+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как подключить электродвигатель с 380 на 220: способы и схемы

Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.

Общие правила

Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

  1. 660/380 В;
  2. 380/220 В;
  3. 220/127 В.

Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник.

В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой,  будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.

Способы и схемы подключения

В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.

Без конденсаторов

Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете  избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

Схема бесконденсаторного пуска треугольник

Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.

Работа схемы производится следующим образом:

  • при подаче напряжения на ввод провода подключаются к двум точкам мотора;
  •  напряжение на третью точку треугольника подается через времязадающую R-C  цепочку;
  • магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
  • после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.

Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них.

Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:

Схема бесконденсаторного пуска звезда

С конденсаторами

Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий.  Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.

Схема включения с конденсаторами

Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками,  а к третей та же фаза подключается через  контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.

Включение асинхронного электродвигателя происходит по такому принципу:

  • Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
  • После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор  C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
  • Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.

Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.

С реверсом

Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.

Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

Включение трехфазного двигателя с реверсом

Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения.

В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.

Используя пускатель

Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

Схема включения через магнитный пускатель

Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор С

пуск.  При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.

Как подбирать конденсаторы?

Если вы собрались подключить электродвигатель, то выбор  конденсатора осуществляется по таким принципам:

  • Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
  • Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
  • Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:

Таблица: определение емкости конденсаторов

Мощность трехфазного электродвигателя, кВт0,40,60,81,11,52,2
Минимальная емкость конденсатора Ср , мкф406080100150230
Емкость пускового конденсатора (Сп), мкф80120160200250300

Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.

Видео в помощь

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т. к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.


Как подключить однофазный электродвигатель на 220 Вольт- схемы, инструкции

В прошлой статье Я рассказывал как подключить и запустить двигатель на 380 Вольт в однофазной электросети 220 В. Сейчас Я расскажу о том, как подключить однофазный электродвигатель от сломавшейся стиральной машины, пылесоса  и т. д.  Его можно успешно использовать в других целях в домашнем хозяйстве, например для привода точила, полировального станка, газонокосилки и т. п.

Схема подключения коллекторного электродвигателя на 220 Вольт

В электрических дрелях, перфораторах, болгарках и некоторых моделях стиральных машин автоматов используется синхронный коллекторный двигатель. Он   успешно запускается и работает в однофазных сетях без лишних пусковых устройств.

Для того, что бы подключить коллекторный электромотор, необходимо соединить между собой перемычкой два конца №2 и №3, один идущий от якоря, а второй от статора. А оставшиеся 2 конца присоединить к электропитанию 220 Вольт.

Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе.

Может быть мотор и 2 скоростным, тогда со статора будет выходить 3 конец с половины его обмотки. При подключении  к нему уменьшится скорость вращения вала, но при этом увеличивается риск нарушения изоляции при запуске мотора.

Для изменения направления вращения необходимо поменять местами концы подключения статора или якоря.

Схемы подключения однофазных асинхронных электродвигателей

Если в однофазных электродвигателях была бы только одна обмотка в статоре, тогда внутри него электромагнитное поле было бы пульсирующим, а не вращающимся. И запуск произошел бы только после раскручивания вала рукой. Поэтому для самостоятельного запуска асинхронных двигателей  добавляется  вспомогательная обмотка или пусковая, в которой фаза при помощи конденсатора или индуктивности оказывается сдвинутой на 90 градусов. Пусковая обмотка и толкает ротор электродвигателя  в момент включения. Основные схемы включения изображены на рисунке.

Первые две схемы рассчитаны на  подключение пусковой обмотки на время запуска мотора, но не более 3 секунд по продолжительности. Для этого используется реле или пусковая кнопка, которую необходимо нажать и удерживать пока не запустится мотор.

Пусковая обмотка может подключаться через конденсатор, или в очень редких случаях через сопротивление. В последнем случае обмотка должна быть намотана по бифилярной технологии, т.е сопротивление является частью обмотки. Оно увеличивается в ней за счет длины провода, но при этом индуктивность катушки не меняется.

В третьей самой распространенной схеме конденсатор постоянно включен к сети при работе электродвигателя, а не только на время его запуска.

Что бы определить какие провода идут на каждую из обмоток, сначала вызваниваем их по парам, а затем меряем сопротивление каждой по этой инструкции. У пусковой обмотки сопротивление всегда будет больше (обычно около 30 Ом), чем у рабочей обмотки (чаще всего  в районе 10-13 Ом).

Подбирать конденсатор необходимо по потребляемому току мотором, например для I = 1.4 А потребуется конденсатор емкостью  6 мкФ.

Как подключить электродвигатель стиральной машины

В современных стиральных машинах могут стоять либо коллекторные или трехфазные двигатели. Последние можно запустить только при помощи электронного пуск-регулирующего устройства, которое необходимо будет достать со стиральной машины и переделать схему на ручной запуск. Но для этого надо хорошо разбираться в радиотехнике.

Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Как правило на колодку подключения выходит 6-7 проводов, не считая на заземление корпуса.

Два провода идут с тахометра, которые не будут использоваться. И по паре проводов выходит со статора и якоря (ротора). Так же иногда может выходить еще один конец с половины обмотки.

Вызваниваем пары обмоток и соединяем перемычкой между собой конец роторной с началом статарной обмотки. На начало роторной подключаем один конец электропитания и другой- на конец статарной.

Если необходимо подключение второй скорости, тогда один конец электропитания подключаем к выходу с половины обмотки. У нее будет меньше сопротивление, чем у целой.

Иногда на колодку подключения еще может выходить дополнительно пара контактов от термозащиты.

В старых стиральных машинах советского образца стояли простые асинхронные электродвигатели с пусковой обмоткой. Для их запуска рекомендую использовать соответствующее реле от стиральной машины, которое устанавливается только вертикально по указателю на корпусе. Подключение производится по этой схеме.
А можно запустить и по другой схеме только с рабочим конденсатором, подключенным к пусковой обмотке.

Проверка работоспособности

Для того, что бы проверить правильность собранной схемы необходимо включить электродвигатель и дать ему поработать сначала  одну минуту, а затем около 15. Если двигатель горячий, то причинами может быть:

  1. Изношенность, загрязненность или зажатость подшипников.
  2. Большая ёмкость конденсатора, отключите его и запустите двигатель рукой, если он перестанет греться- уменьшите емкость конденсаторов.

Подключение асинхронного двигателя на 220 (видео, фото, схема)

Так как питающие напряжения у различных потребителей могут различаться друг от друга, возникает необходимость переподключения электрооборудования. Сделать подключение асинхронного двигателя на 220 вольт безопасным для дальнейшей работы оборудования достаточно просто, если следовать предложенной инструкции.

На самом деле это не является невыполнимой задачей. Если сказать коротко, то все, что нам нужно, это правильно подключить обмотки. Существует два основных типа асинхронных двигателей: трехфазные с обмоткой звезда – треугольник, и двигатели с пусковой обмоткой (однофазные). Последние используются, например, в стиральных машинах советской конструкции. Их модель АВЕ-071-4С. Рассмотрим каждый вариант по очереди.

Трехфазный

Асинхронный двигатель переменного тока имеет очень простую конструкцию по сравнению с другими видами электрических машин. Он довольно надежен, чем и объясняется его популярность. К сети переменного напряжения трехфазные модели включаются звездой или треугольником. Такие электродвигатели также различаются значением рабочего напряжения: 220–380 в, 380–660 в, 127–220 в.

Такие электродвигатели применяются на производстве, так как трехфазное напряжение чаще всего используется именно там. И в некоторых случаях бывает, что вместо 380 в есть трехфазное 220. Как их включить в сеть, чтобы не спалить обмотки?

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы. Теперь важно не перепутать.

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо. А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи.

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Однофазный

Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.

Схема однофазного асинхронного двигателя

Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

Включение в работу

Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:

Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат.

Если нужен реверс, то он делается по такой схеме:

Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

✔ Подключение электродвигателя в однофазную сеть на 220 вольт.

В статье рассказывается и наглядно демонстрируется, как осуществляется подключение промышленного трехфазного электромотора, рассчитанного на 380 В, в однофазную бытовую сеть 220 вольт.

Для решения задачи необходим конденсатор. Основная рабочая характеристика прибора — емкость, которая выражается в микрофарадах. Она сокращенно обозначается МКФ и для каждого агрегата рассчитывается отдельно с учетом его мощности. Среднее значение — 7 МКФ на 0,1 кВт, соответственно, для мотора 0,37 кВт нужен конденсатор емкостью 25,9 МКФ.

Однако устройств с таким показателем не выпускают. На рынке представлены конденсаторы 18, 20, 30 МКФ и т. д., поэтому необходимо подобрать изделие с наиболее приближенной емкостью. Для 25,9 МКФ подойдут устройства 20–30 МКФ, однако при подключении электродвигателя на 220 вольт необходимо произвести пробный запуск. Это обусловлено тем, что у агрегатов от разных производителей имеются специфические особенности. Это касается технологии сборки, сплава металла, количества обмоток и пр.

Известны примеры, когда моторы от разных заводов-изготовителей при прочих равных условиях запускались по-разному, а некоторые из них отказывались работать. Если возникли проблемы с пуском, рекомендуется установить конденсатор с большей емкостью. Если же работающий агрегат чрезмерно шумит и вибрирует, а также стремительно нагревается, емкость конденсатора следует снизить. Помните: мотор должен функционировать тихо и без вибраций.

Для достижения оптимальных эксплуатационных характеристик подключение электродвигателя на 220 вольт рекомендуется производить по схеме «треугольник».

Схема подключения однофазного электродвигателя:

Для подключения треугольником — необходимо поставить перемычки и сделать три разные последовательные соединения. После чего подключать к 3 независимо последовательным соединениям провода.

Видеоматериал

Подключить электродвигатель 380 на 220 через пускатель

Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.

Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.

При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».

Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.

Переподключение с 380 вольт на 220

Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).

Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.

Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.

Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.

Видео: Как подключить электродвигатель с 380 на 220

Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.

Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.

Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.

Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.

Схема звезда-треугольник

В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.

Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.

Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.

Чтобы она работала необходимо три пускателя:

К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.

Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».

Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.

Как работает схема

При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.

Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.

Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.

Другие подключения электродвигателя

Схем несколько:

  1. Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
  2. Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
  3. При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.

Рекомендуем:

Включение трехфазного двигателя в однофазную сеть

Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.

Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.

Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.

Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.

Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).

Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.

Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.

Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.

Использование магнитного пускателя

Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.

Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.

Схема подключения пускателя асинхронного двигателя электрического 380в:

На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.

Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.

Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.

Видео: Подключение асинхронного двигателя. Определение типа двигателя.

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.

Реверс.

Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».

Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Более подробно можно увидеть на рисунке.

Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.

Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.

В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.

Отличие магнитного пускателя от контактора

Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.

В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.

Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.

Устройство и назначение прибора

Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.

Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.

Назначение магнитного пускателя

Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.

Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.

МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.

После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».

Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.

Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.

Конструкция и функционирование прибора

Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.

Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.

Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.

Вариантов исполнения четыре:

  • открытый;
  • защищенный;
  • пылеводозащищенный;
  • пылебрызгонепроницаемый.

Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.

При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.

Состоит МП из следующих основных узлов:

  • сердечника;
  • электромагнитной катушки;
  • якоря;
  • каркаса;
  • механических датчиков работы;
  • групп контакторов — центральной и дополнительной.

Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.

По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.

Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.

Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.

Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.

Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.

В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.

Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.

Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.

Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.

Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.

Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.

На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Особенности монтажа пускателя

Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.

Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.

Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.

Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.

Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.

Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.

Популярные схемы подключения МП

Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.

В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.

При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.

Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.

Тонкости подключения устройства на 220 В

Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.

Особенности силовой цепи

Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.

Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.

Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.

Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.

Изменение цепи управления

Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.

Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.

Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.

Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.

После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.

Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.

Подсоединение к 3-фазной сети

Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.

Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.

Ввод в схему теплового реле

В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.

Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.

Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.

Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на 380 В. Подробнее – переходите по ссылке.

Запуск мотора с реверсным ходом

Для функционирования отдельного оборудование необходимо, чтобы двигатель мог вращаться как влево, так и вправо.

Схема подключения для такого варианта содержит два МП, кнопочный пост либо отдельные три клавиши — две стартовые «Вперед», «Назад» и «Стоп».

От к.з. силовую цепь защищают контакты нормально замкнутые КМ1.2, КМ2.2.

Подготовку схемы к работе осуществляют следующим образом:

  1. Включают АВ QF1.
  2. На силовые контакты МП КМ1, КМ2 поступают фазы А, В, С.
  3. Фаза, которая снабжает цепь управления (А) через SF1 (автомат защиты сигнальных цепей) и клавишу SB1 «Стоп» подается на контакт 3 (клавиши SB2, SB3), контакт 13НО (МП КМ1, КМ2).

Далее схема работает по алгоритму, зависящему от направления вращения мотора.

Управление реверсом двигателя

Вращение начинается при задействовании клавиши SB2. При этом фаза А через КМ2.2 подается на катушку МП КМ1. Начинается включение пускателя с замыканием нормально разомкнутых контактов и размыканием нормально замкнутых.

Замыкание КМ1.1 провоцирует самоподхват, а за смыканием контактов КМ1 следует подача фаз А, В, С на идентичные контакты обмоток двигателя и он начинает вращение.

Предпринятое действие разъединит цепь, на дроссель КМ1 перестанет подаваться управляющая фаза А, а сердечник с контактами, посредством возвратной пружины, восстановится в исходном положении.

Контакты разъединятся, на двигатель М прекратится подача напряжения. Схема будет пребывать в ждущем режиме.

Запускают ее путем нажатия на кнопку SB3. Фаза А через КМ1.2 поступит на КМ2, МП, сработает и через КМ2.1 окажется на самоподхвате.

Далее, МП посредством контактов КМ2 поменяет фазы местами. В результате двигатель М изменит направление вращения. В это время соединение КМ2.2, находящееся в цепи, питающей МП КМ1, рассоединится, не допуская включения КМ1 пока функционирует КМ2.

Работа силовой схемы

Ответственность за переключение фаз для перенаправления вращения двигателя возложена на силовую схему.

При срабатывании контактов МП КМ1 на первую обмотку поступает фаза А, на вторую обмотку — фаза В, а на третью — фаза С. При этом мотор вращается влево.

Когда срабатывает КМ2, передислоцируются фазы В и С. Первая попадает на третью обмотку, вторая — на вторую. Изменений по фазе А не происходит. Двигатель начнет вращаться вправо.

Выводы и полезное видео по теме

Подробности об устройстве и подключении контактора:

Практическая помощь в подключении МП:

По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.

Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.

Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.

Как подключить двигатель на 220 кондиционер

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Источник

Однофазный двигатель с конденсатором – советы электрика

Однофазные электродвигатели 220в: особенности подключения

В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.

Общие понятия

Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц.

Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт.

На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Применение однофазных моторов

Такой тип моторов применяют для работы устройств с малой мощностью.

  1. Бытовая техника.
  2. Вентиляторы небольшого размера.
  3. Электронасосы.
  4. Станки, предназначенные для обработки сырья.

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

  1. Эти моторы имеют меньшие значения КПД.
  2. Пускового момента.
  3. Мощности.
  4. Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя.

Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы.

В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Существует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.

Принцип действия

Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны.

Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте.

Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.

Запуск мотора

Посредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.

Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.

Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.

Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель.

Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего.

Схему подключения однофазного двигателя смотрите здесь.

Тепловое реле

Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.

Достоинства

К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.

Недостатки

Кроме достоинств, в этом моторе имеются и некоторые недостатки.

  1. Невысокий пусковой момент мотора.
  2. Низкий КПД электродвигателя.
  3. Электродвигатель не способен генерировать магнитное поле, которое выполняет вращение.

По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.

Подключение двигателя

Подключать двигатель нужно в однофазную сеть переменного напряжения 220 вольт, частотой 50 герц. Эти номиналы электроэнергии имеются во всех жилых помещениях нашей страны, и вследствие этого однофазные моторы имеют огромную популярность. Они установлены во всей бытовой технике, такой как.

  1. Холодильник.
  2. Пылесос.
  3. Соковыжималка.
  4. Триммер.
  5. Кусторез электрический.
  6. Швейная машинка.
  7. Электродрель.
  8. Миксер кухонный.
  9. Вентилятор.
  10. Насос водяной.

Разновидности подключения

  1. Подключение с пусковой катушкой.
  2. Подключение с рабочим конденсатором.

Электродвигатели однофазные 220 В малой мощности с пусковой катушкой имеют включённый в цепь конденсатор во время старта. После разгона ротора катушка отключается. Если мотор сделан с рабочим конденсатором, цепь пуска не размыкается, идёт постоянная работа пусковой обмотки через конденсатор.

Существует возможность использовать один электромотор для разных целей. Один и тот же мотор можно снять с одной техники и установить на другую. Включать однофазный двигатель можно тремя схемами.

  1. Происходит временное включение электричества на пусковую обмотку через конденсатор.
  2. Происходит кратковременная подача напряжения на пусковое устройство через резистор, без конденсатора.
  3. Электричество подаётся через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

При использовании в цепи пуска резистора, обмотка будет иметь активное сопротивление выше. Произойдёт сдвиг фаз, достаточный для начала вращения. Можно использовать пусковую обмотку, в которой большее сопротивление и меньшая индуктивность. Чтобы обмотка соответствовала своим параметрам, она должна иметь меньше витков, тоньше провод.

Конденсаторный пуск представляет собой подключение конденсатора к пусковой обмотке и временную подачу электроэнергии.

Чтобы достичь максимального значения момента пуска, нужно круговое магнитное поле, оно должно выполнить вращение. Для этого нужно расположение обмоток под углом 90 градусов. Такого сдвига резистором добиться невозможно.

Если ёмкость конденсатора рассчитать правильно, то удастся сдвинуть обмотки под угол 90 градусов.

Вычисление принадлежности проводов

Чтобы вычислить провода, подключающие пусковую обмотку и рабочую, нужно иметь прибор, измеряющий омы или тестер. Нужно замерять сопротивления обмоток.

Сопротивление рабочей обмотки должно быть меньше, чем пусковой. Например, если замеры показали у одной обмотки 12 Ом, а у другой 30 Ом, то первая из них рабочая, а вторая пусковая.

Рабочая обмотка будет иметь большее сечение чем пусковая.

Подборка ёмкости конденсатора

Чтобы подобрать ёмкость конденсатора, нужно знать, какой ток потребляет электромотор. Если он потребляет ток 1,4 ампера, то нужен конденсатор, ёмкость которого составляет 6 микрофарад.

Проверка работоспособности

Начать проверку следует с визуального осмотра.

  1. Если у агрегата была отломана опора, то вследствие этого он тоже мог работать плохо.
  2. В случае если потемнел корпус посередине, это говорит о том что он чрезмерно перегревался.
  3. Возможно, что в разрез корпуса попали разные посторонние вещи, это будет замедлять его и способствовать перегреву.
  4. Если подшипники загрязнены, будет происходить перегревание.
  5. Износ подшипников будет причиной перегревания.
  6. Если к пусковой обмотке 220v подключён конденсатор завышенной ёмкости, то он будет перегреваться. При подозрении на конденсатор нужно отключить его от пусковой обмотки, включить двигатель в сеть, вручную прокрутить вал, произойдёт запуск и начнётся вращение. Нужно дать мотору поработать около пятнадцати минут, затем проверить, не нагрелся ли он. Если мотор не нагрелся, то причина была в повышенной ёмкости конденсатора. Нужно установить конденсатор меньшей ёмкости.

Электродвигатели однофазные 220 в малой мощности выпускаются совершенно разных моделей и для разных целей, и, прежде чем купить изделие, нужно чётко понимать, какова нужна мощность, тип крепления, количество оборотов в минуту, и прочие характеристики.

Схема подключения однофазного двигателя с пусковой обмоткой

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в.

И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.

В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя.

также осуществляется через конденсатор.

Трехфазный асинхронный двигатель – подключение на 220 вольт

Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока.

А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать.

Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.

Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:

Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.

На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.

Выбираем конденсаторы

Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:

С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.

Формула для треугольника:

Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя.

Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость.

И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.

Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.

Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе.

Правда, есть у них один существенный недостаток – большие габаритные размеры.

Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Полезные советы

  • Обращаем ваше внимание на тот факт, что при подключении трехфазного двигателя к однофазной сети можно говорить и снижении мощности электрического агрегата. В общем, его фактический показатель не будет превышать номинальный 70-80%. При этом скорость вращения ротора не уменьшится.
  • Если используемый движок имеет схему переключения 380/220, это обязательно указывается на шильдике, то в однофазную сеть его надо подключать только треугольником.
  • В том случае, если на шильдике указаны схема подключения звездой и только трехфазное подключение на 380 вольт, то вам придется вскрыть клеммную коробку и добраться до соединения концов обмоток двигателя. Потому что внутри агрегата уже установлена схема звезда, ее-то и придется разобрать и вывести наружу шесть концов обмотки статора.

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

  1. Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
  2. В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Заключение по теме

Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

Как подключить однофазный электродвигатель через конденсатор – особенности разных схем

Главная » Электрооборудование » Электродвигатели » Однофазные » Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.

Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей .

Варианты схем включения — какой метод выбрать?

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором .

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле .

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время.

Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле.

Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.

Это связано с принципом работы асинхронного двигателя. когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.

Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором .

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.

Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся.

В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

Наличие трехжильной проводки в частном доме предполагает использование системы заземления. которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать здесь .

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное о том, как подключить однофазный двигатель через конденсатор

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Для подключения конденсаторного двигателя пусковая кнопка не нужна.

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.
Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Как подключить однофазный электродвигатель

Электричество сегодня является основным источником, обеспечивающим работу большого количества механизмов. Для выполнения таких процессов применяют несколько видов двигателей.

Они могут быть, как одно-, так и трехфазными и отличаться принципом подключения. Более подробно узнать о подобных конструкциях можно на сайте http://ovk.dp.ua/odnofaznyye-elektrodvigateli/.

Варианты подключения

Пуск однофазных асинхронных двигателей зачастую осуществляется с помощью конденсатора. Для таких целей можно использовать несколько основных вариантов, которые отличаются способом подключения ранее указанного элемента:

  1. Пусковая схема предполагает применение конденсатора в качестве системы для запуска. Следует отметить, что такой способ, хотя и обеспечивает неплохие пусковые параметры, но рабочие характеристики при этом несколько ухудшаются.
  2. Схемы с рабочим конденсатором. Отличительной особенностью такой конструкции является то, что он не отключается после запуска двигателя. Данный вариант запуска уже наоборот снижает пусковые показатели.
  3. Оптимальной схемой подключения является применение пускового и рабочего конденсатора. Это позволит добиться усредненных показателей, как при запуске, так и рабочей мощности.

Подключение конденсатора

Следует понимать, что такой способ подключения не является единственным. Существуют и другие варианты, зависящие в основном от типа двигателя.

Но если все же вы выбрали схемы с конденсаторами, тогда вам следует выполнить несколько простых рекомендаций:

  • В первую очередь следует произвести расчеты всех параметров подобных конструкций. Выполняется это согласно определенным схемам, которые желательно тщательно изучить, чтобы понимать весь принцип расчета.
  • Затем покупается конкретный конденсатор, который желательно проверять на работоспособность с помощью специальных мультиметров.
  • Также ранее следует определить конкретную схему, которая может меняться в зависимости от ваших потребностей. Обратите внимание, что из обмотки двигателя может выходить несколько проводов, что и позволяет варьировать все параметры и способы соединения.

Не следует выполнять подобные операции, если вы не разобрались с работой двигателя. Это может привести к выходу его из строя (перегорание обмотки и т.д.). Альтернативным вариантом подключения является доверие подобных работ опытному электрику, который сделает все качественно и надежно.

Подключение трёхфазного двигателя к однофазной сети

Автор: admin, 31 Мар 2013

В этой статье рассмотрим подключение трёхфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчёт ёмкости пускового и рабочего конденсаторов, подключение трёхфазного двигателя «звездой» и «треугольником».

Самый простой пуск трёхфазного двигателя в однофазной цепи возможен с помощью фазосдвигающего конденсатора, включённого в третью обмотку двигателя. КПД(коэффициент полезного действия) двигателя в этом случае будет около 60% (по сравнению с трёхфазным включением).

При пуске маломощного асинхронного электродвигателя ( до 500 Вт), или при пуске двигателя без нагрузки на его вал, можно ограничится использованием только, так называемого, рабочего конденсатора.

При пуске более мощных двигателей нужно использовать ещё и пусковой конденсатор, необходимый для разгона двигателя.

Схема включения двигателя в однофазную сеть

Подключение трёхфазного двигателя

В схеме обозначено:

  • FU1, FU2 — предохранители.
  • S1 — двухполюсный выключатель.
  • S2 — переключатель направления движения вала двигателя (реверс).
  • S3 — кнопка подключения пускового конденсатора (разгон двигателя).
  • Сп — пусковой конденсатор.
  • Ср — рабочий конденсатор.
  • R1 — разрядный резистор.
  • М — электродвигатель.

После включения выключателя S1 необходимо сразу нажать кнопку S3, после разгона двигателя (2-3 сек) кнопку отпустить.

Расчёт элементов схемы включения двигателя

Ёмкость рабочего конденсатора для данной схемы (соединение обмоток электродвигателя «треугольником») рассчитывается по следующей формуле:

Ср = 4800*I/U, где

Ср — ёмкость рабочего конденсатора в мкФ;
I — ток электродвигателя, А;
U — сетевое напряжение(220 В).

При соединении обмоток электродвигателя «звездой» ёмкость рабочего конденсатора определяется по формуле:

Ср = 2800*I/U , обозначения те же.

Если неизвестен ток электродвигателя, но известна мощность, то ток можно рассчитать по формуле:

I = P/(√3*U*ɳ*cosφ) , где

P — мощность электродвигателя, Вт;
ɳ — КПД электродвигателя;
cosφ — коэффициент мощности.

Приблизительно можно принять ɳ=0,6, cosφ = 0,8. Тогда формула упростится и примет вид:

I = P/(0,83*U).

Ёмкость пускового конденсатора должна быть в 2-3 раза больше ёмкости рабочего.

Нужную ёмкость конденсатора можно собрать из нескольких, имеющихся в наличии конденсаторов, как это сделать описано здесь. Лучше всего применять металлобумажные или плёночные конденсаторы. Рабочее напряжение конденсаторов не ниже 300В.

В некоторых статьях предлагают использовать электролитические конденсаторы, соединив пару конденсаторов минусовыми выводами и зашунтировав их диодами.

Я не рекомендую этого делать, так как при выходе из строя диода (при его электрическом пробое), через электролитический конденсатор потечёт переменный ток и он скорее всего взорвётся из-за нагрева.

Разрядный резистор R1 служит для разряда пускового конденсатора после его отключения. Можно обойтись и без него, но тогда следует помнить, что на устройстве может остаться опасное напряжение, даже после его выключения. Можно взять резистор сопротивлением 0,5 — 1 мОм, на мощность рассеяния не ниже 0,5 Вт.

Все выключатели и предохранители должны выдерживать рабочий ток электродвигателя.

Советы: лучше всего использовать соединение «треугольником», при соединении обмоток «звездой» значительная часть мощности двигателя теряется.

На шильдике двигателя указывается схема соединения обмоток, возможность её изменения и рабочее напряжение обмоток. Например: ∆/Ү 220/380 обозначает, что обмотки электродвигателя могут быть подсоединены либо «треугольником» на 220 В, либо «звездой» на напряжение 380В.

Обозначение Ү 380 — говорит о том, что обмотки подсоединены по схеме «звезда» и рассчитаны на 380 В и в распредкоробку двигателя выведено всего три провода. Тут придётся подключать по схеме «звезда», потеряв мощность.

Можно конечно залезть внутрь двигателя и вывести недостающие концы в распредкоробку, но это работа уже для специалиста.

Ёмкость рабочего конденсатора (в мкФ) можно приблизительно рассчитать умножив мощность двигателя (в кВт) на 100. Ёмкость пускового конденсатора можно уменьшить, подобрав экспериментальным путём.

Если вам помогла эта статья, то вы можете поделиться ей со своими друзьями, нажав кнопки социальных сетей, расположенные ниже.

Источник

Схема подключения однофазного двигателя 220 В через конденсатор

Бывают случаи, когда нужно подключить мотор на 220 вольт — это случается при попытке подключить оборудование под свои нужды, но схема не соответствует техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся в этой статье разобрать основные методы решения проблемы и представить несколько альтернативных схем подключения однофазного двигателя с конденсатом на 220 вольт.

Почему это происходит? Например, в гараже необходимо подключить асинхронный двигатель на 220 вольт, который рассчитан на три фазы. Таким образом, необходимо поддерживать КПД (КПД), если альтернативы (в виде двигателя) просто не существует, потому что в цепи из трех фаз легко образуется вращающееся магнитное поле. , что обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше по сравнению с трехфазной схемой подключения.

Когда в однофазных двигателях всего одна катушка, мы видим картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для запуска не происходит, пока сам не раскрутит вал. Чтобы вращение могло происходить самостоятельно, добавили вспомогательную пусковую обмотку. Это вторая фаза, она смещена на 90 градусов и толкает ротор при повороте. Этот двигатель по-прежнему включен в сеть с одной фазой, поэтому название остается однофазным. Такие однофазные синхронные двигатели имеют пусковую обмотку и рабочую.Разница в том, что лаунчер работает только при включении заводского ротора, работает всего три секунды. Вторая обмотка подключена постоянно. Чтобы определить, что есть что, вы можете использовать тестер. На картинке вы можете увидеть соотношение их схемы в целом.

Подключаем мотор на 220 вольт: мотор запускается от подачи 220 вольт на рабочую и пусковую обмотку, а потом выставляем нужную скорость вручную, нужно отключать пусковые установки. Для фазового сдвига необходимо омическое сопротивление, которое конденсаторы обеспечивают индуктивностью.Встречается сопротивление в виде отдельного резистора и пусковой обмотки, которое выполнено по бифилярной технике. Работает это так: индуктивность катушки сохраняется, а сопротивление становится больше из-за удлиненного медного провода. Такую схему можно увидеть на рисунке 1: подключение электродвигателя 220 вольт.

Рисунок 1. Схема подключения двигателя 220 В с конденсатором

Есть также двигатели, у которых обе обмотки постоянно подключены к сети, они называются двухфазными, потому что поле внутри вращается, а конденсатор предназначен для сдвига фазы.Для такой схемы обе обмотки имеют провод равного сечения.

Где можно встретиться в повседневной жизни?

Электродрели, некоторые стиральные машины, дрели и болгарки являются синхронным коллектором двигателя. Он умеет работать в однофазных сетях даже без триггеров. Схема следующая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй — в статоре. Два наконечника, которые необходимо было подключить к источнику питания 220 вольт.

Подключение электродвигателя 220 вольт с пусковой обмоткой

Внимание!

  • Эта схема исключает электронику, и, следовательно, двигатель сразу после запуска будет работать на полную мощность на максимальной скорости, когда вы начинаете буквально подпрыгивать с силой тока стартера, которая вызывает искру в коллекторе;
  • есть электродвигатели с двумя скоростями. Их можно определить по трем концам статора, выходящим из обмоток.В этом случае частота вращения вала при подключении уменьшается, а риск деформации изоляции при пуске увеличивается;
  • направление вращения можно изменить, для этого следует поменять местами концевые соединения в статоре или якоре.

Есть еще одно соединение для питания двигателя на 380 В, которое приводится в движение без нагрузки. Также требуется конденсатор в рабочем состоянии.

Один конец подключен к нулю, а второй — к выходу треугольника с цифрой три.Чтобы изменить направление вращения электродвигателя, нужно подключить его к фазе, а не к нулю.

Схема подключения двигателя 220 В переменного тока через конденсаторы

В том случае, когда мощность двигателя более 1,5 кВт или это при запуске работы напрямую с нагрузкой, при параллельном подключении конденсатора необходимо установить и запустить. Он служит для увеличения пускового момента и включается только на несколько секунд во время пуска. Для удобства он соединен с кнопкой, а все устройство от блока питания через тумблер или кнопку с двумя положениями, имеющую два фиксированных положения.Чтобы запустить такой мотор, необходимо подключить кнопку (тумблер) и удерживать кнопку пуска до его запуска. При запуске — достаточно отпустить кнопку и пружина размыкает контакты, отключая стартер

Специфика заключается в том, что асинхронные двигатели изначально предназначались для подключения к сети с тремя фазами 380 В или 220 В.

Важно! Для подключения однофазного электродвигателя к однофазной сети необходимо иметь данные двигателя на бирке и знать следующее:

P = 1,73 * 220 * 2,0 * 0,67 = 510 (Вт) расчет для 220V

R = 1,73 * 380 * 1,16 * 0,67 = 510,9 (Вт) расчет на 380 В

По формуле становится понятно, что электрическая мощность превышает механическую.Это необходимый резерв для компенсации потерь мощности при запуске — создания вращающего момента магнитного поля.

Есть два типа обмоток — звезда и треугольник. По информации на бирке мотора можно определить, какую систему он использует.

Красные стрелки — распределение напряжения в обмотках двигателя, говорит о том, что на одной обмотке распределяется однофазное напряжение 220 В, а на двух — линейное напряжение 380 В. Этот двигатель может быть адаптирован для однофазной сети по схеме Рекомендации по метке: узнайте, какие напряжения создаются при намотке, вы можете соединить их в звезду или треугольник.

Схема намотки треугольника проще. Лучше использовать его, так как двигатель будет терять мощность в меньшем количестве, а напряжение на обмотках везде равно 220 В.

Данная схема подключения конденсаторного асинхронного двигателя в однофазной сети. Включает в себя рабочий и пусковой конденсаторы.

Пример:

  • конденсаторы б / у на напряжение не менее 300 или 400;
  • рабочая емкость конденсаторов набрана при параллельном включении;
  • рассчитано так: каждые 100 ватт все равно 7мкФ, при том, что 1 кВтч равен 70 микрофарадам;
  • это пример параллельного подключения конденсаторов
  • Емкость
  • для запуска должна в три раза превышать емкость рабочего конденсатора.

Важно! Если на старте вовремя не отключать пусковые конденсаторы при достижении двигателем нормативного для него количества импульса, они приведут к большому току смещения во всех обмотках, что попросту закончится перегревом электродвигателя.

Ознакомившись со статьей, обратите внимание на подключение трехфазных электродвигателей к однофазной сети:

Связанные с контентом

Как подключить трехфазный двигатель к 220В

Рассмотрим для начала, почему считается, что двигатель питается от 380 вольт.Имейте счастье быть тремя фазами по 220 вольт. Самые простые вопросы отпугивают новичков, незнание теории порождает практические ошибки. Искренне благодарим энтузиастов, засыпавших Ютуб тренировочными роликами, без такого богатого материала сложно дать дельный совет по планированию подключения электродвигателя на 380 вольт 220 вольт с конденсатором. Приступим к реализации теории на практике.

Работа двигателя 380 В

Такие двигатели называются трехфазными.Имеют массу преимуществ перед обычными бытовыми, широко применяемыми в промышленности. Достоинства касаются большой мощности, экономичности. Именно в трехфазных двигателях можно обойтись без пусковых обмоток, конденсаторов при наличии достаточной мощности. Конструкции могут устранить лишние элементы. Пусковое реле холодильника, четко контролирующее целостность, время работы пусковой обмотки. Трехфазным двигателям доморощенные ухищрения не нужны.

Простой пример работы трех фаз

Почему так происходит? Благодаря наличию трех фаз можно создать вращающееся электромагнитное поле внутри статора без дополнительных настроек.Посмотрим рисунок. Для простоты показан ротор с двумя полюсами, статор содержит катушку на каждую фазу переменного тока. Конфигурация типовых двигателей на 380 вольт более сложная, упрощение не помешает объяснить суть процессов, происходящих внутри.

На рисунке синим цветом показаны отрицательно заряженные поля, красным — положительные. В начальный момент статор лишен знака, три катушки белые. Ротор в нашем предположении сделан из постоянных магнитов, окрашен и находится в произвольном положении.Полюсов всего два. Далее двигаемся по схемам:

  1. Первой картинке присвоена фаза B со знаком минус, две другие заряжены слегка положительно (около трети амплитуды), схематично показаны бледно-розовым цветом. Положительный полюс ротора сместился на катушку B. Слабое положительное поле переменного тока притягивало южный полюс ротора. Поскольку уровень заряда одинаков, центр полюса находится точно посередине.
  2. В следующий раз (после 60 градусов примерно 3.3 мс) южный полюс появляется в фазе А статора. Ротор вращается на 60 градусов по часовой стрелке. Слабые отрицательные поля фаз B, C удерживают между собой положительный полюс ротора.
  3. В это время северный полюс статора находится в фазе C, ротор продолжает вращаться еще на 60 градусов. Дальнейшая картина должна быть ясной.

Трехфазный электродвигатель

В результате правильного распределения трех фаз поле статора вращается, увлекая ротор.Скорость не совпадает с сетью 50 Гц. Обмотка статора больше, число полюсов ротора другое. Кроме того, существует явление проскальзывания, зависящее от амплитуды напряжения, многие другие факторы. Нюансы используются для регулировки скорости вращения вала мотора. Вблизи мы подошли к решению проблемы с напряжением 380 вольт. Состоит из трех фаз с активным напряжением 220 вольт (как в розетке). Возьмите разницу между любыми двумя в любой момент, значение превышает указанное значение.

Получается 380 вольт. Трехфазный двигатель использует для работы три напряжения с рабочим значением 220 вольт, сдвиг между ними составляет 120 градусов. Это легко проследить по графику на нашем рисунке. Вот почему у многих возникает соблазн использовать оборудование дома, чтобы начать использовать одну фазу, питаемую от розетки. Напрямую сделать невозможно, как должно быть понятно, приходится изобретать уловки. Самый простой — использование конденсатора. Прохождение емкости изменяет фазу напряжения на 90 градусов.Разница меньше 120, что хотели получить в идеале.

На практике подключение электродвигателя через конденсатор работает отлично. На самом деле реализовать идею немного сложно.

Пуск трехфазного двигателя 380 В от домашней сети

Во-первых, необходимо знать, как производится электрическая коммутация обмоток. Обычно корпус двигателя снабжен защитной крышкой, закрывающей электрическую проводку. Нам нужно снять щиток, приступаем к изучению схемы.Чаще всего показана схема электрических соединений. Для запуска трехфазной сети используется коммутация «звезда». Концы трех обмоток имеют одну общую точку, называемую нейтралью, на противоположную сторону подаются фазы. По одному на каждую обмотку. Получено рассмотренное выше распределение поля.


Объединение обмотки двигателя треугольником

Подключив асинхронный двигатель 380 к 220 вольт, потрудитесь изменить коммутацию.Электрическая схема, управляемая шильдиком корпуса, пригодится. Согласно рисунку обмотки двигателя совмещены треугольником. Каждый на обоих концах соединяется с другим. Давай посмотрим что происходит. Чем техника отличается от обычного использования оборудования. Для простоты на рисунке показана схема включения конденсатора. Это может выглядеть так:

  • На обмотку С подается напряжение сети 220 В.
  • На обмотку А напряжение поступает через рабочий конденсатор в фазосдвигающем состоянии на 90 градусов.
  • На обмотке B есть разница между этими напряжениями.

Посмотрим схемы: почти как это будет выглядеть. Фазовый сдвиг неравномерный. Между пиками, на которых нанесены диаграммы, отведены 90 и 45 градусов. В результате вращение в принципе лишено возможности быть равномерным. Фазовая форма обмотки B отличается от синусоидальной. Пуск трехфазного двигателя в сеть 220 вольт сопровождается наличием потерь энергии.Процесс возможен. Часто возникает такое явление, как прилипание. Неправильная форма поля внутри статора бессильна выкрутить статор.

Схема подключения двигателя несколько упрощенная, отличная от норм исполнения чертежей конструкторской документации. Видимость картинки очевидна. Конденсатор схемы рабочий, запускается. Необходимо усилить крутящий момент на начальном этапе. Любой асинхронный двигатель при запуске потребляет больше тока, много энергии тратится на первое движение.Конденсатор обычно подключают параллельно рабочему конденсатору, он подключается к цепи нажатием специальной кнопки. Например, вы можете отметить как «Ускорение».

Когда вал набирает скорость, пусковая мощность становится ненужной, сопротивление движению вала уменьшается. Отпустив кнопку «Ускорение», мы исключаем элемент из сети. Чтобы пусковая емкость разряжалась (напряжение может достигать 300 В), замыкаем сопротивление на значительную величину, через которую ток в рабочем состоянии не пойдет.Постепенно электроны компенсируются, опасность разрушения исчезнет. Возникает простой вопрос — как выбрать рабочую, пусковую мощность? Подключить мотор 380 В к 220 В задача не из легких. Давайте рассмотрим ответ.

Выбор значений рабочей и пусковой емкости для подключения трехфазного двигателя 220 В

Прежде всего, обратите внимание: рабочее напряжение конденсаторов должно значительно перекрывать номинальное значение 220 В. Подключение 380 двигатель до 220 вольт сопровождается появлением гораздо более значительных напряжений.Среди пусковых и рабочих конденсаторов исключить элементы с рабочим напряжением ниже 400 вольт. Практика накладывает корректировки, придется за руку ловиться. Обратите внимание на провода. Токи в технической документации приведены для напряжения 220 В. В рассматриваемой схеме используются другие значения. Возможно, потребуется пересчитать величину токов.

На практике, если рабочая мощность слишком мала, вал «заедает». Двигатель мог бы заработать, если дать начальное ускорение, если 4-киловаттный зверь бьется пальцами, винить некого.Получается, что номинальная емкость определяется как минимум двумя параметрами:

  1. Двигатель мощный, следует применять конденсатор большей емкости. При 250 Вт достаточно значений в десятки мкФ, при более значительных мощностях значение исчисляется сотнями. Логично заранее запастись солидным набором конденсаторов. Желательно брать пленочные, электролизеры без специальных мер запрещены, предназначены для работы в сетях постоянного тока. При подключении переменного тока напряжением 220 В может просто взорваться.
  2. Чем выше частота вращения двигателя, тем больше емкость пускового конденсатора. Достигнув разницы в несколько раз, значение емкости увеличивается на порядок (в 10 раз). Для запуска двигателя мощностью 2,2 кВт при 3000 об / мин попробуйте запастись аккумулятором на 200-250 мкФ. Очень важный. Емкость Земли мФ.

Емкость пускового конденсатора сильно зависит от приложенной нагрузки. Мотор, работающий на шкиве, потребляет много энергии, увеличивается объем аккумулятора.Попробуем подобрать значения. Практические примечания: более стабильно работает двигатель на 380 В от однофазной сети, когда напряжения на плечах конденсаторов равны. Обмотку, работающую напрямую от сети, не трогаем, измеряем потенциал двух других. Как получается, что величина емкости определяет напряжение?

Асинхронный двигатель характеризуется собственным реактивным сопротивлением. При включении образуется разделитель. Красиво нарисованные схемы, на практике форма фаз может существенно различаться.Определяется реактивное сопротивление вышеуказанного набора параметров. Конструкция двигателя, определяющая величину мощности, скорость вращения, нагрузку на вал. Ряд параметров, которые теоретически не могут быть учтены в рамках опроса. Поэтому практики просто рекомендуют сначала найти минимальный размер батареи, при котором двигатель начинает вращаться, а затем постепенно увеличивать номинал, пока напряжение на обмотках не станет равным.

После раскрутки движка может быть: нарушено равенство.Сопротивление движению вала упало. Перед тем, как окончательно подключить электродвигатель от 380 до 220, определитесь с условиями работы, постарайтесь обеспечить указанное равенство.

Обратите внимание: фактическое значение может превышать 220 вольт. Напряжение можно выставить 270 В. Перед тем, как подключать мотор через конденсатор, позаботьтесь о контактах. Обеспечьте надежную стыковку, чтобы избежать потерь, перегрева в местах протекания тока. Коммутацию лучше вести на специальных клеммах, затягивая болтами.После окончательного подбора параметров электрическую часть следует закрыть кожухом, пропустив провода через резиновое уплотнение боковой стенки отсека.

Мы считаем, что теперь читатели могут легко запустить двигатель, ракету, сельское хозяйство …

Бывают ситуации, когда оборудование, рассчитанное на 380 вольт, необходимо подключить к домашней сети 220 В. Так как двигатель не запускается, нужно поменять в нем некоторые детали. Это легко можно сделать самостоятельно. Несмотря на то, что эффективность несколько снижается, такой подход оправдан.

Трехфазные и однофазные двигатели

Чтобы понять, как подключить электродвигатель от 380 до 220 вольт, мы узнаем, что означает питание от

Трехфазные двигатели имеют много преимуществ по сравнению с бытовыми однофазными двигателями . Поэтому их использование в промышленности широко. И дело не только в мощности, но и в КПД. К ним также относятся пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. Например, пусковое защитное реле холодильника отслеживает количество оборванных обмоток.А в трехфазном двигателе этот элемент больше не нужен.

Это достигается за счет трех фаз, во время которых электромагнитное поле вращается внутри статора.

Почему 380 В?

Когда поле внутри статора вращается, ротор также движется. Обороты не совпадают с пятидесяти Герцами сети из-за того, что обмоток больше, количество полюсов отличное, а проскальзывание происходит по разным причинам. Эти индикаторы используются для регулирования вращения вала двигателя.

Все три фазы имеют значение 220 В. Однако разница между любыми двумя из них в любой момент будет отличаться от 220. Так получится 380 вольт. То есть двигатель использует для работы 220 В, с фазовым сдвигом в сто двадцать градусов.

Поскольку невозможно напрямую подключить электродвигатель с напряжением 380 вольт к 220 вольт, приходится прибегать к хитростям. Конденсатор считается самым простым способом. Когда контейнер проходит фазу, последняя изменяется на девяносто градусов.Хоть и не дотягивает до ста двадцати, но этого достаточно для запуска и работы трехфазного двигателя.

Как подключить электродвигатель от 380 В до 220 В

Для реализации поставленной задачи необходимо понимать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним расположена проводка. Сняв его, нужно изучить содержимое. Часто здесь можно найти схему подключения. Для подключения к сети 380-220 используется коммутация в виде звезды.Концы обмоток находятся в общей точке, называемой нейтралью. Фазы подаются на противоположную сторону.

«Звездочку» надо будет поменять. Для этого обмотку двигателя необходимо соединить другой формы — в виде треугольника, соединив их на концах друг с другом.

Как подключить электродвигатель от 380 до 220: схемы

Схема может выглядеть так:

  • напряжение сети подается на третью обмотку;
  • , то напряжение первой обмотки пройдет через конденсатор со сдвигом фазы девяносто градусов;
  • Вторая обмотка будет зависеть от разницы напряжений.


Понятно, что сдвиг фазы будет девяносто сорок пять градусов. Из-за этого вращение не равномерное. Кроме того, форма фазы на второй обмотке не будет синусоидальной. Поэтому после подключения трехфазного электродвигателя на 220 вольт будет возможно, без потери мощности реализовать это невозможно. Иногда вал даже заедает и перестает крутиться.

Работоспособность

После набора оборотов пусковая мощность больше не понадобится, так как сопротивление движению станет незначительным.Чтобы уменьшить емкость, ее сокращают до сопротивления, через которое больше не проходит ток. Для правильного выбора рабочей и пусковой емкости необходимо в первую очередь учесть, что напряжение рабочего конденсатора должно существенно перекрывать 220 вольт. Как минимум должно быть 400 В. Еще нужно обратить внимание на провода, чтобы токи были рассчитаны на однофазную сеть.

Если рабочая мощность слишком низкая, вал заедает, поэтому для него используется начальное ускорение.

Работоспособность также зависит от следующих факторов:

  • Чем мощнее двигатель, тем больше потребуется конденсатор. Если значение 250 Вт, то хватит нескольких десятков мкФ. Однако если мощность больше, то номинал можно считать сотнями. Конденсаторы лучше покупать пленочные, т. К. Электрика придется доработать (они рассчитаны на постоянный, а не на переменный ток и без переделки могут взорваться).
  • Чем выше частота вращения двигателя, тем выше рейтинг.Если взять двигатель на 3000 об / мин и мощность 2,2 кВт, то АКБ потребуется от 200 до 250 мкФ. А это огромная ценность.

Эта мощность также зависит от нагрузки.


Заключительный каскад

Известно, что 380 В в 220 Вольт будет работать лучше, если напряжения будут получены с равными значениями. Для этого не следует трогать подключаемую к сети обмотку, но измеряют потенциал на обеих других.

Асинхронный двигатель свой.Необходимо определить минимум, при котором он начинает вращаться. После этого номинал постепенно увеличивают до тех пор, пока все обмотки не будут выровнены.

Но когда двигатель раскручивается, может оказаться, что равенство будет нарушено. Это связано с уменьшением сопротивления. Поэтому перед тем, как подключить мотор от 380 до 220 вольт и закрепить, нужно сравнить значения даже при работающем агрегате.

Напряжение может быть выше 220 В. Следите за стабильным соединением контактов, отсутствием потери питания или перегрева.Лучшее переключение происходит на специальных клеммах с фиксированными болтами. После подключения электродвигателя от 380 до 220 вольт он получился с нужными параметрами, кожух снова надевается на агрегат, а провода пропускаются по бокам через резиновую прокладку.

Что еще может случиться и как решить проблемы

Часто после сборки обнаруживается, что вал вращается не в том направлении, в котором это необходимо. Направление нужно менять.

Для этого третья обмотка через конденсатор подключается к резьбовому выводу второй обмотки статора.


Бывает, что из-за длительной работы с течением времени появляется шум двигателя. Однако этот звук совершенно другого рода по сравнению с гудением при неправильном подключении. Это происходит со временем и вибрацией мотора. Иногда даже приходится с силой вращать ротор. Обычно это вызвано износом подшипников, который вызывает слишком большие зазоры и шум. Со временем это может привести к заклиниванию, а позже — к повреждению деталей двигателя.

Лучше не допускать этого, иначе механизм придет в негодность.Подшипники легче заменить на новые. Тогда электродвигатель прослужит еще много лет.

С такой проблемой приходится сталкиваться со многими старательными хозяевами, которые привыкли все делать своими руками. В том числе и для сбора различного оборудования для хозяйственных нужд; например циркулярная пила на участке, эл / наждак, небольшой лифт в гараже и тому подобное.

Учитывая, сколько стоит электродвигатель, лучше адаптировать имеющийся трехфазный образец для работы от 1 фазы, тем самым адаптируя его к домашней электросети / сети, чем покупать новый.Просто нужно понять, как и какой электродвигатель лучше переделать с 380 вольт на 220, чтобы не тратить лишние деньги, и разобраться в существующих схемах их включения.

Что учитывать

  1. Переделка с 380 на 220 имеет смысл, если мы говорим об электродвигателе относительно небольшой мощности — до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по этой характеристике нет. Но при этом, скорее всего, вам потребуется провести ряд мероприятий и потратить определенное количество денег и времени.
  • Для переноса вводного кабеля к источнику питания, а также придется иметь дело с поставщиком электроэнергии в части увеличения лимита. Не следует забывать, что для частных домохозяйств установлен лимит эн / потребления; как правило, в 15 кВт. «Влезет» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли оригинальный кабель?
  • Для такого прибора надо от силового щита прокладывать отдельную линию и ставить индивидуальный автомат, как минимум.Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
  • Практика переделок показывает, что даже если все сделать правильно, будет еще одна проблема с запуском. «Запуск» мощного электродвигателя будет тяжелым, с длительным нарастанием, скачками напряжения. Такая перспектива мало кому подойдет, особенно если что-то собирают не на дачном участке, а на территории, прилегающей к жилому строению.Пока будет самодельная установка на базе этого двигателя, начнутся сбои в работе бытовой техники. Проверено, и не раз.
  1. Порядок работ по переделке зависит от внутренней схемы электродвигателя. В одних моделях на клеммную коробку выводится всего 3 провода, в других — 6.


В чем разница? В первом случае обмотки уже подключены по одной из своих традиционных цепей — «звезда» или «треугольник», поэтому для маневрирования (в части модификации) возможности несколько меньше.

Вариантов немного — оставить первоначальное включение или разобрать двигатель и повторно сдать второй конец. Если все шесть выведены, то их можно подключить по любой из схем, без ограничений. Главное — выбрать тот, который будет оптимальным для конкретной ситуации (мощность электродвигателя, специфика его применения). .

Как переделать электродвигатель

Схема

Если учесть, что мощность электродвигателя небольшая (то есть не нужно будет его отключать при пуске), а питание планируется от сети 220, то оптимальной схемой является «треугольник».То есть нет необходимости акцентировать внимание на высоких пусковых токах (их не будет), а потери мощности практически сведены к нулю (им можно пренебречь). Все это наглядно показано на рисунке.

Если в электродвигателе схема изначально собрана по «треугольнику», то в ней ничего менять не нужно.

Расчет работоспособности

Так как вместо 3 фаз теперь будет только одна, то она подается на каждую из обмоток, но с небольшим сдвигом синусоиды.По сути включение конденсаторов — это имитация электродвигателя от источника 380 / 3ф. Формулы для расчета рабочих конденсаторов показаны на рисунках ниже.

Ставить их по принципу «больше — лучше», что часто делать домашние умельцы, не особо разбирающиеся в электротехнике, не должны. Только на основании расчетов требуемого номинала. В противном случае возможен перегрев мотора / мотора. Если он стоит на заводском оборудовании (например, переделке подвергается газонокосилка), то нужно будет либо устраивать постоянные перерывы в работе, либо готовиться к внеплановым ремонтам и неоправданным финансовым затратам на новый «движок». .

Примечание:
  • Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Если речь идет о переделке с 380 на 220, то U p не должно быть меньше 400 В.
  • Немаловажным фактором является разнообразие конденсаторов. Во-первых, они должны быть одного типа. Во-вторых, только не электролитический. Оптимальный, бумажный; например, старая серия КГБ, МБГ (и их модификации) или ее современные аналоги.Они удобны в застегивании (есть люверсы) и легко выдерживают скачки температуры, силы тока, напряжения.

Для схемы «звезда»

Для схемы «треугольник»

Вы можете увидеть весь процесс в действии на видео:

На практике инженерными расчетами мало кто из знающих людей занимается. Есть определенные пропорции, позволяющие достаточно точно подобрать рабочий конденсатор к конкретному электродвигателю.

Соотношение легко запомнить: на каждые 100 ватт мощности «двигателя» — 7 мкф рабочей мощности. То есть для изделия мощностью 2 кВт нужно включить в обмотки конденсаторы на 7 х 20 = 140 мкФ.

В чем сложность? Найти емкость с таким рейтингом вряд ли получится. Есть простое решение — взять несколько конденсаторов и подключить параллельно. В результате небольших подсчетов несложно подобрать их необходимое количество с общей емкостью требуемого значения.Тем, кто забыл школу, можно сказать — при таком способе подключения конденсаторов добавляется их емкость.


Запуск

Эта емкость требуется не всегда. Его ставят в схему только в том случае, если при пуске вала двигателя создается значительная нагрузка. Примеры — мощное вытяжное устройство, циркулярная пила. Но для той же газонокосилки хватит и рабочих конденсаторов.

Расчет прост — значение Cn должно превышать Cp на 2,5 (плюс / минус).Здесь не требуется особой точности; размер пусковой емкости определяется приблизительно. Дальнейший анализ работы электродвигателя в разных режимах подскажет, увеличит или уменьшит его.


Кстати, это касается рабочих конденсаторов. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не использованный в эксплуатации. А поскольку большая часть используемых продуктов подвергается конверсии, в процессе работы выяснится, что пользователю это не нравится.Вариантов очень много — плохой запуск, быстрый нагрев корпуса и так далее.

Вывод такой — подобрать баки для переделки двигателя / мотора с 380 на 220, это еще не все. Вначале нужно внимательно следить за его работой в разных режимах. Только так, экспериментируя, заменяя конденсаторы на их номинальные значения, можно выбрать идеальное значение емкости для конкретного продукта.

Как организовать реверс

Иногда необходимо изменить направление вращения вала без дополнительных переделок.Это вполне возможно для электродвигателя на 380, питающегося от 220. Как видно из рисунка, в этом нет ничего сложного, нужен только переключатель на 2 положения.

Трехфазные асинхронные двигатели с короткозамкнутым ротором преобладают над применяемыми однофазными и двухфазными сборками, имеют более высокий КПД, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию бытовые электродвигатели делятся на два типа: напряжением 220/380 и 127/220 Вольт.Последний тип электродвигателей малой мощности используется гораздо реже.

Паспортная табличка, расположенная на корпусе двигателя, указывает необходимую информацию — напряжение питания, мощность, потребляемый ток, КПД, возможные варианты включения и коэффициент мощности, количество оборотов.

Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК

Производители предлагают трехфазные электродвигатели с возможностью изменения схемы подключения и без нее.


Раннее обозначение выводов обмоток С1-С6 соответствует современным U1-U2, W1-W2 и V1-V2.В раздаче. К коробке выводится три провода (заводская установка по схеме подключения звезда *) или шесть (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо соединить начало обмоток (W2, U2, V2) в одной точке, три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2 , L3).


Достоинством звездного метода является плавный пуск двигателя и плавная работа (за счет щадящего режима и благоприятно влияющего на срок службы агрегата), а также меньший пусковой ток.Недостаток — потеря мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего свободно вращающуюся нагрузку на валу — вентиляторов, центробежных насосов, валов машин, центрифуг и другого оборудования, не требовательного к крутящему моменту. Схема треугольника используется для двигателей, которые изначально имеют на валу неинерциальную нагрузку, такую ​​как вес груза лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока комбинированный тип подключения (применим для электродвигателей мощностью 5 кВт) — совмещающий преимущества первых двух схем — звезда начинает работать, а после электродвигателя переходит в рабочее состояние происходит автоматическое (реле времени) или ручное переключение (пакер) — мощность увеличивается до номинальной.

Включение трехфазного двигателя в однофазную сеть через конденсатор (380 на 220)

На практике часто бывает необходимо подключить трехфазный двигатель к сети 220 вольт; Хотя КПД при этом падает до 50% (в лучшем случае до 70%), такая перестановка оправдана. Фактически двигатель начинает работать как двухфазный двигатель с использованием фазосдвигающего элемента.
Конденсатор подбирается исходя из мощности двигателя — на каждые 100Вт потребуется емкость 6,5 мкФ , рабочее напряжение должно быть больше 1.В 5 раз больше минимума питания, иначе могут выйти из строя из-за скачков напряжения в момент включения и выключения; тип — МБГО, МБГ4, К78-17 МБХП, К75-12, БГТ, КГБ, МБХЧ. Хорошо зарекомендовали себя конденсаторы из металлизированного полипропилена типа СВБ5, СВБ60, СВБ61. В случае использования конденсатора большего размера двигатель будет перегреваться, меньше — он будет работать в режиме недогрузки или вообще не запустится. На схеме ниже Cn — пусковой, Cp — рабочий конденсатор.

Пусковой конденсатор с нагрузкой на вал двигателя

В случае, если на валу есть нагрузка, или мощность превышает 1.5 кВт двигатель может не заводиться или медленно набирать обороты. * Правильно * это может быть использование рабочего и пускового конденсатора, служащего для сдвига фаз и ускорения. Кнопку ускорения необходимо удерживать до тех пор, пока число оборотов не достигнет примерно 70% от номинальной скорости (2–3 секунды), затем отпустите.


Емкость пускового конденсатора должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если получить указанные выше конденсаторы нужной емкости проблематично, можно использовать электролитические, впаянные по специальной схеме с диодами.Однако при эксплуатации мощных машин такой замены следует избегать и рекомендовать только для временного включения.

Важно!

Электродвигатель мощностью более 3 кВт не рекомендуется подключать к домашней сети из-за его малой нагрузочной способности.
Автоматический выключатель в цепи питания двигателя должен иметь временную характеристику C или D из-за значительного кратковременного пускового тока, превышающего номинальный ток в 3 и 5 раз (звезда / треугольник) соответственно.
Если трехфазный электродвигатель долгое время проработает без нагрузки от однофазной сети, он сгорит!
При выборе правильного подключения или переключения необходимо учитывать особенности электрической сети, выходную мощность электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Стоимость подключения электромотора специалисту — 800…. 2000р. в зависимости от сложности, варианта подключения, условий эксплуатации.

При развитии любой гаражной мастерской может возникнуть необходимость подключить трехфазный электродвигатель к однофазной сети 220 вольт. Это неудивительно, поскольку промышленные трехфазные двигатели на 380 В встречаются чаще, чем однофазные (на 220 В), особенно больших габаритов и мощности. А сделав какой-то станок, или купив готовый (например токарный), любой мастер гаража сталкивается с проблемой подключения трехфазного электродвигателя к обычной розетке 220 вольт.В этой статье мы рассмотрим варианты подключения, а также то, что для этого потребуется.

Во-первых, следует внимательно изучить паспортную табличку электродвигателя, чтобы узнать его мощность, так как эта емкость будет зависеть от емкости или количества конденсаторов, которые необходимо будет приобрести. И прежде чем отправиться на поиски и приобрести конденсаторы, для начала необходимо рассчитать, какая емкость потребуется вашему двигателю.

Расчет вместимости.

Емкость желаемого конденсатора напрямую зависит от мощности вашего электродвигателя и рассчитывается по простой формуле:

C = 66 П мкФ.

Буква C обозначает емкость конденсатора в мкФ (микрофарад), а буква P обозначает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 Вт мощности трехфазного двигателя требуется чуть менее 7 мкФ (а точнее 6,6 мкФ) электрической емкости конденсатора. Например для эл. Для двигателя мощностью 1000 Вт (1 кВт) потребуется конденсатор емкостью 66 мкФ, а для электрического. для двигателя мощностью 600 Вт потребуется конденсатор емкостью примерно 42 мкФ.

Также следует учесть, что требуются конденсаторы, рабочее напряжение которых в 1,5-2 раза превышает напряжение в обычной однофазной сети. Обычно на рынок поступают конденсаторы небольшой емкости (8 или 10 мкФ), но необходимая емкость легко собирается из нескольких параллельных конденсаторов небольшой емкости. То есть, например, 70 мкФ можно легко получить из семи параллельно соединенных конденсаторов по 10 мкФ.

Но всегда нужно стараться найти по возможности один конденсатор емкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так это безопаснее.Что ж, рабочее напряжение, как я уже сказал, должно быть как минимум в 1,5 — 2 раза больше рабочего напряжения, а лучше в 3 — 4 раза (чем больше напряжение, на которое рассчитан конденсатор, тем надежнее и долговечнее). Рабочее напряжение всегда написано на корпусе конденсатора (как и в мкФ).

Правильно у вас есть (рассчитано) емкость конденсатора или нет, можно и на слух. Когда двигатель вращается, должен быть слышен только шум подшипников, а также шум вентилятора воздушного охлаждения.Если же к этим шумам добавляется шум двигателя, необходимо немного уменьшить емкость (Cp) рабочего конденсатора. Если звук нормальный, то можно немного увеличить мощность (чтобы мотор был мощнее), но только чтобы мотор работал тихо (до завывания).

Проще говоря, нужно поймать момент, меняя мощность, когда к нормальному шуму от подшипников и крыльчатки начнет добавляться еле слышный посторонний вой.Это и будет необходимая емкость рабочего конденсатора. Это важно, так как если емкость конденсатора будет больше, чем необходимо, двигатель будет перегреваться, а если емкость будет меньше необходимой, двигатель потеряет свою мощность.

Купите лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если вы не найдете таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов их корпуса должны быть хорошо соединены и изолированы от корпуса машины или коробки (если она металлическая, но лучше использовать коробку для конденсаторов из диэлектрика — пластика, текстолита и т. Д.)).

При подключении трехфазного двигателя к сети 220 вольт скорость вращения его вала (ротора) не сильно изменится, но его мощность все равно немного снизится. А если подключить электродвигатель по треугольной схеме (рис. 1), то его мощность уменьшится примерно на 30% и составит 70-75% от номинальной мощности (при чуть меньше звезды). Но возможно соединение звездой по схеме (рис. 2), а при подключении звезды двигатель запускается легче и быстрее.

Для подключения трехфазного двигателя звездообразной формы необходимо подключить его две фазные обмотки к однофазной сети, а третью фазную обмотку двигателя через рабочий конденсатор Ср подключить к любому из проводов сети 220В. -V сеть.

Для подключения трехфазного электродвигателя мощностью до 1,5 киловатт (1500 ватт) достаточно только рабочего конденсатора необходимой мощности. Но при включении больших моторов (более 1500 Вт) двигатель либо очень медленно набирает обороты, либо вообще не запускается.В этом случае требуется пусковой конденсатор (Cn в схеме), емкость которого в два с половиной раза (желательно в 3 раза) больше емкости рабочего конденсатора. Лучше всего они подходят в качестве пусковых электролитических конденсаторов (типа ЭП), но можно использовать и того же типа, что и рабочие конденсаторы.

Схема соединения трехфазного двигателя с пусковым конденсатором показана на рисунке 3 (а также пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включается только во время пуска двигателя, а когда он запускается и набирает рабочие обороты (обычно 2 секунды), пусковой конденсатор отключается и разряжается.В этой схеме используются кнопка и тумблер. При запуске тумблер и кнопка включаются одновременно, а после запуска двигателя кнопка просто отпускается, и пусковой конденсатор выключается. Для разрядки пускового конденсатора достаточно выключить двигатель (после окончания работы), а затем кратковременно нажать кнопку пускового конденсатора и он разрядится через обмотки мотора.

Определение фазных обмоток и их выводы.

При подключении необходимо знать, где какая обмотка электродвигателя. Как правило, выводы обмоток статора электродвигателей маркируются различными метками, обозначающими начало или конец обмоток, либо маркируются буквами на корпусе распределительной коробки двигателя (или клеммной колодки). Ну а если маркировка стерта или ее нет вообще, то нужно прозвонить обмотки с помощью (мультиметра), установив его переключатель на циферблат, либо с помощью обычной лампочки и батарейки.

Для начала необходимо выяснить принадлежность каждого из шести проводов отдельным фазам обмотки статора. Для этого возьмите любой из проводов (в клеммной коробке) и подключите его к аккумулятору, например, к его плюсу. Минус батареи подключаем к контрольной лампе, а второй вывод (провод) от лампочки по очереди подключаем к оставшимся пяти проводам двигателя до тех пор, пока контрольная лампа не загорится. Когда на каком-то проводе загорается свет, это означает, что оба провода (один от аккумулятора и тот, к которому был подключен провод от лампы и лампа горит) принадлежат одной фазе (одна обмотка).

Теперь отметьте эти два провода картонными бирками (или малярной лентой) и напишите на них маркер первого провода C1 и второго провода обмотки C4. С помощью лампы и батарейки (или тестера) аналогично находим и отмечаем начало и конец оставшихся четырех проводов (двух оставшихся фазных обмоток). Обозначим конец обмотки второй фазы как C2 и C5, а начало и конец обмотки третьей фазы C3 и C6.

Далее необходимо точно определить, где находятся начало и конец обмоток статора.Далее я опишу метод, который поможет определить начало и конец обмотки статора для двигателей до 5 киловатт. Да большего не надо, так как однофазная сеть (разводка) гаража рассчитана на мощность 4 киловатта, а если мощнее, то стандартные провода не выдержат. И вообще мало кто пользуется в гараже двигателями мощнее 5 киловатт.

Для начала соединяем все начала фазных обмоток (С1, С2 и С3) в одну точку (с метками, помеченными метками) по схеме «звезда».А потом подключаем мотор в сеть 220 В с помощью конденсаторов. Если при таком подключении электродвигатель без гудения сразу же раскрутится до рабочей скорости, это означает, что вы попали в одну точку со всеми началами или всеми концами фазных обмоток.

Ну а если включить питание, то электродвигатель загрохочет и не сможет раскручиваться до рабочих оборотов, то в обмотке первой фазы нужно поменять местами выводы С1 и С4 (поменять местами начало и конец).Если это не помогает, то верните выводы С1 и С4 в исходное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель снова не набирает обороты и гудит, то верните выводы C2 и C5, поменяйте местами выводы третьей пары C3 и C6.

При всех вышеперечисленных манипуляциях с проводами строго соблюдайте правила техники безопасности. Провода только для изоляции, лучше плоскогубцы с ручками из диэлектрика. Ведь у электродвигателя общий стальной магнитопровод и на выводах других обмоток может возникнуть довольно высокое опасное для жизни напряжение.

Изменить вращение вала двигателя (ротора).

Часто бывает, что вы, например, сделали шлифовальные станки с лепестковым кругом на валу. А лепестки наждачной бумаги расположены под определенным углом, против которого вращается вал, но он должен быть в обратном направлении. И опилки не летят на пол, а наоборот. Поэтому необходимо изменить вращение вала двигателя в другую сторону. Как это сделать?

Для изменения вращения трехфазного двигателя, входящего в однофазную сеть 220 вольт по схеме «треугольник», необходимо подключить третью фазную обмотку W (см. Рисунок 1, б) через конденсатор к резьбовому выводу вторая фазная обмотка статора В.

Ну, а для изменения вращения вала трехфазного двигателя, соединенного звездой, необходимо подключить третью фазную обмотку статора W (см. Рисунок 2, б) через конденсатор к резьбовому выводу вторая обмотка В.

И напоследок хочу сказать, что шум двигателя от его длительной работы (несколько лет) со временем может возникать, и его не следует путать с гудением от неправильного подключения. Также со временем двигатель может завибрировать. И иногда трудно повернуть ротор вручную.Причиной этого обычно является выработка подшипников — изношены гусеницы и шарики, а также сепаратор. От этого между опорными частями увеличиваются зазоры и они начинают шуметь, а со временем могут даже заклинивать.

Это недопустимо, и дело не только в том, что валу будет труднее вращаться и мощность двигателя упадет, но также из-за относительно небольшого зазора между статором и ротором, и если подшипники сильно изнашиваются, ротор может начать цепляться за статор, и это намного серьезнее.Детали двигателя могут выйти из строя и восстановить их не всегда возможно. Поэтому гораздо проще заменить шумные подшипники на новые, от какой-нибудь солидной компании (как выбрать подшипник читаем), и электродвигатель снова проработает долгие годы.

Надеюсь, эта статья поможет гаражным мастерам без проблем подключить трехфазный двигатель станка к однофазной гаражной сети на 220 вольт, т.к. с применением различных станков (шлифовальные, сверлильные, токарные и т. Д.)), процесс доводки деталей для тюнинга или ремонта.

Как подключить 3-х фазный двигатель на 220

С такой проблемой приходится иметь дело со многими пустыми хозяевами, которые ко всему привыкли, по максимуму сделайте своими руками. В том числе и собирать различную технику для хозяйственных нужд; Например, циркулярная пила по участку, э / наждак, небольшой лифт в гараже и тому подобное.

Учитывая, сколько стоит электродвигатель, лучше адаптировать имеющийся трехфазный образец для работы от 1F, тем самым адаптируя его к домашней электронной почте / сети, чем приобретать новый.Нужно только понимать, как и какой электродвигатель можно переделать с 380 вольт на 220, чтобы не тратить дополнительно деньги, и разбираться в существующих схемах их включения.

Что учитывать

  1. Переделка с 380 на 220 имеет смысл, если речь идет о эл / двигателе относительно небольшой мощности — до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по этой характеристике нет. Но при этом, скорее всего, вам нужно будет провести ряд мероприятий и потратить определенное количество денег и времени.
  • Смена вводного кабеля Эл / питание, кроме того, придется заниматься согласованием с поставщиком электроэнергии в части улучшения лимита. Не следует забывать, что для частных домохозяйств установлен лимит EN / потребления; Как правило, на 15 кВт. «Будет ли в нем новая нагрузка в виде мощного электродвигателя? Выдержит ли он изначально проложенный кабель?»
  • Для такого прибора необходимо проложить отдельную линию от силового щита и поставить индивидуальный автомат, как минимум.Просто подключить его через розетку вряд ли получится; Лучше не экспериментировать.
  • Практика переделки показывает, что даже если все сделать правильно, возникнет другая проблема, с запуском. «Пуск» мощного электродвигателя будет тяжелым, с длинной звездой, бросающим напряжение. Такая перспектива мало кого устроит, особенно если что-то собирается не на дачном участке, а на территории, прилегающей к жилой конструкции. Пока будет работать самодельная установка на базе этого двигателя, начнутся сбои в работе бытовой техники.Проверено, и не раз.
  1. Порядок работ по переделке зависит от внутренней схемы электродвигателя. В одних моделях в клеммной коробке выводится всего 3 провода, в других — 6.

В чем разница? В первом случае обмотки уже подключены по одной из своих традиционных схем — «звезда» или «треугольник», поэтому для маневра (в части модификации) возможностей несколько меньше.

Вариантов немного — оставить первоначальное включение или произвести разборку двигателя и восстановить вторые торцы.Если все шесть разводятся, то подключать их можно по любой из схем без ограничений. Главное — правильно выбрать тот, который будет оптимальным для конкретной ситуации (мощность электродвигателя, специфика его использования). .

Как переделать электродвигатель

Схема

С учетом того, что мощность электродвигателя небольшая (а значит, «разбивать» его не придется), а питание планируется от сети 220, оптимальной схемой является «треугольник».То есть не нужно ориентироваться на высокие пусковые токи (их не будет), а потери мощности практически сведены к нулю (можно не учитывать). Все это наглядно демонстрирует рисунок.

Если схема в электродвигателе изначально собрана по «треугольнику», то переделывать ее в нем не нужно.

Расчет рабочих цистерн

Так как вместо 3 фаз теперь будет только одна, то она подается на каждую из обмоток, но с небольшим сдвигом синусоид.Фактически включение конденсаторов моделируется мощностью электродвигателя от источника 380 / 3Ф. Формулы расчета рабочих конденсаторов приведены на рисунках ниже.

Ставить их по принципу «больше — лучше», чего зачастую самодельные умельцы, особо не разбираясь в электротехнике, быть не должно. Только исходя из расчетов необходимого номинала. В противном случае возможна электронная почта. Если он стоит на заводском оборудовании (например, переделывают газонокосилку), то придется либо делать постоянные перерывы в работе, либо готовиться к незапланированному ремонту и неоправданным финансовым тратам на новый «двигатель».

Примечание:
  • Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Если речь идет о переделке с 380 на 220, то напряжение должно быть не менее 400 В.
  • Немаловажен также и такой фактор, как разнообразие конденсаторов. Во-первых, они должны быть одного типа. Во-вторых, не только электролитический. Оптимально бумажный; Например, устаревшая серия КГБ, ИБГ (и модификации) или ее современные аналоги.Они удобны в креплении (есть люверсы) и легко выдерживают температуру, ток, напряжение.

Для схемы «Звезда»

Для схемы «Треугольник»

Наглядно весь процесс в действии можно увидеть на видео:

На практике инженерными расчетами мало кто занимается. Есть определенные пропорции, позволяющие достаточно точно подобрать рабочий конденсатор к конкретному электродвигателю.

Соотношение легко запомнить: на каждые 100 Вт мощности «двигателя» — 7 мкФ рабочей емкости. То есть для изделия на 2 кВт потребуется включить в обмотке конденсаторы 7 х 20 = 140 мкФ.

В чем сложность? Найти контейнер с таким номиналом сложно. Есть простое решение — взять несколько конденсаторов и подключить параллельно. В результате небольших вычислений легко подобрать необходимое количество с общей емкостью требуемого значения.Тем, кто забыл в школу, можно посоветовать — с таким способом подключения конденсаторов их емкости.


Запущен

Этот контейнер нужен не всегда. Включается в схему только в том случае, если двигатель запускается на валу двигателя, создается значительная нагрузка. Примеры — мощное вытяжное устройство, циркулярная пила. Но для той же газонокосилки вполне достаточно и рабочих конденсаторов.

Расчет прост — номинал SP должен превышать CP на 2.5 (плюс / минус). Здесь не требуется особой точности; Величина пусковой емкости определяется примерно. Дальнейший анализ работы электродвигателя в разных режимах подскажет, увеличивать или уменьшать.


Кстати, это касается рабочих конденсаторов. Дело в том, что все расчеты априори говорят о том, что электродвигатель новый, ни разу в эксплуатации. А поскольку он переработан в основном используемом продукте, то в процессе работы выясняется, что он не подходит пользователю.Вариантов очень много — плохой запуск, быстрый нагрев корпуса и так далее.

Вывод — Выберите контейнер для переделки емейла / движка с 380 на 220, и это еще не все. Вначале нужно внимательно следить за его работой в различных режимах. Единственный способ, опытный способ, заменив конденсаторы по ставкам, можно подобрать идеальную емкость емкости для того или иного продукта.

Как организовать реверс

Иногда необходимо изменить направление вращения вала без дополнительных переделок.Вполне возможно электродвигатель на 380, переведенный на мощность 220. Как видно из рисунка, ничего сложного в этом нет, займет всего лишь переключатель на 2 положения.

Вы решили самостоятельно подключить трехфазный двигатель К одной фазе, и вы не электрик, тогда эта статья для вас. Трехфазный двигатель полностью успешно работает в однофазной сети, но рассчитывать на полную рабочую мощность от него не нужно, когда работа с конденсаторами не нужна.Мощность в лучшем случае будет не более 70% от номинальной, пусковой крутящий момент Зависит от пусковой мощности, также есть сложности с подбором работоспособности при постоянно меняющейся нагрузке. Трехфазный двигатель для однофазной сети — это компромисс, но во многих случаях это единственный выход.

Нам понадобится такой инструмент:

Вольтметр Rift, паяльник, отвертка.

Нам понадобится такой материал:

Электродвигатель 220/380 В., Конденсаторы рабочие, конденсатор пусковой, кнопка пуска 220 В., провода оловянные, канифольные или кислотные, лента.

Способы подключения электродвигателя своими руками:

Соединения по схеме «звезда»: начало или конец (условная концепция) Все обмотки соединяются вместе, и он будет равен нулю, остальные выходы подключены к фазам. На изображении обмоток обмотки похожи на звезду (витки направлены от центра).

Соединения по схеме треугольника: начало (условное понятие) одной обмотки соединяют с концом следующей обмотки по окружности.Наши соединения обмоток соединяются попарно и подключаются к трем фазам (трехжильный кабель). Нулевой вывод не имеет этой схемы, т.к. обмотка на схеме соединена в треугольник. Чтобы изменить направление вращения электродвигателя, необходимо поменять местами любые две фазы в точке подключения питания к электродвигателю.


Начало и конец обмотки условны, здесь важно, чтобы направления обмоток совпадали, то есть по схеме нулевой точки звезды оба конца и начало обмоток, а в схеме обмоточный треугольник должен быть связан последовательно, т.е.е. конец одного С началом следующего.

Обмотки поисковой системы:

Если у двигателя всего одна связка из 3 выводов, нужно разобрать двигатель: снять крышку с площадки и в обмотках найти соединение трех проводов обмотки, которое является нулевой точкой звезды (все остальные провода соединены на 2). Эти 3 провода нужно присыпать и припаять к ним вывод. Объединяя их в одну связку. И так у нас есть 2 пучка по 3 провода в каждом, которые соединяются по схеме треугольника.Если выводов 6, и они не объединены в жгуты, то воспользуйтесь схемой выше слева. К выходу обмотки А1 подключите 1 провод вольтметра в модуле, второй провод касается остальных выводов. Если стрелка вольтметра начинает клонироваться вправо, значит, А2. С остальным тоже поступаем и кладем провода по схеме. Проверьте все еще раз с самого начала. Итак, у нас получилось следующее. Теперь выводы, которые находятся в одной связке, воспринимаются как начатые, а выводы из другой связки — как конечные.Все можно связать по схеме треугольника.


Расчет емкости рабочего конденсатора:

Расчет ведется на номинальную мощность, и двигатель в таком режиме работает редко и если в этом нет необходимости, двигатель нагревается из-за чрезмерной емкости рабочего конденсатора и из-за увеличения тока в обмотке.

Для двигателей, подключенных к сети 220 В с соединением обмоток по схеме треугольника, применима такая формула: С ICF = 4800 I / U

Для двигателей, подключенных к сети 220 В с подключением проводов обмоток по схеме звезда, применим такую ​​формулу: С ICF = 2800 I / U

Конечно, это наиболее точный метод, но он требует измерения тока в цепи двигателя.Имея информацию о номинальной мощности двигателя, для расчета емкости рабочего конденсатора лучше воспользоваться следующей формулой:

При мкФ = 66 · r nom где rom — номинальная мощность электродвигателя.

Например, двигателю мощностью 1,7 кВт необходима емкость конденсаторной составляющей 112 мкФ. Получается каждые 0,1 кВт. Используйте 6,6 мкФ. Емкость конденсатора можно набрать несколькими конденсаторами, подключив их параллельно, друг другу, но они должны быть рассчитаны на напряжение не менее 380 В.Рассчитав емкость рабочего конденсатора, можно узнать емкость пускового, которая должна быть в 2-3 раза больше емкости рабочего.

Трехфазные электродвигатели асинхронного типа Короткозамкнутый ротор преобладает у однофазных и двухфазных собратьев в применении, поскольку имеют более высокий КПД, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию бытовые электродвигатели делятся на два типа: напряжением 220/380 и 127/220 вольт.Последний тип электродвигателей малой мощности встречается значительно реже.

В вывеске, размещенной на корпусе электродвигателя, указывается необходимая информация — напряжение питания, мощность, ток потребления, КПД, возможные варианты включения и коэффициент мощности, количество оборотов.

Схемы подключения звезда и треугольник

Производители предлагают трехфазные электродвигатели как с возможностью изменения схемы подключения, так и без нее.


Раннее обозначение выводов обмоток C1 — C6 соответствует современным U1 — U2, W1 — W2 и V1 — V2.В распределительной коробке выведено проводов в количестве трех (заводская по умолчанию схема подключения * звезда *) или шести (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо начать обмотки (W2, U2, V2) подключать в одной точке, три оставшихся провода (W1, U1, V1) подключать к фазам питающей сети (L1, L2 , L3).


Достоинством звездного метода является плавный ход двигателя и плавная работа (за счет щадящего режима и благоприятно влияющего на срок эксплуатации), а также меньший пусковой ток.Недостатком является потеря мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего свободно вращающуюся нагрузку на валу — вентиляторов, центробежных насосов, валов машин, центрифуг и другого оборудования, не требующего крутящего момента. Схема треугольника применяется для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую ​​как вес лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока осуществляют комбинированного типа включения (Применяется для электродвигателей мощностью 5 кВт) — совмещение преимуществ первых двух схем — запуск происходит по схеме звезды, а после электродвигателя. вход в рабочее состояние Происходит автоматическое (реле времени) или ручное переключение (пакетное) — мощность увеличивается до номинальной.

Включение трехфазного двигателя в однофазную сеть через конденсатор (380 на 220)

На практике часто приходится подключать трехфазный двигатель к сети 220 вольт; Хотя КПД падает до 50% (в лучшем случае до 70%), такая переделка оправдана. Фактически, двигатель начинает работать как двухфазный, используя фазирующий элемент.
Конденсатор подбирается исходя из мощности двигателя — на каждые 100Вт потребуется ёмкость 6,5 мкФ , на рабочем напряжении питания должно быть больше не менее 1.5 раз, иначе могут выйти из строя в момент включения и выключения. Тип — МБГО, МБГ4, К78-17 МБГП, К75-12, БГТ, КГБ, ИБГК. Хорошо зарекомендовали себя металлические полипропиленовые конденсаторы типа SVV5, SVV60, SVV61. В случае использования конденсатора большей емкости двигатель будет перегреваться, меньшего — будет работать в кратковременном режиме или вообще не запуститься. На схеме ниже совместного предприятия КП представляет собой работающий конденсатор.

Пусковой конденсатор при наличии нагрузки на валу двигателя

При наличии нагрузки на валу или мощности более 1.5 кВт двигатель может не заводиться или медленно набирать обороты. * Press * Это может применяться для работы и запуска конденсатора для сдвига фазы и разгона. Кнопку ускорения необходимо удерживать, пока обороты не достигнут примерно 70% от номинала (2–3 секунды), затем отпустите.


Емкость пускового потребителя должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если получить вышеуказанные конденсаторы нужной емкости проблематично, можно использовать электролитические, проложенные по специальной схеме диодами.Однако для эксплуатации мощных машин следует избегать такой замены и рекомендовать ее только для временного включения.

Важно!

Электродвигатель мощностью более 3 кВт не рекомендуется подключать к домашней сети из-за его малой нагрузочной способности.
Автоматический выключатель в силовой цепи электродвигателя должен иметь временную характеристику C или D из-за значительного кратковременного пускового тока, превышающего номинальный в 3 и 5 раз (звезда / треугольник), соответственно.
Если 3- фазный электродвигатель долго проработает без нагрузки от однофазной сети, он горит!
Выбирая правильное подключение или переключение, необходимо учитывать особенности электрической сети, мощности электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками двигателя и оборудования, для которого он предназначен.

Стоимость подключения электродвигателя специалистом — 800…. 2000р. В зависимости от сложности, варианта подключения, условий работы.

Большинство асинхронных двигателей, рассчитанных на работу в трехфазной сети 380 В, можно спокойно переделать для работы в домашнем хозяйстве, например, для шлифовального станка или сверлильного станка, где напряжение в сети обычно составляет 220 В. На практике подключение Схема применяется чаще всего. однофазная сеть С помощью конденсаторов.

Следует отметить, что при таком подключении мощность электродвигателя будет составлять 50-60% от его номинальной мощности, но этого зачастую будет вполне достаточно.

Не все трехфазные электродвигатели хорошо работают при подключении к однофазной сети. Проблемы возникают, например, в двигателях серии МА с двухэлементным короткозамкнутым ротором. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдавать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Зачем нужны конденсаторы? Если вы помните теорию, обмотки в асинхронном двигателе имеют фазовый сдвиг на 120 градусов, тем самым создавая вращающееся магнитное поле.Вращающееся магнитное поле, пересекающее обмотку ротора, наводит в них электродвижущую силу, что приводит к возникновению электромагнитной силы, под действием которой ротор начинает вращаться. Но это справедливо только для трехфазной сети.

При подключении к однофазной сети трехфазного двигателя крутящий момент будет создаваться только одной обмоткой и этой силы будет недостаточно для вращения ротора. Для создания фазового сдвига относительно фазы питания и применяют фазосдвигающие конденсаторы.

Самыми распространенными схемами подключения трехфазного двигателя к однофазной сети являются схема треугольник и схема «звезда». При подключении к «треугольнику» выходная мощность электродвигателя будет больше, чем у «звезды», поэтому его обычно используют в быту.

Чтобы определить, по какой схеме подключен двигатель, необходимо снять крышку клеммной коробки и посмотреть, как установлены перемычки.

В случае соединения «треугольником» все обмотки должны быть соединены последовательно, т.е.е. конец одной обмотки с началом следующей.

Если в клеммной колодке отображаются только 3 выхода, это означает, что вам придется разобрать двигатель и найти общую точку, соединяющую три конца обмоток. Этот компаунд следует разрывать, к каждому концу припаивать отдельный провод, после чего он включается на клеммник. Таким образом мы уже получаем 6 проводов, которые подключаются по схеме «Треугольник».

После того, как определился со схемой подключения, необходимо выбрать ёмкостную емкость.Емкость рабочего конденсатора можно определить по формуле С раб = 66 · r , где R Ном. — Номинальная мощность двигателя. То есть берем на каждые 100 Вт мощность примерно 7 мкФ емкости рабочего конденсатора. Если конденсатора нет в наличии, можно набрать из нескольких конденсаторов, подключив их параллельно. Конденсаторы могут быть любого типа, кроме электролитических. Неплохо зарекомендовавшие себя конденсаторы типа МБГО , МБГП . Емкость пускового конденсатора должна быть примерно в 2-3 раза больше емкости рабочего конденсатора.Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети.

Если двигатель после запуска начинает перегреваться, то расчетная емкость конденсаторов завышена. Если емкости конденсаторов будет недостаточно, произойдет падение мощности двигателя. При правильном подборе конденсаторов из конденсаторов ток в обмотке, подключенной через рабочий конденсатор, будет таким же или немного отличаться от тока, потребляемого двумя другими обмотками.Рекомендуется выбирать емкости, начиная с наименьшего допустимого значения, постепенно увеличивая емкость до необходимого значения.

В случае подключения двигателей малой мощности, изначально работающих без нагрузки, можно обойтись одним рабочим конденсатором.

Рис.1 Подключение с одним рабочим конденсатором

Рис.2 Подключение трехфазного двигателя в однофазную сеть

SP — Пусковой конденсатор Cf — Конденсатор SB — кнопка SA — тумблер

При разработке любой гаражной мастерской может возникнуть необходимость подключить трехфазный электродвигатель в однофазную сеть на 220 вольт.В этом нет ничего удивительного, так как промышленные трехфазные двигатели на 380 более распределены, чем однофазные (220 В), особенно больших габаритов и мощности. А сделав какие-то машинки, или купив готовые (например, лиственницу), любой гаражный мастер сталкивается с проблемой подключения трехфазного электродвигателя к обычной гаражной розетке на 220 вольт. В этой статье мы рассмотрим варианты подключения, а также то, насколько оно будет необходимо.

Для начала необходимо внимательно изучить вывеску (вывеску) электродвигателя, чтобы узнать его мощность, так как от этой покупаемой мощности будет зависеть емкость или количество конденсаторов.И прежде чем отправиться на поиски и покупку конденсаторов, следует для начала рассчитать, какая емкость потребуется вашему двигателю.

Расчет вместимости.

Мощность нужного конденсатора напрямую зависит от мощности вашего электродвигателя и рассчитывается по простой формуле:

С = 66 R мкФ.

Буква C — это емкость конденсатора в ICF (микрофарад), а буква R означает номинальную мощность электродвигателя в кВт (киловатт).Из этой простой формулы видно, что на каждые 100 Вт мощности трехфазного двигателя потребуется чуть меньше 7 мкФ (если вы точны, то 6,6 мкФ) емкости электрического конденсатора. Например, для электронной почты. Для двигателя мощностью 1000 Вт (1 кВт) потребуется конденсатор емкостью 66 мкФ, причем для эл. Для двигателя мощностью 600 Вт потребуется емкость конденсатора около 42 микрон.

Также следует учесть, что потребуются конденсаторы, рабочее напряжение которых равно 1.В 5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно конденсаторы небольшой емкости (8 или 10 мкФ) конденсируют в базаре, но необходимую емкость легко собрать из нескольких параллельно соединенных конденсаторов небольшой емкости. То есть, например, 70 мкФ можно легко получить из семи параллельно включенных конденсаторов по 10 мкФ.

Но все же всегда нужно стараться найти один конденсатор емкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, настолько надежных. Ну и рабочее напряжение, как я уже сказал, должно быть не меньше 1.В 5 — 2 раза больше рабочий, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надежнее и дольше). Рабочее напряжение всегда написано на корпусе конденсатора (как и на ICF).

Правильно, подобрали вы (рассчитали) емкость конденсатора или нет, это возможно по слухам. При вращении мотора должен быть слышен только шум подшипников, ну и шум вентилятора воздушного охлаждения. Если к этим прибавляется шум и завывание двигателя, нужно немного уменьшить емкость (КП) рабочего конденсатора.Если звук нормальный, то можно наоборот увеличить мощность (так будет мотор мощнее), но тихо работает только мотор (до появления войны).

Проще говоря, нужно поймать тот момент, поменяв емкость, когда к нормальному шуму от подшипников и дефектов начнет добавляться еле-еле звуковая резкость. Это и будет необходимая емкость рабочего конденсатора. Это важно, потому что, если рабочая емкость конденсатора будет более необходимой, двигатель будет перегреваться, а если емкость будет меньше необходимой, двигатель потеряет свою мощность.

Купите лучше конденсаторы типа МБГХ, БГТ, КБГ, но если вы не найдете таковых в продаже, можно применить электролитические конденсаторы. Но при подключении электролитических конденсаторов их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать коробку конденсатора диэлектрическую — пластик, текстолит и т. Д.).

При подключении трехфазного двигателя к сети 220 вольт частота вращения его вала (ротора) почти не изменится, но мощность все равно немного уменьшится.А если подключить электродвигатель по схеме треугольника (рис. 1), то мощность снизится примерно на 30 процентов и составит 70 — 75% от его номинальной мощности (при звездочке чуть меньше). Но можно подключать по схеме звезды (рис. 2), а при подключении звездой мотор легче и крепится.

Для подключения трехфазного электродвигателя по схеме звезды необходимо, чтобы его две фазные обмотки были подключены к однофазной сети, а третья фазная обмотка двигателя подключена через рабочий конденсатор КП к любой из провода сети 220 В.

Для подключения трехфазного электромотора мощностью до полукиловатты (1500 Вт) достаточно только рабочего конденсатора требуемой емкости. Но при включении больших двигателей (более 1500 Вт) двигатель либо очень медленно набирает обороты, либо вообще не запускается. В этом случае необходим пусковой конденсатор (на схеме SP), емкость которого в два с половиной раза (лучше в 3 раза) больше емкости рабочего конденсатора. Лучше всего подходят лучшие электролитические (типа EP) пусковые конденсаторы, но вы можете использовать конденсаторы того же типа, что и рабочие.

Подключение трехфазного двигателя к пусковому конденсатору показано на рисунке 3 (а также пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включается только при запуске двигателя, а когда он запускается и набирает рабочие обороты (обычно достаточно 2 секунд), пусковой конденсатор отключается и разряжается. В этой схеме используется кнопка и тумблер. При запуске одновременно активируется тумблер и кнопка, а после запуска двигателя кнопка просто отпускается и пусковой конденсатор выключается.Для разряда пускового конденсатора достаточно выключить двигатель (после окончания работы) и затем кратковременно нажать кнопку пускового конденсатора, и он разряжается через обмотки двигателя.

Определение фазных обмоток и их выводы.

При подключении нужно знать, где какая обмотка электродвигателя. Как правило, выводы обмоток статора электродвигателей маркируются различными бирками с обозначением начала или конца обмоток, либо буквами на двигателе распределительной коробки (или клеммной колодки) двигателя.Ну а если маркировка сделана или нет, то нужно прозвонить обмотки с помощью (мультиметра), установив его переключатель на трансвелкар, либо с помощью обычной лампочки и батареек.

Для начала выясняем принадлежность каждого из шести проводов отдельным фазам обмотки статора. Для этого возьмите любой из проводов (в клеммной коробке) и подключите его к аккумулятору, например, к его плюсу. Минус батареи Подключите к контрольной лампе, а второй вывод (провод) от лампочки по очереди подсоедините к оставшимся пяти проводам двигателя до тех пор, пока не загорится контрольная лампочка.Когда на каком проводе загорится лампочка, это будет означать, что оба провода (тот, что от аккумулятора, и тот, который соединен проводом от лампы, и лампа загорелась) принадлежат одной фазе (одна обмотка).

Теперь эти два провода маркируем картонными бирками (или малярным скотчем) P пишем на них начало первого провода С1, а второго провода обмотки С4. С помощью лампы и батареек (или тестера) также находим и маркируем начало и конец оставшихся четырех проводов (две оставшиеся фазные обмотки).Конец второй фазной обмотки обозначен как C2 и C5, а начало и конец третьей фазной обмотки C3 и C6.

Далее следует точно определить где начало и конец обмотки статора. Опишу способ, который поможет определить начало и конец обмоток статора для двигателей до 5 киловатт. Да в этом больше нет необходимости, так как однофазная сеть (разводка) гаража рассчитана на мощность 4 киллатесте, а если посильнее, штатные провода не сохраняются.И вообще редко кто использует в гараже двигатели мощнее 5 киловатт.

Для начала соедините все пуски фазных обмоток (С1, С2 и С3) в одну точку (по маркированным меткам выходов) по схеме «Звезда». А затем включите двигатель в сеть 220 В. с помощью конденсаторов. Если при таком подключении электродвигатель без гула сразу будет переведен на рабочие обороты, значит, вы попали в одну точку по всем принципам или по всем концам фазных обмоток.

Ну а если при включении сети электродвигатель будет грозить и не может раскручиваться до рабочих оборотов, то в обмотке первой фазы нужно поменять выводы С1 и С4 (поменять местами начало и конец). Если не поможет, то верните выводы С1 и С4 в первое положение и теперь попробуйте поменять выводы С2 и С5 местами. Если двигатель снова не набирает обороты и гудит, то верните выводы С2 и С5. Поменять выводы третьей пары С3 и С6 местами.

При всех описанных выше манипуляциях с проводами строго соблюдайте технику безопасности. Провода только для изоляции, лучше плоскогубцы с диэлектрическими ручками. Ведь у электродвигателя общий стальной магнитопровод и на зажимах других обмоток может возникнуть довольно большое напряжение, опасное для жизни.

Изменение вращения вала электродвигателя (ротора).

Часто бывает, что вы, например, сделали шлифовальные станки с лепестковым кругом на валу.А лепестки от наждачной бумаги расположены под определенным углом, против которого вращается вал, а надо иначе. Да и опилки летят не на пол, а наоборот вверх. Значит, нужно изменить вращение вала двигателя в другую сторону. Как это сделать?

Для изменения вращения трехфазного двигателя, включенного в однофазную сеть, на 220 вольт по схеме «Треугольник» необходимо третью фазную обмотку W (см. Рис. 1, б) подключить через конденсатор к резьбовой. вывод второй фазной обмотки статора В.

Ну а для изменения вращения вала трехфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. Рис. 2, б) подключить через конденсатор к резьбовому выводу. второй обмотки В.

Ну напоследок хочу сказать, что шум двигателя от его длительной работы (несколько лет) может возникать со временем, и его не следует путать с ройлером от неправильного подключения. В то же время может возникнуть вибрация двигателя.И даже ротор сложно вращать вручную. Причиной тому обычно является изготовление подшипников — изношены гусеницы и шарики, а также сепаратор. От этого между частями подшипников возникают большие зазоры и они начинают шуметь, а со временем могут даже заклинивать.

Допустить этого нельзя, и дело не только в том, что вал будет тяжелее вращаться и упадет мощность двигателя, а еще и в том, что между статором и ротором достаточно небольшой зазор, и при сильном износе подшипники, ротор может начать цепляться за статор, а это гораздо серьезнее.Детали двигателя могут быть испорчены и восстановить их не всегда возможно. Поэтому втулочные подшипники заменить на новые, какой-нибудь авторитетной фирмы (как выбрать подшипник читайте) намного проще, и электродвигатель снова проработает долгие годы.

Надеюсь, эта статья поможет гаражным мастерам без проблем подключить трехфазный двигатель какой-то машины к однофазной гаражной сети на 220 вольт, т.к. используют различные станки (шлифовальные, сверлильные, токарные и т. Д.)) значительно упрощается процесс регулировки деталей при настройке или ремонте.

Переключение двигателя между 240 и 120 вольт

Переключение двигателя между 240 и 120 вольт

В Северной Америке многие однофазные двигатели мощностью от 1 до 2 л.с. могут быть переподключен для работы от 120 вольт или 240 вольт (или 115 против 230 вольт, это зависит от того, какое напряжение принято «номинальным»).

Такие двигатели обычно имеют шесть выводов, выходящих из двигателя к проводке. коробки, или некоторые соединения могут быть винтовыми клеммами.Лучший способ изменить напряжение на двигателе — это следовать схеме подключения на этикетка. Но иногда, когда вы открываете мотор, бывает всего шесть проводов а диаграммы нет! Так случилось с мотором мощностью 1,5 л.с. на моем старом столе увидел. 20 лет назад я подключил его к 240 вольт, но я хотел снова переключить его на 120 вольт. для того, куда я его переместил.

Внутри двигатель имеет две обмотки на 120 вольт, которые соединены последовательно. когда двигатель подключен на 240 вольт (слева, слева). При переключении на 120 вольт две обмотки меняют конфигурацию на параллельность.

было бы проще подключить к A и C, а затем подключить питание к B. Но это переключит полярность обмотки между A и B, что означает намотку A-B будет бороться с витками B-C. Если потом вот так вот воткнуть, то мотор потреблял около 100 ампер, но не работал. Если автоматический выключатель не лопнуло сразу, через десять секунд мотор начнет дымить.

Но не все так просто: есть еще обмотка стартера

Но на самом деле это сложнее, чем показано выше.Мотор также имеет обмотка стартера, включенная последовательно с выключателем стартера и конденсатором стартера (см. красный контур слева). Обмотка стартера активна только тогда, когда двигатель набирает обороты.

Если обмотку стартера и конденсатор также необходимо перенастроить на напряжение меняет, проводка будет совсем кошмаром!

Таким образом, вместо обмотки стартера в этих двигателях всегда обмотка на 120 вольт, и двигатели две обмотки на 120 вольт используются в качестве автотрансформатора, чтобы сделать 120 вольт для обмотки стартера.Перенастройка между 240 и 120 вольт выполнена. таким же образом, но обмотка стартера остается подключенной к одной из обмоток.

Если у вас нет электрической схемы, а двигатель в настоящее время подключен на 240 вольт, вы можете идентифицировать точку «B» по тому факту, что это не подключен к любому проводу питания. С помощью омметра проверьте, какой из трех проводов от B к проводу питания всего одним проводом прикреплен к нему. Это тот, который вам нужно отключить и подключиться к C. А конец обмотки в точке A необходимо подвести к точке B.

Разобравшись с этим, я понял, что 20 лет назад я переставил крепление пускового конденсатора на этот двигатель, чтобы он не выступал над столом настольной пилы, когда полотно наклонен на 45 градусов. И, перемещая конденсатор, я в конечном итоге установил его прямо над шильдик двигателя, на котором также изображена проводка. Сняв крышку конденсатора, я увидел этикетку со схемой подключения. и я смог проверить свою работу, прежде чем подключил ее.

Предположим, у вас есть загадочный однофазный асинхронный двигатель, 1750 об / мин или 3500 об / мин. (или очень близко к этим RPM).Из него выходят шесть выводов или проводов. Как вы его подключаете? На некоторых двигателях будет шесть соединений, но некоторые из них могут быть винтовыми клеммами. в проводке вместо проводов. Я просто назову их ведущими. Если у двигателя есть винтовые стойки для крепления проводов, он обычно имеет дополнительный винтовой стержень для соединения проводов вместе в Работа на 240 вольт, но винтовой стержень ни к чему не подключен в двигателе.

С помощью омметра найдите пару выводов, между которыми сопротивление меньше 5 Ом.Показания не должны изменяться, когда вы держите глюкометр на них. Обозначьте эти провода 1 и 2. 1 и 2 не должны иметь никакой проводимости с другими выходящими выводами. Теперь найдите еще одну пару проводов с таким же сопротивлением, как 1 и 2 между ними, Обозначьте эти 3 и 4. 1-2 и 3-4 — основные обмотки.

Остальные два вывода должны подключаться к пусковому конденсатору, пусковому выключателю, и прямая обмотка последовательно (при неработающем двигателе пусковой выключатель будет закрыто). Обозначьте оставшиеся отведения 5 и 6.Если вы измеряете сопротивление между 5 и 6, вы должны увидеть показания на вашем глюкометре постоянно увеличиваются (установите на глюкометре другое чем самый низкий диапазон Ом). если ты поменяйте местами щупы измерителя между 5 и 6, значение сопротивления снова будет ниже, но опять идем наверх. Вы измеряете сопротивление на конденсаторе, и когда он «заряжается» от счетчика, подавая ток для измерения, значение сопротивления увеличится.

Для работы на 120 В необходимо подключить

1,3,5 к одному проводу питания и 2,4,6 к другому OR 1,4,5 и 2,3,6.Но какой ??

Если вы ошибетесь, вы взорвете автоматический выключатель или сломаете двигатель. Обычно, если обмотка 1-2 противостоит обмотке 3-4, происходят очень плохие вещи.

Вы можете на короткое время запустить двигатель с напряжением 120 вольт, используя только одну обмотку на 120 вольт. Поэтому просто оставьте провода 3 и 4 отключенными. Подключите один провод питания к 1,5, другой на 2,6, и подключите его к 120 вольт. Мотор должен работать.

Отключите двигатель, теперь добавьте провода 3 к 1 и 5 (1,3,5 и один из проводов питания все вместе), а другому проводу питания оставьте только 2,6.Подключите двигатель, пока он работает, измерьте напряжение между оставшимися неподключенный провод 4 и другой провод, подающий питание, подключенный к проводам 2,6). Если напряжение меньше 10 вольт, то вы можно соединить провода 2,4,6 вместе. Ваш двигатель теперь подключен к 120 вольт.

Если показание превышает 200 вольт, вам необходимо поменять местами провода 3 и 4. Измените маркировку отведения 3 как 4, а 4 как 3, затем повторите шаг выше и убедитесь, что разница чтение меньше 10 вольт.

Чтобы реверсировать двигатель, поменяйте местами провода 5 и 6 (те, которые идут к обмотке стартера).

Чтобы подключить двигатель на 240 В, подключите провод 1 к одному проводу питания
, соедините провода 2,3,5 вместе (не соединяя их ни с одним из проводов питания)
Подключите другой провод питания к 4,6.
Если у двигателя есть винтовые стойки в монтажной коробке, будет дополнительная винтовая стойка, ни к чему не подключен, для соединения проводов 2,3,5 вместе.
И, как и прежде, чтобы реверсировать двигатель, поменяйте местами провода 5 и 6

Если это не сработает для вас, возможно, двигатель не имеет двойного напряжения. однофазный двигатель, или с ним что-то не так. Не стесняйтесь, напишите мне. Я, наверное, не смогу вам помочь, но полезно знать где вы сталкиваетесь с проблемами.Таким образом, если многие люди зацикливаются на одном и том же проблема, я мог бы добавить несколько примечаний по этому поводу.

И если вы взорвете мотор или он загорится, не вините меня!

Подключение двигателя звезда / треугольник 380В / 220В | GoHz.com

Если двигатель спроектирован для работы по схеме звезды от трехфазного источника питания 380 В, то он не может быть подключен по схеме треугольника к «тому же» источнику питания. Это было бы эквивалентно приложению 380 вольт к обмоткам 220 в, так что двигатель явно выйдет из строя.

Обратите внимание, что в схеме «звезда» каждая обмотка получает корень 3 от приложенного напряжения (или 380 / 1,732). Соединение по схеме «треугольник» означает, что каждая обмотка получает напряжение фаза-фаза EG 380 В.

Если двигатель рассчитан на 380 В — «соединение треугольником», то он может быть подключен звездой или треугольником, поскольку подключение двигателя с номиналом 380 В, треугольник, звездой снизит напряжение на обмотках до 220 В, что является нормальным и часто используется в схеме «звезда /». Запуск по схеме треугольника для уменьшения пускового тока. Разумеется, все 6 обмоток двигателя должны быть доступны.

Как указано выше, вы можете взять трехфазный двигатель на 380 В, подключенный звездой, и запустить его как трехфазный двигатель на 220 В, подключенный по схеме «треугольник». Возвращаясь к основам, это ток, управляемый напряжением, который создает магнитный поток. Плотность потока (зависит от многих факторов) является функцией тока и напряжения. Ток контролируется импедансом цепи и нагрузкой на двигатель. Поскольку большая часть изоляции, используемой в двигателях, рассчитана на 1000 В плюс, напряжение не является проблемой, пока импеданс не станет достаточно низким, чтобы превысить ограничение тока на проводниках до точки, где температура разрушит изоляцию.Мы подключили 380 В к 525 В и наоборот в аварийной ситуации. КПД и коэффициент мощности НЕ будут соответствовать проектным, и вы должны это понимать. Настроить защиту сложно, и безопасность прежде всего, пожалуйста.

Таким образом, вы можете подавать любое напряжение на двигатель, если оно не превышает уровень изоляции и ограничения по току этого конкретного двигателя.

В заключение есть однофазные входы для трехфазных частотно-регулируемых приводов (VFD). Очень часто я получаю запрос, что они не могут разогнать двигатель до полной нагрузки без превышения данных, указанных на паспортной табличке.Небольшие двигатели, для которых были разработаны эти частотно-регулируемые приводы, обычно соединяются звездой. Поскольку ЧРП не может генерировать шину постоянного тока выше пикового напряжения на входе, вы никогда не сможете получить 380 В на входе 220 В. Таким образом, ЧРП выдает три фазы 220В. Двигатель должен быть подключен по схеме треугольника для работы с полной нагрузкой / мощностью.

Часто задаваемые вопросы о трансформаторе преобразователя напряжения — трансформаторы преобразователя напряжения

14) Преобразователи напряжения преобразуют цикл (Гц)?

Все преобразователи напряжения преобразуют только напряжение, а не цикл, однако большинство приборов и электроники будут правильно работать с ними.В Северной Америке электричество на 110–120 вольт вырабатывается с частотой 60 Гц. (Циклы) Переменный ток. Большая часть зарубежной электроэнергии 220-240 Вольт вырабатывается при частоте 50 Гц. (Циклы) Переменный ток. Эта разница в циклах может привести к тому, что двигатель у вас будет 60 Гц. Североамериканский прибор работает немного медленнее при использовании на частоте 50 Гц. зарубежная электроэнергия. Эта разница в циклах также приведет к тому, что аналоговые часы и схемы синхронизации, которые используют переменный ток в качестве базы синхронизации, будут поддерживать неправильное время. Самое современное электронное оборудование, включая зарядные устройства, компьютеры, принтеры, стереосистемы, кассетные и CD-плееры, видеомагнитофоны / DVD-плееры и т. Д.не будет зависеть от разницы в циклах.

15) Как выбрать трансформатор? На задней панели устройства вы должны найти этикетку с описанием его технических характеристик, включая мощность (Вт) или силу тока (A) устройства.

Пример. Если ваше устройство потребляет 80 Вт, вам потребуется трансформатор AC-100 (мощность 100 Вт) или выше.

Если вы хотите использовать 2 прибора на одном трансформаторе.Один из них потребляет 300 Вт, а другой 130 Вт, тогда вам понадобится AC-500 (мощность 500 Вт) или выше.

16) Как рассчитать мощность прибора? Если на этикетке не указана мощность, но вам известна сила тока (А), вы можете рассчитать ее по следующей формуле:
А (А) x напряжение (В) = Ватты

Пример: 3 А x 220 В = 660 Вт
3 А x 110 В = 330 Вт

17) В чем разница между регуляторами напряжения серво и реле?

Регуляторы напряжения серво стабилизируют напряжение, регулируя трансформатор на желаемое выходное напряжение.Это обеспечивает высочайшую точность стабилизации напряжения. Тип реле — все электронное, поэтому точность меньше.

% PDF-1.7 % 2574 0 объект > эндобдж xref 2574 557 0000000016 00000 н. 0000017660 00000 п. 0000017875 00000 п. 0000017913 00000 п. 0000018307 00000 п. 0000018346 00000 п. 0000018461 00000 п. 0000018720 00000 п. 0000019293 00000 п. 0000019550 00000 п. 0000020188 00000 п. 0000022839 00000 п. 0000022868 00000 п. 0000022984 00000 п. 0000029854 00000 п. 0000030150 00000 п. 0000030226 00000 п. 0000030306 00000 п. 0000030420 00000 п. 0000030617 00000 п. 0000030741 00000 п. 0000030892 00000 п. 0000031887 00000 п. 0000032276 00000 н. 0000032665 00000 п. 0000032789 00000 п. 0000032938 00000 п. 0000033334 00000 п. 0000033598 00000 п. 0000033987 00000 п. 0000034137 00000 п. 0000034294 00000 п. 0000034443 00000 п. 0000034675 00000 п. 0000034825 00000 п. 0000034974 00000 п. 0000035363 00000 п. 0000035482 00000 п. 0000035639 00000 п. 0000035693 00000 п. 0000035742 00000 п. 0000035855 00000 п. 0000036025 00000 п. 0000037722 00000 п. 0000038113 00000 п. 0000038394 00000 п. 0000077808 00000 п. 0000078059 00000 п. 0000078756 00000 п. 0000079440 00000 п. 0000113058 00000 н. 0000114445 00000 н. 0000151364 00000 н. 0000152939 00000 н. 0000188211 00000 н. 0000189598 00000 н. 0000233816 00000 н. 0000234417 00000 н. 0000234468 00000 н. 0000234593 00000 п. 0000234678 00000 н. 0000234759 00000 н. 0000234900 00000 н. 0000235051 00000 н. 0000236654 00000 н. 0000237627 00000 н. 0000237752 00000 н. 0000237868 00000 н. 0000239421 00000 н. 0000243747 00000 н. 0000245282 00000 н. 0000246824 00000 н. 0000250239 00000 п. 0000254607 00000 н. 0000258031 00000 н. 0000262370 00000 н. 0000262892 00000 н. 0000263558 00000 н. 0000276005 00000 н. 0000276276 00000 н. 0000276760 00000 н. 0000285361 00000 п. 0000285620 00000 н. 0000286002 00000 п. 0000299030 00000 н. 0000299286 00000 н. 0000299818 00000 н. 0000299917 00000 н. 0000300068 00000 н. 0000300475 00000 п. 0000300526 00000 н. 0000301887 00000 н. 0000303248 00000 н. 0000303809 00000 н. 0000366195 00000 н. 0000366227 00000 н. 0000366304 00000 н. 0000371912 00000 н. 0000372251 00000 н. 0000372320 00000 н. 0000372438 00000 н. 0000378046 00000 н. 0000378657 00000 н. 0000382683 00000 п. 0000384579 00000 п. 0000436403 00000 п. 0000438489 00000 н. 0000440612 00000 н. 0000441622 00000 н. 0000442568 00000 н. 0000443078 00000 н. 0000444924 00000 н. 0000446678 00000 н. 0000447188 00000 н. 0000472499 00000 н. 0000473009 00000 н. 0000474796 00000 н. 0000476551 00000 н. 0000477061 00000 н. 0000502781 00000 н. 0000507876 00000 н. 0000512971 00000 н. 0000513543 00000 н. 0000514148 00000 н. 0000515983 00000 н. 0000517781 00000 н. 0000518386 00000 н. 0000546399 00000 н. 0000552086 00000 н. 0000557773 00000 н. 0000558380 00000 н. 0000564011 00000 п. 0000569642 00000 п. 0000570253 00000 н. 0000574262 00000 н. 0000576154 00000 н. 0000628242 00000 н. 00006

00000 н. 0000695981 00000 п. 0000701074 00000 н. 0000701644 00000 н. 0000701676 00000 н. 0000701753 00000 н. 0000707300 00000 н. 0000707635 00000 н. 0000707704 00000 н. 0000707822 00000 н. 0000713369 00000 н. 0000713977 00000 н. 0000719941 00000 н. 0000721470 00000 н. 0000727443 00000 н. 0000728972 00000 н. 0000734877 00000 н. 0000745293 00000 н. 0000745370 00000 н. 0000745690 00000 н. 0000745747 00000 н. 0000745865 00000 н. 0000745897 00000 н. 0000745974 00000 п. 0000746312 00000 н. 0000746381 00000 п. 0000746512 00000 н. 0000746544 00000 н. 0000746621 00000 н. 0000746961 00000 н. 0000747030 00000 н. 0000747161 00000 н. 0000747185 00000 н. 0000747264 00000 н. 0000747439 00000 н. 0000748322 00000 н. 0000748391 00000 н. 0000748509 00000 н. 0000748541 00000 н. 0000748618 00000 н. 0000748956 00000 н. 0000749025 00000 н. 0000749156 00000 п. 0000749180 00000 н. 0000749259 00000 н. 0000749569 00000 н. 0000752331 00000 н. 0000752400 00000 н. 0000752518 00000 н. 0000752550 00000 н. 0000752627 00000 н. 0000752964 00000 н. 0000753033 00000 н. 0000753164 00000 н. 0000753188 00000 н. 0000753267 00000 н. 0000753567 00000 н. 0000754293 00000 н. 0000754362 00000 н. 0000754480 00000 н. 0000754512 00000 н. 0000754589 00000 н. 0000754928 00000 н. 0000754997 00000 н. 0000755128 00000 н. 0000755160 00000 н. 0000755237 00000 н. 0000755574 00000 н. 0000755643 00000 п. 0000755774 00000 н. 0000755798 00000 н. 0000755877 00000 н. 0000756243 00000 н. 0000756312 00000 н. 0000756430 00000 н. 0000756462 00000 н. 0000756539 00000 н. 0000756877 00000 н. 0000756946 00000 н. 0000757077 00000 н. 0000757101 00000 н. 0000757180 00000 н. 0000757546 00000 н. 0000757615 00000 н. 0000757733 00000 н. 0000757765 00000 н. 0000757842 00000 н. 0000758181 00000 н. 0000758250 00000 н. 0000758381 00000 н. 0000758405 00000 н. 0000758484 00000 н. 0000758849 00000 н. 0000758918 00000 н. 0000759036 00000 н. 0000759060 00000 н. 0000759139 00000 н. 0000759747 00000 н. 0000771999 00000 н. 0000772363 00000 н. 0000772432 00000 н. 0000772550 00000 н. 0000772582 00000 н. 0000772659 00000 н. 0000772999 00000 н. 0000773068 00000 н. 0000773199 00000 н. 0000773223 00000 н. 0000773302 00000 н. 0000773476 00000 н. 0000774356 00000 п. 0000774425 00000 н. 0000774543 00000 н. 0000774575 00000 н. 0000774652 00000 н. 0000775814 00000 н. 0000776134 00000 п. 0000776203 00000 н. 0000776321 00000 н. 0000776345 00000 п. 0000776424 00000 н. 0000779271 00000 н. 0000779527 00000 н. 0000779844 00000 н. 0000780056 00000 н. 0000780284 00000 н. 0000780435 00000 п. 0000780581 00000 н. 0000780887 00000 н. 0000781038 00000 п. 0000781161 00000 п. 0000782387 00000 н. 0000782456 00000 н. 0000782574 00000 н. 0000782651 00000 н. 0000782970 00000 н. 0000783027 00000 н. 0000783145 00000 н. 0000783292 00000 н. 0000784786 00000 н. 0000785136 00000 п. 0000785524 00000 н. 0000785771 00000 н. 0000785848 00000 н. 0000785925 00000 н. 0000786255 00000 н. 0000786312 00000 н. 0000786430 00000 н. 0000786507 00000 н. 0000786539 00000 п. 0000786616 00000 н. 0000786954 00000 п. 0000787023 00000 п. 0000787142 00000 н. 0000787296 00000 н. 0000787826 00000 н. 0000788123 00000 н. 0000788200 00000 н. 0000788596 00000 н. 0000788673 00000 н. 0000788705 00000 н. 0000788782 00000 н. 0000789123 00000 н. 0000789192 00000 н. 0000789310 00000 н. 0000789710 00000 п. 0000789787 00000 н. 00007 00000 н. 00007

00000 н. 00007

00000 н. 00007

00000 н. 00007

00000 н. 00007

00000 н. 0000791175 00000 п. 0000791244 00000 н. 0000791365 00000 н. 0000791397 00000 п. 0000791474 00000 н. 0000791811 00000 п. 0000791880 00000 н. 0000792001 00000 п. 0000792176 00000 н. 0000793161 00000 п. 0000793226 00000 н. 0000793258 00000 н. 0000793335 00000 п. 0000793673 00000 н. 0000793742 00000 н. 0000793863 00000 н. 0000793895 00000 п. 0000793972 00000 н. 0000794310 00000 п. 0000794379 00000 п. 0000794500 00000 н. 0000794810 00000 н. 0000797729 00000 п. 0000797794 00000 п. 0000797826 00000 н. 0000797903 00000 н. 0000798241 00000 н. 0000798310 00000 н. 0000798431 00000 н. 0000798463 00000 п. 0000798540 00000 п. 0000798878 00000 н. 0000798947 00000 н. 0000799068 00000 н. 0000799368 00000 н. 0000800210 00000 н. 0000800287 00000 н. 0000800593 00000 н. 0000800670 00000 н. 0000800976 00000 н. 0000801053 00000 н. 0000801358 00000 н. 0000801435 00000 н. 0000801742 00000 н. 0000801819 00000 н. 0000801851 00000 н. 0000801928 00000 н. 0000802267 00000 н. 0000802336 00000 н. 0000802454 00000 н. 0000802853 00000 н. 0000802918 00000 н. 0000802950 00000 н. 0000803027 00000 н. 0000803362 00000 н. 0000803431 00000 н. 0000803550 00000 н. 0000803582 00000 н. 0000803659 00000 н. 0000803997 00000 н. 0000804066 00000 н. 0000804187 00000 н. 0000804219 00000 н. 0000804296 00000 н. 0000804634 00000 н. 0000804703 00000 н. 0000804824 00000 н. 0000805305 00000 н. 0000805370 00000 н. 0000805402 00000 н. 0000805479 00000 н. 0000805816 00000 н. 0000805885 00000 н. 0000806004 00000 н. 0000806036 00000 н. 0000806113 00000 п. 0000806451 00000 п. 0000806520 00000 н. 0000806641 00000 н. 0000806673 00000 н. 0000806750 00000 н. 0000807088 00000 н. 0000807157 00000 н. 0000807278 00000 н. 0000807753 00000 н. 0000807818 00000 н. 0000807850 00000 н. 0000807927 00000 н. 0000808264 00000 н. 0000808333 00000 н. 0000808452 00000 н. 0000808484 00000 н. 0000808561 00000 н. 0000808898 00000 н. 0000808967 00000 н. 0000809088 00000 н. 0000809120 00000 н. 0000809197 00000 н. 0000809534 00000 н. 0000809603 00000 н. 0000809724 00000 н. 0000810202 00000 н. 0000810267 00000 н. 0000810299 00000 н. 0000810376 00000 п. 0000810888 00000 н. 0000811224 00000 н. 0000811293 00000 н. 0000811412 00000 н. 0000811444 00000 н. 0000811521 00000 н. 0000813339 00000 н. 0000813673 00000 н. 0000813742 00000 н. 0000813863 00000 н. 0000813895 00000 н. 0000813972 00000 н. 0000820716 00000 н. 0000821050 00000 н. 0000821119 00000 н. 0000821240 00000 н. 0000821752 00000 н. 0000851316 00000 н. 0000851787 00000 н. 0000851864 00000 н. 0000851896 00000 н. 0000851973 00000 н. 0000852312 00000 н. 0000852381 00000 н. 0000852499 00000 н. 0000852900 00000 н. 0000852977 00000 н. 0000853009 00000 п. 0000853086 00000 н. 0000853423 00000 п. 0000853492 00000 н. 0000853610 00000 н. 0000854007 00000 н. 0000854072 00000 н. 0000854104 00000 п. 0000854181 00000 п. 0000854520 00000 н. 0000854589 00000 н. 0000854710 00000 н. 0000854742 00000 н. 0000854819 00000 н. 0000855158 00000 н. 0000855227 00000 п. 0000855348 00000 п. 0000855522 00000 н. 0000856502 00000 н. 0000856579 00000 п. 0000856705 00000 п. 0000857005 00000 н. 0000857070 00000 п. 0000857102 00000 н. 0000857179 00000 н. 0000858490 00000 н. 0000858823 00000 н. 0000858892 00000 н. 0000859021 00000 н. 0000859053 00000 н. 0000859130 00000 н. 0000860605 00000 н. 0000860938 00000 п. 0000861007 00000 н. 0000861132 00000 н. 0000861164 00000 н. 0000861241 00000 н. 0000865808 00000 н. 0000866141 00000 п. 0000866210 00000 н. 0000866331 00000 п. 0000866648 00000 н. 0000866860 00000 н. 0000867234 00000 н. 0000867558 00000 н. 0000867950 00000 н. 0000868227 00000 н. 0000868535 00000 н. 0000868765 00000 н. 0000868993 00000 н. 0000869142 00000 п. 0000869288 00000 п. 0000869677 00000 н. 0000869906 00000 н. 0000870295 00000 н. 0000870684 00000 н. 0000871074 00000 н. 0000871380 00000 н. 0000871529 00000 н. 0000871652 00000 н. 0000872998 00000 н. 0000873075 00000 н. 0000873152 00000 н. 0000873482 00000 н. 0000873539 00000 н. 0000873657 00000 н. 0000873734 00000 н. 0000873766 00000 н. 0000873843 00000 н. 0000874181 00000 п. 0000874250 00000 н. 0000874369 00000 н. 0000874523 00000 н. 0000875038 00000 н. 0000875335 00000 н. 0000875412 00000 н. 0000875809 00000 н.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *