+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Генератор из асинхронного двигателя своими руками


За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.
Табличка с маркировкой двигателя:

Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическими техническими обслуживаниями, так как пыль и грязь никуда просто так попасть и проникнуть не могут.
Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.

Переделка асинхронного двигателя в генератор


Снимаем крышки, извлекаем ротор.
Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.

Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.


То есть, родной ротор стачивается до определенного размера.
Вытачивается стальной стакан и запрессовывается на ротор. Толщина скана в моем случае 5 мм.

Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор.
Основная загвоздка возникла в вырезании множественных кружочков в бумаге.
Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.

Неодимовые магниты приклеены на супер клей.

Была сделана сетка из капроновой нити для укрепления.

Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.

Смола потихоньку стекает сверху вниз.

После застывания эпоксидной смолы, снимаем скотч.


Теперь все готов к сборке генератора.

Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.

Собираем, закрываем крышки.

Магниты не задевают. Залипания почти нет, крутится относительно легко.
Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.
Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать.
Снимается напряжение для проверки между фазами.

Генератор из асинхронного двигателя работает отлично.

Смотрите видео


Более подробную информацию смотрите в видеоролике.

Канал автора — Peter Dmitriev

Генератор из асинхронного двигателя своими руками: 3 схемы | Секреты дедова ремонта

Генератор из асинхронного двигателя своими руками: 3 схемы

Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.

Эта статья рассказывает, как можно просто и надежно сделать генератор из асинхронного двигателя своими руками по одной из трех доступных схем, а в ее конце приведен видеоролик, автор которого воплотил в железе эту идею.

Однако там есть ошибочные выводы. Не повторяйте их.

Секреты подбора электродвигателя

Асинхронная машина может работать в режиме:

1. двигателя, когда на нее подается электрическое напряжение;

2. или генератора, если вращать ее ротор с определенной величиной крутящего момента от дополнительного источника. Им может быть любой двигатель внутреннего сгорания, водяная турбина, ветряное колесо или другой источник энергии.

Отработавшие на производстве трехфазные электродвигатели часто списывают. Они попадают в руки домашнего мастера практически бесплатно или по символической цене.

Ими не сложно воспользоваться для решения бытовых или хозяйственных задач. Потребуется только оценить конструкцию: возможности по выработке электроэнергии определенного напряжения и мощности от источника энергии с конкретным числом оборотов.

Для этого следует изучить характеристики статора и ротора.

Коротко о статоре

Конструкция статора асинхронного двигателя представлена:

· тремя обмотками, по которым проходит электрический ток;

· магнитопроводом из пластин электротехнического железа, созданному для передачи магнитного потока.

Генератор из асинхронного двигателя своими руками: 3 схемы

Соединение концов обмоток может выполняться схемой звезды либо треугольника. Каждый вариант имеет свои особенности. Их надо учитывать для различных условий эксплуатации.

Чтобы не отвлекать ваше внимание на этот вопрос рекомендую тем, кого он интересует, ознакомиться с этой информацией более подробно в статье о способах подключения трехфазного асинхронного электродвигателя в однофазную сеть.

Она будет полезна многим людям.

Что надо знать о роторе

Он имеет три обмотки из изолированного провода. по которым протекают наводимые токи и формируют суммарный крутящий момент магнитного поля.

Эти обмотки могут быть:

1. выведены на внешние клеммы статора через контактные вращающиеся кольца с щеточным механизмом. Его называют ротором с фазной обмоткой;

2. короткозамкнуты встроенным алюминиевым кольцом — «беличье колесо».

Выглядят они следующим образом.

Генератор из асинхронного двигателя своими руками: 3 схемыГенератор из асинхронного двигателя своими руками: 3 схемы

Для бытовых целей предпочтительнее использовать электродвигатель у которого работает короткозамкнутый ротор. О нем идет речь дальше.

Однако, если попалась в руки модель с фазным ротором, то ее легко переделать в короткозамкнутую: достаточно просто зашунтировать выходные контакты между собой.

Важные электрические характеристики

Чтобы сделать генератор из асинхронного двигателя стоит учесть:

· поперечное сечение провода обмотки. Оно ограничивается тепловым воздействием от протекающих суммарных токов, формируемых как от активной нагрузки, так и реактивных составляющих;

· число оборотов, на которые рассчитан электродвигатель. Это оптимальная величина, котрой следует придерживаться при выборе подключения к источнику энергии;

· КПД, cos φ;

· схему подключения обмоток.

Эти величины указываются на табличке корпуса или рассчитываются косвенными методами.

Генератор из асинхронного двигателя своими руками: 3 схемы

Как работает двигатель в режиме генератора

При раскрутке ротора необходимо возбудить электромагнитное поле. Его добиваются за счет параллельного подключения к обмоткам емкостной нагрузки от батареи конденсаторов разными методами. Рассмотрим их.

Две схемы звезды

Типовое подключение выглядит следующим образом.

Генератор из асинхронного двигателя своими руками: 3 схемы

Упрощенный вариант схемы показан ниже.

Генератор из асинхронного двигателя своими руками: 3 схемы

Здесь применяют рабочий и пусковой конденсаторы, которые коммутируются собственными переключателями.

Схема треугольника

Она позволяет вырабатывать 220 вольт линейного напряжения.

Генератор из асинхронного двигателя своими руками: 3 схемы

Как подобрать конденсаторы

Емкость конденсатора для возбуждения генератора можно подсчитать по формуле, исходя из реактивной мощности, частоты и напряжения.

С=Q/2π∙f∙U2.

Следует учитывать, что они по разному влияют на нагрев обмоток в различных режимах. Поэтому для холостого хода и работы генератора используют ступенчатое переключение.

Рекомендуемые расчеты представлены таблицей.

Генератор из асинхронного двигателя своими руками: 3 схемы

Конденсаторную батарею рекомендую набирать из бумажных моделей на 500 вольт. Пользоваться электрическими конструкциями не рекомендую даже при включении каждой полугармоники через диод.

Электролит при нагревании может закипеть, что приведет к взрыву корпуса.

Особенности эксплуатации

Для безопасной работы необходимо:

· правильно подобать измерительные приборы;

· включить в схему защиты автоматический выключатель и УЗО;

· смонтировать схему резервного питания;

· правильно выбрать систему напряжения;

· избегать перегрузок за счет эффективного подключения потребителей;

· контролировать рабочую частоту на выходе.

О том, как это сделать, подробно раскрыто в статье на моем сайте: «Как сделать генератор из асинхронного двигателя». Рекомендую прочитать и выполнить.

Ее хорошо дополняет видеоролик Ильи Петровича. Обязательно посмотрите и ознакомьтесь с комментариями. Он допустил несколько характерных ошибок, а люди в своих комментариях указали на них. Надеюсь, что эта информация будет полезной для вас.

До встречи в следующей публикации.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил – переломил вдвое плату  вместе с металлической пластиной крепления.

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было.  На фото проводники образуют обмотки и заканчиваются выводами.

Соединения обмоток  отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора,  вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 – 100 мкФ х 16 В, все шесть диодов 1N5817.

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант — поставить на выход стабилизатор.

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика – «жучка».

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

Схема собрана, вновь обращённый генератор к тесту готов.

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео — работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве ветрогенератора способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании.

На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался
Babay
.

   Форум по электротехнике

   Форум по обсуждению материала ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

как переделать ветромотор своими руками

Не всегда покупка заводского генератора является целесообразной. Иногда проще использовать подручные материалы и инструменты, чтобы сделать его самостоятельно. Устройства мощностью до 1 кВт будет достаточно для подключения уличного освещения на даче или любых других бытовых приборов. Можно соорудить такой генератор из асинхронного двигателя.

Конструктивные особенности

Изготовление асинхронного генератора своими руками дает множество преимуществ. Это бесплатный источник электричества, который можно использовать в разных целях. К тому же сделать такую работу может даже начинающий мастер.

Конструктивно схема электрогенератора будет состоять из нескольких ключевых элементов:

  1. Ротор. Он имеет лопасти, турбину и хвост, который позволяет монтировать конструкцию против направления ветра.
  2. Мачта. Может быть с растяжками или без, которые нужны для установки ротора. Как правило, высота мачт составляет около 5—6 метров, хотя это зависит от ветров в определённом регионе.
  3. Аккумуляторы. Можно взять старые свинцовые агрегаты.
  4. Электрогенератор переменного тока. Для этого нужно подготовить двигатель для последующей переделки.
  5. Устройство с дисплеем, чтобы регулировать уровень заряда аккумулятора.
  6. Преобразователь электричества. Достаточно мощности в 1 тыс. Вт.
  7. Система заземления.

Принцип работы устройства

Принцип работы самодельных генераторов переменного тока на 220 В ничем не отличается от устройств, которые применяются в промышленных целях. И те и другие перерабатывают кинетическую энергию в электрическую.

В конструкциях, изготовленных своими руками, сила ветра крутит ветряк, который закреплён на роторе. Таким образом, кинетическая энергия передаётся генератору. Он и производит электроэнергию. В качестве генератора зачастую используется переделанный асинхронный двигатель.

Вырабатываемая генератором электроэнергия передаётся в аккумуляторы. Последние должны оснащаться модулем контроля заряда. Из аккумуляторов электроэнергия поступает в инвертор постоянного напряжения. Таким образом, можно создать переменное напряжение. Оно будет подходить для использования в бытовых целях, то есть с параметрами 220 В и 50 Гц.

Чтобы преобразовать переменное напряжение в постоянное, необходимо установить специальный контроллер. Именно благодаря ему аккумуляторы заряжаются. Иногда инверторы могут выполнять функцию источника бесперебойного питания. То есть в случае отсутствия централизованного электричества или перебоев в его работе асинхронный генератор переменного тока можно использовать для бытовых целей, питания различных приборов, работающих на 220 В.

Необходимые материалы и инструменты

Для изготовления мотора-генератора своими руками достаточно иметь антисинхронный двигатель. Остальные материалы можно найти в хозяйстве или на специализированных рынках радиотехники.

Могут понадобиться такие инструменты и материалы:

  1. Труба из стали с толщиной стенок не менее 3 мм и общим диаметром 6 см и больше. Высоту нужно подбирать индивидуально, в зависимости от скорости ветров в регионе. Но нужно помнить, что чем выше будет мачта, тем сильнее будет дуть ветер и, соответственно, вырабатываться больше электричества.
  2. Для изготовления лопастей можно использовать различные материалы, но лучше купить готовую деталь заводского производства, так как она будет идеально откалибрована. Самостоятельно изготовить её можно из труб или листов ПВХ, металла. Кроме этого, может подойти деревянная доска, профиль из стеклоткани.
  3. В качестве основы (опоры для мачты) подойдёт бетонная стяжка. С другой стороны, можно использовать металл или дерево. Нужно только помнить, что за надёжность конструкции отвечает основа. Если опора будет слабой, то мачта со временем рухнет от ветра.
  4. Дрель и набор свёрл.
  5. Ножовка.
  6. Разводной ключ.
  7. Рулетка.
  8. Лист металла, который будет служить материалом для изготовления мачты.
  9. Стальная рама. Она будет выполнять функцию основы для ветрогенератора, поворотного механизма и лопастей.
  10. Весь необходимый дополнительный инструмент, включая сварку, с помощью которого можно изготовить устройство.
  11. Хомуты для фиксации растяжек.
  12. Металлический трос с сечением 12 мм.

Характеристики ветрогенератора

Сначала необходимо определиться с желаемым итоговым результатом. Характеристики электродвигателя, выполняющего роль генератора, могут быть разными, и от этого зависит, сколько электроэнергии устройство будет вырабатывать за единицу времени.

Для производства среднего количества энергии генератор должен иметь приблизительно такие характеристики:

  1. Минимальная мощность установки — 1.3 кВт.
  2. Желательны неодимовые магниты в конструкции. Их функция заключается в обеспечении электромагнитной движущейся силы. Для этого может применяться и стальная гильза, которая устанавливается на ротор.
  3. Расположение магнитов на роторе должно соответствовать схеме. Это значит, что их полюсы должны быть развёрнуты в правильную сторону.
  4. Предварительно вал ротора нужно проточить и подогнать размеры под диаметр магнитов.
  5. При установке магнитов не всегда требуется переделывать обмотку. Если она состоит из проводов с большим сечением — ничего страшного, это только увеличит мощность. Самым лучшим вариантом обмотки будет устройство, имеющее шесть полюсов, провод с сечением не более 1.2 мм и максимум 24 витка на катушке.

Нюансы монтажа

Как правило, для изготовления ветро генератора из асинхронного двигателя своими руками применяется ветряк с тремя лопастями, которые в диаметре достигают двух метров. Если увеличить количество лопастей или их длину, то улучшение характеристик не произойдёт. Перед тем как выбирать модификацию устройства, тип, характеристики, габариты, необходимо осуществить правильный расчёт.

Для начала нужно рассчитать мощность самой мачты. Она должна устанавливаться на бетонную основу толщиной полметра. Предварительно следует вырыть яму, также учитывая при этом состояние и тип почвы.

Подключать к электросети каждый из приборов нужно в определённом порядке. Сначала идут аккумуляторы, а потом уже и ветрогенератор. Вращаться вал электромотора может либо горизонтально, либо вертикально. Как правило, устанавливают в вертикальном положении, это связано с конструктивными особенностями. Для обеспечения защиты от влаги генератор оборудуют прокладками или колпаком.

Для установки мачты необходимо выбрать открытое место, где будет максимальное количество ветров. Высота монтажа генераторного устройства должна быть достаточно большой. Переделанный асинхронник в идеальном варианте устанавливается на высоте 15 метров, но на практике мачты более 7 метров никто не использует.

В качестве основного источника электрического питания дома устройство лучше не использовать. Такое тихоходное устройство следует устанавливать для страховки от ситуаций с перебоями в электричестве или для экономии семейного бюджета, поскольку счёт за централизованную подачу существенно уменьшается.

Стоит отметить, что установки подобного типа можно использовать не во всех регионах. Минимальная скорость ветра для целесообразности использования должна постоянно держаться на отметке 7 метров за секунду. Если этот показатель меньше, то и электроэнергии будет вырабатываться очень мало.

Перед установкой проводятся необходимые расчёты. В некоторых ситуациях могут возникнуть сложности с обработкой узлов асинхронного движка. Ветряк нельзя изготовить без соответствующих модулей, а также проведения предварительных испытаний устройства. Подключение такого оборудования осуществить невозможно.

Переделка своими руками

Конечно, можно купить асинхронный генератор заводского производства, но вариант самостоятельного изготовления значительно экономнее и не занимает много времени. В процессе не должно возникнуть никаких сложностей даже у неопытного человека.

Для переделки коллекторного двигателя переменного тока необходимо подготовить некоторые инструменты. Выполнять работу нужно с учётом определённых правил:

  1. Основной особенностью работы устройства является более высокая скорость вращения вала генератора, нежели двигателя. Поэтому сначала следует выяснить количество оборотов мотора за определённое время. Сделать можно такую операцию тахометром.
  2. Зная этот показатель, к полученой цифре требуется прибавить 10%. То есть при оборотах мотора в 1200 оборотов за минуту генератор должен иметь вращение 1310 оборотов.
  3. Для производства однофазного устройства или трёхфазного на 380 вольт необходимо подготовить ёмкость для конденсаторов. Следует учесть, что все конденсаторы системы не должны отличаться фазами.
  4. Ёмкость лучше подбирать средних размеров. Если она будет очень большой, то моторчик может перегреваться.
  5. К выбору и установке конденсаторов нужно подойти особо тщательно. Они должны обеспечивать нужное вращение вала двигателя. Их изоляция также важна во избежание попадания влаги.

Генератор можно взять и с других устройств, к примеру, от автомобиля ВАЗ. После этого требуется переходить к его монтажу на мачту. Следует помнить, что в случае использования ротора, работающего в короткозамкнутом режиме, устройство будет вырабатывать ток с высоким напряжением.

Для получения 220 вольт следует оснастить устройство понижающим трансформатором. Устройство не нужно подключать к электросети, поскольку оно работает по методу самозапитки.

Таким образом, сделать генератор из асинхронного двигателя не является сложной задачей даже для начинающего мастера. Если учесть все возможности устройства, то можно сделать вывод, что в определённых ситуациях оно поможет с перебоями электричества, а при установлении очень мощного ветрогенератора будет основным источником энергии в доме.

Как сделать электрогенератор из электродвигателя, разбираем подробно этапы

Ответ на вопрос, как сделать самостоятельно электрогенератор из электродвигателя, основывается на знании устройства этих механизмов. Основная задача заключается в преобразовании двигателя в машину, выполняющую функции генератора. При этом следует продумать способ, как весь этот узел будет приводиться в движение.

Где используется генератор

Оборудование данного вида находит применение в совершенно разных областях. Это может быть промышленный объект, частное или загородное жилье, стройплощадка, причем любых масштабов, гражданские здания разного целевого использования.

Одним словом, совокупность таких узлов, как электрогенератор любого типа и электродвигатель, позволяют реализовать следующие задачи:

  • Резервное электроснабжение;
  • Автономная подача электроэнергии на постоянной основе.

В первом случае речь идет о страховочном варианте на случай возникновения опасных ситуаций, таких, как перегрузка сети, аварии, отключения и прочее. Во втором случае электрогенератор разнотипный и электродвигатель позволяют получить электричество в местности, где отсутствует централизованная сеть. Наряду с этими факторами присутствует еще одна причина, по которой рекомендуется использование автономного источника электроэнергии – это необходимость подачи стабильного напряжения на вход потребителя. Подобные меры нередко принимаются, когда необходимо ввести в работу оборудование с особо чувствительной автоматикой.

Особенности устройства и существующие виды

Чтобы определиться с тем, какой электрогенератор и электродвигатель выбрать для реализации поставленных задач, следует представлять себе, в чем заключается разница между существующими видами автономного источника энергоснабжения.

Бензиновые, газовые и дизельные модели

Основное отличие – тип топлива. С этой позиции различают:

  1. Бензиновый генератор.
  2. Дизельный механизм.
  3. Устройство на газу.

В первом случае электрогенератор и содержащийся в конструкции электродвигатель по большей части используется для обеспечения электроэнергией на короткие сроки, что обусловлено экономической стороной вопроса ввиду высокой стоимости бензина.

Преимущество дизельного механизма заключается в том, что на его обслуживание и эксплуатацию потребуется значительно меньшее количество топлива. Дополнительно дизельный электрогенератор автономного типа и электродвигатель в нем будут работать длительный период времени без отключений благодаря большим ресурсам двигателя.

Устройство на газу является отличным вариантом на случай организации постоянного источника электроэнергии, так как топливо в данном случае всегда под рукой: подключение к газовой магистрали, использование баллонов. Поэтому стоимость эксплуатации такого агрегата будет ниже ввиду доступности топлива.

Основные конструктивные узлы такой машины тоже отличаются по исполнению. Двигатели бывают:

  1. Двухтактные;
  2. Четырехтактные.

Первый вариант устанавливается на устройства меньшей мощности и габаритов, тогда как второй – используется на более функциональных аппаратах. В генераторе имеется узел – альтернатор, другое его название «генератор в генераторе». Существует два его исполнения: синхронный и асинхронный.

По роду тока различают:

  • Однофазный электрогенератор и, соответственно, электродвигатель в нем;
  • Трехфазное исполнение.

Последний из названных вариантов рекомендуется приобретать в случае, когда пользователь планирует подключать к нему трехфазные потребители. Их преимущество заключается в возможности питать также и однофазную технику.

Чтобы понять, как сделать электрогенератор из асинхронного электродвигателя, важно понимать принцип действия этого оборудования. Так, основа функционирования заключается в преобразовании разных видов энергий. В первую очередь происходит переход кинетической энергии расширения газов, возникающих при сгорании топлива, в механическую. Это происходит с непосредственным участием кривошипно-шатунного механизма при вращении вала двигателя.

Преобразование механической энергии в электрическую составляющую происходит посредством вращения ротора альтернатора, в результате чего образуется электромагнитное поле и ЭДС. На выходе после стабилизации выходное напряжение попадает к потребителю.

Делаем источник электроэнергии без узла привода

Наиболее распространенным способом для реализации такой задачи является попытка организовать энергоснабжение посредством асинхронного генератора. Особенностью данного метода является приложение минимума усилий в плане монтажа дополнительных узлов для корректной работы такого устройства. Это обусловлено тем, что данный механизм функционирует по принципу асинхронного двигателя и продуцирует электроэнергию.

Смотрим видео, безтопливный генератор своими силами:

При этом ротор вращается с намного большей скоростью, чем смог бы выдавать синхронный аналог. Сделать электрогенератор из асинхронного электродвигателя своими руками вполне можно, не используя при этом дополнительных узлов или особых настроек.

В результате принципиальная схема устройства останется практически нетронутой, но появится возможность обеспечить электроэнергией небольшой объект: частный или загородный дом, квартиру. Применение таких устройств довольно обширно:

Чтобы организовать действительно автономный источник энергоснабжения, электрогенератор без приводящего в работу двигателя должен функционировать на самовозбуждении. А это реализуется посредством подключения конденсаторов в последовательном порядке.

Смотрим видео, генератор своими руками, этапы работ:

Другая возможность выполнить задуманное – использовать двигатель Стирлинга. Его особенностью является преобразование тепловой энергии в механическую работу. Другое название такого узла – двигатель внешнего сгорания, а если говорить точнее, исходя из принципа работы, то, скорее, двигатель внешнего нагрева.

Это обусловлено тем, что для эффективного функционирования устройства требуется значительный перепад температур. В результате роста этой величины повышается и мощность. Электрогенератор на двигателе внешнего нагрева Стирлинга может работать от любого источника тепла.

Последовательность действий при самостоятельном изготовлении

Чтобы превратить двигатель в автономный источник электроснабжения, следует несколько изменить схему, подключив конденсаторы к обмотке статора:

Схема включения асинхронного двигателя

При этом будет протекать опережающий емкостной ток (намагничивающий). В результате образуется процесс самовозбуждения узла, а величина ЭДС соответственно изменяется. На этот параметр в большей мере влияет емкость подключенных конденсаторов, но нельзя забывать и о параметрах самого генератора.

Чтобы устройство не грелось, что обычно является прямым следствием неправильно подобранных параметров конденсаторов, нужно руководствоваться специальными таблицами при их выборе:

Эффективность и целесообразность

Прежде, чем решать вопрос, где купить автономный электрогенератор без двигателя, нужно определить, действительно ли хватит мощности такого устройства для обеспечения потребностей пользователя. Чаще всего самодельные аппараты этого рода обслуживают маломощных потребителей. Если решено сделать своими руками электрогенератор автономный без двигателя, купить необходимые элементы можно в любом сервисном центре или магазине.

Но преимуществом их является сравнительно небольшая себестоимость, учитывая, что достаточно лишь немного изменить схему, подключив несколько конденсаторов подходящей емкости.  Таким образом, при наличии некоторых знаний можно соорудить компактный и маломощный генератор, который будет обеспечивать достаточным количеством электроэнергии для питания потребителей.

Генератор для ветряка из асинхронного двигателя

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

> Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.

>

> Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно «север», второй полюс «юг». Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.

>

После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.

>

В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.

Далее дошла очередь до винта. Лопасти для ветрогенератора были вырезаны из ПВХ трубы диаметром160мм. Ниже на фото сам винт диаметром 1,7 м., и расчетные данные, по которым делались лопасти.

>

После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.

>

Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.

>

Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку . Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Пока к сожалению никаких подробных данных по мощности ветрогенератора нет, так-как пользователь разместивший свой ветрогенератор вот здесь Фотоальбом ветряки ВК. не оставил эти данных. Но руководствуясь расчетами попробую немного просчитать что все-таки дает генератор на ветру 8-9 м/с, так-как напряжение холостого хода 80 вольт на этом ветре.

Данные на шиндике электродвигателя говорили 220/380 вольт 6,2/3,6 А.значит сопротивление генератора 35,4Ом треугольник/105,5 Ом звезда. Если он заряжал 12-ти вольтовый аккумулятор по схеме включения фаз генератора в треугольник, что скорее всего, то 80-12/35,4=1,9А. Получается при ветре 8-9 м/с ток зарядки был примерно 1,9 А, а это всего 23 ватт/ч, да немного, но может я где-то ошибся, если что поправьте в комментариях и я исправлю.

Такие большие потери из-за высокого сопротивления генератора, поэтому статор обычно перематывают более толстым проводом чтобы уменьшить сопротивление генератора, которое влияет на силу тока, и чем выше сопротивление обмотки генератора, тем меньше сила тока и выше напряжение.

Некоторые данные по ветрогенератору. Автор данного ветрогенератора Сергей написал что ток короткого замыкания 3,5А..При ветре 5-7м,с ,75в холостого хода,с нагрузкой надва АКБ,это 24в,2,5А и при этом на контролере срабатывал постоянно баласт..Это показания на 14.09.13г..А так получилось всё отлично..

Генератор из асинхронного двигателя своими руками

На чтение 2 мин.

За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.

Табличка с маркировкой двигателя:

Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическими техническими обслуживаниями, так как пыль и грязь никуда просто так попасть и проникнуть не могут.

Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.


Переделка асинхронного двигателя в генератор

Снимаем крышки, извлекаем ротор.

Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.

Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.

То есть, родной ротор стачивается до определенного размера.

Вытачивается стальной стакан и запрессовывается на ротор. Толщина скана в моем случае 5 мм.

Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор.

Основная загвоздка возникла в вырезании множественных кружочков в бумаге.

Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.

Неодимовые магниты приклеены на супер клей.

Была сделана сетка из капроновой нити для укрепления.

Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.

Смола потихоньку стекает сверху вниз.

После застывания эпоксидной смолы, снимаем скотч.

Теперь все готов к сборке генератора.

Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.

Собираем, закрываем крышки.

Магниты не задевают. Залипания почти нет, крутится относительно легко.

Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.

Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать.

Снимается напряжение для проверки между фазами.

Генератор из асинхронного двигателя работает отлично.


Смотрите видео

Более подробную информацию смотрите в видеоролике.

Канал автора — Peter Dmitriev

Создайте самодельную систему генератора переменного / постоянного тока высокой мощности

Эта запись была опубликована 23 сентября 1999 года на сайте TheEpicenter.com.

СИСТЕМА Компоненты для самодельной системы генератора переменного / постоянного тока

  • Двигатель, работающий на газе (или пропане)
  • Муфта вала прямого привода
  • Головка генератора переменного тока, 3600 об / мин
  • Генератор GM, 12 или 24 В
  • Промышленный клиновой ремень
  • Шкив (аналогично показанному)
  • Кронштейн генератора горизонтальный (собственный Эпицентр!)

SUBSYSTEM Компоненты для самодельной системы генератора переменного / постоянного тока

Основные компоненты в подсекции переменного тока

Проект может остановиться здесь, если DC не требуется *

Компоненты, увеличивающие возможность зарядки постоянным током

Установите генератор на двигатель!

Добавьте этот кронштейн — упрощает! Добавьте кабели для последнего штриха.

* Обратите внимание: TheEpicenter.com не продает головки для генераторов переменного тока.

Вопросы по генератору

Q: Так зачем мне создавать собственный генератор, если я могу просто купить его, готовый к работе?

A: Чертовски хороший вопрос!

Во многих случаях лучше просто выложить деньги и купить качественный генератор переменного тока, такой как эта модель Generac, но в других случаях действительно невозможно получить все, что вы хотите, не сделав это самостоятельно. Это если вам нужно много заряда постоянного тока, а также синусоидального переменного тока.

С другой стороны, создание идеальной системы может стоить не так дорого, как вы думаете, если у вас уже есть один из ключевых компонентов.

Вы можете быть одним из тех мастеров, у которых может быть запасной двигатель, и вы могли бы использовать его для привода головки генератора без необходимости покупать дорогую специализированную систему генератора переменного тока. В некоторых случаях может быть дешевле купить головку генератора и повторно использовать двигатель от чего-то еще, в чем вы больше не нуждаетесь или нуждаетесь только в течение нескольких месяцев в году.

Хорошим примером может быть человек, у которого сидит мойка высокого давления с большим двигателем, возможно, качественным и дорогим, как у Honda. В этом случае вы можете снять насос в сборе со своей стиральной машины и прикрепить генераторную головку, когда это необходимо зимой, а весной вы можете снять генераторную головку и снова прикрепить блок насоса мойки высокого давления.

Лучше было бы построить многоцелевую систему выработки электроэнергии, потому что в настоящее время ее нельзя купить.В этом приложении вам может потребоваться зарядить батарею, например, одновременно с наличием некоторого источника переменного тока. В этом приложении один и тот же двигатель может напрямую приводить в действие головку генератора, одновременно приводя в движение генератор переменного тока для зарядки постоянным током.

В общем, когда кто-то хочет зарядить батарею, часто бывает доступна избыточная мощность, которую можно использовать для одновременной работы головки генератора переменного тока. Или, с другой стороны, вам может потребоваться питание переменного тока для ремонта дома с помощью электроинструментов, или вам может потребоваться включить микроволновую печь, холодильник или что-то еще, и вы хотели бы одновременно зарядить свои батареи.

Здесь слева показан прототип проекта, над которым я экспериментирую для собственного использования.

Головка генератора переменного тока напрямую соединена с двигателем Tecumseh 8 HP и имеет 12-вольтный генератор переменного тока с ременным приводом, установленный на нашем горизонтальном кронштейне генератора, который прикреплен к двигателю. Чтобы получить полную номинальную выходную мощность в 6000 Вт пиковой мощности от головки генератора, этот конкретный двигатель не имеет достаточной мощности. Чтобы развить полную номинальную выходную мощность от этой головки, двигатель действительно должен быть моделью 10 л.с., такой как HM100, или, еще лучше, моделью 11 л.с. для немного большего запаса прочности.Конечно, использование генератора переменного тока исключительно на этом двигателе является примером чрезмерной эксплуатации, но сочетание более низкой выходной мощности переменного тока при наличии постоянного тока обеспечивает довольно эффективное использование топлива и ресурсов.

В моем приложении мне не требуется более 2500 Вт переменного тока, для чего обычно требуется двигатель мощностью около 5 л.с. Оставшиеся 3 лошадиные силы могут быть выделены на подсистему зарядки постоянного тока с помощью подключенного генератора переменного тока.

Вот еще один вид, на котором вы можете увидеть компоненты прямого и ременного привода.

Давайте посмотрим, что действительно требуется для того, чтобы эта головка генератора вырабатывала переменный ток для определенных уровней выходного тока.

Для полной мощности производитель указывает двигатель мощностью 11 л.с., но могут использоваться и другие двигатели, если вы не нарушаете общие правила, изложенные ниже. Попытка потребить больше мощности, чем показано ниже, с использованием мощности двигателя ниже номинальной, приведет к тому, что генератор будет вырабатывать напряжение переменного тока ниже указанного на выходе. В некоторых случаях это может привести к потере энергии, что может привести к электрическому повреждению устройств, на которые подается питание.Следует принять особые меры предосторожности, чтобы гарантировать, что приведенные ниже номинальные значения мощности в лошадиных силах и выходная мощность или уровни не нарушаются.

Выход генератора переменного тока Требуемый объем двигателя (например, для целей)
6000 Вт пиковая, 5000 Вт непрерывная
(полная номинальная выходная мощность переменного тока, без постоянного тока)
11 Мощность
5000 Вт пиковая, 4000 Вт непрерывная 8 Мощность в лошадиных силах
3000 Вт пиковая, 2500 Вт непрерывная 5 Мощность в лошадиных силах

Итак, если вы используете двигатель мощностью 8 л. генератор, работающий, скажем, на 40 ампер (14.4 вольт x 40 ампер = 576 ватт) с небольшим пространством для головы, когда ремень приводится в движение с того же вала.

Хотя производитель специально заявляет, что для развития полной номинальной мощности требуется мощность двигателя, эквивалентная одиннадцати лошадиным силам, меньшие версии этой генераторной головки производят более низкие продолжительные характеристики, указанные в таблице, и требуют меньшей мощности. Мы экстраполировали данные, представленные в спецификациях для меньших головок генератора, и, хотя большая пиковая головка 6000 Вт имеет большую массу в роторе, мы реалистично ожидаем, что для вращения ротора не требуется такой большой дополнительной мощности, особенно с учетом герметичности шариковые подшипники используются на обоих концах головки.

Я предполагаю, что я пытаюсь сказать, что если вы можете гарантировать, что никогда не будете пытаться вытащить слишком много переменного тока из головки генератора, то даже небольшой двигатель не заглохнет, и у вас будет дополнительная мощность, доступная для других целей. как запуск генератора переменного тока, как показано в прототипе.

Итак, давайте обсудим некоторые вопросы
Типичные газовые двигатели оценивают свою мощность в лошадиных силах при 3600 об / мин.

Если двигатель используется на скоростях ниже этого номинального значения, двигатель не развивает полный номинальный выходной крутящий момент и мощность в лошадиных силах.

Однако работа двигателя на более низких оборотах увеличивает топливную экономичность и снижает износ, поэтому всегда есть компромиссы.

Следует также отметить, что выходной вал этих небольших двигателей вращается против часовой стрелки, если смотреть со стороны выходного вала двигателя. Это то, что придет снова!

Поскольку большинство двигателей рассчитано на 3600 об / мин, вы заметите, что многие головки генератора также рассчитаны на вращение со скоростью 3600 об / мин.

Если вы попытаетесь запустить головку генератора переменного тока на скорости ниже номинальной 3600 об / мин, в этом случае выходное напряжение переменного тока не будет составлять 120 вольт, а будет более низким.Некоторое оборудование, которое вы собираетесь использовать, может быть более снисходительным к более низкому напряжению, какое-то оборудование может быть повреждено, поэтому очень важно, чтобы вы вращали генератор с правильной частотой вращения.
Более подробное обсуждение настройки числа оборотов двигателя и головки генератора можно найти в следующем разделе.

Также следует отметить, что вал головки генератора должен вращаться по часовой стрелке, если смотреть со стороны вала головки генератора. Итак, расположите валы лицом друг к другу и угадайте, что? И двигатель, и головка генератора вращаются в правильном направлении.Это позволяет напрямую приводить в действие головку генератора с помощью муфты вала.

Теперь поговорим о подключении двигателя к генераторной головке

Вопрос: Как вы напрямую приводите в действие головку генератора с двигателем?
A: Узел муфты вала прямого привода.

Для соединения выходного вала двигателя с входным валом головки генератора (или чем-либо еще) требуется специальная муфта вала. В основном нужно три штуки.

Выберите половину муфты, размер которой соответствует валу двигателя (или размеру ведущего вала), затем выберите половину муфты, которая имеет правильный размер для головки генератора (или размер ведомого вала).

Затем две соединительные муфты соединяются с помощью так называемой крестовины.

Обратите внимание, что каждая муфта вала имеет по 3 пальца, а крестовина имеет 6 пазов. Три пальца со стороны двигателя входят в три паза крестовины, а три пальца со стороны соединителя генератора входят в другие три паза на крестовине. Этот узел муфты допускает перекос между двумя валами на несколько степеней и защищает подшипники от боковых нагрузок, которые могут возникнуть в результате перекоса.

Эти соединители доступны в нескольких размерах. На сайте TheEpicenter.com доступны несколько размеров.

Q: Когда вы строите свой собственный генератор переменного тока, используя газовый двигатель и головку генератора переменного тока, как вы настраиваете комбинацию, чтобы система вырабатывала правильное выходное напряжение и вращала головку генератора с правильной скоростью?
A: Можно использовать два подхода:

Измерьте напряжение переменного тока для регулировки оборотов двигателя.

Этот вольтметр переменного тока подключается непосредственно к любой розетке переменного тока и отображает измеренное напряжение без необходимости использования портативного цифрового вольтметра и пробников для подключения к розетке переменного тока.Глюкометр имеет встроенную вилку переменного тока на задней стороне.

Напряжения в стандартном диапазоне от 115 до 125 вольт выделены зеленым цветом, что указывает на допустимые параметры напряжения. Напряжения, выходящие за пределы этих диапазонов, обозначены красным цветом. Этот измеритель обеспечивает легко читаемую индикацию выходного напряжения генератора.
Измеряйте обороты двигателя с помощью индуктивного тахометра, а также знайте, когда менять масло!
Это устройство позволяет контролировать и настраивать частоту вращения двигателя таким образом, чтобы он вращался с указанной частотой вращения, необходимой для головки генератора.Это счетчик оборотов (оборотов в минуту) или тахометр. Он индуктивно подключается к проводу свечи зажигания и определяет скорость зажигания свечи зажигания в течение заданного периода времени. Результат измерения отображается в оборотах в минуту. Затем можно регулировать частоту вращения двигателя до тех пор, пока не будет достигнута указанная частота вращения головки генератора. Если частота вращения регулируется в соответствии со спецификацией производителя для головки генератора, номинальная выходная мощность генератора будет составлять 120/240 вольт в зависимости от конструкции и технических характеристик головки генератора переменного тока.

Показанное устройство также ведет текущий общий объем использования двигателя и отображает количество часов и минут, в течение которых двигатель проработал. Пока двигатель выдает искру, отображается число оборотов в минуту. После остановки двигателя отображается общее время работы двигателя в часах и минутах. Следует отметить, что в этом Tac счетчик моточасов не может быть сброшен. Однако отображаемое кумулятивное время работы чрезвычайно полезно при принятии решения о том, когда вам нужно выполнять регулярное обслуживание, например, замену масла.

Двигатели, которые не вращаются со скоростью 3600 об / мин

В: Что делать, если у меня двигатель не вращается со скоростью 3600 об / мин? Можно ли как-нибудь использовать такую ​​головку генератора?
A: Да! Но это немного сложнее.
Конфигурация ременного привода

В этой генераторной головке установлены двойные шарикоподшипники, позволяющие использовать ременную передачу.

В этой конфигурации подшипники генератора испытывают большую боковую нагрузку, и не все головки генератора построены с необходимыми подшипниками, чтобы выдерживать эту боковую нагрузку.Однако используемая нами головка генератора предназначена для выполнения этой работы.

Вот как вы могли бы определить, какой размер шкива использовать:
Соотношение оборотов в минуту = Соотношение размера шкива

Более подробно:
Обороты двигателя / Обороты генератора = Размер шкива генератора / Размер шкива двигателя.

Итак, зная, что генератор должен вращаться со скоростью 3600 об / мин, затем определите, с какой скоростью двигатель должен работать. Это соотношение будет определять соотношение требуемых шкивов.

Скажем, например, что это дизельный двигатель, который должен работать со скоростью 1800 об / мин для достижения полного номинального крутящего момента.Затем подставьте значения в уравнение, и вы получите:

1800 об / мин / 3600 об / мин = 1/2 = размер шкива генератора / размер шкива двигателя.

Итак, какой бы размер шкива ни был выбран для генератора, размер шкива двигателя должен быть в 2 раза больше.

Выбор размера шкива также осложняется тем фактом, что не все шкивы доступны для всех диаметров вала. И внешний диаметр шкива не всегда является эффективным диаметром при использовании ремня одного типа в отличие от ремня другого типа.Поскольку ремни разных стилей перемещаются выше или ниже в канавке шкива, эффективный диаметр шкива может измениться, если используется другой тип ремня, но эффект наблюдается на обоих шкивах, поэтому соотношение размеров шкива все еще применимо для большинство приложений.

Если вы не можете определить пару шкивов, которые являются стандартными, доступными и дают вам точное соотношение, тогда есть три варианта:
1. Вы можете использовать так называемый шкив с переменным шагом, то есть шкив, позволяющий регулировать ширину канавки.Они очень специализированные и немного дорогие. Поскольку ремень имеет фиксированную ширину, регулировка ширины шкива «переменного шага» заставляет ремень перемещаться выше или ниже в канавке, таким образом эффективно регулируя «диаметр шага» шкива. Я упоминаю об этом только из академических соображений (чтобы какая-то умная задница меня не победила), потому что другие варианты ниже проще.

2. Используйте ту пару, которая дает наименьшую погрешность передаточного числа, а затем отрегулируйте дроссельную заслонку двигателя для компенсации.Этот метод не может быть выполнен простым использованием тахометра без выполнения некоторых вычислений для корректировки показаний tac. Лучшим выбором было бы использовать вольтметр и регулировать дроссельную заслонку до тех пор, пока на выходе генератора не будет достигнуто 120 вольт.

3. Можно использовать промежуточный вал и комбинацию двух передаточных чисел шкивов. Эта опция необходима только в ЭКСТРЕМАЛЬНЫХ случаях, когда соотношение таково, что никакие комбинации не подходят близко, или у вас нет доступа к шкивам, которые подходят к одному из ваших валов.Я не собираюсь подробно обсуждать это, поскольку это становится немного сложнее, но ниже приведен пример использования промежуточного вала.

Мы составили приведенную ниже таблицу, чтобы помочь вам найти размеры шкивов, которые считаются стандартными в отрасли. У нас нет в наличии все эти размеры, но мы можем специально заказать один для вас, если вы не можете найти на месте тот, который соответствует вашим потребностям. Ячейки, отмеченные знаком «X», указывают на то, что шкив доступен с комбинацией вала и диаметра. Пустые ячейки (или черные в зависимости от вашего браузера) указывают на то, что шкив обычно не доступен в этой комбинации размера и диаметра вала.

Обратите внимание, что «размер шкива», показанный ниже, является внешним диаметром. Фактический диаметр деления зависит от того, какой ремень используется. Например, если используется ремень типа «А», они спускаются в канавке, так что вы можете вычесть 0,25 дюйма из показанного размера.

Размер шкива Размер вала
1/2 дюйма 5/8 дюйма 3/4 дюйма 7/8 дюйма 1 дюйм
1.75 X X
2,00 X X X
2,20 X X X
2,50 X X X X
2,80 X X X X
3.05 X X
3,45 X X X X
3,75 X X X X X
3,95 X X X X X
4,25 X
4.45 X X X X X
4,75 X
4,95 X X X X X
5,25 X
5,45 X X X X X
5.75 X
5,93 X X X X
6,25 X
6.93 X X X X
7,93 X X X X
8.93 X X X X
9,93 X X X
10,93 X X X
11,93 X X
13,25 X
14.16 X X
Вот практический пример использования промежуточного вала и двойного шкива

В показанном примере я пытался преобразовать асинхронный двигатель в генератор (это то, что описано в буклете «Секреты генератора»). Двигатель слева — это силовой двигатель с одним хрипом, который вращается со скоростью 3450 об / мин при питании от 120 В переменного тока, а двигатель справа — асинхронный двигатель, который обычно работает со скоростью 1725 об / мин.

В целях тестирования я хотел использовать двигатель слева, чтобы вращать двигатель справа с правильной скоростью, чтобы я мог проверить преобразование асинхронного двигателя и проверить выходное напряжение. Однако у двигателя справа был очень маленький шкив, который замерз на валу, и его было невозможно удалить. Мой первоначальный план состоял в том, чтобы снять шкив и установить многоступенчатый шкив на оба двигателя, чтобы я мог добиться редукции от ведущего двигателя 3450 об / мин через один ремень до двигателя 1725 об / мин.Для этого потребуется шкив в два раза меньше на более быстром двигателе, чем размер шкива на более медленном двигателе. Как я уже сказал, мне не удалось снять шкив с мотора справа.

Итак, что я в итоге сделал, так это прогнал двигатель справа через промежуточный вал, на котором был установлен многоступенчатый шкив. Два шкива были одинакового размера, поэтому скорость на промежуточном валу была точно такой же, как и скорость двигателя с правой стороны. Затем я поместил многоступенчатый шкив на двигатель, который обычно вращается со скоростью 3450 об / мин (левый двигатель), и ремень привел его к канавке шкива на промежуточном валу, который был вдвое больше.Таким образом, на каждый оборот двигателя слева промежуточный вал будет вращаться на 1/2 оборота, что приведет к тому, что редуктор от левого двигателя к правому двигателю будет ровно наполовину. Таким образом, когда двигатель слева вращается со скоростью 3450 об / мин, двигатель справа будет вращаться со скоростью 1725 об / мин.

Давайте представим, что я изначально мог установить шкив правильного размера на оба двигателя. И давайте представим, что двигатель слева — это газовый двигатель, а двигатель справа — это головка генератора.Тогда ситуацию лучше всего проиллюстрировать уравнением:

Передаточное число оборотов = передаточное отношение размера шкива

Более подробно: Обороты двигателя / Обороты генератора = Размер шкива генератора / Размер шкива двигателя.

Зная, что мне нужно, чтобы двигатель работал со скоростью 3450 об / мин, а генератор — со скоростью 1725 об / мин, тогда … 3450 об / мин / 1725 об / мин = 2

Тогда скажем, у меня есть 2-дюймовый шкив, который подходит к стороне двигателя, это означает, что сторона генератора должна быть вдвое больше, или 4 дюйма.

Давайте возьмем еще один ременной привод, например

Вот старая головка генератора переменного тока Onan. Этот зверь должен вращаться со скоростью 1800 об / мин для подачи переменного тока 120/240 вольт. Номинальная мощность большинства небольших бензиновых двигателей указана при 3600 об / мин. Зная, что частота вращения двигателя должна быть 3600, чтобы развивать полную мощность, а также зная, что головка генератора Onan должна вращаться на 1800 об / мин, становится очевидным, что мы не можем просто управлять этим конкретным генератором напрямую с бензиновым двигателем.Требуется некоторая форма снижения скорости.

Для этого приложения применяется та же формула, которая показана ниже:

Обороты двигателя / Обороты генератора = Размер шкива генератора / Размер шкива двигателя.

Зная, что нам нужно, чтобы двигатель работал со скоростью 3600 об / мин, а генератор работал со скоростью 1800 об / мин, тогда … 3600 об / мин / 1800 об / мин = 2

Поскольку у меня уже был 3-дюймовый шкив для двигателя, мне нужно было определить размер шкива, который будет правильным, или вал генератора.Опять же, из приведенного выше уравнения:

2 = Размер шкива генератора / 3 дюйма

Итак, размер шкива генератора должен быть 6 дюймов.

Подключение

Преимущество использования головки генератора переменного тока в этом проекте заключается в том, что разъемы переменного тока предварительно подключены к разъемам на задней части головы. Есть два разъема, один на 120 вольт и один на 220 вольт, каждый из которых имеет две розетки.

  • Один дуплекс на 120 В (две розетки) Розетка 20 А, 5-20R
  • Один дуплекс на 240 В (две розетки) Розетка 15 А, 6-15R

Секция постоянного тока может быть подключена несколькими способами в зависимости от того, какой тип генератора переменного тока выбран.

Схема подключения зависит от того, какой генератор вы выберете. Показаны все три типа генераторов.

Не подключайте генератор переменного тока, если вы не уверены, какой тип вы используете. Если вы ошиблись при выборе генератора или электрической схемы, вы очень рискуете повредить аккумулятор, электронные устройства или, что еще хуже, нанести травму! Для получения дополнительной информации проконсультируйтесь со специалистом по запчастям!

Эта статья предназначена только для образовательных целей.Нет никаких гарантий, явных или подразумеваемых относительно точности представленной здесь информации! Проконсультируйтесь со специалистом по автомобильной проводке, прежде чем пытаться выполнять какие-либо электромонтажные работы.

Последнее замечание: Если вы используете генератор переменного тока, для которого требуется внешний переключатель, вам необходимо выключить переключатель перед попыткой запуска генератора. Когда двигатель заработает, переключатель можно установить в положение «включено».

Специальные детали, используемые во многих наших советах, связанных с электроэнергией, доступны здесь, в TheEpicenter.ком!

Педаль

Power! Как построить велосипедный генератор

T.J. Проечел

Я увлекаюсь велоспортом, а в плохую погоду использую велосипедный тренажер в своей квартире. Но ехать в никуда всегда было бессмысленно. Это заставило меня задуматься о том, как я могу использовать педали для производства электричества. Управляя генератором движением заднего колеса, я решил, что могу запустить лампу или зарядить свой телефон.На самом деле, это не сильно повлияет на мои счета за коммунальные услуги (или выбросы углекислого газа), но придаст чувство цели моей поездке в помещении. Кроме того, мне было любопытно узнать, что включает в себя этот проект.

Чтобы немного забегать вперед, я в итоге оснастил свой велосипед 24-вольтовым 200-ваттным электродвигателем, который я немного модифицировал для выработки электричества вместо выполнения механической работы. Я использовал двигатель (сейчас в рабочем состоянии генератор) для зарядки 12-вольтовой свинцово-кислотной батареи. И, наконец, я добавил инвертор для преобразования постоянного тока батареи в переменный, который необходим для питания всего, что вы обычно подключаете к розетке, и для хранения энергии, чтобы вы могли использовать приборы, даже если не крутили педали.

Педаль к металлу

Я нашел много деталей сборки в Instructables, онлайн-сообществе по совместному использованию проектов, где пользователь saullopez52 сделал в основном то, что я задумал. Во время стажировки в образовательном стартапе в Лос-Анджелесе Саул Лопес разработал идею как способ реализовать проекты экологических технологий в школах. Он подумал, что это будет недорогой и интересный способ дать студентам инженерный опыт. «Компонент учений — вот что сделало проект интересным», — говорит он.Кроме того, он добавляет: «Мне нравится, что в проекте есть много возможностей для настройки».

Вот что я сделал — настроил. Я нашел комбинированный велосипед с односкоростной и фиксированной передачей, который работал хорошо благодаря своей способности удерживать зубцы по обе стороны от заднего колеса. Цепь справа приводится в движение педалями, а дополнительная цепь слева вращает двигатель. На стороне, которая приводится в движение педалями, я использовал обгонную муфту, которая вращает колесо, когда я крутил педали, но позволяет ему продолжать вращаться вперед, без движения цепи, когда я еду накатом или крутил педали назад.С левой стороны колеса я прикрепил неподвижную шестерню, которая вращается в направлении цепи, пока колесо вращается.

Чтобы велосипед оставался устойчивым, я посвятил этому проекту велосипедного тренера. В коммерческих кроссовках хорошо то, что вы можете легко отсоединить велосипед, если хотите отправиться на прогулку. Но вы также можете построить свой собственный стенд; вам просто нужна установка, которая позволяет задней оси свободно вращаться, при этом заднее колесо слегка приподнимается над землей. Чтобы подготовить подставку для велосипеда к выработке энергии, я снял блок сопротивления, который представляет собой вращающийся металлический цилиндр, который трется о колесо, чтобы имитировать ощущение езды по тротуару.(После того, как вы прикрепите двигатель, вы также почувствуете сопротивление при генерации тока, но на самом деле это не требует больших усилий.)

После того, как блок сопротивления исчез, оставалось место для прикрепления деревянной доски, выходящей из задней части велосипеда, для крепления двигателя, аккумулятора и инвертора. Поскольку я использовал узкую доску (2 x 4), мне нужно было добавить перекладину для крепления электрооборудования. (Примечание: перед тем, как что-либо прикреплять, вы должны измерить, насколько далеко цепь простирается от задней части велосипеда.Расположите двигатель так, чтобы цепь с левой стороны задней ступицы проходила параллельно колесу, прямо к двигателю. С клиновым ремнем вы должны точно измерять; с цепью вы можете добавлять и удалять звенья с помощью цепного инструмента.)

С двигателем, вкрученным в центр перекладины, я расположил аккумулятор и инвертор с обеих сторон в качестве противовесов друг другу. Это помогло удерживать штангу параллельно земле. Я закрепил их на липучках промышленной прочности, которые выдерживали бы, когда я перемещал приспособление, но позволяли мне возиться с деталями.

Перед тем, как подключить какие-либо электрические компоненты, я проверил соединение между байком и двигателем, чтобы убедиться, что при нажатии на педали действительно вращается вал двигателя. Вал мотора, который я использовал, слегка рифленый, и цепь хорошо держится. Если вы обнаружите, что у вас двигатель, который отказывается вращаться, вы можете подсоединить шестеренку к валу, чтобы гарантировать хорошее сцепление цепи.

T.J. Проечел

(Иллюстрация Фила Лафлина)

Going Electric

Двигатель предназначен для вращения, а не для вращения.Таким образом, при подключении к заряженному аккумулятору он может потреблять энергию от аккумулятора, чтобы повернуть колесо велосипеда. Чтобы электричество не шло по неправильному пути, я вставил диод между мотором и аккумулятором. Диод направляет ток только в одном направлении, от анода к катоду; в моей схеме анод был обращен к положительной клемме двигателя, а катод — к положительной клемме батареи. Я обернул концы диода вокруг оголенного провода двигателя и испытательного провода с зажимом из крокодиловой кожи, который крепится к батарее, и изолировал соединения изолентой.Затем я подключил отрицательный провод двигателя непосредственно к отрицательной клемме аккумулятора.

В идеале аккумулятор должен быть заряжен более чем на 50 процентов, но во избежание коррозии не давайте ему электричество после того, как он полностью зарядится. Чтобы следить за этим, я подключил мультиметр к клеммам аккумулятора. Будьте осторожны, чтобы установить мультиметр на правильное измерение — 12 вольт в диапазоне постоянного тока (хотя, если это недоступно, выберите следующее число больше 12). Я пропустил настройку во время моей первой поездки, и мультиметр превратился в дым.

Я также использовал мультиметр, чтобы отслеживать, насколько сильно мне нужно крутить педали. Чтобы зарядить аккумулятор, я хотел, чтобы генератор выдавал от 13 до 14,5 вольт. Следя за мультиметром во время езды, я смог прочувствовать это. (Оглядываясь назад, можно сказать, что стоило бы купить стабилизатор напряжения, чтобы я мог крутить педали так сильно, как я хотел, не подавая слишком большое напряжение на батарею.)

Последним шагом было подсоединение проводов от инвертора к батарее. Выбирая инвертор, убедитесь, что он может выдерживать максимальную ожидаемую пиковую нагрузку.(Нагрузки измеряются в ваттах, что является единицей мощности.) Поскольку я не планировал делать что-либо более тяжелое, чем запуск 100-ваттной лампы, я купил инвертор, рассчитанный всего на 200 ватт.

Когда все было собрано, я крутил педали на велосипеде, и ток потек. Еще лучше, если бы у меня было несколько аккумуляторов, заряд которых я отслеживал ежемесячно, я мог бы накопить достаточно энергии для питания небольшой электроники во время отключения электроэнергии. И да, генератор действительно сделал катание на велосипеде в помещении увлекательным. Однако через некоторое время в моей квартире стало довольно тесно, тем более что у меня уже было два других велосипеда.К счастью, это привлекло внимание соседа, у которого было дополнительное место, и который был счастлив взять это хитроумное изобретение. И теперь, когда я хочу зарядить свой телефон во время тренировки, я знаю, куда идти.

T.J. Проечел

Диод поддерживает ток электричества от двигателя к батарее, а не наоборот, как это обычно бывает.

T.J. Проечел

Вторая цепь на велосипеде идет от задней шестерни назад, чтобы вращать двигатель.

T.J. Проечел

Где механическая энергия превращается в электричество, которое хранится в батарее.

T.J. Проечел

Это электричество преобразуется из постоянного тока в переменный с помощью инвертора, поэтому оно может питать обычные бытовые приборы.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Может ли электродвигатель работать как генератор?

ДА, но это может быть сделано только в течение длительного времени с электродвигателем, который также предназначен для работы в качестве генератора, и если генератор будет работать параллельно с другим поколением, двигатель должен быть синхронным.

Я служил в ВМС США на подводной лодке электриком-атомщиком. Моя электрическая установка включает в себя электродвигатели-генераторы мощностью от 2 до 500 кВт.Когда конец переменного тока работал как двигатель переменного тока, конец постоянного тока был генератором постоянного тока, который подавал мощность на батарею субмарины, обратный ток, а конец постоянного тока становился двигателем постоянного тока, а двигатель переменного тока менял направление тока и работал как генератор переменного тока. Скорость и направление вращения электродвигателя-генератора переменного и постоянного тока с общим валом не менялись независимо от того, какой конец действовал как электродвигатель, а какой — как генератор.

Я лично эксплуатировал, ремонтировал и обслуживал эти мотор-генераторы в течение 3 лет своей жизни, поверьте мне, я знаю, о чем говорю.Единственное, что изменило направление тока, — это повышение или понижение сопротивления через реостаты.

Там, где вы не выполняете соединение, вы должны помнить о положительной и отрицательной клеммах генератора постоянного тока относительно напряжений на клеммах аккумулятора. Если положительный вывод машины постоянного тока составляет, например, 100 В постоянного тока, а напряжение на положительном выводе батареи составляет 100,1 В постоянного тока, ток будет течь из клеммы батареи, через двигатель постоянного тока на противоположную клемму батареи и через кислота, чтобы замкнуть цепь.Если при увеличении тока шунта в двигателе постоянного тока клеммы машины постоянного тока относительно батареи будут выше, и ток изменит направление и зарядит батарею.

Имейте в виду, что в каждом работающем электродвигателе есть действие генератора, и каждый генератор имеет действие двигателя (противодействие ЭДС). Двигатели переменного тока не требуют пускового сопротивления, поскольку полное сопротивление обмоток и частота переменного тока ограничивают пусковой ток при пуске. Однако для двигателей постоянного тока требуются пусковые резисторы, потому что частота постоянного тока равна нулю, и, следовательно, без пускового сопротивления бросок очень велик; однако, как только двигатель постоянного тока вращается, пусковые резисторы отключены от цепи, поскольку действие генератора (противодействие ЭДС) в электродвигателе ограничивает рабочий ток.Используя этот счетчик ЭДС через шунтирующий ток, вы можете управлять напряжением на клеммах машины постоянного тока.

Другая вещь, которую вы должны иметь в виду, это то, что машина постоянного тока имеет коммутаторы, которые позволяют двигателю постоянного тока работать, иначе он повернется на 90 градусов и остановится, но коммутатор постоянно устанавливает и тормозит соединения, когда двигатель вращается, поэтому ротор полярность поля относительно полюсов статора остается правильной, а электродвигатель продолжает вращаться. Серийный двигатель постоянного тока будет работать от переменного тока, блендеры, буровые двигатели и т. Д. — это двигатели постоянного тока (универсальные двигатели).Несмотря на то, что полярность клемм с переменным током будет переключаться вперед и назад, из-за коммутатора и того факта, что тот же ток течет в поле и статоре, ток не меняется на противоположный при подаче переменного тока, двигатель постоянного тока вращается только в одном направлении.

С генератором переменного тока параллельно с другими генераторами переменного тока, если я попытаюсь поднять частоту, я подниму кВт, а если я попытаюсь поднять напряжение, я подниму кВт. Если я уменьшу частоту и напряжение в достаточной степени, генератор разгрузится до такой степени, что обратное направление тока и двигатели генератора переменного тока.С шунтирующим электродвигателем постоянного тока путем управления током, проходящим через шунтирующее охлаждение, клеммы машины постоянного тока будут превышать или быть ниже напряжения батареи / системы постоянного тока. Если клеммы постоянного тока выше напряжения батареи, ток будет течь в батарею, если клеммы постоянного тока упадут ниже напряжения батареи, ток изменится в обратном направлении, и ток потечет из батареи, и генератор постоянного тока станет двигателем постоянного тока без изменения направления .

Простые электродвигатели | Отмеченные наградами научные проекты

На этом сайте представлены новые идеи простых в сборке простых электродвигателей, первоначально разработанные Стэном Позмантиром для его проекта, получившего главный приз на научной выставке.

На этом сайте вы найдете:

    • Настоящие бесщеточные двигатели постоянного тока, основанные на различных физических принципах — быстр, и отлично подходят для научных экспериментов.
    • Подробная пошаговая инструкция по сборке (с картинками).
    • Простое объяснение того, как работают эти двигатели, и важная информация для исследования проекта — от новичка до продвинутого уровня.
    • 17 различных простых моторных комплектов для всех возрастов и уровней образования.
    • Простые электрогенераторы и средства измерения скорости вращения электродвигателей.

От изобретателей первого в истории комплекта двигателя с герконовым переключателем (© Simple Motors, 1999) — самого простого в изготовлении электродвигателя (и понять, как он работает!)

Мотор Галереи

Вернуться к галерее

Простые в сборке наборы QuikLock ™

Оригинальные комплекты бесщеточных двигателей

Простые двигатели менее чем за 5 долларов

Экспериментируйте со своим мотором!

Комплект № 11 — Базовый комплект двигателя герконового переключателя

Это самый простой комплект мотора, который можно собрать за 30 минут!

Несмотря на свою простоту, это идеальный обучающий инструмент, позволяющий сделать первые шаги в удивительный мир электричества и магнетизма.

Эффективная конструкция (частота вращения до 2100 об / мин) гарантирует постоянную работу этого двигателя.

Много удовольствия на долгие годы!

Видео на YouTube

Вернуться к галерее

Kit # 12 — Базовый комплект для быстрой сборки

То же, что и комплект № 11, с дополнительными функциями:

  • Использует сильные неодимовые магниты, закрепленные предохранительным кольцом.
  • Включает предварительно намотанный электромагнит.
  • Время сборки менее 20 мин!
  • Без грязного клея.Инструменты не требуются.
  • Быстро (более 2500 об / мин на 1,5 В) и надежно.

YouTube видео

Вернуться к галерее

Комплект № 13 — Расширенный комплект двигателя

В дополнение ко всем характеристикам базового двигателя в этот комплект входят дополнительные детали:

  • Регулировка скорости, позволяющая изменять скорость двигателя от полной остановки до максимальной (до 6000 об / мин).
  • Детали второго ротора и дополнительные магниты для экспериментов с роторами с 2 и 4 магнитами.

Множество возможностей для экспериментов!

Видео на YouTube

Вернуться к галерее

Kit # 14 — Расширенный набор для быстрой сборки

То же, что и комплект № 13, с дополнительными функциями:

  • Использует сильные неодимовые магниты, закрепленные предохранительным кольцом.
  • Включает предварительно намотанный электромагнит.
  • Время сборки менее 30 мин!
  • Без грязного клея. Инструменты не требуются.
  • Это самый быстрый мотор (до 7000 об / мин на 6 Вольт)!

YouTube видео

Моторы

QuikLock ™ не являются продуктами Lego®, даже если они содержат оригинальные и модифицированные блоки и пластины Lego®.Мы оставляем за собой право использовать другие материалы в будущем. Все гарантии предоставляются Simple Motors. LEGO® является товарным знаком группы компаний LEGO, которая не спонсирует, не разрешает и не поддерживает эти продукты.

Вернуться к галерее

Комплект № 4 — Оригинальный двигатель герконового переключателя

Оригинальный мотор с герконом — наш самый популярный комплект в 1999-2013 годах!

Позволяет экспериментировать с 4 различными напряжениями: 1,5, 3, 4,5 и 6 вольт.

Скорость до 3000 об / мин.

Видео на YouTube

Вернуться к галерее

Комплект № 5 — Двигатель с транзисторным управлением

Двигатель геркона с транзисторным управлением, который увеличивает срок службы геркона.

Легко собрать, но требует пайки.

Видео на YouTube

Вернуться к галерее

Комплект № 6 — Двигатель на эффекте Холла IC

Двигатель, использующий ИС на эффекте Холла в качестве датчика. Это наша простая версия обычного промышленного бесщеточного двигателя.

Это быстрый, тихий и самый надежный мотор, который может работать годами!

Видео на YouTube

Вернуться к галерее

Комплект № 7 — Двигатель с оптическим управлением

Двигатель, использующий оптический прерыватель в качестве датчика.

Тихий, надежный, но немного более медленный двигатель (типичная скорость до 2000 об / мин).

Видео на YouTube

Вернуться к галерее

Комплект № 15

Это наша версия известного простого мотора, дающая возможность поэкспериментировать с ним.

  • Вы можете построить одну из четырех конфигураций с одним или двумя магнитами, расположенными сверху, снизу или по бокам.
  • Поэкспериментируйте с 4 различными напряжениями: 1,5, 3, 4,5 и 6 вольт.
  • Проволоки достаточно, чтобы поэкспериментировать с катушками разного размера.

YouTube видео

Вернуться к галерее

Комплект № 16

Другой вариант простого двигателя с вращающейся катушкой в ​​магнитном поле, предназначенный для этих экспериментов:

  • Сравните керамический магнит обычного качества с сильным неодимовым магнитом (марка N50).
  • Легко изменить расстояние между магнитом и катушкой.
  • Изготавливайте катушки из проволоки разного размера.

Клей не грязный. Инструменты не требуются.

Видео на YouTube

Вернуться к галерее

Комплект № 17

Простой щеточный мотор всего за 4,99 доллара за штуку!

Продается в наборах по 10 штук.

Купите 2 или более комплектов и получите бесплатную приставку для измерения оборотов — ваши ученики смогут сравнивать скорость своих двигателей.

Купите 4 комплекта и дополнительно получите комплект QuikLock № 12 для быстрой сборки!

Видео на YouTube

Вернуться к галерее

Инструменты для измерения частоты вращения

Простое недорогое приспособление для измерения скорости любого обычного двигателя, в котором катушка с проволокой вращается в статическом магнитном поле.

Настоятельно рекомендуется для групп студентов — они любят сравнивать свои моторы!

Подключается к частотомеру; если у вас его нет, вы можете рассмотреть комплект для измерения оборотов № 2.

Видео на YouTube

Вернуться к галерее

Комплекты «все в одном» № 8 и № 9

Комплекты «все-в-одном» включают все детали, необходимые для сборки 4-х бесщеточных двигателей:

  • Двигатель простого геркон
  • Геркон двигатель с транзистором
  • Двигатель на эффекте Холла IC
  • Мотор с оптическим управлением.

С более простым комплектом № 8 вы можете строить по одному двигателю за раз.

Комплект № 9 (показан выше) позволяет легко переключаться между различными конфигурациями двигателя.Это продвинутый комплект.

Видео на YouTube

Вернуться к галерее

Простой генераторный комплект

Большинство электродвигателей, построенных из наших комплектов, достаточно мощны, чтобы вращать прецизионный промышленный двигатель, который может генерировать достаточно энергии, чтобы зажечь сверхяркий светодиод.

Добавление простого генератора к вашему двигателю — лучший способ продемонстрировать, как электрическая энергия преобразуется в механическую, а затем обратно в электрическую.

Это также полезный инструмент для измерения и расчета крутящего момента и КПД вашего двигателя.

Видео на YouTube

Вернуться к галерее

Комплект солнечных панелей

Если вы ищете проект в области возобновляемой энергии — модуль солнечной энергии станет прекрасным дополнением к вашему моторному комплекту!

Эта мощная солнечная панель 1,6 Вт может быть добавлена ​​в моторные комплекты №№ 1–9, 13–14.

Он обеспечивает достаточную мощность для работы двигателей под прямыми солнечными лучами. Солнечная панель также может заряжать батареи.

В этот комплект добавлен главный выключатель питания.

Видео на YouTube

Вернуться к галерее

Измерение скорости двигателя

Усовершенствованный мультиметр и насадка в сборе для измерения скорости двигателя в реальном времени.

Работает на всех бесщеточных двигателях, представленных на нашем сайте.

Инструмент измерения частоты вращения основан на измерении частоты. Если у вас уже есть мультиметр, который может измерять частоту в Гц, вас может заинтересовать недорогая автономная приставка для измерения оборотов.

Видео на YouTube

Вернуться к галерее

Веселый и полезный проект DIY

Некоторые ссылки в этом посте являются партнерскими. Это означает, что когда вы нажимаете на одну из этих ссылок, я получаю небольшую комиссию без каких-либо дополнительных затрат для вас.Кроме того, как партнер Amazon я зарабатываю на соответствующих покупках. Спасибо.


Очень часто люди восхищаются тем, как что-то работает. У других также есть зуд делать что-то по-своему, и делать это своими двумя руками. Одна из таких вещей — самодельный электрогенератор. Многие инженеры находят чрезвычайно привлекательным начать что-то конструировать, почти чувствуя себя учеными, открывающими что-то новое. Что ж, похоже, кто-то уже открыл электрический генератор, но это не значит, что делать его самому неинтересно, экономичнее и привлекательнее.

[the_ad_placement id = ”in-text-1-type-r”]

В этой статье мы проведем вас через этапы изготовления электрического генератора с необходимыми элементами и материалами. Если вы профессиональный инженер, у вас не возникнет проблем с выполнением этих инструкций. Если вы раньше не делали ничего подобного, настоятельно рекомендуется проконсультироваться с профессиональным инженером или электриком.

Как сделать собственный электрогенератор

Прежде чем мы начнем, вам нужно знать, что вы можете сделать генератор из разных вещей, таких как велосипед, ручная дрель или даже использовать водяное колесо (если вы живете в доме с водяным колесом).Начнем с очень простого ручного кривошипного генератора.

Электрогенератор ручной дрели

Вам понадобится ручная дрель, кухонная утварь или аналогичный предмет, нитки, алюминиевая фольга, липкая лента, телефон с зарядным устройством и деревянная тарелка.

Возьмите зарядное устройство и отрежьте ножницами конец зарядки (если это смартфон, отрежьте конец USB). Снимите пластиковый изолятор, чтобы увидеть четыре тонких кабеля — красный, белый, зеленый и черный. Удалите также их пластиковое покрытие.Проделайте это с обрезанным концом USB и с другого конца. Подготовьте небольшие внутренние кабели разных цветов.

Затем возьмите ручную дрель и полностью затяните головку, она совсем не должна болтаться. Вам также следует снять защитный колпачок в нижней части ручки, к которому позже вам нужно будет подсоединить кабели зарядного устройства.

Затем возьмите нить и начните наматывать ее вокруг сверла, вокруг головки и ручки. Идея состоит в том, чтобы надежно привязать его к деревянной пластине. При желании можно заменить нить изолентой.Это могло бы сделать настройку еще более безопасной.

На следующем этапе вы можете использовать миксер для взбивания, чтобы вставить его в ручную дрель. Он также должен оставаться устойчивым и ни в коем случае не ослабевать. Если вы подозреваете, что он может упасть, замените его другим аналогичным предметом.

Затем возьмите алюминиевую фольгу и сформируйте из двух кусков длинные полосы. Каждая часть может быть длиной 15-20 дюймов. Затем хорошо распрямите и вставьте каждый конец в соответствующий электрический конец самой ручной дрели. Убедитесь, что они хорошо соединяются со сверлом.Закатайте торчащие концы, чтобы они напоминали более цилиндрические формы. Затем пригладьте их к деревянной доске и закрепите ниткой / клейкой лентой. Возьмите отрезанный кусок зарядного устройства, подготовьте красный и черный концы кабелей и прикрепите каждый к соответствующим концам из алюминиевой фольги.

Возьмите деревянную кухонную ложку достаточной ширины, чтобы пропустить ее через венчик миксера, но чтобы она могла оставаться там устойчиво. Это будет ручная рукоятка. Начните вращать рукоятку. Вам потребуется много терпения и силы, чтобы продолжать делать это, пока аккумулятор телефона не будет полностью заряжен.Если вам нужен телефон только для того, чтобы позвонить, вам, возможно, придется немного меньше поворачивать ручку.

С этой же настройкой вы можете заряжать аккумуляторы, лампочки, светодиодные лампы и другие электрические устройства.

Вот замечательное обучающее видео на YouTube, которое может оказаться полезным, если вы захотите разработать вышеуказанный генератор.

Велогенератор

Если у вас есть велосипед, вы можете им пользоваться, в противном случае найдите старый отремонтированный велосипед.Вам даже не нужно за это платить; просто поищите несколько утилизированных велосипедов и материалы для сборки генератора. Важно знать, что для того, чтобы это работало, ваш велосипед должен быть хотя бы в хорошем состоянии. Если это не так, вам может понадобиться только проникающее масло, чтобы оживить цепь и очистить велосипед от ржавчины, если она есть кое-где.

Следующее, что вам понадобится, — это простая беговая дорожка. У них есть именно то, что вам нужно — двигатель постоянного тока. Кроме того, вам необходимо знать, что двигатель вырабатывает гораздо более высокое напряжение, чем предназначенное устройство для зарядки.Простой пример — если вы хотите зарядить аккумуляторную батарею на 12 вольт постоянного тока, ваш двигатель должен выдавать не менее 13-14 вольт. Средняя беговая дорожка может производить намного больше — около 90 вольт. Это означает, что вам даже не нужно так быстро грести, чтобы зарядить задуманный гаджет.

Затем подготовьте простую рамную подставку, на которой вы разместите заднее колесо велосипеда. Вы можете собрать его самостоятельно, помня, что заднее колесо должно быть немного приподнято и не касаться земли. Рама должна иметь две деревянные доски, чтобы колесо оставалось поднятым, поэтому они должны быть закреплены вертикально.Основанием может служить другая деревянная доска.

Как только вы это сделаете, пора подготовить заднее колесо. Снимите его с велосипеда и снимите внешнюю шину. Он должен быть приплюснутым и иметь вид вращающегося ремня. Присоедините ременную шину к двигателю и протяните ее между колесом и двигателем. Теперь вы можете снова прикрепить колесо велосипеда.

[the_ad_placement id = ”in-text-2-type-r”]

Чтобы колесо оставалось устойчивым, вы можете использовать дополнительные удлиненные штифты, чтобы они лучше держали колесо. Он не должен упасть или сломаться, хотя он должен свободно вращаться.

Кроме того, лучше всего прикрепить двигатель постоянного тока к деревянной доске, в идеале — к той, к которой вы уже прикрепили весь велосипед. Это будет более стабильная настройка.

И, наконец, используйте контроллер заряда и прикрепите его к батареям, гаджету, телефону и т. Д., Чтобы он мог быть буфером перегрузки. Это на случай, если вы зарядите немного больше, и контроллер заряда защитит устройство / аккумулятор. Следить за напряжением также является хорошей идеей, и если вы предпочитаете такой способ, вы можете просто прикрепить к велосипеду вольтметр, чтобы постоянно знать, какое напряжение вы производите.

Примерно так должен выглядеть ваш велосипедный генератор в этом видео на YouTube.

Ветрогенератор

Начнем с того, что соберем все, что вам понадобится, например, соединители (все из ПВХ диаметром ¾ дюйма). У вас должно получиться 5 муфт с коленом 90 градусов и 3 Т-образных муфты. Остальное должно быть одной очень длинной трубой (опять же из ПВХ) длиной 10 дюймов, четырьмя по 3,5 дюйма, двумя — 8 дюймов и двумя — по 3 дюйма.

Начните с того, что возьмите один соединитель 90-градусной формы и подсоедините его к другому 3.5 дюймов, затем установите Т-образную муфту. Продолжайте строительство, добавив еще одну трубу диаметром 3,5 дюйма и завершив ее соединением под углом 90 градусов. Повторите это и создайте копию, аналогичную первой, с элементами, которые у вас остались. Возьмите оставшиеся две трубы диаметром 3,5 дюйма и соедините их Т-образной муфтой.

Это само по себе должно быть связующим звеном между первыми двумя элементами, которые мы сделали. Возьмите две трубы длиной 8 дюймов и соедините оставшиеся отверстия всей установки. Это будет ваша основа, и теперь у вас должно быть отверстие (от Т-образного элемента) прямо в середине основы.

Возьмите последний длинный кусок (длиной 10 дюймов) и прикрепите к нему последний 90-градусный соединитель. Это будет сама мельница. Прикрепите его к отверстию основания. Здесь вы добавите плавник, чтобы мельница действительно работала.

Выньте торчащую часть и просверлите отверстие примерно в дюйме от основания. Затем возьмите небольшой мотор с кабелем, достаточно длинным, чтобы его можно было пропустить через трубу, и вытащите его из только что проделанного отверстия. Примечание — двигатель должен быть немного меньше диаметра муфты, чтобы его можно было безопасно разместить внутри муфты.

Если он немного болтается, можно закрепить двигатель изолентой. Поместите лезвие / ребро в двигатель прямо перед тем, как вставить двигатель в трубу. Затем вставьте двигатель внутрь муфты и убедитесь, что он максимально устойчив.

Присоедините концы кабеля к электрическому устройству, радио, мобильному телефону или воспользуйтесь контроллером заряда для подключения к батареям или другим подобным заряжаемым предметам.

В этом подробном руководстве, которое у нас есть, вы можете увидеть, как сделать свои собственные ветряные турбины..

Гидроэлектрический генератор

Это еще один очень популярный способ получения бесплатной электроэнергии и энергии. Для настройки конструкции может потребоваться немного больше времени, включая больше внимания и внимания к деталям, но, тем не менее, это интересная задача.

Изображение предоставлено: builditsolar.com

Сам генератор должен состоять из двух частей — одна называется статором, а другая — ротором. Статор (как следует из названия) неподвижен и неподвижен. Он имеет 4 катушки с проводами, которые собирают генерируемую энергию / электричество.Ротор является подвижным элементом и вращается. Он имеет 4 магнита, которые должны индуцировать энергию / электричество и передавать их катушкам статора.

  • Изготовление статора — каждая противоположная пара витков проводов должна быть намотана так, чтобы электричество текло против часовой стрелки. Две другие противоположные пары должны иметь поток электричества по часовой стрелке. Все 4 катушки должны быть расположены на одинаковом расстоянии друг от друга. Кроме того, для каждого круга катушки убедитесь, что намотано не менее 200 катушек.Сделайте их достаточно большими, чтобы они генерировали и передавали как можно больше энергии.
  • Изготовление ротора — это более простой в изготовлении диск. Просто возьмите 4 магнитных диска (размером с плоские батарейки для часов) и поместите два магнита северным полюсом вверх по диагонали на диск. Остальные два магнита должны иметь южные полюса вверх. Снова разместите их на диске по диагонали. Расстояние между магнитами должно быть одинаковым для всех четырех частей.

Наконец, проделайте два отверстия прямо посередине обоих дисков, чтобы их можно было прикрепить позже.Далее нам нужно перейти к турбине. Найдите пробку, чтобы вы могли прикрепить пластиковые ложки, которые будут действовать как крылья турбины. Постарайтесь расположить их равномерно. Используйте клей, чтобы надежно удерживать прикрепленные ложки на месте (или они могут улететь, если турбина вращается слишком быстро).

Взяв ротор и статор, плотно прикрепите их друг к другу и проденьте через деревянную палку. Затем возьмите пробку (которая сейчас является эффективной турбиной) и приготовьте пластиковое ведро среднего размера.Просверлите и в нем отверстия, именно там, где вы планируете продеть деревянную палку, и где турбина будет расположена внутри. Поскольку у вас есть отверстия, проденьте рукоять так, чтобы настройки ротора и статора оставались снаружи (это важно) рядом с ковшом, а турбина располагалась внутри ковша.

Турбина должна быть размещена так, чтобы, если вы посмотрите на одну из верхних ложек, она была обращена вверх, к вам. Представьте, что вы позволяете воде течь поверх турбины. Каждая ложка будет наполнена водой, пока она не начнет двигаться благодаря весу воды, точно так же, как старинная водяная мельница.

[the_ad_placement id = ”in-text-3-type-r”]

Приклейте статор к ковшу, чтобы он оставался неподвижным. С другой стороны, ротор должен вращаться, поэтому оставьте его свободным. Фактически вы готовы. Возьмите провода от статора и прикрепите их к любому гаджету или устройству, которое вам нужно зарядить. Вы можете посмотреть этот проект YouTube, чтобы получить больше информации. Показывает немного другую настройку, но суть та же.

Существует множество других методов создания электрических генераторов, сделанных из доступных материалов и предметов, и вы можете увидеть один чрезвычайно подробно описанный в этой статье.

Создание автономного генератора — проекты самодельных схем

Автономный генератор — это постоянное электрическое устройство, предназначенное для бесконечной работы и выработки непрерывной электрической выходной мощности, которая обычно больше по величине, чем входная мощность, через которую он работает.

Кто бы не хотел видеть автономный мотор-генератор, работающий дома и обеспечивающий бесперебойную работу нужных бытовых приборов, абсолютно бесплатно. Мы обсудим детали нескольких таких схем в этой статье.

Энтузиаст бесплатной энергии из Южной Африки, который не хочет раскрывать свое имя, щедро поделился деталями своего твердотельного генератора с автономным питанием для всех заинтересованных исследователей свободной энергии.

Когда система используется со схемой инвертора, выходная мощность генератора составляет около 40 Вт.

Система может быть реализована в нескольких различных конфигурациях.

Первая версия, обсуждаемая здесь, способна заряжать три батареи 12 вместе, а также поддерживать генератор для постоянной непрерывной работы (до тех пор, пока, конечно, батареи не потеряют свою способность заряжаться / разряжаться)

Предлагаемый генератор с автономным питанием предназначен для работают днем ​​и ночью, обеспечивая непрерывную электрическую мощность, как наши солнечные панели.

Первоначальный блок был сконструирован с использованием 4 катушек в качестве статора и центрального ротора, имеющего 5 магнитов, встроенных по его окружности, как показано ниже:

Показанная красная стрелка говорит нам о регулируемом зазоре между ротором и катушками, который может быть изменен. можно изменить, ослабив гайку, а затем переместив узел катушки рядом или от магнитов статора для достижения желаемых оптимальных выходов. Зазор может составлять от 1 мм до 10 мм.

Узел ротора и механизм должны быть чрезвычайно точными с точки зрения центровки и легкости вращения, и поэтому должны изготавливаться с использованием прецизионных станков, таких как токарный станок.

Материалом, используемым для этого, может быть прозрачный акрил, и сборка должна включать 5 комплектов из 9 магнитов, закрепленных внутри цилиндрических труб, подобных полостям, как показано на рисунке.

Верхнее отверстие этих 5 цилиндрических барабанов закреплено пластиковыми кольцами, извлеченными из тех же цилиндрических трубок, чтобы обеспечить надежную фиксацию магнитов в своих соответствующих положениях внутри цилиндрических полостей.

Вскоре 4 катушки были расширены до 5, в которых недавно добавленная катушка имела три независимых обмотки.Конструкции будут понятны постепенно, по мере того, как мы пробежимся по различным принципиальным схемам и объясним, как работает генератор. Первую принципиальную схему можно увидеть ниже

Батарея, обозначенная буквой «А», питает цепь. Ротор «C», состоящий из 5 магнитов, перемещается вручную и толкается так, что один из магнитов перемещается близко к катушкам.

Набор катушек «B» включает 3 независимых обмотки на одном центральном сердечнике, и магнит, проходящий мимо этих трех катушек, генерирует внутри них крошечный ток.

Ток в катушке номер «1» проходит через резистор «R» в базу транзистора, заставляя его включиться. Энергия, проходящая через катушку транзистора «2», позволяет ей превратиться в магнит, который толкает диск ротора «C» на своем пути, вызывая вращательное движение ротора.

Это вращение одновременно вызывает обмотку «3», которая выпрямляется через синие диоды и передается обратно на зарядку батареи «A», пополняя почти весь ток, потребляемый от этой батареи.

Как только магнит внутри ротора «C» удаляется от катушек, транзистор выключается, восстанавливая напряжение коллектора за короткое время вблизи линии питания +12 Вольт.

Это истощает катушку «2» по току. Из-за того, как расположены катушки, он увеличивает напряжение коллектора примерно до 200 вольт и выше.

Однако этого не происходит, потому что выход подключен к пяти последовательным батареям, которые падают нарастающее напряжение в соответствии с их общим номиналом.

Батареи имеют последовательное напряжение приблизительно 60 вольт (что объясняет, почему был включен мощный, быстро переключающийся высоковольтный транзистор MJE13009.

Поскольку напряжение коллектора изменяется на напряжение последовательного блока батарей, красный диод начинает включаться, высвобождая накопленное в катушке электричество в аккумуляторную батарею. Этот импульс тока проходит через все 5 аккумуляторов, заряжая каждую из них. Проще говоря, это составляет конструкцию генератора с автономным питанием.

В прототипе в качестве нагрузки для длительных, неутомимых испытаний использовался 12-вольтный 150-ваттный инвертор, освещающий 40-ваттную сетевую лампу:

Простая конструкция, продемонстрированная выше, была дополнительно улучшена за счет включения еще нескольких приемные катушки:

Катушки «B», «D» и «E» активируются одновременно 3 отдельными магнитами. Электроэнергия, генерируемая во всех трех катушках, передается на 4 синих диода для выработки постоянного тока, который подается для зарядки батареи «А», питающей цепь.

Дополнительный ввод в приводную батарею в результате включения 2 дополнительных приводных катушек в статор, позволяет машине работать без сбоев в виде автономной машины, поддерживая напряжение батареи «А» бесконечно.

Единственной движущейся частью этой системы является ротор диаметром 110 мм, представляющий собой акриловый диск толщиной 25 мм, установленный на шарикоподшипниковом механизме, извлеченный из выброшенного жесткого диска компьютера. Схема выглядит так:

На изображениях диск кажется полым, однако на самом деле это твердый кристально чистый пластик.На диске просверливаются отверстия в пяти одинаково распределенных точках по окружности, то есть с разделением на 72 градуса.

5 основных отверстий, просверленных на диске, предназначены для удерживания магнитов, которые объединены в группы из девяти кольцевых ферритовых магнитов. Каждый из них имеет диаметр 20 мм и высоту 3 мм, образуя стопки магнитов общей высотой 27 мм в длину и диаметром 20 мм. Эти стопки магнитов расположены таким образом, что их северные полюса выступают наружу.

После установки магнитов ротор помещается в пластиковую трубную ленту, чтобы надежно закрепить магниты на месте, в то время как диск быстро вращается. Пластиковая труба крепится к ротору с помощью пяти крепежных болтов с потайной головкой.

Бобины катушек имеют длину 80 мм и диаметр конца 72 мм. Средний шпиндель каждой катушки изготовлен из пластиковой трубы длиной 20 мм, имеющей внешний и внутренний диаметр 16 мм. обеспечивая плотность стены 2 мм.

После того, как намотка катушки завершена, этот внутренний диаметр заполняется рядом сварочных стержней со снятым с них сварочным покрытием. Впоследствии их обволакивают полиэфирной смолой, но цельный брусок из мягкого железа также может стать отличной альтернативой:

Три жилы, составляющие катушки «1», «2» и «3», имеют диаметр 0,7 мм и являются обернуты друг с другом до намотки на шпульку «B». Этот метод бифилярной намотки создает намного более тяжелый пучок композитных проводов, который может эффективно наматываться на катушку.Показанная выше намоточная машина работает с патроном, удерживающим сердечник катушки для обеспечения возможности намотки, тем не менее, можно также использовать любой тип базовой намотки.

Разработчик выполнил скручивание проволоки, вытягивая 3 жилы проволоки, каждая из которых берет начало с независимой катушки с жгутом на 500 грамм.

Три жилы плотно удерживаются на каждом конце, при этом провода прижимаются друг к другу на каждом конце, с промежутком в три метра между зажимами. После этого провода фиксируются в центре и 80 витков приписываются средней части.Это позволяет сделать 80 поворотов на каждый из двух 1,5-метровых пролетов, расположенных между зажимами.

Набор скрученных или намотанных проволок скручивается на временной катушке для поддержания аккуратности, потому что это скручивание придется повторить еще 46 раз, поскольку для этой одной композитной катушки потребуется все содержимое катушек с проволокой:

следующие 3 метра трех проводов затем зажимаются и 80 витков наматываются в среднее положение, но в этом случае витки размещаются в противоположном направлении.Даже сейчас реализованы точно такие же 80 витков, но если предыдущая обмотка была «по часовой стрелке», то эта обмотка перевернута «против часовой стрелки».

Эта конкретная модификация направления катушки обеспечивает полный диапазон скрученных проводов, в которых направление скручивания становится противоположным через каждые 1,5 метра по всей длине. Так устроена серийно производимая проволока Litz.

Этот замечательный на вид комплект скрученных проводов теперь используется для намотки катушек.В одном фланце катушки просверливается отверстие, точно около средней трубки и сердечника, и через него продевается начало проволоки. Затем проволоку с силой сгибают под углом 90 градусов и накладывают на вал катушки, чтобы начать намотку катушки.

Намотка жгута проводов выполняется с большой осторожностью рядом друг с другом по всему валу катушки, и вы увидите 51 градус намотки вокруг каждого слоя, а следующий слой намотан прямо поверх этого самого первого слоя, снова к началу.Убедитесь, что витки этого второго слоя лежат точно поверх обмотки под ними.

Это может быть несложно, потому что пакет проводов достаточно толстый, чтобы его можно было легко разместить. Если хотите, вы можете попробовать обернуть один толстый белый лист вокруг первого слоя, чтобы второй слой был отчетливым при его переворачивании. Вам понадобится 18 таких слоев, чтобы закончить катушку, которая в конечном итоге будет весить 1,5 килограмма, и готовая сборка может выглядеть примерно так, как показано ниже:

Эта готовая катушка на данный момент состоит из 3 независимых катушек, плотно намотанных друг на друга, и этого набора up предназначен для создания фантастической магнитной индукции на двух других катушках, когда на одну из катушек подается напряжение питания.

Эта обмотка в настоящее время включает катушки 1,2 и 3 принципиальной схемы. Вам не нужно постоянно беспокоиться о маркировке концов каждой жилы провода, так как вы можете легко идентифицировать их с помощью обычного омметра, проверив непрерывность на определенных концах провода.

Катушка 1 может использоваться как запускающая катушка, которая будет включать транзистор в нужные периоды. Катушка 2 может быть катушкой возбуждения, которая возбуждается транзистором, а катушка 3 может быть одной из первых выходных катушек:

Катушки 4 и 5 представляют собой простые пружинные катушки, которые подключены параллельно катушке 2 возбуждения.Они помогают повысить драйв и поэтому важны. Катушка 4 имеет сопротивление постоянному току 19 Ом, а сопротивление катушки 5 может составлять около 13 Ом.

Тем не менее, в настоящее время продолжаются исследования, чтобы выяснить наиболее эффективное расположение катушек для этого генератора, и, возможно, дополнительные катушки могут быть идентичны первой катушке, катушка «B» и все три катушки прикреплены таким же образом, и Обмотка возбуждения на каждой катушке работает через единственный высокопроизводительный и быстро переключающийся транзистор.Текущая установка выглядит так:

Вы можете проигнорировать показанные порталы, поскольку они были включены только для изучения различных способов активации транзистора.

В настоящее время катушки 6 и 7 (22 Ом каждая) работают как дополнительные выходные катушки, подключенные параллельно с выходной катушкой 3, каждая из которых состоит из трех жил и имеет сопротивление 4,2 Ом. Они могут быть с воздушным сердечником или с твердым железным сердечником.

При тестировании выяснилось, что вариант с воздушным сердечником работает немного лучше, чем с железным сердечником.Каждая из этих двух катушек состоит из 4000 витков, намотанных на катушки диаметром 22 мм с использованием суперэмалированного медного провода 0,7 мм (AWG # 21 или SWG 22). Все катушки имеют одинаковые характеристики провода.

Используя эту настройку катушки, прототип мог работать без остановок около 21 дня, постоянно сохраняя аккумулятор привода на 12,7 вольт. Через 21 день система была остановлена ​​для внесения некоторых модификаций и снова протестирована с использованием совершенно новой конструкции.

В конструкции, показанной выше, ток, протекающий от аккумуляторной батареи в цепь, на самом деле составляет 70 миллиампер, что составляет 12.7 вольт дают входную мощность 0,89 Вт. Выходная мощность составляет примерно 40 Вт, что подтверждает коэффициент полезного действия 45.

Без учета трех дополнительных аккумуляторов на 12 В, которые дополнительно заряжаются одновременно. Результаты действительно кажутся чрезвычайно впечатляющими для предложенной схемы.

Метод привода так много раз использовался Джоном Бедини, что создатель решил поэкспериментировать с подходом Джона к оптимизации для достижения максимальной эффективности. Несмотря на это, он обнаружил, что в конечном итоге полупроводник с эффектом Холла, специально правильно выровненный с магнитом, дает наиболее эффективные результаты.

Дальнейшие исследования продолжаются, и на данный момент выходная мощность достигла 60 Вт. Это выглядит поистине потрясающе для такой крошечной системы, особенно когда вы видите, что в ней нет реалистичного ввода. Для этого следующего шага мы уменьшаем батарею до одного. Схема показана ниже:

В рамках этой схемы на катушку «B» также подаются импульсы транзистора, и выходной сигнал с катушек вокруг ротора теперь направляется на выходной инвертор.

Здесь снимается приводной аккумулятор и заменяется маломощным трансформатором 30 В и диодом.Он, в свою очередь, управляется выходом инвертора. Небольшое вращательное движение ротора создает достаточный заряд конденсатора, чтобы система могла запускаться без батареи. Выходная мощность для этой нынешней установки достигает 60 Вт, что на 50% больше.

3 батарейки на 12 В также сняты, и цепь может легко работать, используя только одну батарею. Непрерывная выходная мощность от одиночной батареи, которая никоим образом не требует внешней подзарядки, кажется большим достижением.

Следующее усовершенствование — это схема, включающая датчик Холла и полевой транзистор. Датчик Холла расположен точно по одной линии с магнитами. Это означает, что датчик помещается между одной из катушек и магнитом ротора. У нас есть зазор 1 мм между датчиком и ротором. На следующем изображении показано, как именно это должно быть сделано:

Другой вид сверху, когда катушка находится в правильном положении:

Эта схема показала огромные 150 ватт непрерывной выходной мощности с использованием трех 12-вольтных батарей.Первая батарея помогает питать схему, в то время как вторая перезаряжается с помощью трех диодов, подключенных параллельно, чтобы увеличить ток, передаваемый для заряжаемой батареи.

Переключающий переключатель DPDT «RL1» меняет местами подключения батареи каждые пару минут с помощью схемы, показанной ниже. Эта операция позволяет обеим батареям все время оставаться полностью заряженными.

Ток зарядки также проходит через второй набор из трех параллельных диодов, заряжающих третью 12-вольтовую батарею.Эта 3-я батарея управляет инвертором, через который работает предполагаемая нагрузка. Тестовая нагрузка, использованная для этой установки, представляла собой лампочку на 100 ватт и вентилятор на 50 ватт.

Датчик Холла переключает транзистор NPN, тем не менее, практически любой транзистор с быстрым переключением, например BC109 или 2N2222 BJT, будет работать очень хорошо. Вы поймете, что все катушки на данный момент управляются полевым транзистором IRF840. Реле, используемое для переключения, имеет тип фиксации, как показано в этой конструкции:

И оно питается от низкоточного таймера IC555N, как показано ниже:

Синие конденсаторы выбираются для переключения конкретного фактического реле, которое используется в схема.Это позволяет реле включаться и выключаться на короткое время каждые пять минут или около того. Резисторы 18K над конденсаторами расположены так, чтобы разряжать конденсатор в течение пяти минут, когда таймер находится в состоянии ВЫКЛ.

Однако, если вы не хотите, чтобы это переключение между батареями, вы можете просто настроить его следующим образом:

В этой конфигурации батарея, питающая инвертор, подключенный к нагрузке, имеет более высокую емкость. Хотя создатель использовал пару аккумуляторов емкостью 7 Ач, можно использовать любую обычную 12-вольтовую аккумуляторную батарею для скутеров емкостью 12 А · ч.

Обычно одна из катушек используется для подачи тока к выходной батарее и одна оставшаяся катушка, которая может быть частью трехжильной основной катушки. Это принято для подачи напряжения питания непосредственно на аккумуляторную батарею.

Диод 1N5408 рассчитан на работу с током 100 В и током 3 А. Диоды без значения могут быть любым диодом, например диодом 1N4148. Концы катушек, присоединенные к полевому транзистору IRF840, физически устанавливаются по окружности ротора.

Всего таких катушек 5. Те, которые имеют серый цвет, показывают, что крайние правые три катушки состоят из отдельных жил основной трехпроводной композитной катушки, уже обработанной в наших более ранних схемах.

В то время как мы видели использование трехжильной витой проволочной катушки для переключения типа Бедини, используемого как для возбуждения, так и для вывода, в конечном итоге было сочтено ненужным включать этот тип катушки.

Следовательно, обычная спиральная катушка, намотанная на 1500 граммов 0.Эмалированная медная проволока диаметром 71 мм оказалась столь же эффективной. Дальнейшие эксперименты и исследования помогли разработать следующую схему, которая работала даже лучше, чем предыдущие версии:

В этой улучшенной конструкции мы находим использование 12-вольтного реле без фиксации. Реле рассчитано на потребление около 100 миллиампер при 12 вольт.

Подключение резистора 75 Ом или 100 Ом последовательно с катушкой реле помогает снизить потребление до 60 мА.

Он потребляется только половину времени во время периодов работы, потому что он остается нерабочим, пока его контакты находятся в положении N / C. Как и предыдущие версии, эта система тоже работает без каких-либо проблем.

Отзыв от одного из преданных читателей этого блога, г-на Тамала Индика

Уважаемый Свагатам, сэр,

Большое спасибо за ваш ответ, и я благодарен вам за поддержку. Когда вы обратились ко мне с этой просьбой, я уже установил еще 4 катушки для моего маленького двигателя Bedini, чтобы сделать его более эффективным.Но я не мог создать схемы Бедини с транзисторами для этих 4 катушек, так как не мог купить оборудование.

Но все же мой мотор Бедини работает с предыдущими 4 катушками, даже если есть небольшое сопротивление со стороны ферритовых сердечников недавно подключенных других четырех катушек, поскольку эти катушки ничего не делают, а просто сидят вокруг моего маленького магнитного ротора. Но мой мотор все еще может заряжать аккумулятор 12 В 7 А, когда я вожу его с батареями 3,7.

По вашей просьбе, я приложил к настоящему видео-ролик о моем двигателе Bedini и советую вам посмотреть его до конца, так как в начале вольтметр показывает, что аккумулятор Charge имеет 13.6 В, а после запуска двигателя оно возрастает до 13,7 В, а через 3-4 минуты поднимается до 13,8 В.

Я использовал маленькие батарейки 3,7 В для привода своего маленького двигателя Бедини, и это хорошо доказывает эффективность двигателя Бедини. В моем двигателе 1 катушка — это бифилярная катушка, а другие 3 катушки запускаются тем же триггером этой бифилярной катушки, и эти три катушки повышают энергию двигателя, выдавая еще несколько шипов катушки при ускорении ротора магнита. . В этом секрет моего маленького мотора Бедини, поскольку я подключал катушки в параллельном режиме.

Я уверен, что когда я использую другие 4 катушки с цепями Bedini, мой мотор будет работать более эффективно, а магнитный ротор будет вращаться с огромной скоростью.

Я пришлю вам еще один видеоклип, когда закончу создавать схемы Бедини.

С уважением!

Thamal Indika

Результаты практических испытаний

Использование головки генератора переменного тока с небольшим электродвигателем

Джейсон Г.
(Pax, WV)



Что ж, это скорее предложение, чем вопрос, как построить собственный гибридный электромобиль.

Средний 4-цилиндровый автомобильный мотор весит около 700 фунтов, плюс-минус несколько фунтов. Почему бы не использовать головку генератора переменного тока и не использовать электродвигатель меньшего размера, чтобы подтолкнуть эту головку генератора для питания приводного двигателя электромобиля?

Видите ли, грузовики среднего и большего размера требуют, чтобы у вас было как минимум 200 футов в секунду, чтобы эффективно толкать более крупный автомобиль по дороге при средней загрузке.Сейчас я тоже живу в горах, поэтому я много месяцев думал об этом обращении. и я построил домашний генератор с той же технологией. использовал генераторную головку мощностью 20 кВт и трехфазный двигатель мощностью 2 л.с., которому требуется всего 2200 Вт для работы при максимальной нагрузке. Я использовал базовую геометрию для расчета необходимой зубчатой ​​передачи (или системы шкивов), поэтому я могу заставить генератор работать при 3/4 мощности, в то время как приводной двигатель работает только со скоростью 540 об / мин. вы никогда не достигнете максимальной нагрузки на двигатель питания, но всегда безопасно купить что-то такого размера, поэтому, если вам это нужно, оно есть.Система вырабатывает электроэнергию для дома, а некоторая часть мощности подается обратно в приводной двигатель, чтобы повернуть головку генератора … по сути, в долгосрочной перспективе она питает сама себя. это та же самая установка, только вы собираетесь использовать генераторную головку 30 кВт и промышленный трехфазный двигатель переменного тока мощностью 3 л.с. для питания генераторной головки.

Приводной двигатель, который вы будете использовать, не должен превышать максимальную мощность головки генератора. Хороший расчет, который я использую, позволяет головке генератора работать эффективно с вашей текущей настройкой, в основном устраняя батареи, за исключением двух (которые включают небольшой трехфазный двигатель для запуска вашего электромобиля), расчет, который я использовал для своего дома, использовал для питания моего гаражный хлам (в т.ч. сварщик 240амп) был.. возьмите максимальную нагрузку двигателя (мощность для работы при максимальной нагрузке) или источник питания, который вы планируете использовать … умножьте максимальную нагрузку (мощность) на 3, затем разделите общее число на два. это даст вам то, что вам нужно для работы двигателя в диапазоне мощности 3/4, и не будет перегружать приводной двигатель. Видите ли, ваш двигатель-пожиратель бензина (как V8) весит около 950 фунтов в сухом виде. а двигатель EV + головка генератора и двигатель питания весит примерно на 80 фунтов меньше, вы значительно снизите вес, сняв большую часть веса с батарей.

Вы сможете двигаться дальше, поскольку ваша система вырабатывает электроэнергию по запросу, а не полагается на батареи, чтобы доставить вас к месту. Другое дело, что на холмах или в горах вы будете использовать гораздо больше энергии от своих батарей, чтобы подтолкнуть вас к этим холмам, что значительно снизит ваш пробег. И с этой системой у вас будет возможность нажимать, когда вам это нужно. вместо того, чтобы смотреть, как ваш индикатор мощности падает, как будто вы едете на драгстере по проселочной дороге, двигаясь от 180 до остановки и снова…до тех пор, пока у вас не закончится энергия.

Я также построил несколько электромобилей, включая тележки для гольфа и багги для бездорожья. Это не моя идея, она была запатентована почти 23 года назад, и я случайно наткнулся на нее, когда искал альтернативу грузовикам с бензиновым двигателем.

Итак, я не собираюсь заявлять об этой идее, хотя в исходной настройке я изменил соотношение шкивов, вместо того, чтобы использовать двигатель с прямым валом двигателя. Это позволило мне запустить двигатель питания на 1/4 мощности и головку генератора на 3/4 мощности.используя уже предоставленные нам шкивы (спасибо, автомобильная промышленность) LOL

Если у вас есть еще вопросы, не стесняйтесь спрашивать … кстати … единственное, что вы делаете, — это заменяете батареи на головку генератора … так что оставайтесь те же контроллеры и электрическая система, которые использовались при предыдущем переходе с газа на электрическую. Вместо того, чтобы иметь ограниченный пробег, мощность предоставляется по запросу, что позволяет вам идти гораздо дальше.

И я согласен использовать двигатель переменного тока вместо двигателя постоянного тока с этой настройкой…. инверторы действительно не нужны, так как головка генератора уже подает переменный ток.

Привет, Джейсон!

Похоже, что нужно создать и протестировать. Если работает, значит работает! Держи нас в курсе, хорошо?

С уважением,
Линн

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *