+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

РадиоКот :: Измеритель LOW ESR конденсаторов

РадиоКот >Схемы >Аналоговые схемы >Измерения >

Измеритель LOW ESR конденсаторов

Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но  ведь даже у визуально не вспухшего конденсатора может быть  недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов  в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.

Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.

Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов,  она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..

А это показания исправного конденсатора:

Общий вид измерителя

Цели, которые достигались при проектировании измерителя:

— максимальная простота

— высокая надежность

— измерение на частоте 100 — 110 кГц

— измерение низким напряжением (до 0,2 вольт)

— точность измерения

— растянутая шкала в диапазоне до 0,5 Ома

— низкое энергопотребление

— работа от одного аккумулятора напряжением 1,2 вольта

— длительная работа без зарядки аккумулятора

— отсутствие неудобных проводов витой пары

— мощные щупы для пробивания окислов и лака

— минимум корректирующих настроек

— повторяемость

— минимальная стоимость

Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:

 

Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.

Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).

 


 
 

 


 

Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.

Приведу структурную схему устройства для более понятного назначения каждого компонента:


  

 Схема состоит из автоколебательного блокинг – генератора,
 
 

 собранного на транзисторе VTI, выпаянном из серверной материнки:
 
 

Но можно и любой другой например аналог КТ3102 в smd корпусе.

Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.

Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур),  устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.

Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.

 

О трансформаторах.

В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.

  


 

Стоит он обычно около выходного строчного транзистора
   

Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.
 
 

 Для ТР2 можно ставить без выведенного отвода (таких большинство).
 

 

Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.
 
 

При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.
 

Некоторые фото проведенных измерений:
 

 
  

 
 
 

Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.
 
 

Шкалу не затирал, а просто дописал значения выше. Фото шкалы.
 
 

 

Настройка:

Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.

Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в,  2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 — 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше. 

Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.

  

 
 

Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.

Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.
 
   
 

Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.


 Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!

 

P.S.  Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.

Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).

800

Файлы:
31.jpg — площадка
01.rar — ESR

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Прибор для проверки конденсаторов: схема, без выпайки

Чтобы убедиться в исправности конденсаторов, необходимо провести определение их исправности и соответствия номинальных параметров. Для этой цели можно использовать тестер конденсаторов. Существует несколько видов таких приборов. Для определения исправности этих деталей возможно использовать более простые способы.

Что такое тестер конденсаторов

Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.

Выполнение измерения емкости

Конденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности. Для проверки его нужно выпаивать.

Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства.

Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.

Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.

Высокоточное измерение

В некоторых мультиметрах имеется возможность непосредственной проверки емкости.

ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов. Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.

Существуют специальные измерители емкости.

Аналоговое устройство

ESR-метр

Такой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.

Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.

Измеритель емкости

Мультиметр

Для определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.

К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.

При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.

В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.

Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.

Протечка электролита

Принцип действия прибора для проверки конденсаторов

Перед тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.

Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.

При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.

Виды конденсаторов

Параметры приборов

У каждого конденсатора предусмотрено использование номинального напряжения. При тестировании его работы нужно, чтобы измерительный прибор был настроен именно на эту величину.

Для косвенных измерений можно использовать омметр или вольтметр. Некоторые радиолюбители собирают самодельный измерительный прибор.

Как сделать прибор для проверки конденсаторов своими руками

Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:

  • источник постоянного тока;
  • резистор;
  • конденсатор;
  • вольтметр.

Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.

Схема проверки

После подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.

При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.

Использование мультиметра

Проверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.

Как правильно использовать прибор

Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.

Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.

Мостовая схема

Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.

Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.

rusenergetics.ru

Esr метр без выпайки из схемы

Измеритель LOW ESR конденсаторов

Автор: Simurg, [email protected]
Опубликовано 17.08.2012.
Создано при помощи КотоРед.

Всё гениальное – просто!

Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но ведь даже у визуально не вспухшего конденсатора может быть недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.

Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.

Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов, она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..

А это показания исправного конденсатора:

Общий вид измерителя

Цели, которые достигались при проектировании измерителя:

— измерение на частоте 100 — 110 кГц

— измерение низким напряжением (до 0,2 вольт)

— растянутая шкала в диапазоне до 0,5 Ома

— работа от одного аккумулятора напряжением 1,2 вольта

— длительная работа без зарядки аккумулятора

— отсутствие неудобных проводов витой пары

— мощные щупы для пробивания окислов и лака

— минимум корректирующих настроек

Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:

Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.

Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).

Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.

Приведу структурную схему устройства для более понятного назначения каждого компонента:

Схема состоит из автоколебательного блокинг – генератора,

собранного на транзисторе VTI, выпаянном из серверной материнки:

Но можно и любой другой например аналог КТ3102 в smd корпусе.

Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.

Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур), устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.

Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.

В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.

Стоит он обычно около выходного строчного транзистора

Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.

Для ТР2 можно ставить без выведенного отвода (таких большинство).

Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.

При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.

Некоторые фото проведенных измерений:


Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.

Шкалу не затирал, а просто дописал значения выше. Фото шкалы.

Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.

Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в, 2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 — 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше.

Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.

Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.

Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.

Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.

Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!

P.S. Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.

Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).

Самое мощное средство повлиять на качество — расположение акустики — ничего не стоит по деньгам (c)

життя – це великий супермаркет, бери що хочеш. Але за все треба платити (c)

Black_Jack
Ветеран


Откуда: Хмельницький
Сообщений: 3 299
Репутация: 288 Thanks: 3344
Поблагодарили: 5355 за 2231 сообщения

(03-03-2019 13:34) ms142 писал(а): Смотря что мерять, чем мерять и в каком месте мерять.

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло 😉 И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром:

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к мультиметру. С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:

Микросхемы по привычке всегда ставлю в панельки:

При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:

Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:

Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп:

Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:

Провода, идущие к пинцету, закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом ;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:

Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора

Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

«>

mytooling.ru

ESR метр MESR-100 v2 — отзыв о покупке на Алиэкспресс внутрисхемного переносного измерителя для проверки параметров конденсатора без выпаивания с таблицей ESR на лицевой панели китайского прибора

Предлагаю вашему вниманию обзор портативного прибора для проверки ESR(ЭПС) конденсаторов MESR-100 v2 который имеет LCD экран с подсветкой и разъем MicroUSB для подключения внешнего источника питания…

Что такое ESR (ЭПС) и как это устроено, полезная информация для ознакомления
go-radio.ru/esr-kondensatora.html
en.wikipedia.org/wiki/Equivalent_series_resistance

Комплект поставки, коробка, вес прибора с батарейками


Технические характеристики прибора, сравнение с первой версией


Compare MESR100 old V1 and new V2 Improvement:
1) Change square wave to sine wave 100 KHz, reduce square wave’s high frequency component, and affect the reading passing the test
leads and capacitor.

2) Higher Resolution up to 0.001 ohm.

3) 128X64 dot matrix LCD, with more larger value display and information

4) Embedded 25V capacitor table at LCD, auto display the capacitor is good or bad reference to common 25V electrolytic capacitor.

5) New plastic case, curve design for hand carrying. New stand for 60 degree stand on desk.

6) Use 2X AA battery, more convenience and longer battery life than 9V battery.

7) Support external USB power, using standard micro-USB port.


Внешне прибор выглядит вполне прилично


Таблица ESR на лицевой панели

Имеется складная подставка для его вертикального расположения

Питание осуществляется от 2X AA батареек

Прибор также может питаться от MicroUSB разъема расположенного на его боковой стенке

Замер тока потребления устройства в режиме измерения ёмкости

Включается и управляется прибор тремя кнопками.
Включение и отключение — нажатие и удержание на 1-2 секунды
Кнопка ZERO — калибровка и кнопка MODE RANGE — ручной выбор диапазона измерений
При включении прибора высвечивается сначала название и версия прошивки

Калибровка ESR метра сводится лишь к нажатию и удержанию кнопки ZERO на пару секунд при замкнутых щупах или перемычке на колодке между её + и — т.е. в зависимости от способа измерения

Начинка этого прибора

MESR-100 V2 построен на основе микроконтроллера PIC18F24K20



Дисплей — монохромный LCD с подсветкой из двух светодиодов

Для проверки MESR-100 я подобрал несколько радиодеталей

Подручные ESR измерители; показатели разнятся несильно за исключением плёночных конденсаторов, ну и время измерения оказалось худшее у MG328

В процессе тестирования посмотрел на входы щупов осциллографом Instrustar ISDS 220A; когда к ним ничего не подключено

Заявленная частота 100 KHz совпадает
Измерение ёмкости 22uf(плохой, с подсохшим электролитом)

Хороший конденсатор Panasonic Low Esr (FC серии) на 470мкфх25В

Замеры конденсаторов. Перед замером разряжать их обязательно


Замеры сопротивлений


Подборка видеоматериала по MESR-100



Резюме

Плюсы
MESR-100 показал довольно неплохую точность (после калибровки «0» перед измерениями).
Универсальное питание.
Экран с подсветкой.
Быстрый результат измерений пределах 1-ой секунды на любой ёмкости конденсатора
Возможность измерить ЭПС конденсаторов без выпайки их из платы, но для этого придётся менять штатные щупы
Минусы
При измерениях <0,1 Ом через щупы, прибор выдаёт иногда плавающие показания, а вставить в его клеммную колодку проводник толщиной более 0,6мм нельзя, как тут не вспомнить про зажим Кельвина.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Измерение esr конденсаторов без выпаивания

Black_Jack
Ветеран


Откуда: Хмельницький
Сообщений: 3 387
Репутация: 291 Thanks: 3429
Поблагодарили: 5471 за 2289 сообщения

(03-03-2019 13:34) ms142 писал(а): Смотря что мерять, чем мерять и в каком месте мерять.

Простой измеритель ESR электролитических конденсаторов на микроконтроллере PIC16F873

Самодельный измеритель ESR с возможностью измерений бьез выпаивания конденсаторов из печатной платы.

Что такое ESR?

Эквивалентное последовательное сопротивление (ESR) — это исключительно важный параметр электролитического конденсатора, характеризующий его работоспособность, качество и степень старения. С точки зрения ремонта электронной техники этот параметр даже более важен, чем емкость. Если, например, мы измерили емкость конденсатора номиналом 1000 микрофарад и она оказалась 650 микрофарад, конденсатор еще может долгое время работать в устройстве практически без заметного ухудшения характеристик (это конечно сильно зависит от конкретной схемы), в случае, если его ESR остается в приемлемых рамках. С другой стороны, если у конденсатора сильно выросло ESR, то во многих схемах, особенно в импульсных блоках питания, такой конденсатор уже не сможет выполнять своих функций даже если у него сохранилась номинальная емкость. Однако на практике такое бывает не часто, так как емкость и ESR — параметры взаимосвязанные и при росте ESR очень часто уменьшается и емкость конденсатора. Обычно ESR возрастает по мере высыхания электролита конденсатора.

В чем же смысл параметра ESR и почему он так важен? SER (Equivalent Series Resistance) или эквивалентное последовательное сопротивление — это паразитное сопротивление, которое можно представить себе как резистор, включенный последовательно с идеальным конденсатором. То есть это дополнительное сопротивление, которое имеет место быть в любом реальном конденсаторе, которое ухудшает качество этого конденсатора. Иными словами — это параметр, который показывает насколько наш конденсатор не идеален. Таким образом, чем больше ESR, тем хуже конденсатор.


Как измерить ESR?

Эквивалентное последовательное сопротивление, так же, как и обычное сопротивление, измеряется в Омах. В отличие от обычного омметра, прибор, измеряющий ESR, производит измерения не на постоянном токе, а на переменном токе сравнительно высокой частоты, обычно в районе 100 килогерц. На такой частоте емкость конденсатора практически не оказывает влияния на сопротивление конденсатора, поэтому измеряется именно последовательное эквивалентное сопротивление, а не емкость конденсатора. Фактически это главное и единственное отличие измерителя ESR от простого омметра.

В общем виде метод измерения ESR показан на схеме ниже:

Большинство измерителей работают именно по этому принципу. У нас есть генератор переменного напряжения G, резистор известного сопротивления R и измеряемый конденсатор Cx. Этот резистор совместно с измеряемым конденсатором образуют делитель напряжения. Дальше идет детектор, преобразующий переменное напряжение в постоянное и узел индикации этого постоянного напряжения, пересчитанного в Омы. Это может быть аналоговая или цифровая схема индикации, суть от этого не меняется.

Схема прибора

Описываемый прибор исключительно удобен тем, что может проверять конденсаторы без выпаивания их из схемы и в большинстве случаев это срабатывает. Исключением может быть например если вы хотите проверить конденсатор, параллельно которому включены другие конденсаторы. Такое включение иногда бывает в блоках питания. В таком случае прибор покажет наименьший ESR (то есть ESR лучшего конденсатора).

Схема измерителя ESR (кликните чтобы увеличить)

Прибор собран на основе микроконтроллера PIC16F873. Микроконтроллер измеряет выпрямленное напряжение, пересчитывает его значение в сопротивление в Омах. Кроме того микроконтроллер генерирует переменное напряжение прямоугольной формы частотй 100 кГц, которое используется для проведения измерений.

Для того, чтобы было возможно измерять ESR конденсаторов, не выпаивая их из схемы, измерительное напряжение должно быть достаточно низким, обычно 0,2-0,4 вольта, то есть меньше порога открывания pn — переходов полупроводниковых приборов.

Фактичекски представляет собой цифровой омметр работающий на переменном напряжении частотой 100кГц и позволяющий измерять сопротивления от 0 до 25,5Ом.

Узел формирования образцового напряжения 2.5 В для АЦП контроллера в оригинальной схеме собран на микросхеме TL431. В то время, когда я собирал этот измеритель у меня такой микросхемы не было и я заменил его стабилитроном на 3.3 В и подстроечным резистором на 10 К. Подстроечником я установил на ножке 5 контроллера требуемое напряжение 2.5 В.

Сейчас TL431 — это очень распространенная и дешевая микросхема и проблем с ее приобретением нет. Так что если вы будете использовать мою печатную плату, то установите TL431. Подстроечник в таком случае устанавливать не нужно.

Блок питания собран на сетевом трансформаторе T1, диодном мостике и стабилизаторе напряжения LM7805 (K142ЕН5А). В своей версии прибора я отказался от трансформатора, оставив, тем не менее, диодный мостик на печатной плате. Я использовал малогабаритный импульсный сетевой блок питания (адаптер) на напряжение 12 вольт,

который, благодаря наличию диодного мостика, можно подключать в любой полярности или вообще использовать адаптер с переменным напряжением на выходе (просто трансформатор).

В принципе можно избавиться вообще от блока питания, если использовать пяти-вольтовый адаптер — зарядку от смартфона.

Меандр с частотой 100кГц снимается с ножки RC2 микроконтроллера и через резистор R3 подается на усилитель тока, собранный на транзисторах VT1,VT2. Я использовал КТ3102 и КТ3107. Хорошей идеей здесь будет использовать современные транзисторы BC547 и bc557. Нагрузкой усилителя служит резистор R1 и диоды VD5,VD7, включенные встречно-параллельно для ограничения амплитуды на измеряемом конденсаторе. Далее переменное напряжение, через конденсатор С1 и измеряемый конденсатор Cx поступает на первичную обмотку повышающего трансформатора Т2. далее импульсы снимаются со вторичной обмотки и выпрямляются диодом VD6, после чего полученное пульсирующее напряжение сглаживается конденсатором С3. Далее сформированное постоянное напряжение через подстроечный резистор R4 поступает на вход аналого-цифрового преобразователя микроконтроллера D3. Конденсатор С9 устраняет возможные высокочастотные помехи.

Информация отображается на трехразрядном семи-сегментном ЖК индикаторе. Транзисторы VT3, VT4, VT5 — ключи коммутации ЖК индикаторов (используется принцип динамической индикации.

Сетевой трансформатор (если вы решите его использовать) со вторичной обмоткой на 9-12 вольт. Повышающий трансформатор Т2 намотан на ферритовом кольце марки М2000НМ и размером К10х6Х3 (можно использовать кольцо других размеров, не сильно отличающихся от указанных. Это не критично). Первичная обмотка намотана проводом диаметром 0,26мм, и состоит из 42 витков. Вторичная обмотка содержит 700витков провода диаметром 0,08мм.

Налаживание устройства. Подключаем к щупам измерителя резистор известного сопротивления в диапазоне 1 .. 5 Ом и подстроечным резистором добиваемся корректных показаний на дисплее. После такой настройки мой прибор при соединенных вместе щупах показывал сопротивление отличное от нуля, поэтому я еще слегка подкорректировал положение движка резистора таким образом чтобы на дисплее были нулевые показания при замкнутых щупах.

Печатная плата устройства когда-то была разведена в программе PCAD2006, а в последствии я импортировал файл платы в программу DIPTRACE.

Прошивка (программа) для микроконтроллера PIC16F873 написана на ассемблере. Архив с прошивкой и чертежом печатной платы вы можете скачать по ссылке а конце этой статьи.

Я разрабатывал печатную плату, когда у меня еще не было в наличии светодиодных 7-сегментных индикаторов, поэтому индикатор я установил на отдельной плате. Эта плата — кусок обычной макетной платы, куда были припаяны индикаторы. То есть, печатную плату для индикатора я не разводил.

Со стороны лицевой панели индикатор закрыт куском оргстекла синего цвета. Это улучшает контрастность дисплея.

Провода щупов измерителя желательно выполнить из толстого многожильного провода, чтобы их сопротивление было как можно меньше. Сами щупы я сделал из толстых стальных швейных игл, такими щупами очень удобно измерять ESR конденсаторов непосредственно на печатных платах.

Перед измерением ESR конденсатора обязательно убедитесь что конденсатор разряжен. Остаточное напряжение на конденсаторе может вывести микроконтроллер из строя.

vi-pole.ru

Что такое ESR. Измерение ESR. Прибор для измерения ESR

Привет друзья. Сегодня расскажу о приборе, который очень сильно помогает мне в ремонте, экономит деньги и время. Это ESR метер китайского происхождения Mega328. Купил его на алиекспресс у этого продавца. Какие именно достоинства этого прибора?

Во первых, им очень удобно проверять электролитические конденсаторы. Для этой цели я его и покупал. У каждого конденсатора есть два параметра, которые отвечают за его работу. Первый параметр это емкость. Это те самые микрофарады которые и обозначается на корпусе конденсатора. Емкость легко измерять любым мультиметром который поддерживает эту функцию.

Сначала я думал, что это единственный параметр который мне нужно знать в конденсаторе, чтобы определить его исправность, но не тут то было. Ремонтируя один монитор, я никак не мог довести до ума источник питания. Блок выдавал заниженные напряжения, как ни крути. Проверяя конденсаторы, я мерил их емкость, которая была в пределах нормы. В один момент, плюнув на все это дело, я выпаял все конденсаторы, и заменил их на новые, после чего монитор запустился. Моему удивлению не было предела. Я решил найти причину, и поочередно начал впаивать старые конденсаторы, пока не нашел один 470 мкф на 50в, впаивая который, монитор переставал работать. Тестер показывал что конденсатор исправен, но на практике оказалось, что это не так. После этого я начал изучать все о конденсаторах, и открыл для себя такой параметр как ESR.

ESR — Equivalent Series Resistance – параметр конденсатора, который показывает активные потери в цепи переменного тока. Это можно представить как подключенный последовательно конденсатору резистор. Чем меньше ом потери тока, тем лучшего качества конденсатор. Скажу сразу, параметр ESR очень актуален для электролитических конденсаторов емкостью свыше 4,7 мкф. У нового электролитического конденсатора 1мкф ESR может быть и 5 Ом. Для конденсаторов меньшего номинала это не столь важно, по крайней мере в моей практике это так.

Теперь по сути. У электролитического конденсатора емкостью больше 4,7 мкф ESR должен быть меньше 1 Ом. Если этот параметр выше, то я меняю конденсатор на новый.

На картинке ниже, показан пример измерения конденсатора номиналов 1000мкф на 10в.

Измерение ESR

Измерение ESR

Это сильно подсаженный конденсатор, где ESR уже 17 Ом. Очень часто бывает так, что емкость еще 950 мкф, а ESR уже 10 Ом. Такой конденсатор однозначно под замену.

Еще один пример севшего конденсатора. Это конденсатор 220 мкф на 35в. Номинал его стал 111 мкф, а ESR поднялся до 1,3 Ом.

ESR 220 мкф на 35в

ESR 220 мкф на 35в

Или такой же 220мкф на 35в из статьи Ремонт кадровой развертки на примере телевизора AIWA TV-215KE, где ESR уже 15 Ом.

Завышеный ESR конденсатора С510

Вот пример исправного конденсатора, который уже был в работе, но номинал его еще позволяет поработать. Это 100мкф на 63в.

ESR_goodКак видите, его ESR до 1 Ом, да и номинал стал меньше менее чем на 3 мкф, так что такие конденсаторы я оставляю в работе. Приведу пример идеального конденсатора. Это 1500мкф на 10в.

ESR_good2

Здесь ESR вообще ноль Ом, а номинал больше заявленного.

Отойду немного от конденсаторов, и расскажу больше о приборе MEGA 328. Он может проверять не только конденсаторы, а и многое другое. Им легко проверять транзисторы, резисторы, стабилитроны,  мосфеты и много другое. Очень удобно проверять полевые транзисторы, так как прибор покажет его тип, расположение ножек стока, истока и затвора.

Пример проверки полевого транзистора:

Polevoy_tranzПрибор показывает тип транзистора, порог открытия  и расположение ножек. Очень удобно, особенно для новичка.

Вот пример проверки обычного N-P-N транзистора.

NPN

Полный перечень возможностей данного тестера:

  Проверка: Конденсаторов, Диодов, Двойных диодов, MOS, Транзисторов, SCR, Регуляторов, Светодиодные трубки, СОЭ, Сопротивление, регулируемые потенциометры и др.
Сопротивление: от 0.1 Ом до максимум 50 мОм
Конденсатор: от 25pF   до 100,000 мкФ
Индукторы: от 0.01 mH до 20 H
Измерения биполярного транзистора текущий коэффициент усиления и база-эмиттер пороговое напряжение.
Может одновременно измерять два резисторы . Отображается на правой десятичным значением 4. Сопротивление символ на обе стороны показывает контактный номер.

Очень важно!!! Перед измерением ESR, конденсатор необходимо разрядить !!!

Тестер обычно поставляется в виде платы, с разъемом под крону. Свой прибор, я установил  в распределительную коробку, вырезал окошко под дисплей, кнопку, и панель для проверки. Приклеил термоклеем, и так он у меня и работает по сей день. Вот фото:

IMG_20151130_214303Не сильно красиво, но за красотой я особо и не гнался :).

Виде обзор работы ESR метра


Рекомендую покупать на алиекспресс напрямую, так как это намного дешевле, тем более с нашими ценами. Вот ссылка на продавца, где покупал я. Прибор пришел в Украину за 18 дней.

Рекомендую посмотреть обзор моего нового ESR метра на аккумуляторе по этой ссылке

Перечень всех моих инструментов для ремонта можете зайти здесь:

Спасибо за внимание.



IMG_20151130_214303Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

IMG_20151130_214303 Загрузка…

my-chip.info

Измеритель ESR+LCF v3. — Микроконтроллеры — Схемы на МК и микросхемах

Степан Миронов.

Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их — не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% — это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% — не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.

Ориентировочная таблица допустимых значений ESR, приведена ниже:

Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором — «aESR» (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.

На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте — эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме «ESR», а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью «анализатора — aESR».

Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания «aESR» в большинстве случаев немного выше показаний «ESR». Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.

Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.

На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.

При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” – это превышение нормы.

К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.

И так, что же может мой измеритель.

Измеритель ESR+LCF v3 — измеряет

ESR электролитических конденсаторов   0 — 50 Ом
Ёмкость электролитических конденсаторов        0,1 — 60 000 мкФ
Ёмкость неэлектролитических конденсаторов   1 пФ — 2,0 мкФ
Индуктивность   0,1 мкГн — 1,0 Гн
Частоту   до 50 мГц

Напряжение питания
 
батарея 7 — 9 вольт
Ток потребления   10 — 30 мА

Дополнительные функции:

— В режиме ESR можно измерять постоянные сопротивления 0.001 – 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 – 20Ом.
— В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора ( подробное описание см. далее).
— В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+».
— Индикация разряда батареи.
— Автоматическое отключение — около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись «StBy» и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме.

В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора.
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P».

Принципиальная схема.

«Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877.

Конструкция и детали.

ЖК — индикатор на основе контроллера HD44780, 2 строки по 16 знаков.
Контроллер – PIC16F886-I/SS.
Транзисторы BC807 — любые P-N-P, близкие по параметрам.
ОУ TL082 – любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется.
Полевой транзистор P45N02 – 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера.
Дроссель L101 – 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм.
С101 — 430–650пФ с низким ТКЕ, К31-11-2-Г — можно найти в КОС отечественных телевизоров 4-5 поколения ( КВП контура ).
С102, С104 4–10мкФ SMD — можно найти в любой старой компьютерной материнской плате Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
BF998 — можно найти в СКВ, телевизоров и видеомагнитофонов ГРЮНДИК.
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2.

Печатная плата выполнена из одностороннего стеклотекстолита.

Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм.

Крышки сделаны из чёрной пластмассы.

Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” – гнездо более высокого качества.

 

Конструкция щупа:

В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла.

Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

 

Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя.

Удачи всем и всего наилучшего!

miron63.

Архив Измеритель ESR+LCF v3.

 

vprl.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о