+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Безэлектродный способ измерения сопротивления заземления

Параметры заземления зависят от множества факторов, и не все их можно учесть при расчетах. Поэтому после установки заземления рекомендуется многократно измерить его сопротивление в разные времена года. Элементы заземления могут окисляться и подвергаться коррозии, поэтому также необходимо периодически измерять сопротивление заземления и после того, как вы убедились, что все было сделано правильно. Действующие в России нормы требуют измерять сопротивление заземления электроустановок не реже, чем раз в 12 лет. Для опор воздушных линий, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, измерение сопротивления заземления осуществляется ежегодно. Также ежегодно выборочно измеряют параметры заземления у 2% металлических и железобетонных опор воздушных ЛЭП, проходящих в населённых местностях.

Классические способы измерения сопротивления подразумевают установку дополнительных заземляющих штырей (электродов) на расстоянии порядка 20 м от исследуемого заземления.

Это может представлять проблему, если в процессе измерения штыри придется устанавливать на территории, принадлежащей собственнику. Кроме этого, могут возникнуть проблемы с установкой дополнительных штырей зимой в промерзший грунт. А ведь именно ситуация с промерзанием является наиболее проблематичной с точки зрения функционирования заземления. Например, в районах вечной мерзлоты ПТЭЭП предписывает проводить измерение сопротивления заземления ЛЭП только в период наибольшего промерзания грунта. Другим недостатком традиционных способов измерения сопротивления является необходимость отключать параллельно подключенные заземления.

Перечисленные обстоятельства делают актуальным применения так называемых безэлектродных методов измерения сопротивления заземления, не требующих устанавливать в землю дополнительные штыри. Это стало возможным благодаря современным токовым клещам.

Принцип безэлектродного метода измерения сопротивления заземления заключается в следующем. На заземление от измерительного генератора подается переменный ток заданного напряжения с частотой, отличной от частоты сети. Сила тока в заземлении измеряется специальными токовыми клещами с фильтром, который делает их чувствительными только к частоте, на которой работает измерительный генератор. По полученным данным измерения тока стекающего в заземлитель, основываясь на известном значении напряжения, поданного на заземление, специализированные клещи автоматически вычисляют сопротивление.


Безэлектродная схема измерения сопротивления заземления с применением токовых ключей

Напряжение на заземление подается с помощью других токовых ключей. Они используются как генератор и трансформатор, подводящий электроэнергию к заземлению. Наиболее современные модели совмещают излучающий и измерительные трансформаторы в единой конструкции, что позволяет использовать только одни клещи.

Пример клещей для измерения сопротивления заземления

Преимущества безэлектродного способа измерения сопротивления заземления особенно явно проявляются, если использовать легкие и компактные приборы. Например, Fluke 1630, размеры которого составляют всего 276 x 100 x 47 мм, а вес — 750 г. Питается прибор от автономного источника (щелочной батареи), время работы без замены батареи составляет 8 ч. В приборе используются только одни клещи, достаточно обхватить ими провод или шину, ведущие к заземлению, и через 0,5 с на дисплее появится значение сопротивления.

Измеритель сопротивления заземления Fluke 1630

Прибор способен измерять сопротивление заземления в диапазоне от 0,025 до 1500 Ом. Этот диапазон разбит на 7 поддиапазонов, выбор которых осуществляется автоматически. Столь широкий диапазон позволяет использовать прибор не только для измерения сопротивления заземления, но и сопротивления утечки.

Кстати, Fluke-1630 может использоваться и как обычные токовые клещи, измеряя ток силой до 4 А.

Интерпретация результатов измерений

Точность измерения сопротивления, не превышающего 100 Ом прибором Fluke 1630 составляет не более +/- 1,5%. Но здесь важно понимать, какое именно сопротивление мы измеряем.


Эквивалентная схема цепи

 

Рассмотрим эквивалентную схему цепи. Из нее видно, что измеряется сопротивление электрической цепи Rs, в которую входят другие заземления и собственно земля.

Измерительные клещи выдают значение, рассчитанное по формуле:

Rs = E/I,

где E — напряжение, индуцированное в проводнике, а I — измеренный ток.

При этом,

Rs = Rg + Rz + 1/(1/R1 + 1/R2 + … 1/Rn),

где Rg – сопротивление исследуемого заземления, Rz – сопротивление почвы, n – количество заземлений, подключенных параллельно к исследуемому.

Сумма Rz и общего сопротивления включенных параллельно заземлений много меньше максимально допустимого значения сопротивления заземления (4 — 8 Ом). Поэтому принимают, что

Rg ≈ Rs,

причём в реальности Rg < Rs.

Для измерений используется частота около 3 кГц. Это также может стать источником погрешности, так как на этой частоте уже начинает сказываться индуктивность проводов. Но, опять-таки, наличие у проводов индуктивности вносит погрешность в сторону увеличения сопротивления.

Можно сделать вывод, что метод безэлектродного измерения сопротивления заземления дает оценку параметра сверху. Если вы получили определенный результат, то можете быть уверены, что в реальности сопротивление заземления будет немного ниже. Это очень важно с точки зрения безопасности, так как погрешность метода принципиально не может привести к заниженной оценка сопротивления, когда неисправное заземление будет оцениваться как исправное.


Смотрите также:

Измерение сопротивления заземления безэлектродным методом без разрыва заземляющего проводника

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ СМ — 400 КЛЕЩИ ЦИФРОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ Ознакомьтесь со всеми инструкциями и указаниями по технике безопасности, прежде чем работать с этим прибором или проводить его техническое

Подробнее

1 ОБЩИЕ ПОЛОЖЕНИЯ 2 ОЪЕКТ АТТЕСТАЦИИ

1 ОБЩИЕ ПОЛОЖЕНИЯ 1. 1 Настоящая программа и методика первичной и периодической аттестации устанавливает объем и последовательность проведения аттестации Установки автоматической для проверки изоляции «НЕВА-Тест

Подробнее

1. Информация по безопасности:

Инструкция по эксплуатации мультиметра типа «токовые клещи» MASTECH M266, М266F, М266C. Содержание: 1 1. Информация по безопасности: Данный портативный мультиметр с 3 ½ разрядным ЖК-дисплеем является измерительным

Подробнее

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ Настоящая методика предназначена для проведения поверки установок автоматических трѐхфазных для поверки счѐтчиков электрической энергии НЕВА-Тест 3303 (далее установок), предназначенных

Подробнее

КЛЕЩИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ КЭИ-0,6М

. КЛЕЩИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ КЭИ-0,6М 1. Введение… 3 2. Назначение… 3 3. Основные технические характеристики КЭИ-0,6М…. 4 4. Устройство и работа изделия… 5 5. Поверка изделия…. Ошибка! Закладка

Подробнее

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ СОГЛАСОВАНО Руководитель ГЦИ СИ. Генерального директора А.С. Евдокимов Измерители сопротивления заземления СЕОНМ С, СЕОНМ 5 Внесены в 1 А арственны й реестр средств измерений

Подробнее

Дефектопоисковый комплекс «Сталкер ВЛ»

Дефектопоисковый комплекс «Сталкер ВЛ» Введение 1Ф КЗ 65% 20% 2Ф КЗ 3Ф КЗ 2Ф КЗ без земли ПОЖАР Последствия ОЗЗ ПЕРЕНАПРЯЖЕНИЯ повышение U на неповрежденных фазах длительно повышается до линейного ДВОЙНОЕ

Подробнее

Установка автотрансформатора

Установка автотрансформатора AuSine SWP 0 480 А Автотрансформатор для электрической сети 08 В Содержание ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ СОХРАНИТЕ ЭТИ ИНСТРУКЦИИ. .. Условные обозначения… Механическая сборка…

Подробнее

Сеть магазинов «ПРОФИ» Единый телефон: (495)

Мультиметр MS8216 Инструкция по эксплуатации ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ Сертификация по безопасности Данный измерительный прибор соответствует стандарту IEC1010, т.е. предназначен для проведения измерительных

Подробнее

Тестеры заземления Fluke и Fluke

Приложение к свидетельству 56926 об утверждении типа средств измерений Лист 1 ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ Тестеры заземления и Назначение средства измерений Тестеры заземления и (далее тестеры) предназначены

Подробнее

Блок речевого оповещения «Рупор»

ИСО «Орион» Блок речевого оповещения «Рупор» Инструкция по монтажу АЦДР.425541.001 ИМ Настоящая инструкция по монтажу содержит указания, позволяющие выполнить основные действия по установке и подготовке

Подробнее

УСТРОЙСТВА СОПРЯЖЕНИЯ ДУТ light

НПЦ ПЭА БГУИР ИНСТРУКЦИЯ ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ УСТРОЙСТВА СОПРЯЖЕНИЯ ДУТ light Минск 2009 2 СОДЕРЖАНИЕ 1. Назначение 3 2. Принцип работы… 3 3. Комплект поставки…… 3 4. Технические характеристики..

Подробнее

Руководство по эксплуатации

Руководство по эксплуатации ЦИФРОВЫЕ ТОКОВЫЕ КЛЕЩИ- МУЛЬТИМЕТР С НЕПОЛНЫМ ОБХВАТОМ ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ Цифровые токоизмерительные клещи-мультиметр с неполным обхватом проводника, разработаны согласно

Подробнее

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЦИФРОВЫЕ ТОКОИЗМЕРИТЕЛЬНЫЕ КЛЕЩИ-МУЛЬТИМЕТР СОДЕРЖАНИЕ 1. ОБЩИЕ СВЕДЕНИЯ…2 1.1. ИНФОРМАЦИЯ О БЕЗОПАСНОСТИ…2 1.1.1. Предварительные замечания… 2 1.1.2. При эксплуатации…

Подробнее

CBA 1000 Тестер высоковольтных выключателей

Тестер высоковольтных выключателей Встроенный микроомметр на 200 А. Контроль до 6 основных и 6 резистивных контактов. Управление электромагнитами включения и отключения. Контроль хода и скорости движения

Подробнее

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.

ISO 9001:2000-BS EN 9001 APPROVED BY BVQI КРАТКИЙ КАТАЛОГ 2004-05 Контрольные и Измерительные Приборы Мирового класса KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD. МНОГОФУНКЦИОНАЛЬНЫЕ ИЗМЕРИТЕЛИ KEW 6015

Подробнее

ЛЕКЦИЯ 13 ЗАНУЛЕНИЕ. ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

ЛЕКЦИЯ 13 ЗАНУЛЕНИЕ. ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ Защитное зануление преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью трансформатора или генератора, выполняемое в целях электробезопасности.

Подробнее

СМI-100 КЛЕЩИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ

СМI-100 КЛЕЩИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ Ознакомьтесь со всеми инструкциями и указаниями по технике безопасности, прежде чем работать с этим прибором или проводить его техническое обслуживание. 999 3269.5 1999

Подробнее

Измерение сопротивления заземления токовыми клещами, мегаомметром

Заземляющее устройство – это совокупность проводников из металла, соединенных с деталями электроустановки, и заземлителя (один или несколько проводников, которые закапываются в землю). Их используют, чтобы повысить безопасность электроустановок и с целью защиты людей от воздействия электрического тока.

Если возникает аварийная ситуация, когда происходит пробой изоляции проводника, напряжение через заземление уходит в землю, не причиняя вреда человеку, который соприкасается с оборудованием. Именно поэтому необходимо, чтобы заземление всегда находилось в исправном состоянии.

Одной из его важных характеристик является сопротивление, величина которого регламентируется нормативными документами.

Основные понятия

Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».

Можно выделить три вида заземлений:

  • рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
  • защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
  • защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.

Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.

Применение амперметра и вольтметра

Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.

Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр.

Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.

Компенсационный метод

Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие.

Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.

Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение.

С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.

Трехпроводный метод

В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).

Необходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки.

Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию.

Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.

Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.

Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.

Токовые клещи

Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.

Достаточно просто использовать клещи для измерения величины сопротивления.

Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки.

Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей).

В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.

Периодичность проверки

Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.

Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.

Важно помнить, что измерения стоит проводить в сухую погоду.

Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».

Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).

В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.

Составление протокола

Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.

Этот нормативный акт условно состоит из трех структурных частей:

  • данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
  • начальная статичная информация;
  • итоги проведения измерений.

Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).

Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.

Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.

Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.

Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.

В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.

Как проверить контур заземления самому,метод электрочайника

Контур защитного заземления в электропроводке дома или квартиры переоценить довольно сложно. Во-первых – это Ваша безопасность, а во-вторых – это долгий срок службы практически всех ваших бытовых потребителей электроэнергии.Но довольно часто попадаются в интернете статьи о том как правильно своими силами проверить смонтированный контур.

Давайте познакомимся с этими советами…

Совет №1 (из форума электриков)

Цитата: народ,кто хорошо разбирается в тонкостях контуров заземления?Есть у меня вопросики. Сегодня захреначили контур 6 арматурин по 4 метра.Прибора специального для замера сопротивления не было сегодня.Сделали по деревенски.Подключили через фазу и контур(без рабочего ноля) чайник на 1.5КВта.Получилось следующее.Без нагрузки напряжение 247 В.Включаем чайник,на нём падение напряжения 220 В.Значит на контуре падение 27 В.Сопротивление чайника 27 Ом.Если посчитать по закону ома,то получается,что сопротивление контура чуть выше 3-х Ом.Вот у меня вопрос.Насколько данный метод объективен?Если я не учёл что-то,то хотелось бы понять,что именно? И тут понеслось…

Советы,разные советы,электрики со стажем в десятки лет…Все разговоры крутятся вокруг сопротивления чайника,а о контуре заземления забыли.Понравилось то,что все остались при своем мнении и каждый уверен что он прав на 100%.

Совет №2 (как проверить контур заземления тестером)

Цитата: не стоит проводить подобные работы, не обладая соответствующим опытом. Хотя правила их выполнения довольно просты.

Все гениальное просто.
..
А теперь советы «опытных электриков»:

1.Необходимо определить контакт фазы в розетке. Это делается специальной отверткой-тестером с индикатором фазы. Индикатором касаются поочередно проверяемых проводов с током, пальцем касаются специального контакта на ручке отвертки, лампочка горит только при касании к фазе;

2.Измерительным прибором в режиме измерения сопротивления определяется сопротивление между нулевым контактом сети и контактом заземления.

Описанный выше способ имеет высокую погрешность из-за низких токов измерительного прибора. Более правильной будет методика со специальным генератором, который подает питающий ток на контакт заземления, и тогда измеряются напряжение в проводе заземления и сила тока. Сопротивление заземления в этом случае рассчитывается по закону Ома.

Предлагаем посмотреть видео как проверить заземление на  нашем канале :

Если в результате измерений вы выясните, что полученный результат отклоняется от требуемой нормы, то можно предпринять ряд мер по уменьшению сопротивления:

  • увеличение кислотности грунта,
  • замена грунта в месте нахождения заземлителя,
  • увеличение площади заземлителя.

Таких советов можно найти множество.Но удивляет то что люди которые называют себя электриками-думают не о том как проверить контур заземления правильно по методикам и с помощью специальных приборов,а как провести провести электрические измерения с помощью каких-то чудометодов (метод электрочайника) или приборами которые не предназначены для испытания контура заземления.

Это равноценно тому,что при посещении врача в поликлинике-он будет измерять температуру Вашего тела с помощью какой-то таблицы,а слушать хрипы в легких прикладывая ухо к спине.А в итоге предложит приобрести «амулетик здоровья» вместо лекарств.

Звучит смешно?Вот также смешно выглядят «кулибины» которые готовы доказать любую теорию которую они якобы прочитали в какой-то «умной книге».

Не выглядят смешными последствия деятельности таких электриков.

Если Вам необходимо проверить контур заземления обращайтесь в электроизмерительную лабораторию которая имеет сертификат позволяющий проводить такие измерения. И не забудьте спросить свидетельство о поверке измерителя сопротивления заземления.


Заказать проверку контура заземления или модульное заземление Вы можете через онлайн форму или по телефонам указанным на нашем сайте www.energomag.net

+38(095)235-49-95,+38(096)262-98-48, +38(063)103-80-04

Доставка комплектов заземления в любую точку Украины Новой почтой по предоплате или наложенным платежом.

Если Вы сомневаетесь в выборе или не знаете как выбрать комплект заземления,мы будем рады Вам помочь.

Звоните, пишите мы Вам подскажем.

Статьи по категории «Заземление для дома»

Аккумулятор для ИБП,гелевый,AGM или мультигелевый,разница?
Аккумуляторные батареи для котла отопления или насоса
Вода из крана бьется током,в чем причина,как устранить?
Гальмар заземление инструкция по монтажу
Гибридный инвертор,как работает,как выбрать?
Заземление дома или дачи своими руками,как сделать
Заземление зарядной станции для электромобиля
Заземление МРТ или медицинского оборудования
Заземление своими руками,уголком или модульное заземление?
ИБП для дома,генератор или солнечная станция что лучше?
Измерение сопротивления заземления,проверка контура заземления
Как выбрать бесперебойник?Советы бывалых
Как выбрать заземление правильно
Как выбрать солнечный инвертор для дома?
Как выгодно купить твердотопливный котел?
Как заземлить бойлер правильно
Как заземлить дом
Как заработать на солнечной энергии?
Как защитить розетки от перегрузки?Решение есть!!!
Как настроить регулятор тяги котла твердотопливного Огонек
Как получить зеленый тариф в Украине,порядок оформления
Как проверить контур заземления самому,метод электрочайника
Как сделать заземление в розетке и проверить заземление розеток?
Какие колосиники бывают,котлы с охлаждамыми колосниками
Какой генератор лучше синхронный или асинхронный?
Комплект ИБП+аккумулятор для газового котла
Котел длительного горения Огонек ДГ модернизированный
Можно ли фундамент использовать для заземления дома?
Молниезащита дома своими руками,монтаж молниезащиты дома
Молниезащита дома,цена,или от чего зависит стоимость?
Пиролизные котлы,как они работают?
С праздником пасхи,получите подарок
Система уравнивания потенциалов для борьбы с блуждающими токами
Системи заземлення, типи,TN-C, TN-C-S, TN-S, TT, IT
Солнечная станция для дома,выгодно или нет?
Солнечные инверторы SAJ выставка SOLAR Ukraine 2018
Солнечные инверторы для дома,как выбрать
Солнечные станции для дома,зеленый тариф
Твердотопливные котлы Огонек с электротенами
Твердотопливный котел для отопления дома,выгодно или нет?
Термическая сварка Galmar weld,для монтажа заземления
Требования к заземлению
УЗО без заземления работает или нет?
Чем забивать модульное заземление на глубину
Что такое сетевой солнечный инвертор?
Электромонтажные работы в квартире,офисе,доме в Киеве,расценки
Что такое заземление и зачем это нам нужно?
Как выбрать твердотопливный котел
Молниезащита внутренняя,зачем она нужна?
Как выбрать электрогенератор для дома правильно?
Как правильно выбрать стабилизатор напряжения

Как замерить сопротивление заземления мультиметром

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.

Наглядно этот способ показан на видео:

О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:

  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжением Для источников с трёхфазным напряжением Величина сопротивления заземления
127 В 220 В 8 Ом
220 В 380 В 4 Ом
380 В 660 В 2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Избегание контуров заземления при измерениях электронных устройств

В замкнутой цепи должен быть предусмотрен обратный путь для тока, протекающего обратно к источнику питания; этот возврат часто называют электрическим заземлением. В идеале эти заземляющие соединения не должны иметь сопротивления или паразитной емкости, и можно предположить, что все опорные заземления имеют один и тот же потенциал. Однако все провода имеют небольшое сопротивление, а также паразитную емкость.

Оценка лабораторных измерений с использованием нескольких приборов (и нескольких источников питания) усугубляет эту проблему.Когда два или более устройства подключаются к общей земле разными путями, возникает контур заземления; разность напряжений генерирует ток в виде наведенного шума. Этот шум контура заземления может появляться или исчезать без очевидной причины, что может сделать диагностику шума чрезвычайно сложной задачей.

При поиске неисправностей в цепи лучше избегать одновременного изменения нескольких переменных. Следующие советы помогут вам применить более методичный подход.

3 совета по предотвращению замыкания на землю

1.Создайте единую точку заземления.

Создав единую точку заземления, обычно на месте измерения, вы, в первую очередь, можете избежать потенциальных контуров заземления. Хотя это не всегда может быть практично реализовать, учитывая физическое расположение электрических компонентов, это хороший руководящий принцип, который поможет вам избежать большинства проблем.

2. Внимательно ищите непреднамеренные пути заземления.

Мне известна ситуация, когда был создан контур заземления, потому что корпус DUT находился в криогенном сосуде Дьюара, который покоился на бетонном полу, на котором покоился металлический стол, на котором находился прибор с заземленным корпусом.Это не «цепь», как в учебнике, но она функционировала как единое целое. Реальная проблема диагностики неприятных контуров заземления часто заключается в вашей способности творчески мыслить, чтобы найти контур.

3. Сохраняйте заземление.

Сопротивляясь желанию отключить все заземляющие соединения, вы можете избежать увеличения шума из-за эффекта антенны.Заземление корпуса на приборах также обеспечивает безопасное заземление в случае внутренней неисправности, предотвращая попадание в корпус опасного напряжения. При изменении схемы заземления в системе всегда соблюдайте меры безопасности.

Загрузите нашу бесплатную статью, чтобы узнать о других ошибках, которых следует избегать при измерении электронных устройств:

Контуры заземления и AV-оборудование

Электрические контуры заземления оказывают вредное воздействие на большинство AV-оборудования, начиная от ухудшения сигнала и заканчивая серьезным повреждением оборудования.Контур заземления создается, когда переменный или постоянный ток неожиданно протекает через заземляющий провод. Это может произойти из-за ошибки в электропроводке, неправильного заземления или плохого соединения между проводами заземления и землей.

На рисунке 1 ниже показано типичное соединение между компьютером и плазменным дисплеем. Если потенциал земли Vg1 на вводе питания 1 не равен потенциалу земли Vg2 на вводе питания 2, и они соединены вместе, существует вероятность возникновения контура заземления.

Рисунок 1 — Типичное соединение между компьютером и плазменным дисплеем

После подключения AV-кабеля между источником (портативный компьютер) и AV-дисплеем (плазменный) ток заземления будет течь между обоими устройствами через экран коаксиального кабеля ( см. Рисунок 2 ниже ).Схема внутри AV-дисплея может быть не оборудована для обработки тока заземления, проходящего через кабель, и в результате могут быть повреждены электрические компоненты.

Рисунок 2

Как измерить контуры заземления

Перед подключением любого AV-оборудования к удаленному дисплею (на расстоянии более 25 футов) всегда измеряйте потенциал земли между экраном (или сигналом) видеокабеля и землей на источнике питания дисплея с помощью цифрового мультиметра.См. Рис. 3, где показаны рекомендуемые точки для измерения.

Рисунок 3

Измеренное напряжение должно быть менее 1-2 вольт. Измерьте как напряжение переменного, так и постоянного тока. Если какое-либо напряжение превышает 2 В, не подключайте аудио / видео оборудование вместе. Если вы не знакомы с мультиметром, обратитесь к квалифицированному электрику.

Чего НЕ делать при наличии контура заземления

Нецелесообразно поднимать или отключать заземление на любом AV-оборудовании или иным образом изменять или отключать функцию заземления для решения проблем контура заземления. Поднятие заземляющего провода с шнуров питания, кабелей или любого электрического оборудования снимает функцию безопасности, предназначенную для защиты персонала, использующего это оборудование. Неправильно заземленное оборудование представляет серьезную опасность поражения электрическим током.

Обычный наземный подъемник, как показано на Рисунке 4, не следует использовать в любое время. Несмотря на то, что он поляризован, он все же представляет угрозу безопасности.

Первоначально целью этих типов вилок было подключение заземленной трехконтактной вилки к старой розетке, не имеющей заземления.Центральный язычок должен быть соединен с землей кабелепровода с помощью винта гнезда.

Как исправить проблемы контура заземления

Лучший способ решить любую проблему с контуром заземления — поговорить с лицензированным подрядчиком по электрике. Они являются экспертами в области электрических систем и предложат лучшее решение для улучшения заземления между AV-оборудованием.

Для аудиосигналов на пути прохождения сигнала может использоваться изолирующий трансформатор. Этот тип инструмента разорвет контур заземления и обеспечит чистый звук (как показано на рисунке 5).Изолирующий трансформатор может быть установлен на переднем конце или на конце усилителя мощности.

Рисунок 5

Для видеосигналов есть несколько вариантов, которые могут обеспечить благоприятные результаты. Устройства с изоляцией контура заземления (GLI) могут использоваться совместно с видеосигналами. Хотя они эффективны, в большинстве случаев они эффективны только до тех пор, пока контур заземления не превысит входные характеристики устройства GLI. В среднем устройства GLI выдерживают около 3-4 вольт.Все, что выше этого уровня, повредит входную схему.

Другой способ решить эту проблему — использовать оптоволоконный передатчик и приемник. Поскольку оптоволоконные кабели обеспечивают чистую гальваническую развязку между двумя устройствами, при их использовании отсутствует возможность образования контура заземления. Однако во многих случаях оптоволоконные решения могут быть непомерно дорогими.

Контуры заземления и передача видео / аудио по витой паре

Все видеопередатчики и приемники по витой паре используют дифференциальные драйверы и приемники, способные выдерживать минимальное напряжение контура заземления.Как правило, напряжение контура заземления выше 4 вольт повредит передатчик, приемник или и то, и другое на витой паре.

Всегда измеряйте напряжение контура заземления перед установкой любого видео / аудио оборудования на витой паре. Это измерение следует проводить от проводов витой пары до земли розетки со стороны дисплея. Если напряжение контура заземления превышает 4 В, не подключайте аудио / видео оборудование вместе.

Рисунок 6

Заключение

Ток и напряжение контура заземления могут повредить оборудование за доли секунды и обычно не покрываются гарантиями производителя. Обязательно измеряйте наличие контуров заземления перед соединением кабелей каждый раз, когда длина сигнального кабеля превышает 25 футов.

Контуры заземления и неизолированные места общего пользования

Любой установщик оборудования для управления промышленными процессами скажет вам, что контуры заземления являются одной из самых неприятных ошибок подключения сигналов, которые необходимо диагностировать и исправить. Шаги, необходимые для их устранения, часто приравниваются к чему-то столь же загадочному, как магические заклинания. Проблемы, вызванные совместным использованием неизолированных общин, рассматриваются с аналогичной точки зрения.Проблемы с совместным возвратом сигнала часто даже путают с контурами заземления. Контуры заземления и общие общие могут вызвать непредсказуемые сигналы и сделать ваш текущий контур непригодным для использования.

Лучший и наиболее практичный способ исправить эти проблемы с сигналом — это предотвратить их возникновение, в первую очередь, путем планирования правильной разводки устройств и следования конкретным передовым методикам. Однако, если вы подозреваете, что у вас есть проблемы с сигналом, связанные с контурами заземления или общим общим доступом в существующей сети, нет необходимости вытаскивать книгу и волшебную палочку «Наземные петли и неизолированные общие ресурсы», есть некоторые предсказуемые симптомы, которые вы можете ищите, чтобы диагностировать проблему.

Прежде всего, вам необходимо знать определение контуров заземления и общих общих линий. Контур заземления — это поток тока от одной сигнальной земли к другой из-за разницы напряжений между двумя заземлениями. Это может произойти, если два устройства в сети заземлены в разных местах, и в одном из этих мест сигнальная земля испытывает более высокий потенциал напряжения. Любой инженер-электрик скажет вам, что любой перепад напряжения приведет к протеканию тока.Именно этот ток вызывает симптомы замыкания на землю.

Общий неизолированный общий провод может стать проблематичным при неправильном подключении. Устройства с несколькими входами и выходами, особенно те, через которые проходит более одного контура, печально известны трудностями, связанными с общим доступом. Их обычно называют «контурами заземления» из-за схожести их симптомов, но они не являются настоящими контурами заземления, поскольку они не возникают из-за проблем с заземлением. Проблемы такого рода возникают, когда узлы создаются, намеренно или нет, до достижения всех применимых устройств в цепи, требующих чистого, предсказуемого сигнала.Это приведет к смешанному потоку тока и усреднению сигнала, что приведет к появлению непригодного для использования сигнала процесса.

На рисунке 1 выше показан источник питания 24 В постоянного тока, обеспечивающий напряжение в токовой петле. Этот контур подключается параллельно к двум парам датчик уровня / локальный дисплей, предположительно, на разных резервуарах в совершенно разных местах на промышленном объекте. Два датчика используют подаваемое на них напряжение для генерации технологического сигнала 4–20 мА, который затем проходит по проводу, соединяющему их с локальным дисплеем, на котором отображается переменная процесса.Схема замыкается путем возврата к источнику питания.

Все это звучит как типичная функциональная токовая петля, пока вы не заметите, что оба входа питания локальных дисплеев заземлены в их отдельных местах. Заземление 2, поскольку среда, в которой он расположен, испытывает больше шума и имеет худшие соединения для его заземляющих шин, чем другое место, имеет более высокий потенциал напряжения, чем земля 1. Это приводит к протеканию тока, обозначенному выше IGND.Этот ток проходит по тем же проводам, которые должны передавать на дисплеи только технологический сигнал 4-20 мА, в результате чего два тока смешиваются, и технологический сигнал становится непредсказуемым и, следовательно, непригодным для использования.

В примере, показанном на Рисунке 1, это было устройство в контуре 4–20 мА, которое вводило ток заземления в контур. Однако возможно, что причиной может быть устройство, не расположенное на шлейфе. Подумайте, подключено ли какое-либо устройство в контуре через неизолированный RS-485 или источник питания ввода / вывода к устройству, имеющему потенциал земли с более высоким напряжением. Как правило, лучше избегать многоточечного заземления устройств в токовой петле. Потенциалы заземления часто не равны из-за различных электрических шумов, сопротивления пути заземления и плохой первоначальной установки шины питания.

Замыкание заземления также может возникнуть в системе с одноточечным заземлением. Рассмотрим систему, в которой не используются изолированные провода витой пары, например, показанная на рисунке 2. Могут быть внесены любые электрические помехи, воспринимаемые заземляющим проводом, такие как паразитные магнитные поля или помехи от источника питания переменного тока 50/60 Гц. на токовый контур и приведет к непредсказуемому сигналу.Этот тип контура заземления чаще всего возникает из-за неправильной прокладки пути и отсутствия экранированной витой пары.

На рис. 3 показана правильно смонтированная токовая петля, а на рис. 4 — неправильно смонтированная токовая петля. На рисунке 3 потенциал напряжения, подаваемый источником питания, вызывает прохождение тока к каждому из трех параллельных передатчиков. Этот ток используется для создания токового сигнала 4-20 мА, который отправляется на локальные дисплеи, отображающие переменную процесса.

На рисунке 4 устройства были подключены бессистемно, потому что в последовательной электрической цепи порядок устройств обычно не имеет значения.Однако был создан узел на общем общем устройстве с несколькими входами, соединяющий текущие сигналы. Это приводит к смешиванию и усреднению токов технологического сигнала, в результате чего на всех дисплеях отображается одно и то же значение. На этих изображениях проблема такого типа кажется тривиальной для устранения

: просто удалите дополнительный переход из цепи. Однако, когда сложная сеть оборудования сталкивается с той же проблемой, решение не всегда бывает таким интуитивно понятным.

Проблемы, подобные этой, чаще всего вызываются включением неизолированных устройств с несколькими входами, таких как недорогие ПЛК.Поскольку устройство имеет несколько физических токовых входов, установщик может предположить, что каждый вход изолирован. Однако, если эти входы соединены внутри, токовые сигналы сливаются, что приводит к усреднению тока перед продолжением по цепи. Эта проблема также может быть вызвана неправильной разводкой трехпроводных устройств или сложных многоконтурных сетей.

Из-за природы проблем с сигнальным соединением и уникальных переменных, присутствующих на промышленных объектах, симптомы, вызванные этими проблемами, также будут уникальными.Тем не менее, есть некоторые общие признаки, на которые можно обратить внимание, если вы подозреваете, что испытываете одну из этих проблем с существующей сетью.


НЕПРЕДСКАЗУЕМЫЕ КОЛЕБАНИЯ СИГНАЛА 4-20 МА

Непредсказуемые колебания сигнала — верный признак того, что что-то мешает работе вашего токового контура. Вероятно, это результат электрических помех или замыкания на землю.


ДОБАВЛЯЕТ, ОБНАРУЖИВАЕТ ИЛИ ВЫВОДИТ ДИСПЛЕЙНЫЙ СИГНАЛ ВНЕ ДИАПАЗОНА

Сигнал может также испытывать сложение или вычитание на некоторое значение от одной точки цикла к другой. Это сложение или вычитание может даже вывести сигнал за пределы диапазона устройств, предназначенных для измерения сигнала.


ОБЩИЕ ОБЩИЕ ОБЩИЕ, ВЫЗЫВАЮЩИЕ УСРЕДНИЕ СИГНАЛА

Проблемы с общими, неизолированными общими объектами обычно усредняют сигнал процесса, вызывая регистрацию одной и той же переменной значения на устройствах, которые должны получать разные переменные процесса.


ФИЗИЧЕСКОЕ ПОВРЕЖДЕНИЕ КОМПОНЕНТОВ

Наиболее серьезным (и, к счастью, редким) признаком этих проблем является физическое повреждение устройств в сети.Если, например, разница напряжений между двумя заземлениями окажется значительной, это может привести к перегрузке чувствительной сигнальной электроники таких устройств, как сигнальные входы и выходы. Повреждение электроники более высокого уровня, такой как блоки питания и реле, чрезвычайно редки из-за их способности выдерживать очень высокие потенциалы напряжения.

Как упоминалось ранее, лучший способ восстановить контуры заземления — это вообще избегать их. Проблемы с многоточечным заземлением можно решить, используя только одноточечное заземление.Любые два места заземления будут иметь разные потенциалы напряжения, хотя серьезность этой разницы зависит от среды, в которой они расположены. По возможности используйте плавающие (незаземленные) устройства. Если возникает ситуация, когда несколько устройств в сети должны быть заземлены (по соображениям безопасности и т. Д.), Убедитесь, что заземление выполнено по всей системе, по возможности, по экранированному кабелю через кабелепровод.

Все провода в системе должны быть экранированной витой парой, в которой используются оба провода.По возможности и в рамках бюджета все сигналы должны быть изолированы с помощью устройств с изолированными входами и выходами. Наконец, всегда помните о неизолированных многоконтурных устройствах и проявляйте особую осторожность при планировании проводки. Следуя этим нескольким передовым методам установки всякий раз, когда вы устанавливаете оборудование для управления технологическим процессом, вы можете избавить себя от головной боли, пытаясь диагностировать и устранять эти проблемы в будущем.

Контуры заземления и неизолированные общие контуры могут доставлять неудобства как установщикам оборудования управления производственными процессами, так и обслуживающему персоналу, но их можно легко избежать с помощью правильного планирования и установки.Контуры заземления вызывают проблемы для систем, когда несколько устройств заземлены в разных местах, которые имеют разные потенциалы напряжения, или при неправильном подключении заземленные устройства испытывают инжекцию шума из-за их заземления. Неизолированные общие ресурсы общего пользования могут стать проблемой, когда текущие пути пересекаются и становятся непредсказуемыми. Эти две проблемы с подключением сигналов могут привести к непредсказуемым, неправильным, выходящим за пределы диапазона или усредненным сигналам процесса и, в редких случаях, к повреждению устройств. Всего этого можно избежать, не используя магические заклинания, а следуя стандартным передовым методам установки, которые могут уменьшить или потенциально устранить текущее затруднительное положение.

Если у вас есть идея для будущей темы, которая будет представлена ​​в «Текущем затруднительном положении», свяжитесь с Precision Digital по телефону [адрес электронной почты защищен]


Саймон Паонесса — технический писатель, Precision Digital Corporation

Загрузите это приложение Примечание в формате PDF.

Что такое ошибка контура заземления при измерении напряжения

Практические руководства

Резюме

Контуры заземления представляют проблемы при измерении сигналов низкого уровня, таких как измерения термопар.В этой статье объясняется, что вам нужно о них знать.

Описание

Истинный потенциал земли существует только на бумаге или в симуляциях. В реальном мире нет такого понятия, как истинное заземление, которое при испытаниях и измерениях приводит к ошибкам контура заземления. Контуры заземления создают проблемы при измерении сигналов низкого уровня, таких как измерения термопар. При измерении напряжений в цепях, в которых цифровой мультиметр и тестируемое устройство привязаны к общему заземлению, образуется контур заземления.Как показано на рисунке, любая разница напряжений между двумя опорными точками заземления (Vground) вызывает прохождение тока через измерительный провод гетеродина. Это вызывает ошибку напряжения (VL), которая приводит к неточностям измерения цифрового мультиметра.

При рассмотрении контуров заземления только с точки зрения постоянного тока, пока Ri имеет большое значение (имеется в виду воздух между двумя потенциалами), ошибка будет довольно незначительной при измерении мВ и выше. Цифровые мультиметры Truevolt компании Keysight, такие как 34460/61/65 / 70A, имеют Ri 10 ГОм при влажности 80%.Влажность 80% является высокой нормой для лабораторных условий, поэтому в большинстве случаев фактическое значение Ri намного превышает 10 Гом. Ошибка, вызванная контурами заземления постоянного тока, может быть дополнительно уменьшена за счет сохранения как можно более короткого пути заземления сигналов низкого уровня.

Более крупным источником шума и ошибок от контуров заземления является компонент переменного тока. Сопротивление цифрового мультиметра относительно земли ниже при использовании переменного тока из-за емкостной составляющей Ci, параллельной Ri. Емкостная составляющая возникает из-за обмоток трансформатора внутри цифрового мультиметра.Ссылаясь на расчет Z в нижней части рисунка, по мере увеличения частоты изоляция цифрового мультиметра по оси Z по отношению к земле начинает уменьшаться. Теперь в большинстве низкочастотных настроек шум контура заземления исходит от линии электропередачи, поэтому он составляет 60 или 50 Гц. Влияние шума контура заземления линии питания переменного тока можно уменьшить, установив время интегрирования измерения цифрового мультиметра на 1 или более циклов линии питания (для 60 Гц это 16,67 мс). Если ваша среда тестирования состоит из высокочастотных сигналов, высокоскоростных цифровых сигналов или компонентов с шумом, таких как реле или двигатель, лучше всего проводить любые чувствительные измерения напряжения на отдельном потенциале земли, если это возможно.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *