть качественной эмалью.

Ветрогенератор для частного дома стоит установить на некотором расстоянии от основных строений, мачту обязательно закрепить растяжками из стального троса. Высота зависит от возможной силы ветра, рельефа и искусственных препятствий, окружающих электростанцию.

Электрический ток после диодного моста должен через контрольный амперметр поступать на электронную схему зарядки аккумулятора. Напрямую к такому генератору можно подключить маломощные лампы накаливания. Заряженные батареи выдают стабильное постоянное напряжение. Его рекомендуется использовать для освещения (галогенные лампы и светодиодные ленты), либо вывести на инвертор, чтобы получить 220В переменного тока и подключить любые бытовые приборы, мощность которых не превышает параметры инвертора.

Представленная фото и видео информация даст вам более наглядное представление о сборке ветрогенератора своими руками.

Видео изготовления ветрогенератора своими руками





Зачастую у владельцев частных домов возникает идея о реализации системы резервного электропитания . Наиболее простой и доступный способ — это, естественно, или генератор, однако многие люди обращают свой взгляд на более сложные способы преобразования так называемой даровой энергии ( излучения, энергии текущей воды или ветра) в .

Каждый из этих способов имеет свои достоинства и недостатки. Если с использованием течения воды (мини-ГЭС) все понятно — это доступно только в непосредственной близости от достаточно быстротекущей реки, то солнечный свет или ветер можно использовать практически везде. Оба этих метода будут иметь и общий минус — если водяная турбина может работать круглосуточно, то солнечная батарея или ветрогенератор эффективны только некоторое время, что делает необходимым включение аккумуляторов в структуру домашней электросети.

Поскольку условия в России (малая длительность светового дня большую часть года, частые осадки) делают применение солнечных батарей неэффективным при их современных стоимости и КПД, наиболее выгодным становится конструирование ветрового генератора . Рассмотрим его принцип действия и возможные варианты конструкции.

Так как ни одно самодельное устройство не похоже на другое, эта статья — не пошаговая инструкция , а описание базовых основ конструирования ветрогенератора.

Общий принцип работы

Основным рабочим органом ветрогенератора являются лопасти, которые и вращает ветер. В зависимости от расположения оси вращения ветрогенераторы делятся на горизонтальные и вертикальные:

  • Горизонтальные ветрогенераторы наиболее широко распространены. Их лопасти имеют конструкцию, аналогичную пропеллеру самолета: в первом приближении это — наклонные относительно плоскости вращения пластины, которые преобразуют часть нагрузки от давления ветра во вращение. Важной особенностью горизонтального ветрогенератора является необходимость обеспечения поворота лопастного узла сообразно направлению ветра, так как максимальная эффективность обеспечивается при перпендикулярности направления ветра к плоскости вращения.
  • Лопасти вертикального ветрогенератора имеют выпукло-вогнутую форму. Так как обтекаемость выпуклой стороны больше, чем вогнутой, такой ветрогенератор вращается всегда в одном направлении независимо от направления ветра, что делает ненужным поворотный механизм в отличие от горизонтальных ветряков. Вместе с тем, за счет того, что в любой момент времени полезную работу выполняет только часть лопастей, а остальные только противодействуют вращению, КПД вертикального ветряка значительно ниже, чем горизонтального : если для трехлопастного горизонтального ветрогенератора этот показатель доходит до 45%, то у вертикального не превысит 25%.

Поскольку средняя скорость ветров в России невелика, даже большой ветряк большую часть времени будет вращаться достаточно медленно. Для обеспечения достаточной мощности электропитания от должен соединяться с генератором через повышающий редуктор, ременной или шестеренчатый. В горизонтальном ветряке блок лопасти-редуктор-генератор устанавливается на поворотной головке, которая дает им возможность следовать за направлением ветра. Важно учесть, что поворотная головка должна иметь ограничитель, не дающий ей сделать полный оборот, так как иначе проводка от генератора будет оборвана (вариант с использованием контактных шайб, позволяющих головке свободно вращаться, более сложен). Для обеспечения поворота ветрогенератор дополняется направленным вдоль оси вращения рабочим флюгером.

Наиболее распространенный материал для лопастей — это ПВХ-трубы большого диаметра, разрезаемые вдоль. По краю к ним приклепываются металлические пластины, приваренные к ступице лопастного узла. Чертежи такого рода лопастей наиболее широко распространены в Интернете.

На видео рассказывается про ветрогенератор, изготовленный своими руками

Расчет лопастного ветрогенератора

Так как мы уже выяснили, что горизонтальный ветрогенератор значительно эффективнее, рассмотрим расчет именно его конструкции.

Энергия ветра может быть определена по формуле
P=0.6*S*V ³, где S — это площадь круга, описываемого концами лопастей винта (площадь ометания), выраженная в квадратных метрах, а V — расчетная скорость ветра в метрах в секунду. Также нужно учитывать КПД самого ветряка, который для трехлопастной горизонтальной схемы составит в среднем 40%, а также КПД генераторной установки, составляющий на пике токоскоростной характеристики 80% для генератора с возбуждением от постоянных магнитов и 60% — для генератора с обмоткой возбуждения. Еще в среднем 20% мощности израсходует повышающий редуктор (мультипликатор). Таким образом, окончательный расчет радиуса ветряка (то есть длины его лопасти) для заданной мощности генератора на постоянных магнитах выглядит так:
R=√(P/(0.483*V³
))

Пример: Примем требуемую мощность ветроэлектростанции в 500 Вт, а среднюю скорость ветра — в 2 м/с. Тогда по нашей формуле нам придется использовать лопасти длиной не менее 11 метров. Как видите, даже такая небольшая мощность потребует создания ветрогенератора колоссальных габаритов. Для более-менее рациональных в условиях изготовления своими руками конструкций с длиной лопасти не более полутора метров ветрогенератор сможет выдавать всего лишь 80-90 ватт мощности даже на сильном ветру.

Недостаточно мощности? На самом деле все несколько иначе, так как на самом деле нагрузку ветрогенератора питают аккумуляторы, ветряк же только заряжает их в меру своих возможностей. Следовательно, мощность ветроустановки определяет периодичность, с которой она сможет осуществлять подачу энергии.

С давних пор человечество использует силу ветра в своих целях. Ветряные мельницы, парусные корабли знакомы многим, про них пишут в книгах и снимают исторические фильмы. В наше время ветряной электрогенератор не потерял свою актуальность, т.к. с его помощью можно получить бесплатное электричество на даче, которое может пригодиться, если отключат свет. Поговорим о самодельных ветряках, которые можно собрать из подручных материалов и доступных деталей с минимумом затрат. Для вас мы предоставили одну подробную инструкцию с картинками, а также видео идеи еще нескольких вариантов сборки. Итак, давайте рассмотрим, как сделать ветрогенератор своими руками в домашних условиях.

Инструкция по сборке

Существуют несколько типов ветряных установок, а именно – горизонтальный, вертикальный и турбина. У них есть принципиальные различия, свои плюсы и минусы. Однако принцип работы всех ветрогенераторов одинаков — энергия ветра преобразуется в электрическую и накапливается в аккумуляторах, а уже с них уходит на нужды человека. Самый распространенный вид — это горизонтальный.

Он знаком и узнаваем. Преимущество горизонтального ветрогенератора — более высокий КПД по сравнению с другими, так как лопасти ветряка всегда находятся под действием воздушного потока. К недостаткам можно отнести высокое требование к ветру – он должен быть сильнее 5 метров в секунду. Этот тип ветряка сделать проще всего, поэтому его часто берут за основу домашние мастера.

Если вы решили попробовать свои силы в сборке ветрогенератора своими руками, вот несколько рекомендаций.

Начинать нужно с генератора — это сердце системы, от его параметров будет зависеть конструкция винтового узла. Для этого подойдут автомобильные генераторы отечественного и импортного производства, есть сведения о использовании шаговых двигателей от принтеров или прочей оргтехники. Велосипедное мотор-колесо также можно использовать, чтобы самому сделать ветряк для получения электричества. В целом, может подойти практический любой мотор или генератор, однако его обязательно необходимо проверить на эффективность.

Определившись с преобразователем энергии, нужно собрать редукторный узел для повышения оборотов на валу генератора. Один оборот пропеллера должен равняться 4-5 оборотам на валу генераторного узла. Однако эти параметры подбираются индивидуально, исходя из мощности и особенностей вашего генератора и лопастного узла. В качестве редуктора может выступать деталь от болгарки или система ремней и роликов.

Когда собран узел редуктор-генератор, приступают к выяснению его сопротивления крутящему моменту (грамм на миллиметр). Для этого нужно сделать плечо с противовесом на валу будущей установки, и с помощью груза выяснить при каком весе плечо пойдет вниз. Приемлемым результатом считается менее 200 грамм на метр. Размер плеча в этом случае принимается за длину лопасти.

Многие думают, что чем больше лопастей, тем лучше. Это не совсем верно. Нам нужны большие обороты, а много винтов создают большее сопротивление ветру, так как изготавливаем мы их в домашних условиях, в результате чего в какой-то момент набегающий поток тормозит винт и КПД установки падает. Вы можете использовать двухлопастной винт. Такой пропеллер при нормальном ветре может раскрутиться более 1000 оборотов в минуту. Сделать лопасти самодельного ветрогенератора можно из подручных средств — от фанеры и оцинковки, до пластика от водопроводных труб (как на фото ниже). Главное условие – материал должен быть легким и прочным.

Легкий винт повысит КПД ветряка и чувствительность к воздушному потоку. Не забудьте сбалансировать воздушное колесо и убрать неровности, иначе во время работы генератора будете слушать завывание и вой, а вибрации приведут к быстрому износу деталей.

Следующий важный элемент, это хвост. Он будет держать колесо в потоке ветра, и поворачивать конструкцию в случае изменения его направления.

Делать токосъемник или нет, решать вам. Это усложнит конструкцию, однако избавит от частых скручиваний провода, что чревато обрывами кабеля. Конечно, при его отсутствии вам придется иногда самостоятельно раскручивать провод. Во время пробного запуска ветрогенератора не забудьте о технике безопасности, крутящиеся лопасти представляют большую опасность.

Настроенный и сбалансированный ветряк устанавливают на мачту, высотой не ниже 7 метров от земли, закрепленную распорными тросами. Далее не менее важный узел — накопительный аккумулятор. Чаще всего используют автомобильный кислотный аккумулятор. Подключать выход самодельного ветрогенератора непосредственно к батарее нельзя, это нужно сделать через реле зарядки или контроллер, который можно собрать самому или же приобрести готовый.

Принцип работы реле сводится к контролю за зарядом и нагрузкой. В случае полного заряда батареи, оно переключает генератор и аккумулятор на нагрузочный балласт, система стремится всегда быть заряженной, не допуская перезаряда, и не оставляет генератор без нагрузки. Ветряк без нагрузки может достаточно сильно раскрутиться и повредить выработанным потенциалом изоляцию в обмотках. К тому же высокие обороты могут стать причиной механического разрушения элементов ветряного генератора. Далее стоит преобразователь напряжения с 12 на 220 вольт 50 Гц для подключения бытовых приборов.

Сейчас в интернете полно схем и чертежей, где мастера показывают, как сделать ветрогенератор на мощных магнитах самостоятельно. Настолько ли они эффективны, как обещают – вопрос спорный. Но попробовать собрать ветряную электрогенерирующую установку для дома стоит, а потом решить, как ее улучшить. Важно получить опыт и тогда уже можно замахнуться на более серьезный аппарат. Свобода и многообразие самодельных ветряков настолько обширна, а элементная база разнообразна, что нет смысла описывать их все, основной смысл остался тем же — поток ветра раскручивает винт, редуктор повышает обороты вала, генератор выдает напряжение, далее контроллер держит уровень заряда на аккумуляторе, а с него уже идет отбор энергии для различных нужд. Вот по такому принципу можно сделать ветрогенератор своими руками в домашних условиях. Надеемся, наша подробная инструкция с фото примерами разъяснила вам, как изготовить подходящую модель ветряка для дома или дачи. Также рекомендуем ознакомиться с мастер-классами по сборке самодельного устройства в видео формате.

Наглядные видеоуроки

Чтобы легко сделать ветрогенератор для получения электричества в домашних условиях, рекомендуем ознакомиться с готовыми идеями на видео примерах:

Вот мы и предоставили все наиболее простые и доступные идеи сборки самодельного ветряка. Как вы видите, некоторые модели устройств сможет легко изготовить даже ребенок. Существует множество других вариантов самоделок: на мощных магнитах, со сложными лопастями и т.д. Эти конструкции стоит повторять только при наличии некоторого опыта в этом деле, начинать следует с простых схем. Если вы хотите сделать ветрогенератор, чтобы он работал и использовался по назначению, действуйте согласно предоставленной нами инструкции. Если у вас остались вопросы – оставляйте их в комментариях.

Содержание:

Воздушные массы обладают неисчерпаемыми запасами энергии, которую человечество использовало еще в давние времена. В основном сила ветра обеспечивала движение судов под парусами и работу ветряных мельниц. После изобретения паровых двигателей данный вид энергии потерял свою актуальность.

Лишь в современных условиях ветровая энергия вновь стала востребованной в качестве движущей силы, прикладываемой к электрическим генераторам. Они еще не получили широкого распространения в промышленных масштабах, но становятся все более популярными в частном секторе. Иногда бывает просто невозможно подключиться к линии электропередачи. В таких ситуациях многие хозяева конструируют и изготавливают ветрогенератор для частного дома своими руками из подручных материалов. В дальнейшем они используются в качестве основных или вспомогательных источников электроэнергии.

Теория идеального ветряка

Данная теория разрабатывалась в разное время учеными и специалистами в области механики. Впервые она была разработана В.П. Ветчинкиным в 1914 году, а в качестве основы использовалась теория идеального гребного винта. В этих исследованиях был впервые выведен коэффициент использования ветряной энергии идеальным ветряком.

Работы в этой области были продолжены Н.Е. Жуковским, который вывел максимальное значение данного коэффициента, равное 0,593. В более поздних работах другого профессора — Сабинина Г.Х. уточненное значение коэффициента составило 0,687.

В соответствии с разработанными теориями, идеальное ветряное колесо должно обладать следующими параметрами:

  • Ось вращения колеса должна быть параллельна со скоростью ветрового потока.
  • Количество лопастей бесконечно большое, с очень малой шириной.
  • Нулевое значение профильного сопротивления крыльев при наличии постоянной циркуляции вдоль лопастей.
  • Вся сметаемая поверхность ветряка обладает постоянной потерянной скоростью воздушного потока на колесе.
  • Стремление угловой скорости к бесконечности.

Выбор ветроустановки

Выбирая модель ветрогенератор для частного дома следует учитывать необходимую мощность, обеспечивающую работу приборов и оборудования с учетом графика и периодичности включения. Она определяется путем ежемесячного учета потребляемой электроэнергии. Дополнительно значение мощности может определяться в соответствии с техническими характеристиками потребителей.

Следует учитывать и тот фактор, что питание всех электроприборов осуществляется не напрямую от ветрогенератора, а от инвертора и комплекта аккумуляторных батарей. Таким образом, генератор мощностью в 1 кВт способен обеспечить нормальное функционирование аккумуляторов, питающих четырехкиловаттный инвертор. В результате, бытовые приборы с аналогичной мощностью обеспечиваются электроэнергией в полном объеме. Большое значение имеет правильный выбор батарей. Особое внимание следует обратить на такие параметры, как и ток зарядки.

При выборе конструкции ветряного двигателя учитываются следующие факторы:

  • Направление вращения ветряного колеса — вертикальное или горизонтальное.
  • Форма лопаток для вентилятора может быть в виде паруса, с прямой или криволинейной поверхностью. В некоторых случаях используются комбинированные варианты.
  • Материал для лопаток и технология их изготовления.
  • Размещение вентиляторных лопастей с различным наклоном, относительно потока проходящего воздуха.
  • Количество лопастей, включенных в вентилятор.
  • Необходимая мощность, передаваемая от ветряного двигателя к генератору.

Кроме того, необходимо учесть среднегодовую скорость ветра для конкретной местности, уточненную в метеослужбе. Уточнять направление ветра не требуется, поскольку современные конструкции ветрогенераторов самостоятельно поворачиваются в другую сторону.

Для большинства местностей Российской Федерации наиболее оптимальным вариантом будет горизонтальная ориентация оси вращения, поверхность лопаток криволинейная вогнутая, которую воздушный поток обтекает под острым углом. На величину мощности, забираемой от ветра, влияет площадь лопасти. Для обычного дома вполне достаточно площади 1,25 м 2 .

Число оборотов ветряка зависит от количества лопастей. Быстрее всего вращаются ветрогенераторы с одной лопастью. В таких конструкциях для уравновешивания используется противовес. Следует учитывать и тот факт, что при низкой скорости ветра, ниже 3 м/с, ветряные установки становятся неспособными забирать энергию. Для того чтобы агрегат воспринимал слабый ветер, площадь его лопастей должна быть увеличена как минимум до 2 м 2 .

Расчет ветрогенератора

Перед выбором ветрогенератора необходимо определить скорость и направление ветра, наиболее характерные в месте предполагаемого монтажа. Следует помнить, что вращение лопастей начинается при минимальной скорости ветра 2 м/с. Максимального КПД удается достичь, когда этот показатель достигает значения от 9 до 12 м/с. То есть, для того чтобы обеспечить электричеством небольшой загородный дом, потребуется генератор с минимальной мощностью 1 кВт/ч и ветер со скоростью не менее 8 м/с.

Скорость ветра и диаметр винта оказывают непосредственное влияние на мощность, вырабатываемую ветряной электроустановкой. Точно рассчитать эксплуатационные характеристики той или иной модели возможно с помощью следующих формул:

  1. Расчеты в соответствии с площадью вращения выполняются следующим образом: P = 0,6 х S х V 3 ,где S — площадь, перпендикулярная направлению ветра (м 2), V — скорость ветра (м/с), Р — мощность генераторной установки (кВт).
  2. Для расчетов электроустановки по диаметру винта применяется формула:Р = D 2 х V 3 /7000, в которой D является диаметром винта (м), V — скорость ветра (м/с), Р — мощность генератора (кВт).
  3. При более сложных вычислениях учитывается плотность воздушного потока. Для этих целей существует формула: P = ξ х π х R 2 х 0,5 х V 3 х ρ х η ред х η ген,где ξ является коэффициентом использования ветровой энергии (безмерная величина), π = 3,14, R — радиус ротора (м), V — скорость воздушного потока (м/с), ρ — плотность воздуха (кг/м 3), η ред — КПД редуктора (%), η ген — КПД генератора (%).

Таким образом, электроэнергия, производимая ветрогенератором, возрастает количественно в кубическом соотношении с повышающейся скоростью ветрового потока. Например, при повышении скорости ветра в 2 раза, выработка ротором кинетической энергии возрастет в 8 раз.

При выборе места установки ветрогенератора необходимо отдавать предпочтение участкам без больших построек и высоких деревьев, которые создают преграду для ветра. Минимальное расстояние от жилых домов составляет от 25 до 30 метров, в противном случае шум во время работы будет создавать неудобства и дискомфорт. Ротор ветряка должен быть расположен на высоте, превышающей ближайшие постройки не менее чем на 3-5 м.

Если подключение загородного дома к общей сети не планируется, в этом случае можно воспользоваться вариантами комбинированных систем. Работа ветряной установки будет значительно эффективнее при использовании ее совместно с дизель-генератором или солнечной батареей.

Как сделать ветрогенератор своими руками

Независимо от типа и конструкции ветрогенератора, каждое устройство в качестве основы, оборудуется похожими элементами. Во всех моделях имеются генераторы, лопасти из различных материалов, подъемники, обеспечивающие нужный уровень установки, а также дополнительные аккумуляторы и система электронного управления. Наиболее простыми для изготовления считаются агрегаты роторного типа либо аксиальные конструкции с использованием магнитов.

Вариант 1. Роторная конструкция ветрогенератора.

В конструкции роторного ветряного генератора используется две, четыре или более лопастей. Подобные ветрогенераторы не в состоянии полностью обеспечить электроэнергией большие загородные дома. Они используются преимущественно в качестве вспомогательного источника электричества.

В зависимости от расчетной мощности ветряка, подбираются необходимые материалы и комплектующие:

  • Генератор с автомобиля на 12 вольт и автомобильный аккумулятор.
  • Регулятор напряжения, преобразующий переменный ток с 12 до 220 вольт.
  • Емкость с большими размерами. Лучше всего подойдет алюминиевое ведро или кастрюля из нержавеющей стали.
  • В качестве зарядного устройства можно воспользоваться реле, снятым с автомобиля.
  • Потребуется выключатель на 12 В, лампа заряда с контроллером, болты с гайками и шайбами, а также металлические хомуты с прорезиненными прокладками.
  • Трехжильный кабель с минимальным сечением 2,5 мм 2 и обычный вольтметр, снятый с любого измерительного устройства.

В первую очередь выполняется подготовка ротора из имеющейся металлической емкости — кастрюли или ведра. Она размечается на четыре равные части, на концах линий проделываются отверстия, чтобы облегчить разделение на составные части. Затем емкость разрезается ножницами по металлу или болгаркой. Из получившихся заготовок вырезаются лопасти ротора. Все замеры должны тщательно проверяться на соответствие размерам, в противном случае конструкция будет работать неправильно.

Далее определяется сторона вращения шкива генератора. Как правило, он вращается по часовой стрелке, но лучше это проверить. После этого роторная часть соединяется с генератором. Во избежание дисбаланса в движении ротора, отверстия для креплений в обеих конструкциях должны располагаться симметрично.

Чтобы увеличить скорость вращения края лопастей следует немного выгнуть. С возрастанием угла изгиба, потоки воздуха будут более эффективно восприниматься роторной установкой. В качестве лопастей используются не только элементы разрезанной емкости, но и отдельные детали, соединяемые с металлической заготовкой, имеющей форму окружности.

После крепления емкости к генератору, всю полученную конструкцию нужно целиком установить на мачте с помощью металлических хомутов. Затем монтируется проводка и собирается . Каждый контакт должен включаться в собственный разъем. После подключения проводка крепится к мачте проволокой.

По окончании сборки осуществляется подключение инвертора, аккумулятора и нагрузки. Аккумулятор подключается кабелем с сечением 3 мм 2 , для всех остальных подключений вполне достаточно сечения 2 мм 2 . После этого ветрогенератор можно эксплуатировать.

Вариант 2. Аксиальная конструкция ветрогенератора с применением магнитов.

Аксиальные ветряки для дома представляют собой конструкцию, одним из основных элементов которой являются неодимовые магниты. По своим эксплуатационным качествам они значительно опережают обычные роторные агрегаты.

Ротор является основным элементом всей конструкции ветрогенератора. Для его изготовления лучше всего подойдет ступица автомобильного колеса в комплекте с тормозными дисками. Деталь, находившуюся в эксплуатации, следует подготовить — очистить от грязи и ржавчины, смазать подшипники.

Далее необходимо правильно распределить и закрепить магниты. Всего их понадобится 20 штук, размером 25 х 8 мм. Магнитное поле в них расположено по длине. Четные магниты будут полюсами, они располагаются по всей плоскости диска, с чередованием через один. Затем определяются плюсы и минусы. Один магнит поочередно касается других магнитов на диске. Если они притягиваются, значит полюс положительный.

При увеличенном количестве полюсов, необходимо соблюдать определенные правила. В однофазных генераторах число полюсов совпадает с количеством магнитов. В трехфазных генераторах соблюдается пропорция 4/3 между магнитами и полюсами, а также соотношение 2/3 между полюсами и катушками. Установка магнитов выполняется перпендикулярно окружности диска. Для их равномерного распределения используется бумажный шаблон. Вначале магниты закрепляются сильным клеем, а потом окончательно фиксируются эпоксидной смолой.

Если сравнивать однофазные и трехфазные генераторы, то эксплуатационные качества первых будут несколько хуже по сравнению со вторыми. Это связано с высокими амплитудными колебаниями в сети из-за нестабильной отдачи тока. Поэтому в однофазных устройствах возникает вибрация. В трехфазных конструкциях этот недостаток компенсируется нагрузками тока из одной фазы в другую. За счет этого в сети всегда обеспечивается постоянное значение мощности. Из-за вибрации срок эксплуатации однофазных систем значительно ниже, чем у трехфазных. Кроме того, у трехфазных моделей во время работы отсутствует шум.

Высота мачты составляет примерно 6-12 м. Она устанавливается в центр опалубки и заливается бетоном. Затем на мачту устанавливается готовая конструкция, на которую крепится винт. Крепление самой мачты осуществляется с помощью тросов.

Лопасти для ветрогенератора

Эффективность работы ветровых электроустановок во многом зависит от конструкции лопастей. Прежде всего, это их количество и размеры, а также материал, из которого будут изготовлены лопасти для ветрогенератора.

Факторы, влияющие на конструкцию лопастей:

  • Даже самый слабый ветер сможет привести в движение длинные лопасти. Однако слишком большая длина может привести к замедлению скорости вращения ветряного колеса.
  • Увеличение общего количества лопастей делает ветряное колесо более чутким. То есть, чем больше лопастей, тем лучше запускается вращение. Однако мощность и скорость будут снижаться, что делает подобное устройство непригодным для выработки электроэнергии.
  • Диаметр и скорость вращения ветряного колеса оказывает влияние на уровень шума, создаваемого устройством.

Количество лопастей должно сочетаться с местом установки всей конструкции. В наиболее оптимальных условиях правильно подобранные лопасти способны обеспечить максимальную отдачу ветрогенератора.

Прежде всего, нужно заранее определить необходимую мощность и функциональность устройства. Чтобы правильно изготовить ветрогенератор, нужно изучить возможные конструкции, а также климатические условия, в которых он будут эксплуатироваться.

Кроме общей мощности рекомендуется определить значение выходной мощности, известной еще как пиковая нагрузка. Она представляет собой общее количество приборов и оборудования, которые будут включаться одновременно с работой ветрогенератора. При необходимости увеличить этот показатель, рекомендуется использовать сразу несколько инверторов.

Ветряной генератор своими руками 24в — 2500ватт

Азербайджан планирует привлечь 7 компаний к строительству новых объектов в сфере ВИЭ

Азербайджан намерен привлечь к реализации проектов в сфере возобновляемых источников энергии (ВИЭ) семь компаний, ранее участвовавших в соответствующем конкурсе Минэнерго, заявил президент страны Ильхам Алиев.

«9 компаний участвовали в конкурсе (на строительство электростанций в сфере ВИЭ — ИФ). То есть они готовы вложить средства в ВИЭ. Из них были выбраны две, представившие наилучшие предложения. Однако это не означает, что остальные остались в стороне, мы их тоже приглашаем. Им следует пересмотреть свои предложения, сделать условия приемлемыми для нашей страны», — сказал Алиев в понедельник в ходе совещания по итогам 2019 года.

Алиев также поручил кабинету министров рассмотреть предложения компаний, участвовавших в конкурсе Минэнерго на строительство электростанций в сфере ВИЭ, провести с ними переговоры в индивидуальном порядке для реализации аналогичных проектов.

Глава государства отметил, что развитие ВИЭ является приоритетом для Азербайджана, обладающего современной энергетической инфраструктурой и богатыми ресурсами для развития ветряной и солнечной энергетики.

Алиев также подчеркнул, что исполнительные контракты, подписанные с ACWA Power (Саудовская Аравия) и Masdar (ОАЭ) по строительству ветряной и солнечной электростанций суммарной мощностью 440 МВт свидетельствуют о доверии к Азербайджану, поскольку предусматривают вложение инвестиций со стороны этих компаний.

«Это будут самые крупные в регионе солнечная и ветряная электростанции. Кроме того, завершены проектные работы по строительству станции мощностью 84 МВт (ветряная электростанция в Шурабаде – ИФ)», — отметил он.

Алиев также сообщил, что в 2019 году Азербайджан получил дополнительно 800 МВт генерирующих мощностей за счет сдачи в эксплуатации электростанции «Шимал-2» и реабилитации Азербайджанской ТЭС и других действующих станциях.

Как сообщалось, министерство энергетики подписало 9 января 2020 года в Баку исполнительные контракты с ACWA Power (Саудовская Аравия) и Masdar. По условиям соглашений, ACWA Power в рамках пилотного проекта состроит в Азербайджане ветряную электростанцию мощностью 240 МВт, Masdar –солнечную электростанцию мощностью 200 МВт. За счет деятельности этих двух станций годовой объем производства электроэнергии прогнозируется на уровне 1,4 млрд кВт/час. Ожидаемый объем инвестиций в рамках данных проектов суммарно превысит $300 млн. Весь объем финансирования компании возьмут на себя. При этом, по данным ACWA Power, инвестиции в строительство ветряной электростанции составят $200 млн.

Производственный портфель Masdar в сфере ВИЭ оценивается в 4 тыс. МВт установленной мощности, объем вложенных инвестиций составляет $8,5 млрд.

В настоящее время доля производства электроэнергии в Азербайджане за счет традиционных источников энергии (природного газа) оставляет 91,9%, производство же электроэнергии за счет возобновляемых источников составляет 8,1%. С учетом же мощностей крупных гидроэлектростанций доля возобновляемых источников энергии в производстве электроэнергии на сегодня составляет 17%, что соответствует генерирующим мощностям в 1,276 тыс. МВт.

По оценкам Минэнерго потенциал генерирующих мощностей возобновляемых источников энергии в Азербайджане составляет в целом 26 тыс. МВт.

Перед Минэнерго стоит задача увеличить к 2030 году долю ВИЭ в производстве электроэнергии до 30%. Производство 1 млрд кВт/час электроэнергии за счет возобновляемых источников энергии позволит сэкономить 200 млн кубометров природного газа.

Н.Аббасова

В Каракалпакстане построят крупнейшую в ЦА ветряную электростанцию – Газета.uz

Фото: Пресс-служба Минэнерго

Саудовская ACWA Power подписала с Узбекистаном соглашение о строительстве ветряной электростанции мощностью 1500 МВт в Каракалпакстане. Ожидается, что проект, крупнейший в Центральной Азии, покроет потребность в электроэнергии примерно 4 миллионов семей и компенсирует примерно 2,5 миллиона тонн углекислого газа в год.

4 мая 2021, 15:17   Экономика  

Соглашение о реализации проекта по ветропарку подписано 3 мая между Министерством энергетики Узбекистана, Министерством инвестиций и внешней торговли и саудовской энергетической компанией ACWA Power, сообщила пресс-служба Минэнерго.

Проект включает в себя разработку, строительство и эксплуатацию ветроэнергетического проекта мощностью 1500 МВт в Каракалпакстане, который после ввода в эксплуатацию станет крупнейшей ветряной электростанцией в регионе Центральной Азии и одной из самых крупных в мире, отмечается в сообщении.

«Этот проект является еще одним знаменательным достижением для вашей страны и укрепляет приверженность ACWA Power работать с быстрорастущими рынками, такими как Узбекистан, для достижения своих амбициозных целей в области возобновляемых источников энергии и целей устойчивого развития», — сказал, комментируя это событие, председатель саудовской компании Мохаммад Абунайян.

«Как производитель энергии мы в Узбекистане многому учимся у наших ближневосточных и особенно саудовских партнеров в процессе перехода к низкоуглеродной экономике. Проект ACWA Power внесет большой вклад в этот процесс. Наш план к 2030 году производить 25% электроэнергии из возобновляемых источников энергии», — заявил заместитель министра энергетики Узбекистана Шерзод Ходжаев.

Ожидается, что проект удовлетворит потребность в электроэнергии примерно 4 миллионов домашних хозяйств и компенсирует примерно 2,5 миллиона тонн углекислого газа в год.

ACWA Power является также инвестором двух ветроэнергетических проектов в Бухаре и Навои, заключенных ранее в этом году, с совокупной мощностью выработки электроэнергии в 1000 МВт. По ним подписаны Соглашения о покупке электроэнергии и инвестиционные соглашения. Кроме этого, саудовская компания реализует в Сырдарье проект строительства высокоэффективной газовой электростанции мощностью 1500 МВт.

Подпишитесь на наш Telegram «Газета.uz»