+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. На горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

Рис. 1. Графическое изображение постоянного и переменного тока

На рис. 1 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

 Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 1 графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА.

Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС. На рис. 2 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Рис. 2. Построение графика переменной ЭДС

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными. Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т (рис. 3) и измеряется в секундах.

Все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения. Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em
и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Как видно из графика, кроме амплитудного значения, существует бесчисленное множество промежуточных значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f

. Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Единицей измерения частоты переменного тока является 1 Герц.

Величина действующего значения переменного синусоидального тока I = 0,707 Im

Графически переменный ток изображают в виде волнистой линии

постоянным. Его можно изобразить графически, как показано на рис. 10. Точка перекрещения осей обозначена нулем 0 и является исходной для графического изображения времени и величины тока в цепи.

О чем может рассказать этот график? Сначала (отрезок времени Оа) тока в цепи нет (ток равен нулю), так как к источнику тока не был под-

Рис. 10. Графическое изображение постоянного тока.

ключей внешний участок цепи. Ток появился, когда цепь замкнули (точка а). Он быстро возрос до некоторого значения (точка б) и не изменялся до тех пор, пока цепь была замкнута (точка в). Когда цепь разомкнули, ток быстро уменьшился и исчез совсем (точка г). Если электрическую цепь снова замкнуть, в ней опять появится ток. Так примерно выглядит график тока, текущего через лампу карманного электрического фонаря, когда его включают на короткие промежутки времени.

На рис. 9 через соединительные проводники и нить накала лампы электроны движутся слева направо — от минуса к плюсу. Но если полюсы элемента поменять местами, электроны во внешнем участке цепи потекут справа налево, так как теперь минус окажется на правом участке цепи, а плюс — на левом. Изменится только направление движения электронов, но ток и в этом случае будет постоянным.

А если полюсы гальванического элемента менять местами очень быстро и к тому же ритмично? В этом случае электроны во внешнем участке цепи тоже будут попеременно изменять направление своего движения. Сначала они потекут в одном направлении, затем, когда полюсы поменяют местами,-в другом, обратном предыдущему, потом вновь в первом, опять в обратном и т. д. Во внешней цепи будет течь уже не постоянный, а как бы переменный ток.

Запомни: б сетях электрического освещения течет переменный ток, а не постоянный, как в электрическом карманном фонаре. Его вырабатывают машины, называемые генераторами переменного тока. Знаки электрических зарядов на полюсах генератора непрерывно меняются, но не скачком, как в нашем примере, а плавно. Заряд того полюса генератора, который в некоторый момент времени был положительным, начинает убывать и через долю секунды становится отрицательным; отрицательный заряд сначала возрастает, потом .начинает убывать, пока снова не окажется положительным, и т. д. Одновременно меняется знак заряда и другого полюса. При этом напряжение и ток в электрической цепи также периодически изменяются.

Графически переменный ток изображают в виде волнистой линии — синусоиды, показанной на рис. 11. Здесь вверх по вертикальной оси отложено одно направление тока, условно названное мною «туда», а вниз — другое направление тока, обратное первому: «обратно».

 

 

 

где используется каждый из них, параметры источника, частоты и знаки


Несмотря на то, что электрический ток является незаменимой частью современной жизни, многие пользователи не знают о нем даже основополагающих сведений. В данной статье, опустив курс базовой физики, рассмотрим, чем отличается постоянный ток от переменного, а также какое он находит применение в современных бытовых и промышленных условиях.

Различие типов тока

Что такое ток, рассматривать здесь не будем, а сразу перейдем к основной теме статьи. Переменный ток отличается от постоянного тем, что он непрерывно изменяется по направлению движения и своей величине.

Изменения эти осуществляются периодами через равные временные отрезки. Для создания подобного тока применяют специальные источники или генераторы, выдающие переменную ЭДС (электродвижущую силу), которая регулярно изменяется.

Основополагающая схема упомянутого устройства для генерации переменного тока довольно проста. Это рамка в виде прямоугольника, изготавливаемая из медных проволок, которая закрепляется на ось, а затем при помощи ременной передачи вращается в поле магнита. Кончики этой рамки припаиваются к медным контактным колечкам, скользящим по непосредственно контактным пластинкам, вращаясь синхронно с рамкой.

При условии равномерного ритма вращения начинает индуцироваться ЭДС, которая периодически изменяется. Измерить ЭДС, возникшую в рамке, возможно специальным прибором. Благодаря появлению электромагнитной индукции реально определить переменную ЭДС и вместе с ней переменный ток.

В графическом исполнении эти величины характерно изображаются в виде волнообразной синусоиды. Понятие синусоидального тока зачастую относится к переменному току, поскольку подобный характер изменения тока является наиболее распространенным.

Переменный ток – алгебраическая величина, а его значение в конкретный временной момент именуется мгновенным значением. Знак непосредственно самого переменного тока определяется по направлению, в котором в данный временной момент проходит ток. Следовательно, знак бывает положительным и отрицательным.

Чем отличается постоянный ток от переменного

Характеристики тока

Для сравнительной оценки всевозможных переменных токов применяют критерии, именуемые параметрами переменного тока, среди которых:

  • период;
  • амплитуда;
  • частота;
  • круговая частота.

Период – отрезок времен, когда производится законченный цикл изменения тока. Амплитудой называют максимальное значение. Частотой переменного тока назвали количество законченных периодов за 1 сек.

Перечисленные выше параметры дают возможность отличать различные виды переменных токов, напряжений и ЭДС.

При расчете сопротивления разных цепей воздействию переменного тока допустимо подключить еще один характерный параметр, именуемый угловой либо круговой частотой. Этот параметр определяется скоростью вращения вышеупомянутой рамки под определенным углом в одну секунду.

[stop]Важно! Следует понимать, чем отличается ток от напряжения. Принципиальная разница известна: ток является количеством энергии, а напряжением называется мера потенциальной энергии.[/stop]

Переменный ток получил свое название, потому что направление движения у электронов безостановочно изменяется, как и заряд. У него встречается различная частота и электрическое напряжение.

Это и является отличительной чертой от постоянного тока, где направление движения электронов неизменно. Если сопротивление, напряжение и сила тока неизменны, а ток течет только в одну сторону, то такой ток является постоянным.

Для прохождения постоянного тока в металлах потребуется, чтобы источник постоянного напряжения оказался замкнут на себя при помощи проводника, которым и является металл. В отдельных ситуациях для выработки постоянного тока применяют химический источник энергии, который называется гальваническим элементом.

Это интересно! Специальная теория относительности Эйнштейна: кратко и простыми словами

Передача тока

Источники переменного тока – обычные розетки. Они располагаются на объектах разнообразного назначения и в жилых помещениях. К ним подключаются различные электрические приборы, которые получают необходимое для их работы напряжение.

Использование переменного тока в электрических сетях является экономически обоснованным, поскольку величина его напряжения может преобразовываться к уровню необходимых значений. Совершается это при помощи трансформаторного оборудования с допускаемыми незначительными потерями. Транспортировка от источников электроснабжения к конечным потребителям является более дешевой и простой.

Передача тока к потребителям начинается непосредственно с электростанции, где используется разновидность чрезвычайно мощных электрических генераторов. Из них получают электрический ток, который по кабелям направляется к трансформаторным подстанциям. Зачастую подстанции располагают неподалеку от промышленных либо жилых объектов электрического потребления. Полученный подстанциями ток преобразуется в трехфазное переменное напряжение.

В батарейках и аккумуляторах содержится постоянный ток, который отличается устойчивостью свойств, т.е. они не изменяются со течением времени. Он используется в любых современных электрических изделиях, а еще в автомобилях.

Это интересно! Что такое закон всемирного тяготения: формула великого открытия

Преобразование тока

Рассмотрим отдельно процесс преобразования переменного тока в постоянный. Данный процесс производится при помощи специализированных выпрямителей и включает три шага:

  1. Первым шагом подключается четырехдиодный мост заданной мощности. Это в свою очередь позволяет задать движение однонаправленного типа у заряженных частиц. Кроме того, он понижает верхние значения у синусоид, свойственных переменному току.
  2. Далее подключается фильтр для сглаживания либо специализированный конденсатор. Это осуществляется с диодного моста на выход. Сам же фильтр способствует исправлению впадин между пиковыми значениями синусоид. А подключение конденсатора значительно снижает пульсации и приводит их к минимальным значениям.
  3. Затем производится подключение устройств, стабилизирующих напряжение, с целью снижения пульсаций.

Данный процесс, в случае необходимости, способен производиться в двух направлениях, конвертируя постоянный и переменный ток.

Еще одной отличительной чертой является распространение электромагнитных волн по отношению к пространству. Доказано, что постоянный тип тока не позволяет электромагнитным волнам распространяться в пространстве, а переменный ток может вызывать их распространение. Кроме того, при транспортировке переменного тока по проводам индукционные потери значительно меньше, нежели при передаче постоянного тока.

Это интересно! Когда появилось и кто открыл электричество в России

Обоснование выбора тока

Разнообразие токов и отсутствие единого стандарта обуславливается не только потребностью в различных характеристиках в каждой индивидуальной ситуации. В решении большинства вопросов перевес оказывается в пользу переменного тока. Подобная разница между видами токов обуславливается следующими аспектами:

  • Возможность передачи переменного тока на значительные расстояния. Возможность преобразования в разнородных электрических цепях с неоднозначным уровнем потребления.
  • Поддержание постоянного напряжения для переменного тока оказывается в два раза дешевле, нежели для постоянного.
  • Процесс преобразования электрической энергии непосредственно в механическую силу осуществляется со значительно меньшими затратами в механизмах и двигателях переменного тока.

[warning]Внимание! В случае потребности преобразования переменного тока в постоянный используют трансформаторы напряжения, а еще блоки питания. В обратном же процессе для преобразования постоянного тока непосредственно в переменный используют специальные инверторы.[/warning]

Постоянный и переменный ток

Разница между постоянным и переменным током

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное — в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).

Горизонтальная ось отображает время, вертикальная – напряжение

Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.

Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)

Начальное положение рамки

Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле:  . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.

Устройство трехфазного генератора

Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.

Графическое изображение сгенерированного трехфазного электротока

Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

Начальные сведения о радиовещательной станции и работе приемного устройства

Работу передающих, приемных, усилительных и других радиотехнических устройств принято иллюстрировать графиками изменений различных параметров электрических цепей этих устройств.

В связи с этим кружковцев надо научить «читать» и строить такие графики, и в первую очередь графики переменных токов различных частот, лежащих в основе передачи информации по радио. Вначале желательно показать, как выглядит переменное напряжение на экране осциллографа, назвать его параметры: период, амплитуду, частоту. Затем, подключив к осциллографу микрофон, показать, как изменяется частота электрических колебаний при изменении тона звука перед микрофоном. Можно даже попросить кого-то из кружковцев спеть перед микрофоном, чтобы продемонстрировать осциллограмму всего спектра звуковых колебаний, преобразованных микрофоном в электрические колебания звуковой частоты. Учащимся следует дать некоторые сведения о переменном токе. Так, они должны знать, что графически простейший переменный ток и напряжение изображают в виде синусоиды, идущей вдоль горизонтальной оси времени t (рис. 10). Положительные и отрицательные полуволны символизируют движение носителей тока (электронов) в противоположных направлениях. Движение электронов в проводнике в одном направлении, а затем в другом называют колебанием тока, а время, в течение которого происходит одно полное колебание, — периодом.

Половину периода называют полупериодом, наибольшее абсолютное значение тока во время каждого полупериода — амплитудой, а число периодов в секунду — частотой переменного тока.

За единицу частоты переменного тока принят герц (сокращенно чпишут Гц), соответствующий одному колебанию в секунду. Частота тока в электроосветительных сетях равна 50 Гц. При таком токе электроны в проводах в течение одной секунды движутся 50 раз в одном направлении и столько же раз в обратном. Если ток этой частоты, напряжение которого трансформатором понижено до нескольких вольт, пропускать через катушки электромагнитных систем излучателей головных телефонов, их мембраны будут колебаться с такой же частотой — телефоны преобразуют переменный ток в колебания воздуха, воспринимаемые в виде звука низкой тональности. С помощью выпрямительных устройств переменный ток электроосветительной сети,можно преобразовать в постоянный ток для питания радиоаппаратуры, измерительных приборов.

Герц — сравнительно мелкая единица частоты. Более крупные единицы частоты — килогерц (кГц), равный 1000 Гц, и мегагерц (МГц), равный 1000 кГц, или 1 000 000 Гц. В радиотехнике используют переменные токи частотой от нескольких герц до тысяч мегагерц и более. Например, антенны передатчиков радиовещательных станций питаются токами частотой примерно от 150 кГц до 50…60 МГц.

Всю огромнейшую полосу частот переменных токов, используемых в радиосвязи, условно подразделяют на несколько участков — поддиапазонов. Токи частотой от 20 Гц до 20 кГц, соответствующие колебаниям воздуха, воспринимаемым нашим органом слуха как звуки разной тональности, называют токами звуковой частоты, а переменные токи частотой от 20 до 100 кГц — токами ультразвуковой частоты.

Токи частотой от 100 кГц до 30 МГц относят к токам высокой частоты, а токи частотой свыше 30 МГц – к токам ультравысокой и сверхвысокой частоты. Затем следует подробно остановиться на передаче звуковой информации по радио.

В упрощенном виде взаимодействие аппаратуры передающей радиовещательной станции можно представить в.виде структурной схемы (рис. 11, а). Генератор колебаний радиочастоты (РЧ), обозначенный на схеме прямоугольником, является «сердцем» всего комплекса передающей аппаратуры и приборов радиостанций. Он вырабатывает (генерирует) ток высокой, но строго постоянной для данной радиостанции частоты. Эту стабильную частоту f обычно называют несущей, так как она определяет длину волны радиостанции.

От генератора РЧ переменный ток поступает к усилителю мощности — треугольник на структурной схеме. После усиления до необходимой мощности колебания радиочастоты поступают в передающую антенну W и возбуждают вокруг нее электромагнитные колебания точно такой же частоты, распространяющиеся в окружающем пространстве со скоростью света. Чтобы узнать длину излучаемой радиоволны X (в м) этой радиостанции, надо скорость распространения электромагнитной энергии, выраженную в метрах в секунду, разделить на ее несущую частоту f в герцах. По известной же длине волны радиостанции нетрудно установить значение ее несущей частоты.

В студии радиовещательной станции, откуда ведется передача, установлен микрофон В, преобразующий речь диктора в электрические колебания звуковой частоты, которые усиливаются до необходимого напряжения усилителем звуковой частоты (34). Ко входу усилителя вместо микрофона может быть подключен звукосниматель электропроигрывателя или магнитофон. От студийного усилителя 34 колебания звуковой частоты подают на один из каскадов передатчика, называемый модулятором, для воздействия на амплитуду тока, поступающего к усилителю мощности от генератора РЧ. В результате мощные колебания несущей частоты оказываются амплитудно-модулированньши и антенна передатчика излучает радиоволны — ампди-тудно-модулнрованные электромагнитные колебания радиочастоты. Электрические процессы, происходящие в аппаратуре передатчика радиовещательной станции, можно проиллюстрировать графиками, приведенными на рис. 11, б.

Излученные радиовещательной станцией радиоволны, встречая на своем пути проводники радиоприемных антенн, возбуждают в них точно такие же амплитудно-модулированные колебания радиочастоты, как те, что поступают в антенну радиовещательной станции, только несравненно меньшей мощности. В радиовещательном приемнике они преобразуются в электрические колебания звуковой частоты, а затем в звук. В простейшем детекторном приемнике, собранном по схеме на рис. 9, первое преобразование осуществляется детектором, функцию которого выполняет диод VI, а второе — головными телефонами В1. Но, чтобы принимать сигналы определенной радиостанции, приемник надо настроить точно на ее несущую частоту. В рассматриваемом детекторном приемнике это достигается подбором индуктивности катушки L1 образующей вместе с электрической емкостью, сосредоточенной между антенной и заземлением (на рис. 9 эту емкость символизирует конденсатор Са, обозначенный штриховыми линиями), селективный (избирательный) элемент приемника — колебательный контур. Чем больше емкость Са и чем большее число секций катушки индуктивности включено в колебательный контур, тем меньше будет его собственная частота, тем, следовательно, на более длинноволновую радиостанцию может быть настроен приемник.

Помочь кружковцам разобраться в сущности физических процессов, происходящих в детекторном приемнике, помогут графики, приведенные на рис. 12. Пока студийный микрофон радиостанции не включен, в колебательном контуре приемника, настроенном на несущую частоту этой станции, под действием радиоволн возбуждаются незатухающие колебания радиочастоты постоянной амплитуды, а во время передачи — колебания такой же частоты, но изменяющиеся по амплитуде со звуковой частотой (рис. 12, а).

С контура приемника амплитудно-модулированные колебания радиочастоты поступают на детектор, функцию которого выполняет диод. Этот полупроводниковый прибор обладает свойством односторонней электропроводности: хорошо пропускает через себя ток одного направления и почти не пропускает ток обратного направления. При пропускании через диод переменного тока он как бы «срезает» полупериоды обратного направления. В результате в цепи диодного детектора приемника протекает ток одного направления, но пульсирующий с частотой принятого сигнала, (рис. 12, б). Низкочастотная составляющая этого тока (огибающая импульсов радиочастоты), проходя через электромагнитные системы головных телефонов, преобразуется ими в звук (рис- 12, в). Высокочастотной же составляющей тока телефоны оказывают большое сопротивление, и она идет параллельным путем через конденсатор (на рис. 9 — С1).

В.Г. Борисов. Кружок радиотехнического конструирования

ПЕРЕМЕННЫЙ ТОК — прикладное промышленное электричество

Переменный ток

Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или обладающего напряжением постоянной полярности. Постоянный ток — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.

Переменный ток против постоянного

Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени. Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):

Рисунок 4.1 Постоянный и переменный ток

В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током. В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток для получения желаемого тепла (рассеивание мощности).Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью. Чтобы объяснить подробности того, почему это так, необходимы некоторые базовые знания о AC.

Генераторы переменного тока

Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, то в соответствии с законом электромагнитной индукции Фарадея на катушках с проволокой будет создаваться переменное напряжение.Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока :

Рисунок 4.2 Работа генератора переменного тока

Обратите внимание, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита. При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.

Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока. В генераторе постоянного тока катушка с проволокой установлена ​​на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу. Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:

Рисунок 4.3 Работа генератора постоянного тока

Генератор, показанный выше, будет производить два импульса напряжения на один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками. Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.

Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью.Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше. Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.

Двигатели переменного тока

Преимущества переменного тока по сравнению с постоянным током с точки зрения конструкции генератора также отражены в электродвигателях. В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают.Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки провода для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

Трансформаторы

Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока обычно проще, чем генераторы постоянного тока и двигатели постоянного тока.Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть. Существует эффект электромагнетизма, известный как взаимная индукция , при котором две или более катушки провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой. Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке.При использовании в таком виде это устройство известно как трансформатор :

. Рисунок 4.4 Трансформатор «преобразует» переменное напряжение и ток.

Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обесточенной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки. Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки умножается на соотношение первичных и вторичных витков.Эта взаимосвязь имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:

Рисунок 4.5 Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.

Если передаточное число обмоток изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «повышает» напряжение от уровня источника до более высокого уровня на нагрузке:

Рисунок 4.6 Редукторная передача увеличивает крутящий момент и снижает скорость. Повышающий трансформатор увеличивает напряжение и уменьшает ток.

Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже. При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток для промышленность, бизнес или потребительское использование.

Рисунок 4.7 Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.

Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистему для чего угодно, кроме использования на близком расстоянии (не более нескольких миль).

Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током. Поскольку явление взаимной индуктивности зависит от изменяющихся магнитных полей, а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.Конечно, постоянный ток может прерываться (пульсировать) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но Импульсный постоянный ток не так уж отличается от переменного тока. Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.

  • DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
  • AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление, соответственно.
  • Электромеханические генераторы переменного тока
  • , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
  • Конструкция двигателей переменного и постоянного тока
  • очень точно соответствует принципам конструкции соответствующих генераторов.
  • Трансформатор — это пара взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой.Часто количество витков в каждой катушке устанавливается так, чтобы создать увеличение или уменьшение напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
  • Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
  • Вторичный ток = первичный ток (первичные витки / вторичные витки)

Измерения величины переменного тока

На данный момент мы знаем, что переменное напряжение меняется по полярности, а переменный ток — по направлению.Мы также знаем, что переменный ток может изменяться множеством различных способов, и, отслеживая изменение во времени, мы можем построить его в виде «формы волны». Мы можем измерить скорость чередования, измерив время, необходимое для развития волны, прежде чем она повторится («период»), и выразить это как количество циклов в единицу времени или «частоту». В музыке частота такая же, как pitch , что является важным свойством, отличающим одну ноту от другой.

Однако мы сталкиваемся с проблемой измерения, если пытаемся выразить, насколько велика или мала величина переменного тока.С постоянным током, где величины напряжения и тока обычно стабильны, у нас нет проблем с выражением того, сколько напряжения или тока у нас есть в любой части цепи. Но как дать единичное измерение величины чему-то, что постоянно меняется?

Способы выражения величины сигнала переменного тока

Один из способов выразить интенсивность или величину (также называемую амплитудой ) величины переменного тока — это измерить высоту его пика на графике формы волны.Это известно как пик или пик значение формы сигнала переменного тока:

Рисунок 4.8 Пиковое напряжение формы сигнала.

Другой способ — измерить общую высоту между противоположными вершинами. Это известно как размах сигнала (P-P) сигнала переменного тока:

Рис. 4.9. Размах напряжения сигнала.

К сожалению, любое из этих выражений амплитуды сигнала может вводить в заблуждение при сравнении двух разных типов волн. Например, прямоугольная волна с пиком 10 вольт, очевидно, представляет собой большее количество напряжения в течение большего времени, чем треугольная волна с пиком 10 вольт.Влияние этих двух напряжений переменного тока, питающих нагрузку, будет совершенно различным:

Рисунок 4.10 Прямоугольная волна дает больший эффект нагрева, чем такая же треугольная волна пикового напряжения.

Один из способов выразить амплитуду волн различной формы более эквивалентным способом — это математически усреднить значения всех точек на графике формы волны до единого совокупного числа. Это измерение амплитуды известно просто как среднее значение сигнала.Если мы усредним все точки на осциллограмме алгебраически (то есть с учетом их знака , положительного или отрицательного), среднее значение для большинства сигналов технически равно нулю, потому что все положительные точки нейтрализуют все отрицательные точки по всей длине волны. полный цикл:

Рисунок 4.11 Среднее значение синусоиды равно нулю.

Это, конечно, будет верно для любой формы сигнала, имеющей участки равной площади выше и ниже «нулевой» линии графика. Однако, как практическая мера совокупного значения формы сигнала, «среднее» обычно определяется как математическое среднее абсолютных значений всех точек за цикл.Другими словами, мы вычисляем практическое среднее значение сигнала, рассматривая все точки на волне как положительные величины, как если бы форма сигнала выглядела так:

Рис. 4.12 Форма волны, измеренная измерителем «среднего отклика» переменного тока.

Нечувствительные к полярности движения механических счетчиков (счетчики, рассчитанные на одинаковую реакцию на положительные и отрицательные полупериоды переменного напряжения или тока) регистрируются пропорционально (практическому) среднему значению формы сигнала, потому что инерция стрелки по отношению к напряжению пружина естественным образом усредняет силу, создаваемую изменяющимися значениями напряжения / тока с течением времени.И наоборот, чувствительные к полярности движения измерителя бесполезно вибрируют при воздействии переменного напряжения или тока, их стрелки быстро колеблются около нулевой отметки, указывая истинное (алгебраическое) среднее значение нуля для симметричной формы волны. Когда в этом тексте упоминается «среднее» значение формы сигнала, предполагается, что подразумевается «практическое» определение среднего значения, если не указано иное.

Другой метод получения совокупного значения амплитуды сигнала основан на способности сигнала выполнять полезную работу при приложении к сопротивлению нагрузки.К сожалению, измерение переменного тока, основанное на работе, выполняемой осциллограммой, не совпадает со «средним» значением этой формы сигнала, потому что мощность , рассеиваемая данной нагрузкой (работа, выполняемая в единицу времени), не прямо пропорциональна величине ни того, ни другого. приложенное к нему напряжение или ток. Напротив, мощность пропорциональна квадрату напряжения или тока, приложенного к сопротивлению (P = E 2 / R и P = I 2 R). Хотя математика такого измерения амплитуды может быть непростой, польза от этого есть.

Рассмотрим ленточную пилу и лобзик, две части современного деревообрабатывающего оборудования. Пилы обоих типов режут дерево с помощью тонкого зубчатого металлического полотна с моторным приводом. Но в то время как ленточная пила использует непрерывное движение полотна для резки, лобзик использует возвратно-поступательное движение. Сравнение переменного тока (AC) с постоянным током (DC) можно сравнить со сравнением этих двух типов пил:

Рисунок 4.13. Аналогия постоянного и переменного тока ленточной пилой.

Проблема попытки описать изменяющиеся величины переменного напряжения или тока в одном совокупном измерении также присутствует в этой аналогии с пилой: как бы мы могли выразить скорость полотна лобзика? Полотно ленточной пилы движется с постоянной скоростью, подобно тому, как проталкивается постоянное напряжение или постоянный ток с постоянной величиной.С другой стороны, полотно лобзика движется вперед и назад, скорость его вращения постоянно меняется. Более того, возвратно-поступательное движение любых двух лобзиков может быть неодинаковым, в зависимости от механической конструкции пил. Один лобзик может двигать лезвие синусоидальным движением, а другой — треугольником. Оценка лобзика на основе его пиковой скорости вращения полотна может ввести в заблуждение при сравнении одного лобзика с другим (или лобзика с ленточной пилой!). Несмотря на то, что эти разные пилы перемещают свои полотна по-разному, они равны в одном отношении: все они режут древесину, и количественное сравнение этой общей функции может служить общей основой для оценки скорости полотна.

Представьте себе лобзик и ленточную пилу бок о бок, оснащенные одинаковыми лезвиями (одинаковым шагом зубьев, углом и т. Д.), Одинаково способными резать одинаковую толщину одного и того же вида древесины с одинаковой скоростью. Можно сказать, что эти две пилы были эквивалентны или равны по своей режущей способности. Можно ли использовать это сравнение для определения «эквивалентной скорости полотна ленточной пилы» возвратно-поступательному движению полотна лобзика; связать эффективность лесозаготовки одного с другим? Это общая идея, используемая для присвоения измерения «эквивалента постоянного тока» любому переменному напряжению или току: независимо от величины постоянного напряжения или тока, будет происходить такое же количество рассеивания тепловой энергии через равное сопротивление:

Рисунок 4.14 Среднеквадратичное напряжение вызывает тот же эффект нагрева, что и такое же напряжение постоянного тока.

Как среднеквадратичное значение (СКЗ) соотносится с переменным током?

В двух приведенных выше схемах у нас одинаковое сопротивление нагрузки (2 Ом), рассеивающее одинаковую мощность в виде тепла (50 Вт), одна питается от переменного тока, а другая от постоянного тока. Поскольку изображенный выше источник переменного напряжения эквивалентен (с точки зрения мощности, подаваемой на нагрузку) 10-вольтовой батарее постоянного тока, мы бы назвали это «10-вольтовым» источником переменного тока. Более конкретно, мы бы обозначили его значение напряжения как 10 вольт RMS .Квалификатор «RMS» означает Среднеквадратическое значение , алгоритм, используемый для получения значения эквивалента постоянного тока из точек на графике (по сути, процедура состоит из возведения в квадрат всех положительных и отрицательных точек на графике формы сигнала, усреднения этих квадратов значений. , а затем извлечение квадратного корня из этого среднего, чтобы получить окончательный ответ). Иногда вместо «среднеквадратичного значения» используются альтернативные термины эквивалент или эквивалент постоянного тока , но количество и принцип одинаковы.

Измерение амплитуды

RMS — лучший способ связать величины переменного тока с величинами постоянного тока или другими величинами переменного тока с различной формой волны при измерении электрической мощности. По другим соображениям лучше всего использовать измерения от пика до пика. Например, при определении правильного размера провода (допустимой нагрузки) для передачи электроэнергии от источника к нагрузке лучше всего использовать измерение среднеквадратичного тока, потому что основной проблемой, связанной с током, является перегрев провода, который является функцией рассеивание мощности, вызванное током через сопротивление провода.Однако при оценке изоляторов для работы в высоковольтных системах переменного тока измерения пикового напряжения являются наиболее подходящими, поскольку здесь основной проблемой является «пробой» изолятора, вызванный кратковременными скачками напряжения независимо от времени.

Инструменты, используемые для измерения амплитуды сигнала

Измерения пиков и размаха лучше всего выполнять с помощью осциллографа, который может фиксировать пики формы сигнала с высокой степенью точности благодаря быстрому срабатыванию электронно-лучевой трубки в ответ на изменения напряжения.Для измерений RMS будут работать аналоговые измерительные приборы (D’Arsonval, Weston, железная лопасть, электродинамометр), если они были откалиброваны в значениях RMS. Поскольку механическая инерция и демпфирующие эффекты движения электромеханического измерителя делают отклонение стрелки естественным образом пропорциональным среднему значению переменного тока, а не истинному среднеквадратичному значению, аналоговые измерители должны быть специально откалиброваны (или неправильно откалиброваны, в зависимости от как вы на это смотрите), чтобы указать напряжение или ток в единицах RMS.Точность этой калибровки зависит от предполагаемой формы волны, обычно синусоидальной волны.

Электронные счетчики, специально разработанные для измерения среднеквадратичных значений, лучше всего подходят для этой задачи. Некоторые производители инструментов разработали хитроумные методы определения среднеквадратичного значения любой формы волны. Один из таких производителей производит измерители True-RMS с крошечным резистивным нагревательным элементом, питаемым напряжением, пропорциональным измеряемому. Эффект нагрева этого элемента сопротивления измеряется термически, чтобы получить истинное среднеквадратичное значение без каких-либо математических вычислений, только законы физики в действии в соответствии с определением среднеквадратичного значения.Точность этого типа измерения RMS не зависит от формы волны.

Взаимосвязь пика, размаха, среднего и среднеквадратичного значения

Для «чистых» сигналов существуют простые коэффициенты преобразования для приравнивания значений пикового, разностного, среднего (практического, а не алгебраического) и среднеквадратичного значений друг к другу:

Рисунок 4.15 Коэффициенты преобразования для распространенных сигналов.

В дополнение к измерениям RMS, среднего, пика (пика) и размаха сигнала переменного тока существуют соотношения, выражающие пропорциональность между некоторыми из этих основных измерений.Пик-фактор сигнала переменного тока, например, представляет собой отношение его пикового (пикового) значения к его среднеквадратичному значению. Форм-фактор сигнала переменного тока — это отношение его среднеквадратичного значения к его среднему значению. Сигналы прямоугольной формы всегда имеют пик и коэффициент формы, равные 1, поскольку пик такой же, как среднеквадратичное и среднее значения. Синусоидальные сигналы имеют среднеквадратичное значение 0,707 (величина, обратная квадратному корню из 2) и форм-фактор 1,11 (0,707 / 0,636). Сигналы треугольной и пилообразной формы имеют среднеквадратичное значение 0.577 (величина, обратная квадратному корню из 3) и форм-фактор 1,15 (0,577 / 0,5).

Имейте в виду, что константы преобразования, показанные здесь для пиковых, среднеквадратичных и средних амплитуд синусоидальных, прямоугольных и треугольных волн, справедливы только для чистых форм этих волн. Среднеквадратичные и средние значения искаженных форм волн не связаны одним и тем же соотношением:

Рис. 4.16. Сигналы произвольной формы не имеют простого преобразования.

Это очень важная концепция, которую необходимо понимать при использовании аналогового движения измерителя Д’Арсонваля для измерения переменного напряжения или тока.Аналоговый механизм Д’Арсонваля, откалиброванный для индикации среднеквадратичной амплитуды синусоидальной волны, будет точным только при измерении чистых синусоидальных волн. Если форма сигнала измеряемого напряжения или тока не является чистой синусоидой, показание измерителя не будет истинным среднеквадратичным значением формы сигнала, потому что степень отклонения стрелки в аналоговом перемещении измерителя Д’Арсонваля равна пропорционально среднему значению сигнала, а не среднеквадратичному значению. Калибровка измерителя RMS получается путем «перекоса» диапазона измерителя так, чтобы он отображал небольшое кратное среднему значению, которое будет равно среднеквадратичному значению для определенной формы волны и только для конкретной формы волны .

Поскольку форма синусоидальной волны является наиболее распространенной в электрических измерениях, она является формой волны, принятой для калибровки аналогового измерителя, а малое кратное, используемое при калибровке измерителя, составляет 1,1107 (коэффициент формы: 0,707 / 0,636: отношение среднеквадратичных значений деленное на среднее значение для синусоидального сигнала). Любая форма волны, кроме чистой синусоидальной волны, будет иметь другое соотношение среднеквадратичных и средних значений, и, таким образом, измеритель, откалиброванный для синусоидального напряжения или тока, не будет показывать истинное среднеквадратичное значение при считывании несинусоидальной волны.Имейте в виду, что это ограничение применяется только к простым аналоговым счетчикам переменного тока, не использующим технологию True-RMS.

  • Амплитуда сигнала переменного тока — это его высота, изображенная на графике во времени. Измерение амплитуды может принимать форму пика, размаха, среднего или среднеквадратичного значения.
  • Пиковая амплитуда — это высота сигнала переменного тока, измеренная от нулевой отметки до самой высокой положительной или самой низкой отрицательной точки на графике.Также известен как гребень Амплитуда волны .
  • Полная амплитуда — это общая высота сигнала переменного тока, измеренная от максимальных положительных до максимальных отрицательных пиков на графике. Часто обозначается как «П-П».
  • Средняя амплитуда — это математическое «среднее» всех точек сигнала за период одного цикла. Технически, средняя амплитуда любой формы волны с участками равной площади выше и ниже «нулевой» линии на графике равна нулю.Однако в качестве практической меры амплитуды среднее значение сигнала часто рассчитывается как математическое среднее абсолютных значений всех точек (принимая все отрицательные значения и считая их положительными). Для синусоиды среднее значение, вычисленное таким образом, составляет примерно 0,637 от его пикового значения.
  • «RMS» означает среднеквадратическое значение и является способом выражения величины переменного напряжения или тока в терминах, функционально эквивалентных постоянному току. Например, среднеквадратичное значение 10 вольт переменного тока — это величина напряжения, при которой через резистор заданного значения рассеивается такое же количество тепла, как и у источника питания постоянного тока на 10 вольт.Также известен как «эквивалент» или «эквивалент постоянного тока» для переменного напряжения или тока. Для синусоидальной волны среднеквадратичное значение составляет примерно 0,707 от его пикового значения.
  • Пик-фактор сигнала переменного тока — это отношение его пика (пик) к его среднеквадратичному значению.
  • Форм-фактор сигнала переменного тока — это отношение его среднеквадратичного значения к его среднему значению.
  • Аналоговые, электромеханические движения счетчика реагируют пропорционально среднему значению переменного напряжения или тока.Когда требуется индикация среднеквадратичного значения, калибровка измерителя должна быть соответственно «искажена». Это означает, что точность показаний RMS электромеханического измерителя зависит от чистоты формы волны: от того, точно ли она совпадает с формой волны, используемой при калибровке.

Рисунок 4.17. Принципиальная схема однофазной энергосистемы мало что говорит о проводке практической силовой цепи.

На рисунке выше изображена очень простая цепь переменного тока. Если бы рассеиваемая мощность нагрузочного резистора была значительной, мы могли бы назвать это «цепью питания» или «системой питания», а не рассматривать ее как обычную цепь.Различие между «силовой цепью» и «обычной цепью» может показаться произвольным, но с практической точки зрения это определенно не так.

Анализ практических цепей

Одной из таких проблем является размер и стоимость проводки, необходимой для подачи питания от источника переменного тока к нагрузке. Обычно мы не особо задумываемся об этом, если мы просто анализируем цепь ради изучения законов электричества. Однако в реальном мире это может стать серьезной проблемой.Если мы дадим источнику в приведенной выше схеме значение напряжения, а также дадим значения рассеиваемой мощности для двух нагрузочных резисторов, мы сможем определить потребности в проводке для этой конкретной схемы:

С практической точки зрения, проводка для нагрузок 20 кВт при 120 В перем. Тока довольно значительна (167 А).

[латекс] I = \ frac {P} {E} [/ латекс]

[латекс] I = \ frac {10kW} {120V} [/ latex]

[латекс] I = 83,33A \ text {(для каждого нагрузочного резистора)} [/ латекс]

[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]

[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]

[латекс] I_ {total} = (83.33 A) + (83,33 A) [/ латекс]

[латекс] P_ {total} = (20кВт) [/ латекс]

[латекс] \ pmb {I_ {total} = 166,67 A} [/ латекс]

Из приведенного выше примера 83,33 ампера для каждого нагрузочного резистора на рисунке выше в сумме дают 166,66 ампера полного тока цепи. Это немалое количество тока, и для него потребуются медные проводники сечением не менее 1/0 калибра. Такая проволока имеет диаметр более 1/4 дюйма (6 мм) и весит более 300 фунтов на тысячу футов.Учтите, что медь тоже не дешевая! В наших интересах найти способы минимизировать такие затраты, если мы проектируем энергосистему с проводами большой длины.

Один из способов сделать это — увеличить напряжение источника питания и использовать нагрузки, рассчитанные на рассеивание 10 кВт каждая при этом более высоком напряжении. Нагрузки, конечно, должны иметь более высокие значения сопротивления, чтобы рассеивать ту же мощность, что и раньше (по 10 кВт каждая) при более высоком напряжении, чем раньше. Преимущество будет заключаться в меньшем потреблении тока, что позволяет использовать меньший, более легкий и дешевый провод:

[латекс] I = \ frac {P} {E} [/ латекс]

[латекс] I = \ frac {10кВт} {240V} [/ латекс]

[латекс] I = 41.67 A \ text {(для каждого нагрузочного резистора)} [/ latex]

[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]

[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]

[латекс] I_ {total} = (41,67 A) + (41,67 A) [/ латекс]

[латекс] P_ {total} = (20кВт) [/ латекс]

[латекс] \ pmb {I_ {total} = 83,33 A} [/ латекс]

Теперь у нашего общий ток цепи равен 83.33 ампера, вдвое меньше, чем было раньше. Теперь мы можем использовать проволоку калибра 4, которая весит меньше половины того, что весит проволока калибра 1/0 на единицу длины. Это значительное снижение стоимости системы без снижения производительности. Вот почему разработчики систем распределения электроэнергии предпочитают передавать электроэнергию с использованием очень высоких напряжений (многие тысячи вольт): чтобы извлечь выгоду из экономии за счет использования меньшего, более легкого и более дешевого провода.

Опасности повышения напряжения источника

Однако это решение не лишено недостатков.Еще одна практическая проблема с силовыми цепями — опасность поражения электрическим током от высокого напряжения. Опять же, обычно это не то, на чем мы сосредотачиваемся при изучении законов электричества, но это очень серьезная проблема в реальном мире, особенно когда имеют дело с большими объемами энергии. Повышение эффективности, достигаемое за счет увеличения напряжения в цепи, представляет повышенную опасность поражения электрическим током. Энергораспределительные компании решают эту проблему, протягивая свои линии электропередач вдоль высоких опор или башен и изолируя линии от несущих конструкций с помощью больших фарфоровых изоляторов.

В точке использования (потребителя электроэнергии) все еще остается вопрос, какое напряжение использовать для питания нагрузок. Высокое напряжение обеспечивает большую эффективность системы за счет уменьшения тока в проводнике, но не всегда целесообразно держать силовую проводку вне досягаемости в точке использования, как это можно сделать в распределительных системах. Этим компромиссом между эффективностью и опасностью разработчики европейских энергосистем решили рискнуть, поскольку все их домашние хозяйства и бытовая техника работают при номинальном напряжении 240 вольт вместо 120 вольт, как в Северной Америке.Вот почему туристы из Америки, посещающие Европу, должны иметь небольшие понижающие трансформаторы для своих портативных приборов, чтобы понижать мощность 240 В переменного тока (вольт переменного тока) до более подходящих 120 В переменного тока.

Решения для подачи напряжения потребителям

Понижающие трансформаторы в конечной точке энергопотребления

Есть ли способ одновременно реализовать преимущества повышения эффективности и снижения угрозы безопасности? Одним из решений может быть установка понижающих трансформаторов в конечной точке энергопотребления, как это должен делать американский турист, находясь в Европе.Однако это было бы дорого и неудобно для чего угодно, кроме очень малых нагрузок (где трансформаторы можно построить дешево) или очень больших нагрузок (где стоимость толстых медных проводов превысила бы стоимость трансформатора).

Две нагрузки низкого напряжения в серии

Альтернативным решением может быть использование источника более высокого напряжения для подачи питания на две последовательно соединенные нагрузки с более низким напряжением. Этот подход сочетает в себе эффективность высоковольтной системы с безопасностью низковольтной системы:

Рисунок 4.18 Последовательно подключенные нагрузки 120 В переменного тока, управляемые источником 240 В переменного тока при общем токе 83,3 А.

Обратите внимание на маркировку полярности (+ и -) для каждого показанного напряжения, а также на однонаправленные стрелки для тока. По большей части я избегал обозначать «полярности» в цепях переменного тока, которые мы анализировали, даже несмотря на то, что обозначения действительны для обеспечения системы отсчета для фазы. В следующих разделах этой главы фазовые отношения станут очень важными, поэтому я введу эти обозначения в начале главы для вашего ознакомления.

Ток через каждую нагрузку такой же, как и в простой 120-вольтовой цепи, но токи не складываются, потому что нагрузки включены последовательно, а не параллельно. Напряжение на каждой нагрузке составляет всего 120 вольт, а не 240, поэтому запас прочности выше. Имейте в виду, у нас все еще есть полные 240 вольт на проводах системы питания, но каждая нагрузка работает при пониженном напряжении. Если кто-то и будет шокирован, скорее всего, это произойдет из-за контакта с проводниками конкретной нагрузки, а не из-за контакта с основными проводами энергосистемы.

Модификации конструкции с двумя сериями нагрузок

У этой конструкции есть только один недостаток: последствия отказа одной нагрузки разомкнутой или выключенной (при условии, что каждая нагрузка имеет последовательный переключатель включения / выключения для прерывания тока) не благоприятны. В случае последовательной цепи, если бы одна из нагрузок разомкнулась, ток остановился бы и в другой нагрузке. По этой причине нам необходимо немного изменить дизайн:

Рисунок 4.19 Добавление нейтрального проводника позволяет управлять нагрузками индивидуально.\ circ [/ латекс] [латекс] I_1 = \ frac {P_1} {E_1} [/ латекс] [latex] = \ frac {10kW} {120V} [/ latex] [латекс] I_1 = 83,33 А [/ латекс] [латекс] I_2 = \ frac {P_2} {E_2} [/ латекс] [latex] = \ frac {10kW} {120V} [/ latex] [латекс] I_2 = 83,33 А [/ латекс] [латекс] P_ {всего} = (10кВт) + (10кВт) [/ латекс] [латекс] = (20кВт) [/ латекс]

Двухфазная система питания

Вместо одного 240-вольтового источника питания мы используем два 120-вольтовых источника (в фазе друг с другом!), Последовательно для получения 240 вольт, а затем подводим третий провод к точке соединения между нагрузками, чтобы справиться с возможностью одного загрузочное отверстие.Это называется распределенной энергосистемой . Три провода меньшего размера по-прежнему дешевле, чем два провода, необходимые для простой параллельной конструкции, поэтому мы все еще впереди по эффективности. Проницательный наблюдатель заметит, что нейтральный провод должен нести только разницы тока между двумя нагрузками обратно к источнику. В приведенном выше случае при идеально «сбалансированных» нагрузках, потребляющих одинаковое количество энергии, нейтральный провод пропускает нулевой ток.

Обратите внимание на то, как нейтральный провод подключен к заземлению со стороны источника питания.Это обычная особенность энергосистем, содержащих «нейтральный» провод, поскольку заземление нейтрального провода обеспечивает минимально возможное напряжение в любой момент времени между любым «горячим» проводом и заземлением.

Важным компонентом системы с расщепленной фазой является двойной источник переменного напряжения. К счастью, спроектировать и построить его нетрудно. Поскольку большинство систем переменного тока в любом случае получают питание от понижающего трансформатора (понижая напряжение с высоких уровней распределения до напряжения пользовательского уровня, такого как 120 или 240), этот трансформатор может быть построен с вторичной обмоткой с центральным отводом:

Рисунок 4.20 Американское питание 120/240 В переменного тока поступает от сетевого трансформатора с центральным ответвлением.

Если переменный ток поступает непосредственно от генератора (генератора переменного тока), катушки могут быть аналогичным образом с центральным отводом для того же эффекта. Дополнительные расходы на включение центрального отвода в обмотку трансформатора или генератора минимальны.

Вот где действительно важны обозначения полярности (+) и (-). Это обозначение часто используется для обозначения фазировки нескольких источников переменного напряжения , поэтому ясно, помогают ли они («повышают») друг друга или противостоят («компенсируют») друг друга.Если бы не эта маркировка полярности, фазовые отношения между несколькими источниками переменного тока могли бы быть очень запутанными. Обратите внимание, что на схеме источники с расщепленной фазой (каждый 120 вольт, 0 °) с отметками полярности (+) — (-), как и батареи с последовательным подключением, альтернативно могут быть представлены как таковые:

Рисунок 4.21. Источник 120/240 В переменного тока с разделенной фазой эквивалентен двум последовательным источникам переменного тока 120 В переменного тока.

Чтобы математически рассчитать напряжение между «горячими» проводами, мы должны из вычесть напряжений, потому что их отметки полярности показывают, что они противоположны друг другу:

Полярный

[латекс] \ begin {align} & 120 \ angle 0 \ text {°} \\ — & 120 \ angle 180 \ text {°} \\ = & \ pmb {120 \ angle 0 \ text {°}} \ конец {align} [/ latex]

прямоугольный

[латекс] \ begin {align} & 120 + \ text {j} 0 \ text {V} \\ — & (- {120} + \ text {j} 0) \ text {V} \\ = & \ pmb {240 + \ text {j} 0 \ text {V}} \ end {align} [/ latex]

Если мы отметим общую точку подключения двух источников (нейтральный провод) одинаковым знаком полярности (-), мы должны выразить их относительные фазовые сдвиги как разнесенные на 180 °.В противном случае мы бы обозначили два источника напряжения, прямо противоположных друг другу, что дало бы 0 вольт между двумя «горячими» проводниками. Почему я трачу время на уточнение отметок полярности и фазовых углов? В следующем разделе будет больше смысла!

Системы электропитания в американских домах и легкой промышленности чаще всего бывают расщепленными, обеспечивая так называемое питание 120/240 В переменного тока. Термин «разделенная фаза» просто относится к источнику питания с разделенным напряжением в такой системе. В более общем смысле этот тип источника питания переменного тока называется , однофазный, , потому что оба сигнала напряжения синфазны или синхронизированы друг с другом.

Термин «однофазный» противопоставляется другому типу энергосистемы, называемому «многофазный», который мы собираемся изучить подробно. Приносим извинения за длинное введение, приведшее к заглавной теме этой главы. Преимущества многофазных систем питания становятся более очевидными, если сначала хорошо разбираться в однофазных системах.

  • Однофазные системы питания определяются наличием источника переменного тока только с одной формой волны напряжения.
  • Расщепленная система питания — это система с несколькими (синфазными) источниками переменного напряжения, подключенными последовательно, доставляющими мощность на нагрузки с более чем одним напряжением и более чем двумя проводами. Они используются в первую очередь для достижения баланса между эффективностью системы (низкие токи в проводниках) и безопасностью (низкие напряжения нагрузки).
  • Источники переменного тока с разделенной фазой могут быть легко созданы путем отвода обмоток катушек трансформаторов или генераторов переменного тока по центру.

Фаза переменного тока

Все начинает усложняться, когда нам нужно связать два или более переменного напряжения или тока, которые не совпадают друг с другом.Под «несогласованным» я подразумеваю, что две формы сигнала не синхронизированы: их пики и нулевые точки не совпадают в одни и те же моменты времени. График на рисунке ниже иллюстрирует это.

Рис. 4.22. Формы волн вне фазы

Две волны, показанные выше (A и B), имеют одинаковую амплитуду и частоту, но они не совпадают друг с другом. Технически это называется фазовым сдвигом . Ранее мы видели, как можно построить «синусоидальную волну», вычислив тригонометрическую синусоидальную функцию для углов от 0 до 360 градусов, то есть полного круга.Начальной точкой синусоидальной волны была нулевая амплитуда при нулевом градусе, прогрессирующая до полной положительной амплитуды при 90 градусах, нуля при 180 градусах, полной отрицательной при 270 градусах и возврата к начальной точке нуля при 360 градусах. Мы можем использовать эту угловую шкалу вдоль горизонтальной оси нашего графика формы волны, чтобы выразить, насколько далеко одна волна отличается от другой:

Рис. 4.23. Волна A опережает волну B на 45 °.

Сдвиг между этими двумя формами волны составляет около 45 градусов, причем волна «A» опережает волну «B».Выборка различных фазовых сдвигов представлена ​​на следующих графиках, чтобы лучше проиллюстрировать эту концепцию:

Рисунок 4.24 Примеры фазовых сдвигов.

Поскольку формы сигналов в приведенных выше примерах имеют одинаковую частоту, они будут отклоняться от шага на одинаковую угловую величину в каждый момент времени. По этой причине мы можем выразить фазовый сдвиг для двух или более сигналов одной и той же частоты как постоянную величину для всей волны, а не просто выражение сдвига между любыми двумя конкретными точками вдоль волн.То есть можно с уверенностью сказать что-то вроде: «Напряжение« A »сдвинуто по фазе на 45 градусов с напряжением« B »». Какая бы форма волны ни была впереди в своем развитии, говорят, что опережают , а вторая — отстает от . Фазовый сдвиг, как и напряжение, всегда является измерением относительно двух вещей. На самом деле не существует такой вещи, как форма волны с абсолютным измерением фазы и , потому что не существует известного универсального эталона для фазы. Обычно при анализе цепей переменного тока форма волны напряжения источника питания используется в качестве эталона для фазы, это напряжение указано как «xxx вольт при 0 градусах».”Любое другое переменное напряжение или ток в этой цепи будет иметь фазовый сдвиг, выраженный в терминах относительно этого напряжения источника. Это то, что делает расчеты цепей переменного тока более сложными, чем вычисления постоянного тока. При применении закона Ома и закона Кирхгофа величины переменного напряжения и тока должны отражать фазовый сдвиг, а также амплитуду. Математические операции сложения, вычитания, умножения и деления должны оперировать этими величинами фазового сдвига, а также амплитуды. К счастью, существует математическая система величин, называемая комплексными числами , идеально подходящая для этой задачи представления амплитуды и фазы.Поскольку комплексные числа так важны для понимания цепей переменного тока, следующая глава будет посвящена только этому предмету.

  • Фазовый сдвиг — это когда две или более формы сигнала не совпадают друг с другом.
  • Величина фазового сдвига между двумя волнами может быть выражена в градусах, как определено в градусах на горизонтальной оси графика формы волны, используемой при построении тригонометрической синусоидальной функции.
  • Форма волны , опережающая , определяется как одна форма волны, которая опережает другую в своем развитии.Сигнал с запаздыванием на и — это сигнал, который отстает от другого. Пример:
  • Расчеты для анализа цепей переменного тока должны учитывать как амплитуду, так и фазовый сдвиг формы волны напряжения и тока, чтобы быть полностью точными. Это требует использования математической системы под названием комплексных чисел .

Что такое двухфазные системы питания?

Двухфазные энергосистемы обеспечивают высокий КПД проводников. и — низкий риск безопасности за счет разделения общего напряжения на меньшие части и питания нескольких нагрузок с этими меньшими напряжениями, потребляя при этом токи на уровнях, типичных для системы полного напряжения.Между прочим, этот метод работает так же хорошо для систем питания постоянного тока, как и для однофазных систем переменного тока. Такие системы обычно называются трехпроводными системами , а не расщепленными фазами , поскольку понятие «фаза» ограничивается переменным током.

Но из нашего опыта работы с векторами и комплексными числами мы знаем, что напряжения переменного тока не всегда складываются, как мы думаем, если они не совпадают по фазе друг с другом. Этот принцип, применяемый к энергосистемам, может быть использован для создания энергосистем с еще более высоким КПД проводников и меньшей опасностью поражения электрическим током, чем с расщепленной фазой.

Два источника напряжения, не совпадающих по фазе на 120 °

Предположим, что у нас есть два источника переменного напряжения, соединенных последовательно, как и в системе с расщепленными фазами, которую мы видели раньше, за исключением того, что каждый источник напряжения сдвинут по фазе на 120 ° друг с другом: (рисунок ниже)

Пара источников 120 В перем. Тока, фазированных под углом 120 °, аналогично разделенной фазе.

Поскольку каждый источник напряжения составляет 120 вольт, и каждый нагрузочный резистор подключен непосредственно параллельно своему соответствующему источнику, напряжение на каждой нагрузке также должно составлять 120 вольт.Учитывая ток нагрузки 83,33 А, каждая нагрузка все равно должна рассеивать 10 киловатт мощности. Однако напряжение между двумя «горячими» проводами не составляет 240 вольт (120 ∠ 0 ° — 120 ∠ 180 °), потому что разность фаз между двумя источниками не равна 180 °. Вместо этого напряжение:

[латекс] E_ {total} = (120 \ text {V} \ angle \ text {0 °}) — (120 \ text {V} \ angle \ text {120 °}) [/ latex]

[латекс] \ pmb {E_ {total} = 207,85 \ text {V} \ angle \ text {-30 °}} [/ латекс]

Условно мы говорим, что напряжение между «горячими» проводниками составляет 208 вольт (округляя в большую сторону), и, таким образом, напряжение системы питания обозначено как 120/208 В.

Если мы посчитаем ток через «нейтральный» провод, то обнаружим, что он не равен нулю, даже при сбалансированном сопротивлении нагрузки. Закон Кирхгофа говорит нам, что токи, входящие и выходящие из узла между двумя нагрузками, должны быть равны нулю:

[латекс] I _ {\ text {load # 1}} + I _ {\ text {load # 2}} + I _ {\ text {нейтральный}} = 0A [/ latex]

[латекс] \ begin {align} I _ {\ text {нейтральный}} = & -I _ {\ text {load # 1}} — I _ {\ text {load # 2}} \\ = & — (83.33 A \ angle \ text {0 °}) — (83,33 A \ angle \ text {120 °}) \\ = & \ pmb {83,33 A \ angle \ text {240 °}} \ text {или} \ pmb { 83,33 A \ angle \ text {-120 °}} \ end {align} [/ latex]

Итак, мы обнаруживаем, что «нейтральный» провод имеет полный ток 83,33 А, как и каждый «горячий» провод.

Обратите внимание, что мы все еще передаем 20 кВт общей мощности двум нагрузкам, при этом «горячий» провод каждой нагрузки, как и раньше, выдерживает 83,33 А. При одинаковом количестве тока через каждый «горячий» провод, мы должны использовать медные проводники одинакового сечения, поэтому мы не снизили стоимость системы по сравнению с системой с разделением фаз 120/240.Однако мы добились повышения безопасности, потому что общее напряжение между двумя «горячими» проводниками на 32 вольт ниже, чем было в системе с расщепленной фазой (208 вольт вместо 240 вольт).

Три источника напряжения вне фазы 120 °

Тот факт, что нейтральный провод пропускает ток 83,33 А, открывает интересную возможность: так как по нему в любом случае протекает ток, почему бы не использовать этот третий провод в качестве другого «горячего» проводника, запитав другой нагрузочный резистор третьим источником 120 В, имеющим фазу угол 240 °? Таким образом, мы могли бы передать на больше мощности (еще 10 кВт), не добавляя дополнительных проводников.Посмотрим, как это может выглядеть:

Рис. 4.25. Если третья нагрузка смещена под углом 120 ° к двум другим, токи такие же, как и для двух нагрузок.

Многофазная цепь

Эта схема, которую мы анализировали с тремя источниками напряжения, называется многофазной цепью . Префикс «поли» просто означает «более одного», как в « поли теизм» (вера в более чем одно божество), « поли гон» (геометрическая форма, состоящая из нескольких отрезков линии: например, pentagon и hexagon ) и « poly atomic» (вещество, состоящее из нескольких типов атомов).Поскольку все источники напряжения находятся под разными фазовыми углами (в данном случае три разных фазовых угла), это схема « poly phase». В частности, это трехфазная цепь , которая преимущественно используется в крупных системах распределения электроэнергии.

Однофазная система

Давайте рассмотрим преимущества трехфазной системы питания по сравнению с однофазной системой с эквивалентным напряжением нагрузки и мощностью. Однофазная система с тремя нагрузками, подключенными напрямую параллельно, будет иметь очень высокий общий ток (83.33 раза по 3, или 250 ампер.

Рисунок 4.26 Для сравнения, три нагрузки по 10 кВт в системе 120 В переменного тока потребляют 250 А.

Это потребует медного провода сечением 3/0 (, очень большого!), По цене около 510 фунтов на тысячу футов и со значительной ценой. Если бы расстояние от источника до нагрузки составляло 1000 футов, нам потребовалось бы более полутонны медного провода для выполнения этой работы.

Двухфазная система

С другой стороны, мы могли бы построить двухфазную систему с двумя нагрузками по 15 кВт, 120 В.

Рисунок 4.27. Система с разделенной фазой потребляет половину тока 125 А при 240 В переменного тока по сравнению с системой на 120 В переменного тока.

Наш ток вдвое меньше того, который был при простой параллельной схеме, что является большим улучшением. Мы могли бы обойтись без использования медного провода калибра 2 при общей массе около 600 фунтов, из расчета около 200 фунтов на тысячу футов с тремя участками по 1000 футов каждый между источником и нагрузками. Однако мы также должны учитывать повышенную угрозу безопасности, связанную с наличием в системе 240 вольт, даже если каждая нагрузка получает только 120 вольт.В целом существует большая вероятность поражения электрическим током.

Трехфазная система

Если сравнить эти два примера с нашей трехфазной системой (рисунок выше), преимущества становятся очевидными. Во-первых, токи в проводниках немного меньше (83,33 ампер против 125 или 250 ампер), что позволяет использовать гораздо более тонкий и легкий провод. Мы можем использовать провод калибра 4 с плотностью около 125 фунтов на тысячу футов, что составит 500 фунтов (четыре участка по 1000 футов каждый) для нашей примерной схемы.Это обеспечивает значительную экономию затрат по сравнению с системой с разделением фаз, с дополнительным преимуществом, заключающимся в том, что максимальное напряжение в системе ниже (208 против 240).

Остается ответить на один вопрос: как вообще мы можем получить три источника переменного напряжения, фазовые углы которых разнесены точно на 120 °? Очевидно, что мы не можем отводить по центру обмотку трансформатора или генератора переменного тока, как мы это делали в системе с расщепленной фазой, поскольку это может дать нам только формы волны напряжения, которые либо совпадают по фазе, либо не совпадают по фазе на 180 °.Возможно, мы могли бы придумать способ использования конденсаторов и катушек индуктивности для создания фазовых сдвигов на 120 °, но тогда эти фазовые сдвиги также будут зависеть от фазовых углов наших импедансов нагрузки (замена резистивной нагрузки емкостной или индуктивной нагрузкой изменится. все!).

Лучший способ получить нужный сдвиг фаз — это создать его у источника: сконструировать генератор переменного тока (генератор переменного тока), обеспечивающий мощность таким образом, чтобы вращающееся магнитное поле проходило через три набора проволочных обмоток, каждая из которых установите на расстоянии 120o по окружности машины, как показано на рисунке ниже.

Рисунок 4.28 (a) Однофазный генератор переменного тока, (b) Трехфазный генератор переменного тока.

Вместе шесть «полюсных» обмоток трехфазного генератора переменного тока соединены, чтобы образовать три пары обмоток, каждая пара вырабатывает переменное напряжение с фазовым углом 120 °, смещенным от любой из двух других пар обмоток. Межсоединения между парами обмоток (как показано для однофазного генератора переменного тока: перемычка между обмотками 1a и 1b) для простоты не показаны на чертеже трехфазного генератора.

В нашем примере схемы мы показали три источника напряжения, соединенных вместе в конфигурации «Y» (иногда называемой конфигурацией «звезда»), с одним выводом каждого источника, привязанным к общей точке (узлу, к которому мы подключили «нейтраль»). Дирижер). Обычный способ изобразить эту схему подключения — нарисовать обмотки в форме буквы «Y», как показано на рисунке ниже.

Рисунок 4.29. Y-образная конфигурация генератора.

Конфигурация «Y» — не единственный доступный нам вариант, но, вероятно, поначалу ее легче всего понять.Подробнее об этом мы поговорим позже в этой главе.

  • Однофазная система питания — это система, в которой имеется только один источник переменного напряжения (одна форма волны напряжения источника).
  • Расщепленная система питания — это система, в которой есть два источника напряжения, сдвинутых по фазе на 180 ° друг от друга, которые питают две последовательно соединенные нагрузки. Преимуществом этого является возможность иметь более низкие токи в проводниках при сохранении низкого напряжения нагрузки по соображениям безопасности.
  • Многофазная система питания использует несколько источников напряжения, находящихся под разными углами фаз друг от друга (работает много «фаз» формы волны напряжения). Многофазная система питания может обеспечивать большую мощность при меньшем напряжении с проводниками меньшего сечения, чем однофазные или двухфазные системы.
  • Источники сдвинутого по фазе напряжения, необходимые для многофазной энергосистемы, создаются в генераторах переменного тока с несколькими наборами обмоток проводов. Эти наборы обмоток расположены по окружности вращения ротора под желаемым углом (-ами).

Трехфазный генератор переменного тока

Давайте возьмем схему трехфазного генератора переменного тока, представленную ранее, и посмотрим, что происходит при вращении магнита.

Рисунок 4.30 Трехфазный генератор переменного тока

Фазовый сдвиг на 120 ° является функцией фактического углового сдвига трех пар обмоток. Если магнит вращается по часовой стрелке, обмотка 3 будет генерировать свое пиковое мгновенное напряжение ровно 120 ° (вращения вала генератора) после обмотки 2, которое достигнет своего пика 120 ° после обмотки 1.Магнит проходит через каждую пару полюсов в разных положениях во вращательном движении вала. То, где мы решим разместить обмотки, будет определять величину фазового сдвига между формами сигналов переменного напряжения обмоток. Если мы сделаем обмотку 1 нашим «эталонным» источником напряжения для фазового угла (0 °), то обмотка 2 будет иметь фазовый угол -120 ° (120 ° с запаздыванием или 240 ° вперед), а обмотка 3 — угол -240 °. (или 120 ° вперед).

Последовательность фаз

Эта последовательность фазовых сдвигов имеет определенный порядок.Для вращения вала по часовой стрелке порядок 1-2-3 (сначала обмотка 1 пика, затем обмотка 2, затем обмотка 3). Этот порядок повторяется, пока мы продолжаем вращать вал генератора.

Рисунок 4.31 Чередование фаз по часовой стрелке: 1-2-3.

Однако, если мы обратим вращение вала генератора переменного тока (повернем его против часовой стрелки), магнит пройдет мимо пар полюсов в противоположной последовательности. Вместо 1-2-3 у нас будет 3-2-1.Теперь форма волны обмотки 2 будет впереди на 120 ° впереди 1 вместо запаздывания, а 3 будет еще на 120 ° впереди 2.

Рисунок 4.32 Последовательность фаз при вращении против часовой стрелки: 3-2-1.

Порядок последовательностей сигналов напряжения в многофазной системе называется чередованием фаз или чередованием фаз . Если мы используем многофазный источник напряжения для питания резистивных нагрузок, чередование фаз не будет иметь никакого значения. Независимо от того, 1-2-3 или 3-2-1, значения напряжения и тока будут одинаковыми.Как мы вскоре увидим, есть некоторые применения трехфазного питания, которые зависят от того, имеет ли чередование фаз ту или иную сторону.

Детекторы чередования фаз

Поскольку вольтметры и амперметры были бы бесполезны для определения чередования фаз в действующей системе питания, нам нужен какой-то другой инструмент, способный выполнять эту работу.

В одной оригинальной схеме используется конденсатор для введения фазового сдвига между напряжением и током, который затем используется для определения последовательности путем сравнения яркости двух индикаторных ламп на рисунке ниже.

Рисунок 4.33 Детектор последовательности фаз сравнивает яркость двух ламп.

Две лампы имеют одинаковое сопротивление нити накала и мощность. Конденсатор рассчитан на то, чтобы иметь примерно такое же реактивное сопротивление на системной частоте, что и сопротивление каждой лампы. Если бы конденсатор был заменен резистором, равным сопротивлению ламп, две лампы светились бы с одинаковой яркостью, схема сбалансирована. Однако конденсатор вносит фазовый сдвиг между напряжением и током в третьем плече цепи, равный 90 °.Этот фазовый сдвиг больше 0 °, но меньше 120 ° приводит к смещению значений напряжения и тока на двух лампах в соответствии с их фазовым сдвигом относительно фазы 3.

Обмен горячими проводами

Существует намного более простой способ изменить последовательность фаз, чем реверсирование вращения генератора: просто поменяйте местами любые два из трех «горячих» проводов, идущих к трехфазной нагрузке.

Этот трюк станет более понятным, если мы еще раз посмотрим на последовательность фаз трехфазного источника напряжения:

1-2-3 вращения: 1-2-3-1-2-3-1-2-3-1-2-3-1-2-3.. .

3-2-1 вращение: 3-2-1-3-2-1-3-2-1-3-2-1-3-2-1. . .

То, что обычно обозначается как «1-2-3» чередования фаз, можно также назвать «2-3-1» или «3-1-2», идя слева направо в числовой строке выше? Точно так же противоположное вращение (3-2-1) можно так же легко назвать «2-1-3» или «1-3-2».

Начиная с чередования фаз 3-2-1, мы можем попробовать все возможности для замены любых двух проводов за раз и посмотреть, что произойдет с результирующей последовательностью на рисунке ниже.

Рисунок 4.34. Все возможности перестановки любых двух проводов.

Независимо от того, какую пару «горячих» проводов из трех мы выберем для замены, чередование фаз в конечном итоге меняется на противоположное (1-2-3 меняются на 2-1-3, 1-3-2 или 3-2. -1, все равнозначно).

  • Чередование фаз или последовательность фаз — это порядок, в котором формы волны напряжения многофазного источника переменного тока достигают своих соответствующих пиков. Для трехфазной системы есть только две возможные последовательности фаз: 1-2-3 и 3-2-1, соответствующие двум возможным направлениям вращения генератора.
  • Чередование фаз не влияет на резистивные нагрузки, но влияет на несимметричные реактивные нагрузки, как показано в работе схемы детектора поворота фаз.
  • Чередование фаз можно изменить, поменяв местами любые два из трех «горячих» выводов, подающих трехфазное питание на трехфазную нагрузку.

Трехфазное соединение звездой (Y)

Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»).Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.

Рисунок 4.35 Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.

Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.

Рисунок 4.36. Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.

Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , а сами обмотки обычно называются фазами . В системе с Y-соединением может или не может быть (рисунок ниже) нейтральный провод, присоединенный к точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, как обсуждалось. ранее.

Рисунок 4.37 Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.

Значения напряжения и тока в трехфазных системах

Когда мы измеряем напряжение и ток в трехфазных системах, нам нужно уточнить значение , где мы измеряем . Линейное напряжение означает величину напряжения, измеренного между любыми двумя линейными проводниками в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт. Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй — к току через любой один компонент.

Источники и нагрузки, подключенные по схеме Y, всегда имеют линейные напряжения выше фазных, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:

.

Для цепей «Y»:

[латекс] \ begin {align} \ tag {4.1} \ text {E} _ {\ text {line}} & = \ sqrt {3} \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ text {I} _ {\ text {phase}} \ end {align} [/ latex]

Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.

Трехфазная конфигурация, треугольник (Δ)

Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ). Обратите внимание на полярность каждой обмотки на рисунке ниже.

Рисунок 4.38 Трехфазное, трехпроводное соединение Δ не имеет общего.

На первый взгляд кажется, что три таких источника напряжения могут вызвать короткое замыкание, электроны текут по треугольнику, и ничто иное, как внутренний импеданс обмоток, сдерживает их. Однако из-за фазовых углов этих трех источников напряжения это не так.

Закон Кирхгофа о напряжении при соединении треугольником

Для быстрой проверки этого можно использовать закон Кирхгофа, чтобы увидеть, равны ли три напряжения вокруг контура нулю.Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока. Начиная с верхнего витка и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:

[латекс] (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text {240 °}) + (120 \ text {V} \ angle \ text { 120 °}) [/ латекс]

Все равно нулю?

Да!

В самом деле, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, — это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве:

Рисунок 4.39 Напряжение в открытом состоянии Δ должно быть нулевым.

Начиная с правой обмотки (120 В 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:

[латекс] (120 \ text {V} \ angle \ text {120 °}) + (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text { 240 °}) + \ text {E} _ {\ text {break}} = 0 [/ latex]

[латекс] 0 + \ text {E} _ {\ text {break}} = 0 [/ латекс]

[латекс] \ text {E} _ {\ text {break}} = 0 [/ латекс]

Конечно, на разрыве будет нулевое напряжение, говорящее нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.

Установив, что трехфазный источник напряжения, подключенный по схеме Δ, не сгорит до резкости из-за циркулирующих токов, переходим к его практическому использованию в качестве источника питания в трехфазных цепях. Поскольку каждая пара линейных проводов подключена непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению. И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяющихся фазных токов.Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:

Для цепей Δ («треугольник»):

[латекс] \ begin {align} \ tag {4.2} \ text {E} _ {\ text {line}} & = \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ sqrt {3} \ text {I} _ {\ text {phase}} \ end {align} [/ latex]

Анализ цепи примера соединения треугольником

Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)

Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:

[латекс] I \: = \ frac {P} {E} [/ латекс]

[латекс] I \: = \ frac {10 кВт} {120 В} [/ латекс]

[латекс] \ pmb {I = 83.33A} \ text {(для каждого нагрузочного резистора и обмотки источника)} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = √3 \ text {I} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = √3 (83,33 A) [/ латекс]

[латекс] \ pmb {\ text {I} _ {\ text {line}} = 144,34 A} [/ latex]

Преимущества трехфазной системы Delta

Таким образом, ток каждой линии в этой трехфазной энергосистеме равен 144.34 ампера, что значительно больше, чем линейные токи в системе с Y-соединением, которую мы рассматривали ранее. Можно задаться вопросом, не потеряли ли мы все преимущества трехфазного питания здесь, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогостоящего провода. Ответ — нет. Хотя для этой схемы потребуется три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).

Одним из явных преимуществ системы с Δ-соединением является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке. Это не обязательно (или даже возможно!) В схеме с Δ-соединением. Когда каждый элемент фазы нагрузки напрямую подключен к соответствующей обмотке фазы источника, фазное напряжение будет постоянным независимо от обрывов в элементах нагрузки.

Возможно, самым большим преимуществом источника с Δ-подключением является его отказоустойчивость. Одна из обмоток трехфазного источника, подключенного по схеме Δ, может открыться при отказе (рисунок ниже) без влияния на напряжение или ток нагрузки!

Рис. 4.40. Даже при отказе обмотки источника линейное напряжение по-прежнему составляет 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В. Единственная разница заключается в дополнительном токе в оставшихся функциональных обмотках источника.

Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках.Сравните эту отказоустойчивость с системой с Y-соединением и обмоткой с открытым источником на рисунке ниже.

Рисунок 4.41. Разомкнутая обмотка источника «Y» уменьшает вдвое напряжение на двух нагрузках подключенной нагрузки Δ.

При подключении нагрузки по схеме Δ два сопротивления испытывают пониженное напряжение, в то время как одно остается при исходном линейном напряжении, 208. Нагрузка, подключенная по схеме Y, постигает еще худшую участь (рисунок ниже) с таким же отказом обмотки в схеме с подключением по схеме Y источник.

Рисунок 4.42 Обмотка с открытым истоком системы «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.

В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности. Однако, если требуются двойные напряжения (например, 120/208) или предпочтительны для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.

  • Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
  • Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
  • Линейное напряжение — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
  • Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
  • Фазный ток — это ток через любой компонент, состоящий из трехфазного источника или нагрузки.
  • В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.
  • Для цепей «Y»:

[латекс] \ text {E} _ {\ text {line}} = \ sqrt {3} \ text {E} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = \ text {I} _ {\ text {phase}} [/ latex]

  • В симметричных Δ-цепях линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.
  • Для цепей Δ («Дельта»):

[латекс] \ text {E} _ {\ text {line}} = \ text {E} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = \ sqrt {3} \ text {I} _ {\ text {phase}} [/ latex]

  • Трехфазные источники напряжения с Δ-соединением обеспечивают большую надежность в случае выхода из строя обмотки, чем источники с соединением по схеме «треугольник». Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.

Переменный ток — Знакомство с переменным током (AC)

Переменный ток (AC) Электромагнитная волна, показанная на рисунке на осциллографе, представляет собой электрическое представление переменного тока и является одним из самых полезных и загадочных явлений, известных человеку.Каждый день сигналы, подобные этой, излучаются антеннами радио, телевидения, телефона и других устройств связи по всему миру.

Антенна переменного тока (AC) является основным искусственным источником электромагнитных волн. Переменные токи, усиливаемые различными электронными схемами и добавляемые к антеннам для распространения в пространстве и передачи информации, используются для генерации слов, звука, телевизионных изображений и других звуков.

В этой первой главе представлено описание работы на переменном токе со сравнением форм сигналов переменного и постоянного тока; теоретизирует и иллюстрирует генерацию сигнала переменного тока и вводит временные и частотные соотношения форм сигнала переменного тока.

Напряжение и ток переменного тока

Определение переменного тока

Сокращенное обозначение переменного тока — AC. Переменный ток — это тип электрического тока, который изменяется как по величине, так и по направлению. Термин величина относится к количественному значению тока в цепи или к тому, сколько тока течет. Термин направление обозначает направление, в котором ток течет в цепи.

Создание формы волны переменного тока

На рисунке показана базовая схема постоянного тока, которую можно использовать для моделирования переменного тока.Схема состоит из источника переменного тока, резистора и гальванометра. Гальванометр представляет собой амперметр с нулевым значением центральной шкалы ампер.

Если ток течет в цепи против часовой стрелки, стрелка счетчика отклонится влево. Стрелка измерителя отклонится вправо, если ток течет по часовой стрелке.

Электронный ток будет течь против часовой стрелки в схеме конфигурации , изображенной на рисунке. При повышении напряжения источника питания стрелка гальванометра отклоняется влево, прежде чем достигнет максимального значения тока.Ток в цепи уменьшается до нуля ампер, когда напряжение снижается до нуля вольт.

В результате ожидается текущий поток различной величины. Это удовлетворяет одному из двух требований к переменному току. Чтобы удовлетворить другие критерии, изменение направления, полярность батареи может быть изменена, как показано на рисунке. Обратите внимание, что теперь ток течет по часовой стрелке.

Стрелка гальванометра отклоняется вправо до некоторого оптимального значения при увеличении напряжения источника питания.Когда напряжение снижается до нуля вольт, ток в цепи уменьшается до нуля ампер.

Построение кривой переменного тока

Этот переменный ток можно изобразить графически, как показано на Рисунке 1.5. Оси этого графика настроены для отображения зависимости тока от времени. Отобразится горизонтальная ось или ось X времени.

Отобразится вертикальная ось или ось Y, ось тока. Вертикальная ось делится на положительные (+) и отрицательные (-) текущие значения выше и ниже оси X.Эта классификация полярности явно используется для различения направления тока.

Ток, протекающий в направлении против часовой стрелки, будет обозначен в этом приложении как положительный ток, в то время как ток в противоположном направлении, по часовой стрелке, будет обозначен как отрицательный ток. Полярность и направление выбираются случайным образом.

Напряжение

Если в цепи протекает ток, должна быть разность потенциалов или разность напряжений. Как показано на диаграммах, напряжение E, генерирующее переменный ток, должно изменяться так же, как и ток.

Для изменения направления тока необходимо изменить полярность напряжения. Переменное напряжение (переменное напряжение) — это напряжение, индуцирующее переменный ток.

Также читайте: Параллельный пластинчатый конденсатор: электрическое поле, уравнение, объяснение емкости

Сводка по постоянным и переменным напряжениям и токам

Теперь можно резюмировать различия между напряжениями и токами постоянного и переменного тока. Постоянный ток (DC) — это ток, который течет только в одном направлении.Его амплитуда может меняться, и если это так, то это называется пульсирующим постоянным током.

Напряжение постоянного тока — это напряжение, которое генерирует постоянный ток. Его полярность не меняется. AC обозначает переменный ток, то есть ток, который изменяется как по величине, так и по направлению.

Напряжение переменного тока (AC Voltage) — это напряжение, индуцирующее переменный ток. Его амплитуда и полярность меняются. Величина или значение напряжения переменного тока называется его амплитудой.

Также читайте: что такое конденсатор потока: реальная жизнь, использование и видео

Контрастные формы сигналов постоянного и переменного тока

Сравнение различных типов сигналов постоянного и переменного напряжения должно помочь вам понять различия между ними. Поскольку полярность не меняется, сигнал на рисунке а представляет собой сигнал постоянного тока. Стоит отметить, что амплитуда остается постоянной.

Вследствие фиксированного значения постоянного напряжения график зависимости тока от времени в цепи с напряжением, показанным на рисунке, также будет постоянным.

На рисунке b также изображена форма сигнала постоянного тока. Он имеет противоположную полярность, как форма волны на рисунке а, но также не изменяется по амплитуде.

Форма волны на рисунке a представляет собой форму волны постоянного тока и пульсирующую форму волны. Вся форма волны находится в положительной части графика и никогда не пересекает ось X.

Если бы линейный график пересек ось X в противоположную половину графика, и если бы это напряжение было приложено к цепи, то это привело бы к изменению направления тока в цепи, и это больше не считалось бы напряжением постоянного тока. .Это наиболее важный момент при различении сигналов постоянного и переменного тока.

Также читайте: Кристаллический осциллятор: схема, приложения, частота и работа

Форма сигнала переменного тока

Теперь, когда различия между постоянным и переменным током определены и определение переменного тока разработано, мы можем обсудить, как генерируется переменный ток. Периодически меняя местами подключения источника постоянного тока к цепи, можно генерировать переменный ток. Однако это невозможно.

Стандартный бытовой переменный ток, например, меняет полярность 60 раз в секунду при питании от источника напряжения 110 В переменного тока и частотой 60 Гц. Практически невозможно переключить подключения к источнику постоянного тока 60 раз в секунду. Генератор переменного тока — более практичный способ получения переменного тока.

Также читайте: Осциллятор Колпитса: рабочий, схема, частотная деривация

Генератор переменного тока

Генератор переменного тока — это система, которая вырабатывает напряжение переменного тока путем вращения петли из проводящего материала в магнитном поле.Понимание функции генератора переменного тока требует ясного понимания теории магнитного поля.

Магнитные силовые линии

Хорошо известно, что магниты имеют северный и южный полюса и притягивают другие магнитные материалы. Магнитное поле возникает между двумя полюсами двух магнитов, когда они сближаются.

Если эти два полюса противоположны, причем один из них является северным полюсом, а другой — южным, силовые линии будут течь от северного полюса к южному полюсу, как показано на диаграмме на рисунке.Магнитное поле между двумя полюсами становится больше по мере того, как магниты становятся сильнее.

Железные опилки, как показано на рисунке, можно использовать для демонстрации наличия силовых линий между северным и южным магнитными полюсами. Магниты кладут на стол так, чтобы их северный и южный полюсы были обращены друг к другу, на них накидывают лист оргстекла и сверху присыпают железные опилки.

Поскольку железные пломбы являются магнитными, они выравниваются по силовым линиям магнитного поля.Эти строки важны, потому что они иллюстрируют, как генерировать ac.

Обязательно к прочтению: Осциллятор с мостом Вина: схема, операционный усилитель и переменная частота

Постоянный ток и переменный ток

Каким бы полезным и простым ни был постоянный ток, это не единственный используемый тип электричества. Некоторые источники электроэнергии генерируют напряжения, полярность которых меняется, с течением времени меняя положительную и отрицательную на противоположную. Этот «вид» электричества известен как переменный ток, потому что он может изменять полярность как напряжение или как направление переключения тока вперед и назад (AC).

В то время как знакомый символ батареи используется для обозначения любого источника постоянного напряжения, круг с волнистой линией внутри используется для обозначения любого источника переменного напряжения. Можно задаться вопросом, зачем вообще кому-то понадобился кондиционер. Реально, в некоторых ситуациях переменный ток не имеет практического преимущества перед постоянным током.

Полярность или направление тока не имеет значения в приложениях, где электричество используется для рассеивания энергии в виде тепла, пока на нагрузку подается достаточное напряжение и ток, чтобы обеспечить желаемое тепло (рассеивание мощности).

Однако с помощью переменного тока можно создавать гораздо более мощные электрические генераторы, двигатели и системы распределения энергии, чем с помощью постоянного тока, и, следовательно, переменный ток широко используется в приложениях большой мощности по всему миру.

Читать: Подробнее о диоде Нажмите здесь

FAQ’S

Почему переменный ток используется вместо постоянного тока

Основное преимущество переменного тока перед постоянным током состоит в том, что переменное напряжение можно легко преобразовать в более высокие или более низкие уровни напряжения, в то время как напряжения постоянного тока сделать трудно.Электричество переменного тока имеет преимущество перед постоянным током, поскольку высокое напряжение более эффективно для передачи электричества на большие расстояния.

Что такое переменный или постоянный ток

И переменный, и постоянный ток определяют разные формы протекания тока в цепи. Электрический заряд (ток) в постоянном токе (DC) течет только в одном направлении. Напротив, электрический заряд переменного тока (AC) регулярно меняет направление.

Что такое переменный ток, используемый для

Поток заряда, который регулярно меняет направление, называется переменным током.Как следствие, уровень напряжения меняется синхронно с током. Кондиционер используется для подачи топлива в жилые дома, предприятия и другие сооружения.

Как работает переменный ток

Проволочная петля быстро раскручивается внутри магнитного поля в генераторе переменного тока. Это вызывает электрический ток, протекающий по кабелю…. Поскольку ток регулярно меняет направление, напряжение в цепи переменного тока часто меняется на противоположное.

Почему в домах не используется постоянный ток

Постоянный ток более опасен, чем переменный ток с тем же напряжением, потому что его труднее отпустить при прикосновении, потому что напряжение не проходит через ноль.При постоянном токе больше беспокойства вызывает электролитическая коррозия. Дуги постоянного тока не гаснут так быстро, как дуги переменного тока.

Видео на YouTube

Продолжить чтение…

  • Типы регуляторов напряжения, Ic, модуль, генератор, объяснение

    от ketan3009bhandekar

  • Преобразователь переменного тока в постоянный — устройство, схема, формула

    объяснил ketan3009bhandekar

  • Обозначение стабилитрона и пояснение конструкции стабилитрона

    от ketan3009bhandekar

  • Защита от перенапряжения в цепи стабилитрона, проблемы, расчет

    от ketan3009bhandekar

  • Усилитель PA
  • хорош для домашней музыки — объяснение технологии класса D

    от ketan3009bhandekar

  • Синусоидальная волна — частота формы волны, пиковая амплитуда и объяснение генератора

    от ketan3009bhandekar

  • Переменный ток — Введение в переменный ток (AC)

    от ketan3009bhandekar

  • Двоичный код — двоичный код, код Грея, код превышения 3, объясненный

    от ketan3009bhandekar

  • Десятичная система счисления — определение, объяснение видео

    от ketan3009bhandekar

  • Система счисления
  • — преимущества, база, типы, видео с объяснением

    от ketan3009bhandekar

  • Конденсатор с параллельными пластинами: электрическое поле, уравнение, объяснение емкости

    от ketan3009bhandekar

  • что такое конденсатор потока: реальная жизнь, использование и видео

    от ketan3009bhandekar

Нравится:

Нравится Загрузка…

Связанные руководства

электричества | Определение, факты и типы

Электростатика — это изучение электромагнитных явлений, которые происходят при отсутствии движущихся зарядов, то есть после установления статического равновесия. Заряды быстро достигают положения равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов.И наоборот, имея набор проводников с известными потенциалами, можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическую энергию набора зарядов в состоянии покоя можно рассматривать с точки зрения работы, необходимой для сборки зарядов; в качестве альтернативы, можно также считать, что энергия находится в электрическом поле, создаваемом этой сборкой зарядов. Наконец, энергия может храниться в конденсаторе; энергия, необходимая для зарядки такого устройства, хранится в нем как электростатическая энергия электрического поля.

Изучите, что происходит с электронами двух нейтральных объектов, тренных друг о друга в сухой среде.

Объяснение статического электричества и его проявлений в повседневной жизни.

Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

Статическое электричество — это знакомое электрическое явление, при котором заряженные частицы передаются от одного тела к другому. Например, если два предмета трутся друг о друга, особенно если они являются изоляторами, а окружающий воздух сухой, предметы приобретают одинаковые и противоположные заряды, и между ними возникает сила притяжения.Объект, теряющий электроны, становится заряженным положительно, а другой — отрицательно. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы описаны выше; они включены в математическое соотношение, известное как закон Кулона. Электрическая сила, действующая на заряд Q 1 в этих условиях, вызванная зарядом Q 2 на расстоянии r , задается законом Кулона

Жирным шрифтом в уравнении обозначается вектор характер силы, а единичный вектор — это вектор, размер которого равен единице, и который указывает от заряда Q 2 до заряда Q 1 .Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10 9 ньютонов на квадратный метр на квадратный кулон (Нм 2 / C 2 ). На рисунке 1 показано усилие на Q 1 , обусловленное Q 2 . Числовой пример поможет проиллюстрировать эту силу. И Q 1 , и Q 2 произвольно выбраны в качестве положительных зарядов, каждый с величиной 10 −6 кулонов.Заряд Q 1 расположен в координатах x , y , z со значениями 0,03, 0, 0 соответственно, а Q 2 имеет координаты 0, 0,04, 0. Все координаты даны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Величина силы F при заряде Q 1 , рассчитанная по уравнению (1), равна 3.6 ньютонов; его направление показано на рисунке 1. Сила, действующая на Q 2 из-за Q 1 , составляет — F , что также имеет величину 3,6 ньютона; его направление, однако, противоположно направлению F . Сила F может быть выражена через ее компоненты по осям x и y , поскольку вектор силы лежит в плоскости x y . Это делается с помощью элементарной тригонометрии из геометрии рисунка 1, а результаты показаны на рисунке 2.Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрической силы между зарядами в состоянии покоя. Если заряды имеют противоположные знаки, сила будет притягивающей; притяжение было бы указано в уравнении (1) отрицательным коэффициентом единичного вектора r̂. Таким образом, электрическая сила на Q 1 будет иметь направление, противоположное единичному вектору , и будет указывать от Q 1 к Q 2 .В декартовых координатах это привело бы к изменению знаков компонентов силы x и y в уравнении (2).

компоненты кулоновской силы

Рисунок 2: Компоненты силы x и y силы F на рисунке 4 (см. Текст).

Предоставлено Департаментом физики и астрономии Университета штата Мичиган

Как можно понять эту электрическую силу на Q 1 ? По сути, сила возникает из-за наличия электрического поля в позиции Q 1 .Поле создается вторым зарядом Q 2 и имеет величину, пропорциональную размеру Q 2 . При взаимодействии с этим полем первый заряд на некотором расстоянии либо притягивается, либо отталкивается от второго заряда, в зависимости от знака первого заряда.

электромагнетизм — Почему величины переменного тока всегда представлены синусоидальными волнами?

Физически наиболее распространены синусоидальные и косинусоидальные волны. Они определенно лучше всего описывают то, что выходит из розетки, не потому, что они нам нравятся математически, а потому, что это то, что выходит; Электродвижущая сила генерируется в электростанции по синусоидальной схеме с частотой 50/60 Гц.В обычном генераторе это происходит потому, что в генераторе вращение движения магнитного ротора приводит к синусоидальному изменению ЭДС в обмотке статора и, следовательно, в любой цепи, подключенной к розетке. (Обратите внимание, что синусоидальная и косинусоидальная волны эквивалентны, и выбор между ними является просто условностью; нейтральное слово, которое может использоваться для описания формы, — это гармоника .)

Еще лучше, если у нас есть более сложная форма волны — от слегка деформированной до пилообразных и ступенчатых сигналов — тогда мы можем использовать ряд Фурье, чтобы разложить их на сумму синусоидальных волн.Затем мы можем изучить отклик схемы на каждую синусоидальную волну независимо и сложить отклики в конце; это обычно намного проще, чем использование формы сигнала напрямую.

Причина, по которой это работает, состоит в том, что большинство цепей линейные . То есть, если мы введем некоторое напряжение $ v (t) $ и измерим какое-то свойство $ p (t) $ схемы, то добавление напряжения $ v ‘(t) $ приведет к тому, что свойство будет $ p (t ) + p ‘(t) $. Таким образом, если наша сложная форма волны $ v (t) $ может быть выражена в виде ряда Фурье, скажем, как $$ v (t) = \ sum_n v_n \ sin (n \ omega t), $$ и мы знаем (потому что это легче изучать), что синусоидальный стимул $ v_n \ sin (n \ omega t) $ приведет к свойству $ p_n (t) $, тогда полная форма волны $ v (t) $ вызовет отклик $$ p (t) = \ sum_n p_n (t).

$

Это, конечно, может выйти из строя, если в вашей схеме есть нелинейные элементы, такие как диоды, электронные лампы или трансформаторы с перегрузкой. Они будут вести себя по-разному и вызовут искажение формы сигнала, что может быть или не быть хорошим, в зависимости от приложения. Это искажение, конечно же, такое же, как и в усилителе для электрогитары.


Последнее слово о прямоугольных и линейных сигналах. Фурье-обработка этих форм сигналов иногда бывает немного трудной, а сходимость вблизи острых краев может быть очень медленной (см.грамм. феномен Гиббса). Это представляет собой очень важную физику прямоугольных волн: мгновенное изменение напряжения фактически невозможно в какой-либо физической цепи. Это связано с тем, что если в цепи источника есть индуктивность $ L $, мгновенное изменение тока $ i $ будет означать бесконечное изменение тока $ \ frac {di} {dt} $ и, следовательно, бесконечное обратное напряжение индуктивности. Типичные источники имеют очень малых индуктивностей, но они никогда не могут быть равны нулю. Сравнение этой индуктивности и внутреннего сопротивления источника даст временную шкалу, в которой напряжение может внезапно изменить знак.

Если вам нужно хорошее описание реальной физической прямоугольной волны, у вас есть два варианта: вы можете учесть конечное время «нарастания» или, что то же самое, вы можете просто взять конечное число членов в ряду Фурье. Последнее, конечно, намного проще!

Осциллограф

: основы | Руководство по чтению и эксплуатации

Типы волн

Большинство волн можно разделить на следующие типы:

  • Синусоидальные волны.
  • Квадратные и прямоугольные волны.
  • Пилообразные и треугольные волны.
  • Формы ступеней и импульсов.
  • Периодические и непериодические сигналы.
  • Синхронные и асинхронные сигналы.
  • Сложные волны.

Далее мы рассмотрим каждый из этих типов волн.

Синусоидальные волны

Синусоидальная волна является основной формой волны по нескольким причинам. Он обладает гармоничными математическими свойствами. «Это та же форма синуса, которую вы, возможно, изучали в классе тригонометрии.

Напряжение в розетке изменяется как синусоида.Тестовые сигналы, создаваемые осцилляторной схемой генератора сигналов, часто являются синусоидальными волнами.

Большинство источников питания переменного тока генерируют синусоидальные волны (переменный ток означает переменный ток, хотя и переменное напряжение; постоянный ток означает постоянный ток, что означает постоянный ток и напряжение, которое производит батарея.) Затухающая синусоида — это особый случай, когда вы может видеть в цепи, которая колеблется, но со временем стихает.

Квадратные и прямоугольные волны

Прямоугольная волна — еще одна распространенная форма волны.По сути, прямоугольная волна — это напряжение, которое включается и выключается (или повышается и понижается) через определенные промежутки времени. Это стандартная волна для тестирования усилителей. Хорошие усилители увеличивают амплитуду прямоугольной волны с минимальными искажениями.

Телевидение, радио и компьютерные схемы часто используют прямоугольные волны для синхронизации сигналов. Прямоугольная волна похожа на прямоугольную, за исключением того, что высокие и низкие временные интервалы не имеют равной длины. Это особенно важно при анализе цифровых схем.

Пилообразные и треугольные волны

Пилообразные и треугольные волны возникают из-за схем, предназначенных для линейного управления напряжением, таких как горизонтальная развертка аналогового осциллографа или растровая развертка телевизора.

Переходы между уровнями напряжения этих волн изменяются с постоянной скоростью. Эти переходы называются рампами.

Формы ступеней и импульсов

Такие сигналы, как шаги и импульсы, которые возникают редко или непериодически, называются однократными или переходными сигналами.

Шаг указывает на внезапное изменение напряжения, подобное изменению напряжения, которое вы видите, если вы включаете выключатель питания.

Импульс указывает на внезапные изменения напряжения, похожие на изменения напряжения, которые вы видите, если вы включите, а затем снова выключите питание. Импульс может представлять один бит информации, проходящий через компьютерную схему, или это может быть сбой или дефект в цепи.

Набор распространяющихся вместе импульсов создает последовательность импульсов. Цифровые компоненты в компьютере взаимодействуют друг с другом с помощью импульсов.Эти импульсы могут быть в форме последовательного потока данных, или несколько сигнальных линий могут использоваться для представления значения на параллельной шине данных. Импульсы также распространены в рентгеновском, радиолокационном и коммуникационном оборудовании.

Периодические и непериодические сигналы

Повторяющиеся сигналы называются периодическими сигналами, а сигналы, которые постоянно меняются, называются непериодическими сигналами. Неподвижное изображение аналогично периодическому сигналу, в то время как фильм аналогичен непериодическому сигналу.

Синхронные и асинхронные сигналы

Если между двумя сигналами существует временная зависимость, эти сигналы называются синхронными. Сигналы часов, данных и адреса внутри компьютера являются примерами синхронных сигналов.

Асинхронные сигналы — это сигналы, между которыми не существует временной зависимости. Поскольку не существует временной корреляции между касанием клавиши на клавиатуре компьютера и часами внутри компьютера, эти сигналы считаются асинхронными.

Сложные волны

Некоторые формы сигналов сочетают в себе характеристики синусов, квадратов, ступеней и импульсов для создания сигналов сложной формы. Информация о сигнале может быть встроена в виде изменений амплитуды, фазы и / или частоты.

Например, хотя сигнал на рисунке 6 является обычным композитным видеосигналом, он состоит из множества циклов высокочастотных сигналов, встроенных в низкочастотную огибающую.

В этом примере важно понимать относительные уровни и временные отношения шагов.Для просмотра этого сигнала вам понадобится осциллограф, который фиксирует низкочастотную огибающую и смешивает высокочастотные волны с градацией интенсивности, чтобы вы могли видеть их общую комбинацию в виде изображения, которое можно интерпретировать визуально.

Цифровые люминофорные осциллографы (DPO) лучше всего подходят для просмотра сложных волн, таких как видеосигналы, показанные на рисунке 6. Их дисплеи предоставляют необходимую информацию о частоте появления или градацию интенсивности, которая необходима для понимания формы волны действительно делает.

Некоторые осциллографы могут отображать определенные типы сложных сигналов особым образом. Например, телекоммуникационные данные могут отображаться в виде глазковой диаграммы или диаграммы созвездия:

Рисунок 6 : Составной видеосигнал NTSC является примером сложной волны.

Телекоммуникационные цифровые сигналы данных могут отображаться на осциллографе в виде сигнала особого типа, называемого глазковой диаграммой. Название происходит от сходства формы волны с серией глаз (рис. 7).

Глазковые диаграммы формируются, когда цифровые данные от приемника дискретизируются и подаются на вертикальный вход, а скорость передачи данных используется для запуска горизонтальной развертки. Глазковая диаграмма отображает один бит или единичный интервал данных со всеми возможными краевыми переходами и состояниями, наложенными на одном всеобъемлющем представлении.

Созвездие — это представление сигнала, модулированного схемой цифровой модуляции, такой как квадратурная амплитудная модуляция или фазовая манипуляция.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовать
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

Основы несинусоидальных сигналов

Дэвид Херрес

Несинусоидальная форма волны — это волна, которая не является синусоидальной, а также не синусоидальной (синусоидальной).Это может показаться незначительным различием, но на самом деле есть некоторые существенные последствия.

Простой дисплей синусоидальной волны.

Синусоидальная волна — это график синусоидальной функции, обычно со временем в качестве независимой переменной. Косинусоидальная волна синусоидальна. Он имеет ту же форму, но сдвинут по фазе на половину π радиан.
Несинусоидальная форма волны обычно является периодическим колебанием, но не является ни одним из них. Некоторые примеры — треугольные волны, прямоугольные волны, прямоугольные волны, трапециевидные волны и зубчатые волны.Как правило, они не возникают в природе, где инерция покоя и сохранение углового момента исключают резкие переходы, характерные для несинусоидальных явлений.

Несинусоидальные сигналы широко используются в мире электроники, и их легко синтезировать. Несинусоидальная форма волны может быть построена путем добавления двух или более синусоидальных волн. Синтез определенной несинусоидальной формы волны заключается в объединении сигналов соответствующей частоты, амплитуды и фазы.Таким образом, прямоугольные волны и аналогичные нелинейные формы сигналов могут быть построены и представлены графически.

Такие формы волны, известные как сложные волны, состоят из одной основной частоты и одной или нескольких гармонических частот. По соглашению, основная волна — это самая низкая частота и, как правило, самая высокая амплитуда.

Гармоники — это то, что придает сложным волнам характерную форму. Гармоники — это целые числа, кратные основной частоте. Целое число может быть нечетным или четным, т.е.е. делится на два.

Синусоидальная волна в частотной области: вся энергия имеет синусоидальную частоту.

В усовершенствованном осциллографе, таком как Tektronix MDO3104, можно просматривать любую форму сигнала во временной или частотной области. Во временной области амплитуда отображается по оси Y , а течение времени отображается по оси X . В частотной области амплитуда также отображается по оси Y , но теперь в децибелах, а не в вольтах, как в более традиционной временной области.Итак, теперь вместо того, чтобы смотреть на временное представление, у нас есть статический снимок функции, отображающий ее амплитуду, выраженную в единицах мощности, а не единицах электродвижущей силы.

Простая прямоугольная волна (вверху) и отображение эквивалентной частотной области. Обратите внимание на три основные верхние гармоники, отображаемые справа от основной частоты.

Обычно наибольшая мощность приходится на основную. Прямоугольная волна, чтобы взять один пример несинусоидальной формы волны, имеет быстрое время нарастания и спада, что приводит к появлению множества гармоник высокого порядка на отображении спектра.Даже на низких частотах он имеет множество высокочастотных характеристик. По этой причине гармоники содержат значительную мощность. Неправильные следы в нижней части дисплеев частотной области, видимые на сопроводительном изображении, — это так называемый минимальный уровень шума, который по-разному приписывается движению атомов в схемах осциллографа и музыке сфер.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *