+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Ионистор. Что такое и зачем нужен?

Устройство, характеристики и применение ионисторов

Сравнительно недавно в широкой продаже появились так называемые ионисторы. По-иному их ещё называют суперконденсаторами. По размерам они сравни обычным электролитическим конденсаторам, но обладают по сравнению с ними, гораздо большей ёмкостью.

Ионистор – это некий гибрид конденсатора и аккумулятора. В зарубежной литературе ионистор называют сокращённо EDLC, что расшифровывается как Electric Double Layer Capacitor, что по-русски означает: конденсатор с двойным электрическим слоем. Работа ионистора основана на электрохимических процессах.

Устройство ионистора.

Отличие ионистора от конденсатора заключается в том, что между его электродами нет специального слоя из диэлектрика. Взамен этого электроды у ионистора сделаны из веществ, обладающими противоположенными типами носителей заряда.

Как известно, электрическая ёмкость конденсатора зависит от площади обкладок: чем она больше, тем больше ёмкость. Поэтому электроды ионисторов чаще всего делают из вспененного углерода или активированного угля. Благодаря этому приёму удаётся получить большую площадь своеобразных «обкладок». Электроды разделяются сепаратором и всё это находятся в электролите. Сепаратор необходим исключительно для защиты электродов от короткого замыкания. Электролит же выполняется на основе растворов кислот и щелочей и является кристаллическим и твёрдым.

Например, с помощью твёрдого кристаллического электролита на основе рубидия, серебра и йода (RbAg4I5) возможно создание ионисторов с низким саморазрядом, большой ёмкостью и выдерживающие низкие температуры. Также возможно изготовление ионисторов на основе электролитов растворов кислот, таких как H

2SO4. Такие ионисторы обладают низким внутренним сопротивлением, но и малым рабочим напряжением около 1 В. В последнее время ионисторы на основе электролитов из растворов щелочей и кислот почти не производят, так как такие ионисторы содержат токсичные вещества.

Устройство ионистора (суперконденсатора)

В результате электрохимических реакций небольшое количество электронов отрывается от электродов. При этом электроды приобретают положительный заряд. Отрицательные ионы, которые находятся в электролите, притягиваются электродами, которые заряжены положительно. В итоге всего этого процесса и образуется электрический слой.

Заряд в ионисторе сохраняется на границе раздела электрода из углерода и электролита. Толщина электрического слоя, который образован анионами и катионами, составляет очень малую величину порой равную 1…5 нанометрам (нм). Как известно, с уменьшением расстояния между обкладками ёмкость возрастает.

К основным положительным качествам ионисторов можно отнести:

  • Малое время заряда и разряда. Благодаря этому ионистор можно быстро зарядить и использовать, тогда, как на заряд аккумуляторных батарей уходит значительное время;

  • Количество циклов заряд/разряд – более 100000;

  • Не требуют обслуживания;

  • Небольшой вес и габариты;

  • Для заряда не требуется сложных зарядных устройств;

  • Работает в широком диапазоне температур (-40…+700C). При температуре больше +700С ионистор, как правило, разрушается;

  • Длительный срок службы.

К отрицательным свойствам ионисторов можно отнести всё ещё высокую стоимость, а также довольно малое напряжение на одном элементе ионистора. Номинальное рабочее напряжение ионистора зависит от типа используемого в нём электролита.

Чтобы увеличить рабочее напряжение ионистора их соединяют последовательно, также как и при соединении батареек. Правда, для надёжной работы такого составного ионистора нужно каждый отдельный ионистор шунтировать резистором. Делается это для того, чтобы выровнять напряжение на каждом отдельном ионисторе. Это связано с тем, что параметры отдельных ионисторов отличаются. Ток, который течёт через выравнивающий резистор, должен быть в несколько раз больше тока утечки (саморазряда) ионистора. Значение тока саморазряда у маломощных ионисторов составляет десятки микроампер.

Также стоит помнить, что ионистор – это полярный компонент. Поэтому при подключении его в схему нужно соблюдая полярность.

Кроме этого стоит избегать короткого замыкания выводов ионистора. И хотя ионисторы достаточно устойчивы к короткому замыканию, оно может привести к чрезмерному повышению температуры сверх максимального вследствие теплового действия тока, а это приведёт к порче ионистора.

Ионисторы прекрасно работают в цепях постоянного и пульсирующего тока. Правда, в случае протекания через ионистор пульсирующего тока высокой частоты он может нагреваться из-за высокого внутреннего сопротивления на высоких частотах. Как уже говорилось, увеличение температуры электродов ионистора выше максимально допустимой приводит к его порче.

В документации на ионистор, как правило, указывается значение его внутреннего сопротивления на частоте 1 кГц. Например, для ионистора DB-5R5D105T ёмкостью 1 Фарада внутреннее сопротивление на частоте 1 кГц составлет 30Ω. Также существуют ионисторы с ещё меньшим внутренним сопротивлением. Они маркируются как

Low resistance или Low ESR. Такие ионисторы заряжаются быстрее.

Для постоянного тока же внутреннее сопротивление ионистора мало и составляет единицы миллиом – десятки ом.

Обозначение ионистора на схеме.

На схемах ионистор обозначается также как и электролитический конденсатор. Тогда же встаёт вопрос: «А как же определить, что на принципиальной схеме изображён именно ионистор?»

Обозначение ионистора на принципиальной схеме

Определить, что на схеме изображён ионистор можно по значению номинальных параметров. Если рядом с обозначением указано, например, 1F * 5,5 V, то тут сразу станет понятно, что это ионистор. Как известно, электролитических конденсаторов ёмкостью 1 Фарада не существует, а если и существует, то габариты у него немалые Обозначение ионистора на принципиальной схеме. Также сразу бросается в глаза номинальное напряжение в 5,5 V. Как уже говорилось, ионисторы в принципе не рассчитаны на большое рабочее напряжение.

Где применяются ионисторы?

Очень часто ионисторы можно встретить в цифровой аппаратуре. Там они выполняют роль автономного или резервного источника питания для микроконтроллеров (IC’s), микросхем памяти (RAM’s), КМОП-микросхем (CMOS’s) или электронных часов (RTC). Благодаря этому даже при отключенном основном питании электронный прибор сохраняет заданные настройки и ход часов. Так, например, в кассетном аудиоплеере Walkman используется миниатюрный ионистор.

При замене аккумуляторов или батареек в плеере он полностью обесточивается, что неизбежно приводит к стиранию настроек (например, частот радиостанций, установок эквалайзера, сброс хода электронных часов). Но этого не происходит благодаря тому, что электронную схему в «ждущем» режиме питает заряженный ионистор. И хотя ёмкость его несоизмеримо меньше, чем ёмкость аккумулятора или батареи этого хватает для сохранения настроек и работы часов в течение нескольких суток!

Ионистор является достаточно новым электронным компонентом. Впервые ионистор был разработан в Соединённых штатах в 1960-х годах. А позднее, в 1978 году, ионисторы появились и в СССР под маркой К58-1. Это был первый отечественный ионистор. Далее промышленность стала выпускать ионисторы марок К58-15 и К58-16.

Как можно применить ионистор в самодельных конструкциях? Его можно использовать в качестве аварийного источника питания, например, в конструкциях на микроконтроллерах. Вот простейшая схема включения ионистора в цепь питания электронного устройства.

Схема резервирования питания на ионисторе

Диод VD1 служит для предотвращения разряда ионистора С1, когда напряжение питания равно 0 (Uпит=0). В качестве диода VD1 лучше применить диод Шоттки, например, 1N5817 и аналогичные, так как у них малое падение напряжения на открытом переходе. Резистор R1 препятствует перегрузке источника питания, ограничивая зарядный ток ионистора. Его можно не устанавливать, если источник питания выдерживает ток нагрузки 100 – 250 мА. Rн – это сопротивление нагрузки (питаемое устройство, например, микроконтроллер).

Под занавес сего повествования хочется показать какое-нибудь видео. Видео не моё, нашёл в YouTube. Показано, как можно запитать светодиод от заряженного ионистора ёмкостью в 0,047 Ф. Ионистор на 5,5 V, поэтому если решите повторить эксперимент, то заряжайте его 3 вольтами, иначе можно нечаянно спалить светодиод.

Кстати, у меня оказывается, точно такой же ионистор в запаснике завалялся. А у Вас есть ионистор?

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Суперконденсаторы вместо аккумулятора в автомобиле

Суперконденсаторы вместо аккумулятора в автомобиле

Суперконденсатор или ионистор — это что-то нечто среднее между аккумулятором и обычным конденсатором. У него много плюсов, которыми не обладает аккумуляторная батарея. Поэтому, я познакомлю вас с полностью рабочим прототипом батареи для машины на ионисторах. С помощью него можно не просто завести двигатель пару раз, а вполне полноценно эксплуатировать автомобиль неограниченное время.

Понадобится



Этого хватит для первого опытного образца.

Первое испытание с запуском двигателя


Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.
Суперконденсаторы вместо аккумулятора в автомобиле
Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.
Суперконденсаторы вместо аккумулятора в автомобиле
После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.

Схема


Вот схема второго прототипа батареи.
Суперконденсаторы вместо аккумулятора в автомобиле
Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.
Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.
Суперконденсаторы вместо аккумулятора в автомобиле
На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.
А заряжается аккумуляторная батарея через контроллер зарядки.
Суперконденсаторы вместо аккумулятора в автомобиле
Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.
Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Полностью рабочий экземпляр батареи на суперконденсаторах


Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.
Суперконденсаторы вместо аккумулятора в автомобиле
Вид устройства с верху.
Суперконденсаторы вместо аккумулятора в автомобиле
Защитный контроллер.
Суперконденсаторы вместо аккумулятора в автомобиле
Мощный токоограничивающий резистор.
Суперконденсаторы вместо аккумулятора в автомобиле
Цифровой вольтметр виден через пластик.
Суперконденсаторы вместо аккумулятора в автомобиле
Устанавливаем на автомобиль вместо штатной батареи.
Суперконденсаторы вместо аккумулятора в автомобиле
Включаем зажигание и пробуем произвести пуск двигателя.
Суперконденсаторы вместо аккумулятора в автомобиле
Мотор запустился быстро, без каких либо проблем.
Суперконденсаторы вместо аккумулятора в автомобиле
Производится зарядка ионисторов и аккумуляторной батареи, о чем свидетельствуют показания вольтметра.
Суперконденсаторы вместо аккумулятора в автомобиле

Заключение


Теперь поподробнее о достоинствах и недостатка:
Плюсы:
  • В отличии от аккумулятора суперконденсаторы надежнее справляются с пиковым пусковым током. Пуск получается надежнее.
  • Низкое напряжение вполне является рабочим.
  • Имеет низкий вес, от чего всю коробку можно запросто таскать домой на всякий случай.
  • Для пуска можно произвести зарядку даже от батареек и спокойно ехать в путь.

Минусы:
  • Большой саморазряд. Передвигаться конечно можно, но если необходимо на короткий срок включить габариты или аварийную сигнализацию — мало на что хватит энергии, при заглушенном двигателе естественно.

Ну это то что пришло в голову. Теперь о стоимости. На Али Экспресс супер конденсаторы стоят не так уж и дорого. И если посчитать их 6 и балансную защиту, то выйдет дешевле чем кислотный аккумулятор.
На этом у меня все. Надеюсь мой эксперимент был для вас познавательным и интересным. Удачи всем!

Смотрите видео


sdelaysam-svoimirukami.ru

Батарея 12В/100А на суперконденсаторах

Батарея на суперконденсаторах - ионисторов
Суперконденсатор (он же ионистор) — это почти тот же конденсатор, только большой емкости, сравнимой с аккумулятором. Я сделал батарею 12 В из таких ионисторов, которою вполне можно использовать в различных устройствах. И будет она служить дольше в определенных режимах по сравнению с аккумуляторами любого типа, и вот почему суперконденсатор тут выигрывает:
  • — не боится полного разряда «в ноль»;
  • — в 100, а может 1000 раз больше выдерживает циклов «заряд/разряд»;
  • — не боится критических перегрузок по току.

И это ещё не все. Продолжу после сборки батареи.

Понадобится



Батарея на суперконденсаторах
Батарея на суперконденсаторах
Инструмент: паяльник, пинцет, кусачки.
Расходники: припой, флюс.

Изготовление батареи из ионисторов


Будем делать батарею из 8 ионисторов, включенных встречно-параллельно. А именно будет 4 пары из двух параллельно включенных конденсаторов, включенных последовательно.
Батарея на суперконденсаторах
Лакированную медную проволоку нужно выпрямить и очистить от лака. Сделать это можно с помощью канцелярского ножа.
Батарея на суперконденсаторах
Сгибаем проволоку в соединительные элементы.
Батарея на суперконденсаторах
Нужно сделать три квадрата и два полюса.
Батарея на суперконденсаторах
К полюсам, как на настоящей батареи, припаиваем гайки для подключения.
Батарея на суперконденсаторах
Лудим уголки квадратиков.
Батарея на суперконденсаторах
Собираем батарею, припаиваем соединители к ионисторам, не путая полярность.
Батарея на суперконденсаторах
Сначала собираем 4 группы.
Батарея на суперконденсаторах
А затем припаиваем полюса.
Батарея на суперконденсаторах
Заряжаем током 5 Ампер.
Батарея на суперконденсаторах
Через пять минут батарея полностью заряжена.
Батарея на суперконденсаторах
Проверяем лампой.
Батарея на суперконденсаторах
Замыкаем проволокой — раскалилось до красна.
Батарея на суперконденсаторах
Подключаем электродвигатель.
Батарея на суперконденсаторах

Где применить


А применить такую батарею можно там, где есть высокие и кратковременные нагрузки по току. Идеальный пример: накопительный конденсатор для сабвуфера в машину.
Также батарея пригодится там, где имеются частые циклы заряда и разряда: в виде аккумулятора для накопления энергии от солнечных батарей, и полной ее отдаче в ночное время фонарям.
Это лишь два варианта использования, но их гораздо больше.
Стоят они даже на Али Экспресс (ссылка) относительно не дорого, учитывая громадный срок их службы при использовании по назначению.

Смотрите видео


sdelaysam-svoimirukami.ru

Ионисторы или суперконденсаторы большой мощности: как сделать своими руками

Человечество с каждым днём всё более нуждается в качественных источниках резервного питания. Аккумуляторы – довольно сложные в обслуживании приборы и ограниченные в объёме электрического заряда. Требовался мощный накопитель электроэнергии. Такой прибор был изобретён. Ионистор – что это такое? Это суперконденсатор (Supercapacitor), электролит которого может состоять, как из органических, так и неорганических веществ. По функциональным возможностям ионистор можно определить не только как конденсатор, но и как химический источник тока.

Ионисторы

Ионисторы

Концепция

Ионистор большой ёмкости – это конденсатор, объём которого может составлять несколько фарад напряжением от 2 до 10 вольт. Накопителем заряда является двойной электрический слой (ДЭС) на линии соприкосновения электрода и электролита. Если обычные ёмкости измеряются в микро,- и пикофарадах, то становится понятно, что эти ионисторы являются суперконденсаторами. Концепция ионистора построена на том, что за счёт тонкости ДЭС и большой поверхности пористых обкладок и электродов удаётся достичь колоссального объёма заряда.

История изобретения ионистора

Американской компанией Дженерал Электрик в 1957 году был запатентован простой ионистор с ДЭС, электроды которого были сделаны из активированного угля. Теоретически предполагалось накопление энергии в порах поверхности электродов.

Уже в 1966 году компанией Стандарт Ойл Огайо был получен патент на компонент, который обеспечивал накопление энергии в ДЭС. Потерпев убытки, связанные с низкой реализацией ёмких конденсаторов, фирма передала права на изготовление этих устройств компании Nec. Новый владелец лицензии сумел значительно увеличить спрос на свою продукцию под названием суперконденсатор (Supercapacitor). Устройство значительно понизило энергозависимость электронной памяти, что стимулировало развитие компьютерных технологий.

1978 год ознаменовался появлением на рынке электротехники Золотого конденсатора (Gold Cap) ведущей японской электрокомпании Панасоник. Это уже было устройство более высокого качества. Ионисторы нашли своё применение в системах питания электронной памяти.

В том же году первое упоминание о том, что такое ионисторы в СССР, было опубликовано в пятом номере журнала «Радио». В статье был описан первый советский ионистор КИ1-1. Его устройство предполагало предельный объём заряда до 50 фарад. Недостатком суперконденсатора было его высокое внутреннее сопротивление (ВС), что препятствовало полноценной отдаче электрической энергии.

Суперконденсаторы с малым ВС появились только в 1982 году. Новая конструкция была разработана специалистами компании PRI для особо мощных схем, где применяют ионистор «PRI Ultracapacitor».

Важно! Прогресс в совершенствовании суперконденсаторов приведёт к тому, что ионисторы полностью заменят традиционные аккумуляторы.

Разновидности суперконденсаторов

Ионисторы делятся на три вида:

  1. Идеальный ионистор. Название было присвоено ионному конденсатору, в котором электроды из углерода поляризовались на 100%. При полном отсутствии электрохимических процессов энергия накапливается благодаря ионному переносу электронов с одного на другой электрод. Электролитом в «идеальных» ионисторах служат растворы основания KOH и серной кислоты h3SO4.
  2. Гибридные ионисторы – это конденсаторы со слабо поляризуемыми электродами. Скопление энергии в ДЭС происходит на поверхности одного из электродов.
  3. Псевдоионисторы обладают высокой удельной ёмкостью. На поверхности электродов происходят возвратные электрохимические реакции.
Устройство ионистора

Устройство ионистора

Сравнение положительных и отрицательных сторон

Ионисторы стали использовать не только, как преобразователи параметров электрической цепи, но и как поставщики электроэнергии. Они стали широко применяться вместо одноразовых аккумуляторных элементов питания в электронных системах хранения информации.

Обратите внимание! Несмотря на превосходные технические характеристики ионисторов, ими ещё нельзя полноценно заменить аккумулятор на автомобиле.

По сравнению с гальваническими элементами и аккумуляторами, ионисторы имеют свои недостатки и преимущества.

Недостатки

  1. Массовое внедрение ионисторов тормозит их высокая стоимость.
  2. Зависимость напряжения от уровня зарядки конденсатора.
  3. В момент короткого замыкания возникает риск выгорания электродов в ионисторах большой ёмкости при крайне низком ВС.
  4. Высокий показатель саморазряда суперконденсаторов ёмкостью в несколько фарад.
  5. Небольшая скорость отдачи энергии, в отличие от обычных конденсаторов.

Достоинства

  1. Возможность устанавливать максимально большой ток зарядки и получать разряд той же величины.
  2. Высокая стойкость к деградации. Многочисленные исследования показали, что даже после 100 тыс. циклов заряда-разрядки у ионисторов не наблюдалось ухудшение характеристик.
  3. Оптимальное внутреннее сопротивление не допускает быстрый саморазряд, не приводит к перегреву устройства и его разрушению.
  4. В среднем ионистор может прослужить около 40 тыс. часов при минимальном снижении ёмкости.
  5. Ионистор обладает небольшим весом, в отличие от электролитических конденсаторов аналогичной ёмкости.
  6. Ионистор отлично функционирует и в мороз, и в жаркое время года.
  7. Достаточная механическая прочность позволяет устройству переносить значительные нагрузки.

Материалы изготовления

Электроды традиционно изготавливают из активированного угля. В некоторых случаях используют вспененный металл. Именно эти материалы обладают повышенной пористостью, что необходимо для получения больших площадей поверхности. Это особенность позволяет хранить энергию в больших объёмах.

Плотность энергии

Ионисторы не отличаются повышенной плотностью энергии. У ионистора весом 500 граммов плотность энергии равна 20 кДж/кг. Это почти в 8 раз меньше показателя обычного кислотного аккумулятора. Однако этот параметр суперконденсаторов в несколько десятков раз превышает показатель простых конденсаторов.

Практическое использование ионисторов

Современные модели суперконденсаторов стали использоваться в сферах транспорта и бытовой электроники.

Транспортные средства

С недавнего времени в схему питания электротранспорта всё чаще стали встраивать мощные ионистры.

Тяжёлый и общественный транспорт

На улицах мегаполисов мира стали появляться электробусы. В Москве можно увидеть общественный транспорт, работающий на энергии бортовых ионисторов. Отечественные электрические автобусы вышли на городские маршруты столицы в мае нынешнего года.

На тяжёлых транспортных средствах суперконденсаторы используются как вспомогательный источник питания.

Автомобили

Ведущие производители электромобилей, такие как Тесла и Ниссан, пользуясь международными выставками, представляют каждый раз новые модели, системы питания которых построены на ионисторах. Российский опытный образец Ё-мобиль использует суперконденсатор как основной источник энергии.

Автомобильный ионистор

Автомобильный ионистор

Дополнительная информация. На автомобилях, работающих на жидком топливе, стали устанавливать ионисторы для обеспечения лёгкого пуска двигателя в условиях Крайнего Севера.

Суперконденсатор с АКБ для облегчённого пуска двигателя

Суперконденсатор с АКБ для облегчённого пуска двигателя

Автогонки

Для пропаганды и рекламы автомобилей, работающих на ионисторах, ведущие автоконцерны постоянно проводят автогонки на таких автомашинах. Зрители на таких мероприятиях проявляют большой интерес к перспективе развития электрического индивидуального транспорта.

Бытовая электроника

Суперконденсаторы стремительно ворвались в сферу бытовой электроники. Их можно заметить в блоках резервного питания ноутбуков, смартфонов. Ионисторы встроены в операционные блоки персональных компьютеров. Они предохраняют от потери данных во время аварийных отключений от постоянного источника электроэнергии.

Ионистор для бесперебойного питания ПК

Ионистор для бесперебойного питания ПК

Перспективы развития

Специалисты предсказывают повсеместную замену традиционного общественного транспорта на гибридные модели. Троллейбусы смогут преодолевать трудные участки дороги без троллей с использованием питания бортовых ионисторов. Учёные во всём мире ведут поиски новых материалов для изготовления сверхмощных суперконденсаторов.

Обозначение ионистора на схеме

Суперконденсаторы на схемах обозначают в виде прямоугольников или треугольников, в поле которых присутствуют две латинские литеры IC.

Обозначение ионистора на схеме

Обозначение ионистора на схеме

Ионистор своими руками

Для изготовления суперконденсатора своими руками потребуются:

  • фольга, можно взять вкладку из пачки сигарет, она будет диэлектриком;
  • таблетка активированного угля, это будет электрод;
  • клей ПВА в качестве электролита.

Изготавливают простейший ионистор своими руками следующим образом:

  1. Мелко размолотый уголь перемешивают с клеем ПВА.
  2. Кистью наносят смесь на один отрезок фольги.
  3. После каждой просушки наносят следующий клеевой слой. Трех слоев вполне достаточно для изготовления ионистора.
  4. На высушенную поверхность накладывают второй отрезок фольги после обработки клеем ПВА.
  5. Приложив с двух сторон модели проводки от батарейки, заряжают самодельный ионистор.
Самодельный ионистор

Самодельный ионистор

Продемонстрировать возможности самоделки можно, услышав сигнал подсоединённого маломощного динамика, или, если применить его для свечения светодиода.

Частота, с которой создаются новые модели суперконденсаторов, настолько большая, что порой трудно запоминать новые названия. Специалисты ожидают скорого появления высоковольтных иониксов, которые совершат технологическую революцию во всех сферах деятельности человека.

Видео

amperof.ru

Cамодельный ионистор — суперконденсатор делаем своими руками.

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты. 

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большу

folegion.livejournal.com

Ионистор.Устройство и применение.Работа. Авто-пусковое устройство

В прошлом веке американский химик Райтмаер получил патент на устройство, сохраняющее электрическую энергию с двойным электрическим слоем. Сегодня такое устройство называется ионистор. В разных источниках они могут иметь различные названия: суперконденсаторы, ультраконденсаторы. По размерам и внешнему виду они похожи на электролитические конденсаторы, с отличием, заключающимся в большой емкости.

В зарубежных странах они имеют короткое обозначение – EDLC, что в переводе с английского значит: конденсатор, обладающий двойным электрическим слоем. По сути дела ионистор является своеобразным гибридом аккумулятора и конденсатора.

Устройство и принцип действия

Если сравнивать устройство ионистора с конструкцией конденсатора, то разница заключается в отсутствии слоя диэлектрика у ионистора. В качестве обкладок выступают вещества, имеющие носители заряда противоположных знаков.

Емкость любого конденсатора, так же как ионистора зависит от размера обкладок. Поэтому у ионистора обкладки сделаны из активированного угля или вспененного углерода. Таким способом получают значительную площадь модифицированных обкладок. Выводы ионистора разделены сепаратором, помещенным в электролит. Они предназначены для предотвращения возможного короткого замыкания. Состав электролита: щелочи и кислоты в твердом и кристаллическом виде.

Если использовать кристаллический твердый электролит на основе йода, серебра и рубидия, то можно изготовить ионистор, обладающий большой емкостью, низким саморазрядом и способный функционировать при пониженных температурах. Возможно производство аналогичных ультраконденсаторов, на базе электролита из раствора серной кислоты. Такие устройства имеют малое внутреннее сопротивление, но также небольшое рабочее напряжение 1 вольт. В настоящее время ионисторы, содержащие электролиты из кислот и щелочей практически не изготавливают, так как они обладают повышенными токсичными свойствами.

В результате протекания электрохимических реакций незначительное число электронов отрывается от полюсов устройства, обеспечивая им положительный заряд. Находящиеся в электролите отрицательные ионы притягиваются полюсами, имеющими положительный заряд. В результате создается электрический слой.

Заряд в ультраконденсаторе сохраняется на границе углеродного полюса и электролита. Электрический слой, образованный катионами и анионами, имеет очень малую толщину, равную от 1 до 5 нанометров, что позволяет значительно повысить емкость ультраконденсатора.

Классификация
  • Идеальные. Это ионные конденсаторы с идеально поляризуемыми электродами, состоящими из углерода. Такие суперконденсаторы работают не за счет электрохимических реакций, а благодаря переносу ионов между электродами. Электролиты могут состоять из щелочи калия, серной кислоты, а также органических веществ.
  • Гибридные. Это суперконденсаторы с идеально поляризуемым электродом, изготовленным из углерода, и слабо поляризуемым анодом или катодом. В их работе частично используется электрохимическая реакция.
  • Псевдоконденсаторы. Это устройства, накапливающие заряд путем использования обратимых электрохимических реакций на поверхности электродов. Они обладают повышенной удельной емкостью.
Рабочие параметры ионисторов:
  • Емкость.
  • Наибольший ток разряда.
  • Внутреннее сопротивление.
  • Номинальное напряжение.
  • Время разряда.

В инструкции на суперконденсатор обычно указывается величина внутреннего сопротивления при частоте тока 1 килогерц. Чем меньше их внутреннее сопротивление, тем быстрее происходит заряд.

Изображение на схемах

На электрических схемах ионисторы изображаются по типу электролитического конденсатора, и отличить его можно только по величине номинальных параметров.

Если, например, на схеме указана величина емкости 1 Фарада, то сразу ясно, что изображен ионистор, так как таких емких электролитических конденсаторов не бывает. Напряжение ультраконденсатора также может говорить об его отличии от электролитического конденсатора, так как обычно это незначительная величина в несколько вольт (от 1 до 5 В). Ионисторы не способны функционировать при большом напряжении.

Преимущества
  • Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
  • Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
  • Устройства такого вида имеют намного меньшую массу и габаритные размеры.
  • Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
  • Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
  • Широкий интервал эксплуатационной температуры от -40 до +70 градусов.
Недостатки
  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.
Применение

Ионисторы часто встречаются в устройстве цифрового оборудования. Они играют роль запасного источника питания микроконтроллера, микросхемы и т.д. С помощью такого источника при выключенном основном питании аппаратура способна сохранять настройки и обеспечивать питание встроенных часов. Например, в некоторых аудиоплеерах применяется миниатюрный ионистор.

В момент замены батареек или аккумуляторов в плеере могут сбиться настройки частоты радиостанции, часов. Благодаря встроенному ионистору этого не происходит. Он питает электронную схему. Его емкость значительно меньше аккумулятора, но его хватает на несколько суток, чтобы сохранить работу часов и настроек.

Также ультраконденсаторы используются для работы таймеров телевизора, микроволновой печи, сложного медицинского оборудования.

Были случаи опытного использования ионисторов, например, для проектирования электромагнитной пушки, которую называют Гаусс оружием.

В быту ионисторы используются в схемах маломощных светодиодных фонариков. Его зарядка может выполняться от солнечных элементов.

Автомобильное пусковое устройство

Популярным примером использования мощного ионистора можно назвать пусковое устройство для двигателя автомобиля.

Эта схема выполняется на легковых автомобилях любой марки с напряжением сети 12 вольт.

  • 1 – положительный контакт аккумуляторной батареи.
  • 2 – контакт массы (отрицательный полюс).
  • 3 – клемма замка зажигания.
  • В1 – аккумулятор.
  • Кс – замок зажигания.
  • К1 и К1.1 – контактор с ключом управления.
  • С – ионистор.
  • Rс – сопротивление для ограничения зарядного тока ультраконденсатора.
В схеме применяется ионистор со следующими параметрами:
  • Максимальное напряжение 15 вольт.
  • Внутреннее сопротивление 0,0015 Ом.
  • Емкость 216 Фарад.
  • Рабочий ток 2000 ампер.

Такого пускового устройства достаточно, чтобы запустить двигатель мощностью до 150 л. с. ультраконденсатор способен получить полный заряд за пять секунд. Такое устройство можно найти в продаже, но сделать его самостоятельно намного дешевле.

Похожие темы:

electrosam.ru

Суперконденсатор. Их принцип действия. Применение.

   Супер- или ультраконденсаторы, известные также как высокоёмкие конденсаторы, накапливают энергию электростатическим способом, поляризуя раствор электролита. В процессе накопления энергии в суперконденсаторе не задействованы химические реакции, хотя суперконденсатор – электрохимическое устройство. Высокоёмкие или суперконденсаторы могут заряжаться и разряжаться тысячи раз в силу высокой обратимости механизма накопления энергии. Суперконденсатор – электрохимический конденсатор, обладающий способностью накапливать чрезвычайно большое, по отношению к его размеру и в сравнении с традиционным конденсатором, количество энергии. Это свойство суперконденсатора представляет особый интерес для автомобильной промышленности в производстве гибридных транспортных средств, а также в производстве транспорта на аккумуляторной электротяге, где суперконденсатор используется в качестве дополнительного накопителя энергии.

   Виды суперконденсаторов

Свойства суперконденсаторов

   Среди свойств следует отметить:

  • Самую высокую плотность емкости
  • Самую низкую стоимость в расчете на 1 фараду
  • Надежный, длительный срок службы
  • Высокий кпд цикла (95% и выше)
  • Бесперебойную эксплуатацию
  • Экологическую безопасность
  • Широкий диапазон рабочих температур
  • Высокую удельную мощность и достаточно высокую удельную энергию
  • Очень высокую скорость заряда/разряда
  • Большое количество (тысячи) циклов с незначительным ухудшением параметров
  • Хорошую обратимость механизма накопления энергии
  • Сниженную токсичность используемых материалов
  • Низкое эквивалентное последовательное сопротивление (ЭПС)

   Суперконденсаторы, емкость которых обеспечивается их двухслойной структурой, накапливают энергию в поляризованном жидком слое толщиной всего несколько ангстрем, расположенном на границе между раствором электролита с ионной проводимостью и электродом с электронной проводимостью. По мнению специалистов в этой области, например, г-на Калерта (Dr. Kahlert), суперконденсаторами следует считать конденсаторы емкостью минимум 10 фарад. Суперконденсаторы – это преимущественно двухслойные конденсаторы; конденсаторы, изготовленные по другим технологиям, например, плёночные или керамические, суперконденсаторами не считают. Обычно, в суперконденсаторе два активных электрода, разделенные пористым непроводящим материалом, размещены между двумя металлическими токовыми коллекторами. Электролит, водный либо органический, пропитывает пористые электроды и обеспечивает возникновение носителей заряда с последующим его накоплением.

   Суперконденсатор обычно используют для обеспечения импульсной или пиковой мощности в каком-либо устройстве. Суперконденсатор также используется для кратковременного снабжения устройств энергией и для поглощения энергии из области своего применения. Примером применения пиковой мощности являются линии электропередачи, примером кратковременного снабжения энергией – сотовые телефоны/бытовая электроника и радиотехника, а примером поглощения энергии – устройства регенеративного торможения в гибридных/электрических транспортных средствах.

Область применения суперконденсаторов

   Области применения суперконденсаторов можно классифицировать, основываясь на существующем и потенциальном применении. Среди развивающихся областей применения: накопительные устройства для источников возобновляемой энергии, например, солнца, ветра и океанской волны, топливных элементов; транспортные средства, например, гибридные электрические транспортные средства, устройства запуска двигателя обычных транспортных средств, работающих на бензине, локомотивы поездов и транспортные средства, работающие на водородном топливе. Суперконденсаторы также могут использоваться как накопители энергии в жилищном секторе, например, в домах с солнечными фотоэлектрическими системами, где требуются не обычные аккумуляторные батареи, а иные накопительные устройства. В ближайшем будущем многообещающими областями применения могут стать военная техника, авиакосмическая и медицинская промышленность.

   Благодаря высокой удельной емкости и плотности энергии, суперконденсаторы используются как источник кратковременного электропитания в электронных устройствах. Их также очень широко используют в системах бесперебойного электропитания (UPS). Преимуществом является то, что они обеспечивают мгновенную мощность в критических областях применения. Среди развивающихся областей применения суперконденсаторов — кратковременное параллельное питание для стационарных систем бесперебойного электропитания с топливными элементами. В наибольшей степени они пригодны для использования в устройствах запуска двигателя, а также в устройствах демпфирования пиковой нагрузки.

   Среди существующих областей применения — электроэнергетика с критическими нагрузками (энергосистемы общего пользования), больницы, банковские центры, вышки беспроводной связи и коммуникации аэропортов. Суперконденсаторы обеспечивают критическую нагрузку в течение нескольких секунд и даже миллисекунд. Самое широкое применение они нашли на рынке бытовой электроники в виде источника резервного питания запоминающих устройств, микропроцессоров и материнских плат. На рынке потребительской электроники суперконденсаторы во всевозрастающем количестве используются в мобильных телефонах.

Ионисторы, суперконденсаторы, ультраконденсаторы — история создания и развития технологии

   7 июня 1962 года, Роберт Райтмаер, химик американской компании Standard Oil Company (SOHIO), располагавшейся в городе Кливленд, штата Огайо, подал заявку на получение патента, где подробно описывался механизм сохранения электрической энергии в конденсаторе, обладающем «двойным электрическим слоем». Если в обычном конденсаторе алюминиевые обкладки, традиционно, были изолированы слоем диэлектрика, то в предлагаемом изобретателем варианте акцент делался непосредственно на материал обкладок. Электроды должны были иметь различную проводимость: один электрод должен был обладать ионной проводимостью, а другой – электронной. 

   Таким образом, в процессе заряда конденсатора происходило бы разделение электронов и положительных центров в электронном проводнике, и разделение катионов и анионов в ионном проводнике. Электронный проводник предлагалось сделать из пористого углерода, тогда ионным проводником мог бы быть водный раствор серной кислоты. Заряд в таком случае сохранялся бы на границе раздела этих особых проводников (тот самый двойной слой). Разность потенциалов этих первых ионисторов могла достигать значения в 1 вольт, а емкость – единиц фарад, ведь теперь расстояние между обкладками было меньше 5 нанометров.

   В 1971 году лицензия была передана японской компании NEC, занимающейся к тому моменту всеми направлениями электронной коммуникации. Японцам удалось успешно продвинуть технологию на рынок электроники под названием «Суперконденсатор».

   Спустя семь лет, в 1978 году, компания Panasonic, в свою очередь, выпустила «Золотой конденсатор» («Gold Cap»), так же завоевавший успех на этом рынке. Успех был обеспечен удобством применения ионисторов для питания энергозависимой памяти SRAM. Однако эти ионисторы обладали высоким внутренним сопротивлением, которое ограничивало возможность быстрого извлечения энергии, а значит, сильно сужала диапазон сфер применения.

   Gold Cap от Panasonic

   В 1982 году специалисты американского Научно-исследовательского Института Pinnacle (PRI), расположенного в городе Лос-Гатос, штат Калифорния, работая над улучшением материалов электродов и электролитов, разработали ионисторы с чрезвычайно высокой плотностью энергии, которые появились на рынке под названием «PRI Ultracapacitor».

   Спустя 10 лет, в 1992 году, компания Maxwell Laboratories (позже сменившая название на Maxwell Technologies, г. Сан-Диего, штат Калифорния, США) начала развивать технологию PRI под названием «Boost Caps». Целью теперь стало создание конденсаторов высокой емкости с низким сопротивлением, чтобы получить возможность питания мощного электрооборудования.

   В 1999 году тайванская компания UltraCap Technologies Corp. также начала сотрудничество с PRI, которые разработали к тому времени электродную керамику чрезвычайно большой площади, и к 2001 году на рынок вышел первый высокоемкостной ультраконденсатор производства Тайваня. С этого момента началось активное развитие технологии во многих НИИ мира.

Применение ионисторов

   Ионисторы получили заслуженное применение в качестве источников резервного питания во множестве устройств. Начиная с питания таймеров телевизоров и СВЧ-печей, и заканчивая сложными медицинскими приборами. На платах памяти, как правило, установлены ионисторы. При смене батареи в видео или фотокамере, ионистор поддерживает питание схем памяти, отвечающих за настройки, это же касается музыкальных центров, компьютеров и другой подобной техники. Телефоны, электронные счетчики электроэнергии, охранные системы сигнализации, электронные измерительные приборы и приборы медицинского применения – везде нашли применение суперконденсаторы.

   Малые ионисторы на основе органических электролитов обладают максимальным напряжением около 2,5 вольт. Для получения более высоких допустимых напряжений, ионисторы соединяют в батареи, обязательно применяя шунтирующие резисторы. 

   К преимуществам ионисторов относится:

  • высокая скорость заряда-разряда
  • устойчивость к сотням тысяч циклов перезаряда по сравнению с аккумуляторами
  • малый вес по сравнению с электролитическими конденсаторами
  • низкий уровень токсичности
  • допустимость разряда до нуля

Разработки и перспективы

    При разработке ионисторов все более и более повышается их удельная емкость, и по всей вероятности, рано или поздно это приведет к полной замене аккумуляторов на суперконденсаторы во многих технических сферах. Последние исследования группы ученых Калифорнийского университета в Риверсайде показали, что новый тип ионисторов на основе пористой структуры, где частицы оксида рутения нанесены на графен, превосходят лучшие аналоги почти в два раза. Исследователи обнаружили, что поры «графеновой пены» обладают наноразмерами, подходящими для удержания частиц оксидов переходных металлов. Суперконденсаторы на основе оксида рутения теперь являются самым перспективным из вариантов. Безопасно работающие на водном электролите, они обеспечивают увеличение запасаемой энергии и повышают допустимую силу тока вдвое по сравнению с самыми лучшими из доступных на рынке ионисторов. Они запасают больше энергии на каждый кубический сантиметр своего объёма, поэтому ими целесообразно будет заменить аккумуляторы. Прежде всего, речь идёт о носимой и имплантируемой электронике, но в перспективе новинка может обосноваться и на персональном электротранспорте.

   На частицы никеля послойно осаживают графен, выступающий опорой для углеродных нанотрубок, которые вместе с графеном формируют пористую углеродную структуру. В полученные нанопоры последней из водного раствора проникают частицы оксида рутения диаметром менее 5 нм. Удельная ёмкость ионистора на основе полученной структуры составляет 503 фарад на грамм, что соответствует удельной мощности 128 кВт/кг.

   Возможность масштабирования этой структуры уже положила начало и создала основу на пути создания идеального средства хранения энергии. Ионисторы на основе «графеновой пены» прошли успешно первые тесты, где показали способность к перезаряду более восьми тысяч раз без ухудшения характеристик.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *