Измерение сопротивления заземления с помощью измерителя М416
Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».
Сегодня я расскажу Вам, как произвести измерение сопротивления заземления или, если сказать точнее, то заземляющего устройства (ЗУ).
В прошлой статье я Вам подробно рассказывал про монтаж заземляющего устройства на примере жилого многоквартирного дома.
Так вот, после окончания монтажных работ, необходимо проверить качество выполнения этих работ. Доказательством тому является измерение сопротивления заземляющего устройства, которое должно быть не больше значений, указанных в нормативно-технической литературе: ПТЭЭП (п.26.4, табл. 35 и табл.36.) и ПУЭ (п.1.7.101 и Глава 1.8, табл.1.8.38).
Но как произвести измерение его сопротивления? Читайте ниже.
Подготовка к работе
Перед началом работ по измерению сопротивления заземляющего устройства по мере возможности и доступности необходимо произвести осмотр видимой его части без вскрытия грунта.
Качество сварных швов проверяется простукиванием молотком, а ослабление болтовых соединений — с помощью гаечных ключей.
Также во время осмотра нужно убедиться в том, что монтаж заземляющего устройства, сечения заземлителей и заземляющих проводников, монтаж шины ГЗШ и правильность подключения к ней заземляющего проводника и проводников системы уравнивания потенциалов (СУП) соответствуют проекту и требованиям ПУЭ.
Почитайте для информации о том, как правильно выполняется разделение PEN проводника на PE и N, т.е. как правильно перейти от системы заземления TN-C на систему заземления TN-C-S.
Знакомство с прибором М416 и его технические характеристики
Если при визуальном осмотре не выявились какие-либо замечания и нарушения, то можно приступать к проведению замера. Для этого в «парке приборов» нашей электролаборатории имеется переносной электроизмерительный прибор М416, который включен в Госреестр средств измерений РФ под номером 2746-71. Межповерочный интервал (МПИ) у него составляет 1 год.
Данный прибор применяется для замера сопротивления заземления, удельного сопротивления грунта и активного сопротивления. Принцип его работы основан на компенсационном методе измерения с использованием вспомогательного заземлителя и потенциального электрода (зонда).
Технические характеристики измерителя М416:
- предел измерений от 0,1 до 1000 (Ом)
- температура эксплуатации от -25°С до +60°С
- вес около 3 (кг)
- габаритные размеры 245х140х160 (мм)
- питание прибора осуществляется с помощью 3 элементов питания размером D (R20 или 373) напряжением 1,5 (В)
У меня даже сохранился «родной» экземпляр батарейки под названием «Элемент» от 1984 года выпуска.
С помощью комплекта элементов питания можно провести не меньше 1000 измерений.
Вот так выглядит лицевая панель измерителя М416, на которой расположены:
- переключатель диапазонов измерения
- ручка реохорда
- кнопка включения прибора
- выводы (1-2-3-4) для подключения соединительных проводов
- шкала
Корпус прибора М416 выполнен из пластмассы. Прибор имеет откидную крышку и специальный ремень для переноски.
Для измерений сопротивления ЗУ можно использовать и другие, более современные приборы, но к сожалению, пока в нашей электролаборатории их нет. Как только появится что-то новенькое, то я сразу же напишу о нем статью-обзор — подписывайтесь на новости сайта, чтобы не пропустить интересное.
Когда нужно проводить измерения сопротивления заземляющего устройства?
Чтобы при измерении сопротивления заземления получить достоверные показания, их необходимо проводить в период наибольшего высыхания (летом в сухую погоду) или промерзания грунта (зимой), т.е. при наибольшем удельном сопротивлении грунта (ПТЭЭП, п.2.7.13).
Если замер проводился в другие погодные условия, то в полученный результат необходимо внести поправочный сезонный коэффициент Кс. Об этом я расскажу Вам в отдельной статье — подпишитесь на новости сайта, чтобы не пропустить выход новых статей.
Проведение работ
1. Проверяем наличие, и в случае отсутствия устанавливаем, комплект элементов питания 3х1,5 (В), соблюдая полярность. Отсек питания расположен в нижней части прибора.
2. Устанавливаем прибор М416 на ровной поверхности строго в горизонтальном положении.
3. Производим калибровку прибора. Для этого переключатель диапазонов измерения необходимо поставить в положение «Контроль 5Ω». Затем нажать на красную кнопку и, вращая ручку реохорда, установить стрелку прибора на ноль. На шкале должно быть показание 5±0,3 (Ом). Если так, то продолжаем измерения, если нет, то перепроверяем заряд и полярность элементов питания. Если с ними все нормально, то отдаем прибор в ремонт.
4. Чтобы уменьшить влияние сопротивления соединительных проводов между выводами (1), (2) и Rх на результат измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю.
5. Выбираем необходимую схему подключения прибора.
Для грубых измерений сопротивления ЗУ или относительно больших сопротивлений (больше 5 Ом) выводы (1) и (2) соединяют перемычкой. Измеритель М416 при этом подключают по трехзажимной схеме. При такой схеме в результат измерения входит сопротивление соединяемого провода между Rx и выводом (1).
- Rх — измеряемое сопротивление заземлителя или заземляющего устройства
- Rз — зонд
- Rв — вспомогательный заземлитель
Если Вам необходимо более точно провести измерение сопротивления заземлителя (ЗУ меньше 5 Ом), то применяют четырехзажимную схему подключения прибора, сняв перемычку между выводами (1) и (2). При такой схеме исключается погрешность от соединительных проводов и контактных соединений.
- Rх — измеряемое сопротивление заземлителя или заземляющего устройства
- Rз — зонд (потенциальный электрод)
- Rв — вспомогательный заземлитель
Для подсказки, четырехзажимная схема подключения указана на крышке прибора.
Для заземлителей, выполненных в виде сложных контуров с протяженными периметрами, применяются аналогичные схемы подключения измерителя М416, только между Rх и Rз должно быть расстояние не менее 5-кратного расстояния между двумя наиболее удаленными заземлителями плюс 20 (м).
Вот пример сложного контура заземления (обозначен на схеме зеленой пунктирной линией) одного из Торгового центра, где мы проводили измерения.
6. Стержни зонда и вспомогательного заземлителя нужно забивать в плотный не насыпной грунт на глубину не меньше, чем на 0,5 (м).
Расстояние между стержнями указаны на приведенных выше схемах.
В качестве Rз и Rв можно применять металлические стержни или трубы диаметром не менее 5 (мм).
Чтобы избежать значительного переходного сопротивления между заземлителем и забитыми стержнями, их необходимо забивать прямыми ударами без раскачивания. Для этого придется «потрудиться» с помощью вот такой кувалды.
В качестве соединительных проводов можно использовать медные провода сечением не менее 1,5 кв.мм.
7. Место соединения проводов к заземлителю необходимо очистить от краски, например, с помощью напильника.
К этому же напильнику с другой его стороны подсоединен медный провод сечением 2,5 кв.мм, т.е. напильник также является и щупом для соединения заземлителя с выводом (1) при трехзажимной схеме подключения прибора М416.
8. После выбора схемы и подключения прибора переходим к измерению. Переключатель диапазонов измерения ставим в положение «х1» (умножение на один). Нажимаем на красную кнопку и, вращая ручку реохорда, устанавливаем стрелку прибора на ноль.
Если сопротивление заземлителя больше 10 (Ом), то переключатель диапазонов необходимо установить в положение «х5», «х20» или «х100».
9. Результат находим путем умножения показания шкалы реохорда на установленное положение переключателя диапазонов «х1», «х5», «х20» или «х100».
В нашем примере переключатель прибора М416 установлен в положении «х1», а значит полученное значение 1,9 нужно умножить на 1, т.е. измеренное сопротивление заземлителя составляет 1,9 (Ом).
10. После завершения работ заносим полученные данные в протокол соответствующей формы.
Периодичность проведения измерений
Периодичность проверки сопротивления заземлителя или контура заземления производится по утвержденному графику предприятия, а также после ремонта или его реконструкции. Более подробно об этом Вы можете почитать в нормативно-технической литературе ПТЭЭП (п.2.7.8. — 2.7.15).
А Вы каким прибором измеряете сопротивление заземления? Хотелось бы услышать реальные отзывы, т.к. планирую в ближайшее время обновить М416 на что-нибудь более современное.
P.S. Если Вы самостоятельно не можете произвести измерения, то воспользуйтесь услугой электролаборатории.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Измерители сопротивления заземления
От состояния общего контура заземления здания, сооружения или других объектов с действующими электроустановками зависит не только безопасность обслуживающего персонала и проживающих людей в жилых помещениях. Исправное состояние отдельных элементов системы заземления: общего контура, соединительных шин, проводов заземляющих корпуса электрооборудования и других составляющих, обеспечивает стабильную безаварийную работу электроустановок.
Металлические элементы контура заземления, особенно находящиеся под грунтом, подвергаются коррозии, конструкция постепенно разрушается и перестает выполнять свои функции по защите, оборудования и обслуживающего персонала. Поэтому требуется периодический контроль состояния системы заземления. Методика проверки последовательно описана в требованиях ПУЭ (Правила устройства электроустановок) Одним из важнейших параметров системы является сопротивление контура, для его измерения существует отработанная методика и специальные измерительные приборы. Читайте также статью ⇒ Заземление и зануление: назначение, отличие, особенности
Принцип действия заземления
Металлические корпуса оборудования на производственных предприятиях и бытовые приборы в жилых помещениях, по требованиям ПУЭ и других нормативных актов, руководящих документов подлежат заземлению. Эта мера обеспечивает безопасность потребителей электроэнергии, пользователей бытовыми приборами и обслуживающий персонал электрооборудования.
Работает это следующим образом, при возникновении замыкания токопроводящей части фазного провода с элементами корпуса происходит выравнивание потенциалов всех замкнутых элементов. Напряжение между корпусом, фазой и заземляющим контуром становится одинаковым. Следовательно, нет разницы потенциалов между землей и полом в помещении. При прикосновении к корпусу оборудования ток не будет переткать с корпуса через человеческое тело в пол или другое оборудование, таким образом, исключается поражение электрическим током.
Основные требования к сопротивлению контура заземления на различных объектах
Одним из важнейших параметров системы заземления является сопротивление контура, контрольные измерения которого производится не реже чем один раз в год, после окончания монтажных работ. В сетях на промышленных объектах, где нейтрали понижающих трансформаторов, генераторов заземляются на общий контур заземления, в однофазных сетях жилого фонда с любыми источниками питания контуры заземления в любое время года с любым составом грунта должны иметь установленную ПУЭ величину сопротивление.
Напряжение в сети электропитания | 220- 127 | 380-220 | 660-380 |
Сопротивление с естественными заземлителями (Ом) | 60 | 30 | 15 |
Сопротивление контура с повторными заземлителями (Ом) | 8 | 4 | 2 |
Для электрических сетей с линейным напряжением 220 – 380В, это сопротивление в пределах 2-8 Ом, для однофазных сетей жилых домов, офисов, административных зданий допускается до 30 Ом. Точные значения для объектов различного назначения определены в ПУЭ и – (Правила технической эксплуатации электроустановок потребителей) ПУЭ в пункте 1.8.39, представлена таблица 1.8.38 и в ПТЭЭМ таблица №36 приложение №3.
Зависимость сопротивления заземления от материалов и грунта
Удельное сопротивление системы заземления в большой степени зависит от состава грунта, наиболее удачными с точки зрения проводимости считаются:
- Глина – 80 Ом/м;
- Чернозем – 80 Ом/м;
- Суглинок – 100 Ом/м.
Песчаные почвы в плане сопротивления не стабильны, влажность сильно расширяет интервал возможных величин 10 – 4000 Ом. Каменистые породы считаются наихудшим вариантом для закладки контура заземления, щебень имеет сопротивление в пределах от 3-5 тысяч Ом/м, цельные гранитные породы до 20000Ом/м.
Состав грунта | Ом/м |
Известняк поверхностный | 5 050 |
Гранит | 2 000 |
Базальт | 2 000 |
Песчаник | 1 000 |
Гравий с однородными элементами | 800 |
Влажный песок | 800 |
Гравий с глиной | 300 |
Чернозёмные грунты | 200 |
Смеси глины песком | 150 |
Глина средней твердости | 60 |
Сланцы с глиной | 55 |
Суглинок пластичный | 30 |
Эластичная глина | 20 |
Водоносные слои под грунтом | 5 |
В чистом виде грунт редко встречается, в большинстве случаев это смешанные виды, поэтому для разных вариантов сделаны расчеты и сведены в справочную таблицу.
Необходимые условия для измерения сопротивления заземления
Независимо от того, какие приборы используются в процессе измерения сопротивления, работающий персонал обязан соблюдать меры безопасности. Используются диэлектрические боты, перчатки и инструменты с изолированными ручками. При сборке элементов схемы измерения провода подключаются, в первую очередь к заземленному вспомогательному электроду, потом к измерительному прибору.
Замеры сопротивления проводятся в период их наибольшего значения это летний и зимний сезоны. При грозе, дожде и большой влажности измерения проводить запрещено. На точность измерений влияет расположение измерительных дополнительных заземлителей к элементам конструкции контура и расстояния между ними. Дополнительные электроды должны располагаться не ближе 10м от вертикальных заземлителей контура, металлических труб водопровода, канализации и других коммуникаций. Забиваются электроды в улежавшийся плотный грунт на глубину более 0,5м. В качестве электродов могут быть использованы естественные заземлители не связанные с контуром, на котором производится измерение.
Совет№1 для точности рекомендуется проводить 2-3 измерения, меняя место расположения измерительных штырей, разница в этих измерениях не должна составлять 5%.
Виды приборов для измерения сопротивления заземления
Производители производят большое количество различных моделей приборов для измерения сопротивления заземляющих конструкций. Все приборы можно разделить на несколько видов:
- Стрелочные модели с автономными источниками питания в виде малогабаритного генератора, который вращается вручную;
- Стрелочные с автономными источниками питания на гальванических батареях;
- Цифровые приборы с жидкокристаллическим дисплеем, питанием от батареек и бесконтактными измерительными клещами.
В каждом виде существует большое количество модификаций, которые имеют свои преимущества и недостатки при определенных условиях эксплуатации. Рассмотрим наиболее популярные модели, которые востребованы у потребителей.
Прибор для измерения сопротивления М-416
Эта модель стрелочного прибора одна из самых старых, которая зарекомендовала себя, простотой в использовании, высокой надежностью и достаточной точностью измерений. Конструкция прибора выполнена по методике исполнения стрелочного омметра с несколькими пределами измерений.
Прибор позволяет измерить не только активное сопротивление конструкции контура, но и сопротивление грунта, в котором он установлен.
Технические характеристики
Пределы измерения Ом | Величины сопротивлений дополнительных измерительных штырей Ом | ||
R1 | R2 | R3 | |
0,10 – 10,0 | 0,10 – 10,0 | 500,0 | 500,0 |
0,50 — 50,0 | 0,50 – 50,0 | 1000,0 | 1000,0 |
2,0 – 200,0 | 2,0 – 200,0 | 2500,0 | 2500,0 |
10,0 -1000,0 | 10,0 – 1000,0 | 5000,0 | 5000,0 |
Погрешность при измерении рассчитывается с учетом пределов измерения и сопротивлений измерительных штырей, по формуле:
- 5 + (N/Rx-1) – плюс минус от измеренного значения;
- N – наибольшее значение выбранного предела измерений;
- Rx – измеренное сопротивление контура;
- Питается прибор от батарей 4,5 В;
- Общее напряжение на зажимах прибора в разомкнутом состоянии измерительной цепи 13В;
- Комплекта батарей хватает на 1000 замеров;
- Весит прибор около 3кг, габариты 24,5x14x17см.
Измеритель сопротивления заземления ИС-10
Это современный цифровой прибор на микропроцессоре с жидкокристаллическим дисплеем, куда в цифровом виде выводятся результаты измерений.
Встроенное запоминающее устройство способно фиксировать 40 измеряемых параметров. Корпус выполнен с обрезиненной оболочкой со степенью защиты IP42. Устройство имеет возможность проводить измерения по двух проводной, трех и четырехпроводной схеме.
Бесконтактные клещи позволяют, производить замеры не разрывая цепи на отдельных участках.
Измеритель сопротивления заземления СА 6412
Модель позволяет производить измерения сопротивления заземления бесконтактными клещами, не отключая электроустановку. Общий предел измерения 0.1 – 1200 Ом, по току от 1 мА – 30А. Корпус прибора имеет высокую прочность благодаря композитному материалу «Lexan®», составные элементы клещей выполнены двойным слоем стенок. Внутренний диаметр клещей позволяет обхватывать заземляющие проводники Ø-32мм.
Основные особенности конструкции:
- Не требуется вспомогательных электродов и соединительных проводов;
- При коротком замыкании, когда сопротивление меньше 0.1 Ом срабатывает индикатор;
- Имеются индикаторы помех в измеряемой цепи и при открытии клещей во время замеров;
- Индикатор заряда батарей своевременно укажет на низкий уровень зарядки;
- Прибор обладает функцией самотестирования и удержания измеренных показаний;
- Опция установки пороговых значений обеспечивает удобные условия измерений при темноте.
Технические Параметры | Величин Значений |
Частота генератора, на которой измеряется сопротивление | 2,400 кГц |
Частота измеряемого тока | от 45 до 800 Гц |
Ток перегрузки | 100 А — постоянно 200 А — < 5 секунд 50 / 60 Гц |
Диэлектрическая прочность | 2500 В |
Батарея питания | 9 В (типа «Крона») или Ni/Cd аккумуляторы |
Ресурс батареи | До 1500 измерений, приблизительно 8 часов непрерывной работы |
Интервал рабочих температур | от -11° до + 54° С |
Ø захвата бесконтактных клещей | 32 мм |
Ширина открытого захвата | 35 мм |
Степень защиты корпуса | IP 30 |
Читайте также статью: → «Чем отличается заземление от зануления?».
Измеритель сопротивления заземления–1820 ER
Одна из моделей цифровых приборов с жк дисплеем, пределы измерения 0.01 – 2000Ом, с функцией удержания показаний, питается от батарей.
Особенности технических характеристик
- Тестовый ток в режиме измерения сопротивления составляет 2мА, что позволяет производить работы без отключения электроустановки от источника питания.
- В составе комплектации предусматривается наличие штатных проводов для сборки схемы и измерительных штырей, что значительно повышает точность измерений;
- Прибор позволяет измерять пошаговое напряжение.
- 1820 ER пользуется у потребителей хорошим спросом по причине простоты в использовании, малых габаритах и весе примерно 1кг, относительно не большая цена, доступная для частных лиц и организаций 14500Р.
Измеритель сопротивления заземления SEW 2705 ER
Большим спросом пользуется у профессиональных электриков, и имеет малые габариты и удобен в применении, напоминает обычный мультиметр со стрелочной шкалой.
Основные особенности и технические характеристики
- По двухпроводной схеме измеряет сопротивление заземления до 1000Ом;
- Более точные измерения делаются по трехпроводной схеме;
- Шаговое напряжение измеряется до 30В;
- Тестовый ток в пределах 2мА, что позволяет производить измерения, на работающей электроустановке, без отключения электропитания;
- Шкала стрелочная разработчики сознательно отказались от цифрового варианта с целью повышения точности в данном интервале измерений.
- Индикатор уровня зарядки батарей питания.
Пример различных схем для измерения:
А – измерение пошагового напряжения;
В – Точные измерения в трехпроводном режиме;
С – Грубые измерения в двухпроводном режиме.
Существует много методик и схем для измерения сопротивления заземления:
- Двухпроводная схема;
- Трехпроводная;
- Четырехпроводная;
- Метод пробного электрода;
- Компенсационный способ и другие.
Все эти методы имеют свои преимущества и недостатки в конкретных случаях с соответствующими приборами, эта тема требует детального рассмотрения в отдельной статье.
Совет №2 Измерения рекомендуется делать по той схеме, которые указаны в инструкции по эксплуатации на прибор, эта методика однозначно проверена и протестирована, поэтому измерения будут точнее. На корпусах и крышках некоторых приборов указаны схемы подключения.
Измерения всеми этими приборами осуществляется по классическому принципу, цифровой процессор высчитывает сопротивление по закону Ома R = U\I.
- Не учитываются требования к расстоянию между измерительными штырями и контуром заземления, обычно это 10 м;
- Измеряя сопротивление контура, забывают измерить сопротивление линии с заземленной нейтралью. Это очень важно, особенно когда присутствуют элементы с повышенной коррозией;
- Для точности и надежности. Проведите 2-3 измерения с разными местами установки измерительных штырей, особенно сделайте измерения, где большая вероятность разрушения элементов контура от коррозии.
Читайте также статью: → «Методики проверки заземления в розетке, подробное описание способов».
Часто задаваемые вопросы
1. Вы пишите, что надо делать несколько замеров меняя место положения штырей, а какое измерение принимать за правильное?
Да, разница между ними не должна превышать 5%, можно принять среднеарифметическую величину, но для надежности у электриков принято за истинное значения принимать самую малую величину сопротивления.
2. А почему нельзя провести измерения обычным мультиместром?
Для себя можно, но эти измерения будут с очень большими погрешностями и ни одна контролирующая организация их учитывать не будет. Сопротивление заземления должна проводить Электролаборатория один раз в год с составлением протокола.
Оцените качество статьи:
Замер сопротивления изоляции,измерение сопротивления заземляющих устройств (контур заземления),проверка цепи «фаза-нуль»
Замер сопротивления изоляции
Как правило, измеряется сопротивление изоляции каждого провода относительно остальных заземленных проводов.
Если измерения по этой схеме дадут неудовлетворительный результат, то производится замер сопротивления изоляции каждого провода относительно земли (остальные провода не заземляются) и между каждыми двумя проводами.
Всего выполняется 6 замеров сопротивления для трехпроводных линий, 4 и 10 — для 4-х проводных, 5 и 15 — для 5-ти проводных.
Основные показатели сопротивления изоляции:
Сопротивление изоляции постоянному току Rиз.
Наличие грубых внутренних и внешних дефектов (повреждение, увлажнение, поверхностное загрязнение) снижает сопротивление изоляции.Определение Rиз (Ом) производится методом измерения тока утечки, проходящего через изоляцию, при приложении к ней выпрямленного напряжения.
Коэффициент абсорбции.
Лучше всего определяет увлажнение изоляции.
Коэффициент абсорбции — это отношение измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R60) к измеренному сопротивлению изоляции через 15 секунд (R15).
Если изоляция сухая, то коэффициент абсорбции значительно превышает единицу, в то время как у влажной изоляции коэффициент абсорбции близок к единице.
Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его значение должно быть не ниже 1.3 при температуре 10–30°С.
При невыполнении этих условий изделие подлежит сушке.
Измерение сопротивления заземляющих устройств (контур заземления).
Измерение сопротивления заземляющих устройств проводится с целью проверки его соответствия требованиям нормативных документов.
В электроустановках с глухозаземленной нейтралью напряжением до 1000 В сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов и трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.
В электроустановках с изолированной нейтралью напряжением до 1000 В сопротивление заземляющего устройства, используемого в качестве защитного заземления, должно удовлетворять условию: R3yI3 < 50 В. При мощности генераторов и трансформаторов 100 кВ-А и меньше заземляющие устройства могут иметь сопротивление не более 10 Ом (п. 1.7.104 ПУЭ).
Для измерения сопротивления заземлителей создается искусственная цепь протекания тока через испытываемый заземлитель.
Для этого на некотором расстоянии от испытываемого заземлителя располагается вспомогательный заземлитель (токовый электрод), подключаемый вместе с испытываемым заземлителем к источнику напряжения.
Для измерения падения напряжения на испытываемом заземлителе при прохождении через него тока в зоне нулевого потенциала располагается зонд (потенциальный электрод).
Для получения как можно более реальных результатов рекомендуется измерения производить в период наибольшего удельного сопротивления грунта.
Сопротивление заземляющего устройства определяется умножением измеренного значения на поправочные коэффициенты, учитывающие конфигурацию устройства, климатические условия и состояние почвы. Для заземлителей, находящихся в промерзшем грунте или ниже глубины промерзания, введение поправочного коэффициента не требуется.
Измерение удельного сопротивления грунта проводится, когда измеренное сопротивление заземлителя больше проектного значения или не соответствует нормативным требованиям.
В этом случае проверяется допустимая степень этого несоответствия при повышенных удельных сопротивлениях грунта.
Проверка наличия цепи между заземлителями и заземляемыми элементами. Металлосвязь.
Измерения производятся с целью определения целостности и непрерывности защитных проводников от измеряемого объекта до заземлителя или магистрали заземления и проводников выравнивания потенциалов, определения сопротивления измеряемого участка защитной цепи и с целью измерения (или отсутствия) напряжения на заземленных корпусах проверяемого оборудования в рабочем режиме.
Качество электрических соединений проверяется осмотром, а сварочных соединений ударами молотка (кувалды) с последующими измерениями цепи.
Измерения сопротивления производятся между любой открытой проводящей частью и ближайшей точкой главного проводника системы управления потенциалов. Защитные проводники включают металлические электротехнические трубы, металлические оболочки кабелей.
Сопротивление контакта заземляющих проводников не превышает 0.05 Ом. Измеренное сопротивление цепи защитных проводников не должно более, чем в 1.2 раза превышать расчётное значение.
Проверка цепи «фаза-нуль»
Контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников принято называть петлей «фаза-нуль».
Измерение сопротивления петли «фаза-нуль» и токов однофазных замыканий проводится с целью проверки надежности срабатывания аппаратов защиты от сверхтоков при замыкании фазного проводника на открытые проводящие части.
Проверка надежности и быстроты отключения поврежденного участка сети состоит в следующем:определяется ток короткого замыкания на корпус Iкз.
Этот ток сопоставляется с расчетным током срабатывания защиты испытуемого участка сети.
Если возможный в данном участке сети ток аварийного режима превышает ток срабатывания защиты с достаточной кратностью, надежность отключения считается обеспеченной.
ООО Компания Электрик проводит электрические измерения в Киеве,Одессе,Днепре,Харькове,Житомире,Виннице,работаем по всей Украине.Звоните по телефонам указанным в разделе Контакты ,мы будем рады помочь Вам!
Вернутся назад
Контуры заземления — обзор
1.10 Контуры заземления и излучаемые помехи
Ранее было сказано, что контуры заземления могут вносить значительный вклад в излучаемые электромагнитные помехи. Это важно, потому что такой излучаемый шум может влиять на другие чувствительные схемы аналогового или цифрового характера. Рассмотрим, например, сценарий, изображенный на рисунке 1.33.
Рисунок 1.33. Иллюстрация контуров заземления между разъемами карты.
На этом рисунке два разъема (разъем 1 и разъем 2) используются для реализации двух конфигураций платы драйвера / приемника. В разъеме 1 обратный ток от драйвера 1 может возвращаться через ближайший контакт заземления; некоторые из них, особенно на высоких частотах, могут вернуться через гораздо более удаленный заземленный контакт, ближайший к драйверу n. Площадь контура 1 (0) (драйвер 1 и контакт заземления 0), сформированная обратным током драйвера 1 через его ближайший заземляющий контакт, намного меньше, чем площадь контура 1 ( n ) (драйвер 1 и контакт заземления n ), вызванный некоторым обратным током, использующим контакт n разъема 1 в качестве его возврата.Также возможны другие сценарии использования обратным током других заземляющих контактов в разъеме 1. Поскольку область петли 1 ( n )>> область петли 1 (0), излучаемое излучение от разъема 1 может значительно увеличиться, особенно на высоких частотах, где значительная часть обратного тока может выбрать контакт n в качестве возврата. дорожка. Величина электрического поля от тока контура прямо пропорциональна не только самому току, но и площади контура, через которую проходит этот ток.
На рисунке мы также наблюдаем другой сценарий, очень распространенный на высоких частотах: емкостная связь между заземляющим контактом n в разъеме 1 и металлическим корпусом разъема ( C C3 , C C4 ). Дальнейшая связь приведет к емкостному соединению обоих разъемов 1 и 2. Часть тока заземления от разъема 1 будет течь в разъем 2 и его заземляющие штыри через емкостную связь. Общая площадь петли теперь становится суммой площадей петли, площадь петли 1 ( n ) + площадь петли 2 ( n ), что может создать еще большую проблему излучаемых выбросов.Количество излучаемых излучений, создаваемых областями контуров сигнальных / обратных токов, равно
(1,74) EV / м = 263 × 10−16F2HzAm2IampsRm,
, где F (Гц) — интересующая частота, A (м 2 ) — это площадь петли, образованная управляющим сигналом и обратным током, I (амперы) — величина тока, а R (м) — расстояние в метрах, на котором должно быть вычислено электрическое поле.
Предположим, например, сценарий на Рисунке 1.33, полное излучаемое электрическое поле можно приблизительно рассчитать для наихудшего сценария как
(1,75) | EtotalV / m | = | E10 | + | E1n | + | E2n |,
, где E 1 ( 0) , E 1 ( n ) и E 2 ( n ) — это электрические поля, создаваемые областями контура заземления через контакт 0, контакт n разъема 1 и контакт n разъема 2:
(1.76) E10V / m≅263 × 10−16f2Hzlooparea10Ig1ampsRm
(1.77) E1nV / m≅263 × 10−16f2Hzlooparea1nIg2ampsRm
(1.78) E2nV / m≅263 × 10−16f2Hzlooparea2nIg4ampsRm.
При вычислении I gl , I g 2 , I g3 и I g 4 , мы знаем, что
(1.79) I1 = Ig1 + Ig2 = Ig1 + Ig3 + Ig4,
и максимум I 1 можно приблизительно рассчитать, используя выражение
(1,80) I1 = 5VZ0ohms.
Ток в I gl равен
(1.81) Ig1 = 5.0VZ0ohmsLg10Lg1n,
, где L g1 (0) и L g1 ( n ) — это индуктивность контура заземления через контакт (0) в разъеме 1 (область контура 1) (0)) и L g1 ( n ) — индуктивность контура заземления через контакт n в разъеме 1 (площадь контура l ( n )) соответственно. Таким же образом
(1.82) Ig2 = Ig3 + Ig4 = 5.0VZ0ohmsLg1nLg0n.
Термины L g1 ( n ) и L g0 ( n ) получаются из индуктивности вывода, заданной как
(1.83) LpinnH = 10,16dlnLr + Llndr,
, где d — расстояние между сигналом и землей в дюймах. Условие d будет либо d 1 , либо d 2 , как показано на рисунке 1.33 для L g0 ( n ) и L g1 ( n ) расчеты соответственно. L — длина пальца в дюймах, а r — радиус пальца. Таким же образом, как только мы вычислили I g2 , мы можем вычислить I g3 и I g4 следующим образом:
(1.84) Ig3 = Ig2Lg3Lg4Ig4 = Ig2Lg4Lg3,
, где L g3 , L g4 можно рассчитать по уравнению (1.84), используя d 3 , d 3 4 , показанное на рисунке 1.3. .
Один из самых тривиальных выводов предыдущего анализа состоит в том, что добавление большего количества контактов заземления к разъему приблизит заземление к каждому сигналу и снизит индуктивность всего обратного пути. Другие вещи, которые можно сделать, — это переместить разъемы ввода-вывода как можно ближе друг к другу, никогда не направлять сигналы заземления от одного и того же источника на отдельные разъемы и обеспечивать более медленное время нарастания для драйверов.
Проблема паразитной емкости не только влияет на обратный путь тока земли, но ее совокупное воздействие от многих разъемов может искажать передаваемые сигналы. Поэтому очень желательны проводники с минимальной паразитной емкостью. Влияние паразитной емкости на разъемы показано на рисунке 1.34.
Рисунок 1.34. Влияние паразитной емкости на разъемы.
По мере передачи сигнала общая паразитная емкость земли на каждом ответвлении шины будет обеспечивать некоторые паразитные искажения.Эта кумулятивная емкость, представленная на рисунке 1.34, может быть результатом (1) межконтактной емкости разъема на печатной плате, (2) емкости трассировки от разъема к локальным драйверам и приемникам или ( 3) входная емкость местного приемника плюс выходная емкость драйверов.
Емкость трассы определяется как
(1,85) CpF / дюйм = tdZ0,
, где t d — это распространение трассы в пс / дюйм, а Z 0 — импеданс трассы в Ом.Один из примеров правильного расположения выводов сигнала и заземления в разъеме показан на Рисунке 1.35.
Рисунок 1.35. Правильное расположение выводов сигнала и заземления (темные) в разъеме.
Контуры заземления в системах испытаний на вибрацию
Назад к: Системные шумы и контуры заземления
Как обсуждалось в предыдущем уроке, заземление электроники может быть ссылкой на 0 вольт. Это опорное напряжение 0 В используется в качестве основы для других напряжений, генерируемых в системе тестирования. Это основная точка отсчета, и ее необходимо поддерживать в надлежащем состоянии.
Общие сведения о контурах заземления
Контур заземления возникает, когда несколько компонентов, у которых есть заземление к цепи электропитания здания, подключены друг к другу с помощью кабеля, имеющего соединение с заземлением 0 В. Это соединение создает несколько путей к заземлению через несколько компонентов системы.
Опорное напряжение 0 В, на которое воздействуют контуры заземления, больше не равно 0 В, поскольку теперь присутствует дополнительное напряжение. Это изменение может вызвать ошибки в измерениях, которые использует система тестирования.
Системы управления
Системы контроля вибрации имеют полное заземление через набор соединительных кабелей, идущих от:
- Контроллер выхода на усилитель
- Усилитель к шейкеру
- Шейкер к контрольному датчику
- Датчик контроля на входе контроллера
В дополнение к этому полному контуру одноточечных заземляющих опор, контроллер, усилитель и шейкер имеют опорные точки заземления для заземления.
Множественные ссылки на землю и соединенные кабели имеют чрезвычайно высокий потенциал для создания контуров заземления, особенно когда различные компоненты требуют разных типов питания (120 В — однофазное, 480 В — 3 фазы и т. Д.). См. Рисунок 1.3 ниже.
Рисунок 1.3. Соединения и потенциальные контуры заземления в системе контроля вибрации. Обратите внимание, что заземления всех трех устройств подключены через цепь электропитания.
Сопротивление и напряжение
Электричество ищет баланс; Таким образом, два провода цепи должны содержать равное количество напряжения или тока. Любой дисбаланс передается на землю.
В зависимости от сопротивления несбалансированных проводов генерируются разные напряжения. Согласно закону Ома, напряжение равно току, умноженному на сопротивление (V = I * R). По мере увеличения сопротивления общее напряжение увеличивается, даже если ток остается прежним.
Провода и цепи с высоким сопротивлением приведут к тому, что сигнал более высокого напряжения будет передаваться по заземленной стороне кабелей. В некоторых случаях эта разница напряжений может вызвать фактическое движение вибростенда; в других случаях разница может быть измерена только контроллером вибрации.
Обнаружение шума контура заземления
Есть два признака того, что ваша система контроля вибрации испытывает шум контура заземления:
- Встряхивающая головка движется, когда система включена, но тест не выполняется.
- На графиках показаны скачки амплитуды при тактовой частоте источника питания (60 Гц в Северной Америке, 50 Гц в Европе).
Если вы подозреваете, что шум влияет на вашу систему контроля вибрации, следующие уроки проведут вас через шаги по устранению неполадок.
Осциллограф и контуры заземления |
Differential Scope Primer — хорошее введение в осциллографические измерения. Эта публикация в Интернете представляет собой сокращенную версию информации в этом документе, касающейся контуров заземления. Я также добавил сюда свои собственные комментарии.
Большинство осциллографов предназначены для измерения напряжений, относящихся к заземлению, подключенному к шасси осциллографа. Они называются «несимметричными» измерениями.Контуры заземления могут легко испортить такое измерение осциллографа.
Контур заземления возникает, когда два или более отдельных пути заземления связаны вместе в двух или более точках. В результате получается петля из проводника. Подключение заземляющего провода пробника осциллографа к земле в тестируемой цепи приводит к образованию контура заземления, если цепь «заземлена» на землю. Обычно металлическое шасси осциллографа и тестируемого устройства подключаются к заземлению и общему внутреннему источнику питания. Заземление щупа осциллографа подключается к шасси осциллографа через входной разъем BNC.
Источник изображения: http://www.tek.com/Measurement/App_Notes/DiffOscPrimer/Introduction.html
В присутствии переменного магнитного поля этот контур становится вторичной обмоткой трансформатора, которая, по сути, является закороченным витком. Магнитное поле, возбуждающее трансформатор, может быть создано любым проводником поблизости, по которому проходит переменный или изменяющийся ток. Разность потенциалов на земле пробника осциллографа может составлять от микровольт до сотен милливольт.
В таких ситуациях часто возникает соблазн отсоединить заземляющий провод пробника, чтобы избавиться от шума. Иногда этот метод действительно работает, но он эффективен только при измерении очень низкочастотных сигналов. На более высоких частотах зонд без хорошего контакта с землей на обоих концах начинает добавлять к сигналу «кольцо». Имейте в виду, что ток всегда должен образовывать петлю, и чем меньше петля, тем лучше. Загадочная наземная статья дает вам более подробную информацию о том, что происходит и какие ошибки вы можете увидеть.Возможно, положение кабеля датчика может повлиять на форму сигналов, которые вы видите на осциллографе (попробуйте). Еще один неприятный артефакт при установке датчика без заземления — это резонанс, связанный с комбинацией довольно большой индуктивности (индуктивность контура L1 = 500 нГн) и входной емкости датчика (например, C1 = 1-10 пФ). Этот резонанс называется резонансом зонда. Короткое явное соединение с землей между землей осциллографа и тестируемым оборудованием шунтирует как CI, так и L1, устраняя их влияние на результат измерения и выдвигая резонанс зонда вверх и за пределы исследуемого диапазона.
Следующий метод, который часто пытаются разорвать контуры заземления, — это «смещение» осциллографа или «смещение» измеряемой цепи. Эта практика по своей сути опасна, поскольку снижает защиту от поражения электрическим током. Идея «плавающего» осциллографа обычно плохая и небезопасная идея с обычным осциллографом (обычно металлический корпус и металлические детали в нем, контактирующие с землей зонда). Некоторые портативные прицелы с батарейным питанием допускают безопасную работу в плавающем режиме, и с их помощью вы можете избавиться от проблем с контуром заземления и ни с одной стороны.
В случае измерения небольшой цепи может оказаться полезным питание цепи через предохранительный изолирующий трансформатор, который разрывает заземление. Питание измеряемой цепи через предохранительный изолирующий трансформатор — проверенный метод, используемый в мастерских по ремонту электроники.
Даже если в измерительной системе нет контуров заземления, в измеряемом устройстве может существовать синдром «земля не земля». Сильные статические токи и токи высокой частоты действуют на резистивные и индуктивные компоненты пути заземления устройства, создавая градиенты напряжения.Эти эффекты годами бросали вызов разработчикам чувствительных аналоговых систем и быстрых цифровых систем.
Если измеряемое напряжение находится между двумя узлами схемы, ни один из которых не заземлен, обычное зондирование осциллографом использовать нельзя. Существует несколько типов дифференциальных усилителей и систем развязки для осциллографов с различными характеристиками (предназначенными для разных приложений).
Рекомендации по заземлению — Общие понятия по аналогам
Измерение заземленных источников сигнала
Заземленный источник сигнала лучше всего измерять с помощью дифференциальной или безопорной измерительной системы.На рисунке 7 показана ловушка использования системы измерения с привязкой к земле для измерения заземленного источника сигнала. В этом случае измеренное напряжение, V m , представляет собой сумму напряжения сигнала, V s , и разности потенциалов, ΔV g , которая существует между землей источника сигнала и землей измерительной системы. Эта разность потенциалов обычно не является уровнем постоянного тока; таким образом, результатом является зашумленная система измерения, часто выявляющая в показаниях компоненты частоты сети (60 Гц). Как упоминалось ранее, между двумя заземляющими соединениями может существовать разница до 200 мВ. Эта разница вызывает прохождение тока, называемого током контура заземления, в межсоединении, что может сильно повлиять на измерения, вызывая ошибки смещения, особенно при измерении сигналов низкого уровня от датчиков.
Рисунок 7 Измерительная система с контуром заземления
Система с заземлением является приемлемым решением, если уровни напряжения сигнала высоки, а соединительная проводка между источником и измерительным устройством имеет низкий импеданс.В этом случае измерение напряжения сигнала ухудшается из-за контуров заземления, но такое ухудшение может быть допустимым. Перед подключением заземленного источника сигнала к заземленной измерительной системе необходимо тщательно соблюдать полярность, поскольку источник сигнала может быть замкнут на землю, что может привести к повреждению источника сигнала.
Измерение плавающих (не связанных) источников
Плавающих источников сигналов можно измерять как с помощью дифференциальных, так и несимметричных измерительных систем. Однако в случае дифференциальной измерительной системы следует позаботиться о том, чтобы уровень синфазного напряжения сигнала относительно земли измерительной системы оставался в синфазном входном диапазоне измерительного устройства. Различные явления — например, входные токи смещения инструментального усилителя — могут вывести уровень напряжения плавающего источника за пределы допустимого диапазона входного каскада устройства сбора данных. Чтобы привязать этот уровень напряжения к некоторому эталону, используются резисторы.Эти резисторы, называемые резисторами смещения, обеспечивают путь постоянного тока от входов инструментального усилителя к земле инструментального усилителя. Эти резисторы должны иметь достаточно большое значение, чтобы позволить источнику плавать по отношению к эталону измерения (AIGND в ранее описанной системе измерения) и не загружать источник сигнала, но достаточно малым, чтобы поддерживать напряжение в диапазоне входного сигнала. этап устройства. Обычно значения от 10 кОм до 100 кОм хорошо работают с источниками с низким импедансом, такими как термопары и выходы модулей преобразования сигналов. Эти резисторы смещения подключаются между каждым выводом и землей измерительной системы. Отказ от использования этих резисторов может привести к ошибочным или насыщенным (положительным или отрицательным) показаниям.
Если входной сигнал связан по постоянному току, требуется только один резистор, подключенный от (-) отрицательного входа к земле измерительной системы, чтобы удовлетворить требованиям пути тока смещения, но это приводит к несбалансированной системе, если полное сопротивление источника источник сигнала относительно высок.Сбалансированные системы желательны с точки зрения помехоустойчивости. Следовательно, следует использовать два резистора равного номинала — один для входа высокого (+) сигнала, а другой для входа низкого сигнала (-) на землю — следует использовать, если полное сопротивление источника сигнала высокое. Одного резистора смещения достаточно для источников с низким сопротивлением, связанных по постоянному току, таких как термопары. Симметричные схемы обсуждаются далее в этом примечании по применению. Если входной сигнал связан по переменному току, требуются два резистора смещения, чтобы удовлетворить требованиям к тракту тока смещения инструментального усилителя.
Если должен использоваться режим несимметричного входа, система ввода GRSE (рисунок 8a) может использоваться для источника плавающего сигнала. В этом случае контур заземления не создается. Система ввода NRSE (рисунок 12b) также может быть использована и предпочтительна с точки зрения шумоподавления. Для плавающих источников требуется резистор (-ы) смещения между входом AISENSE и землей измерительной системы (AIGND) в конфигурации входа NRSE.
Таблица 1 ниже содержит сводку рекомендуемых конфигураций.
Таблица 1 Подключения аналогового входа
Turtle Tough | Как бороться с заземляющими петлями | Поиск и устранение неисправностей
Были ли у вас проблемы с управлением технологическим процессом и электрическими приборами?
Источником могут быть контуры заземления. Что это?
Потенциально вредная петля, образующаяся, когда две или более точек в электрической системе, обычно имеющих потенциал земли, соединены токопроводящей дорожкой, так что одна или обе точки не имеют одинакового потенциала земли.«Нежелательные контуры заземления могут вызвать неточные показания датчика, отрицательно влияя на сигналы приборов.
Контур заземления существует, когда цепь подключена к заземлению в двух или более точках. Поскольку потенциал земли меняется от точки к точке, два или более соединения с землей вызывают протекание токов. Если ток течет по сигнальному проводу, в результате получается зашумленный сигнал смещения.
Классическим признаком контура заземления является датчик, который правильно считывает данные в буферах, но дает показания с большой ошибкой при помещении в технологическую жидкость.При типичном технологическом измерении датчик pH подключается через технологическую жидкость и трубопровод к заземлению. Если цепь в анализаторе pH подключается ко второму заземлению, ток будет течь через электрод сравнения. На электроде сравнения возникает напряжение, пропорциональное току и сопротивлению электрода. Поскольку напряжение идет последовательно с напряжениями других элементов, ток контура заземления приводит к тому, что показание pH существенно отличается от ожидаемого значения.Токи, создаваемые контурами заземления, часто нестабильны, поэтому показания pH, на которые влияют контуры заземления, часто бывают зашумленными.
Проверка контура заземления
Если контрольно-измерительная система начинает работать странно или беспорядочно, убедитесь, что вы устранили все непредусмотренные заземляющие соединения. Или если ваши показания колеблются, когда вы касаетесь кабеля или перемещаете датчик. Это может произойти при добавлении или замене двигателя или мешалки. Любая электрическая часть, над которой работают — может нарушить баланс и требует повторной проверки.
Используйте следующую процедуру для проверки контуров заземления:
- Извлеките датчик pH из технологической жидкости.
- Откалибруйте датчик в буферах. Убедитесь, что нет прямого электрического соединения между контейнером, содержащим буфер, и технологической жидкостью или трубопроводом.
- Зачистите концы толстого провода.
- Подсоедините один конец провода к технологическому трубопроводу или, что лучше, поместите его в технологическую жидкость. Другой конец провода поместите в емкость с буфером и датчиком.Провод обеспечивает электрическое соединение между технологическим процессом и датчиком
Если показание pH изменяется или становится шумным после подключения, существует контур заземления. Если никаких симптомов не наблюдается, петли заземления, вероятно, не существует.
Наличие контуров заземления — это не только то, что искажает показания, но, скорее, то, что также поляризует и повреждает датчик. Поляризация датчика может привести к ошибочным показаниям даже после удаления из контура заземления.Поляризация может со временем рассеяться, чтобы вернуться к более нормальному отклику, хотя из-за этого может потребоваться повторная калибровка. Со временем наличие контура заземления, в котором установлен датчик, полностью нарушит чувствительность датчика и приведет к преждевременному выходу из строя. Эта ситуация требует немедленных корректирующих действий.
Что дальше?
Намного легче избежать контуров заземления во время установки и планирования проекта, чем диагностировать и устранять их в полевых условиях после установки.
Часто не одно и то же заземление и часто разделено расстоянием
Не всегда только в контуре 4-20 мА
Учитывайте неизолированный RS-485 сигнальных проводов
Считайте неизолированный мощность / выход входное питание заземление
Потенциалы заземления НЕ равны
RGND, вызванные несколькими факторами, такими как:
Итак, если вы не можете устранить условия для контуров заземления, что ваш следующий шаг? Вы можете использовать изоляторы сигналов. Эти устройства прерывают гальванический путь (непрерывность постоянного тока) между всеми землями, позволяя аналоговому сигналу распространяться по контуру. Изолятор также может устранить электрические помехи при непрерывности переменного тока (синфазное напряжение). Есть несколько способов сделать это, но независимо от выбранного вами метода изоляции изолятор должен обеспечивать изоляцию входа, выхода и питания. Если у вас нет этой трехсторонней развязки, может возникнуть дополнительный контур заземления между источником питания изолятора и входным и / или выходным сигналом процесса.
Остановка контуров заземления в будущем
Чтобы свести к минимуму опасность введения этих контуров в сложную сеть, следует использовать специальную шину заземления измерительной системы и подключать заземление от общего сигнала, заземления шкафа и заземления источника переменного тока КИП. к нему. Автобус привязан к земле через строительную площадку и решетку растительного грунта. Но это может быть намного сложнее, чем кажется. Например, у вас редко будет только один цикл инструментовки.Фактически, у вас могут быть сотни или даже тысячи. Многие из них упакованы вместе в шкафы контрольно-измерительной системы, предоставляемые поставщиком. Обычно они содержат общую шину сигнала постоянного тока и общую шину источника питания. Производитель обычно связывает эти шины вместе в шкафах на главной шине заземления. Заземление шкафа — это защитное заземление, которое защищает оборудование и персонал от случайного поражения электрическим током. Он также обеспечивает прямую линию отвода статических зарядов или электромагнитных помех (EMI), которые могут повлиять на шкафы.Это заземление шкафа остается отделенным от заземления сигнала постоянного тока до тех пор, пока оно не будет подключено к главной шине заземления.
Заземление переменного тока — это одноточечное заземление системы питания переменного тока. Это заземление подключается к заземлению на главном изолирующем трансформаторе переменного тока. Он также заканчивается в одной точке сети заземления предприятия (обычно это заземляющий электрод).
По всем вопросам, связанным с экстремальным анализом жидкостей, свяжитесь с нами по телефону
Загрузите
Причины и сокращение ~ Изучение контрольно-измерительной техники
Пользовательский поиск
Контур заземления — это нежелательный путь тока в электрической цепи.Контуры заземления возникают всякий раз, когда заземляющий провод электрической системы подключается к заземляющей пластине в нескольких точках. Контуры заземления могут не только вызвать шум в сигнальных кабелях прибора, но в тяжелых случаях могут даже перегреть сигнальный кабель прибора и, таким образом, создать опасность возгорания!
Явление контуров заземления показано на схематической диаграмме ниже:
Существует несколько причин возникновения контуров заземления в любой установке КИПиА.
Некоторые из них перечислены ниже:- Разница потенциалов между точками заземления, к которым подключены клеммы заземления
- Индуктивная муфта
- Емкостная муфта
- Использование инструментов с внутренним заземлением внутри уже заземленного контура
- Экраны кабелей заземлены с обоих концов
- Заземленные термопары с неизолированными преобразователями
- Четырехпроводные передатчики, используемые в качестве входа для приемного прибора, заземленного на другое заземление
Существует несколько методов ограничения контуров заземления, которые вносят нежелательное шумовое напряжение в сигнальные кабели прибора.Однако есть два наиболее эффективных метода уменьшения контуров заземления:
- Одноточечное заземление
- Использование дифференциальных входов
Одноточечное заземление подразумевает заземление установки КИПиА в одной точке. Такой подход значительно снижает шумовое напряжение, создаваемое контурами заземления из нескольких точек заземления. Дифференциальные входы используются для компенсации шумового напряжения, которое может появиться в измерительной цепи. Одним из очень эффективных способов полной изоляции измерительной системы от контуров заземления является использование инструментов с батарейным питанием.Однако из-за ограниченного срока службы батареи они используются редко.
Импедансная муфта (или кондуктивная муфта)
Если две или более электрических цепей имеют общие проводники, между разными цепями может быть некоторая связь. Когда сигнальный ток из одной цепи возвращается по общему проводнику, он создает напряжение ошибки на обратной шине, которое влияет на другие сигналы. Напряжение ошибки возникает из-за сопротивления обратного провода.Один из способов уменьшить влияние импедансной связи — минимизировать импеданс обратного провода. Второе решение — избежать контакта между цепями и использовать отдельные возвратные линии для каждой отдельной цепи.
контуров заземления
контуров заземления[На главную] [ Вверх]
Ground Loops Radio Оборудование
Контуры заземления Транспортные средства
Контуры заземления Аудио Системы
Как заземлить Петли возникают (технические)
Автостоянки и Заземление
Примечание. обсуждение применяется только к основаниям внутри платформы или системы.Оно делает не применяется к кабелям или проводке вне здания, где повреждение светом или другие скачки напряжения вызывают беспокойство. |
Проблемы контура заземления обычно возникают, когда соединительные порты заземлены к пунктам, работающим с перепады напряжения. Разница напряжений обычно возникает из-за высоких токов. на другом заземленном пути. Проблемные перепады напряжения обычно возникают из-за падение напряжения вдоль Сильноточный провод, заземленный с обоих концов на общую землю.Это может создают разность потенциалов вдоль пути заземления сигнального провода, и это напряжение передается в чувствительную схему.
Нежелательное взаимодействие, которое мы называем «контур заземления», обычно является непреднамеренным результат плохой техники подключения, плохого планирования порта источника или нагрузки или сочетание всего.
Примечание: «Порт» по определению
подключение входа или выхода сигнала, обычно через гнездо, соединитель или терминал
полоска. «Порты» — это точка соединения, где соединительный провод или кабель входит или выходит
Устройство.
Использование шины заземления вдоль стола не вызывает «заземления». петля ». Замена проводов на звезду или прокладка отдельных заземляющих проводов на дальние общая точка, как и стержень, не исправляет контуры заземления. Несколько заземляющих проводов в далекую точку не исправьте контуры заземления или радиопомехи, за исключением случая, когда вам повезло. Длинные изолированные заземляющие провода от оборудования на столе до общего места вне рабочего стола, например, удочка, не годится наука.
Низкая частота оборудования или контуры заземления постоянного тока вызваны мощностью падение напряжения на кабеле и отсутствие использования одноточечного заземления на одном конце пути.RFI вызваны синфазным RF на антенных кабелях или нарушение целостности экрана. Более короткий и более низкий путь заземления сопротивление между оборудованием в одной точке, тем лучше! Исключение составляет как правило, любой сильноточный источник питания или нагрузка. Источники или нагрузки сильного тока в целом НЕ должен быть привязан к наземная шина более чем в одной точке. Что-то вроде сильноточной мощности Отрицательный провод питания должен быть заземлен только со стороны оборудования. В идеале отрицательная шина должна плавать на источнике питания, но должна иметь предохранительный зажим, который это высокий импеданс при нормальных условиях при ограничении отрицательной клеммы поднимаются при неисправностях.
С за исключением сильноточного источника питания с заземленным отрицательным полюсом шасси, которое должно быть заземлено непосредственно на сильноточное оборудование, которое оно обслуживает, и только на том оборудовании, которое оно обслуживает. Самый короткий путь с наименьшим сопротивлением между оборудованием всегда является лучшим. Этот обычно требует наличия тяжелой заземляющей шины с низким сопротивлением и короткими гибкими плетеные провода, соединяющие настольное оборудование с этой настольной шиной.
Отрицательный вывод предохранители на оборудовании — тоже вообще плохая идея, но мы видим это повсюду. Из-за плохих инструкций по подключению потребовались предохранители с отрицательным выводом!
Современные автомобили используют микропроцессорную систему для изучения многих аспекты состояния двигателя. Процессор считывает внешние датчики и, используя эти данные, вычисляет время зажигания, топливо форсунка открывает окна, включает насосы и вентиляторы, управляет системой рециркуляции отработавших газов, регулирует двигатель холостой ход и множество других функций. Несколько датчиков сообщают компьютеру множество различных параметров в том числе положение дроссельной заслонки, втекающая в двигатель воздушная масса, охлаждающая жидкость температура, барометрическое давление, содержание кислорода в выхлопных газах, положение коленчатого вала, и другие параметры.Разница между подачей топлива на 15 лошадиных сил или подача топлива на 500 лошадиных сил может меняться менее 3 вольт на некоторых датчики! Десятые доли вольта могут значительно изменить критические параметры двигателя, и изменения датчика в сотых долях вольта могут изменить смесь на заметное количество. Эта чувствительность к относительно небольшим изменениям напряжения датчика является корнем Проблемы с контуром заземления системы управления двигателем. ключ к правильному управлению сложными функциями. читает датчики низкого напряжения с высоким сопротивлением, обычно работающие в диапазоне от нуля до пять вольт, точно.Шум может особенно повлиять на точность чувствительного тайминга функции.
Повреждение оборудования может произойти в результате проблемы с контуром заземления. Из-за плотного Упаковка и миниатюрная конструкция, современная электроника использует небольшие проводники (следы фольги) и компоненты. Контур заземления может расплавить следы фольги, повредить полупроводники или микросхемы или разрушить малые резисторы. Контур заземления может вывести из строя дорогую электронную систему за доли секунды. второй. Хуже того, контур заземления, влияющий на дозирование топлива или время зажигания, может разрушить двигатель.
Мои проблемы с Послепродажная система EFI — хороший пример того, что ошибка контура заземления угрожает ресурс двигателя.
Высокая чувствительность к малым уровням напряжения лежит в основе шум или гудение контура заземления звука.
Второстепенная проблема — повреждение оборудования. Из-за плотного упаковка, современная аудиоэлектроника часто использует небольшие проводники из фольги и текущие чувствительные компоненты. Полупроводники малой мощности могут быть непоправимо повреждены под действием нескольких вольт или нескольких тысячных долей напряжения. амперный ток.Как и в случае с домашними компьютерами и автомобилями, контур заземления может расплавить следы фольги, повредить полупроводники или микросхемы или разрушить небольшие резисторы или конденсаторы. Дорогой аудиокомпонент может быть испорчен доли секунды.
Когда я начал заниматься радиовещанием, наземные пути между различными частями аудиооборудования были изолированы. Инженеры заземлили щиты на симметричных линиях в одной точке пути, обычно на клеммах входного порта. Экраны на несимметричных линиях, если оборудование не было смонтировано в той же стойке, были плавает изолирующим трансформатором на одном конце.
Единственными общими соединениями шасси были провода питания, радио частотные основания и основания безопасности. Экраны заземления звуковых сигналов или сигналов низкого уровня были всегда изолирован от шасси или заземления на одном конце. Это было универсально верно для всех низкоуровневых сигнальные линии. Изоляция предотвратила нежелательные сигналы контура заземления, обычно проявляющиеся в виде гула или шума, из-за создания низкоуровневых фоновый мусор. Было очень плохой практикой балансировать и заземлять шасси постоянного тока. несбалансированные линии, особенно линии с экраном толщиной менее нескольких толщин кожи или чрезмерно резистивные экраны более чем в одной точке кабельной трассы.
Низкоуровневые аналоговые измерения и сигнальные заземления также нарушены землей петли. Как правило, по крайней мере один конец участка должен быть независимым от земли или земля изолирована. Это предотвратит нарушение критического сигнала контурами заземления. напряжения и выдача ложных показаний.
Самый простой контур заземления показан ниже:
Если мы рассмотрим систему постоянного тока с «A» как источник и «B» в качестве нагрузки, напряжение «C» подтолкнет «B -» вверх на.5 вольт. Это означает, что разница между плюсом и минусом «B» будет 2,5 вольта.
И наоборот, если «B» был источником 2,5 В, а «A» нагрузка, «C» подтолкнет «A -» к более отрицательному значению, а разница «A» между + и — будут 3 вольта.
Вот почему мы должны быть уверены, что ничто не заставляет внешнее напряжение на заземляющем проводе. Единственный способ исключить возможность заземления петля, нарушающая чувствительное напряжение или даже вызывающая повреждение, будет плавать один или оба конца системы полностью заземлены.Хотя бы один конец, либо конец источника или конец нагрузки должен быть в дифференциальном режиме. «Дифференциальный» означает, что касается только разницы напряжений между + и -, а не внешнего источник. Если поместить один конец в дифференциал, он будет выглядеть так:
В приведенном выше случае «B -» будет иметь единственный точка заземления. В точке «А -» не могло быть земли. Не заземляя любой конец отрицательный, и создание дифференциала нагрузки или источника устраняет контур заземления.
Решение проблемы с контуром заземления путем изготовления заземляющего проводника больше — это, как правило, не лучший способ что-то делать, хотя, безусловно, помочь за счет уменьшения падения напряжения (уменьшения сопротивления тракта).Проблема в том, что кондукторы, какими бы большими они ни были, всегда есть в наличии. неизбежное падение напряжения с током. Это падение напряжения определяется законом Ома, где ток, умноженный на сопротивление, — это падение напряжения на пути тока. Если проводник передает высокочастотные сигналы, проблема осложняется сопротивлением и эффекты стоячей волны. Для большинства систем аудио, питания и управления мы можем просто рассмотреть сопротивление. Для более высоких частот или резко возрастающих форм волны (например, зажигания системные импульсы), мы должны учитывать реактивные части импеданса проводки.
Системы со смесью больших токов и чувствительных линии нижнего уровня доставляют гораздо больше хлопот, чем другие системы. Сильные токи могут легко создавать перепады напряжения, которые составляют значительную часть низкого сигнала уровни. Когда системы высокого и низкого уровня разделяют землю, текущее падение напряжения по заземляющей или нейтральной проводке может передаваться на другие наземные пути. Это передает часть высокого тока в низкий система уровней.
В схемах ниже, даже с тысячными долями Ом сопротивление проводника и соединения, сильноточная цепь заземления Падение на 1/10 вольт.Сигнальный провод, даже с проводом гораздо меньшего размера, имеет только падение на несколько милливольт. Это потому, что ток нагрузки очень низкий.
Давайте рассмотрим несколько основных несбалансированных систем. В схемах:
R1 — R4 | сигнальный провод и сопротивления соединений |
R5 | индикатор или сопротивление нагрузки |
R6 | Сильноточная нагрузка |
R7-R10 | Сопротивление проводника сильноточной нагрузки |
VS1 | Источник сигнала |
VS2 | Источник для сильноточной нагрузки |
В системе ниже мы видим напряжение сигнала, на которое ничего не влияет, кроме небольшое падение напряжения в сигнальных проводниках.Нет тока нагрузки большой мощности и нет контура заземления.
В системе ниже общий провод заземления между верхней и нижней нейтралью. был добавлен в левом конце. Мы видим, что на напряжение сигнала ничего не влияет, кроме небольшое падение напряжения в сигнальных проводниках. Нет контура заземления и нет высокого сила тока нагрузки. Датчик низкого уровня считывает только 0,004 В от источник.
В системе ниже мы видим напряжение сигнала, на которое ничего не влияет, кроме небольшое падение напряжения в сигнальных проводниках.Ток нагрузки в R6 составляет 118 ампер, но ток не влияет на напряжение сигнала, потому что заземление сигнала у свинца только одно основание точка. Нет контура заземления.
В системе ниже мы видим, что напряжение сигнала сильно зависит от высокого текущая нагрузка. Это потому, что в вышеупомянутой системе есть контур заземления. Сигнал провод заземлен с каждого конца.
В системе ниже тяжелая заземляющая шина с очень низким сопротивлением была добавлена в попытаться уменьшить сопротивление шасси или нейтрали.Несмотря на то что снижается, напряжение сигнала остается под влиянием падения напряжения в верхнем токопроводы. Этот пример демонстрирует, почему лучшее решение — избегать контуров заземления, вместо того, чтобы пытаться уменьшить количество контуров заземления за счет лучшего заземления между точками заземления системы.
Автостоянка в Типичные легковые автомобили unibody — это особая ситуация. Механический строительные методы, которые делают платформу жесткой, также работают, чтобы сформировать большой тракт заземления шасси большой площади с очень низким сопротивлением.Сварная оболочка образует заземляющий провод с очень низким сопротивлением и является отличным местом для обычных заземление для сигнального и силового заземления. Хотя это и не нулевое сопротивление, Оболочка тела — самое близкое к нему. Использование четырехпроводного измерения сопротивления Мой Мустанг 1989 года измеряет менее 0,002 Ом от заземления задней аккумуляторной батареи. к земле рельса рамы переднего внутреннего крыла. Это приблизительный эквивалент 15 футов медного провода и разъемов AWG № 0. Большая часть этого сопротивления концентрируется вокруг клемм заземления (до того, как ток сможет распространение), а не по пути тела.Если я улучшил точки подключения, я может значительно снизить то небольшое сопротивление, которое сейчас имеет моя система. Это не совсем необходимо, поэтому я не заморачивался.
Нет смысла запускать тяжелый медный минус от двигатель к аккумулятору, когда шасси уже есть и корпус, включая потери при случайном подключении, имеет меньшее сопротивление, чем хорошо сделанный кабель.
Пример заземления
сопротивление: Сопротивление любого однородного проводника обратно пропорционально площади поперечного сечения и прямо пропорционально к удельному сопротивлению и длине.Проще говоря, если мы удвоим крест площадь сечения проводника мы отсекаем сопротивление (и падение напряжения) в половина. Если мы удвоим длину, мы удвоим сопротивление и удвоим падение напряжения. Медный провод номер 1 AWG имеет эффективный диаметр около 0,3. дюймы. Площадь круга равна пи * р в квадрате. У этого провода был бы крест площадь сечения около пи * 0,15 * 0,15 = 0,071 квадратного дюйма. Предположим, что толщина стального корпуса составляет около 16 калибра, или около 0,06. дюймов толщиной.Площадь в один фут будет иметь 12 * 0,06 = 0,72 кв. дюймы площади поперечного сечения. Физическое сечение около десяти раз больше, чем площадь поперечного сечения медного провода. Удельное сопротивление стали около 15 Ом на 10-6 см. В Удельное сопротивление меди 1,7 Ом на 10-6 см. Мы можем разумно предположить сталь имеет примерно 15 / 1,7 = 8,8-кратное сопротивление меди для того же длина и одинаковая площадь поперечного сечения. Пока корпус корпуса выше материал удельного сопротивления, тело также имеет гораздо большее поперечное сечение площадь. Это означает стальной корпус шириной в один фут, если этот корпус толщиной всего 0,06 дюйма, сопротивление примерно на 10% меньше, чем у аналогичного длина пути через медный провод. Легко понять, почему наземный путь через кузов автомобиля, который, вероятно, несколько футов шириной и намного толще во многих областях это малая часть сопротивления медного провода. Поверхность пола шириной четыре фута и толщиной всего 0,06 дюйма, будет иметь поперечное сечение около 2.88 квадратных дюймов. Эквивалент медный проводник должен быть 2,88 / 8,8 = 0,327 квадратных дюйма, или диаметр = 2 * квадрат A / pi, или 0,645 дюйма в диаметре! Сопротивление тонкой стальной напольной кастрюли шириной 4 фута с противовесом для медного кабеля требуется кабель больше 4/0, а у нас даже нет рассчитывал на помощь каркасных реек, рокер-панелей или дорожек на крыше! |
Давайте посмотрим, почему Ford сделал систему определенным образом и как схемы могут вводить в заблуждение.Это схема отрицательного вывода аккумуляторного кабеля на Фокс Мустанги:
Правильная схема вышеперечисленного:
В системе, описанной выше, отрицательный вывод EEC не заземлен на отрицательный полюс аккумулятора. Отрицательный EEC фактически подключается к шасси автомобиля рядом с пусковым реле, где он имеет общую точку заземления шасси с отрицательной клеммой аккумулятора. Основания как это работает только тогда, когда аккумулятор установлен спереди и сделан точно так, как изначально сделано.Эта система приемлема, потому что:
1.) Мустанг изначально имел довольно низкое потребление тока от система зарядки.
2.) Заземлил блок от головы до файрволла.
3.) Очень короткий и тяжелый провод аккумуляторной батареи был надежно подключен. к блоку.
Схема альтернативного метода для передней батареи во избежание контуров заземления:
Задний аккумулятор для предотвращения опасности возгорания контура заземления и заземляющего провода:
Соединения отрицательного полюса аккумуляторной батареи:
С аккумулятором на задней панели нет причин долго работать отрицательные выводы от ничего до аккумулятора.Исключение составляют некоторые устройства зоны багажника с плавающей площадкой, например, топливные насосы или другие электродвигатели. Это предполагает цельный автомобиль или раму большой площади. со сварной конструкцией в качестве шины заземления. В Европе основания для отрицательные клеммы АКБ для средств связи запрещены из-за пожара и угрозы безопасности.
Устройство с аккумулятором на задней панели | Всегда допустимо до нег пост | Допустимо, но часто нежелательно | Никогда не допустимо к отрицательному сообщение |
Усилитель с минусом, общим с корпусом и домкраты | Х | ||
Усилитель с минусом с плавающей запятой шкаф и домкраты | Х * | Х ** | |
Электродвигатель или насос с изолированным земля | Х * | Х ** | |
Блок зажигания с общим минусом корпус или другие провода | Х | ||
Инвертор мощности с отрицательным общим выводом к корпусам и торговым точкам | Х | ||
Инвертор мощности с минусом изолирован от шкафа и домкратов | Х | ||
Радиосистема, включая стереосистемы и системы двусторонней связи с общим минусом шкаф и домкраты | X | ||
Радиосистема, включая стереосистемы и системы двусторонней связи с минусом, изолированным от шкафа и гнезд | Х * | Х * |
* если рядом с аккумулятором ** если далеко от аккумулятор
С аккумулятором на передней панели, надежные заземляющие устройства вообще может быть подключен к минусовой батарее практически любым удобным вам способом.
Устройство, с аккумулятором спереди | Всегда допустимо до нег пост | Допустимо, но обычно нежелательно | Никогда не допустимо к отрицательному сообщение |
Усилитель с общим минусом к шкафу и домкраты | Х | ||
Усилитель с минусом с плавающей запятой шкаф и домкраты | Х * | Х ** | |
Электродвигатель или насос с изолированным земля | Х | ||
Блок зажигания с минусовой общей к корпусу или другим выводам | Х | ||
Инвертор мощности с отрицательным общим выводом к шкафу и розеткам | Х | ||
Инвертор мощности с минусом изолирован от шкафа и домкратов | Х | ||
Радиосистема, включая стерео и двустороннюю с общим минусом к шкафу и гнездам | X | ||
Радиосистема, включая стерео и двустороннюю с минусом, изолированным от шкафа и гнезд | Х |