Как проверить конденсатор мультиметром на работоспособность
Как проверить конденсатор мультиметром на работоспособность – вопрос, возникающий у всех радиолюбителей и людей, которые любят заниматься паянием электрических схем разной сложности. Сделать это довольно просто, если знать некоторые тонкости.
Под тестером принято понимать стрелочные аппараты, работающие на аналоговом принципе. Мультиметр – это цифровой прибор, имеющие экран, где и отображается вся информация. На проверку можно отправить только конденсаторы, имеющие большую емкость, но узнать саму емкость невозможно, даже примерно. Если конденсатор рабочий, стрелка прибора вначале слегка отклонится, а потом начнет опускаться до бесконечности.
В статье подробны подробным образом рассмотрены все вопросы проверки конденсаторов на работоспособность. Бонусом служат ролик и подробная статься на эту тему.
Как проверить конденсатор с помощью приборов.
Как проверить конденсатор мультиметром
По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы.
В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми. Типичные неисправности конденсаторов:
- КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
- внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
- частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
- слишком низкое сопротивление утечки (конденсатор “не держит” заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
- слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается “электролитов” и проявляется только при работе с высокочастотными или импульсными токами.
Существует масса способов как проверить конденсатор мультиметром на работоспособность.
Проверка конденсатора мультиметром
Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют. Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.
Существует два вида конденсаторов:
- 1) полярные;
- 2) неполярные.
Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя. Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ. Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло.
Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад). Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.
Как проверить конденсатор с помощью приборов
Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки. Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.
Различные конденсаторы.
Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях. Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-». При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм.
Если будет меньше, то на дисплее будет отображаться – «1» (единица), можно ложно подумать что конденсатор неисправен. Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание. Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.
Почему так происходит
Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.
Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек. Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.
Материал по теме: Как проверить варистор мультиметром.
Измерение емкости конденсатора мультиметром и специальными приборами
Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L. С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.
Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.
К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.
Измерение емкости конденсатора мультиметром и специальными приборами.
Проверка на короткое замыкание
Есть три способа сделать это.
Способ №1: определение КЗ в режиме прозвонки
Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.
Интересный материал для ознакомления: что такое вариасторы.
Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки
Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.
Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость.
Следовательно, проверку на обрыв можно не делать.
Способ №3: проверка конденсатора лампочкой на 220В
Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.
Проверка на отсутствие внутреннего обрыва
Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).
Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.
Таблица характеристик надежности конденсаторов.
Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки
Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.
Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!
Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва
Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки. Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.
По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.
При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).
Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва
Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли. Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).
Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор. Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)!
Это очень маленькая емкость. Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д. Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.
Более подробно о проверке конденсаторов можно узнать прочитав статью проверка конденсаторов Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.electro-shema.ru
www.katod-anod.ru
www.elektt.blogspot.com
www.electricvdome.ru
Предыдущая
ПрактикаКак проверить трансформатор при помощи мультиметра
СледующаяПрактикаКак проверить дроссель при помощи мультиметра
Как проверить конденсатор мультиметром: простые способы
Интересная область – электроника. И инженерная деятельность в ней интересная. Много различных компонентов с разными функциями. А комбинаций из них вообще бесчисленное множество. И развивается эта отрасль науки и техники непрерывно в течение десятков лет бурными темпами. А конденсатор является одним из важнейших компонентов этого мира. И практикующему электронщику необходимо уметь определять степень его работоспособности, в том числе и простейшими средствами. Конечно, нужно знать, что такое конденсатор и что такое мультметр. И как проверить конденсатор мультиметром.
Содержание статьи
Что нужно знать для проверки конденсатора мультиметром
Специалисты знают, что в электротехнике бывают всего две неисправности: есть контакт там, где не надо, и нет контакта там, где это надо. А вот в электронике есть ещё изменение характеристик элементов. Так вот, у конденсатора периодически бывает изменение характеристик, а мультиметр – это прибор, с помощью которого эти неприятности можно обнаружить и даже измерить.
Устройство и принцип работы мультиметра
Лет 25 назад этот прибор был довольно солидных размеров и назывался тестер. С его помощью проводили тестирование (испытания, проверку) электрической цепи на предмет поиска обрыва или ненужного замыкания. Состоял он из гальванометра и набора катушек-сопротивлений с переключателем. Последний позволял выбрать режим измерений – силу тока, величину напряжения или сопротивление цепи.
Современный мультиметр в соответствии со своим названием способен на многочисленные измерения и проверки. Кроме вышеназванных, с его помощью можно проверить работоспособность диодов и транзисторов, а также конденсаторов. Вместо стрелочного гальванометра у него цифровой дисплей, а габаритные размеры и вес стали значительно меньше, чем у старого тестера. Во всех мультиметрах устанавливается 9-вольтовый источник питания типа «Крона».
ФОТО: arduinomaster.ruОбычный цифровой мультиметр. Переключатель в режиме измерения сопротивления ФОТО: arduinomaster.ruАналоговый стрелочный тестерОсобенности конденсаторов в зависимости от вида
Конденсатор – это элемент, способный накапливать электрический заряд. В общем виде он состоит из двух токопроводящих пластин, разделённых диэлектриком (непроводящим материалом). Величина накапливаемого заряда зависит от площади этих пластин и от природы диэлектрика. Свойство накапливать заряд называется ёмкость конденсатора. Основной единицей измерения величины ёмкости является фарад — накопленный заряд в 1 Кулон при напряжении на обкладках 1 Вольт. На практике применяются более мелкие единицы измерения. Они в тысячу, в миллион и в миллиард раз меньше фарада.
ФОТО: stroyday.ruМногообразие видов конденсаторовКонструирование конденсаторов имеет своей целью повышение ёмкости без увеличения внешних габаритов. В этом причина использования различных материалов для пластин и диэлектриков, а также появление множества видов этого прибора. Для увеличения площади токопроводящих пластин, их изготавливают в виде длинной полипропиленовой металлизированной ленты, свёрнутой в виде цилиндра или сложенной гармошкой с прослойкой ленты диэлектрика. Конденсаторы металлобумажные, бумажные, серебряно-слюдяные и слюдяные устроены именно таким образом.
ФОТО: stroyday.ruСеребряно-слюдяные конденсаторыПо типу диэлектрика различается несколько типов конденсаторов – вакуумные, с газообразным, неорганическим, органическим диэлектриком, электролитические, твердотельные.
Главный отличительный признак у конденсаторов – наличие свойства полярности. У полярных строго определена обкладка, имеющая знак «+», и обкладка, имеющая знак «-». Это обязательно учитывается в схеме их применения и при проверках.
Электролитические конденсаторы являются характерным представителем класса полярных. Они изготовлены в виде алюминиевого цилиндра, в котором свободное пространство между обкладками заполнено электролитом. Эти конденсаторы имеют объёмы от очень маленьких, от долей кубического сантиметра до очень больших – нескольких десятков см³, и большие ёмкости – до тысяч микрофарад, то есть, единиц миллифарад.
ФОТО: stroyday.ruЭлектролитические полярные конденсаторыТанталовые полярные конденсаторы при малых габаритах имеют высокую ёмкость, но и стоят значительно дороже.
ФОТО: stroyday.ruТанталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями ёмкостиКерамические конденсаторы представляют класс неполярных. Они компактны, работают в широком диапазоне напряжений, имеют высокую надёжность и низкую цену.
ФОТО: electroinfo.netНеполярные керамические конденсаторыПроверка конденсатора мультиметром
Существует много разных видов неисправностей конденсаторов. Электрический пробой, вызванный повышенным напряжением, замыкание участка цепи, обрыв из-за механических воздействий, утечка, которая обусловлена изменением сопротивления между обкладками. При всех этих обстоятельствах конденсатор теряет свою ёмкость. В электролитических устройствах причиной этого может быть изменение свойств электролита, его высыхание. Причиной любой неисправности может быть и производственный брак.
Проверка конденсатора начинается с визуальной оценки его внешнего вида. Существуют наружные признаки электрического пробоя, например, потемнение, вздутие, прогорание или растрескивание керамического корпуса.
Подготовительные работы
К подготовительным работам можно отнести две обязательные процедуры: конденсатор нужно разрядить, а если он установлен на плате – то необходимо его выпаять. Ещё нужно определить, относится ли данный экземпляр к полярным или неполярным. Знак «-» обозначен на корпусе рядом с соответствующим выводом. Полярность надо соблюдать при всех операциях. В неполярном конденсаторе соблюдать плюс и минус не обязательно.
Если внешних повреждений не обнаружено, то дальнейшие проверки ведутся с применением мультиметра.
Разрядка конденсатора
Конденсатор предназначен для накопления электрического заряда. Все измерения надо проводить с разряженным изделием. Простейший и надёжный вариант разрядки – замыкание его выводов отвёрткой до появления искры. Но если схема работает под высоким напряжением, то следует соблюдать осторожность. Руки должны быть в резиновых перчатках, а глаза защищены очками. Далее можно производить «прозвонку».
Подключения прибора к полярному и неполярному конденсатору
Если конденсатор полярный, то плюсовой щуп измерительного прибора всегда подключается к плюсу конденсатора. Для неполярного это правило можно не соблюдать.
Процедура измерения параметров конденсатора и оценка результата
Переключатель мультиметра надо ставить в положение, соответствующее выполняемой процедуре.
Сопротивление
Конденсатор должен быть выпаян из схемы, чтобы другие элементы не влияли на результат проверки. Для выполнения этого замера переключатель устанавливается в режим омметра. Если конденсатор неполярный, то на шкале мультиметра выбирается значение 2 МОм. Если проверяется полярный, то устанавливается 200 Ом. Если конденсатор исправный, то на дисплее появится возрастающее от нуля до единицы число. Если сразу высветится «0», то это означает, что внутри компонента короткое замыкание, если же «1», то это означает внутренний обрыв. При неполярном конденсаторе на обрыв указывает цифра «2».
Если используется аналоговый тестер, то плавное перемещение стрелки гальванометра от 0 к верхнему пределу свидетельствует об исправности радиодетали.
При отсутствии мультиметра можно использовать «прозвонку», собранную из светодиода и батарейки. Проверять конденсатор в режиме омметра можно только для элементов с ёмкостью выше 0,25 мкФ. Если номиналы меньше, то следует применять специальные LC-метры.
Ёмкость
Для измерения ёмкости мультиметр должен обладать этой функцией. Её имеют модели: M890D, AM-1083, DT9205A, UT139C и т.д. Конденсатор вставляется своими ножками в специальное гнездо. При измерении сравнивается результат, высветившийся на дисплее прибора и значение, написанное на корпусе детали. При расхождении, превышающем 20%, конденсатор считается неработоспособным.
ФОТО: electrongrad.ruПроверка ёмкости специальным мультиметромНапряжение
Работоспособность конденсатора можно проверить через режим проверки напряжения. К конденсатору на несколько секунд необходимо подключить источник с напряжением, которое чуть меньше, чем написано на корпусе детали. И тут же, отключив источник, необходимо замерить напряжение на выводах. В первые секунды оно должно быть почти равным заявленному на корпусе. В противном случае, конденсатор неработоспособен.
Как проверить работоспособность конденсатора альтернативными методами
Проверку конденсатора можно выполнить, не выпаивая его из рабочей платы. Просто параллельно сомнительному нужно подключить заведомо исправный. Если всё заработает, значит, сомнительный действительно неисправен, его нужно менять. Этим методом проверяется наличие обрыва. Метод можно применять в схемах с невысоким рабочим напряжением.
Вместо светодиода можно взять обычную маломощную электролампу, а в качестве источника использовать розетку 220 В. Если всё в порядке, то лампа будет светиться вполнакала. При пробое она загорится полным светом, а при обрыве вообще не будет гореть.
ФОТО: electro-shema.ruСхема для проверки конденсатора прозвонкой с лампочкойФОТО: youtube.comПроверка работоспособности конденсатора электролампойСхемы для проверки светодиодом и электролампой одинаковые, только в случае использования диода источником служит батарейка, а для электролампы – сеть 220 В.
Можно проверить работоспособность конденсатора «на искру». Если при замыкании выводов искра яркая, с хорошим звуком, то элемент можно считать исправным.
Заключение
Умелый радиоэлектронщик всегда найдёт способ разобраться с причинами неработоспособности своего устройства. Конденсатор является одним из самых распространённых компонентов любой электронной схемы. В то же время, он прост по конструкции. Его проверки не требуют высокой квалификации и большого труда.
ПредыдущаяDIY HomiusТоп-5 самых крутых переделок из дешёвых товаров ИКЕА
СледующаяDIY HomiusКак отстирать кухонные полотенца без удара по кошельку: разбор бюджетных способов
Понравилась статья? Сохраните, чтобы не потерять!
ТОЖЕ ИНТЕРЕСНО:
ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:
как проверить конденсатор мультиметром инструкция с фото
Для проверки работоспособности радиоэлементов существует несколько приемов и приборов. В частности, для измерения емкости и проверки состояния конденсаторов лучше всего подходит LC-метр. Однако в ситуациях, когда его нет под рукой, может выручить обычный мультиметр.
Содержание:
- Как он работает и зачем он нужен
- Подготовка перед проверкой
- Ход проверки
- Проверка на ёмкость
- Проверка вольтметром
- Проверка на короткое замыкание
- Проверка автомобильного конденсатора
Как работает конденсатор и зачем он нужен
Конденсатор – это пассивный электронный радиоэлемент. Его принцип действия схож с батарейкой – он аккумулирует в себе электрическую энергию, но при этом обладает очень быстрым циклом разрядки и зарядки. Более специализированное определение гласит, что конденсатор – это электронный компонент, применяемый для аккумуляции энергии или электрического заряда, состоящий из двух обкладок (проводников), разделенных между собой изолирующим материалом (диэлектриком).
простая схема конденсатора
Так каков принцип действия этого устройства? На одной пластинке (отрицательной) собирется избыток электронов, на другой — недостаток. А разница между их потенциалами будет называться напряжением. (Для строгого понимания нужно прочесть, например: И.Е. Тамм Основы теории электричества)
В зависимости от того, какой материал используется для обкладки, конденсаторы разделяют на:
- твердотельные или сухие;
- электролитические – жидкостные;
- оксидно-металлические и оксидно-полупроводниковые.
По изолирующему материалу их делят на следующие виды:
- бумажные;
- плёночные;
- комбинированные бумажно-плёночные;
- тонкослойные;
- …
Чаще всего необходимость проверки с использованием мультиметра возникает при работе с электролитическими конденсаторами.
Керамический и электролитический конденсатор
Ёмкость конденсатора находится в обратной зависимости от расстояния между проводниками, и в прямой – от их площади. Чем они больше и ближе друг к другу – тем больше ёмкость. Для её измерения используется микрофарад (mF). Обкладки изготавливаются из алюминиевой фольги, скрученной в рулон. В качестве изолятора выступает слой окисла, нанесенный на одну из сторон. Для обеспечения наибольшей ёмкости устройства, между слоями фольги прокладывается очень тонкая, пропитанная электролитом, бумага. Бумажный или пленочный конденсатор, сделанный по данной технологии, хорош тем, что обкладки разделяет слой окисла в несколько молекул, благодаря чему и удается создавать объемные элементы с большой ёмкостью.
Устройство конденсатора (такой рулон помещается в алюминиевый корпус, который в свою очередь кладется в пластиковый изолирующий короб)
На сегодня конденсаторы используются практически в каждой электронной схеме. Их выход из строя чаще всего связан с истечением срока годности. Некоторым электролитическим растворам присуще «усыхание», в процессе которого уменьшается их ёмкость. Это сказывается на работе цепи и форме сигнала, проходящего по ней. Примечательно, что это характерно даже для неподключенных в схему элементов. Средний срок службы – 2 года. С этой периодичностью и рекомендуется проводить проверку всех установленных элементов.
Обозначение конденсаторов на схеме.
Обычный, электролитический, переменный и подстроечный.
Подготовка перед проверкой
В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.
Мультиметр с аналоговой шкалой и цифровой мультиметр
Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.
Для подготовки к проверке:
- Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
- Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
- Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными. Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.
Ход проверки
Для начала следует провести внешний осмотр радиоэлемента, не выпаивая его из платы. О неисправности или выходе из строя могут говорить вздутие корпуса, изменение его окраски, признаки температурного воздействия (потемнение платы, дорожки отходят от поверхности и т.п.). Если электролитический раствор протекает наружу, снизу в месте крепления к плате должны остаться характерные подтеки. Для проверки фиксации на плате можно осторожно взять элемент и несильно покачать из стороны в сторону. Если одна из ножек оборвана, это сразу будет понятно по свободному ходу.
Взорвавшиеся на плате конденсаторы и сработавший «защитный надрез»
Кстати, надо заметить, современное элементы снабжены специальными щелями для безопасного выхода схемы из строя. Иначе взрыв мог бы сильно испортить всю плату.
Но бывает и так
Перед тем как проверить элемент мультиметром, следует определить его тип: полярный или неполярный. Электролитические относятся к первой категории – их припаивают к контактам на схеме с соблюдением полярности: плюс – к плюсу, минус – к минусу. Соответственно, и клеммы мультиметра следует подключать согласно данному правилу. Неполярный конденсатор устанавливается без учета этих особенностей. Он, как и бумажный или керамический конденсатор, можно присоединяться к прибору в любом направлении.
Закоротим выводы и попробуем прозвонить элемент тестером. Если прибор показывает минимальное сопротивление, конденсатор исправен и начал заряжаться постоянным током. Во время этого процесса показатель сопротивления будет расти до предельного значения или бесконечности. Поведение показателей имеет значение – стрелка аналогового тестера должна перемещаться медленно без скачков. О том, что работоспособность нарушена, говорят следующие факторы:
- При подключении клемм, тестер сразу показывает бесконечность. Это говорит об обрыве в конденсаторе.
- Мультиметр показывает на ноль и издает звуковой сигнал – значит произошло короткое замыкание или пробой.
В обоих случаях исправность элементов уже не восстановить и их следует выбросить.
Для того чтобы проверить, работает ли неполярный конденсатор, необходимо выбрать на мультиметре предел для измерения в мегаомах и прикоснуться контактами прибора к выводам – исправный элемент не показывает сопротивлния выше 2 мОм. Стоит помнить, что проверка элемента мультиметром на короткое замыкание, не поддерживается большинством современных приборов, если номинальный заряд радиоэлемента ниже 0,25 мкФ.
Проверка на ёмкость
Проверив сопротивление, мы лишь частично выполняем условия. Простая работоспособность элемента еще не говорит о том, что он работает правильно – в некоторых случаях очень важна точность в работе, к примеру, если проверяется конденсатор микроволновки или колебательного контура. Чтобы убедиться в том, что конденсатор накапливает и удерживает заряд, нужно проверить емкость.
Для этого нужно повернуть тумблер мультиметра на режим CX. Здесь стоит сказать, что проведение этой процедуры возможно лишь с помощью качественного цифрового прибора, но даже в таком случае точность измерений остается приблизительной. При использовании стрелочного инструмента стрелка после подключения начинает быстро отклоняться. В свою очередь это лишь косвенное доказательство исправности элемента, лишь подтверждающее то, что он набирает заряд. О том, как правильно подключать тестер к конденсатору в режиме ёмкости должно быть указано в инструкции пользователя. Не забывайте, что электролитический конденсатор необходимо присоединять, соблюдая полярность. Как правило, анодный (положительный) контакт несколько длиннее катодного (отрицательного).
Ниже размещено интересное радиолюбительское видео, где в середине проводится измерение емкости.
Предел измерения следует выбирать исходя из значения емкости, указанного на корпусе конденсатора. Так, к примеру, если номинальная емкость составляет 9,5 мкФ, необходимо измерять её, переведя тумблер на значение 20 µ. Если итоговые показатели измерений сильно отличаются от номинальных, значит радиодеталь неисправна.
Проверка вольтметром
Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.
- Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
- Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
- Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса). После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.
Проверка на короткое замыкание
Обратите внимание, что данный способ относительно небезопасен и не рекомендуется его использование людьми без необходимого опыта и знаний.
- Для начала следует отсоединить конденсатор от схемы и ненадолго (до 4 сек) подключить к источнику питания.
- Отсоединив от источника питания, замкните выводы конденсатора с помощью электропроводящего инструмента (отвертка, пинцет, нож). Будьте осторожны: используйте для этого только заизолированный предмет или наденьте на руки резиновые перчатки.
- При замыкании выводов произойдет короткое замыкание, сопровождающееся вылетом искры, по виду которой и можно судить о состоянии элемента: если проскочила сильная и яркая искра, конденсатор в норме, тусклая и слабая искра говорит о неисправности.
А вот это видео мы настоятельно рекомендуем посмотреть, т.к. оно очень подробное и охватывает все аспекты нашей темы:
Проверка конденсатора на плате (не выпаивая)
На самом деле, механизм аналогичен, поэтому просто рекомендуем посмотреть это видео, оно должно закрыть все оставшиеся вопросы.
Проверка автомобильного конденсатора
В системах зажигания большинства современных автомобилей используется электронный коммутатор (по привычке называемый так же, как предшествующий ему механический прибор), распределяющий зажигание на свечи, которые, в свою очередь, подают искры на цилиндры двигателя. Считается, что поломка этого устройства требует его немедленной полной замены, однако, если причина неисправности в конденсаторе, используемом в конструкции, можно попробовать поменять только его. Для проверки на трамблере используется амперметр.
- Подключив амперметр к выводам конденсатора, включите зажигание и разомкните их.
- Обратите внимание на показатели амперметра – если стрелка сместилась с 2-4 А до нуля, наш элемент вышел из строя и надо его заменить.
Самостоятельно проверить автомобильный конденсатор можно и без специального оборудования. Для этого нужно подключить к контактам переносную лампочку небольшой мощности. Если радиоэлемент в порядке, то она не загорится после включения зажигания.
Как прозвонить конденсатор мультиметром: инструкция и методы проверки
Самая распространенная причина поломки радиотехники — это неисправность конденсаторов, встроенных в плату устройства. В процессе ремонта важно определить работоспособность каждого из них и выяснить какой именно элемент вышел из строя. Чтобы точно и быстро определить неисправный элемент, важно знать, как прозвонить конденсатор мультиметром не выпаивая его и насколько это правильно. Стандартный метод проверки под силу не только профессионалам, но и рядовым радиолюбителям. Поэтому даже в домашних условиях можно самостоятельно прозвонить устройство.
Разновидности конденсаторов и способы их проверки
Если вы решили разобраться в том, как мультиметром проверить конденсатор, то необходимо выяснить какие разновидности этих устройств на сегодняшний день известны. Они могут быть как полярными, так и неполярными. Основным и очевидным их отличием является наличие полярности у полярных конденсаторов.
Проверка данных элементов выполняется по следующему принципу: «+» к «+», «—» к «—», иначе, при несоблюдении условий, элементы могут поломаться и даже замкнуть, что приведет к взрыву.
Модели полярного типа относятся к электролитическим. Если устройства были изготовлены еще в советский период, то в случае их взрыва может произойти попадание электролита на поверхность кожи. Современные же изделия оснащены специальным сечением на поверхности, которое в случае разрыва направляет взрывную струю по определенному направлению, исключая разбрызгивание проводящего вещества в различные стороны.
Прежде всего способ проверки зависит от того, какой характер имеет неисправность. Прозвонить конденсаторы мультиметром можно посредством:
- измерения сопротивлений в его диэлектрике;
- замера его емкости.
Что делать в случае пробоя
Самая распространенная проблема, которая возникает с конденсаторами – это появление пробоя на диэлектрике. Диэлектрики являются своеобразным слоем изоляционного материала с большим сопротивлением, расположенного между одним и вторым проводником, препятствующего протеканию тока между ними.
У исправных элементов допускается небольшое просачивание тока сквозь изоляционное покрытие, именуемое как «ток утечки». Если в диэлектрике возникает пробой, то происходит резкое снижение сопротивления, и он становится обыкновенным проводником. Пробой может возникнуть в результате резкого перепада напряжения в электросети, от которой работает техника. Характерный признак пробоя: вздувшийся корпус устройства, потемневшая поверхность и черные пятна на нем. Перед тем, как проверить конденсаторы мультиметром на факт исправности, стоит осмотреть его визуальным методом, чтобы определить возможные внешние дефекты.
Как прозвонить мультиметром неполярный конденсатор
Чтобы проверить сопротивление диэлектрика с помощью мультиметра, необходимо перевести устройство в режим омметра. Для изготовления диэлектриков в неполярных моделях могут использоваться различные материалы и формы: стекло, керамика, бумага, воздушная прослойка. В результате этого можно достичь крайне высокого сопротивления, которое в исправных устройствах будет отображаться в виде бесконечной величины на мультиметре. При наличии электрических пробоев, сопротивление будет находится на уровне нескольких десятков Ом.
До того момента, как прозванивать конденсаторы мультиметром, на приборе нужно выбрать специальный режим, который предусматривает максимально возможное измерение уровня сопротивления.
Для этого достаточно подвести к каждому выводу щуп тестера и посмотреть на дисплее прибора следующее:
- Если элемент исправен, то на экране отобразится единица, свидетельствующая о том, что сопротивление выше, нежели установленный максимум.
- Если же высвечивается определенный показатель, который ниже измерительного максимума, то это говорит про неисправность проверяемых устройств.
При этом, не стоит забывать про технику безопасности, чтобы случайно не взяться за щуп устройства и вывод конденсатора, поскольку меньшее сопротивление электрического тока у тела спровоцирует прохождение тока через него.
Как прозвонить полярный конденсатор тестером
В сравнении с неполярным типом в полярном сопротивление у диэлектриков в разы ниже, в связи с этим максимальное значение сопротивления на мультиметре должно быть выставлено соответствующем диапазоне. У большинства устройств сопротивление составляет около 100 кОм, у более мощных до 1 мОм. Прежде чем, померить конденсатор мультиметром, нужно замкнуть вывод накопителя, таким образом, чтобы он полностью разрядился.
Далее нужно установить соответствующие пределы измерений, и подключить щуп тестера к конденсатору, с учетом соблюдения полярности. У электролитических конденсаторов имеется достаточно большая емкость, в связи с чем в процессе их подключения сразу же начинается зарядка. На протяжении периода пока длится зарядка, значение сопротивления будет увеличиваться в прямой пропорции, что будет указываться на дисплее устройства.
Конденсаторы считаются исправными, в том случае если показатель сопротивления превышает значение в 100 кОм.
Прозвонка конденсатора мультиметром (аналоговые измерители)
Подобная процедура может быть проделана с помощью аналоговых (стрелочных) измерителей. Величина емкости электролитических конденсаторов определяется тем, с какой скоростью двигается стрелка на приборе в сторону максимального значения. В случае медленного движения стрелки, можно утверждать о большей продолжительности заряда конденсатора, что свидетельствует о его большей емкости. Если же диапазон емкости находится в диапазоне от 1 до 100 микрофарада (мкФ), то достижение стрелкой правой части на циферблате происходит моментально. Если емкость составляет 1000 мкФ, то достижение максимального значения стрелкой происходит за несколько секунд.
Проверка емкости накопителя
Среди большинства специалистов проверка конденсаторов осуществляется омметром, однако более надежный способ проверить пригодность изделия — это измерить его емкость. Из-за повышенной утечки в электролитических конденсаторах возникает частичная потеря емкости, в связи с чем значение ее реальной величины гораздо ниже нежели заявленной на корпусе устройства. При измерении сопротивления на конденсаторе достаточно проблематично найти проявление данного дефекта.
Чтобы узнать это наверняка необходимо использование измерителя емкости. Важно учитывать, что не все мультиметры имеют данную функцию, поэтому заранее следует удостовериться, что устройство может выполнить такую работу.
Перед такой проверкой электролитического конденсатора, элемент должен быть полностью разряжен. Это обусловлено тем, что заряженные конденсаторы могут оказать негативное воздействие на тестер и вывести его из строя. В частности это относится к полярным накопителям, у которых имеется высокое рабочее напряжение и большая емкость. Зачастую установка подобных конденсаторов осуществляется в импульсные блоки в роли фильтрующего накопителя.
Как разрядить конденсатор
Чтобы разрядить низковольтные конденсаторы необходимо лишь закоротить каждый вывод. Однако для высоковольтных и тех, которые имеют большую емкость, к выводу следует подключать 5-10-килоомные резисторы. Резисторы необходимы, чтобы препятствовать возникновению искр при замыкании.
В процессе работы важно помнить про безопасность. Нельзя прикасаться к выводу на конденсаторе, поскольку это может спровоцировать замыкание через ваше тело.
Выявление обрыва конденсаторов
Неисправность в виде обрыва случается достаточно редко. Такое нарушение обусловлено механическими повреждениями на накопителе. После подобной поломки у устройства в полной мере теряется накопительная функция, его емкость становится равна нулю. Целостный элемент после повреждения оказывается в виде двух проводников, которые изолированы друг от друга. Выявить такие повреждения конструкции посредством омметра не представляется возможным.
Своеобразные симптомы обрыва у полярного электролитического конденсатора проявляются в том, что в случае изменения сопротивления никакие изменения на экране прибора не проявляются. Что касается неполярных типов, стоит отметить что он имеет малую емкость и обладает высоким сопротивлением, поэтому проверить его также невозможно. Единственным правильным выходом является возможность измерения емкости.
Выявление потери емкости конденсатора
Для определения потери емкости в первую очередь необходимо выполнить замер емкости. Для этого на тестере нужно выставить необходимый предел измеряемых емкостей, разрядить проверяемые устройства, подключить щуп от измерителя к соответствующему гнезду на нем, при соблюдении правильной полярности, и в итоге, прикоснуться щупом к выводу конденсаторов. Естественно, что придерживаясь последовательности действий, понять, как прозвонить конденсатор мультиметром на кондиционере или любом другом бытовом приборе не составит труда.
Как измерить напряжение на конденсаторе
Кроме того, чтобы определить исправен ли элемент, необходимо выполнить проверку соответствия его реального напряжения к номинальному. Чтобы это сделать следует использовать тестер в режиме вольтметра, а также необходимо наличие источника питания для зарядки устройств. Значение напряжения должно быть меньшим нежели, то под которое рассчитаны накопители. Чтобы измерить вам понадобится подсоединить щуп к выводу и чуть подождать, до момента полной зарядки. При переводе прибора в режим вольтметра, необходимо выполнить проверку выдаваемого накопителем напряжения. Величина, которая появится на дисплее устройства на начальном этапе замера, должна соответствовать заявленным показателям.
Следует учитывать, что в процессе проверки у накопителя теряется заряд и, очевидно, что напряжение будет быстро снижаться, именно поэтому важна начальная величина замера.
Существует более доступный способ проверить конденсаторы, но он подходит только для изделий, имеющих гораздо большую емкость. После полноценной зарядки накопителя, нужно взять простую отвертку с изолированной ручкой, поднести ее металлической частью к выводам и замкнуть их. Если же после проделанных манипуляций произошло возникновение искры, то это свидетельствует о работоспособности элемента. Если же она отсутствовала или была слабой, то это говорит о невозможности устройства держать заряд.
Вывод
Среди многих начинающих мастеров-радиолюбителей бытует мнение, что можно прозвонить конденсатор мультиметром не выпаивая его, но мало кто знает, что такие измерения имеют очень большую погрешность. Единственным наиболее правильным методом проверки элемента является визуальная оценка его состояния, на наличие потемнения, взбухания и других дефектов.
Примечательно, что поломка такого характера зачастую происходит в стиральных машинах, телевизорах, микроволновых печах и других видах бытовой техники. В связи с этим, столкнувшись с подобной проблемой вы самостоятельно сможете прозвонить конденсаторы мультиметром, благодаря описанной выше инструкции.
Как проверить исправность конденсатора, его емкость и сопротивление
Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости — причина которая со временем постигает почти все электролитические конденсаторы.
Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.
Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.
Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.
Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.
Проверка конденсаторов
Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку — лучше конденсатор выпаять полностью.
Проверка конденсатора мультиметром
С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад.
Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус — это минусовой вывод конденсатора.
И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.
Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет — конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение «1» или по другому говоря «бесконечность» это уже говорит о том что конденсатор не пробит и не замкнут.
Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение «1» то это говорит об внутреннем обрыве — конденсатор не исправен.
Бывает и другое, значение «000» или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.
Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора — сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.
Проверка конденсаторов стрелочным тестером
Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.
Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.
Но если емкость конденсатора очень мала, «зарядки» можно и не заметить — практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад — такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос — рабочий ли конденсатор?
Проверка переменным напряжением
Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора
Проверяем емкость конденсатора
Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.
Все электролитические конденсаторы со временем (в процессе работы) «подсыхают» и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.
Проверяют емкость мультиметром в режиме «Cx» выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая «крона».
Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.
Но если у вас под рукой нет ни мультиметра ни «микрофарадметра» можно достаточно приблизительно замерить емкость стрелочным омметром.
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам — «засекаем» время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.
Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся «заряд» и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.
«Зарядка напряжением».
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего «зарядку» отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.
Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).
Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.
У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.
пошаговая инструкция, как прозвонить электролитический, пусковой конденсатор, не выпаивая
С помощью такого инструмента, как мультиметр, измеряется напряжение, сила тока и другие важные параметры. Можно проверить работу электродеталей, емкость и сопротивление. В зависимости от типа и вида диэлектрика, проверить конденсатор мультиметром можно разными способами.
Особенности проверки
Конденсатор проверяется на исправность различными методами. Основной способ — с выпаиванием из схемы. Иногда можно проверить работоспособность без выпаивания. Но результаты исследования не будут точны — на него влияют прочие компоненты. Для проверки в цепи применяются тестеры с крохотным напряжением на щупах. Малое напряжение предотвращает повреждение остальных элементов платы.
Вне зависимости от особенностей моделей, все электролитические конденсаторы обладают высокой мощностью. При выполнении проверки происходит их подзарядка. Ее продолжительность составляет всего несколько секунд. В процессе зарядки наблюдается увеличение уровня сопротивления, с движением стрелки тестера или изменением цифровых показателей в электронном мультиметре.
Полярные конденсаторы
Эти электролитические кондеры обладают полярностью. При включении в сеть необходима проверка правильного подсоединения. Плюсы соединяем с плюсами, а минусы — с минусами. Игнорирование этого правила приводит к взрыву электролита.
Электролит бывает твердым или жидким. Емкость элементов составляет 0,1—100000 мкФ. Предназначение элементов — выравнивание и фильтрация сигналов. Метки «-» и «+» нанесены на корпусе. Положительный вывод имеет большую длину. При перепутывании полярности происходит пробой диэлектрика, в результате чего электролит мгновенно испаряется и корпус разрывает. Диэлектриком является бумага, пропитанная электролитом. Современные корпуса сверху вдавлены и рассечены крестом. При взрыве распадается не весь, а только верхняя часть. Учитывая специально ослабленные элементы, при неисправности видно вспучивание верхней части.
Неполярные конденсаторы
Отличить визуально неполярный от полярного просто — у него не будет маркировки полярности на корпусе. У неполярных материал диэлектрика другой. Состоит из керамики или стекла. Ток саморазрядки намного меньше, учитывая большую диэлектрическую сопротивляемость, чем у бумаги. Ток утечки тем ниже, чем выше сопротивляемость диэлектрической перегородки.
Соблюдать полярность при включении в схему совсем необязательно. Иногда такие кондеры изготавливают очень маленькими и включают в схему в больших количествах.
Емкость деталей небольшая — от микрофарадов до пикофарадов.
Как проверить конденсатор мультиметром
Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.
Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.
Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ. Пошаговая инструкция проверки:
- Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
- Переключатель мультиметра ставится на значение сопротивления.
- Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.
Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.
Если значение 1 появилось спустя некоторое время, элемент считается исправным.
Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.
Электролитический
Как следует из названия, электролитические кондеры в алюминиевом корпусе наполнены электролитом между обкладками. Габариты самые разные — от миллиметров до десятков дециметров. Технические характеристики могут превышать таковые у неполярных на 3 порядка и достигать больших величин — единиц mF.
В электролитических моделях появляется дополнительный дефект, связанный с ЭПС (эквивалентным последовательным сопротивлением). Этот показатель еще обозначают аббревиатурой ESR. Такие конденсаторы в схемах с высокими частотами отфильтровывают несущий сигнал от паразитных. Но возможно подавление ЭМП, сильно снижая уровень и играя роль резистора. Это ведет к перегреву конструкции детали.
Из чего складывается ESR:
- сопротивление обкладок, выводов, узлов соединения;
- неоднородность диэлектриков, влага, паразитные примеси;
- сопротивление электролита за счет изменения химических параметров при нагреве, хранении, высыхании.
В сложных схемах показатель ЭПС особенно важен, но измеряется только специальными приборами. Некоторые мастера самостоятельно их изготавливают и используют в связке с обычными мультиметрами.
Керамический
Сначала осматриваем устройство визуально. Особенно внимательно, если в схеме использованы детали, бывшие в употреблении. Но и новые керамические материалы могут быть бракованными. Сразу заметны кондеры с пробоем — потемневшие, вздутые, прогоревшие, с растресканным корпусом. Такие электродетали однозначно выбраковываются даже без инструментальной проверки — ясно, что они неработоспособны или не выдают назначенных параметров. Лучше озаботиться поиском причин пробоев. Даже новые экземпляры с трещиной в корпусе являются «миной замедленного действия».
Пленочный
Пленочные устройства применяются в цепях постоянного тока, фильтрах, стандартных резонансных схемах. Основные неисправности устройств с малой мощностью:
- снижение рабочих показателей в результате иссыхания;
- увеличение параметров тока утечки;
- повышение активных потерь внутри цепи;
- замыкание на обкладках;
- потеря контакта;
- обрыв проводника.
Измерить емкость конденсатора возможно в режиме тестирования. Стрелочные модели реагируют отклонением стрелки со скачком и возвратом к нулю. При небольшом отклонении стрелки диагностируют утечку тока при малой емкости.
Малая эффективность с низким уровнем мощности при большом токе утечки мешает широкому применению данных конденсаторов и не позволяет его потенциалу полностью раскрыться. Поэтому использование этого вида кондеров нецелесообразно.
Как проверить не выпаивая
Прозвонить конденсатор мультиметром без выпаивания возможно. Для такой проверки подбираем исправный экземпляр с аналогичными характеристиками и впаиваем его в схему параллельно исследуемому. Рабочее устройство скажет о проблеме в первом элементе. Способ не применяется на схеме с высоким напряжением.
Проверить мощный пусковой конденсатор мультиметром можно не выпаивая на наличие искры. Заряженный кондер замыкается отверткой или иным инструментом с изолированной ручкой. Характерный звук с искрой покажут работоспособность прибора.
Замеривать без специальных приборов нежелательно. Легко получить удар током на высоковольтных образцах, да и точные значения не выявить.
Меры предосторожности при проверке
Разрядка конденсатора является обязательной. Особенно это касается высоковольтных деталей — могут вывести мультиметр из строя или поразить человека электротоком. Разряжают касанием ножек металлическим предметом или подключением лампы. Второй способ процесс разряда делает более плавным.
Во время измерения нельзя касаться руками открытых частей щупа — человеческое тело имеет малое сопротивление и высокий показатель утечки. В этом случае замер окажется неправильным. Ток пойдет по пути наименьшего сопротивления и показатели покажут значение, не имеющее отношения к конденсатору.
Измерение на высоковольтных конденсаторах выполняются в резиновых перчатках и изолированными приборами.
Штатно работающий электронный компонент способен накапливать и отдавать некоторое количество электричества. Поломки при работе определяются не только визуально, но и посредством мультиметра. Тестирование измерительным прибором способно прояснить пригодность элемента для дальнейшего использования.
Конденсаторы 101 — iFixit
Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он делает. Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный перетекает в положительный, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы.Как только пластина больше не может удерживать их, они проталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь. Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы создают постоянное напряжение для других компонентов и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Пока напряжение питания падает до нуля, конденсатор начинает вытекать свое содержимое, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.
Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглой жестяной банки обычно являются электролитическими.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами. Металлические пластины из фольги, разделенные диэлектриком, затем скатываются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.
Вот конденсатор, который некоторые, возможно, еще помнят со времен старых радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный (4) конденсатор.Это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.
Керамические дисковые конденсаторы идеально подходят для более высоких частот, но не подходят для объемной фильтрации, потому что керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В цепях, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, параллельный керамическому дисковому конденсатору. Электролитический конденсатор выполняет большую часть работы, тогда как небольшой керамический дисковый конденсатор отфильтровывает высокую частоту, которую пропускает большой электролитический конденсатор.
Еще есть танталовые конденсаторы. Они небольшие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.
Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса указала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги — продлить срок службы бумажного конденсатора.
Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, визуально. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.
Определить емкость конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.
Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что оно может находиться в диапазоне от 176 до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Кроме того, полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .
Теперь главный вопрос — как проверить конденсатор на предмет необходимости его замены.
Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста по принципу «все или ничего». Этот тест покажет только, полностью ли разряжен конденсатор. , а не будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.
Счетчик, используемый в этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.
Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из кожи аллигатора и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.
Чтобы проверить конденсатор с помощью мультиметра, установите показания измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.
Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.
Еще одно испытание, которое можно провести с конденсатором, — это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.
По окончании заряда отключите аккумулятор от конденсатора. Воспользуйтесь мультиметром и измерьте напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не удерживает это напряжение, он неисправен и его следует заменить.
Проще всего конечно будет проверить конденсатор с помощью измерителя емкости. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Присоедините положительный (красный) провод от измерителя к нему, а отрицательный (черный) — к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.
Тестирование конденсатора SMD может быть затруднено с помощью громоздких пробников. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.
Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте конденсатор меньшей стоимости.
Если конденсатор, который будет заменен или проверен, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.
В этом фрагменте схемы iPhone указаны символы конденсаторов, а также их значения.
Эта Wiki — это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн и офлайн-курсов.
Eaton Electronics
Максвелл
Digikey
Mouser
.Конденсаторы: все, что вам нужно знать | ОРЕЛ
Нет, мы не говорим здесь о Grand Theft Auto! Открывать крышку в мире электроники — это плохо, если вам не нравится смотреть, как ваш электролитический конденсатор горит в огне. Конденсаторы играют важную роль в семействе пассивных электронных компонентов, и их можно использовать повсюду.
Помните вспышку в вашей цифровой камере? Конденсаторы делают это возможным. Или возможность переключать канал на телевизоре? Опять конденсаторы.Эти парни — маленькие батарейки, которые «могут», и вам нужно знать все, что о них известно, прежде чем вы начнете работать над своим первым проектом в области электроники.
Это как сэндвич с мороженым
Для простоты — конденсатор хранит электрический заряд , очень похоже на батарею. Также называемые caps , вы найдете этих парней в приложениях, где требуется накопление энергии, подавление напряжения и даже фильтрация сигналов. А как они выглядят? Ну бутерброд с мороженым!
Что бы вы сделали с баром «Клондайк»? Сравните это, конечно, с конденсатором! (Источник изображения)
Подумайте о том восхитительном бутерброде с мороженым, который вам понравился в тот душный летний день.У вас есть восхитительная корочка с двух сторон и кремовая тарелка ванильного мороженого посередине. Эта композиция из двух внешних слоев и одного внутреннего слоя — это то, как выглядит конденсатор. Вот из чего они сделаны:
- Начиная снаружи. Сверху и снизу конденсатора вы найдете набор металлических пластин, также называемых проводниками. Электрический заряд находит эти металлические пластины очень привлекательными.
- Сидит посередине. Посреди этих двух металлических пластин вы найдете изолятор или материал, к которому не притягивается электричество. Этот изолятор обычно называют диэлектриком и может быть изготовлен из бумаги, стекла, резины, пластика и т. Д.
- Соединяем вместе. Две металлические пластины сверху и снизу крышки соединены двумя электрическими клеммами, которые соединяют ее с остальной частью цепи. Один конец конденсатора подключается к источнику питания, а другой — к земле.
Внутренняя структура конденсатора, у нас есть две металлические пластины, внутренний диэлектрик и соединительные клеммы.
Конденсаторы всех форм и размеров
Конденсаторыбывают разных форм и размеров, каждый из которых определяет, насколько хорошо они могут удерживать заряд. Три наиболее распространенных типа конденсаторов, с которыми вы столкнетесь, включают керамический конденсатор, электролитический конденсатор и суперконденсатор:
Конденсаторы керамические
Это конденсаторы, с которыми вы, вероятно, будете работать в своем первом электронном проекте с использованием макета.В отличие от своих электролитических аналогов, керамические конденсаторы удерживают меньший заряд, но и меньше пропускают ток. Они также оказываются самыми дешевыми конденсаторами из всей группы, так что запасайтесь! Вы можете быстро определить керамический конденсатор со сквозным отверстием, посмотрев на маленькие желтые или красные лампочки с двумя торчащими из них выводами.
Три типа керамических конденсаторов, которые вы будете использовать на макетных платах. (Источник изображения)
Конденсаторы электролитические
Эти ребята выглядят как маленькие консервные банки, которые вы найдете на печатной плате, и в их крошечном следе могут удерживаться огромные электрические разряды.Они также являются единственным типом конденсаторов, которые поляризованы, а это означает, что они будут работать только при подключении с определенной ориентацией. На этих электролитических конденсаторах есть положительный вывод, называемый анодом, и отрицательный вывод, называемый катодом. Анод всегда нужно подключать к более высокому напряжению. Если вы подключите его наоборот, когда на катоде будет более высокое напряжение, приготовьтесь к взрыву крышки!
Электролитический конденсатор, обратите внимание на положительный вывод и более длинный (анод) и более короткий отрицательный вывод (катод).(Источник изображения)
Несмотря на то, что электролитические колпачки способны удерживать большое количество электрического заряда, они также хорошо известны тем, что пропускают ток быстрее, чем керамические колпачки. Из-за этого они не лучший выбор, когда вам нужно хранить энергию.
Суперконденсаторы
Supercaps — супергерои семейства конденсаторных, они могут хранить большое количество энергии! К сожалению, суперкапс плохо справляется с повышенным напряжением, и вы окажетесь без колпачка, если превысите максимальное напряжение, указанное в таблице данных.POP!
В отличие от электролитических конденсаторов, вы обнаружите, что суперконденсаторы используются для хранения и разряда энергии, как и батареи. Но в отличие от батареи, суперкапсы высвобождают свой заряд сразу, и вы никогда не получите такой же срок службы, как обычный аккумулятор.
Посмотрите на этот мощный supercap ! Он имеет огромную емкость 3000F. (Источник изображения)
Обозначения конденсаторов
Идентифицировать конденсатор на первой схеме очень просто, поскольку они бывают только двух типов: стандартные и поляризованные.Обратите внимание на символ стандартного конденсатора ниже. Вы заметите, что это всего лишь две простые линии с пробелом между ними. Это две металлические пластины, которые вы найдете наверху и внизу физического конденсатора.
Поляризованный конденсатор выглядит немного иначе и имеет дугообразную линию в нижней части, а также положительный вывод наверху. Этот положительный вывод очень важен и указывает, как этот поляризованный конденсатор должен быть подключен. Положительная сторона всегда подключается к источнику питания, а сторона дуги подключается к земле.
Два наиболее распространенных типа конденсаторов, которые вы увидите на схеме для США, стандартные и поляризованные.
Кто изобрел эти вещи?
Хотя многие считают английского химика Майкла Фарадея пионером сегодняшнего конденсатора, он не был первым, кто его изобрел. То, что сделал Фарадей, было важно — он продемонстрировал первые практические примеры конденсатора и то, как использовать его для хранения электрического заряда в своих экспериментах. И благодаря Фарадею у нас также есть способ измерить заряд, который может удерживать конденсатор, известный как емкость, который измеряется в Фарадах!
Гениальный английский химик Майкл Фарадей, пионер конденсаторов, которые мы используем сегодня.(Источник изображения)
До Майкла Фарадея, некоторые записи указывают на то, что покойный немецкий ученый Эвальд Георг фон Клейст изобрел первый конденсатор в 1745 году. Несколько месяцев спустя голландский профессор по имени Питер ван Мушенбрук придумал похожий дизайн, теперь известный как Лейденская банка. Странное время, правда? Однако все это было просто совпадением, и оба ученых в равной степени получили признание за их первоначальные изобретения конденсатора.
Самый ранний образец конденсатора, лейденская банка.(Источник изображения)
Знаменитая модель Benjamin Franklin позже стала усовершенствованной конструкцией лейденской банки, созданной Musschenbroek. Франклин также смог обнаружить, что использование плоского куска стекла было отличной альтернативой целой банке. Так родился первый плоский конденсатор, получивший название площади Франклина.
Крышки в действии — как они работают
Давайте подробно рассмотрим, как работают эти мощные конденсаторы, на практическом примере. Вы ведь раньше пользовались цифровой камерой? Тогда вы знаете, что между нажатием кнопки, чтобы сделать снимок, и моментом срабатывания вспышки есть несколько коротких моментов.
Что здесь происходит? К вспышке прикреплен конденсатор, который заряжается после того, как вы нажмете кнопку, чтобы сделать снимок. Как только этот конденсатор полностью заряжен аккумулятором камеры, вся эта энергия взрывается наружу в ослепительной вспышке света!
Обратите внимание, конденсатор, который делает возможной вспышку в этой камере. (Источник изображения)
Так как же все это произошло? Заглянем изнутри в загадочный мир конденсатора:
- Начинается с зарядки. Электрический ток от источника питания сначала течет в конденсатор и застревает на первой пластине. Почему застревает? Потому что есть изолятор, который не пропускает отрицательно заряженную электронику.
- Накопление сборов. По мере того, как все больше и больше электронов прилипают к этой первой пластине, она становится отрицательно заряженной и в конечном итоге отталкивает все лишние электроны, с которыми не может справиться, к другой пластине. Затем эта вторая пластина становится положительно заряженной.
- Заряд сохраняется. По мере того, как две пластины конденсатора продолжают заряжаться, отрицательные и положительные электроны отчаянно пытаются соединиться, но этот надоедливый изолятор посередине не позволяет им, создавая электрическое поле. Вот почему колпачок продолжает удерживать и накапливать заряд, потому что существует бесконечный источник напряжения между отрицательной и положительной сторонами двух пластин, которые не разрешены.
- Заряд освобождается. Рано или поздно две пластины в нашем конденсаторе не смогут удерживать заряд, так как они на пределе емкости.Но что происходит сейчас? Если в вашей цепи есть путь для электрического заряда, протекающего в другом месте, то все электроны в вашей крышке будут разрядиться, и , наконец, прекратят свое напряжение, поскольку они ищут другой путь друг к другу.
Измерение заряда
Как можно измерить, сколько заряда хранится в конденсаторе? Каждый колпачок рассчитан на определенную емкость. Он измеряется в фарадах по английскому химику Майклу Фарадею. Поскольку в одном фараде содержится тонна электрического заряда, вы обычно видите конденсаторы, измеряемые в пикофарадах или микрофарадах.Вот полезная таблица, которая показывает, как разбиваются эти измерения:
Имя | Аббревиатура | Фарады |
Пикофарад | пФ | 0,000000000001 Факс |
нанофарад | нФ | 0,000000001 Факс |
Микрофарад | мкФ | 0,000001 Ф |
Милифарад | мФ | 0.001 F |
Килофарад | кФ | 1000 F |
Теперь, чтобы выяснить, сколько заряда в настоящее время хранит конденсатор, вам понадобится следующее уравнение:
В этом уравнении общий заряд представлен как (Q) , и соотношение этого заряда можно найти, умножив емкость конденсатора ( C ) и приложенное к нему напряжение ( В ). Следует отметить, что емкость конденсатора напрямую зависит от его напряжения.Таким образом, чем больше вы увеличиваете или уменьшаете источник напряжения в цепи, тем больший или меньший заряд будет у вашего конденсатора.
Емкость в параллельных и последовательных цепях
Когда вы размещаете конденсаторы в цепи параллельно, вы можете найти общую емкость, сложив вместе все отдельные емкости.
Получить общую емкость в параллельной цепи так же просто, как 1 + 1, просто сложите их все вместе! (Источник изображения)
При последовательном размещении конденсаторов общая емкость вашей цепи является обратной величиной всех ваших суммированных емкостей.Вот быстрый пример: если у вас есть два конденсатора по 10 Ф, соединенные последовательно, то общая емкость будет равна 5 Ф.
Получение полной емкости в последовательной цепи немного сложнее. Емкость уменьшается вдвое. (Источник изображения)
Начало работы
Теперь, когда у нас есть твердое представление о том, что такое конденсаторы, как они работают и как измеряются, давайте рассмотрим три распространенных применения конденсаторов. Сюда входят такие приложения, как развязывающие конденсаторы, накопители энергии и емкостные сенсорные датчики.
Конденсатор развязки
В наши дни вам будет трудно найти схему, в которой нет интегральной схемы или ИС. В этих типах схем конденсаторы должны выполнять важную работу, удаляя весь высокочастотный шум, обнаруживаемый в сигналах источника питания, питающих ИС.
Почему это необходимая работа для нашего конденсатора? Любые колебания напряжения могут быть фатальными для ИС и даже привести к неожиданному отключению питания микросхемы. Помещая конденсаторы между ИС и источником питания, они успокаивают колебания напряжения, а также действуют как второй источник питания, если первичная мощность падает до уровня, достаточного для выключения ИС.
Разделительный конденсатор для контроля колебаний напряжения.
Накопитель энергии
Конденсаторыимеют много общих характеристик с батареями, включая их способность накапливать энергию. Однако, в отличие от батареи, конденсаторы не выдерживают такой большой мощности. Но хотя они и не успевают по количеству, они стараются разрядиться как можно быстрее! Конденсаторы могут поставлять энергию намного быстрее, чем аккумулятор, что делает их идеальными для питания вспышки в камере, настройки радиостанции или переключения каналов на телевизоре.
Емкостные сенсорные датчики
Одно из последних достижений в области применения конденсаторов связано с бурным развитием сенсорных экранов. Стеклянные экраны, из которых состоят эти сенсорные датчики, имеют очень тонкое прозрачное металлическое покрытие. Когда ваш палец касается экрана, это вызывает падение напряжения, определяющее точное местоположение вашего пальца!
Емкостные сенсорные датчики в действии с защитной накладкой и печатной платой. (Источник изображения)
Практика — выбор конденсатора
Давайте перейдем к сфере практичности и поговорим о том, на что обращать внимание при выборе следующего конденсатора.Необходимо учитывать пять переменных, в том числе:
- Размер — сюда входит как физический размер вашего конденсатора, так и его общая емкость. Не удивляйтесь, если выбранный вами конденсатор будет самой большой частью вашей печатной платы, так как чем больше вам потребуется емкости, тем больше они станут.
- Допуск — Конденсаторы, как и их аналоги с резисторами, имеют переменный допуск. Вы найдете допуск для конденсаторов в пределах от ± 1% до ± 20% от заявленного значения.
- Максимальное напряжение — Каждый конденсатор имеет максимальное напряжение, с которым он может работать. В противном случае он взорвется! Вы найдете максимальное напряжение от 1,5 до 100 В.
- Эквивалентное последовательное сопротивление (ESR) — Как и любой другой физический материал, клеммы конденсатора имеют очень маленькое сопротивление. Это может стать проблемой, если вам нужно помнить о потерях тепла и мощности.
- Ток утечки — В отличие от наших батарей, в конденсаторах происходит утечка накопленного заряда.И пока он истощается медленно, вы должны обратить внимание на то, насколько утечки в вашем конденсаторе, если это основная функция, заключается в хранении энергии.
Все заряжены
Вот и все, что вам нужно знать о конденсаторах, чтобы полностью зарядиться для вашего следующего электронного проекта! Конденсаторы — это очаровательная небольшая группа, способная накапливать электрический заряд для множества применений, и они даже могут выступать в качестве вторичного источника питания для этих чувствительных интегральных схем.При работе с конденсаторами внимательно следите за максимально возможным напряжением. В противном случае вы получите несколько взрывающихся крышек, как вы увидите на видео:
Знаете ли вы, что Autodesk EAGLE бесплатно включает в себя массу библиотек конденсаторов? Начните со своего следующего проекта в области электроники и забудьте о создании собственных деталей! Попробуйте Autodesk EAGLE бесплатно сегодня.
,Как проверить настольный компьютер на наличие неисправных конденсаторов
Ваш настольный компьютер работает медленнее, чем обычно? Он случайно или постоянно зависает или перезагружается? Или, может быть, он не загружается в операционную систему или даже не загружается вообще. Если это так, у вашего компьютера может быть неисправный конденсатор.
В каждой мастерской по ремонту компьютеров есть свой набор стандартных процедур, и мы не исключение. Когда кто-то приносит настольный компьютер, первое, что мы делаем, это проверяем конденсаторы на предмет перегоревших.При быстром визуальном осмотре мы можем обнаружить дорогостоящий ремонт компьютера. И ты тоже можешь. Вот как проверить настольный компьютер на наличие неисправных конденсаторов.
Признаки неисправности конденсаторов
А теперь, прежде чем приступить к разборке системы, давайте взглянем на симптомы неисправного конденсатора. Есть ли на вашем компьютере какие-либо из следующих проблем?
- Бегает медленно
- Случайно зависает
- Произвольно / постоянно перезапускается
- Не загружается операционная система
- Не запускается вообще
Если да, возможно, стоит заглянуть внутрь своего компьютера.
Типы конденсаторов
Визуальные различия между электролитными конденсаторами на водной и полимерной основе
В основном на печатных платах компьютеров используются конденсаторы двух типов (материнские платы , видеокарты и т. Д. ), электролит на водной основе и электролит на основе полимера. Большинство отказов, которые я видел, связаны с конденсаторами на водной основе, но и с конденсаторами на полимерной основе тоже случаются отказы, но не так часто. В период с 1999 по 2007 годы некоторые тайваньские производители произвели миллионы неисправных конденсаторов на водной основе.Электролит испарится и превратится в газ, что приведет к вздутию корпуса и, в некоторых случаях, утечке.
Проверка конденсаторов на неисправность
Вид сверху на ряд вышедших из строя конденсаторов
Вид сбоку на отказавший конденсатор
Следующие действия можно выполнить с установленным компьютером, если у вас достаточно места. В противном случае вам придется переместить компьютер в другое место. Сначала сделайте снимок того, где все идет, затем полностью отключите все кабели, которые к нему подключены.
- Выключите компьютер и
- Отсоедините шнур питания от задней части источника питания (проверка на месте)
или - Отсоедините все кабели (осмотр при перемещении)
- Вздутие или растрескивание вентиляционного отверстия сверху
- Кожух на борту изогнут, так как основание может выдвигаться
- Электролит, который мог вытекать на материнскую плату (цвет ржавчины)
- Корпус отсоединен или отсутствует
Что делать, если вы обнаружили неисправный конденсатор
Если вы обнаружите неисправный конденсатор, есть три (3) варианта.Во-первых, если ваш компьютер все еще находится в рабочем состоянии, сделайте резервную копию данных как можно скорее ( см. Ссылки ниже ). При принятии решения о выборе варианта необходимо учитывать множество факторов, два из которых — возраст системы и стоимость.
- Отремонтируйте материнскую плату
Вы можете заменить неисправный конденсатор самостоятельно ( см. Ссылку ниже ) или попросить квалифицированного специалиста сделать это за вас. - Заменить материнскую плату
EBay — отличное место, чтобы найти отремонтированную материнскую плату. - Замените компьютер
Если вы искали повод приобрести новый компьютер, вы просто нашли его. А может два или три.
Для получения дополнительной информации о неисправных конденсаторах:
Capacitor plague — Wikipedia
Для получения дополнительной информации о замене вышедших из строя конденсаторов:
Восстановление собственной материнской платы — Badcaps.net
Дополнительные сведения о резервном копировании компьютера:
Резервное копирование Windows XP
Резервное копирование Windows Vista / Windows 7
Резервное копирование Windows 8