+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Выбор стабилитрона

Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки RН.

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Диапазон входных напряжений, ВU111…15
Выходное напряжение, ВU29
Диапазон нагрузок, мАIН50…100

Такая схема может потребоваться, например, для питания какого-либо устройства с небольшим потреблением от бортовой сети автомобиля.

Один из посетителей сайта нашёл в этой статье ошибку, за что я ему благодарен. Сейчас эта статья исправлена и содержит правильные расчёты.

Итак, для начала рассчитаем значение сопротивления R.

Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора:

RЦ = U1МИН / IН.МАКС = 11 / 0,1 = 110 Ом
То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки:

RЭ = U2 / IН.МАКС = 9 / 0,1 = 90 Ом
Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление:
R = R
Ц
– RЭ = 110 – 90 = 20 Ом
С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 статью о резисторах). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении:

UR.МАКС = U1МАКС – U2 = 15 – 9 = 6 В
А теперь определим ток через резистор R из того же закона Ома:
IR.МАКС = UR.МАКС / R = 6 / 20 = 0,3 А = 300 мА
Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть
IR.МАКС = IVD.МАКС = 0,3 А = 300 мА
Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы.

А вот мощность рассеяния стабилитрона рассчитаем:

PМАКС = IVD. МАКС * UСТ = 0,3 * 9 = 2,7 Вт = 2700 мВт
Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

UСТ = 9 В – номинальное напряжение стабилизации
IСТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
РМАКС = 2700 мВт – мощность рассеяния стабилитрона при IСТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.

п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая

ПараметрЗначениеЕдиница измерения
Минимальное входное напряжение, U1МИН = В
Максимальное входное напряжение, U1
МАКС
=
В
Выходное напряжение, U2 = В
Минимальный ток нагрузки, IН.МИН = мА
Максимальный ток нагрузки, IН.МАКС = мА
Сопротивление резистора, Ом, R =
Максимальный ток через стабилитрон, I
VD. МАКС
=
мА
Мощность рассеяния R, PR >= мВт
Мощность рассеяния VD, PVD >= мВт

Как понизить напряжение переменного и постоянного тока?

За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.

В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос,  как понизить напряжение, следует рассматривать в  ключе каждого из них отдельно.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

Рис. 1. Замена резистора или стабилитрона

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

Рис. 2. Понижение постоянного напряжения диодами

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи.  Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Понижение напряжения переменного тока

Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.

К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.

С помощью трансформатора

Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить  вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:

  • С выводом от средней точки – могут выдавать разность потенциалов как 220В, так и в два раза меньшее – 127В или 110В. От него вы сможете взять установленный номинал на те же 110В со средней точки. Это заводские изделия, которые массово устанавливались в старых советских телевизорах и других приборах. Но у этой схемы преобразователя имеется существенный недостаток – если нарушить целостность обмотки ниже среднего вывода, то на выходе трансформатора получится номинал значительно большей величины.
Рис. 3. Понижение трансформатором с отводом от средней точки
  • Автотрансформатором – это универсальная электрическая машина, которая способна не только понизить вольтаж, но и повысить его до нужного вам уровня. Для этого достаточно перевести ручку в нужное положение и проследить полученные показания на вольтметре.
Рис. 4. Использование автотрансформатора
  • Понижающим трансформатором с преобразованием 220В на нужный вам номинал или с любого другого напряжения переменной частоты. Реализовать этот метод можно как уже готовыми моделями трансформаторов, так и самодельными. За счет наличия большого количества инструментов и приспособлений, сегодня каждый может собрать трансформатор с заданными параметрами в домашних условиях. Более детально об этом вы можете узнать из соответствующей статьи: https://www.asutpp.ru/transformator-svoimi-rukami.html

Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать.

Наиболее актуальными параметрами у трансформаторов являются:

  • Мощность – трансформатор должен не только соответствовать, подключаемой к нему нагрузке, но и превосходить ее, хотя бы на 10 – 20%. В противном случае максимальный ток приведет к перегреву обмоток трансформатора и дальнейшему выходу со строя.
  • Номинал напряжения – выбирается и для первичной, и для вторичной цепи. Оба параметра одинаково важны, так как, выбрав модель с входным напряжением на 200 или 190В, на выходе вы при питании от 220В получится пропорционально большая величина.
  • Защита от поражения электротоком – все обмотки и выводы от них должны обязательно иметь достаточную изоляцию и защиту от прикосновения.
  • Класс пыле- влагозащищенности – определяет устойчивость оборудования к воздействию окружающих факторов. В современных приборах обозначается индексом IP.

Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.

С помощью резистора

Для понижения напряжения в цепь нагрузки последовательно включается  делитель напряжения в виде активного сопротивления.

Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:

  • величины напряжения;
  • сопротивления нагрузки;
  • мощности источника.

Если  вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:

R = Uc/I — Rн ,

где

  • R – сопротивление резистора;
  • RН – сопротивление прибора нагрузки;
  • I – ток, который должен обеспечиваться в номинальном режиме прибора;
  •  UC – напряжение в сети.

После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.

Видео по теме

Стабилитрон в блоке питания

5 августа 2019 — Admin

Итак, подробно разбираем схему лабораторного блока питания с регулируемым предельным током (начало здесь).

В этой статье:

  • пара слов про трансформатор и диодный мост
  • зачем в блоке питания стабилитрон
  • как рассчитать ограничивающий резистор
  • как определить мощность, рассеиваемую на резисторе
  • рассчитываем делитель напряжения

Трансформатор и диодный мост

Наверное, вы обратили внимание, что на схеме блока питания отсутствует понижающий трансформатор и диодный мост. Предполагается, что радиолюбитель сам сумеет подобрать и подключить эти элементы, так, чтобы на вход схемы поступало выпрямленное напряжение в пределах 26..29 В, пульсации которого сглаживаются конденсатором C1 большой ёмкости (тысячи микрофарад).

Не буду утомлять читателя расчётами, скажу, что для получения требуемого постоянного напряжения силовой трансформатор должен понизить сетевое напряжение до примерно 20 вольт. На рисунке ниже приведена недостающая часть схемы:

Силовой трансформатор и диодный мост для блока питания

Роль стабилитрона в блоке питания

Перейдём вот к этому участку схемы:

Стабилитрон в блоке питания

Если наш блок питания претендует на стабильное выходное напряжение, не зависящее от скачков в сети 220 В и прочих помех, нам нужно где-то взять стабильное опорное напряжение, которое мы будем использовать как точку отсчёта.

С такой задачей прекрасно справляется стабилитрон VD1. Стабилитрон — это такая деталь, напряжение на которой остаётся постоянным независимо от проходящего тока (в определённых пределах, конечно). К слову, на первой картинке в этой статье приведена вольт-амперная характериситка стабилитрона.

Заглянем в характеристики используемого в схеме КС175А. Напряжение стабилизации составляет 7.5 В. Ещё там указано, что ток стабилизации от 3 до 18 мА. Если будет меньше, стабилитрон не выдаст нужные нам 7,5 В. Если больше — он выйдет из строя.

Расчёт ограничивающего резистора

За режим работы стабилитрона отвечает резистор R1, это весьма распространённая схема включения стабилитрона. На всякий случай напомню: при последовательном соединение ток, проходящий через все элементы, одинаков, а напряжение делится между ними: чем больше сопротивление элемента, тем выше на нём напряжение.

Применим эти знания на практике. Если на входе 26 В, а на стабилитроне упало 7.5, остальные 18. 5 окажутся на R1. Его сопротивление 3.6 К, ток закону Ома будет равен 5 мА, такой же ток потечёт через стабилитрон. Всё в порядке, мы попали внутрь интервала стабилизации, ближе к его началу. В принципе, номинал R1 мог быть и поменьше, но тогда вырастет ток, схема станет менее экономной.

Для очистки совести давайте ещё посчитаем мощность, рассеиваемую на R1. По формуле P = I*I*R получаем 0.09 Вт, так что даже маломощный резистор, рассчитанный на 0.125 Вт, вполне подойдёт. Вообще, на будущее, не лишне будет так просчитывать каждый резистор, особенно, если Вы собираетесь уменьшить его номинал. Чтобы не прогадать с мощностью и не спалить его.

Вы можете спросить, почему мы не учли при расчётах R2 и R3, которые подключены параллельно стабилитрону, следовательно, забирают на себя часть тока? Дело в том, что их суммарное сопротивление много больше, чем сопротивление открытого стабилитрона (а входное сопротивление микросхемы DA1.1 ещё больше), значит, в данном случае они почти не влияют на режим работы стабилитрона и при расчётах ими можно пренебречь.

Делитель напряжения

Раз уж заговорили об R2 и R3 — на них собран делитель напряжения. Этот делитель снимает напряжение со стабилитрона, и часть этого напряжения отдаёт на вход микросхемы. Это то самое стабильное опорное напряжение, которого мы хотели добиться. Поскольку в составе делителя есть переменный резистор R2, то и напряжение мы можем снимать разное. Но! Зависит оно только от угла поворота ручки R2 и не зависит от колебаний напряжения в сети.

В делителе напряжения мы видим последовательное соединение, и, значит, к нему применимы все те же рассуждения, как и к стабилитрону с ограничивающим резистором.

В нижнем положении ручки R2 сопротивление нижнего плеча делителя будет равно 5.1 К (R3), а верхнего — 100 К (весь R2). Суммарно на них приходится 7.5 В, снятных со стабилитрона, значит, согласно пропроции, на среднем контакте R2 будет 0.36 В. Ну а с верхним положением всё просто — там будут полные 7.5 В.

Напряжение с R2, которое, как мы выяснили, укладывается в диапазон 0. 36 .. 7.5 В, далее попадает на вход операционного усилителя DA1.1. Как он работает в этой схеме, разберём в следующей статье.

Продолжение: операционный усилитель DA1.1 в блоке питания

Поделиться в соцсетях:

Расчет параметрического стабилизатора напряжения на стабилитроне

Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.

Доброго дня уважаемые Радиолюбители!
Сегодня на сайте “Радиолюбитель“, в разделе “Практикум начинающего радиолюбителя“, мы продолжим рассмотрение статьи “Источники питания радиолюбительских устройств“. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:

  • Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.
  • Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки
  • Сегодня мы рассмотрим два простейших стабилизатора напряжения:
    — параллельный параметрический стабилизатор напряжения на стабилитроне;
    – последовательный стабилизатор напряжения на биполярном транзисторе.

Параллельный параметрический стабилизатор напряжения на стабилитроне

Полупроводниковый стабилитрон —  (другое название – диод Зенера)  предназначен для стабилизации постоянного напряжения источников питания.

В простейшей схеме линейного параметрического стабилизатора он выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом.

В более сложных схемах ему отводится только роль источника опорного напряжения.

Один из внешних видов и обозначение стабилитрона:

Как работает стабилитрон

Напряжение на стабилитрон (в отличие от диода) подают в обратной полярности (анод соединяют с минусом а катод с плюсом источника питания – Uобр). При таком включении через стабилитрон течет обратный ток – Iобр.

При увеличении напряжения обратный ток растет очень медленно (на схеме, почти параллельно оси Uобр), но при некотором напряжении Uобр переход стабилитрона пробивается (но разрушение стабилитрона в этот момент не происходит) и через него начинает идти обратный ток значительно большего значения.

В этот момент вольтамперная характеристика стабилитрона (ВАХ) резко идет вниз (почти параллельно оси Iобр) – наступает режим стабилизации, основные параметры которого – напряжение стабилизации минимальное (Uст min) и ток стабилизации минимальный (Iст min).

При дальнейшем увеличении Uобр ВАХ стабилитрона опять меняет свое направление – заканчивается режим стабилизации, основные параметры которого – напряжение стабилизации максимальное (Uст max)  и ток стабилизации максимальный (Iст max).

С этого момента стабилитрон теряет свои свойства, начинает разогреваться, что может привести к тепловому пробою перехода стабилитрона и соответственно к его выходу из строя.

Режим стабилизации стабилитрона может быть в широких пределах, поэтому в документации на стабилитроны указывают допустимые минимальные и максимальные значения токов (Iст min и Iст max) и напряжений стабилизации (Uст min и Uст max).

Внутри этих диапазонов лежат выбранные производителем номинальные значенияIст и Uст.

Номинальный ток стабилизации обычно устанавливается производителями на уровне 25%-35% от максимального, а номинальное значение напряжения стабилизации как среднее от максимального и минимального.

Для примера можно воспользоваться программой  “TBFEdit”  – справочник по радиодеталям“ и воочию посмотреть какие характеристики приводятся в справочниках по стабилитронам:

К примеру стабилитрон Д814Г:
— номинальный ток стабилизации (Iст)= 5 мА;
– номинальное напряжение стабилизации (Uст)= (от 10 до 12 вольт)= 11 вольт;
– максимальный ток стабилизации (Iст max)= 29 мА.
Эти данные нам будут необходимы при расчетах простейшего стабилизатора напряжения.

  1. Если вы не смогли найти нужный наш родной, советский, стабилитрон, то можно используя, к примеру программу, Color And Code, подобрать по нужным параметрам буржуйский аналог:
  2. Как видите, стабилитрон Д814Г легко можно заменить аналогом – BZX55C11 (у которого характеристики даже немного получше)
  3. Ну а теперь рассмотрим параллельный параметрический стабилизатор напряжения на стабилитроне.

Параллельный параметрический стабилизатор напряжения на стабилитроне применяется в слаботочных устройствах (несколько миллиампер) и представляет собой делитель напряжения (на резисторе R – балластный резистор и стабилитроне VD – который выполняет роль второго резистора) на вход которого подается нестабильное  напряжение  а выходное напряжение снимается с нижнего плеча делителя. При повышении (понижении) входного напряжения внутреннее сопротивление стабилитрона уменьшается (увеличивается), что позволяет удерживать выходное напряжение на заданном уровне. На балластном резисторе падает разница между входным напряжением питания и напряжением стабилизации стабилитрона.

  • Рассмотрим схему данного (самого простейшего) стабилизатора напряжения:
  • Как рассчитать параметры такого стабилизатора. Первое и самое главное, что нужно запомнить:

Для нормальной работы схемы ток через стабилитрон должен в несколько раз (3-10 раз) превышать ток в стабилизируемой нагрузке. Практически, так-как номинальный ток стабилизации стабилитрона в несколько раз меньше максимального, то допускается при расчетах считать, что ток нагрузки не должен превышать номинального тока стабилизации.
К примеру: ток потребляемый нагрузкой составляет 10 мА, значит нам необходимо подобрать такой стабилитрон, чтобы его номинальный ток стабилизации не был меньше 10 мА (лучше конечно, если он будет больше).

Расчет параллельного параметрического стабилизатора напряжения на стабилитроне

Дано:
Uвх – входное напряжение = 15 вольт
Uвых – выходное напряжение (напряжение стабилизации) = 11 вольт

Расчет:
1.

По справочнику, приведенному выше, определяем, что для наших целей подходит стабилитрон Д814Г:
Uст (10-12в)= 11 вольт
Iст max= 29 мА
Iст номинальный = 5 мА
Исходя из сказанного выше, определяемся, что ток нагрузки не должен превышать Iст номинального – 5 мА
2. Определяем напряжение падения на балластном резисторе (R) как разность входного и выходного стабилизированного напряжения:
Uпад=Uвх – Uвых=15-11= 4 вольта
3. Используя закон Ома, определяем номинал балластного сопротивления R, деля напряжение падения Uпад на Iст стабилитрона:
R= Uпад/Iст= 4/0,005= 800 Ом
Так как резисторов номиналом 800 Ом нет, берем ближайший больший номинал – R=1000 Ом= 1 кОм
4. Определяем мощность балластного резистора R:
Pрез= Uпад*Iст= 4*0,005= 0,02 ватта
Так как через резистор протекает не только ток стабилизации стабилитрона но и ток потребляемый нагрузкой, то полученное значение увеличиваем минимум в 2 раза:
Pрез= 0,004*2= 0,008 ват, что соответствует ближайшему номиналу = 0,125 ватт.

Что делать если вы не нашли стабилитрон с нужным напряжением стабилизации.
В этом случае можно применить последовательное соединение стабилитронов. К примеру, если мы соединим последовательно два стабилитрона Д814Г, то напряжение стабилизации составит 22 вольта (11+11).

Если соединим Д814Г и Д810 то получим напряжение стабилизации 20 вольт (11+10).
Допускается любое число последовательного соединения стабилитронов одной серии (как в примере – Д8**).

Последовательное соединение стабилитронов разной серии допускается только в том случае, если рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой использованной серии.

Что делать, если в приведеном выше примере, ток нагрузки составляет к примеру не 5 а 25 мА?
Можно конечно все так и оставить, так как максимальный ток стабилизации (Iст max) Д814Г равен 29 мА, единственное придется пересчитать мощность балластного резистора. Но в этом случае стабилитрон будет работать на пределе своих возможностей и у вас не будет никаких гарантий, что он не выйдет из строя.
А что делать если ток нагрузки составляет, к примеру, 50 мА?

 

Последовательный стабилизатор напряжения на биполярном транзисторе

Последовательный стабилизатор напряжения на биполярном транзисторе – это по сути параллельный параметрический стабилизатор на стабилитроне, подключенный ко входу эммитерного повторителя.

Его выходное напряжение меньше напряжения стабилизации стабилитрона за счет падения напряжения на переходе база-эммитер транзистора (для кремниевых транзисторов – около 0,6 вольт, для германиевы – окло 0,25 вольт), что нужно учитывать при выборе стабилитрона.

Эммитерный повторитель (он же – усилитель тока) позволяет увеличить максимальный ток стабилизатора напряжения по сравнению с параллельным параметрическим стабилизатором на стабилитроне в β (h31э) раз (где β (h31э) – коэффициент усиления по току данного транзистора, берется наименьшее значение).

  1. Схема последовательного стабилизатора на биполярном транзисторе:
  2. Так-как данный стабилизатор состоит из двух частей – источник опорного напряжения (он же параллельный параметрический стабилизатор на стабилитроне) и усилителя тока на транзисторе (он же эммитерный повторитель), то расчет такого стабилизатора производится аналогично выше приведенному примеру.
    Единственное отличие:
    — к примеру нам надо получить ток нагрузки 50 мА, тогда выбираем транзистор с коэффициентом усиления β (h31э) не менее 10 (β (h31э)=Iнагрузки/Iст=50/5=10
    – мощность балластного резистора рассчитываем по формуле: Ррез=Uпад*(Iст+Iнагрузки)
  3. Ток нагрузки можно увеличить еще в несколько раз, если применить схему с составным тразистором (два транзистора, включенные по схеме Дарлингтона или Шиклаи):
  4. Вот, в принципе, и все.

Источник: http://radio-stv.ru/praktikum-radiolyubitelya/stabilizatoryi-napryazheniya

Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне

Параметрический стабилизатор напряжения — это устройство, в котором стабилизация выходного напряжения достигается за счет сильной нелинейности вольт-амперной характеристики электронных компонентов, использованных для построения стабилизатора (т.е. за счет внутренних свойств электронных компонентов, без построения специальной системы регулирования напряжения).

Для построения параметрических стабилизаторов напряжения обычно используются стабилитроны, стабисторы и транзисторы.

Из-за низкого КПД такие стабилизаторы находят применение в основном в слаботочных схемах (с нагрузками до нескольких десятков миллиампер). Наиболее часто они используются как источники опорного напряжения (например, в схемах компенсационных стабилизаторов напряжения).

Параметрические стабилизаторы напряжения бывают однокаскадными, многокаскадными и мостовыми.

Рассмотрим простейший параметрический стабилизатор напряжения, построенный на основе стабилитрона (схема приведена ниже):

  1. Iст — ток через стабилитрон
  2. Iн — ток нагрузки
  3. Uвых=Uст — выходное стабилизированное напряжение
  4. Uвх — входное нестабилизированное напряжение
  5. R0 — балластный (ограничительный, гасящий) резистор

Работа стабилизатора основана на том свойстве стабилитрона, что на рабочем участке вольт-амперной характеристики (от Iст min до Iст max) напряжение на стабилитроне практически не изменяется (на самом деле конечно изменяется от Uст min до Uст max, но можно считать, что Uст min = Uст max = Uст).

В приведенной схеме, при изменении входного напряжения или тока нагрузки — напряжение на нагрузке практически не меняется (оно остаётся таким же, как и на стабилитроне), вместо этого изменяется ток через стабилитрон (в случае изменения входного напряжения и ток через балластный резистор тоже).

То есть, излишки входного напряжения гасятся балластным резистором, величина падения напряжения на этом резисторе зависит от тока через него, а ток через него зависит в том числе от тока через стабилитрон, и таким образом, получается, что изменение тока через стабилитрон регулирует величину падения напряжения на балластном резисторе.

  • Уравнения, описывающие работу данной схемы:
  • Uвх=Uст+IR0, учитывая, что I=Iст+Iн, получим
  • Uвх=Uст+(Iн+Iст)R0 (1)

Для нормальной работы стабилизатора (чтобы напряжение на нагрузке всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе нагрузки. Зная это, найдём сопротивление балластного резистора:

R0=(Uвх min-Uст min)/(Iн max+Iст min) (2)

Максимальный ток через стабилитрон будет течь при минимальном токе нагрузки и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:

Перегруппировав это выражение, получим:

Или, по другому:

Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно, то первое слагаемое в правой части можно считать равным нулю, тогда уравнение, описывающее область нормальной работы стабилизатора, примет следующий вид:

Из этой формулы сразу виден один из недостатков такого параметрического стабилизатора — мы не можем сильно менять ток нагрузки, поскольку это сужает диапазон входного напряжения схемы, более того, можно увидеть, что диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилизации стабилитрона (поскольку в этом случае правая часть уравнения вообще становится отрицательной)

Если ток нагрузки постоянен или изменяется незначительно, тогда формула для определения области нормальной работы становится совсем элементарной:

Далее, давайте рассчитаем КПД нашего параметрического стабилизатора. Он будет определяться отношением мощности, отдаваемой в нагрузку к входной мощности: КПД=Uст*Iн/Uвх*I. Если учесть, что I=Iн+Iст, то получим:

Из последней формулы видно, что чем больше разница между входным и выходным напряжением, а также чем больше ток через стабилитрон — тем хуже КПД.

Чтобы понять, что значит «хуже» и насколько вообще плохо обстоит дело с КПД у этого стабилизатора — давайте, используя формулы выше, попробуем прикинуть, что будет, если понижать напругу скажем с 6-10 Вольт до 5-ти. Возьмём самый обычный стабилитрон, скажем КС147А.

Ток стабилизации у него может меняться в пределах от 3-х до 53-х мА.

Чтобы при таких параметрах стабилитрона получить область нормальной работы шириной в 4 Вольта — нам нужно взять балластный резистор на 80 Ом (воспользуемся формулой 4, как будто ток нагрузки у нас постоянный, поскольку если это не так, то всё будет ещё хуже).

Теперь из формулы 2 можно посчитать на какой именно ток нагрузки мы можем в этом случае рассчитывать. Получается всего 19,5 мА, а КПД в этом случае будет, в зависимости от входного напряжения, в пределах от 14% до 61%.

Если для этого же случая посчитать на какой максимальный выходной ток мы можем рассчитывать при условии, что выходной ток не постоянный, а может меняться от нуля до Imax, то решив совместно системы уравнений (2) и (3), получим R0=110 Ом, Imax=13,5 мА. Как видите, максимальный выходной ток получился почти в 4 раза меньше максимального тока стабилитрона.

Более того, выходное напряжение, полученное на таком стабилизаторе, будет обладать значительной нестабильностью в зависимости от выходного тока (у КС147А на рабочем участке ВАХ напряжение меняется от 4,23 до 5,16В), что может оказаться неприемлемым.

Единственный путь борьбы с нестабильностью в данном случае — взять более узкий рабочий участок ВАХ — такой, на котором напряжение меняется не от 4,23 до 5,16В, а скажем от 4,5 до 4,9В, но в этом случае и рабочий ток стабилитрона будет уже не 3..53мА, а скажем 17..40мА.

Соответственно, и без того небольшая область нормальной работы стабилизатора станет ещё меньше.

Итак, единственный плюс такого стабилизатора — это его простота, тем не менее, как я уже говорил, такие стабилизаторы вполне себе существуют и даже находят активное применение в качестве источников опорного напряжения для более сложных схем.

Простейшая схема, позволяющая получить существенно больший выходной ток (или существенно более широкую область нормальной работы, или и то и другое) — параметрический стабилизатор на транзисторе.

Источник: https://radiohlam.ru/paramstab/

Параметрический стабилизатор — основные параметры

В маломощных схемах на нагрузку до 20 миллиампер применяется устройство с малым коэффициентом действия, и называется параметрическим стабилизатором. В устройстве таких приборов имеются транзисторы, стабилитроны и стабисторы.

Они применяются в основном в компенсационных устройствах стабилизации в качестве опорных источников питания. Параметрические стабилизаторы в зависимости от технических данных могут быть 1-каскадными, мостовыми и многокаскадными.

Стабилитрон в устройстве прибора подобен подключенному диоду. Но обратный пробой напряжения больше подходит для стабилитрона и является базой его нормальной работы. Эта характеристика нашла популярность для разных схем, где необходимо создавать ограничение сигнала входа по напряжению.

Такие стабилизаторы являются быстродействующими приборами, и защищают участки с повышенной чувствительностью от импульсных помех. Применение таких элементов в новых схемах является показателем их повышенного качества, которое обеспечивает постоянное функционирование в разных режимах.

Схема стабилизатора

Базой этого прибора является схема подключения стабилитрона, применяющаяся и в других видах приборов вместо источника питания.

Схема включает в себя делитель напряжения из балластного сопротивления и стабилитрона, к которому параллельно подключена нагрузка. Устройство выравнивает напряжение на выходе при переменном питании и нагрузочном токе.

Действие схемы происходит следующим образом. Напряжение, повышающееся на входе прибора, вызывает повышение тока, который проходит через сопротивление R1 и стабилитрон VD.

На стабилитроне напряжение остается постоянным из-за его вольтамперной характеристики. Поэтому не меняется и напряжение на нагрузке. В итоге все преобразованное напряжение будет приходить на сопротивление R1.

Такой принцип действия схемы позволяет сделать расчет всех параметров.

Принцип действия стабилитрона

Если стабилитрон сравнивать с диодом, то при подключении диода в прямом направлении по нему может проходить обратный ток, который имеет незначительную величину в несколько микроампер.

При повышении обратного напряжения до некоторой величины возникнет пробой электрический, а если ток очень велик, то произойдет и тепловой пробой, поэтому диод выйдет из строя.

Конечно, диод может работать при электрическом пробое при снижении тока, проходящего через диод.

Стабилитрон спроектирован так, что его характеристика на участке пробоя имеет повышенную линейность, а разность потенциалов пробоя достаточно стабильна. Стабилизация напряжения с помощью стабилитрона выполняется при его функционировании на обратной ветви свойства тока и напряжения, а на прямой ветке графика стабилитрон работает как обычный диод. На схеме стабилитрон обозначается:

Параметры стабилитрона

Его главные параметры можно увидеть по характеристике напряжения и тока.

  • Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
  • Наибольший допустимый ток стабилизации. Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
  • Наименьший ток стабилизации, рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
  • Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.

Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.

Расчет параметрического стабилизатора

Добротность функционирования прибора вычисляется по коэффициенту стабилизации, который вычисляется по формуле: Кст U = (ΔUвх / Uвх) / (ΔU вых / Uвых).

Далее расчет стабилизатора с применением стабилитрона производится в сочетании с балластным резистором в соответствии с типом применяемого стабилитрона. Для расчета используются рассмотренные ранее параметры стабилитрона.

Определим порядок расчета на примере. Возьмем исходные данные:

  • U вых=9 В;
  • I н =10мА;
  • ΔI н = ±2мА;
  • ΔU вх = ± 10% Uвх

По справочнику подбираем стабилитрон Д 814Б, свойства которого:

  • U ст = 9 В;
  • I ст. макс = 36 мА;
  • I ст. мин = 3 мА;
  • R д = 10 Ом.

Далее вычисляется входное напряжение: Uвх = nст *Uвых, где nст – коэффициент передачи. Функционирование стабилизатора станет эффективнее, если этот коэффициент будет в пределах 1,4-2. Если nст =1,6, то U вх= 1,6 * 9 = 14,4 В.

На следующем шаге производится расчет балластного резистора. Используется формула: R о = (U вх – U вых) / (I ст + I н). Величина тока I ст выбирается: I ст ≥ I н. При изменении U вх на величину Δ Uвх и Iн на ΔIн, не может быть больше тока стабилитрона величин I ст. макс и I ст. мин. Поэтому, I ст берется в качестве среднего допустимой величины в этом интервале и равно 0,015 ампер.

Значит, балластный резистор равен: R о = (14,4 – 9)/(0,015+0,01 )= 16 Ом. Ближнее стандартное значение составляет 220 Ом. Для выбора типа сопротивления, выполняется расчет рассеиваемой мощности на корпусе. Применяя формулу Р = I*2 R о, определяем величину Р = (25*10-3) * 2 * 220 = 0,138 ватт. Другими словами, стандартная мощность сопротивления равна 0,25 ватт.

Поэтому лучше подойдет сопротивление МЛТ — 0,25 — 220 Ом. После осуществления расчетов необходимо проверить правильность выбора режима действия стабилитрона в схеме параметрического прибора.

В первую очередь определяется его наименьший ток: Iст. Мин = (U вх – ΔU вх – U вых) / Rо – (I н + ΔI н), с практическими параметрами определяется величина I ст.

мин = (14,4–1,44–9) * 103 / 220–(10+2) = 6 миллиампер.

Такая же процедура производится для вычисления наибольшего тока: I ст. макс=(Uвх+ΔUвх–Uвых)/Rо–(Iн–ΔIн). По исходным параметрам, наибольший ток составит: Iст.

макс=(14,4 + 1,44 – 9) * 103 / 220–(10 – 2)=23 миллиампер.

Если в результате вычисленные значения наименьшего и наибольшего тока превосходят допустимые границы, то необходимо заменить I ст или резистор R о. Иногда требуется замена стабилитрона.

Параметрический стабилизатор напряжения

(4

Источник: http://ostabilizatore.ru/parametricheskij-stabilizator.html

РадиоКот :: Блок питания «Проще не бывает». Часть вторая

Добавить ссылку на обсуждение статьи на форумеРадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Теги статьи:Добавить тег

Блок питания «Проще не бывает». Часть вторая

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей: 1 — сам стабилизатор на стабилитроне D с балластным резистором Rб 2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их: Uвых — это напряжение и

Imax — это ток.

  • Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.
  • Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых. Это напряжение определяется по формуле:
  • Uвх = Uвых + 3

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Едем дальше.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Считаем:

Pmax=1.3(Uвх-Uвых)Imax

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно. Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт. А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор. Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор…

Фу, ну вроде с этим справились. Пошли дальше.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

Iб max=Imax / h31Э min

h31Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

Iб max=1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон. Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали. Полезли опять в справочник…

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок.

Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h31Э раз. h31Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h31Э равен 30, то есть мы можем уменьшить ток до 40/30=1.

33 мА, что нам вполне подходит.

  1. Теперь посчитаем сопротивление и мощность балластного резистора Rб.
  2. Rб=(Uвх-Uст)/(Iб max+Iст min)
  3. где Uст — напряжение стабилизации стабилитрона, Iст min — ток стабилизации стабилитрона.

Rб = (17-14)/((1.33+5)/1000) = 470 Ом.

  • Теперь определим мощность этого резистора
  • Prб=(Uвх-Uст)2/Rб.
  • То есть
  • Prб=(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.

Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт.

Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

  1. Cф=3200Iн/UнKн
  2. где Iн — максимальный ток нагрузки, Uн — напряжение на нагрузке,
  3. Kн — коэффициент пульсаций.
  4. В нашем случае Iн = 1 Ампер, Uн=17 вольтам,
  5. Kн=0,01.
  6. Cф=3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

  • Осталось выбрать выпрямительные диоды или диодный мост.
  • Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.
  • Необходимое максимальное обратное напряжение считается так
  • Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы. Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

Как вам эта статья? Заработало ли это устройство у вас?

Источник: https://www.radiokot.ru/start/analog/practice/02/

Параметрический стабилизатор напряжения

Содержание:

В слаботочных схемах с нагрузками не более 20 мА используется устройство с низким коэффициентом полезного действия, известное как параметрический стабилизатор напряжения.

В конструкцию данных приборов входят транзисторы, стабисторы и стабилитроны. Они используются преимущественно в компенсационных стабилизирующих устройствах как опорные источники напряжения.

В зависимости от технических характеристик, параметрические стабилизаторы могут быть однокаскадными, многокаскадными и мостовыми.

Стабилитрон, находящийся в составе конструкции, напоминает обратно включенный диод. Однако пробой напряжения в обратном направлении, характерный для стабилитрона, является основой его нормального функционирования.

Данное свойство широко применяется для различных схем, в которых нужно создать ограничение входного сигнала по напряжению. Параметрические стабилизаторы относятся к быстродействующим устройствам, они защищают чувствительные участки схем от импульсных помех.

Использование этих элементов в современных схемах стало показателем их высокого качества, обеспечивающего стабильную работу оборудования в различных режимах.

Схема параметрического стабилизатора

Основой параметрического стабилизатора является схема включения стабилитрона, использующаяся также и в других типах стабилизаторов в качестве источника опорного напряжения.

Стандартная схема состоит из делителя напряжения, который, в свою очередь включает в себя балластный резистор R1 и стабилитрон VD. Параллельно стабилитрону включается сопротивление нагрузки RH. Данная конструкция стабилизирует выходное напряжение при изменяющемся напряжении питания Uп и токе нагрузки Iн.

Работа схемы происходит в следующем порядке. Напряжение, увеличивающееся на входе стабилизатора, вызывает увеличение тока, проходящего через резистор R1 и стабилитрон VD.

Напряжение стабилитрона остается неизменным за счет его вольтамперной характеристики. Соответственно, не изменяется и напряжение на сопротивлении нагрузки. В результате, все измененное напряжение будет поступать на резистор R1.

Принцип работы схемы дает возможность для расчетов всех необходимых параметров.

Расчет параметрического стабилизатора

Качество работы стабилизатора напряжения оценивается по его коэффициенту стабилизации, определяемого по формуле: КстU= (ΔUвх/Uвх) / (ΔUвых/Uвых). Далее расчет параметрического стабилизатора напряжения на стабилитроне осуществляется в соответствии с сопротивлением балластного резистора Ro и типом используемого стабилитрона.

Маркировка резисторов по цвету

Для расчета стабилитрона применяются следующие электрические параметры: Iст.макс – максимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Iст.

мин – минимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Rд – дифференциальное сопротивление на рабочем участке вольтамперной характеристики. Порядок расчета можно рассмотреть на конкретном примере.

Исходные данные будут следующие: Uвых= 9 В; Iн= 10 мА; ΔIн= ± 2 мА; ΔUвх= ± 10%Uвх.

В первую очередь в справочнике выбирается стабилитрон марки Д814Б, параметры которого составляют: Uст= 9 В; Iст.макс= 36 мА; Iст.мин= 3 мА; Rд= 10 Ом.

После этого выполняется расчет входного напряжения по формуле: Uвх=nстUвых, в которой nст является коэффициентом передачи стабилизатора.

Работа стабилизирующего устройства будет наиболее эффективной когда nст, составляет 1,4-2,0. Если nст = 1,6, то Uвх= 1,6 х 9 = 14,4В.

На следующем этапе выполняется расчет сопротивления балластного резистора (Ro). Для этого применяется следующая формула: Rо= (Uвх–Uвых) / (Iст+Iн). Значение тока Iст выбирается по принципу: Iст ≥ Iн.

В случае одновременного изменения Uвх на величину ΔUвх и Iн на величину ΔIн, не должно быть превышения током стабилитрона значений Iст.макс и Iст.мин.

В связи с этим, Iст берется как среднее допустимое значение в данном диапазоне и составляет 0,015А.

Таким образом, сопротивление балластного резистора будет равно: Rо= (14,4 – 9) / (0,015 + 0,01 ) = 216 Ом. Ближайшее стандартное сопротивление составит 220 Ом.

Для того чтобы выбрать нужный тип резистора, нужно выполнить расчет мощности, рассеиваемой на его корпусе. Используя формулу Р = I2Rо, получаем значение Р = (25· 10-3)2х 220 = 0,138 Вт.

То есть стандартная мощность рассеивания резистора будет 0,25Вт. Поэтому для схемы лучше всего подойдет резистор МЛТ-0,25-220 Ом ± 10 %.

После выполнения всех расчетов нужно проверить, правильно ли выбран режим работы стабилитрона в общей схеме параметрического стабилизатора. Вначале определяется его минимальный ток: Iст.мин= (Uвх–ΔUвх–Uвых) /Rо – (Iн+ΔIн), с реальными параметрами получается значение Iст.мин= (14,4 – 1,44 – 9) х 103/ 220 – (10 + 2) = 6 мА.

Такие же действия выполняются для определения максимального тока: Iст.макс= (Uвх+ΔUвх–Uвых) /Rо – (Iн–ΔIн). В соответствии с исходными данными, максимальный ток составит: Iст.макс= (14,4 + 1,44 – 9) · 103/ 220 – (10 – 2) = 23 мА.

Если полученные значения минимального и максимального тока выходят за допустимые пределы, то в этом случае нужно изменить Iст или сопротивление резистора Rо. В некоторых случаях требуется замена стабилитрона.

Параметрический стабилизатор напряжения на стабилитроне

Для любой радиоэлектронной схемы обязательно наличие источника питания. Они могут быть постоянного и переменного тока, стабилизированными и нестабилизированными, импульсными и линейными, резонансными и квазирезонансными. Такое разнообразие дает возможность выбора источников питания для разных схем.

В наиболее простых электронных схемах, где не требуется высокая стабильность питающего напряжения или большая выходная мощность, чаще всего применяются линейные источники напряжения, отличающиеся надежностью, простотой и низкой стоимостью. Их составной частью служат параметрические стабилизаторы напряжения и тока в конструкцию которых входит элемент, имеющий нелинейную вольтамперную характеристику. Типичным представителем таких элементов является стабилитрон.

Данный элемент относится к особой группе диодов, работающих в режиме обратной ветви вольтамперной характеристики в области пробоя. При включении диода в прямом направлении от анода к катоду (от плюса к минусу) с напряжением Uпор, через него начинает свободно проходить электрический ток.

Если же включено обратное направление от минуса к плюсу, то через диод проходит лишь ток Iобр, составляющий всего несколько мкА. Увеличение на диоде обратного напряжения до определенного уровня приведет к его электрическому пробою. При достаточной величине силы тока диод выходит из строя под действием теплового пробоя.

Работа диода в области пробоя возможна в случае ограничения тока, проходящего через диод. В различных диодах напряжение пробоя может составлять от 50 до 200В.

В отличие от диодов, вольтамперная характеристика стабилитрона имеет более высокую линейность, в условиях постоянного напряжения пробоя. Таким образом, для стабилизации напряжения с помощью этого устройства обратная ветвь вольтамперной характеристики. На участке прямой ветви работа стабилитрона происходит точно так же, как и у обычного диода.

В соответствии со своей вольтамперной характеристикой, стабилитрон обладает следующими параметрами:

  • Напряжение стабилизации – Uст. Зависит от напряжения на стабилитроне во время протекания тока Iст. Диапазон стабилизации у современных стабилитронов находится в пределах от 0,7 до 200 вольт.
  • Максимально допустимый постоянный ток стабилизации – Iст.max. Ограничивается величиной максимально допустимой рассеиваемой мощности Рmax, которая, в свою очередь тесно связана с температурой окружающей среды.
  • Минимальный ток стабилизации – Iст.min. Зависит от минимального значения тока, проходящего через стабилитрон. При этом токе должно быть полное сохранение работоспособности устройства. Вольтамперная характеристика стабилитрона между параметрами Iст.max и Iст.min имеет наиболее линейную конфигурацию, а изменение напряжения стабилизации очень незначительно.
  • Дифференциальное сопротивление стабилитрона – rст. Данная величина определяется как отношение приращения напряжения стабилизации на устройстве к малому приращению тока стабилизации, вызвавшему это напряжение (ΔUCT/ ΔiCT).

Параметрический стабилизатор на транзисторе

Работа параметрического стабилизатора на транзисторах почти ничем не отличается от аналогичного устройства на стабилитроне.

В каждой схеме напряжение на выходах остается стабильным, поскольку их вольтамперные характеристики затрагивают участки с падением напряжения, слабо зависящим от тока.

То есть, как и в других параметрических стабилизаторах, стабильные показатели тока и напряжения достигаются за счет внутренних свойств компонентов.

Для чего нужен конденсатор

Падение напряжения на нагрузке будет таким же, как и разность падения напряжения стабилитрона и р-п перехода транзистора. Падение напряжения в обоих случаях слабо зависит от тока, отсюда можно сделать вывод, что выходное напряжение также является постоянным.

Нормальная работа стабилизатора характеризуется наличием напряжения в диапазоне от Uст.max до Uст.min. Для этого необходимо, чтобы и ток, проходящий через стабилитрон, находился в пределах от Iст.max до Iст.min.

Таким образом, течение максимального тока через стабилитрон будет осуществляться в условиях минимального тока базы транзистора и максимального входного напряжения.

Поэтому транзисторный стабилизатор имеет существенные преимущества над обычным устройством, поскольку значение выходного тока может изменяться в широком диапазоне.

Источник: https://electric-220.ru/news/parametricheskij_stabilizator_naprjazhenija/2017-03-10-1197

Стабилитрон: принцип работы, маркировка, обозначение, параметры, свойства

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении. Обычный диод при подаче обратного напряжения и превышении его номинального значения просто выходит из строя. А  для стабилитрона подключение обратного напряжения и его рост до установленной точки является штатным режимом. При достижении определенной точки обратного напряжения в стабилитроне возникает обратимый пробой. Через устройство начинает течь ток. До наступления пробоя стабилитрон находится в нерабочем состоянии и через него протекает только малый ток утечки.  На электросхемах стабилитрон обозначается как стрелка-указатель, на конце которой имеет черточка, обозначающая запирание. Стрелка указывает направление тока. Буквенное обозначение на схемах – VD.

Содержание статьи

Устройство

Полупроводниковые стабилитроны пришли на смену морально устаревшим стабилитронам тлеющего разряда – ионным газоразрядным электровакуумным приборам. Для изготовления стабилитронов используются кремниевые или германиевые кристаллы (таблетки) с проводимостью n-типа, в которые добавляют примеси сплавным или диффузно-сплавным способом. Для получения электронно-дырочного p-n перехода используются акцепторные примеси, в основном алюминий. Кристаллы заключают в корпуса из полимерных материалов, металла или стекла.

Кремниевые сплавные стабилитроны Д815 (А-И) выпускаются в металлическом герметичном корпусе, который является положительным электродом. Такие элементы имеют широкий интервал рабочих температур – от -60°C до +100°C. Кремниевые сплавные двуханодные стабилизирующие диоды КС175А, КС182А, КС191А, КС210Б, КС213Б выпускают в пластмассовом корпусе. Кремниевые сплавные термокомпенсированные детали КС211 (Б-Д), используемые в качестве источников опорного напряжения, имеют пластмассовый корпус.

SMD стабилитроны, то есть миниатюрные компоненты, предназначенные для поверхностного монтажа, изготавливаются в основном в стеклянных и пластиковых корпусах. Такие элементы могут выпускаться с двумя и тремя выводами. В последнем случае третий вывод является «пустышкой», никакой смысловой нагрузки не несет и предназначается только для надежной фиксации детали на печатной плате.

Принцип действия

Стабилитрон был открыт американским физиком Кларенсом Мелвином Зенером, именем которого его и назвали. Электрический пробой p-n перехода может быть обусловлен туннельным пробоем (в этом случае пробой носит название Зенеровского), лавинным пробоем, пробоем в результате тепловой неустойчивости, который наступает из-за разрушительного саморазогрева токами утечки.

И инженеры конструируют эти элементы таким образом, чтобы возникновение туннельного и/или лавинного пробоя произошло задолго до того, как в них возникнет вероятность теплового пробоя.

Величина напряжения пробоя зависит от концентрации примесей и способа легирования p-n-перехода. Чем больше концентрация примесей и чем выше их градиент в переходе, тем ниже обратное напряжение, при котором образуется пробой.

  • Туннельный (зенеровский) пробой появляется в полупроводнике в тех случаях, когда напряженность электрического поля в p-n зоне равна 106 В/см. Такая высокая напряженность может возникнуть только в высоколегированных диодах. При напряжениях пробоя, находящихся в диапазоне 4,5…6,7 В, сосуществуют туннельный и лавинный эффекты, а вот при напряжении пробоя менее 4,5 В остается только туннельный эффект.
  • В стабилитронах с небольшими уровнями легирования или меньшими градиентами легирующих добавок присутствует только лавинный механизм пробоя, который появляется при напряжении пробоя примерно 4,5 В. А при напряжении выше 7,2 В остается только лавинный эффект, а туннельный полностью исчезает.

Как было сказано ранее, при прямом подключении стабилитрон при прямом включении ведет себя так же, как и обычный диод, – он пропускает ток. Различия между ними возникают при обратном подключении.

Обычный диод при обратном подключении запирает ток, а стабилитрон при достижении обратным напряжением величины, которая называется напряжением стабилизации, начинает пропускать ток в обратном направлении. Это объясняется тем, что при подаче на стабилитрон напряжения, которое превышает U ном. устройства, в полупроводнике возникает процесс, называемый пробоем. Пробой может быть туннельным, лавинным, тепловым. В результате пробоя ток, протекающий через стабилитрон, возрастает до максимального значения, ограниченного резистором. После достижения напряжения пробоя ток остается примерно постоянным в широком диапазоне обратных напряжений. Точка, в которой напряжение запускает ток, может очень точно устанавливаться в процессе производства легированием. Поэтому каждому элементу присваивают определенное напряжение пробоя (стабилизации).

Стабилитрон используется только в режиме «обратного смещения», то есть его анод подключается к «-» источника питания. Способность стабилитрона запускать обратный ток при достижении напряжения пробоя применяется для регулирования и стабилизации напряжения при изменении напряжения питания или подключенной нагрузки. Использование стабилитрона позволяет обеспечить постоянное выходное напряжение для подключенного потребителя при перепадах напряжения ИП или меняющемся токе потребителя.

Вольт-амперная характеристика

ВАХ стабилитрона, как и обычного диода, имеет две ветви – прямую и обратную. Прямая ветвь является рабочим режимом для традиционного диода, а обратная характеризует работу стабилитрона. Стабилитрон называют опорным диодом, а источник напряжения, в схеме которого есть стабилитрон, называют опорным.

На рабочей обратной ветви опорного диода выделяют три основные значения обратного тока:

  • Минимальное. При силе тока, которая меньше минимального значения, стабилитрон остается закрытым.
  • Оптимальное. При изменении тока в широких пределах между точками 1 и 3 значение напряжения меняется несущественно.
  • Максимальное. При подаче тока выше максимальной величины опорный диод перегреется и выйдет из строя. Максимальное значение тока ограничивается максимально допустимой рассеиваемой мощностью, которая очень зависит от внешних температурных условий.

Области применения

Основная область применения этих элементов – стабилизация постоянного напряжения в маломощных ИП или в отдельных узлах, мощность которых не более десятков ватт. С помощью опорных диодов обеспечивают нормальный рабочий режим транзисторов, микросхем, микроконтроллеров.

В стабилизаторах простой конструкции стабилитрон является одновременно источником опорного напряжения и регулятором. В более сложных конструкциях стабилитрон служит только источником опорного напряжения, а для силового регулирования применяется внешний силовой транзистор.

Термокомпенсированные стабилитроны и детали со скрытой структурой востребованы в качестве дискретных и интегральных источников опорного напряжения. Для защиты электрической аппаратуры от перенапряжений разработаны импульсные лавинные стабилитроны. Для защиты входов электрических приборов и затворов полевых транзисторов в схему устанавливают рядовые маломощные стабилитроны. Полевые транзисторы с изолированным затвором (МДП) изготавливаются с одним кристаллом, на котором расположены: защитный стабилитрон и силовой транзистор.

Основные характеристики

В паспорте стабилизирующего диода указывают следующие параметры:

  • Номинальное напряжение стабилизации Uст. Этот параметр выбирает производитель устройства.
  • Диапазон рабочих токов. Минимальный ток – величина тока, при которой начинается процесс стабилизации. Максимальный ток – значение, выше которого устройство разрушается.
  • Максимальная мощность рассеивания. В маломощных элементах это паспортная величина. В паспортах мощных стабилитронов для расчета условий охлаждения производитель указывает: максимально допустимую температуру полупроводника и коэффициент теплового сопротивления корпуса.

Помимо параметров, указываемых в паспорте, стабилитроны характеризуются и другими величинами, среди которых:

  • Дифференциальное сопротивление. Это свойство определяет нестабильность устройства по напряжению питания и по току нагрузки. Первый недостаток устраняется запитыванием стабилизирующего диода от источника постоянного тока, а второй – включением между стабилитроном и нагрузкой буферного усилителя постоянного тока с эмиттерным повторителем.
  • Температурный коэффициент напряжения. В соответствии со стандартом эта величина равна отношению относительного изменения напряжения стабилизации к абсолютному изменению наружной температуры. В нетермостабилизированных стабилитронах при нагреве от +25°C до +125°C напряжение стабилизации сдвигается на 5-10% от первоначального значения.
  • Дрейф и шум. Эти характеристики для обычных стабилитронов не определяются. Для прецизионных устройств они являются очень важными свойствами. В обычных (непрецизионных) стабилитронах шум создают: большое количество посторонних примесей и дефекты кристаллической решетки в области p-n перехода. Способы снижения шума (если в этом есть необходимость): защитная пассивация оксидом или стеклом (примеси направляются вглубь кристалла) или перемещением вглубь кристалла самого p-n-перехода. Второй способ является более радикальным. Он востребован в диодах с низким уровнем шума со скрытой структурой.

Способы включения – последовательное и параллельное

На детали импортного производства в сопроводительных документах ситуации, при которых возможно последовательное или параллельное соединение, не регламентируются. В документации на отечественные опорные диоды можно встретить два указания:

  • В приборах маленькой и средней мощности можно последовательно или параллельно подсоединять любое количество односерийных стабилитронов.
  • В приборах средней и значительной мощности можно последовательно соединять любое число стабилизирующих диодов единой серии. При параллельном соединении необходимо произвести расчеты. Общая мощность рассеивания всех параллельно подсоединенных стабилитронов не должна быть выше аналогичного показателя одной детали.

Допускается последовательное подключение опорных диодов разных серий в том случае, если рабочие токи созданной цепи не превышают паспортные токи стабилизации для каждой серии, установленной в схеме.

На практике для умножения напряжения стабилизации чаще всего применяют последовательное соединение двух-трех стабилитронов. К этой мере прибегают в том случае, если не удалось достать деталь на нужное напряжение или необходимо создать высоковольтный стабилитрон. При последовательном соединении напряжение отдельных элементов суммируется. В основном этот вид соединения используется при сборке высоковольтных стабилизаторов.

Параллельное соединение деталей служит для того, чтобы повышать ток и мощность. Однако на практике этот вид соединения применяется редко, поскольку различные экземпляры опорных диодов даже одного типа не имеют совершенно одинаковых напряжений стабилизации. Поэтому при параллельном соединении разряд возникнет только в детали с наименьшим напряжением стабилизации, а в остальных пробой не произойдет. Если пробой и возникает, то одни стабилитроны в такой цепи будут работать с недогрузкой, а другие с перегрузкой.

Для стабилизации переменного напряжения стабилитроны соединяются последовательно и встречно. В первый полупериод синусоиды переменного тока один элемент работает как обычный диод, а второй выполняет функции стабилитрона. Во втором полупериоде элементы меняются функциями. Форма выходного напряжения отличается от входного. Ее конфигурация напоминает трапецию. Это связано с тем, что напряжение, превышающее напряжение стабилизации, будет отсекаться и верхушки синусоиды будут срезаны. Последовательное и встречное соединение стабилитронов может применяться в термостабилизированном стабилитроне.

Составные стабилитроны

Составной стабилитрон – устройство, применяемой в ситуациях, когда необходимы токи и мощность большего значения, чем это допускают технические условия. В этом случае между стабилизирующим диодом и нагрузкой подсоединяют буферный усилитель постоянного тока. В схеме коллекторный переход транзистора включен параллельно стабилизирующему диоду, а эммиттерный переход – последовательно.

Схема обычного составного стабилитрона не предназначена для применения на прямом токе. Но добавление диодного моста превращает составной стабилитрон в систему двойного действия, которая может работать и при прямом, и при обратном токе. Такие стабилитроны еще называют двойными или двуханодными. Стабилитроны, которые могут работать с напряжением только одной полярности, называют несимметричными. А составные стабилитроны, дееспособные при любом направлении тока, называют симметричными.

Виды стабилитронов

На современном рынке электроники имеется широкий ассортимент стабилитронов, адаптированных к определенным условиям применения.

Прецизионные

Эти устройства обеспечивают высокую стабильность напряжения на выходе. К ним предъявляются дополнительные требования к временной нестабильности напряжения и температурного коэффициента напряжения. К прецизионным относятся устройства:

  • Термокомпенсированные. В схему термокомпенсированного стабилитрона входят последовательно соединенные: стабилитрон номинальным напряжением 5,6 В (с плюсовым значением температурного коэффициента) и прямоосвещенный диод (с минусовым коэффициентом). При последовательном соединении этих элементов происходит взаимная компенсация температурных коэффициентов. Вместо диода в схеме может использоваться второй стабилитрон, включаемый последовательно и встречно.
  • Со скрытой структурой. Ток пробоя в обычном стабилитроне сосредотачивается в приповерхностном кремниевом слое, где находится максимальное количество посторонних примесей и дефектов кристаллической решетки. Эти несовершенства конструкции провоцируют шум и нестабильную работу. В деталях со скрытой структурой ток пробоя «загоняют» внутрь кристалла путем формирования глубокого островка p-типа проводимости.   

Быстродействующие

Для них характерны: низкое значение барьерной емкости, всего десятки пикофарад, и краткий период переходного процесса (наносекунды). Такие особенности позволяют опорному диоду ограничивать и стабилизировать кратковременные импульсы напряжения.

Стабилизирующие диоды могут быть рассчитаны на напряжение стабилизации от нескольких вольт до нескольких сотен вольт. Высоковольтные стабилитроны устанавливаются на специальные охладители, способные обеспечить нужный теплообмен и уберечь элемент от перегрева и последующего разрушения.

Регулируемые стабилитроны

При изготовлении стабилизированных блоков питания необходимый стабилитрон может отсутствовать. В этом случае собирают схему регулируемого стабилитрона.

Нужное напряжение стабилизирующего диода подбирают при помощи резистора R1. Для настройки схемы на место резистора R1 подключают переменный резистор номиналом 10 кОм. После получения нужного значения напряжения определяют полученное сопротивление и устанавливают на постоянное место резистор нужного номинала. Для этой схемы можно применить транзисторы КТ342А, КТ3102А.

Способы маркировки

На корпусе детали имеется буквенная или буквенно-цифровая маркировка, которая характеризует электрические свойства и назначение устройства. Различают два типа маркировки. Детали в стеклянном корпусе маркируются привычным образом. На поверхности элемента пишут напряжение стабилизации с использованием буквы V, которая выполняет функцию десятичной запятой. Маркировка из четырех цифр и буквы в конце менее понятна. Расшифровать ее можно только с помощью даташита.

Еще один способ обозначения стабилизирующих диодов – цветовая маркировка. Часто применяется японский вариант, который представляет собой два или три цветных кольца. При наличии двух колец, каждое из них обозначает определенную цифру. Если второе кольцо нанесено в удвоенном варианте, то это означает, что между первой и второй цифрой надо поставить запятую.

Как отличить стабилитрон от обычного диода

Оба эти элемента имеют схожее обозначение на схеме. На практике отличить стабилитрон от обычного диода  и даже узнать его номинал, если оно не более 35 В, можно с помощью приставки к мультиметру.

Схема приставки к мультиметру

Для выполнения генератора с широтно-импульсной модуляцией используется специализированная микросхема MC34063. Чтобы обеспечить гальваническую развязку между ИП и измерительной частью схемы напряжение контролируют на первичной обмотке трансформатора. Это позволяет сделать выпрямитель на VD2. Точка стабилизации выходного напряжения устанавливается с помощью резистора R3. Напряжение на конденсаторе С4 – примерно 40 В. Стабилизатор тока А2 и проверяемый опорный диод составляют параметрический стабилизатор, а мультиметр, подключенный к выводам схемы, позволяет определить напряжение стабилитрона.

Если диод подключить в обратной полярности (анод к «-», а катод к «+»), то мультиметр для обычного диода покажет 40 В, а для стабилитрона – напряжение стабилизации.

Для определения работоспособности стабилитрона с известным номиналом используют простую схему, состоящую из источника питания и токоограничительного резистора на 300…500 Ом. В этом случае с помощью мультиметра определяют не сопротивление перехода, а напряжение. Включают элементы, как показано на схеме, и меряют напряжение на стабилитроне.

Медленно поднимают напряжение блока питания. На значении напряжения стабилизации напряжение на стабилитроне должно прекратить свой рост. Если это произошло, значит, элемент исправен. Если при последующем увеличении напряжения ИП диод не начинает стабилизировать, значит, он не исправен.

Как правильно подобрать стабилитрон?

Стабилитроны относятся к стабилизаторам небольшой мощности. Поэтому их необходимо подбирать так, чтобы через них без перегрева мог проходить весь ток нагрузки плюс минимальный ток стабилизации.

Для правильного выбора стабилитрона для электрической схемы необходимо знать следующие параметры: минимальное и максимальное входное напряжение, напряжение на выходе, минимальный и максимальный ток нагрузки. Напряжение стабилизации стабилитрона равно выходному напряжению. А рассчитать максимальный ток, который может пройти через стабилитрон в конкретной схеме, и мощность рассеивания при максимальном токе, лучше всего с помощью онлайн-калькулятора. 

Содержание драгоценных металлов в стабилитронах

В стабилитронах, как и в других полупроводниках – обычных диодах, тиристорах, варикапах, из драгоценных металлов содержится, в основном, серебро, в некоторых – золото. Конкретное количество указывается в специальных таблицах. Содержание палладия и платины, даже если они и присутствуют в полупроводниках, обычно не указывается, поскольку их концентрация ничтожно мала.



Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Стабилитроны

Добавлено 12 июня 2017 в 02:10

Сохранить или поделиться

Если мы подключим диод и резистор последовательно с источником постоянного напряжения так, чтобы диод был смещен в прямом направлении (как показано на рисунке ниже (a)), падение напряжения на диоде будет оставаться достаточно постоянным в широком диапазоне напряжений источника питания.

В соответствии с диодным уравнением Шокли, ток через прямо-смещенный PN переход пропорционален e, возведенному в степень прямого падения напряжения. Поскольку это экспоненциальная функция, ток растет довольно быстро при умеренном увеличении падения напряжения. Другой способ рассмотреть это: сказать что напряжение, падающее на прямо-смещенном диоде, слабо изменяется при больших изменениях тока, протекающего через диод. На схеме, показанной на рисунке ниже (a), ток ограничен напряжением источника питания, последовательно включенным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольта. Если напряжение источника питания будет увеличено, падение напряжения на резисторе увеличится почти на такое же значение, а падение напряжения на диоде увеличится очень слабо. И наоборот, уменьшение напряжения источника питания приведет к почти равному уменьшению падения напряжения на резисторе и небольшому уменьшению падения напряжения на диоде. Одним словом, мы могли бы обобщить это поведение, сказав, что диод стабилизирует падение напряжения на уровне примерно 0,7 вольта.

Управление напряжением – это очень полезное свойство диода. Предположим, что мы собрали какую-то схему, которая не допускает изменений напряжения источника питания, но которую необходимо запитать от батареи гальванических элементов, напряжение которых меняется в течение всего срока службы. Мы могли бы собрать схему, как показано на рисунке, и подключить схему, требующую стабилизированного напряжения, к диоду, где она получит неизменные 0,7 вольта.

Это, безусловно, сработает, но для большинства практических схем любого типа для правильной работы требуется напряжение питания свыше 0,7 вольта. Одним из способов увеличения уровня нашего стабилизированного напряжения может быть последовательное соединение нескольких диодов, поскольку падение напряжения на каждом отдельном диоде, равное 0,7 вольта, увеличит итоговое значение на эту величину. Например, если бы у нас было десять последовательно включенных диодов, стабилизированное напряжение было бы в десять раз больше 0,7 вольта, то есть 7 вольт (рисунок ниже (b)).

Прямое смещение Si диодов: (a) одиночный диод, 0,7В, (b) 10 диодов, включенных последовательно, 7,0В.

До тех пор, пока напряжение не упадет ниже 7 вольт, на 10-диодном «стеке» будет падать примерно 7 вольт.

Если требуются большие стабилизированные напряжения, мы можем либо использовать большее количество диодов, включенных последовательно, (по моему мнению, не самый изящный способ), либо попробовать принципиально другой подход. Мы знаем, что прямое напряжение диода является довольно постоянной величиной в широком диапазоне условий, также как и обратное напряжение пробоя, которое, как правило, значительно больше прямого напряжения. Если мы поменяем полярность диода в нашей схеме однодиодного стабилизатора и увеличим напряжение источника питания до того момента, когда произойдет «пробой» диода (диод больше не может противостоять приложенному к нему напряжению обратного смещения), диод будет стабилизировать напряжение аналогичным образом в этой точке пробоя, не позволяя ему увеличиваться дальше, как показано на рисунке ниже.

Пробой обратно смещенного Si диода при напряжении примерно 100 В.

К сожалению, когда обыкновенные выпрямительные диоды «пробиваются», они обычно разрушаются. Тем не менее, можно создать специальный тип диода, который может обрабатывать пробой без полного разрушения. Этот тип диода называется стабилитроном, и его условное графическое обозначение приведено на рисунке ниже.

Условное графическое обозначение стабилитрона

При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: они обладают прямым падением напряжения, которое соответствует «диодному уравнению» и составляет примерно 0,7 вольта. В режиме обратного смещения они не проводят ток до тех пор, пока приложенное напряжение не достигнет или не превысит так называемого напряжения стабилизации, и в этот момент стабилитрон способен проводить значительный ток и при этом будет пытаться ограничить напряжение, падающее на нем, до значения напряжения стабилизации. Пока мощность, рассеиваемая этим обратным током, не превышает тепловых ограничений стабилитрона, стабилитрон не будет поврежден.

Стабилитроны изготавливаются с напряжениями стабилизации в диапазоне от нескольких вольт до сотен вольт. Это напряжение стабилизации незначительно изменяется в зависимости от температуры, и его погрешность может составлять от 5 до 10 процентов от характеристик, указанных производителем. Однако, эта стабильность и точность обычно достаточны для использования стабилитрона в качестве стабилизатора напряжения в общей схеме питания, показанной на рисунке ниже.

Схема стабилизатора напряжения на стабилитроне, напряжение стабилизации = 12,6 В

Пожалуйста, обратите внимание на направление включения стабилитрона на приведенной выше схеме: стабилитрон смещен в обратном направлении, и это сделано преднамеренно. Если бы мы включили стабилитрон «обычным» способом, чтобы он был смещен в прямом направлении, то на нем падало бы только 0,7 вольта, как на обычном выпрямительном диоде. Если мы хотим использовать свойства обратного пробоя стабилитрона, то мы должны использовать его в режиме обратного смещения. Пока напряжение питание остается выше напряжения стабилизации (12,6 вольт в этом примере), напряжение, падающее на стабилитроне, останется примерно на уровне 12,6 вольт.

Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Слишком высокая температура разрушит стабилитрон, и поскольку он и понижает напряжение, и проводит ток, то он выделяет тепло в соответствии с законом Джоуля (P = IU). Поэтому необходимо быть осторожным при проектировании схемы стабилизатора напряжения, чтобы не превышалась номинальная мощность рассеивания стабилитрона. Интересно отметить, что когда стабилитроны выходят из строя из-за высокой мощности рассеивания, они обычно замыкаются накоротко, а не разрываются. Диод, вышедший из строя по такой же причине, легко обнаружить: на нем падение напряжения практически равно нулю, как на куске провода.

Рассмотрим схему стабилизатора напряжения на стабилитроне математически, определяя все напряжения, токи и рассеиваемые мощности. Взяв ту же схему, что была показана ранее, мы выполним вычисления, принимая, что напряжение стабилитрона равно 12,6 вольт, напряжение питания равно 45 вольт, а сопротивнение последовательно включенного резистора равно 1000 Ом (мы будет считать, что напряжение стабилитрона составляет ровно 12,6 вольт, чтобы избежать необходимости оценивать все значения как «приблизительные» на рисунке (a) ниже).

Если напряжение стабилитрона составляет 12,6 вольт, а напряжение источника питания составляет 45 вольт, падение напряжения на резисторе будет составлять 32,4 вольта (45 вольт – 12,6 вольт = 32,4 вольта). 32,4 вольта, падающие на 1000 Ом, дают в цепи ток 32,4 мА (рисунок (b) ниже).

(a) Стабилизатор напряжения на стабилитроне с резистором 1000 Ом. (b) Расчет падений напряжения и тока.

Мощность рассчитывается путем умножения тока на напряжение (P=IU), поэтому мы можем легко рассчитать рассеивание мощности как для резистора, так и для стабилитрона:

\[P_{резистор} = (32,4 мА)(32,4 В)\]

\[P_{резистор} = 1,0498 Вт\]

\[P_{стабилитрон} = (32,4 мА)(12,6 В)\]

\[P_{стабилитрон} = 408,24 мВт\]

Для этой схемы было бы достаточно стабилитрона с номинальной мощностью 0,5 ватта и резистора с мощностью рассеивания 1,5 или 2 ватта.

Если чрезмерная рассеиваемая мощность вредна, то почему бы не спроектировать схему с наименьшим возможным количеством рассеивания? Почему бы просто не установить резистор с очень высоким сопротивлением, тем самым сильно ограничивая ток и сохраняя показатели рассеивания очень низкими? Возьмем эту же схему, например, с резистором 100 кОм, вместо резистора 1 кОм. Обратите внимание, что и напряжение питания, и напряжение стабилитрона не изменились:

Стабилизатор напряжения на стабилитроне с резистором 100 кОм

При 1/100 от значения тока, который был у нас ранее (324 мкА, вместо 32,4 мА), оба значения рассеиваемой мощности должны уменьшиться в 100 раз:

\[P_{резистор} = (324 мкА)(32,4 В)\]

\[P_{резистор} = 10,498 мВт\]

\[P_{стабилитрон} = (324 мкА)(12,6 В)\]

\[P_{стабилитрон} = 4,0824 мВт\]

Кажется идеальным, не так ли? Меньшая рассеиваемая мощность означает более низкую рабочую температуру и для стабилитрона, и для резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления уменьшает уровни рассеиваемой мощности в схеме, но к сожалению, создает другую проблему. Помните, что цель схемы стабилизатора – обеспечить стабильное напряжение для другой схемы. Другими словами, мы в конечном итоге собираемся запитать что-то напряжением 12,6 вольт, и это что-то будет обладать собственным потреблением тока. Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону, на рисунке ниже.

Стабилизатор напряжения на стабилитроне с последовательно включенным резистором 1 кОм и нагрузкой 500 Ом

Если 12,6 вольт поддерживаются при нагрузке 500 Ом, нагрузка будет потреблять ток 25,2 мА. Для того, чтобы «понижающий» резистор снизил напряжение на 32,4 вольта (снижение напряжения источника питания 45 вольт до 12,6 вольт на стабилитроне), он все равно должен проводить ток 32,4 мА. Это приводит к тому, что через стабилитрон будет протекать ток 7,2 мА.

Теперь рассмотрим нашу «энергосберегающую» схему стабилизатора с понижающим резистором 100 кОм, подключив к ней такую же нагрузку 500 Ом. Предполагается, что она должна поддерживать на нагрузке 12,6 вольт, как и предыдущая схема. Однако, как мы увидим, она не может выполнить эту задачу (рисунок ниже).

Нестабилизатор напряжения на стабилитроне с последовательно включенным резистором 100 кОм и нагрузкой 500 Ом

При большом номинале понижающего резистора на нагрузке 500 Ом будет напряжение около 224 мВ, что намного меньше ожидаемого значения 12,6 вольт! Почему так? Если бы у нас на самом деле было на нагрузке 12,6 вольт, то был бы и ток 25,2 мА, как и раньше. Этот ток нагрузки должен был бы пройти черезе последовательный понижающий резистор, как это было раньше, но с новым (намного большим!) понижающим резистором падение напряжения на этом резисторе с протекающим через него током 25,2 мА составило бы 2 520 вольт! Поскольку у нас, очевидно, нет такого большого напряжения, подаваемого с аккумулятора, то этого не может быть.

Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.

Нестабилизатор с удаленным стабилитроном

И понижающий резистор 100 кОм, и сопротивление нагрузки 500 Ом включены последовательно, обеспечивая общее сопротивление схемы 100,5 кОм. При полном напряжении 45 В и общем сопротивлении 100,5 кОм, закон Ома (I=U/R) говорит нам, что ток составит 447,76 мкА. Рассчитав падения напряжения на обоих резисторах (U=IR), мы получим 44,776 вольта и 224 мВ, соответственно. Если бы в этот момент мы вернули стабилитрон, он также «увидел» 224 мВ на нем, будучи включенным параллельно сопротивлению нагрузки. Это намного ниже напряжения пробоя стабилитрона, и поэтому он не будет «пробит» и не будет проводить ток. В этом отношении, при низком напряжении стабилитрон не будет работать, даже если он будет смещен в прямом направлении. По крайней мере, на него должно поступать 12,6 вольт, чтобы его «активировать».

Аналитическая методика удаления стабилитрона из схемы и наблюдения наличия или отсутствия достаточного напряжения для его проводимости является обоснованной. Только то, что стабилитрон включен в схему, не гарантирует, что полное напряжение стабилитрона всегда дойдет до него! Помните, что стабилитроны работают, ограничивая напряжение до некоторого максимального уровня; они не могут компенсировать недостаток напряжения.

Таким образом, любая схема стабилизатора на стабилитроне будет работать до тех пор, пока сопротивление нагрузки будет равно или больше некоторого минимального значения. Если сопротивление нагрузки слишком низкое, это приведет к слишком большому току, что приведет к слишком большому напряжению на понижающем резисторе, что оставит на стабилитроне напряжение недостаточное, чтобы заставить его проводить ток. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение на нагрузке будет ниже точки регулирования.

Однако, наша схема стабилизатора с понижающим резистором 100 кОм должна подходить для некоторого значения сопротивления нагрузки. Чтобы найти это подходящее значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в цепи из двух последовательно включенных резисторов (без стабилитрона), введя известные значения общего напряжения и сопротивления понижающего резистора, и рассчитав для ожидаемого на нагрузке напряжения 12,6 вольт:

При 45 вольтах общего напряжения и 12,6 вольтах на нагрузке, мы должны получить 32,4 вольта на понижающем резисторе Rпониж:

При 32,4 вольтах на понижающем резисторе и его сопротивлении 100 кОм ток, протекающий через него, составит 324 мкА:

При последовательном включении ток, протекающий через все компоненты, одинаков:

Расчитать сопротивление нагрузки теперь довольно просто согласно закону Ома (R=U/I), что даст нам 38,889 кОм:

Таким образом, если сопротивление нагрузки составляет точно 38,889 кОм, на нем будет 12,6 вольт и со стабилитроном, и без него. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению на нагрузке менее 12,6 вольт и со стабилитроном, и без него. При использовании стабилитрона напряжение на нагрузке будет стабилизироваться до 12,6 вольт для любого сопротивления нагрузки более 38,889 кОм.

При изначальном значении 1 кОм понижающего резистора схема нашего стабилизатора смогла бы адекватно стабилизировать напряжение даже при сопротивлении нагрузки до 500 Ом. То, что мы видим, представляет собой компромисс между рассеиванием мощности и допустимым сопротивлением нагрузки. Более высокое сопротивление понижающего резистора дает нам меньшее рассеивание мощности за счет повышения минимально допустимого значения сопротивления нагрузки. Если мы хотим стабилизировать напряжение для низких значений сопротивления нагрузки, схема должна быть подготовлена для работы с рассеиванием большой мощности.

Стабилитроны регулируют напряжение, действуя как дополнительные нагрузки, потребляя в зависимости от необходимости большую или меньшую величину тока, чтобы обеспечить постоянное падение напряжения на нагрузке. Это аналогично регулированию скорости автомобиля путем торможения, а не изменением положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть построены так, чтобы управлять всей мощностью двигателя тогда, как условия вождения не требуют этого. Несмотря на эту фундаментальную неэффективность, схемы стабилизаторов напряжения на стабилитронах широко используются из-за своей простоты. В мощных приложениях, где неэффективность неприемлема, применяются другие методы управления напряжением. Но даже тогда небольшие схемы на стабилитронах часто используются для обеспечения «опорного» напряжения для управления более эффективной схемой, контролирующей основную мощность.

Стабилитроны изготавливаются для стандартных номиналов напряжений, перечисленных в таблице ниже. Таблица «Основные напряжения стабилитронов» перечисляет основные напряжения для компонентов мощностью 0,5 и 1,3 Вт. Ватты соответствуют мощности, которую компонент может рассеять без повреждения.

Основные напряжения стабилитронов
0,5 Вт      
2,4 В3,0 В3,3 В3,6 В3,9 В4,3 В4,7 В
5,1 В5,6 В6,2 В6,8 В7,5 В8,2 В9,1 В
10 В11 В12 В13 В15 В16 В18 В
20 В24 В27 В30 В   
1,3 Вт      
4,7 В5,1 В5,6 В6,2 В6,8 В7,5 В8,2 В
9,1 В10 В11 В12 В13 В15 В16 В
18 В20 В22 В24 В27 В30 В33 В
36 В39 В43 В47 В51 В56 В62 В
68 В75 В100 В200 В   

Ограничитель напряжения на стабилитронах: схема ограничителя, которая отсекает пики сигнала примерно на уровне напряжения стабилизации стабилитронов. Схема, показанная на рисунке ниже, имеет два стабилитрона, соединенных последовательно, но направленных противоположно друг другу, чтобы симметрично ограничивать сигнал примерно на уровне напряжения стабилизации. Резистор ограничивает потребляемый стабилитронами ток до безопасного значения.

Ограничитель напряжения на стабилитронах
*SPICE 03445.eps
D1 4 0 diode
D2 4 2 diode
R1 2 1 1.0k
V1 1 0 SIN(0 20 1k)
.model diode d bv=10
.tran 0.001m 2m
.end

Напряжения пробоя стабилитрона устанавливается на уровень 10 В с помощью параметра bv=10 модели диода в списке соединений spice, приведенном выше. Это заставляет стабилитроны ограничивать напряжение на уровне около 10 В. Встречно включенные стабилитроны ограничивают оба пика. Для положительного полупериода, верхний стабилитрон смещен в обратном направлении, пробивающем стабилитрон при напряжении 10 В. На нижнем стабилитроне падает примерно 0,7 В, так как он смещен в прямом направлении. Таким образом, более точный уровень отсечки составляет 10 + 0,7 = 10,7 В. Аналогично отсечка при отрицательном полупериоде происходит на уровне –10,7 В. Рисунок ниже показывает уровень отсечки немного больше ±10 В.

Диаграмма работы ограничителя напряжения на стабилитронах: входной сигнал v(1) ограничивается до сигнала v(2)

Подведем итоги:

  • Стабилитроны предназначен для работы в режиме обратного смещения, обеспечивая относительно низкий, стабильный уровень пробоя, то есть напряжение стабилизации, при котором они начинают проводить значительный обратный ток.
  • Стабилитрон может работать в качестве стабилизатора напряжения, действуя в качестве вспомогательной нагрузки, потребляющей больший ток от источник, если его напряжение слишком большое, или меньший ток, если напряжение слишком низкое.

Оригинал статьи:

Теги

LTspiceДиодМоделированиеОбучениеСтабилитронЭлектроника

Сохранить или поделиться

Стабилитрон принцип работы

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон.

Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр  – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт.  Выбирайте на ваш вкус и цвет.

— изображение 1″ src=»https://yandex.ru/turbo/avatars/get-snippets_images/1064939/386728c1968baee2f787c79506bb6f4f/828×620″>

 

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это  понятно и дошкольнику.

Теперь  по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр  – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

Стабилитрон (диод Зенера)

Принцип работы

Полупроводниковый диод блокирует ток в обратном направлении, но будет страдать от преждевременного пробоя или повреждения, если обратное напряжение, приложенное к нему, станет слишком высоким.

Тем не менее, стабилитрон или «пробойный диод», как их иногда называют, в основном совпадают со стандартным PN-переходным диодом, но они специально разработаны для того, чтобы иметь низкое и заданное обратное напряжение пробоя, которое использует любое подаваемое обратное напряжение к этому.

Стабилитрон ведет себя так же, как обычный общего назначения диод, состоящий из кремния PN — перехода, и, когда смещены в прямом направлении, то есть анод положительный по отношению к его катоду, он ведет себя так же , как обычный диод сигнал, проводящий номинальный ток.

Однако, в отличие от обычного диода, который блокирует любой поток тока через себя при обратном смещении, то есть катод становится более положительным, чем анод, как только обратное напряжение достигает заранее определенного значения, стабилитрон начинает проводить в обратное направление.

Это связано с тем, что когда обратное напряжение, подаваемое на стабилитрон, превышает номинальное напряжение устройства, в полупроводниковом обедненном слое происходит процесс, называемый лавинным пробоем, и через диод начинает течь ток, чтобы ограничить это увеличение напряжения.

Ток, текущий в настоящее время через стабилитрон, резко возрастает до максимального значения схемы (которое обычно ограничивается последовательным резистором), и после достижения этого ток обратного насыщения остается довольно постоянным в широком диапазоне обратных напряжений. Точка напряжения, в которой напряжение на стабилитроне становится стабильным, называется «напряжением стабилитрона» ( Vz ), а для стабилитронов это напряжение может составлять от менее одного вольт до нескольких сотен вольт.

Точка, в которой напряжение стабилитрона запускает ток, протекающий через диод, может очень точно контролироваться (с допустимым отклонением менее 1%) на стадии легирования полупроводниковой конструкции диодов, давая диоду определенное напряжение пробоя стабилитрона Vz например, 4,3 В или 7,5 В. Это напряжение пробоя стабилитрона на кривой IV представляет собой почти вертикальную прямую линию.

Характеристики стабилитрона I-V

Стабилитрон используется в его «обратном смещении» или обратном режиме пробоя, т.е. анод диода подключается к отрицательному питанию. Из приведенной выше кривой характеристик I-V видно, что стабилитрон имеет область обратного смещения почти постоянного отрицательного напряжения независимо от величины тока, протекающего через диод, и остается почти постоянной даже при больших изменениях тока, пока ток стабилитронов остается между током пробоя I Z (мин) и максимальным номинальным током I Z (макс.) .

Эта способность к самоконтролю может быть в значительной степени использована для регулирования или стабилизации источника напряжения от изменений напряжения или нагрузки. Тот факт, что напряжение на диоде в области пробоя практически постоянное, оказывается важной характеристикой стабилитрона, так как его можно использовать в простейших типах устройств с регулятором напряжения.

Функция регулятора состоит в том, чтобы обеспечивать постоянное выходное напряжение для нагрузки, подключенной параллельно с ним, несмотря на пульсацию в напряжении питания или изменение тока нагрузки, стабилитрон продолжит регулировать напряжение до тех пор, пока ток диода не будет падать ниже минимального значения I Z (min) в области обратного пробоя.

Диодный стабилитрон

Стабилитроны могут использоваться для получения стабилизированного выходного напряжения с низкой пульсацией в условиях переменного тока нагрузки. Пропуская небольшой ток через диод от источника напряжения через подходящий резистор ограничения тока R S, стабилитрон будет проводить ток, достаточный для поддержания падения напряжения V out .

Мы помним из предыдущих уроков, что выходное напряжение постоянного тока от полу- или двухполупериодных выпрямителей содержит пульсации, наложенные на напряжение постоянного тока, и что при изменении значения нагрузки изменяется и среднее выходное напряжение. Подключив простую схему стабилитрона, как показано ниже, к выходу выпрямителя, можно получить более стабильное выходное напряжение.

Резистор R S соединен последовательно с стабилитроном для ограничения тока, протекающего через диод с источником напряжения, при этом V S подключается через комбинацию. Стабилизированное выходное напряжение V out берется через стабилитрон. Стабилитрон соединен с его катодной клеммой, подключенной к положительной шине источника постоянного тока, поэтому он имеет обратное смещение и будет работать в своем состоянии пробоя. Резистор R S выбран таким образом, чтобы ограничить максимальный ток, протекающий в цепи.

При отсутствии нагрузки, подключенной к цепи, ток нагрузки будет равен нулю I L  = 0 , и весь ток цепи проходит через стабилитрон, который, в свою очередь, рассеивает свою максимальную мощность. Также небольшое значение последовательного резистора RS приведет к большему току диода, когда сопротивление нагрузки R L подключено, и будет большим, так как это увеличит требования к рассеиваемой мощности диода, поэтому следует соблюдать осторожность при выборе подходящего значения серии сопротивление, чтобы максимальная номинальная мощность стабилитрона не превышалась в условиях отсутствия нагрузки или высокого импеданса.

Нагрузка подключается параллельно с стабилитроном, поэтому напряжение на R L всегда совпадает с напряжением на стабилитроне V R  = V Z. Существует минимальный ток стабилитрона, для которого эффективна стабилизация напряжения, и ток стабилитрона должен всегда оставаться выше этого значения, работающего под нагрузкой в ​​пределах его области пробоя. Верхний предел тока, конечно, зависит от номинальной мощности устройства. Напряжение питания V S должно быть больше, чем V Z .

Одна небольшая проблема с цепями стабилизатора стабилитрона состоит в том, что диод может иногда генерировать электрический шум в верхней части источника постоянного тока, когда он пытается стабилизировать напряжение. Обычно это не является проблемой для большинства устройств, но может потребоваться добавление развязывающего конденсатора большого значения на выходе стабилитрона, чтобы обеспечить дополнительное сглаживание.

Подведем небольшой итог. Стабилитрон всегда работает в обратном смещенном состоянии. Схема регулятора напряжения может быть разработана с использованием стабилитрона для поддержания постоянного выходного напряжения постоянного тока на нагрузке, несмотря на изменения входного напряжения или изменения тока нагрузки. Стабилизатор напряжения Зенера состоит из токоограничивающего резистора R S, соединенного последовательно с входным напряжением V S, с стабилитроном, подключенным параллельно с нагрузкой R L в этом состоянии с обратным смещением. Стабилизированное выходное напряжение всегда выбирается равным напряжению пробоя V Z диода.

Напряжение стабилитрона

Помимо создания единого стабилизированного выходного напряжения, стабилитроны могут также быть соединены друг с другом последовательно, наряду с обычными диодами сигнала кремния для получения множества различных выходных значений опорного напряжения, как показано ниже.

Стабилитроны, соединенные последовательно

Значения отдельных стабилитронов могут быть выбраны в соответствии с применением, в то время как кремниевый диод всегда будет падать примерно на 0,6 — 0,7 вольт в режиме прямого смещения. Напряжение питания V > IN следует, конечно, выше , чем наибольший выход опорного напряжения , а в нашем примере выше, это 19v.

Типичный стабилитрон для общих электронных схем — 500 мВт серии BZX55 или более крупный 1,3 Вт серии BZX85, в которой напряжение стабилитрона задается, например, как C7V5 для диода 7,5 В, что дает эталонный номер диода BZX55C7V5 .

Стабилитроны серии 500 МВт доступны в диапазоне от 2,4 до 100 Вольт и обычно имеют ту же последовательность значений, что и для серии резисторов 5% (E24), а индивидуальные номинальные напряжения для этих небольших, но очень полезных диодов приведены в таблица ниже.

Стандартные напряжения стабилитрона

Мощность стабилитрона BZX55 500 мВт

2.4V 2.7V 3.0V 3.3V 3.6V 3.9V 4.3V 4.7V
5.1V 5.6V 6.2V 6,8 В 7.5V 8.2V 9.1V 10V
11V 12V 13V 15V 16V 18V 20V 22V
24V 27В 30V 33V 36V 39V 43V 47V

Мощность стабилитрона BZX85 1,3 Вт

3.3V 3.6V 3.9V 4.3V 4.7V 5.1V 5,6 6.2V
6,8 В 7.5V 8.2V 9.1V 10V 11V 12V 13V
15V 16V 18V 20V 22V 24V 27В 30V
33V 36V 39V 43V 47V 51V 56V 62V

Схемы стабилитрона

До сих пор мы рассматривали, как стабилитрон можно использовать для регулирования источника постоянного тока, но что если бы входной сигнал был не постоянный ток, а переменный сигнал переменного тока, как бы стабилитрон реагировал на постоянно меняющийся сигнал?

Цепи диодного ограничения и зажима — это схемы, которые используются для формирования или изменения формы входного сигнала переменного тока (или любой синусоиды), создавая выходной сигнал различной формы в зависимости от схемы расположения. Цепи диодного ограничителя также называют ограничителями, поскольку они ограничивают или отсекают положительную (или отрицательную) часть входного сигнала переменного тока. Поскольку схемы ограничителя Зенера ограничивают или обрезают часть формы волны через них, они в основном используются для защиты схемы или в схемах формирования формы волны.

Например, если бы мы хотели обрезать выходной сигнал при + 7,5 В, мы бы использовали стабилитрон 7,5 В. Если выходной сигнал пытается превысить предел 7,5 В, стабилитрон «обрезает» избыточное напряжение на входе, создавая сигнал с плоским верхом, сохраняя при этом выходную постоянную на уровне + 7,5 В. Обратите внимание, что в состоянии прямого смещения стабилитрон все еще является диодом, и когда выходной сигнал переменного тока становится отрицательным ниже -0,7 В, стабилитрон включается, как и любой нормальный кремниевый диод, и обрезает выход при -0,7 В, как показано ниже.

Прямоугольная волна

Подключенные друг к другу стабилитроны могут быть использованы в качестве регулятора переменного тока, производящего то, что в шутку называют «генератор прямоугольной волны бедняка». Используя эту схему, мы можем обрезать осциллограмму между положительным значением + 8,2 В и отрицательным значением -8,2 В для стабилитрона 7,5 В.

Так, например, если бы мы хотели обрезать выходной сигнал между двумя различными минимальными и максимальными значениями, скажем, + 8 В и -6 В, мы просто использовали бы два стабилитрона с разными номиналами. Обратите внимание, что выход фактически обрезает сигнал переменного тока между + 8,7 В и -6,7 В из-за добавления напряжения прямого диода смещения.

Другими словами, пиковое напряжение составляет 15,4 вольт вместо ожидаемых 14 вольт, поскольку прямое падение напряжения смещения на диоде добавляет еще 0,7 вольт в каждом направлении.

Этот тип конфигурации ограничителя довольно распространен для защиты электронной схемы от перенапряжения. Два стабилитрона, как правило, размещаются на входных клеммах источника питания, и во время нормальной работы один из стабилитронов имеет значение «ВЫКЛ», и эти диоды практически не влияют. Однако, если форма сигнала входного напряжения превышает его предел, тогда стабилитрон включается и включает вход для защиты схемы.

Характеристики, маркировка и принцип работы стабилитрона

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении. Обычный диод при подаче обратного напряжения и превышении его номинального значения просто выходит из строя. А  для стабилитрона подключение обратного напряжения и его рост до установленной точки является штатным режимом. При достижении определенной точки обратного напряжения в стабилитроне возникает обратимый пробой. Через устройство начинает течь ток. До наступления пробоя стабилитрон находится в нерабочем состоянии и через него протекает только малый ток утечки.  На электросхемах стабилитрон обозначается как стрелка-указатель, на конце которой имеет черточка, обозначающая запирание. Стрелка указывает направление тока. Буквенное обозначение на схемах – VD.

Устройство

Полупроводниковые стабилитроны пришли на смену морально устаревшим стабилитронам тлеющего разряда – ионным газоразрядным электровакуумным приборам. Для изготовления стабилитронов используются кремниевые или германиевые кристаллы (таблетки) с проводимостью n-типа, в которые добавляют примеси сплавным или диффузно-сплавным способом. Для получения электронно-дырочного p-n перехода используются акцепторные примеси, в основном алюминий. Кристаллы заключают в корпуса из полимерных материалов, металла или стекла.

Кремниевые сплавные стабилитроны Д815 (А-И) выпускаются в металлическом герметичном корпусе, который является положительным электродом. Такие элементы имеют широкий интервал рабочих температур – от -60°C до +100°C. Кремниевые сплавные двуханодные стабилизирующие диоды КС175А, КС182А, КС191А, КС210Б, КС213Б выпускают в пластмассовом корпусе. Кремниевые сплавные термокомпенсированные детали КС211 (Б-Д), используемые в качестве источников опорного напряжения, имеют пластмассовый корпус.

SMD стабилитроны, то есть миниатюрные компоненты, предназначенные для поверхностного монтажа, изготавливаются в основном в стеклянных и пластиковых корпусах. Такие элементы могут выпускаться с двумя и тремя выводами. В последнем случае третий вывод является «пустышкой», никакой смысловой нагрузки не несет и предназначается только для надежной фиксации детали на печатной плате.

Принцип действия

Стабилитрон был открыт американским физиком Кларенсом Мелвином Зенером, именем которого его и назвали. Электрический пробой p-n перехода может быть обусловлен туннельным пробоем (в этом случае пробой носит название Зенеровского), лавинным пробоем, пробоем в результате тепловой неустойчивости, который наступает из-за разрушительного саморазогрева токами утечки.

И инженеры конструируют эти элементы таким образом, чтобы возникновение туннельного и/или лавинного пробоя произошло задолго до того, как в них возникнет вероятность теплового пробоя.

Величина напряжения пробоя зависит от концентрации примесей и способа легирования p-n-перехода. Чем больше концентрация примесей и чем выше их градиент в переходе, тем ниже обратное напряжение, при котором образуется пробой.

  • Туннельный (зенеровский) пробой появляется в полупроводнике в тех случаях, когда напряженность электрического поля в p-n зоне равна 106 В/см. Такая высокая напряженность может возникнуть только в высоколегированных диодах. При напряжениях пробоя, находящихся в диапазоне 4,5…6,7 В, сосуществуют туннельный и лавинный эффекты, а вот при напряжении пробоя менее 4,5 В остается только туннельный эффект.
  • В стабилитронах с небольшими уровнями легирования или меньшими градиентами легирующих добавок присутствует только лавинный механизм пробоя, который появляется при напряжении пробоя примерно 4,5 В. А при напряжении выше 7,2 В остается только лавинный эффект, а туннельный полностью исчезает.

Как было сказано ранее, при прямом подключении стабилитрон при прямом включении ведет себя так же, как и обычный диод, – он пропускает ток. Различия между ними возникают при обратном подключении.

Обычный диод при обратном подключении запирает ток, а стабилитрон при достижении обратным напряжением величины, которая называется напряжением стабилизации, начинает пропускать ток в обратном направлении. Это объясняется тем, что при подаче на стабилитрон напряжения, которое превышает U ном. устройства, в полупроводнике возникает процесс, называемый пробоем. Пробой может быть туннельным, лавинным, тепловым. В результате пробоя ток, протекающий через стабилитрон, возрастает до максимального значения, ограниченного резистором. После достижения напряжения пробоя ток остается примерно постоянным в широком диапазоне обратных напряжений. Точка, в которой напряжение запускает ток, может очень точно устанавливаться в процессе производства легированием. Поэтому каждому элементу присваивают определенное напряжение пробоя (стабилизации).

Стабилитрон используется только в режиме «обратного смещения», то есть его анод подключается к «-» источника питания. Способность стабилитрона запускать обратный ток при достижении напряжения пробоя применяется для регулирования и стабилизации напряжения при изменении напряжения питания или подключенной нагрузки. Использование стабилитрона позволяет обеспечить постоянное выходное напряжение для подключенного потребителя при перепадах напряжения ИП или меняющемся токе потребителя.

Вольт-амперная характеристика

ВАХ стабилитрона, как и обычного диода, имеет две ветви – прямую и обратную. Прямая ветвь является рабочим режимом для традиционного диода, а обратная характеризует работу стабилитрона. Стабилитрон называют опорным диодом, а источник напряжения, в схеме которого есть стабилитрон, называют опорным.

На рабочей обратной ветви опорного диода выделяют три основные значения обратного тока:

  • Минимальное. При силе тока, которая меньше минимального значения, стабилитрон остается закрытым.
  • Оптимальное. При изменении тока в широких пределах между точками 1 и 3 значение напряжения меняется несущественно.
  • Максимальное. При подаче тока выше максимальной величины опорный диод перегреется и выйдет из строя. Максимальное значение тока ограничивается максимально допустимой рассеиваемой мощностью, которая очень зависит от внешних температурных условий.

Области применения

Основная область применения этих элементов – стабилизация постоянного напряжения в маломощных ИП или в отдельных узлах, мощность которых не более десятков ватт. С помощью опорных диодов обеспечивают нормальный рабочий режим транзисторов, микросхем, микроконтроллеров.

В стабилизаторах простой конструкции стабилитрон является одновременно источником опорного напряжения и регулятором. В более сложных конструкциях стабилитрон служит только источником опорного напряжения, а для силового регулирования применяется внешний силовой транзистор.

Термокомпенсированные стабилитроны и детали со скрытой структурой востребованы в качестве дискретных и интегральных источников опорного напряжения. Для защиты электрической аппаратуры от перенапряжений разработаны импульсные лавинные стабилитроны. Для защиты входов электрических приборов и затворов полевых транзисторов в схему устанавливают рядовые маломощные стабилитроны. Полевые транзисторы с изолированным затвором (МДП) изготавливаются с одним кристаллом, на котором расположены: защитный стабилитрон и силовой транзистор.

Основные характеристики

В паспорте стабилизирующего диода указывают следующие параметры:

  • Номинальное напряжение стабилизации Uст. Этот параметр выбирает производитель устройства.
  • Диапазон рабочих токов. Минимальный ток – величина тока, при которой начинается процесс стабилизации. Максимальный ток – значение, выше которого устройство разрушается.
  • Максимальная мощность рассеивания. В маломощных элементах это паспортная величина. В паспортах мощных стабилитронов для расчета условий охлаждения производитель указывает: максимально допустимую температуру полупроводника и коэффициент теплового сопротивления корпуса.

Помимо параметров, указываемых в паспорте, стабилитроны характеризуются и другими величинами, среди которых:

  • Дифференциальное сопротивление. Это свойство определяет нестабильность устройства по напряжению питания и по току нагрузки. Первый недостаток устраняется запитыванием стабилизирующего диода от источника постоянного тока, а второй – включением между стабилитроном и нагрузкой буферного усилителя постоянного тока с эмиттерным повторителем.
  • Температурный коэффициент напряжения. В соответствии со стандартом эта величина равна отношению относительного изменения напряжения стабилизации к абсолютному изменению наружной температуры. В нетермостабилизированных стабилитронах при нагреве от +25°C до +125°C напряжение стабилизации сдвигается на 5-10% от первоначального значения.
  • Дрейф и шум. Эти характеристики для обычных стабилитронов не определяются. Для прецизионных устройств они являются очень важными свойствами. В обычных (непрецизионных) стабилитронах шум создают: большое количество посторонних примесей и дефекты кристаллической решетки в области p-n перехода. Способы снижения шума (если в этом есть необходимость): защитная пассивация оксидом или стеклом (примеси направляются вглубь кристалла) или перемещением вглубь кристалла самого p-n-перехода. Второй способ является более радикальным. Он востребован в диодах с низким уровнем шума со скрытой структурой.

Способы включения – последовательное и параллельное

На детали импортного производства в сопроводительных документах ситуации, при которых возможно последовательное или параллельное соединение, не регламентируются. В документации на отечественные опорные диоды можно встретить два указания:

  • В приборах маленькой и средней мощности можно последовательно или параллельно подсоединять любое количество односерийных стабилитронов.
  • В приборах средней и значительной мощности можно последовательно соединять любое число стабилизирующих диодов единой серии. При параллельном соединении необходимо произвести расчеты. Общая мощность рассеивания всех параллельно подсоединенных стабилитронов не должна быть выше аналогичного показателя одной детали.

Допускается последовательное подключение опорных диодов разных серий в том случае, если рабочие токи созданной цепи не превышают паспортные токи стабилизации для каждой серии, установленной в схеме.

На практике для умножения напряжения стабилизации чаще всего применяют последовательное соединение двух-трех стабилитронов. К этой мере прибегают в том случае, если не удалось достать деталь на нужное напряжение или необходимо создать высоковольтный стабилитрон. При последовательном соединении напряжение отдельных элементов суммируется. В основном этот вид соединения используется при сборке высоковольтных стабилизаторов.

Параллельное соединение деталей служит для того, чтобы повышать ток и мощность. Однако на практике этот вид соединения применяется редко, поскольку различные экземпляры опорных диодов даже одного типа не имеют совершенно одинаковых напряжений стабилизации. Поэтому при параллельном соединении разряд возникнет только в детали с наименьшим напряжением стабилизации, а в остальных пробой не произойдет. Если пробой и возникает, то одни стабилитроны в такой цепи будут работать с недогрузкой, а другие с перегрузкой.

Для стабилизации переменного напряжения стабилитроны соединяются последовательно и встречно. В первый полупериод синусоиды переменного тока один элемент работает как обычный диод, а второй выполняет функции стабилитрона. Во втором полупериоде элементы меняются функциями. Форма выходного напряжения отличается от входного. Ее конфигурация напоминает трапецию. Это связано с тем, что напряжение, превышающее напряжение стабилизации, будет отсекаться и верхушки синусоиды будут срезаны. Последовательное и встречное соединение стабилитронов может применяться в термостабилизированном стабилитроне.

Составные стабилитроны

Составной стабилитрон – устройство, применяемой в ситуациях, когда необходимы токи и мощность большего значения, чем это допускают технические условия. В этом случае между стабилизирующим диодом и нагрузкой подсоединяют буферный усилитель постоянного тока. В схеме коллекторный переход транзистора включен параллельно стабилизирующему диоду, а эммиттерный переход – последовательно.

Схема обычного составного стабилитрона не предназначена для применения на прямом токе. Но добавление диодного моста превращает составной стабилитрон в систему двойного действия, которая может работать и при прямом, и при обратном токе. Такие стабилитроны еще называют двойными или двуханодными. Стабилитроны, которые могут работать с напряжением только одной полярности, называют несимметричными. А составные стабилитроны, дееспособные при любом направлении тока, называют симметричными.

Виды стабилитронов

На современном рынке электроники имеется широкий ассортимент стабилитронов, адаптированных к определенным условиям применения.

Прецизионные

Эти устройства обеспечивают высокую стабильность напряжения на выходе. К ним предъявляются дополнительные требования к временной нестабильности напряжения и температурного коэффициента напряжения. К прецизионным относятся устройства:

  • Термокомпенсированные. В схему термокомпенсированного стабилитрона входят последовательно соединенные: стабилитрон номинальным напряжением 5,6 В (с плюсовым значением температурного коэффициента) и прямоосвещенный диод (с минусовым коэффициентом). При последовательном соединении этих элементов происходит взаимная компенсация температурных коэффициентов. Вместо диода в схеме может использоваться второй стабилитрон, включаемый последовательно и встречно.
  • Со скрытой структурой. Ток пробоя в обычном стабилитроне сосредотачивается в приповерхностном кремниевом слое, где находится максимальное количество посторонних примесей и дефектов кристаллической решетки. Эти несовершенства конструкции провоцируют шум и нестабильную работу. В деталях со скрытой структурой ток пробоя «загоняют» внутрь кристалла путем формирования глубокого островка p-типа проводимости.   

Быстродействующие

Для них характерны: низкое значение барьерной емкости, всего десятки пикофарад, и краткий период переходного процесса (наносекунды). Такие особенности позволяют опорному диоду ограничивать и стабилизировать кратковременные импульсы напряжения.

Стабилизирующие диоды могут быть рассчитаны на напряжение стабилизации от нескольких вольт до нескольких сотен вольт. Высоковольтные стабилитроны устанавливаются на специальные охладители, способные обеспечить нужный теплообмен и уберечь элемент от перегрева и последующего разрушения.

Регулируемые стабилитроны

При изготовлении стабилизированных блоков питания необходимый стабилитрон может отсутствовать. В этом случае собирают схему регулируемого стабилитрона.

Нужное напряжение стабилизирующего диода подбирают при помощи резистора R1. Для настройки схемы на место резистора R1 подключают переменный резистор номиналом 10 кОм. После получения нужного значения напряжения определяют полученное сопротивление и устанавливают на постоянное место резистор нужного номинала. Для этой схемы можно применить транзисторы КТ342А, КТ3102А.

Способы маркировки

На корпусе детали имеется буквенная или буквенно-цифровая маркировка, которая характеризует электрические свойства и назначение устройства. Различают два типа маркировки. Детали в стеклянном корпусе маркируются привычным образом. На поверхности элемента пишут напряжение стабилизации с использованием буквы V, которая выполняет функцию десятичной запятой. Маркировка из четырех цифр и буквы в конце менее понятна. Расшифровать ее можно только с помощью даташита.

Еще один способ обозначения стабилизирующих диодов – цветовая маркировка. Часто применяется японский вариант, который представляет собой два или три цветных кольца. При наличии двух колец, каждое из них обозначает определенную цифру. Если второе кольцо нанесено в удвоенном варианте, то это означает, что между первой и второй цифрой надо поставить запятую.

Как отличить стабилитрон от обычного диода

Оба эти элемента имеют схожее обозначение на схеме. На практике отличить стабилитрон от обычного диода  и даже узнать его номинал, если оно не более 35 В, можно с помощью приставки к мультиметру.

Схема приставки к мультиметру

Для выполнения генератора с широтно-импульсной модуляцией используется специализированная микросхема MC34063. Чтобы обеспечить гальваническую развязку между ИП и измерительной частью схемы напряжение контролируют на первичной обмотке трансформатора. Это позволяет сделать выпрямитель на VD2. Точка стабилизации выходного напряжения устанавливается с помощью резистора R3. Напряжение на конденсаторе С4 – примерно 40 В. Стабилизатор тока А2 и проверяемый опорный диод составляют параметрический стабилизатор, а мультиметр, подключенный к выводам схемы, позволяет определить напряжение стабилитрона.

Если диод подключить в обратной полярности (анод к «-», а катод к «+»), то мультиметр для обычного диода покажет 40 В, а для стабилитрона – напряжение стабилизации.

Для определения работоспособности стабилитрона с известным номиналом используют простую схему, состоящую из источника питания и токоограничительного резистора на 300…500 Ом. В этом случае с помощью мультиметра определяют не сопротивление перехода, а напряжение. Включают элементы, как показано на схеме, и меряют напряжение на стабилитроне.

Медленно поднимают напряжение блока питания. На значении напряжения стабилизации напряжение на стабилитроне должно прекратить свой рост. Если это произошло, значит, элемент исправен. Если при последующем увеличении напряжения ИП диод не начинает стабилизировать, значит, он не исправен.

Как правильно подобрать стабилитрон?

Стабилитроны относятся к стабилизаторам небольшой мощности. Поэтому их необходимо подбирать так, чтобы через них без перегрева мог проходить весь ток нагрузки плюс минимальный ток стабилизации.

Для правильного выбора стабилитрона для электрической схемы необходимо знать следующие параметры: минимальное и максимальное входное напряжение, напряжение на выходе, минимальный и максимальный ток нагрузки. Напряжение стабилизации стабилитрона равно выходному напряжению. А рассчитать максимальный ток, который может пройти через стабилитрон в конкретной схеме, и мощность рассеивания при максимальном токе, лучше всего с помощью онлайн-калькулятора. 

Содержание драгоценных металлов в стабилитронах

В стабилитронах, как и в других полупроводниках – обычных диодах, тиристорах, варикапах, из драгоценных металлов содержится, в основном, серебро, в некоторых – золото. Конкретное количество указывается в специальных таблицах. Содержание палладия и платины, даже если они и присутствуют в полупроводниках, обычно не указывается, поскольку их концентрация ничтожно мала.

Стабилитрон — это что такое и для чего он нужен?

Стабилитрон — это полупроводниковый диод с уникальными свойствами. Если обычный полупроводник при обратном включении является изолятором, то он выполняет эту функцию до определенного роста величины приложенного напряжения, после чего происходит лавинообразный обратимый пробой. При дальнейшем увеличении протекающего через стабилитрон обратного тока напряжение продолжает оставаться постоянным за счет пропорционального уменьшения сопротивления. Таким путем удается добиться режима стабилизации.

В закрытом состоянии через стабилитрон сначала проходит небольшой ток утечки. Элемент ведет себя как резистор, величина сопротивления которого велика. При пробое сопротивление стабилитрона становится незначительным. Если дальше продолжать повышать напряжение на входе, элемент начинает греться и при превышении током допустимой величины происходит необратимый тепловой пробой. Если дело не доводить до него, при изменении напряжения от нуля до верхнего предела рабочей области свойства стабилитрона сохраняются.

Когда напрямую включается стабилитрон, характеристики не отличаются от диода. При подключении плюса к p-области, а минуса — к n-области сопротивление перехода мало и ток через него свободно протекает. Он нарастает с увеличением входного напряжения.

Стабилитрон — это особый диод, подключаемый большей частью в обратном направлении. Элемент сначала находится в закрытом состоянии. При возникновении электрического пробоя стабилитрон напряжения поддерживает его постоянным в большом диапазоне тока.

На анод подается минус, а на катод — плюс. За пределами стабилизации (ниже точки 2) происходит перегрев и повышается вероятность выхода элемента из строя.

Характеристики

Параметры стабилитронов следующие:

  • Uст — напряжение стабилизации при номинальном токе Iст;
  • Iст min — минимальный ток начала электрического пробоя;
  • Iст max — максимальный допустимый ток;
  • ТКН — температурный коэффициент.

В отличие от обычного диода, стабилитрон — это полупроводниковое устройство, у которого на вольт-амперной характеристике области электрического и теплового пробоя достаточно далеко расположены друг от друга.

С максимально допустимым током связан параметр, часто указываемый в таблицах — мощность рассеивания:

Pmax = Iст max∙ Uст.

Зависимость работы стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, не зависящие от нагрева или охлаждения.

Схемы включения

Типовая схема простого стабилизатора, состоит из балластного сопротивления Rб и стабилитрона, шунтирующего нагрузку.

В некоторых случаях происходит нарушение стабилизации.

  1. Подача на стабилизатор большого напряжения от источника питания при наличии на выходе фильтрующего конденсатора. Броски тока при его зарядке могут вызвать выход из строя стабилитрона или разрушение резистора Rб.
  2. Отключение нагрузки. При подаче на вход максимального напряжения ток стабилитрона может превысить допустимый, что приведет к его разогреву и разрушению. Здесь важно соблюдать паспортную область безопасной работы.
  3. Сопротивление Rб подбирается небольшим, чтобы при минимально возможной величине напряжения питания и максимально допустимом токе на нагрузке стабилитрон находился в рабочей зоне регулирования.

Для защиты стабилизатора применяются тиристорные схемы защиты или плавкие предохранители.

Резистор Rб рассчитывается по формуле:

Rб = (Uпит — Uном )(Iст + Iн).

Ток стабилитрона Iст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе Uпит и тока нагрузки Iн.

Выбор стабилитронов

Элементы имеют большой разброс по напряжению стабилизации. Чтобы получить точное значение Uн, стабилитроны подбираются из одной партии. Есть типы с более узким диапазоном параметров. При большой мощности рассеивания элементы устанавливают на радиаторы.

Для расчета параметров стабилитрона необходимы исходные данные, например, такие:

  • Uпит = 12-15 В — напряжение входа;
  • Uст = 9 В — стабилизированное напряжение;
  • Rн = 50-100 мА — нагрузка.

Параметры характерны для устройств с небольшим потреблением энергии.

Для минимального входного напряжения 12 В ток на нагрузке выбирается по максимуму — 100 мА. По закону Ома можно найти суммарную нагрузку цепи:

R∑ = 12 В / 0,1 А = 120 Ом.

На стабилитроне падение напряжения составляет 9 В. Для тока 0,1 А эквивалентная нагрузка составит:

Rэкв = 9 В / 0,1 А = 90 Ом.

Теперь можно определить сопротивление балласта:

Rб = 120 Ом — 90 Ом = 30 Ом.

Оно выбирается из стандартного ряда, где значение совпадает с расчетным.

Максимальный ток через стабилитрон определяется с учетом отключения нагрузки, чтобы он не вышел из строя в случае, если какой-либо провод отпаяется. Падение напряжения на резисторе составит:

UR = 15 — 9 = 6 В.

Затем определяется ток через резистор:

IR = 6/30 = 0,2 А.

Поскольку стабилитрон подключен к нему последовательно, Ic = IR = 0,2 А.

Мощность рассеивания составит P = 0,2∙9 = 1,8 Вт.

По полученным параметрам подбирается подходящий стабилитрон Д815В.

Симметричный стабилитрон

Симметричный диодный тиристор представляет собой переключающий прибор, проводящий переменный ток. Особенностью его работы является падение напряжения до нескольких вольт при включении в диапазоне 30-50 В. Его можно заменить двумя встречно включенными обычными стабилитронами. Устройства применяют в качестве переключающих элементов.

Аналог стабилитрона

Когда не удается подобрать подходящий элемент, используют аналог стабилитрона на транзисторах. Их преимуществом является возможность регулирования напряжения. Для этого можно применять усилители постоянного тока с несколькими ступенями.

На входе устанавливают делитель напряжения с подстроечным резистором R1. Если входное напряжение возрастает, на базе транзистора VT1 оно также увеличивается. При этом растет ток через транзистор VT2, который компенсирует увеличение напряжения, поддерживая тем самым его стабильным на выходе.

Маркировка стабилитронов

Выпускаются стеклянные стабилитроны и стабилитроны в пластиковых корпусах. В первом случае на них наносятся 2 цифры, между которыми располагается буква V. Надпись 9V1 обозначает, что Uст = 9,1 В.

На пластиковом корпусе надписи расшифровываются с помощью даташита, где также можно узнать другие параметры.

Темным кольцом на корпусе обозначается катод, к которому подключается плюс.

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

//www.youtube.com/embed/NqCaJhS0HGU?feature=oembed&wmode=opaque

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Как выбрать последовательный резистор для стабилитрона

Во-первых, вы должны учитывать, что каждый (стабилитрон) имеет номинальную мощность. Исходя из этой номинальной мощности, вы можете рассчитать максимальный ток диода. Например, если стабилитрон имеет максимальную номинальную мощность \ $ 1 ~ \ text {W} \ $ и номинальное напряжение \ $ 2 ~ \ text {V} \ $, максимальный ток через диод должен быть \ $ 0,5 ~ \ text {A} \ $. Если вы хотите подключить этот диод к источнику напряжения \ $ 5 ~ \ text {V} \ $, тогда вам понадобится что-то (резистор), которое будет создавать падение напряжения на \ $ 3 ~ \ text {V} \ $ :

$$ R = \ frac {5 ~ \ text {V} — 2 ~ \ text {V}} {0.2 R = 1,5 ~ \ text {W} \ $.

Теперь вы хотите разместить нагрузку параллельно стабилитрону. Это уменьшит ток через диод, что приведет к более низкому напряжению. Чтобы рассчитать точную рабочую точку, то есть падение напряжения на стабилитроне, нам нужна дополнительная информация об этом диоде, например о его статических характеристиках \ $ U \ $ — \ $ I \ $.

Что касается спецификации диода 1N4681, вы можете видеть, что его максимальное напряжение составляет \ $ V _ {\ max} = 2,52 ~ \ text {V} \ $, а его минимальное напряжение составляет \ $ V _ {\ min} = 2.28 ~ \ text {V} \ $. Фактическое рабочее напряжение будет зависеть от тока через диод, который зависит от последовательного резистора, а также от нагрузки, подключенной параллельно диоду. Вы также можете видеть, что максимальный ток равен \ $ I _ {\ max} = 0,095 ~ \ text {A} \ $. Максимальное напряжение возникает при максимальном токе через диод. Также примите во внимание, что номинальная мощность резистора \ $ 100 ~ \ Omega \ $ должна быть не менее \ $ 1 ~ \ text {W} \ $.

Просмотрел вашу модель — все нормально кроме параметра \ $ R_S \ $ в диоде.Измените этот параметр на \ $ 0 ~ \ Omega \ $, и все будет хорошо. Для этого конкретного диода вы можете установить последовательный резистор на \ $ 80 ~ \ Omega \ $.


Падение напряжения на стабилитроне в области напряжения пробоя может быть аппроксимировано линейной функцией следующим образом:

$$ V_D (I_D) = k I_D + c $$

где \ $ k \ $ и \ $ c \ $ — параметры диода. Уравнение напряжения для системы выглядит следующим образом:

$$ V_S = I R + V_D (-I), \ quad I_D = -I, $$

, где \ $ V_S \ $ — источник напряжения, \ $ I \ $ — ток системы, а \ $ R \ $ — последовательный резистор.Комбинируя эти два уравнения, мы получаем \ $ U \ $ — \ $ I \ $ статические характеристики системы:

$$ V_S = I (R-k) + c $$

Стабилитрон

Схемы и конструкция »Электроника

Существует множество схем на стабилитронах от схем опорного напряжения до схем, обеспечивающих защиту от переходных процессов напряжения.


Учебное пособие по стабилитронам / эталонным диодам Включает в себя:
Стабилитроны Теория работы стабилитрона Технические характеристики стабилитрона Схемы на стабилитронах

Другие диоды: Типы диодов


Стабилитроны или диоды опорного напряжения используются в различных схемах, чтобы они могли обеспечивать опорное напряжение.Их также можно использовать в других схемах, кроме как для обеспечения опорного напряжения.

Существует множество схем, в которых используются стабилитроны, от очень простых схем на стабилитронах до гораздо более сложных.

Несколько примеров схем на стабилитронах приведены ниже вместе с некоторыми советами по проектированию схем.

Простая схема на стабилитроне, обеспечивающая опорное напряжение

Самая простая схема стабилитрона состоит из одного стабилитрона и резистора.Стабилитрон обеспечивает опорное напряжение, но для ограничения тока в диоде должен быть установлен последовательный резистор, в противном случае через него будет протекать большой ток, и он может выйти из строя.

Следует рассчитать номинал резистора в цепи стабилитрона, чтобы получить требуемое значение тока для используемого напряжения питания. Обычно максимальная рассеиваемая мощность большинства свинцовых стабилитронов с малой мощностью составляет 400 мВт. В идеале схема должна быть спроектирована так, чтобы рассеивать менее половины этого значения, но для правильной работы ток в стабилитроне не должен опускаться ниже примерно 5 мА, иначе они не будут регулироваться правильно.

Схема базового опорного напряжения на стабилитроне

Пример схемы

Возьмем случай, когда схема на стабилитроне используется для питания регулируемой шины 5,1 В, потребляющей 2 мА, от источника входного напряжения 12 В. Для расчета необходимого резистора можно использовать следующие простые шаги:

  1. Рассчитайте разницу напряжений на последовательном резисторе 12 — 5,1 = 6,9 В
  2. Определите ток резистора. Выберите 15 мА.Это обеспечит достаточный запас выше минимального тока стабилитрона для некоторого изменения тока нагрузки.
  3. Проверить рассеиваемую мощность стабилитрона. При токе 15 мА и напряжении на рассеиваемой мощности: 15 мА x 5,1 В = 76,5 мВт
    Это находится в пределах максимального предела для диода
  4. Определите ток через последовательный резистор. Это 15 мА для стабилитрона плюс 2 мА для нагрузки, то есть 17 мА.
  5. Определите номинал последовательного резистора.Используя закон Ома, это можно рассчитать, исходя из падения напряжения на нем и полного тока через него: 6,9 / 17 мА = 0,405 кОм
    Ближайшее значение составляет 390 Ом
  6. Определите мощность последовательного резистора. Это можно определить, используя значение тока через резистор и рассчитанное ранее напряжение на нем: В x I = 6,9 В x 17 мА = 117 мВт
    Резистор должен рассеивать этот уровень тепла. Для этого должно хватить резистора на четверть ватта.

Эта простая схема на стабилитроне широко используется как простой метод обеспечения опорного напряжения.

Схема стабилитрона для БП с последовательным транзистором

Очень простая схема стабилитрона, обеспечивающая функцию шунтирующего стабилизатора, как показано выше, не особенно эффективна и не применима для многих приложений с более высокими токами. Одним из решений является использование схемы стабилитрона, в которой используется транзисторный буфер, который действует как транзистор с последовательным проходом.Ниже показана простая схема, в которой транзистор используется в качестве эмиттерного повторителя.


Схема простого регулятора напряжения на стабилитроне

При использовании этой схемы на стабилитроне необходимо рассчитать ток, требуемый от датчика потенциала стабилитрона. Это ток эмиттера транзистора, деленный на коэффициент усиления.

При выборе напряжения стабилитрона следует помнить, что напряжение эмиттера будет ниже напряжения стабилитрона на величину напряжения база-эмиттер — около 0.6 вольт для кремниевого транзистора.

Схема стабилитрона для защиты от перенапряжения

Другой вид схемы на стабилитроне — это схема защиты от перенапряжения. Эта схема стабилитрона использует стабилитрон несколько иначе, обнаруживая ток пробоя через диод при достижении определенного напряжения.

Хотя источники питания обычно надежны, последствия отказа последовательного транзистора или полевого транзистора могут быть катастрофическими. Если устройство последовательной передачи выйдет из строя из-за короткого замыкания, полное нерегулируемое напряжение будет подаваться на цепи с использованием регулируемой мощности.Это может уничтожить все микросхемы, на которые подается питание.

Одно из решений — использовать схему с ломом. Когда эта форма схемы обнаруживает ситуацию перенапряжения, она запускает SCR. Это быстро снижает выходное напряжение и в показанном случае перегорает предохранитель, который отключает питание источника входного сигнала.

Схема защиты от перенапряжения на стабилитроне / тиристоре

Схема работает путем срабатывания тринистора при обнаружении перенапряжения. Стабилитрон выбирается так, чтобы иметь напряжение выше нормального рабочего напряжения — достаточный запас, чтобы не срабатывать при нормальных рабочих условиях, но достаточно малый, чтобы позволить току течь быстро при обнаружении неисправности.

В нормальных условиях работы выходное напряжение ниже обратного напряжения стабилитрона, и через него не течет ток, а затвор тринистора не срабатывает.

Однако, если напряжение поднимается выше допустимого напряжения, то есть напряжения пробоя стабилитрона, стабилитрон начинает проводить ток, тиристор срабатывает и предохранитель перегорает.

Наконечники стабилитронов

Стабилитрон — очень гибкий и полезный компонент схемы. Однако, как и в случае с любым другим электронным компонентом, есть несколько советов и подсказок, которые позволяют сделать из стабилитрона наилучшее.Их количество приведено ниже.

  • Буферная схема стабилитрона с помощью цепи эмиттера или истокового повторителя: Чтобы напряжение на стабилитроне было как можно более стабильным, ток, протекающий через стабилитрон, должен быть постоянным. Любые изменения тока, потребляемого нагрузкой, должны быть минимизированы, так как они изменят ток через стабилитрон и вызовут небольшие колебания напряжения. Изменения, вызванные нагрузкой, можно свести к минимуму, используя каскад схемы эмиттерного повторителя для уменьшения тока, потребляемого от схемы стабилитрона, и, следовательно, наблюдаемых изменений.Это также имеет то преимущество, что можно использовать стабилитроны меньшего размера.
  • Привод с источником постоянного тока для лучшей стабильности: Другой способ улучшить стабильность стабилитрона — использовать хороший источник постоянного тока. Простая схема, в которой используется только резистор, подходит для многих приложений, но более эффективный источник тока может обеспечить некоторые улучшения характеристик схемы, поскольку ток может поддерживаться практически независимо от любых изменений в шине питания.
  • Выберите правильное напряжение для лучшей стабильности: В приложениях, где требуется стабильность при изменении температуры, стабилитрон опорного напряжения следует выбирать так, чтобы он имел напряжение около 5,5 вольт. Ближайшее предпочтительное значение составляет 5,6 В, хотя 5,1 В — еще одно популярное значение, учитывая его близость к 5 В, требуемым для некоторых семейств логики. Там, где требуются разные уровни напряжения, можно использовать стабилитрон на 5,6 вольт, а окружающую электронику можно использовать для перевода его на требуемое выходное значение.
  • Обеспечьте достаточный ток для обратного пробоя: Необходимо убедиться, что через диод проходит достаточный ток, чтобы он оставался в режиме обратного пробоя. Для типичного устройства мощностью 400 мВт необходимо поддерживать ток около 5 мА. Для получения точных значений минимального тока следует обращаться к таблице данных для конкретного устройства и напряжения. Если этот минимальный ток не подается, диод не будет проводить должным образом, и вся цепь не будет работать.
  • Убедитесь, что максимальные пределы тока для стабилитрона не превышены: Хотя необходимо обеспечить пропускание достаточного тока через стабилитрон, максимальные пределы не должны превышаться. Это может быть немного уравновешивающим действием в некоторых схемах, поскольку изменения тока нагрузки будут вызывать изменение тока стабилитрона. Следует проявлять осторожность, чтобы не превысить максимальный ток или максимальную рассеиваемую мощность (напряжение стабилитрона x ток стабилитрона). Если это кажется проблемой, можно использовать схему эмиттерного повторителя для буферизации стабилитрона и увеличения допустимого тока.

Стабилитроны очень просты в использовании, поэтому существует большое количество различных схем на стабилитронах. При использовании с некоторыми мерами предосторожности они работают хорошо, но иногда могут вызывать некоторые проблемы, но следование указанным выше советам и рекомендациям поможет избежать большинства проблем.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы ВЧ разъемы Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Стабилитроны — Разработка электронных продуктов

Стабилитроны позволяют току проходить в нормальном направлении, как любой нормальный диод, и с падением 0,6 В, опять же, как любой нормальный диод. Их отличие состоит в том, что, в отличие от обычного диода, который блокирует ток в обратном направлении (до тех пор, пока вы не достигнете его обратного напряжения пробоя), стабилитрон будет блокировать ток в обратном направлении, пока не будет достигнуто его заданное напряжение, а затем он будет пропускать ток. течь.Это означает, что при использовании в обратном направлении стабилитрон вызовет падение напряжения на заданную величину (примерно — напряжение стабилитрона будет варьироваться в зависимости от условий, допуска и т. Д.) Аналогично тому, как 0,6 Виш падает на нормальном диоде, работающем в нормальном прямом направлении. проточный текущий режим.

Важные характеристики

Vz = стабилитрон (падение напряжения на диоде)

Iz (или Itest и т. Д.) = Ток, проходящий через него. Это ток, который дает другие характеристики

Zz = импеданс / сопротивление переменному току.У стабилитрона есть внутреннее сопротивление, которое можно представить как последовательный резистор внутри диода. Это динамическое сопротивление — оно меняется в зависимости от тока, температуры и т. Д.

Мощность — помните, что стабилитрон будет нагреваться пропорционально рассеиваемой мощности, как, скажем, линейный регулятор напряжения!

Расчет номинала резистора, который нужно подключить последовательно к стабилитрону, чтобы получить выходное напряжение стабилитрона:

Сопротивление = (Vin — Vz) / Iz

Итак, для 1N4733 скажем, (12 В — 5.31 В) / 50 мА = 138 Ом

Затем вы можете удалить Zz из используемого сопротивления, но часто вы не беспокоитесь, так как он обычно низкий и не сильно повлияет на вещи.

Что происходит, когда вы меняете ток

Дополнительный ток — увеличение входного напряжения, но с тем же внешним последовательным резистором = увеличение тока через стабилитрон = большее падение напряжения на его внутреннем сопротивлении = увеличение выходного напряжения. Это одна из причин, по которой они часто не являются отличной заменой линейному стабилизатору напряжения, потому что их выходное напряжение будет изменяться с входным напряжением.Другие причины заключаются в том, что вам нужно сбросить ток через них, чтобы получить их выходное напряжение, плюс изменения схемы в зависимости от нагрузки, если ее переменная. Тем не менее, если ваше входное напряжение фиксировано, а ток нагрузки фиксирован, тогда стабилитрон может быть отличным выбором в схемах, поскольку вы можете затем выбрать свой резистор серии Vin в зависимости от тока нагрузки и тока стабилитрона, который вы хотите, и знать, что он не изменится. .

Пониженный ток — стабилитроны не работают при uA (Vz падает), им нужен небольшой ток, чтобы выполнять свою работу.Однако при более низких токах мА они обычно работают нормально.

Использование стабилитронов для фиксации, защиты входов и т. Д.

Стабилитроны могут быть хороши для этого, если вы не возражаете против необходимости добавить перед ними последовательный резистор — так хорошо для сигналов, не подходящих для входов питания. Вам просто нужно выбрать размер вашего последовательного резистора в зависимости от ожидаемого входного напряжения наихудшего случая (чтобы гарантировать, что номинальная мощность стабилитрона не будет достигнута) и для более низких напряжений, чтобы через него протекал ток, достаточный для правильного выполнения своей работы.Еще одно преимущество стабилитронов в этом приложении заключается в том, что, поскольку стабилитрон действует как обычный диод в другом направлении, он естественным образом ограничивает отрицательное напряжение на уровне -0,6 В.

ПОЛЕЗНЫЙ?

Мы получаем огромную выгоду от ресурсов в Интернете, поэтому мы решили, что должны попытаться вернуть часть наших знаний и ресурсов сообществу, открыв многие внутренние заметки и библиотеки нашей компании через такие мини-сайты.Мы надеемся, что вы найдете этот сайт полезным.

Пожалуйста, не стесняйтесь комментировать, если вы можете добавить справку к этой странице или указать проблемы и решения, которые вы нашли, но обратите внимание, что мы не предоставляем поддержку на этом сайте. Если вам нужна помощь в решении проблемы, воспользуйтесь одним из множества онлайн-форумов.

Калькулятор резисторов серии стабилитронов

и формулы


Калькулятор серийных резисторов на стабилитронах для цепей с фиксированным током нагрузки

Расчет последовательного резистора


Этот калькулятор рассчитывает последовательное сопротивление стабилитрона.

Сопротивление должно быть рассчитано таким образом, чтобы общий ток не снижал выходное напряжение.

Чтобы стабилизация работала, через стабилитрон должен проходить минимальный ток. В качестве ориентировочного значения можно принять 10% тока нагрузки или 10 мА. Автоматически устанавливается значение 10 мА; его можно перезаписать, если предпочтительнее другое значение.


Калькулятор резисторов серии



Формулы и описание

Полный ток цепи определяется последовательным резистором и всегда постоянен.Когда ток нагрузки уменьшается, ток через стабилитрон соответственно увеличивается.

Если ток нагрузки колеблется между максимальным и нулевым значениями, стабилитрон должен быть рассчитан таким образом, чтобы что он может поглощать максимальный ток и мощность.

Калькулятор выше предполагает постоянный ток нагрузки.Если ток нагрузки непостоянен и падает ниже него, стабилитрон может перегреться и выйти из строя.

Для цепей с переменной нагрузкой используйте калькулятор переменного тока.

Общий ток \ (\ Displaystyle I_ {ges} = I_ {Z \ space min} + I_ {L} \)
Диодный ток \ (\ Displaystyle I_ {D} = I_ {L} · 0.1 \)
Последовательный резистор \ (\ Displaystyle R_v = \ гидроразрыва {U_ {ges} — U_Z} {I_ {ges}} \)
Мощность последовательного резистора \ (\ Displaystyle P_v = (U_ {ges} — U_Z) · I_ {ges} \)
Мощность диода

(переменный ток нагрузки)

\ (\ Displaystyle P_D = U_Z · (I_ {макс} — I_ {мин} + I_D) \)
Мощность диода

(фиксированный ток нагрузки)

\ (\ Displaystyle P_D = U_Z · I_D \)

Эта страница полезна? да Нет

Спасибо за ваш отзыв!

Извините за это

Как мы можем это улучшить?

послать

Стабилитрон

— обзор

Пример 3.4

Желательно поддерживать сопротивление нагрузки R L при постоянном напряжении 100 В, поскольку входное напряжение изменяется от 120 до 110 В. Если стабилизатор напряжения типа, показанного на рис. 3.10a, должен Для достижения этой цели найдите наилучшее значение R s , учитывая, что R L = 10 кОм.

Во-первых, мы выбираем стабилитрон с напряжением В z = 100 В. Во-вторых, мы должны определить максимальный ток через стабилитрон при нормальной работе и убедиться, что он не превышает максимально допустимый ток стабилитрона.Затем определяем R s .

Для начала предположим, что входное напряжение зафиксировано на уровне В мин = 110 В; тогда падение напряжения 10 В на последовательном сопротивлении R s оставит R L с падением напряжения 100 В — желаемое состояние. Для этого через R L и R s должен протекать ток 10 мА, что определило бы последовательное сопротивление как R с = 10 В / 10 мА = 1 кОм. .Если бы напряжение оставалось на уровне 110 В, стабилитрон не понадобился бы, так как стабилитрон не протекал бы, даже если бы стабилитрон присутствовал. Однако входное напряжение изменяется, как показано на рис. 3.10b. Переключение с 110 В на 120 В обычно происходит не быстро, но может происходить за секунды, минуты или даже часы.

При повышении входного напряжения до 120 В ток через R s будет увеличиваться пропорционально. Чтобы поддерживать R L при 100 В, ток через R L должен оставаться на уровне 10 мА, а любой избыточный ток должен течь через стабилитрон.Когда входное напряжение составляет В max = 120 В, 20 В падает на R с и 20 мА проходит через R с (от 10 мА до R L и 10 мА через стабилитрон). Следовательно, как показано на рис. 3.10b, ток стабилитрона изменяется между I z , мин. = 0 и I z , макс. = 10 мА в ответ на изменения входного напряжения, в то время как нагрузка напряжение остается постоянным на уровне 100 В.

Условие I z , min = 0 может использоваться для определения оптимального значения для R s , т. Е.

Rs, оптимальный = Vmin − VzIL

, который в нашем примере дает R с , opt = (110 В — 100 В ) / 10 мА = 1 кОм.

Если мы знаем максимальный ток I z , max , который может выдерживать стабилитрон, мы можем указать минимальное значение R s , которое можно использовать в цепи стабилизатора напряжения на стабилитроне. as

Rs, min = Vmax − VzIz, max + IL

Если предположить, что I z , max = 30 мА, то для R s = (120 — 100 ) / (30 + 10) = 0.5 кОм = 500 Ом. Преимущество использования меньшего сопротивления для R s заключается в том, что если входное напряжение упадет ниже 110 В, действие регулятора все еще может иметь место. Недостатком является то, что (i) R s , min рассеивает больше мощности, чем R s , opt , (ii) ток стабилитрона изменяется в пределах I z , min = 10 мА и I z , макс. = 30 мА, тогда как для R s , opt ток Зенера изменяется только от 0 до 10 мА, и (iii) если входное напряжение превышает 120 В, ток стабилитрона превысит максимально допустимый ток I z , max и, скорее всего, повредит диод.

Всегда существует некоторая опасность превышения максимального тока диода либо из-за неожиданного восходящего колебания входного напряжения, либо из-за внезапного отключения нагрузки, в результате чего весь входной ток будет протекать через диод. Последний случай, случай внезапной разомкнутой нагрузки ( R L = ∞), обычно приводит к выходу из строя стабилитрона, поскольку наиболее вероятно, что I z , максимум будет превышен.

Стабилитроны — журнал DIYODE

Как они работают, как их использовать и как не использовать.

Подавляющее большинство производителей хотя бы слышали о стабилитронах, хотя не многие знают, что это такое и как их использовать. Есть общее представление, что это своего рода контроллер напряжения, но часто на этом информация останавливается. В некоторых кругах они считаются устаревшими и избыточными, и это понятно, учитывая преобладание высокоэффективных модулей импульсных регуляторов, некоторые из которых меньше, чем корпус TO220. Добавьте к этому простоту доступа к более традиционным линейным регуляторам в небольших корпусах, таким как серия LM78LXX в корпусах TO92, и легко упустите из виду скромный стабилитрон.

Мы не думаем, что это справедливо. Несмотря на то, что они претендуют на звание самой старой формы регуляторов напряжения, они так же актуальны сегодня, как и при их изобретении. Отчасти нежелание использовать их проистекает из того факта, что они действительно имеют другие соображения по сравнению с другими упомянутыми формами, поэтому мы собираемся рассмотреть их подробно, начиная с обзора обычных диодов, а затем перейдем к миру стабилитронов.

Давным-давно, в самых ранних выпусках DIYODE, мы рассматривали обычные диоды, как они работают и для чего они используются.«Обычные» — здесь интересный термин, потому что даже в категории обычных диодов есть достаточно большие различия, поэтому «регулярный» вводит в заблуждение. На самом деле мы имеем в виду «другие распространенные типы, помимо стабилитронов».

Общие диоды обычно можно разделить на три категории: силовые, сигнальные и регулирующие. Силовые диоды знакомы большинству производителей. Они используются для обеспечения того, чтобы ток в цепи протекал только в одном направлении. Две основные причины для этого — преобразование переменного тока (AC) в постоянный (DC).Другая основная причина — защитить цепь постоянного тока от неправильного подключения питания. Большинство цепей постоянного тока и многие компоненты не любят этого, и во многих случаях это может привести к повреждению.

Сигнальные диоды во многом аналогичны, за исключением того, что они рассчитаны на гораздо меньший ток. Они используются для управления потоком сигналов в цепи с низким энергопотреблением, а не для управления большой мощностью. Обычно они имеют меньшие размеры, чем их выпрямительные аналоги, часто сделанные из стекла.Большинство сигнальных диодов имеют ограничение по току 100 мА или меньше.

1N4004 против 1N4148

В конечном счете, большинство электронных компонентов и, собственно, само электричество, можно сравнить с водой в трубе. Диоды играют роль односторонних клапанов. Электричество может течь через них в одну сторону, а в другую — нет. Хотя существует множество способов изготовления диодов, наиболее распространенным материалом является кремний. Независимо от материала подложки в материал добавляются легирующие химикаты, которые затем соединяются.В качестве альтернативы, один кусок подложки можно обработать разными легирующими химикатами для достижения того же результата, в зависимости от производственных процессов и набора характеристик, необходимых для конечного результата. Между прочим, легирование — это добавление в следовых количествах определенных химикатов, которые образуют соединения с атомами на поверхности основного материала и изменяют его свойства.

Независимо от технологии производства, легирование приводит к материалам типа «P» и материалов типа «N».Один из них соединен вместе, образуя PN-переход. Ток будет течь от материала типа «P» к материалу типа «N», но не наоборот. Ну, в большинстве случаев не наоборот. Подробнее об этом позже. На схеме здесь показан PN-переход, сделанный из его различных легированных слоев, и обозначение диода выровнено таким же образом. Обратите внимание, что треугольник образует стрелку в направлении потока тока, которую вы можете представить как воронку. Ток может идти туда и выходить с другой стороны. Ток, идущий в обратном направлении, ударяется о кирпичную стену и останавливается.

Для этого используются термины «смещение в прямом направлении», когда ток течет через диод от P к N, и «смещение в обратном направлении», когда ток подается от N к P. Мы говорим «представлен», потому что, пока что-то пойдет не так, он выиграл » т поток. Это остается потенциальной силой, а не кинетической. В большинстве диодов материал P называется «анодом» и обозначается буквой «A». Материал N называется катодом и обозначается буквой «K». Кстати, названия «Анод» и «Катод» восходят к работе Майкла Фарадея над электролитическими ячейками, и история того, почему каждый из них был выбран, несколько запутана, но, как говорят, катод был вдохновлен греческим словом «катодос», что означает « путь вниз »или« спуск ».В этих ранних экспериментах ток не был полностью понят, а электроны не идентифицированы. Вот почему обычный поток тока и поток электронов противоположны друг другу. Катод был «спуском вниз» для тока в ячейку, который, как мы теперь знаем, противоположен. Хотя греческое слово иногда упоминается в качестве причины для обозначения буквы «K», похоже, оно было присвоено через некоторое время после того, как слово «катод» стало использоваться, и, вероятно, происходит от немецкого написания «катод», потому что буква «C» была связанные с конденсаторами, которые затем исследуются.

Если толкнуть кирпичную стену с достаточной силой, она разобьется или упадет прямо. Вы, вероятно, не сможете сделать это, используя только силу своего тела (если только это не очень слабая стена), но суть вы поняли. Диоды такие же: у них есть предел того, сколько электричества может на них воздействовать, прежде чем они выйдут из строя. Как и в случае с кирпичной стеной, дело не только в том, насколько сильно вы толкаете, а в том, насколько сильно. Ток в проводе ведет себя как скорость потока, когда говорят о воде в трубе.Ампер эквивалентен литрам в минуту или тому подобному. Напряжение, с другой стороны, такое же, как давление в трубе. Таким образом, диоды имеют определенный ток, через который они могут безопасно проходить, но напряжение тоже имеет значение. Если «давление» превышено, диод выходит из строя.

Однако, если предел давления будет превышен в одностороннем клапане, когда давление против него, он сломается и позволит воде течь в неправильном направлении. То же самое и с диодом, и это указано в технических данных как пиковое повторяющееся обратное напряжение (V PRR), рабочее пиковое обратное напряжение (V WPR) или постоянное напряжение блокировки (V R).Также существует небольшой ток утечки, который протекает, когда диод смещен в обратном направлении, даже ниже его обратного предела. Он обозначается как пиковый обратный ток, обычно обозначаемый как I RM. В то время как напряжение всегда указывается для обратного смещения, ток указывается для прямого смещения, помимо упомянутого тока утечки. Это ток, о котором говорилось ранее, и это максимум, с которым диод может справиться до того, как он выйдет из строя. В таблицах это указано как Максимальный средний прямой выпрямленный ток I F (AV). Это основные факторы, которые следует учитывать при выборе диода, но есть еще один.

Все материалы рассеивают некоторую энергию и, следовательно, создают падение напряжения. Диод ничем не отличается. Хотя кремний является обычным материалом для изготовления диодов, он имеет большее падение напряжения, чем другие. Большинство силовых диодов имеют падение напряжения от 0,6 В до 1,2 В в зависимости от типа диода и протекающего тока. В технических характеристиках это указано как V F. Обычно это нормально для силовых диодов, но об этом следует подумать. Например, если у вас есть ИС с минимальным надежным рабочим напряжением 4.5 В, а вы питаете его от четырех батареек АА общим напряжением 6 В, падение напряжения может стать проблемой.

Мы провели измерения с помощью мультиметра и полупроводникового анализатора и обнаружили, что падение напряжения на случайно выбранном 1N4004 составляет 0,7 В, но оно было измерено при 5 мА. Как видно из таблиц, с увеличением прямого тока падает и напряжение. Это быстро оставит мало места для разрядки батарей при использовании 1N4004 в качестве защиты от обратной полярности. Напряжение питания должно быть достаточно высоким, чтобы выдерживать падение напряжения на защитных диодах.

Сигнальные диоды ведут себя примерно так же, и большинство кремниевых версий имеют такое же падение напряжения, как и их аналоги по мощности. По этой причине некоторые сигнальные диоды можно найти из экзотических материалов. Одним из самых популярных из них (и в данном случае это относительный термин) является германий. Этот полупроводниковый материал представляет собой металлоид (на самом деле не металл), такой как кремний, и предшествует кремнию в области полупроводниковых устройств. В то время как кремний имеет свойства, которые делают его желательным во многих случаях, германиевые диоды имеют прямое падение напряжения до 0.15В. Это делает его очень полезным для слабых сигналов, например, от радиоволн AM. Это германиевый диод, который лежит в основе «кристаллических» радиоприемников.

Еще один термин, с которым могут встретиться производители, — это диод Шоттки. Это силовой диод, но спроектирован с PN-переходом, состоящим из одного куска полупроводника и одного куска металла. Результатом этого является диод, который имеет значительно меньшее прямое падение напряжения, чем кремниевые диоды, и гораздо быстрее переключается между проводящим и непроводящим состояниями.Специализированные материалы, такие как германий, не указаны на принципиальных схемах, вместо этого они полагаются на номера в списках деталей, чтобы выбрать правильное устройство. Однако диоды Шоттки имеют свой собственный символ.

Теперь для того, для чего вы пришли сюда. Стабилитроны занимают уникальное место в мире электроники. Их можно сделать двумя способами, и оба дают разные характеристики. Оба используют один и тот же символ на принципиальных схемах, и это выглядит неудобно близким к Шоттки. Однако у рычагов есть только один угол, а не два, как у Шоттки, и их направление меняется на противоположное.В стабилитронах действуют два фактора. Один из них называется «эффект Зенера», и он, как и устройство, назван в честь Кларенса Зенера. Не углубляясь в электронику, валансы, отверстия, пары и области, эффект Зинера возникает, когда электрическое поле позволяет «туннелю» электронов пересекать обедненную область PN-перехода.

Другой важный фактор — это лавинный пробой, который происходит более постепенно по сравнению с эффектом Зенера, но все же достаточно резкий. Лавинный пробой, опять же чрезмерно упрощенный, включает ускорение свободных электронов и пропускание тока таким образом.И то, и другое возникает одновременно в любом стабилитроне, но эффект стабилитрона в большей степени ответственен при более низких напряжениях стабилитрона, в то время как лавинный пробой наиболее актуален выше этой точки. Порог варьируется между источниками, но большинство согласны с переходом между двумя эффектами в 5 вольт. Это означает, что диоды, которые использует производитель, могут легко попасть в любую категорию.

Стабилитроны

предназначены для обратного смещения, превышающего их напряжение пробоя, и не разрушаются. Они могут довольно успешно пропускать ток в обратном направлении, если используются в их пределах.Это выбранное напряжение известно как напряжение стабилитрона, поскольку стабилитроны все еще имеют абсолютное обратное напряжение пробоя, после которого они будут разрушены. Это означает, что стабилитроны могут действовать как базовый стабилизатор напряжения. Любая разность потенциалов (напряжение) выше напряжения стабилитрона передается на землю, поэтому вольтметр, подключенный между анодом и катодом, будет показывать напряжение стабилитрона, а не напряжение питания. Аналогия с водой — это вода, текущая в ведро с трубкой сбоку.

Вода наполняет ведро до трубки, но потом выходит.Независимо от того, сколько воды поступает, уровень воды в ведре остается неизменным. То есть, если только вода не течет быстрее, чем может вытечь, но все аналогии в какой-то момент рушатся. Это было бы равносильно превышению текущего лимита. На прилагаемой схеме напряжение питания 12 В. Напряжение стабилитрона для стабилитрона составляет 9 В, а напряжение пробоя силового диода — 400 В. Что произойдет при подаче питания?

Между анодами и катодами обоих диодов существует разность потенциалов.Поскольку силовой диод имеет гораздо более высокое напряжение пробоя, чем стабилитрон, через него не протекает ток, за исключением крошечного, игнорируемого (в большинстве случаев) тока утечки. В стабилитроне, однако, становится очень жарко и выходит дым. Если не повезет, стекло тоже вылезет, наверное, довольно быстро. Так что закройте глаза или наденьте защитные очки. К сожалению, использовать стабилитрон не так просто, как подключить его с обратным смещением к источнику питания и наслаждаться множеством усилителей низкого напряжения.

Как и большинство электронных устройств, стабилитроны рассчитаны на номинальную мощность.Как и обычные диоды в прямом смещении, стабилитрон может справиться только с таким большим током в обратном режиме. Вдобавок ко всему, в реверсивном режиме выделяется довольно много тепла, поэтому стабилитроны по-прежнему производятся в стеклянных корпусах. Пластиковая версия имеет тенденцию слишком легко плавиться, хотя есть керамическая и бакелитовая версии. Наиболее распространенные рейтинги стабилитронов на розничном рынке — 1 Вт и 5 Вт. Есть множество других от торговых и коммерческих поставщиков. Это означает, что стабилитрон мощностью 1 Вт может рассеивать 1 Вт электроэнергии.Другими словами, если у вас есть стабилитрон на 9 В и питать его от источника 10 В, он может пройти 1 А. Однако это может быть не совсем так, поскольку устройства также имеют ограничения в таблицах данных, как и любые другие. Например, в таблице данных On Semiconductor неповторяющийся пиковый обратный ток для стабилитрона 9,1 В 1N4739 указан как 500 мА.

Загвоздка в том, что диоды не имеют возможности по своей внутренней структуре ограничивать себя по току. Как и силовой диод, если на то пошло. Если вы подключите 1N4004 с ограничением в 1 А последовательно с лампочкой мощностью 120 Вт на 12 В, она выйдет из строя, вероятно, со взрывом.То же самое и с стабилитроном, но в то время как обычный диод использует нагрузку остальной цепи для ограничения тока, стабилитрон по своей природе подключен через шины питания и, следовательно, может пропускать столько тока, сколько может обеспечить источник питания. Вот почему на диаграмме выше выходит дым.

Кстати, для непосвященных в электронной промышленности есть старая поговорка, что электронные компоненты сделаны из дыма. Вместо ссылки на «дым и зеркала», означающую магию, это относится к тому факту, что часто компоненты выделяют дым при выходе из строя, потому что обычно это связано со значительным нагревом и частичным сгоранием материалов в компоненте или на нем.Как только вы «выпустите дым», перегрузив или иным образом разрушив компонент, он перестанет работать. Это привело к шутке о том, что компоненты сделаны из дыма, потому что, когда он выпадает, они перестают делать то, что должны.

Хотя для практических целей стабилитрон выходит из строя при номинальном напряжении и пропускает ток при любом напряжении, превышающем это значение, реальность немного отличается. Существует определенный график, который представляет поведение стабилитрона, и тот же график не сильно отличается от устройства.Отключив единицы измерения и пометив оси только именем значения, мы можем дать довольно универсальное представление.

Обратите внимание на небольшие кривые по обе стороны от графика. Точка в области пробоя стабилитрона, где график начинает изгибаться, — это место, где ток (ось x или вертикальная ось) упал до минимального значения. По оси ординат или горизонтальной оси показано напряжение, поэтому часть графика может меняться между устройствами. Однако обратите внимание на тот факт, что существует напряжение, выше которого диод ничего не проводит.Однако это небольшое напряжение, и вы не будете создавать такую ​​ситуацию очень часто.

Температура влияет на стабилитроны и по-другому. Существует не только ограничение максимального тока из-за выделяемого тепла, но и высокая температура может повлиять на номинальную мощность. Согласно уже приведенному техническому описанию On Semi, стабилитроны мощностью 1 Вт имеют температурный предел 50 ° C. Выше этого номинальную мощность необходимо снизить (понизить) на 6,67 мВт / ° C. Таким образом, при работе при 70 ° C разница составляет 20 x 6,67 = 133,4 мВт. Это немного, но может быть, если температура поднимется, это еще и температура перехода, а не температура корпуса.

И эффект стабилитрона, и лавинный пробой зависят от температуры. Эффект Зенера имеет отрицательный температурный коэффициент, что означает, что при повышении температуры напряжение Зенера немного падает по сравнению с номинальным напряжением Зенера. Напротив, лавинный пробой имеет положительный температурный коэффициент, поэтому с повышением температуры растет и напряжение пробоя. График, который у нас здесь, очень упрощен и отражает только концепцию, поскольку температурный коэффициент не только довольно сложен и изогнут, но и данных часто нет в таблицах данных.

Температурные коэффициенты

, вероятно, будут тем, о чем большинству производителей не нужно будет беспокоиться, особенно с учетом того факта, что в технических характеристиках устройств On Semiconductor нет графиков или чисел, а также каких-либо других, которые мы могли бы найти. Тем не менее, мы нашли несколько источников, в которых говорится, что две кривые перекрываются при напряжении около 5,3 В и практически компенсируют друг друга. По совпадению, в одном и том же напряжении пересекаются эффекты стабилитрона и лавинного пробоя, составляя 5.Стабилитрон 6 В (ближайшее предпочтительное значение) — хороший выбор, когда требуется стабильное опорное напряжение, и у вас есть возможность выбрать это напряжение вместо того, чтобы оно было продиктовано схемой.

Как и многие другие компоненты, делать стабилитроны всех возможных значений или точного значения непрактично или экономично. Как правило, они доступны в виде набора общих значений и допусков. На розничном рынке наиболее распространен допуск 5%. В таблице данных On Semiconductor для серии 1N47XX это указано вверху, а затем указаны минимальные, номинальные и максимальные значения для каждого напряжения в диапазоне.Обычные розничные напряжения составляют от 3,3 В до 40 В с некоторыми отклонениями. Ниже 10 В обычно имеется одно или два десятичных значения для каждого вольта, и после этого диапазон изменяется в целых вольтах.

Чтобы использовать стабилитрон в качестве регулятора, необходимо ограничить ток через него. В простейшем случае и, вероятно, в большинстве примеров, это делается с помощью резистора. Вот и все, всего лишь один старый добрый резистор, хотя он должен быть достаточно большим, чтобы выдерживать ток.Бесполезно протягивать 500 мА при 12 В через углеродный пленочный резистор 1/4 Вт. Оттуда тоже пойдет дым.

Выбор значения последовательного резистора RS не такой простой, как вычисление максимального тока через стабилитрон. Также существует падение напряжения на последовательном резисторе, которое необходимо учитывать. Диод должен рассеивать минимально возможный ток, что иногда означает выбор последовательного резистора большего размера. Это может показаться нелогичным, поскольку мы привыкли делать резисторы как можно меньше, чтобы избежать потерь из-за рассеяния, но в этом случае это помогает рассеивать некоторую мощность в резисторе и полагаться на стабилитрон для регулирования.

Когда нагрузка не подключена, весь доступный ток проходит через стабилитрон. Эту ситуацию необходимо учитывать как наихудший сценарий. Вдобавок к этому существует минимальное значение тока через диод, чтобы он поддерживал регулирование. Это зависит от напряжения стабилитрона, но в таблице данных для серии указано от 0,25 до 1 мА. Некоторые из условий тестирования проводились при 4,5 мА для этих данных, поэтому 5 мА — безопасная ставка для минимальной нагрузки.

Чтобы вычислить максимальный ток, который проходит через стабилитрон, мы делим его номинальную мощность в ваттах на напряжение стабилитрона, которое он будет рассеивать.Мы используем это уравнение:

С стабилитроном на 1 Вт 9 В это 0,1111 А или 111 мА. Это не много!

Последовательный резистор RS рассчитывается по:

Где V S — напряжение питания, V Z — напряжение стабилитрона, а I Z — ток через стабилитрон. При номинальном напряжении питания 12 В это дает 27 Ом.

Теперь, снова переписав уравнение 1, мы можем вычислить номинальную мощность, необходимую для этого резистора, умножив ток через него на напряжение, которое будет на нем, которое составляет 12 В минус 9 В стабилитрон, оставляя 3 В.В итоге мы получаем 0,333 Вт, что означает, что подойдет резистор 0,5 Вт.

Однако стабилитроны, подключенные таким образом, сильно зависят от постоянного тока нагрузки, так как любое изменение нагрузки влияет на падение напряжения на резисторе. Если падение напряжения изменяется, а сопротивление, конечно, является фиксированным значением, закон Ома говорит нам, что ток через резистор должен измениться. Лучше всего использовать приведенное выше, чтобы рассчитать максимальный ток, который может выдержать стабилитрон, а затем выяснить, сколько тока он потребляет.Выберите резистор, чтобы получить этот ток плюс небольшой запас, и не более. Если ток нагрузки будет колебаться, стабилитроны останутся незамеченными. Второе уравнение работает нормально, если вместо максимального тока стабилитрона вы используете ток нагрузки.

Конечно, стабилитроны наиболее ценны для производителя, когда вещи не должны быть большими. Некоторые люди вспомнят первые дни светодиодных фонарей в автомобилях. Многие версии плагинов для вторичного рынка, которые должны были заменить лампы накаливания, производились довольно дешево.Они были разработаны за границей на номинальное значение 12 В, если они были очень дешевыми, и, возможно, 14,4 В, если они были хорошими. Однако мощность автомобильного генератора редко бывает стабильной, и могут возникать скачки напряжения до 18 В. В некоторых из более дорогих фонарей при вскрытии имелся стабилитрон, чтобы справиться с этими шипами. Однако из-за текущих ограничений они обычно предназначались для освещения салона или приборной панели с небольшими требованиями к току. Для ламп, содержащих до тридцати светодиодов, это было не так жизнеспособно.

Тем не менее, эта базовая схема регулятора по-прежнему вполне пригодна для применения в слаботочных приложениях. В любой ситуации, требующей менее ста миллиампер или около того, может быть полезен стабилитрон, особенно если есть конструктивная причина для питания подсхемы при более низком напряжении, чем основная схема. Это может быть особенно актуально для ситуаций, когда датчики 3,3 В используются в цепях 5 В или что-то подобное. В этом случае требования к току невелики, и поэтому резистор не обязательно должен иметь такую ​​высокую номинальную мощность.

Хотя ограниченный ток нагрузки может сделать стабилитрон менее чем идеальным током нагрузки, он является идеальным устройством для опорного напряжения. В левой части схемы ниже показан операционный усилитель, подключенный к делителю напряжения, состоящему из двух резисторов, в качестве опорного напряжения. Справа — операционный усилитель, подключенный к опорному элементу стабилитрона с токоограничивающим резистором.

Рассмотрим, что происходит внутри довольно распространенного делителя напряжения.Напряжение питания распределяется между двумя резисторами, а напряжение на их стыке составляет процент от напряжения питания. Это связано с соотношением двух резисторов. Если они одинаковы, опорное напряжение составляет половину напряжения питания. Если первый резистор в два раза больше второго, опорное напряжение будет составлять одну треть от напряжения питания, а если первое в три раза меньше второго, опорное напряжение будет составлять три четверти напряжения питания. Концепция продолжается.

Проблема здесь в том, что если напряжение питания колеблется, как это может произойти, когда включается сильноточная нагрузка или питание нестабильно, то опорное напряжение изменяется. Некоторые схемы не возражают против этого, но в других ситуациях это может быть проблемой. Операционный усилитель в большинстве случаев будет иметь достаточно широкое рабочее напряжение, чтобы он мог нормально работать, но если напряжение питания упадет, скажем, с 12 В до 10 В, то опорное напряжение изменится на 1 В. Это, конечно, для примера с четным резистором.Это может вызвать ложный запуск в ситуации компаратора или резко изменить усиление в других ситуациях.

При использовании стабилитрона в качестве эталона ничего не меняется независимо от источника питания. Используемый резистор предназначен для ограничения тока через диод и не имеет отношения к опорному напряжению. Если использовался стабилитрон на 5,6 В или 6,2 В (два стандартных значения, наиболее близких к 6 В), напряжение могло упасть даже до 7 вольт, не влияя на опорный сигнал. Это, скорее всего, повлияет на ИС или схему, подающую входной сигнал, до того, как это повлияет на опорный сигнал.Если вам нужна абсолютная стабильность опорного сигнала, то стабилитрон может быть тем, что вам нужно. Кроме того, помимо операционных усилителей существует множество применений для стабильных опорных напряжений.

Если вам действительно нужно нечетное напряжение, можно «сложить» стабилитроны, подключив их последовательно. Когда это происходит, сумма напряжений стабилитрона складывается. Это может быть очень стабильный делитель напряжения или нестандартный источник опорного напряжения или стабилизатор. Если вам требуется стабильное, точное опорное напряжение 13,8 В, обычное для аккумуляторов 12 В и автомобильных ситуаций для тестирования и проектирования (хотя рабочее напряжение рассчитано на 14.4 В), то вы можете выбрать стандартные значения между стабилитроном 13 В и 15 В.

Однако стабилитрона 0,8 В нет, по крайней мере, мы не смогли его найти. Стандартные значения начинаются с 3,3 В. Чтобы получить 13,8 В, нам нужно подойти к выбору довольно изобретательно. Вместо того, чтобы начинать с 13 В или даже 10 В, мы получили последовательно включенные стабилитроны 9,1 В и 4,7 В. Поскольку ток в последовательной цепи остается неизменным, мы можем выбрать один резистор, и его не нужно будет менять, но рассеиваемая мощность распределяется между устройствами, поэтому теперь у нас есть стабилитрон 2 Вт, а не 1 Вт.Последовательный резистор по-прежнему нужен, и его можно рассчитать так же, как и для основного регулятора.

Также возможно последовательное использование стабилитронов в качестве делителя напряжения. Если, как в эталонном примере, вам нужны опорные напряжения, которые не меняются, то серия стабилитронов может оказаться для вас более полезной, чем резисторный делитель напряжения. Он будет защищен от колебаний напряжения питания до разумного уровня. Естественно, если подача упадет ниже максимального значения стабилитрона, возникнут проблемы.Однако, когда мы говорим о колебаниях напряжения питания, мы обычно имеем в виду довольно незначительные величины. Для чего-то большего есть проблема, которую нужно решить.

Кроме того, можно ставить и обычные диоды. На схеме изображен очень простой вольтметр, состоящий из серии кремниевых диодов. Каждый из них имеет падение напряжения около 0,7 В, поэтому каждый светодиод загорается, когда напряжение питания на 0,7 В выше, чем предыдущий. Схема имеет ограниченное использование как есть, но все же может служить в качестве измерителя батареи для меньших напряжений.Нагрузка, которую он возлагает на батарею, не будет достаточно высокой, чтобы давать точные показания, поэтому она будет полезна только в том случае, если она будет подключена параллельно нагрузке, которую обычно питает батарея. Схема может быть модифицирована с помощью нескольких дополнительных компонентов для создания базового измерителя VU (уровня звука).

Вы, наверное, догадались, что стабилитроны не будут работать на вашем следующем электромобиле или высокомоментном двигателе. Ограничения по току невелики, а потери несколько высоки. Однако добавление дополнительных компонентов может повысить мощность стабилитрона.Показанный здесь пример называется «последовательным регулятором напряжения», поскольку компонент, обеспечивающий регулирование шины питания, включен последовательно с нагрузкой. Большинство схем регуляторов, которые мы видим в сети, в той или иной форме являются последовательными регуляторами. Однако вы, возможно, уже сомневаетесь, что регулятор — это транзистор? Да, именно так мы получаем полезный ток от стабилитрона.

Хотя эта схема является основным продуктом электроники, существует множество форм и вариаций. Однако у них много общего.Напряжение от источника питания подается на коллектор транзистора Q1, который может быть любым из большого набора NPN-транзисторов. Источник питания также подключен к резистору, ограничивающему ток на базе транзистора. Однако, поскольку стабилитрон подключен между базой и землей, напряжение на базе поддерживается на уровне стабилитрона, ограниченного по току резистором. Это делает его невосприимчивым к колебаниям напряжения питания, и его легче установить на значение, чем резисторный делитель напряжения.Если бы резистор был подключен к базе без стабилитрона, база была бы почти под напряжением питания, так как ток от базы к эмиттеру крошечный.

Таким образом, транзистор пропускает только то напряжение, которое находится на его базе, за вычетом падения напряжения база-эмиттер, которое составляет около 0,6 В для большинства обычных транзисторов, но может быть больше для более мощных. Для этого обратитесь к таблицам данных. Хотя мы склонны думать о транзисторах как об усилителях тока, такое устройство называется эмиттерным повторителем, и напряжение на эмиттере отражает напряжение на базе за вычетом обсуждаемого падения напряжения.

Также следует отметить C1, стандартный фильтрующий конденсатор, используемый в большинстве цепей питания, и C2, который помогает свести к минимуму колебания стабилитрона. На выходе есть еще два конденсатора фильтра. Предел тока — это предел выбранного транзистора, немного сниженный в целях безопасности. Мы выбрали BD139 для этой схемы, хотя мы не строим его, а просто показываем значения. Чтобы отрегулировать 5 В от 12 В, мы используем стабилитрон 5,6 В, чтобы справиться с падением напряжения база-эмиттер. Эта схема с установленным радиатором должна обеспечивать комфортную передачу тока 1 А.

Мы вычисляем R S так же, как и до сих пор, с напряжением питания минус напряжение стабилитрона, но на этот раз мы можем рассчитать номинальный ток, потому что нет нагрузки, которую нужно подавать, кроме тока, достаточного для стабилизации стабилитрона.

Чтобы минимизировать потери, мы можем сделать этот ток около 10 мА. В результате получается 640 Ом, поэтому ближайшее значение 620 Ом подойдет. Просто запомните правило порядка операций. Сначала скобки и степени, затем деление и умножение, затем сложение и вычитание.

Если вы введете 12 — 5,6 ÷ 0,01, калькулятор сначала сделает 5,6 ÷ 0,01, а затем вычтет это из 12. Чтобы заставить его работать на калькуляторе, либо сначала вычтите 5,6 из 12, а затем разделите ответ (либо клавишей NAS или повторно введя его) на 0,01, или просто добавьте скобки, например: (12 — 5,6) ÷ 0,01

Интересно, что в стабилизации почтенных регуляторов серии LM78XX также используются стабилитроны. Вот внутренняя схема LM7805. Несмотря на то, что существует множество транзисторов и перекрестно соединенных компонентов, обеспечивающих очень стабильное регулирование, внимательно посмотрите на левую часть диаграммы и посмотрите, узнаете ли вы что-нибудь.

ДИАГРАММА КРЕДИТ: ST Microelectronics

Хотя стабилитроны в качестве стабилизаторов больше не востребованы. При использовании в правильной роли они так же полезны сейчас, как и тогда, когда не было других вариантов.

Одна из причин, по которой мы не представили стабилизатор напряжения в виде сборки, заключалась в том, что он не дает никаких преимуществ по сравнению с простой вставкой LM7805 или, что еще лучше, крошечных импульсных регуляторов, доступных сейчас с той же распиновкой и площадью основания, что и серия LM78XX.Полезно знать, как это работает, и однажды у вас может появиться причина его создать. Возможно, для нестандартного напряжения или для управления действительно большим транзистором и обеспечения большого тока.

В качестве эталона стабилитрон найдет больше применения для производителя. Они стабильны и довольно точны, предлагая преимущества, которые мы рассмотрели по сравнению с резистивными делителями напряжения, подключенными к источнику питания. Возможно, прочитав это, вы никогда не сможете использовать стабилитрон, или они могут появиться в ваших проектах, где раньше не собирались.Трудно сказать, но, надеюсь, вы что-то взяли из этого и оценили эти недооцененные компоненты.

Как выбрать источник опорного напряжения

Почему именно опорное напряжение?

Это аналоговый мир. Все электронные устройства должны каким-то образом взаимодействовать с «реальным» миром, будь то автомобиль, микроволновая печь или мобильный телефон. Для этого электроника должна иметь возможность сопоставлять реальные измерения (скорость, давление, длина, температура) с измеряемой величиной в мире электроники (напряжением).Конечно, чтобы измерить напряжение, вам понадобится эталон, по которому нужно будет измерить. Этот стандарт является эталоном напряжения. Вопрос для любого разработчика системы не в том, нужен ли ему источник опорного напряжения, а в том, какой именно?

Опорное напряжение — это просто цепь или элемент схемы, обеспечивающий известный потенциал до тех пор, пока этого требует схема. Это могут быть минуты, часы или годы. Если продукту требуется информация о мире, такая как напряжение или ток батареи, потребляемая мощность, размер или характеристики сигнала, или идентификация неисправности, то рассматриваемый сигнал необходимо сравнить со стандартом.Каждый компаратор, АЦП, ЦАП или цепь обнаружения должны иметь опорное напряжение, чтобы выполнять свою работу (рисунок 1). Сравнивая интересующий сигнал с известным значением, любой сигнал может быть точно определен количественно.

Рисунок 1. Типичное использование источника опорного напряжения для АЦП

Справочные спецификации

Опоры напряжения

бывают разных форм и предлагают различные функции, но, в конечном итоге, точность и стабильность являются наиболее важными характеристиками опорного напряжения, поскольку основная цель источника опорного напряжения — обеспечить известное выходное напряжение.Отклонение от этого известного значения является ошибкой. Спецификации опорного напряжения обычно предсказывают неопределенность опорного напряжения при определенных условиях, используя следующие определения.

Таблица 1. Технические характеристики опорных источников высокого напряжения
Температурный коэффициент Начальная точность I S Архитектура В ВЫХ Шум напряжения * Долгосрочный дрейф Пакет
LT1031 5 частей на миллион / ° C 0.05% 1,2 мА Зенер погребенный 10 В 0,6 частей на миллион 15 частей на миллион / кЧ H
LT1019 5 частей на миллион / ° C 0,05% 650 мкА Ширина запрещенной зоны 2,5 В, 4,5 В, 5 В, 10 В 2,5 частей на миллион СО-8, ПДИП
LT1027 5 частей на миллион / ° C 0.05% 2,2 мА Зенер погребенный 5 В 0,6 частей на миллион 20 частей на миллион / месяц СО-8, ПДИП
LT1021 5 частей на миллион / ° C 0,05% 800 мкА Зенер погребенный 5В, 7В, 10В 0,6 частей на миллион 15 частей на миллион / кЧ SO-8, PDIP, H
LTC6652 5 частей на миллион / ° C 0.05% 350 мкА Ширина запрещенной зоны 1,25 В, 2,048 В, 2,5 В, 3 В, 3,3 В, 4,096 В, 5 В 2,1 частей на миллион 60 частей на миллион / √kHr MSOP
LT1236 5 частей на миллион / ° C 0,05% 800 мкА Зенер погребенный 5 В, 10 В 0,6 частей на миллион 20 частей на миллион / кЧ СО-8, ПДИП
LT1461 3 частей на миллион / ° C 0.04% 35 мкА Ширина запрещенной зоны 2,5 В, 3 В, 3,3 В, 4,096 В, 5 В 8 частей на миллион 60 частей на миллион / √kHr СО-8
LT1009 15 частей на миллион / ° C 0,2% 1,2 мА Ширина запрещенной зоны 2,5 В 20 частей на миллион / кЧ МСОП-8, СО-8, З
LT1389 20 частей на миллион / ° C 0.05% 700 нА Ширина запрещенной зоны 1,25 В, 2,5 В, 4,096 В, 5 В 20 частей на миллион СО-8
LT1634 10 частей на миллион / ° C 0,05% 7 мкА Ширина запрещенной зоны 1,25 В, 2,5 В, 4,096 В, 5 В 6 частей на миллион СО-8, МСОП-8, З
LT1029 20 частей на миллион / ° C 0.20% 700 мкА Ширина запрещенной зоны 5 В 20 частей на миллион / кЧ Z
LM399 1 частей на миллион / ° C 2% 15 мА Зенер погребенный 7V 1 часть на миллион 8 частей на миллион / √kHr H
LTZ1000 0.05 частей на миллион / ° C 4% Зенер погребенный 7,2 В 0,17 частей на миллион 2 мкВ / √кЧ H
* 0,1–10 Гц, размах

Начальная точность

Отклонение выходного напряжения, измеренное при заданной температуре, обычно 25 ° C. Хотя начальное выходное напряжение может варьироваться от блока к блоку, если оно постоянно для данного блока, то его можно легко откалибровать.

Температурный дрейф

Эта спецификация является наиболее широко используемой для оценки характеристик опорного напряжения, поскольку она показывает изменение выходного напряжения в зависимости от температуры. Температурный дрейф вызывается дефектами и нелинейностями в элементах схемы и часто в результате является нелинейным.

Для многих деталей температурный дрейф TC, указанный в ppm / ° C, является основным источником ошибок. Для деталей с постоянным дрейфом возможна калибровка. Распространенное заблуждение относительно дрейфа температуры состоит в том, что он линейный.Это приводит к таким предположениям, как «дрейф детали будет меньше в меньшем диапазоне температур». Часто бывает наоборот. TC обычно указывается с помощью «блочного метода», чтобы дать представление о вероятной ошибке во всем диапазоне рабочих температур. Это расчетное значение, основанное только на минимальном и максимальном значениях напряжения, и не учитывает температуры, при которых возникают эти экстремумы.

Для опорных значений напряжения, которые очень линейны в указанном диапазоне температур, или для тех, которые не настроены тщательно, можно предположить, что ошибка наихудшего случая пропорциональна диапазону температур.Это связано с тем, что максимальное и минимальное выходные напряжения, скорее всего, будут обнаружены при максимальной и минимальной рабочих температурах. Однако для очень тщательно настроенных эталонов, часто идентифицируемых по очень низкому температурному дрейфу, нелинейный характер эталона может преобладать.

Например, эталон, указанный как 100 ppm / ° C, имеет тенденцию выглядеть совершенно линейным в любом диапазоне температур, поскольку дрейф из-за несовпадения компонентов полностью скрывает присущую нелинейность. Напротив, температурный дрейф эталона, заданного как 5ppm / ° C, будет определяться нелинейностями.

Это можно легко увидеть на графике зависимости выходного напряжения от температуры на Рисунке 2. Обратите внимание, что здесь представлены две возможные температурные характеристики. Некомпенсированная запрещенная зона выглядит как парабола с минимумом на экстремумах температуры и максимумом в середине. Ширина запрещенной зоны с температурной компенсацией, такая как LT1019, показанная здесь, выглядит как S-образная кривая с наибольшим наклоном около центра температурного диапазона. В последнем случае нелинейность усугубляется, так что совокупная неопределенность по температуре уменьшается.

Рисунок 2. Температурные характеристики опорного напряжения

Лучше всего использовать спецификацию температурного дрейфа для расчета максимальной общей погрешности в указанном диапазоне температур. Обычно не рекомендуется рассчитывать погрешности в неуказанных диапазонах температур, если характеристики температурного дрейфа не хорошо изучены.

Долгосрочная стабильность

Это мера тенденции опорного напряжения к изменению во времени, независимо от других переменных.Начальные сдвиги в значительной степени вызваны изменениями механического напряжения, обычно из-за разницы в скоростях расширения выводной рамы, штампа и компаунда пресс-формы. Этот стрессовый эффект имеет тенденцию иметь большой начальный сдвиг, который быстро уменьшается со временем. Начальный дрейф включает также изменение электрических характеристик элементов схемы, в том числе установление характеристик устройства на атомарном уровне. Более длительные сдвиги вызваны электрическими изменениями в элементах схемы, которые часто называют «старением».Этот дрейф имеет тенденцию происходить с меньшей скоростью по сравнению с первоначальным дрейфом и со временем снижаться. Поэтому часто указывается как дрейф / √kHr. Эталоны напряжения имеют тенденцию к старению быстрее при более высоких температурах.

Температурный гистерезис

Эта спецификация, о которой часто забывают, также может быть основным источником ошибок. Он носит механический характер и является результатом изменения напряжения штампа из-за термоциклирования. Гистерезис можно наблюдать как изменение выходного напряжения при заданной температуре после большого температурного цикла.Он не зависит от температурного коэффициента и временного дрейфа и снижает эффективность начальной калибровки напряжения.

Большинство эталонов имеют тенденцию изменяться вокруг номинального выходного напряжения во время последующих температурных циклов, поэтому тепловой гистерезис обычно ограничивается предсказуемым максимальным значением. У каждого производителя свой метод определения этого параметра, поэтому типичные значения могут вводить в заблуждение. Данные распределения, представленные в таблицах данных, таких как LT1790 и LTC6652, гораздо более полезны при оценке погрешности выходного напряжения.

Другие характеристики

Дополнительные технические характеристики, которые могут быть важны в зависимости от требований приложения, включают:

  • Шум напряжения
  • Регламент линейки / PSRR
  • Нормы нагрузки
  • Падение напряжения
  • Диапазон поставок
  • Ток потребления

Справочные типы

Два основных типа опорного напряжения — шунтирующий и последовательный. В Таблице 2 приведен список серий линейных устройств и опорных напряжений шунта.

Таблица 2. Эталоны напряжения доступны от Linear Technology
Тип Часть Описание
серии LT1019 Прецизионная ширина запрещенной зоны
LT1021 Прецизионный малошумящий стабилитрон
LT1027 Precision 5V Скрытый стабилитрон
LT1031 Прецизионный стабилитрон 10 В с низким уровнем шума / малым дрейфом
LT1236 Прецизионный малошумящий стабилитрон
LT1258 Микромощный LDO Ширина запрещенной зоны
LT1460 Прецизионная ширина запрещенной зоны для микромощностей
LT1461 Micropower Сверхточная запрещенная зона
LT1790 Микромощная ширина запрещенной зоны с малым падением напряжения
LT1798 Микромощный LDO Ширина запрещенной зоны
LT6650 Микромощность 400 мВ / регулируемая ширина запрещенной зоны
LTC6652 Precision Low Noise LDO Bandgap
Шунт LM129 Точность 6.9В похороненный стабилитрон
LM185 Micropower 1.2V / 2.5V стабилитрон
LM399 Precision 7V Стабилитрон с подогревом
LT1004 Micropower 1,2 В / 2,5 В, ширина запрещенной зоны
LT1009 Прецизионная ширина запрещенной зоны 2,5 В
LT1029 Ширина запрещенной зоны 5 В
LT1034 Micropower Dual (1.Ширина запрещенной зоны 2 В / стабилитрон 7 В)
LT1389 Прецизионная ширина запрещенной зоны Nanopower
LT1634 Прецизионная ширина запрещенной зоны для микромощностей
LTZ1000 Сверхточный стабилитрон с подогревом

Каталожные номера шунта

Шунтирующий источник опорного напряжения — это двухконтактный тип, обычно рассчитанный на работу в указанном диапазоне токов. Хотя большинство шунтов имеют ширину запрещенной зоны и имеют разное напряжение, их можно представить себе, и они так же просты в использовании, как стабилитроны.

Наиболее распространенная схема связывает один вывод опорного сигнала с землей, а другой вывод — с резистором. Оставшийся вывод резистора подключается к источнику питания. По сути, это становится трехконтактной схемой. Общий вывод опорного сигнала / резистора является выходом. Резистор должен быть выбран таким образом, чтобы минимальный и максимальный токи через опорный ток находились в пределах указанного диапазона во всем диапазоне питания и диапазоне тока нагрузки. Эти эталоны довольно легко спроектировать при условии, что напряжение питания и ток нагрузки не сильно различаются.Если один из них или оба могут существенно измениться, то резистор должен быть выбран с учетом этого отклонения, часто заставляя схему рассеивать значительно больше мощности, чем требуется для номинального случая. В этом смысле его можно рассматривать как усилитель класса А.

Преимущества шунтирующих эталонов включают простую конструкцию, небольшие размеры и хорошую стабильность в широком диапазоне токов и нагрузок. Кроме того, они легко спроектированы как источники отрицательного напряжения и могут использоваться с очень высокими напряжениями питания, поскольку внешний резистор удерживает большую часть потенциала, или с очень низкими напряжениями, так как выходное напряжение может быть всего на несколько милливольт ниже поставлять.Linear Technology предлагает шунтирующие устройства, включая LT1004, LT1009, LT1389, LT1634, LM399 и LTZ1000. Типичная шунтирующая цепь представлена ​​на рисунке 3.

Рисунок 3. Шунтирующее опорное напряжение

Обозначения серии

Ссылки серии

— это три (или более) оконечных устройства. Они больше похожи на регуляторы с малым падением напряжения (LDO), поэтому обладают многими из тех же преимуществ. В частности, они потребляют относительно фиксированную величину тока питания в широком диапазоне напряжений питания и проводят ток нагрузки только тогда, когда этого требует нагрузка.Это делает их идеальными для цепей с большими перепадами напряжения питания или тока нагрузки. Они особенно полезны в цепях с очень большими токами нагрузки, поскольку между опорным сигналом и источником питания нет последовательного резистора.

Продукты серии

, доступные от Linear Technology, включают LT1460, LT1790, LT1461, LT1021, LT1236, LT1027, LTC6652, LT6660 и многие другие. Такие продукты, как LT1021 и LT1019, могут работать в качестве шунтирующего или последовательного источника опорного напряжения. Схема последовательного опорного сигнала показана на рисунке 4.

Рисунок 4. Последовательное опорное напряжение

Контрольные схемы

Существует множество способов создания ИС опорного напряжения. У каждого есть свои преимущества и недостатки.

Ссылки на стабилитрон

Скрытый эталонный стабилитрон имеет относительно простую конструкцию. Стабилитрон (или лавинный) имеет предсказуемое обратное напряжение, которое довольно постоянно при температуре и очень стабильно во времени. Эти диоды часто имеют очень низкий уровень шума и очень стабильны во времени, если они находятся в небольшом температурном диапазоне, что делает их полезными в приложениях, где изменения опорного напряжения должны быть как можно меньшими.

Эту стабильность можно объяснить относительно небольшим количеством компонентов и площади кристалла по сравнению с другими типами эталонных схем, а также тщательной конструкцией стабилитрона. Однако обычно наблюдаются относительно высокие отклонения начального напряжения и температурного дрейфа. Могут быть добавлены дополнительные схемы, чтобы компенсировать эти недостатки или обеспечить диапазон выходных напряжений. И шунтирующие, и последовательные ссылки используют стабилитроны.

Устройства

, такие как LT1021, LT1236 и LT1027, используют внутренние источники тока и усилители для регулирования напряжения и тока стабилитрона для повышения стабильности, а также для обеспечения различных выходных напряжений, таких как 5 В, 7 В и 10 В.Эта дополнительная схема делает стабилитрон более совместимым с широким спектром прикладных схем, но требует некоторого дополнительного запаса питания и может вызвать дополнительную ошибку.

В качестве альтернативы LM399 и LTZ1000 используют внутренние нагревательные элементы и дополнительные транзисторы для стабилизации температурного дрейфа стабилитрона, обеспечивая наилучшее сочетание температурной и временной стабильности. Кроме того, эти продукты на основе стабилитронов обладают чрезвычайно низким уровнем шума, обеспечивая наилучшую производительность.LTZ1000 демонстрирует температурный дрейф 0,05 ppm / ° C, долговременную стабильность 2 мкВ / √kHr и шум 1,2 мкВ P-P . Чтобы дать некоторую перспективу, в лабораторном приборе общая погрешность эталонного напряжения LTZ1000 из-за шума и температуры будет всего около 1,7 ppm плюс часть 1 ppm в месяц из-за старения.

Ссылки на запрещенную зону

Хотя стабилитроны можно использовать для получения эталонов очень высоких характеристик, им не хватает гибкости. В частности, они требуют напряжения питания выше 7 В и предлагают относительно небольшое выходное напряжение.Напротив, эталонные значения ширины запрещенной зоны могут давать широкий спектр выходных напряжений с небольшим запасом по питанию — часто менее 100 мВ. Эталоны ширины запрещенной зоны могут быть разработаны для обеспечения очень точного начального выходного напряжения и низкого температурного дрейфа, что устраняет необходимость в трудоемкой калибровке в приложении.

Работа с шириной запрещенной зоны основана на основных характеристиках транзисторов с биполярным переходом. На рисунке 5 показана упрощенная версия схемы LT1004 с основной запрещенной зоной. Можно показать, что несовпадающая пара транзисторов с биполярным переходом имеет разницу в V BE , которая пропорциональна температуре.Эту разницу можно использовать для создания тока, линейно возрастающего с температурой. Когда этот ток проходит через резистор и транзистор, изменение температуры базового эмиттера транзистора отменяет изменение напряжения на резисторе, если он имеет правильный размер. Хотя это подавление не является полностью линейным, его можно компенсировать с помощью дополнительных схем, чтобы получить очень низкий температурный дрейф.

Рис. 5. Схема с запрещенной зоной рассчитана на теоретически нулевой температурный коэффициент.

Математика, лежащая в основе базового эталонного напряжения запрещенной зоны, интересна тем, что объединяет известные температурные коэффициенты с уникальными соотношениями резисторов для создания эталонного напряжения с теоретически нулевым температурным дрейфом. На рисунке 5 показаны два транзистора, масштабированные таким образом, что площадь эмиттера Q10 в 10 раз больше, чем у Q11, в то время как Q12 и Q13 поддерживают равные токи коллектора. Это создает известное напряжение между базами двух транзисторов:

.

где k — постоянная Больцмана в Дж / кельвин (1.38 × 10 -23 ​​), T — температура в кельвинах (273 + T (° C)), а q — заряд электрона в кулонах (1,6×10 -19 ). При 25 ° C kT / q имеет значение 25,7 мВ с положительным температурным коэффициентом 86 мкВ / ° C. ∆V BE — это напряжение, умноженное на ln (10), или 2,3, для напряжения 25 ° C, равного примерно 60 мВ, с температурой 0,2 мВ / ° C.

При подаче этого напряжения на резистор 50 кОм, подключенный между базами, создается ток, пропорциональный температуре. Этот ток смещает диод Q14 с напряжением 575 мВ при 25 ° C и –2.Температурный коэффициент 2 мВ / ° C. Резисторы используются для создания падений напряжения с положительной температурой, которые добавляются к напряжению диода Q14, создавая таким образом потенциал опорного напряжения приблизительно 1,235 В с теоретическим температурным коэффициентом 0 мВ / ° C. Эти падения напряжения показаны на рисунке 5. Баланс схемы обеспечивает токи смещения и выходную мощность.

Linear Technology производит широкий спектр эталонов ширины запрещенной зоны, включая LT1460, небольшой и недорогой прецизионный эталон серии, LT1389, шунтирующий эталон сверхмалой мощности, а также LT1461 и LTC6652, которые являются эталонами с очень высокой точностью и малым дрейфом.Доступные выходные напряжения включают 1,2 В, 1,25 В, 2,048 В, 2,5 В, 3,0 В, 3,3 В, 4,096 В, 4,5 В, 5 В и 10 В. Эти эталонные напряжения могут обеспечиваться в широком диапазоне источников питания и условий нагрузки с минимальными затратами напряжения и тока. Продукты могут быть очень точными, как в случае с LT1461, LT1019, LTC6652 и LT1790; очень маленький, как в случае LT1790 и LT1460 (SOT23), или LT6660 в корпусе DFN 2 мм × 2 мм; или с очень низким энергопотреблением, например LT1389, которому требуется всего 800 нА. В то время как эталоны Зенера часто имеют лучшую производительность с точки зрения шума и долговременной стабильности, новые эталоны ширины запрещенной зоны, такие как LTC6652, с размахом шума 2 ppm (0.От 1 Гц до 10 Гц) сокращают разрыв.

Ссылки на дробную запрещенную зону

Это ссылки, основанные на температурных характеристиках биполярных транзисторов, но с выходным напряжением, которое может составлять всего несколько милливольт. Они полезны для цепей с очень низким напряжением, особенно в компараторах, где пороговое значение должно быть меньше обычного напряжения запрещенной зоны (приблизительно 1,2 В).

На рисунке 6 показана основная схема от LM10, которая объединяет элементы, которые пропорциональны и обратно пропорциональны температуре, аналогично нормальному эталону ширины запрещенной зоны, чтобы получить постоянное эталонное напряжение 200 мВ.Дробная запрещенная зона обычно использует ∆V BE для генерации тока, пропорционального температуре, и V BE для генерации тока, который обратно пропорционален. Они объединены в соответствующем соотношении в резисторном элементе для создания не зависящего от температуры напряжения. Размер резистора можно изменять, чтобы изменять опорное напряжение, не влияя на температурные характеристики. Это отличается от традиционной схемы с запрещенной зоной тем, что схема с дробной запрещенной зоной объединяет токи, в то время как традиционные схемы имеют тенденцию объединять напряжения, обычно напряжение база-эмиттер и I • R с противоположным ТС.

Рисунок 6. Схема опорного напряжения 200 мВ

Дробные запрещенные зоны, подобные схеме LM10, также частично основаны на вычитании. LT6650 имеет опорный сигнал 400 мВ этого типа в сочетании с усилителем. Это позволяет изменять опорное напряжение, изменяя коэффициент усиления усилителя, и дает буферизованный выходной сигнал. С помощью этой простой схемы можно создать любое выходное напряжение от 0,4 В до нескольких милливольт ниже напряжения питания. В более интегрированном решении LT6700 (рис. 7) и LT6703 объединяют опорное напряжение 400 мВ с компараторами и могут использоваться в качестве мониторов напряжения или оконных компараторов.Опорное напряжение 400 мВ позволяет контролировать малые входные сигналы, что снижает сложность схем контроля и позволяет также контролировать элементы схемы, работающие при очень низком энергопотреблении. Для больших пороговых значений можно добавить простой резисторный делитель (рисунок 8). Каждый из этих продуктов доступен в компактном корпусе (SOT23), потребляет малую мощность (менее 10 мкА) и работает в широком диапазоне напряжений (от 1,4 В до 18 В). Кроме того, LT6700 доступен в корпусе DFN 2 мм × 3 мм, а LT6703 доступен в корпусе DFN 2 мм × 2 мм.

Рис. 7. LT6700 позволяет проводить сравнения с порогами до 400 мВ.

Рисунок 8. Более высокие пороги устанавливаются путем деления входного напряжения.

Выбор артикула

Итак, теперь, имея все эти возможности, как выбрать правильный эталон для вашего приложения? Вот несколько советов, которые могут сузить диапазон вариантов:

  • Напряжение питания слишком высокое? Выберите шунт.
  • Напряжение питания или ток нагрузки сильно различаются? Выберите серию.
  • Требуется высокая энергоэффективность? Выберите серию.
  • Определите свой реальный диапазон температур. Linear Technology обеспечивает гарантированные характеристики и работу в различных диапазонах температур, включая от 0 ° C до 70 ° C, от −40 ° C до 85 ° C и от −40 ° C до 125 ° C.
  • Будьте реалистичны в отношении требуемой точности. Важно понимать точность, требуемую приложением. Это поможет определить важные характеристики.Принимая во внимание требование, умножьте температурный дрейф на указанный диапазон температур. Добавьте начальную погрешность точности, тепловой гистерезис и долговременный дрейф в течение предполагаемого срока службы продукта. Удалите все параметры, которые будут откалиброваны на заводе или периодически откалиброваны. Это дает представление о полной точности. Для наиболее требовательных приложений также могут быть добавлены шум, ошибки регулирования линии и регулирования нагрузки. Например, эталон с начальной погрешностью 0,1% (1000 ppm), температурным дрейфом 25 ppm / ° C от -40 ° C до 85 ° C, тепловым гистерезисом 200 ppm, размахом шума 2 ppm и временным дрейфом 50 ppm / √kHr будет иметь общую неопределенность более 4300 частей на миллион на момент построения схемы.Эта погрешность увеличивается на 50 частей на миллион в первые 1000 часов, когда цепь находится под напряжением. Первоначальная точность может быть откалибрована, уменьшив ошибку до 3300 частей на миллион + 50 частей на миллион • √ (т / 1000 часов).
  • Каков реальный диапазон поставок? Какое максимальное ожидаемое напряжение питания? Будут ли возникать неисправности, такие как сброс нагрузки батареи или всплески индуктивного питания при горячей замене, которые эталонная ИС должна выдерживать? Это может значительно сократить количество жизнеспособных вариантов.
  • Сколько энергии может потреблять эталонный образец? Справочные материалы обычно делятся на несколько категорий: более 1 мА, ~ 500 мкА, <300 мкА, <50 мкА, <10 мкА, <1 мкА.
  • Какой ток нагрузки? Будет ли нагрузка потреблять значительный ток или производить ток, который должен потреблять эталон? Многие ссылки могут обеспечить только малые токи нагрузки, а немногие могут поглощать значительный ток. Спецификация регулирования нагрузки — хорошее руководство.
  • Сколько у вас места? Справочные материалы поставляются в самых разных упаковках, включая металлические банки, пластиковые упаковки (DIP, SOIC, SOT) и очень маленькие упаковки, включая LT6660 в DFN 2 мм × 2 мм.Существует широко распространенное мнение, что ссылки в упаковках большего размера имеют меньшую погрешность из-за механического напряжения, чем упаковки меньшего размера. Хотя верно то, что некоторые ссылки могут дать лучшую производительность в больших пакетах, есть свидетельства того, что разница в производительности мало связана непосредственно с размером пакета. Более вероятно, что из-за того, что меньшие по размеру кристаллы используются для продуктов, которые предлагаются в меньших корпусах, необходимо сделать некоторые компромиссы в производительности, чтобы установить схему на кристалле. Обычно метод установки пакета дает более существенную разницу в производительности, чем фактический пакет — тщательное внимание к способам и местоположению установки может максимизировать производительность.Кроме того, устройства с меньшей площадью основания могут демонстрировать меньшую нагрузку при изгибе печатной платы по сравнению с устройствами с большей площадью основания. Это подробно обсуждается в примечании к применению AN82 «Понимание и применение источников опорного напряжения», доступном от Linear Technology.

Заключение

Linear Technology предлагает широкий выбор эталонных устройств напряжения. К ним относятся как последовательные, так и шунтирующие эталоны, разработанные с использованием стабилитронов, запрещенных зон и других типов. Справочные материалы доступны для различных классов производительности и температуры и почти для всех мыслимых типов корпусов.Ассортимент продукции варьируется от самой высокой доступной точности до небольших и недорогих альтернатив. Благодаря обширному арсеналу эталонов напряжения эталоны напряжения Linear Technology удовлетворяют потребности практически любого приложения.

См. Также инструкцию AN82 по применению Linear Technology «Общие сведения о и применении источников опорного напряжения», которую можно загрузить здесь.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *