+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Использование электродвигателей в железнодорожной и автомобильной промышленности

Вскоре после того как электродвигатель был изобретен, его начали использовать в наземном и водном транспорте в качестве тягловой силы. Даже с появлением двигателя внутреннего сгорания электрические механизмы не утратили своей актуальности благодаря таким качествам, как:

  • Высокий КПД (до 95%).
  • Большой ресурс.
  • Экологичность.
  • Простота в уходе.
  • Большая мощность.
  • Экономичность.
  • Бесшумность.

Виды транспорта, в которых применяются электродвигатели

Использование электродвигателей в железнодорожной и автомобильной промышленности обусловлено их высокой эффективностью и, что особенно важно на данный момент, экологической чистотой. Основные виды техники, работающей на электричестве – это:

  • Локомотивы (тепловозы с электропередачей и электровозы).
  • Атомоходы, подводные лодки, теплоходы с электроприводами.
  • Пригородные электропоезда.
  • Городской наземный транспорт (троллейбусы и трамваи).
  • Подземный городской транспорт (поезда метрополитена).
  • Электромобили.
  • Большегрузные автомобили с электроприводом.
  • Беспилотные летательные аппараты.
  • Самоходные краны.
  • Транспортно-подъемные машины.

В тепловозах часто устанавливается дизель в паре с электродвигателем – первый вращает генератор, питающий ТЭД, а второй приводит колеса в движение.

Ниже мы рассмотрим особенности моторов разных типов транспорта.

Двигатели для городского транспорта

Двигатели для надземного и подземного городского транспорта дают возможность улучшить экологическую обстановку и снизить уровень шума в мегаполисах. Основная нагрузка приходится на поезда метро, поэтому сейчас непрерывно ведется работа над улучшением эксплуатационных характеристик, надежности и долговечности электродвигателей вагонов. К ним предъявляются следующие требования:

  • Способность справляться с высокими пусковыми ускорениями.
  • Способность сохранять высокую эффективность при постоянной смене режимов работы.

К особенностям тяговых двигателей для всех видов городского транспорта можно отнести:

  • Сравнительно небольшую мощность (до 200 кВт).
  • Низкое максимальное напряжение.
  • Высокий КПД (до 91%).
  • Наличие резервов для роста эффективности работы агрегата.

Двигатели для спецтехники и крановых установок

На самоходных кранах электродвигатели приводят в движение привод колес и лебедку. При мощности в 40-50кВт они могут работать от сети 220В. В торговых и логистических центрах для транспортировки продуктов питания и фармакологических товаров применяются исключительно погрузчики с электродвигателями, так как они не производят экологически вредных выбросов.

Двигатели для электровозов

Это самые мощные двигатели (до 400кВт для тепловозов и до 1500кВт для карьерных и магистральных электровозов), которые работают в комплексе с тяговой передачей и движущей колесной парой, образуя колесно-моторный блок. Они создают очень сильное тяговое усилие и позволяют транспорту развивать большую скорость.


виды, сферы применения и прочие особенности

20.08.2019

Существует несколько видов электрических двигателей:

1. Электродвигатель постоянного тока. Устройство представляет собой электромашину, предназначенную для получения механической энергии за счет преобразования энергии постоянного тока.

Электрические двигатели из-за высоких эксплуатационных показателей и долговечности устанавливаются на следующие виды оборудования:

  • подъемно-транспортные агрегаты;
  • красильно-отделочное оборудование;
  • полимерное оборудование;
  • буровые станки;
  • различные вспомогательные агрегаты для экскаваторов.

Например, к оборудованию постоянного тока можно отнести электродвигатель серии 2п, который используется при работе широко регулируемого электропривода.

Для работы машины серии 2п необходимы следующие условия:

  • работа может происходить на высоте не более 1 километра над уровнем моря;
  • эксплуатация допускается при температуре воздуха от +5 до +40 градусов Цельсия;
  • влажность воздуха при +25 градусов не должна превышать 80%;
  • работа допускается в безопасных условиях: отсутствие взрывоопасных веществ, агрессивных газов, а также паров в концентрации, способной разрушить металл.

2. Синхронный электродвигатель относится к электрическим машинам переменного тока. Во время работы ротор и магнитное поле в воздушном зазоре вращаются в одинаковой частоте. Как правило, данные электродвигатели применяются в приводах, работа которых осуществляется с одинаковой скоростью. Например, в компрессорах, насосах, больших вентиляторах, а также генераторах постоянного тока.

3. Асинхронный электрический двигатель. Во время работы ротор вращается с разной частотой по отношению к магнитному полю, который создается обмоткой статора.

Существует несколько типов асинхронных машин:

  • Асинхронные машины с короткозамкнутым ротором. Устанавливаются в электрические приводы, для работы которых нет необходимости создания больших пусковых моментов.
  • Асинхронные машины с фазным ротором. Используются данные двигатели в приводах механизмов, при работе с которыми необходимо плавное регулирование скоростного режима. Двигатели с фазным ротором применяются и в механизмах, работающих при больших нагрузках.

Все они оснащены одинаковым статором, однако отличием машин является конструкция обмотки ротора.

К асинхронным электрическим двигателям можно отнести:

  • Крановые электродвигатели.

Область применения электродвигателей – электрические приводы металлургического оборудования, а также различные подъемно-транспортные механизмы, работающие в кратковременных режимах. Стоит отметить, что крановые электродвигатели также используются в механизмах, работающих в длительном режиме.

Для работы крановых двигателей требуется напряжение сети 380 Вольт. Обмотка статора должна быть трехконечная. При этом в определенном изготовлении механизма (шесть концов, имеющих соединение фаз в виде треугольника или звезды) работа возможна при напряжении 220/380, а также 380/600 Вольт.

Устанавливаются в стационарный либо передвижной транспорт, работающий в опасной среде, где воздух смешан с парами взрывоопасных газов либо смесей. Допуск к работе взрывозащищенных электродвигателей определяется ГОСТ Р 513 30-5.

Сфера применения взрывозащищенных электродвигателей серии АИМ, а также АИММ – нефтехимическая, горнодобывающая промышленность, производство ЛКМ. Для работы взрывозащищенных электродвигателей необходима сеть с трехфазным переменным током частотой 50-60 Герц.

Например, электрические двигатели АИР. Данные машины применяются в приводах механизмов, работающих на открытом воздухе, под навесом, куда не попадают прямые солнечные лучи, а также в закрытом помещении, где работа осуществляется от электросети с частотой переменного тока 50 Герц.

Возникли вопросы?

Заполните форму обратной связи, наши менеджеры свяжутся с вами!

Узнаем где применяется электродвигатель — примеры. Применение электродвигателей

Электродвигатель преобразует электроэнергию в механическую. Он состоит из статора (или якоря) и ротора. Такое устройство получило очень широкое распространение во всех сферах жизни. Благодаря электрическим двигателям удалось заменить во многих областях труд человека работой машины. Рассмотрим различные типы моторов и выясним, где применяются электродвигатели (примеры см. ниже).

Принцип работы

Электрический двигатель устроен довольно просто. В его основе заложен принцип электромагнитной индукции. В установку входит неподвижная часть — статор, монтируемый в моторы переменного тока синхронного и асинхронного типа или индуктора (для двигателя постоянного тока), а также ротора, то есть подвижной части для синхронных и асинхронных типов, или якоря для устройств постоянного тока.

Роторы могут быть короткозамкнутыми (типа беличьей клетки) и фазными с обмоткой (системой контактных колец). Случаи, где применяется электродвигатель последнего типа, представляют устройства асинхронного типа для сокращения тока и регуляции частоты вращения.

Подвижную часть в устройстве постоянного тока или работающую по этому принципу в универсальном двигателе называют якорем. Универсальный мотор — это двигатель постоянного тока, имеющий последовательное возбуждение, то есть последовательное включение якоря и обмотки. Реактивного сопротивления на постоянном токе нет. Поэтому, если вынуть электрический блок из болгарки, то она продолжит работать, особенно если сетевое напряжение малое и используемый ток — постоянный.

Двигатели на переменном токе

Рассматриваемые устройства бывают переменного и постоянного тока. Во всех сферах, где применяется электродвигатель, чаще он имеет переменный ток. Такой мотор отличается простым принципом работы и легок в эксплуатации. Единственный существенный минус заключается в нерегулируемой частоте вращения.

Электрические двигатели переменного тока могут быть с одной или несколькими фазами. Устройствами, где применяется электродвигатель переменного тока, являются такие машины, которым не нужно регулировать частоту вращения. Они могут иметь различное назначение (дробилки, насосы, станки для обработки дерева и так далее). Их мощность составляет от двух десятых до двухсот и выше киловатт.

Двигатели на постоянном токе

Электрические двигатели постоянного тока могут иметь наряду с последовательным параллельное и смешанное соединение обмоток статора и якоря. Их преимуществом является то, что недоступно предыдущему виду: это способность регуляции частоты вращения. Однако при эксплуатации необходимо применение силы.

Такие двигатели бывают бесколлекторными и коллекторными.

Бесколлекторные, или вентильные — это двигатели, функционирующие в замкнутой системе с датчиком, определяющим роторное положение и систему управления.

Коллекторные двигатели могут быть с самовозбуждением (параллельным, последовательным и смешанным) и независимым возбуждением.

Устройствами, где применяются электродвигатели постоянного тока, являются, к примеру, электрический транспорт и различные строительные станки.

Асинхронный вид

Чаще всего используется трехфазный короткозамкнутый асинхронный двигатель. В этом случае круговое магнитное поле пронизывает короткозамкнутую роторную обмотку, из-за чего возникает ток индукции. Асинхронным его называют потому, что вращение ротора не равно вращению магнитного статора.

Применение электродвигателей асинхронного типа распространено во многих отраслях техники, в бытовых приборах (холодильниках, стиральных машинах, кондиционерах), в промышленности, например в дерево- и металлообрабатывающей, а также в ткачестве. Они работают стабильнее других видов, стоят дешевле и просты в эксплуатации.

Синхронный вид

Синхронный двигатель имеет отличную роторную конструкцию, где эта часть представлена электрическим или постоянным магнитом. Частота вращения в этом случае магнитного статора совпадает с роторной частотой.

Этот вид электрических двигателей может применяться в насосных станциях, при необходимости компенсации реактивной мощности, а также в некоторых других случаях.

Виды по возникновению вращающего момента

По тому, как появляется вращающий момент, электрические двигатели подразделяют на гистерезисные и магнитоэлектрические.

Наиболее распространено в традиционных отраслях применение электродвигателей магнитоэлектрического типа. Они могут быть и на постоянном, и на переменном токе. Также существуют универсальные двигатели.

А вот отрасли, где применяются электродвигатели гистерезисные, распространенными не назовешь. Обычно такие устройства являются нетрадиционными и в промышленности используются крайне редко. Больше их применяют в гироскопии, счетчиках времени, а также в устройствах записи звуков и изображений.

Универсальные моторы коллекторного типа

Где применяются электродвигатели универсального коллекторного типа? Без них не функционируют промышленные и бытовые приборы, например, вентиляторы, соковыжималки, мясорубки, пылесосы, холодильники и тому подобное. Они работают и от сети постоянного тока на сто десять и двести двадцать вольт, и от сети переменного тока на 127 и 220 вольт.

Устройство таких моторов подобно двухполюсным двигателям постоянного тока, имеющего последовательное возбуждение.

Здесь набирается не только якорь от электротехнической стали листового типа, но и полюс, и ярмо, то есть неподвижная часть магнитного провода.

Обмотка возбуждения может быть подключена как с одной, так и с другой стороны якоря. Благодаря этому сокращаются радиопомехи, образуемые мотором. Одинаковая частота вращения и при постоянном, и при переменном токе достигается посредством реализации обмотки возбуждения с ответвлениями. Разница заключается лишь в том, что при сети постоянного тока она используется полностью, а от переменного тока — только частично.

Вращающий момент получается через взаимодействие тока с магнитным потоком возбуждения.

Такие моторы имеют мощность всего от пяти до шестисот ватт (но в отдельных случаях, например, в электрических инструментах, достигают восьмисот ватт), а также частоты вращения от двух тысяч семисот семидесяти до восьми тысяч оборотов в минуту. Так как пусковые токи здесь небольшие, то и пусковые сопротивления не нужны. Минимальное количество выводов на универсальных коллекторах — четыре. Из них два служат для подключения к сети постоянного тока, а два других — для переменного. Причем в последнем случае КПД двигателя будет ниже из-за больших электрических и магнитных потерь. Переменного тока станет потребляться больше, чем постоянного, так как он имеет не только активную составляющую, но и реактивную.

Частота вращения может регулироваться, к примеру, автоматическим трансформатором или реостатом.

Быстро найти подходящий механизм

Понятно, что имеется очень много областей, где применяется электродвигатель.

195 3730.12.40 — это число-пример для идентификации того или иного механизма, а также его габаритов.

Ввиду того, что моделей этих устройств огромное множество, причем самых разных размеров и сфер использования, найти необходимое бывает крайне сложно. Данная классификация существенно упрощает процесс поиска подходящего электрического двигателя.

Применение электродвигателей

Электродвигатели применяются как главная составляющая электро-привода различных станков, так и в составе с отдельными установками, где необходимо  преобразование   электрической   энергии в механическую (дви- жение) например: вентиляторы с клиноременной передачей, косилки различных модификаций и т.д. Низковольтные асинхронные электродвигатели общего назначения мощностью 0,25…400 кВт, именуемые во всем мире стандартные асинхронные двигатели, составляют основу силового электропривода, применяемого во всех областях человеческой деятельности. Их совершенствованию в промышленно развитых странах придают большое значение. В настоящее время рынок, призванный отражать интересы потребителей, не формулирует сколько-нибудь определенных требований к стандартным асинхронным двигателям, кроме ценовых. В связи с этим для выявления тенденций их совершенствования необходимо исходить из требований внешнего рынка и из достижений основных производителей стандартных асинхронных двигателей.

Асинхронные двигатели — наиболее распространенный вид электрических машин, потребляющих в настоящее время около 40% всей вырабатываемой электроэнергии. Их установленная мощность постоянно возрастает.

Асинхронный двигатели широко применяются в приводах металлообрабатывающих, деревообрабатывающих и других видов станков, кузнечно-прессовых, ткацких, швейных, грузоподъемных, землеройных машин, вентиляторов, насосов, компрессоров, центрифуг, в лифтах, в ручном электроинструменте, в бытовых приборах и т.д. Практически нет отрасли техники и быта, где не использовались бы асинхронные двигатели.

Потребности народного хозяйства удовлетворяются главным образом двигателями основного исполнения единых серий общего назначения, т.е. применяемых для привода механизмов, не предъявляющих особых требований к пусковым характеристикам, скольжению, энергетическим показателям, шуму и т.п. Вместе с тем в единых сериях предусматривают также электрические и конструктивные модификации двигателей, модификации для разных условий окружающей среды, предназначенные для удовлетворения дополнительных специфических требований отдельных видов приводов и условий их эксплуатации. Модификации создаются на базе основного исполнения серий с максимально возможным использованием узлов и деталей этого исполнения.

В некоторых приводах возникают требования, которые не могут быть удовлетворены двигателями единых серий. Для таких приводов созданы специализированные двигатели, например электробуровые, краново-металлургические и др.

Низковольтные асинхронные электродвигатели общего назначения мощностью 0,25…400 кВт, именуемые во всем мире стандартные асинхронные двигатели, составляют основу силового электропривода, применяемого во всех областях человеческой деятельности.

Их совершенствованию в промышленно развитых странах придают большое значение. В настоящее время рынок, призванный отражать интересы потребителей, не формулирует сколько-нибудь определенных требований к стандартным асинхронным двигателям, кроме ценовых. В связи с этим для выявления тенденций их совершенствования необходимо исходить из из достижений основных производителей стандартных асинхронных двигателей.

Устроиство и принцип действия синхронного электродвигателя< Предыдущая   Следующая >Основные неисправности и ремонт в процессе эксплуатации

Что представляет собой статор электрического двигателя. Электрический двигатель — принцип работы электродвигателя

Электродвигатель – это электротехническое устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта , обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания :

  1. Переменного тока , работающие напрямую от электросети.
  2. Постоянного тока , которые работают от батареек, АКБ, блоков питания или других источников постоянного тока .

По принципу работы:

  1. Синхронные , в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные , самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре.

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор , являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила . Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока


Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Определение.

Электрический двигатель – механизм или специальная машина, предназначенная для преобразования электрической энергии в механическую, при котором так же выделяется тепло.

Предыстория.

Уже в 1821 году, знаменитый британский ученый Майкл Фарадей продемонстрировал принцип преобразования электромагнитным полем электрической энергии в механическую энергию. Установка состояли из подвешенного провода, которых окунался в ртуть. Магнит устанавливался посередине колбы с ртутью. При замыкании цепи, провод начинал вращение вокруг магнита, демонстрируя то, что вокруг провода, эл. током, образовывалось электрическое поле.

Эту модель двигателя часто демонстрировали в школах и университетах. Данный двигатель считается самым простым видом из всего класса электродвигателей. Впоследствии он получил продолжение в виде Колеса Барлова. Однако новое устройство носило лишь демонстрационный характер, поскольку вырабатываемые им мощности были слишком малы.

Ученые и изобретатели работали над двигателем с целью использования его в производственных нуждах. Все они стремились к тому, чтобы сердечник двигателя двигался в магнитном поле вращательно-поступательно, на манер поршня в цилиндре паровой машины. Русский изобретатель Б.С. Якоби сделал все гораздо проще. Принцип работы его двигателя заключался в попеременном притяжении и отталкивании электромагнитов. Часть электромагнитов были запитаны от гальванической батареи, и направление течения тока в них не менялась, а другая часть подключалась к батарее через коммутатор, благодаря которому изменялось направление течения тока через каждый оборот. Полярность электромагнитов менялась, и каждый из подвижных электромагнитов то притягивался, то отталкивался от соответствующего ему неподвижного электромагнита. Вал приходил в движение.

Изначально мощность двигателя была небольшой и составляла всего 15 Вт, после доработок, Якоби удалось довести мощность до 550 Вт.. 13 сентября 1838 году, лодка, оборудованная этим двигателем, плыла с 12 пассажирами по Неве, против течения, развивая при этом скорость в 3 км/ч. Двигатель был запитан от большой батареи, состоящей из 320 гальванических элементов. Мощность современных электрических двигателей превышает 55 кВт. По вопросом прибретения электрических двигателей .

Принцип действия.

В основу работы электрической машины заложено явление электромагнитной индукции (ЭМИ). Явление ЭМИ заключается в том, что при любом изменении магнитного потока, пронизывающего замкнутый контур, в нем (контуре) образуется индукционный ток.

Сам двигатель состоит из ротора (подвижной части – магнита или катушки) и статора (неподвижной части – катушки). Чаще всего конструкция двигателя представляет собой две катушки. Статор обложен обмоткой, по которой, собственно, и течет ток. Ток порождает магнитное поле, которое воздействует на другую катушку. В ней, по причине ЭМИ, так же образуется ток, который порождает магнитное поле, действующее на первую катушку. И так все повторяется по замкнутому циклу. В итоге, взаимодействие полей ротора и статора создает вращающий момент, приводящий в движение ротор двигателя. Таким образом, происходит трансформация электрической энергии в механическую, которую можно использовать в различных приборах, механизмах и даже в автомобилях.

Вращение электромотора

Классификация электрических двигателей.

По способу питания:

двигатели постоянного тока – запитываются от источников постоянного тока.
двигатели переменного тока — запитываются от источников переменного тока.
универсальные двигатели – запитываются как от постоянного, так и переменного тока.

По конструкции:

Коллекторный электродвигатель — электродвигатель, в котором в качестве датчика положения ротора и переключателя тока используется щеточноколлекторный узел.

Бесколлекторый электродвигатель – электродвигатель, состоящий из замкнутой системы, в которой используются: системы управления (преобразователь координат), силовой полупроводниковый преобразователь (инвертор), датчик положения ротора (ДПР).

С приведением в действие постоянными магнитами;
С параллельным соединением якоря и обмоток возбуждения;
С последовательным соединением якоря и обмоток возбуждения;
Со смешанным соединением якоря и обмоток возбуждения;

По количеству фаз:

Однофазные – запускаются вручную, либо же имеют пусковую обмотка или фазосдвигающую цепь.
Двухфазные
Трехфазные
Многофазные

По синхронизации:

Синхронный электродвигатель – электрический двигатель переменного тока с синхронным движением магнитного поля питающего напряжения и ротора.
Асинхронный электродвигатель – электрический двигатель переменного тока с отличающейся частотой движения ротора и магнитного поля, порождаемого питающим напряжением.

В быту, коммунальном хозяйстве, на любом производстве двигатели электрические являются неотъемлемой составляющей: насосы, кондиционеры, вентиляторы и пр. Поэтому важно знать типы наиболее часто встречающихся электродвигателей.

Электродвигатель является машиной, которая преобразует в механическую энергию электрическую. При этом выделяется тепло, являющееся побочным эффектом.

Видео: Классфикация электродвигателей

Все электродвигатели разделить можно на две большие группы:

  • Электродвигатели постоянного тока
  • Электродвигатели переменного тока.

Электродвигатели, питание которых осуществляется переменным током, называются двигателями переменного тока, которые имеют две разновидности:

  • Синхронные – это те, у которых ротор и магнитное поле питающего напряжения вращаются синхронно.
  • Асинхронные . У них отличается частота вращения ротора от частоты, создаваемого питающим напряжением магнитного поля. Бывают они многофазными, а также одно-, двух- и трехфазными.
  • Электродвигатели шаговые отличаются тем, что имеют конечное число положений ротора. Фиксирование заданного положения ротора происходит за счет подачи питания на определенную обмотку. Путем снятия напряжения с одной обмотки и передачи его на другую осуществляется переход в другое положение.

К электродвигателям постоянного тока относят те, которые питаются постоянным током. Они, в зависимости от того, имею или нет щёточно-коллекторный узел, подразделяются на:


Коллекторные также, в зависимости от типа возбуждения, бывают нескольких видов:

  • С возбуждением постоянными магнитами.
  • С параллельным соединением обмоток соединения и якоря.
  • С последовательным соединением якоря и обмоток.
  • Со смешанным их соединением.

Электродвигатель постоянного тока в разрезе. Коллектор со щетками – справа

Какие электродвигатели входят в группу «электродвигатели постоянного тока»

Как уже говорилось, электродвигатели постоянного тока составляют группу, в которую входят коллекторные электродвигатели и бесколлекторные, которые выполнены в виде замкнутой системы, включающей датчик положения ротора, систему управления и силовой полупроводниковый преобразователь. Принцип работы бесколлекторных электродвигателей аналогичен принципу работы двигателей асинхронных. Устанавливают их в бытовых прибора, например, вентиляторах.

Что собой представляет коллекторный электродвигатель

Длина электродвигателя постоянного тока зависит от класса. Например, если речь идет о двигателе 400 класса, то его длина составит 40 мм. Отличием коллекторных электродвигателей от бесколлектрных собратьев является простота в изготовлении и эксплуатации, следовательно, и стоимость его будет более низкой. Их особенность — наличие щеточно-коллекторного узла, при помощи которого осуществляется соединение цепи ротора с расположенными в неподвижной части мотора цепями. Состоит он из расположенных на роторе контактов – коллектора и прижатых к нему щеток, расположенных вне ротора.

Ротор

Используют эти электродвигатели в радиоуправляемых игрушках: подав на контакты такого двигателя напряжение от источника постоянного тока (той же батарейки), вал приводится в движение. А, чтобы изменить его направление вращения, достаточно изменить полярность, подаваемого напряжения питания. Небольшой вес и размеры, низкая цена и возможность восстановления щеточно-коллекторного механизма делают эти электродвигатели наиболее используемыми в бюджетных моделях, несмотря на то, что он значительно уступает по надежности бесколлекторному, поскольку не исключено искрение, т.е. чрезмерный нагрев подвижных контактов и их быстрый износ при попадании пыли, грязи или влаги.

На коллекторный электродвигатель нанесена, как правило, маркировка, указывающая на число оборотов: чем оно меньше, тем скорость вращения вала больше. Она, к слову, очень плавно регулируется. Но, существуют и двигатели этого типа высокооборотистые, не уступающие бесколлекторным.

Преимущества и недостатки бесколлекторных электродвигателей

В отличие от описанных, у этих электродвигателей подвижной частью является статор с постоянным магнитом (корпус), а ротор с трехфазной обмоткой – неподвижен.

К недостаткам этих двигателей постоянного тока отнести можно менее плавную регулировку скорости вращения вала, но зато они способны за доли секунды набрать максимальные обороты.

Бесколлекторный электродвигатель помещен в закрытый корпус, поэтому он более надежен при неблагоприятных условиях эксплуатации, т.е. ему не страшны пыль и влага. К тому же, его надежность возрастает благодаря отсутствию щеток, как и скорость, с которой вращается вал. При этом, по конструкции мотор более сложен, следовательно, не может быть дешевым. Стоимость его в сравнении с коллекторным, выше в два раза.

Таким образом, коллекторный электродвигатель, работающий на переменном и на постоянном токе, является универсальным, надежным, но более дорогим. Он и легче, и меньше по размерам двигателя переменного тока той же мощности.

Поскольку электродвигатели переменного тока, питающиеся от 50 Гц (питание промышленной сети) не позволяют получать высокие частоты (выше 3000 об/мин), при такой необходимости, используют коллекторный двигатель.

Между тем, его ресурс ниже, чем у асинхронных электродвигателей переменного тока, который зависит от состояния подшипников и изоляции обмоток.

Как работает синхронный электродвигатель

Синхронные машины применяют часто в качестве генераторов. Он синхронно работают с частотой сети, поэтому он с датчиком положения инвертора и ротора, является электронным аналогом коллекторного электродвигателя постоянного тока.

Строение синхронного электродвигателя

Свойства

Эти двигатели не являются механизмами самозапускающимися, а требуют внешнего воздействия для того, чтобы набрать скорость. Применение они нашли в компрессорах, насосах, прокатных станках и подобном оборудовании, рабочая скорость которого не превышает отметки пятьсот оборотов в минуту, но требуется увеличение мощности. Они достаточно большие по габаритам, имеют «приличный» вес и высокую цену.

Запустить синхронный электродвигатель можно несколькими способами:

  • Используя внешний источник тока.
  • Пуск асинхронный.

В первом случае, с помощью мотора вспомогательного, в качестве которого выступать может электродвигатель постоянного тока или индукционный трехфазный мотор. Изначально ток постоянный на мотор не подается. Он начинает вращаться, достигая близкой к синхронной скорости. В этот момент подается постоянный ток. После замыкания магнитного поля, разрывается связь с вспомогательным двигателем.

Во втором варианте необходима установка в полюсные наконечники ротора дополнительной короткозамкнутой обмотки, пересекая которую магнитное вращающееся поле индуцирует токи в ней. Они, взаимодействуя с полем статора, вращают ротор. Пока он не достигнет синхронной скорости. С этого момента крутящий момент и ЭДС уменьшаются, магнитное поле замыкается, сводя к нулю крутящий момент.

Эти электродвигатели менее чувствительны, чем асинхронные, к колебаниям напряжения, отличаются высокой перегрузочной способностью, сохраняют неизменной скорость при любых нагрузках на валу.

Однофазный электродвигатель: устройство и принцип работы

Использующий после пуска только одну обмотку статора (фазу) и не нуждающийся в частном преобразователе электродвигатель, работающий от электросети однофазного переменного тока, является асинхронным или однофазовым.

Однофазовый электродвигатель имеет вращающуюся часть – ротор и неподвижную – статор, который и создает магнитное поле, необходимое для вращения ротора.

Из двух, расположенных в сердечнике статора друг к другу под углом 90 градусов обмоток, рабочая занимает 2/3 пазов. Другая обмотка, на долю которой приходится 1/3 пазов, называется пусковой (вспомогательной).

Ротор – это тоже короткозамкнутая обмотка. Его стержни из алюминия или меди замкнуты с торцов кольцом, а пространство между ними залито алюминиевым сплавом. Может быть выполнен ротор в виде полого ферромагнитного или немагнитного цилиндра.

Однофазный электродвигатель, мощность которого может быть от десятков ватт до десятка киловатт, применяются в бытовых приборах, устанавливаются в деревообрабатывающих станках, на транспортерах, в компрессорах и насосах. Преимущество их – возможность использования в помещениях, где нет трехфазной сети. По конструкции они не сильно отличаются от электродвигателей асинхронных трехфазного тока.

Явление электромагнитной индукции стало основой возникновения и развития всех электрических машин. Первооткрывателем этого явления в конце 19 века был Майкл Фарадей, английский учёный — экспериментатор. Он провёл опыты с первыми электрическими машинами. Сейчас без них невозможно представить нашу жизнь. Электродвигатели стали одними из самых распространённых электрических машин.

Для работы электромотора необходимо напряжение, свойства которого определяют его конструкцию. На переменном напряжении и токе работают такие электродвигатели:

на постоянном напряжении и токе работают:

  • коллекторные;
  • униполярные;
  • шаговые.

Синхронные и асинхронные электродвигатели

Синхронные и асинхронные электромоторы имеют общие условия для своей работы. Для этого необходимо магнитное поле, максимальная величина которого перемещается в пространстве. Такое поле может быть создано двумя или большим числом обмоток. Обычные конструкции синхронных и асинхронных электромоторов содержат две или три обмотки.

Они размещаются на массивных ферримагнитных сердечниках, усиливающих магнитное поле. Для трёх обмоток применяется трёхфазное напряжение, для двух обмоток – двухфазное или одна фаза с фазосдвигающим конденсатором. Но с таким конденсатором к однофазной сети можно подключить и трёхфазные двигатели.

Если ротор электромотора создаёт постоянное магнитное поле, либо от постоянных магнитов, либо от встроенного в ротор источника питания постоянного тока, либо от внешнего источника питания постоянного тока через кольца со щётками такой двигатель является синхронным. В нём частота оборотов и частота напряжения источника питания одинаковы. В асинхронных двигателях используется немагнитный ротор без явно выраженных полюсов, колец со щётками, встроенных выпрямителей и комбинированных деталей из различных материалов. Исключением является синхронный гистерезисный двигатель.

Ротор асинхронного двигателя работает как вторичная обмотка трансформатора, которая замкнута накоротко. Но ток в его роторе может возникнуть только при более медленном вращении в сравнении с магнитным полем статора. Такое различие скоростей называется скольжением. Простота конструкции и соответствующая надёжность делают асинхронный электромотор наиболее широко используемым.

Коллекторные машины

Однако у синхронных и асинхронных электромоторов есть один непреодолимый недостаток – частота питающего напряжения. Она определяет скорость вращения магнитного поля и вала в этих двигателях. Никакими конструктивными изменениями в них при заданной частоте питающего напряжения невозможно получить частоту вращения вала большую, чем частота питающего напряжения. При необходимости большего числа оборотов используются коллекторные электромоторы.

В этих двигателях происходит постоянное переключение обмоток ротора коллектором. Каждая обмотка по сути это рамка с током, которая, как известно из опытов Фарадея, поворачивается в магнитном поле. Но одна рамка повернётся и остановится. Поэтому рамок — обмоток сделано несколько и каждой из них соответствует пара пластин в коллекторе. Ток подаётся через щётки, скользящие по коллектору.

Конструкция такого электромотора позволяет работать от источника либо постоянного, либо переменного напряжения, который обеспечивает ток и в статоре и в роторе. При переменном напряжении направление тока в статоре и роторе изменяется одновременно и поэтому направление действия силы вращающей ротор сохраняется. Частота питающего напряжения никак не влияет на частоту вращения ротора. Она зависит только от величины напряжения, питающего электромотор. Скользящий контакт щётки с коллектором ограничивает возможности этих электродвигателей по сроку службы и месту применения, поскольку искрение в щётках довольно быстро разрушает скользящий контакт и недопустимо в условиях повышенной взрывоопасности.

Униполярные и шаговые варианты

Однако есть такие конструкции электромоторов постоянного тока, в которых коллектора нет. Это униполярные электромоторы.

В этих электродвигателях ротор выполнен в виде диска, расположенного между полюсами постоянных магнитов. Щётки расположенные диаметрально противоположно питают током диск – ротор. Под воздействием силы Лоренца диск вращается. Несмотря на привлекательную простоту конструкции, такой электромотор не имеет широкого практического использования, поскольку требует слишком больших значений тока и магнитного поля. Тем не менее, существуют уникальные лабораторные разработки униполярных электромоторов со щётками из жидкого металла, которые развивают обороты немыслимые для иных конструкций двигателей.

Шаговый двигатель это ещё одна конструкция, работающая на постоянном токе.

В целом этот двигатель подобен синхронному электромотору с ротором из постоянных магнитов. Отличие в том, что число обмоток здесь больше, и они управляются ключами, которые подают на каждую обмотку питающее напряжение. В результате ротор меняет своё положение, притягиваясь к подключенной обмотке. Число обмоток определяет минимальный угол поворота ротора, а коммутаторы – скорость вращения ротора. В шаговом двигателе ротор может вращаться почти как угодно, поскольку ключи связаны с электронной схемой управления.

Рассмотренные конструкции электромоторов являются базовыми. На их основе для решения определённых задач создано много специальных разновидностей электромоторов. Но это уже совсем другая история…

Содержание:

Выполнение механической работы — это главный процесс в нашем материальном мире. По этой причине появление электродвигателей стало важнейшим событием в развитии человеческой цивилизации. Именно эти устройства понесли на себе весь груз промышленного производства. Это и обеспечило, в конце концов, так называемую научно-техническую революцию. В любых электрических движках в основу конструкции положено открытие взаимодействия проводов с проходящим по ним электрическим током.

О том, какие результаты были достигнуты за время, прошедшее с этого открытия, и будет рассказано нашим читателям. Напомним, что взаимодействие запитанных электротоком проводов обнаружил Андре Ампер в 1820 году. После этого события была создана конструкция, способная усилить это взаимодействие — соленоид. Катушка с ферромагнитным сердечником при сближении с постоянным магнитом или другой аналогичной катушкой воздействовала на них со значительным усилием. Поэтому оставалось только придумать такое конструктивное решение, которое позволит максимально увеличить взаимодействие соленоидов и придаст ему необходимое направление.

Превращение электроэнергии в механическую работу

Два соленоида могут либо притягиваться, либо отталкиваться. Их взаимодействие определяется полюсами. Одноименные — отталкиваются, разноименные — притягиваются. Поэтому не составляет особого труда догадаться о конструктивном решении, позволяющем получить вращение вала:

  • Вал и соленоид объединяются в жесткую конструкцию. Соленоид располагается так, чтобы создаваемые силовые линии магнитного поля были перпендикулярны оси вращения вала. Полученный элемент двигателя называется ротором, а также индуктором.
  • Вокруг ротора располагаются несколько других соленоидов для его притяжения. Чтобы направление было явно задано, а вращение равномерно, их должно быть как минимум три. Полученный элемент движка называется статором.
  • Статор или ротор в разных конструкциях моторов могут также иметь название якорь. Суть якоря электрического двигателя заключена в его сходстве со своим корабельным тезкой. Для корабельного якоря характерна прикрепленная цепь, соединяющая его с кораблем. А строение якоря электрического движка включает в себя либо ротор, либо статор, а также присоединенный к нему электрический шнур. Он используется для подключения к источнику питания. То есть вместо якоря с цепью получается ротор или статор со шнуром питания — в этом и заключено их сходство и происхождение названия элемента движка.
  • Статор состоит из стальных пластин, которые уменьшают потери электроэнергии, создаваемые вихревыми токами. В результате получается конструкция из обмоток с сердечниками, охватывающая ротор. Они образуют отверстие цилиндрической формы. В него входит цилиндрический ротор с некоторым зазором относительно статора. Такая конструкция электрических двигателей самая распространенная.

Однако для решения некоторых задач необходимо применение иных конструкций. Это может быть, например, расположение ротора снаружи статора или отсутствие вала по причине линейного перемещения элементов двигателя относительно друг друга.

Простейшим линейным двигателем является электромагнит с втягивающимся сердечником. Для того чтобы более точно управлять перемещением подвижной части линейного движка, в нем используется необходимое число взаимодействующих магнитных элементов. Электромагнитами могут быть либо все, либо их часть — это постоянные магниты.

Как видно из рассмотренных примеров, принцип работы электродвигателя использует магнитные поля. Они — следствие как постоянного тока, так и переменного. Но в любом случае принцип действия электродвигателя — это переход электроэнергии в энергию движения.

Электропитание источником переменного напряжения

Двигатель переменного тока наиболее широко используется. Это обусловлено переменным напряжением в большинстве электросетей. Электродвигатели переменного тока подключаются к ним с использованием минимального количества дополнительных устройств. Для любого из приборов надежность и долговечность являются главными качествами. Для этого конструкция должна иметь минимум потенциально уязвимых элементов. Наиболее значимыми из них являются контакты. Меньше контактов — больше надежности.

Устройство и принцип работы электродвигателя с максимальной надежностью основаны на явлении электромагнитной индукции. Это явление используется в трансформаторах. Создание гальванически развязанных электрических цепей — это их важнейшее назначение. Аналогично создаются гальванически развязанные статорные и роторные цепи. Под напряжением пребывают только обмотки статора. Возникающая в роторе электромагнитная индукция приводит к взаимодействию магнитных полей. Но принцип работы электродвигателя переменного тока — это не только индукция. Кроме нее должно существовать условие, обеспечивающее возникновение однонаправленной силы, без которой вращение невозможно. Для этого необходимо пространственное перемещение электромагнитного поля.

С этой целью устройство электродвигателя переменного тока предусматривает одно из следующих конструктивных решений:

  • использование однофазного источника переменного напряжения с фазосдвигающим элементом с двумя парами полюсов;
  • подключение к трехфазному источнику питания обмоток статора с тремя парами полюсов;
  • применение коммутатора, переключающего взаимодействующие обмотки.

Движимые перемещающимся магнитным полем

Электродвигатель, принцип работы которого определяет электромагнитная индукция, работает следующим образом. В его роторе отсутствуют контакты. Переменное магнитное поле с максимумом, перемещающимся вокруг ротора, вызывает в нем токи, создающие собственное электромагнитное поле. Существование этих токов возможно только при отставании ротора от движущегося максимума электромагнитного поля статора.

Иначе не получится электромагнитной индукции, условием которой является пересечение силовых линий и проводника. Движки, в которых скорости перемещения поля статора и ротора отличаются друг от друга, называются асинхронными. Асинхронный электродвигатель , устройство которого показано далее, в основном имеет одинаковую конструкцию статора, но разные варианты исполнения ротора.

Самыми распространенными являются короткозамкнутый ротор и другая его конструкция, именуемая «беличьей клеткой». В последнем варианте ротора получается более эффективная индукция. Однако и конструкция при этом менее технологичная. Но в этих двух разновидностях асинхронного двигателя лишь один недостаток — большой пусковой ток.

Чтобы регулировать процесс пуска, потребовалась третья конструкция ротора, называемая «фазной». Но если где-то прибыло, значит, где-то и убыло. У фазного ротора появились контакты — кольца и щетки. А контакты — главная проблема электротехники. Выигрывая в экономичности, проигрываем в долговечности и эксплуатационных расходах. За щетками и кольцами необходим уход и периодическая замена, в результате чего фазный ротор применяется намного реже. Появление мощных полупроводниковых приборов делает возможным регулировку любого асинхронного двигателя в пределах коммутационных возможностей этих приборов. Поэтому сегодня фазный ротор — это архаичная конструкция.

Но если ротор изготовить из специального материала, который обладает некоторой остаточной намагниченностью, скорости поля статора и вращения ротора станут одинаковыми. Под воздействием статора в роторе такого движка из-за свойств его материала не могут возникать токи с величиной, достаточной для движения. Но это и не нужно. Материал способен многократно усиливать внешнее электромагнитное поле и становиться постоянным магнитом. И такой магнитный ротор будет тянуться за электромагнитным полем статора. Такой двигатель называется синхронно-гистерезисным.

К сожалению, гистерезисный ротор имеет высокую себестоимость материала. А поскольку мощность движка напрямую связана с его размерами, большие и мощные синхронные двигатели с гистерезисным ротором из-за его высокой цены не производятся. Вместо этого делается постоянный электромагнит с питанием через кольца. Так менее надежно, но гораздо дешевле.

Скорость вращения синхронных и асинхронных движков определяет частота напряжения питания и число пар полюсов. Эта особенность — их большой недостаток. Ведь частота электросети составляет 50–60 Гц, и без применения дополнительного оборудования, через которое придется подключать двигатель, изменить ее невозможно. А это значительно усложняет и удорожает установку. По этой причине в управляемом электроприводе для возможности широкого диапазона регулирования оборотов применяется другой двигатель, о котором будет рассказано далее.

Чтобы разобраться в том, как работает электромотор с коллектором, надо обратиться к опытам с рамкой, расположенной между полюсами магнитов. Это классический опыт для демонстрации взаимодействия проводника с током и магнитного поля. На изображениях далее наглядно показан результат этого взаимодействия.

Но сила, вращающая рамку, зависит от ее положения относительно полюсов. По мере вращения она постепенно уменьшается. И по этой причине рамка останавливается. Чтобы вращение продолжалось, для конкретной конструкции рамки с магнитами потребуется больше рамок. При этом каждая из них подключается к своей паре скользящих контактов. Они образуются парой щеток и парой пластин — ламелей.

Движок, в котором реализован принцип вращения рамки в магнитном поле, содержит ротор с большим числом обмоток — рамок. Ламели собраны в специальном конструктивном элементе — коллекторе. Если магнитное поле создается постоянными магнитами, вращение возможно только при постоянном напряжении на щетках коллектора. Это и есть двигатель постоянного тока (сокращенно ДПТ).

Скорость вращения ротора этого движка зависит только от напряжения на щетках коллектора. Если вместо постоянного магнита применить электромагнит, получится универсальный мотор, способный работать как при постоянном, так и при переменном напряжении. Полярность статора и ротора будет изменяться одновременно, сохраняя направление действия силы, вращающей ротор. Универсальный мотор — это тот самый движок, который широко применяется в регулируемых приводах.

Разновидностью ДПТ и универсального двигателя можно считать униполярный движок. У его конструкции нет коллектора, но есть щетки. Появление мощных полупроводниковых приборов позволило создавать роторы без колец и коллекторов. Но при этом принцип работы электродвигателя не изменился.

Принцип работы электродвигателя переменного тока, устройство электромотора.

Электрические двигатели – это силовые машины, применяющиеся для превращения электрической энергии в механическую. Общая классификация разделяет их по типу питающего тока на двигатели постоянного и переменного тока. В статье ниже рассматриваются электрические двигатели со спецификацией под переменный ток, их виды, отличительные характеристики и преимущества.

Для общей информации, рекомендуем прочитать нашу отдельную статью о принципах работы электродвигателей.

Содержание:

Электродвигатель переменного тока промышленного типа

Принцип преобразования энергии

Среди электрических двигателей, применяемых во всех отраслях промышленности и бытовых электроприборах, наибольшее распространение имеют двигатели переменного тока. Они встречаются практически в каждой сфере жизнедеятельности – от детских игрушек и стиральных машин до автомобилей и мощных производственных станков.

Принцип работы всех электрических двигателей основывается на законе электромагнитной индукции Фарадея и законе Ампера. Первый из них описывает ситуацию, когда на замкнутом проводнике, находящемся в изменяющемся магнитном поле, генерируется электродвижущая сила. В двигателях это поле создается через обмотки статора, по которым протекает переменный ток. Внутри статора (представляющего собой корпус устройства) находится подвижный элемент двигателя – ротор. На нем и возникает ток.

Вращение ротора объясняется законом Ампера, который утверждает, что на электрические заряды, протекающие по проводнику, находящемуся внутри магнитного поля, действует сила, движущая их в плоскости, перпендикулярной силовым линиям этого поля. Проще говоря, проводник, которым в конструкции двигателя является ротор, начинает вращаться вокруг своей оси, а закрепляется он на валу, к которому подключаются рабочие механизмы оборудования.

Виды двигателей и их устройство

Электрические двигатели переменного тока имеют различное устройство, благодаря которому можно создавать машины с одинаковой частотой вращения ротора относительно магнитного поля статора, и такие машины, где ротор «отстает» от вращающегося поля. По данному принципу эти двигатели разделяют на соответствующие типы: синхронные и асинхронные.

Асинхронные

Основу конструкции асинхронного электродвигателя составляет пара важнейших функциональных частей:

  1. Статор – блок цилиндрической формы, сделанный из листов стали с пазанми для укладки токопроводящих обмоток, оси которых располагаются под углом 120˚ относительно друг друга. Полюса обмоток уходят на клеммную коробку, где подключаются разными способами, в зависимости от необходимых параметров работы электродвигателя.
  2. Ротор. В конструкции асинхронных электродвигателей используются роторы двух видов:
    • Короткозамкнутый. Называется так, потому что изготавливается из нескольких алюминиевых или медных стержней, накоротко замкнутых с помощью торцевых колец. Эта конструкция, представляющая собой токоповодящую обмотку ротора, называется в электромеханике «беличьей клеткой».
    • Фазный. На роторах данного типа устанавливается трехфазная обмотка, похожая на обмотку статора. Чаще всего концы её проводников идут в клеммную площадку, где соединяются «звездой», а свободные концы подключаются к контактным кольцам. Фазный ротор позволяет с помощью щеток добавить в цепь обмотки добавочный резистор, позволяющий изменять сопротивление для уменьшения пусковых токов.


Помимо описанных ключевых элементов асинхронного электродвигателя, в его конструкцию также входит вентилятор для охлаждения обмоток, клеммная коробка и вал, передающий генерируемое вращение на рабочие механизмы оборудования, работа которого обеспечивается данным двигателем.

Работа асинхронных электрических двигателей основывается на законе электромагнитной индукции, утверждающем, что электродвижущая сила может возникнуть лишь в условиях разности скоростей вращения ротора и магнитного поля статора. Таким образом, если бы эти скорости были равны, ЭДС не могла бы появиться, но воздействие на вал таких «тормозящих» факторов, как нагрузка и трение подшипников, всегда создает достаточные для работы условия.

Синхронные

Конструкция синхронных электродвигателей переменного тока несколько отлична от устройства асинхронных аналогов. В этих машинах ротор крутится вокруг своей оси со скоростью, равной скорости вращения магнитного поля статора. Ротор или якорь этих устройств тоже оснащается обмотками, которые одними концами подключены друг к другу, а другими – к вращающемуся коллектору. Контактные площадки на коллекторе смонтированы так, что в определенный момент времени возможна подача питания через графитовые щетки лишь на два противоположных контакта.

Принцип работы синхронных электродвигателей:

  1. При взаимодействии магнитного потока в обмотке статора с током ротора возникает вращающий момент.
  2. Направление движения магнитного потока изменяется одновременно с направлением переменного тока, благодаря чему сохраняется вращение выходного вала в одну сторону.
  3. Настройка нужной частоты вращения осуществляется регулировкой входящего напряжения. Чаще всего, в быстроходном оборудовании, например, перфораторах и пылесосах, эту функцию выполняет реостат.

Чаще всего причинами выхода синхронных электродвигателей из строя является:

  • износ графитовых щеток или ослабление прижимной пружины;
  • износ подшипников вала;
  • загрязнение коллектора (чистится наждачной бумагой или спиртом).

Трехфазный генератор переменного тока

История изобретения

Изобретение простейшего способа преобразования энергии из электрической в механическую принадлежит Майклу Фарадею. В 1821 году этот великий английский ученый провел эксперимент с проводником, опущенным в сосуд с ртутью, на дне которого лежал постоянный магнит. После подачи электричества на проводник он приходил в движение, вращаясь соответственно силовым линиями магнитного поля. В наши дни этот опыт часто проводят на уроках физики, заменяя ртуть рассолом.

Дальнейшее изучение вопроса привело к созданию Питером Барлоу в 1824 году униполярного двигателя, названного колесом Барлоу. В его конструкцию входят два зубчатых колеса из меди, расположенных на одной оси между постоянными магнитами. После подачи тока на колеса, в результате его взаимодействия с магнитными полями, колеса начинают вращаться. Во время опытов ученый установил, что направление вращения можно изменить, поменяв полярность (перестановкой магнитов или контактов). Практического применения «колесо Барлоу», но сыграло важную роль в изучении взаимодействия магнитных полей и заряженных проводников.

Первый рабочий образец устройства, ставшего прародителем современных двигателей, был создан русским физиком Борисом Семеновичем Якоби в 1834 году. Принцип использования вращающегося ротора в магнитном поле, продемонстрированный в этом изобретении, практически в неизменном виде применяется современных двигателях постоянного тока.

А вот создание первого двигателя с асинхронным принципом работы принадлежит сразу двум ученым – Николе Тесла и Галилео Феррарис, по удачному стечению обстоятельств продемонстрировавшим свои изобретения в один год (1888). Через несколько лет двухфазный бесколлекторный двигатель переменного тока, созданный Николой Тесла уже использовался на нескольких электростанциях. В 1889 году русский электротехник Михаил Осипович Доливо-Добровольский усовершенствовал изобретение Теслы для работы в трехфазной сети, благодаря чему смог создать первый асинхронный двигатель переменного тока мощностью более 100 Вт. Ему же принадлежит изобретение используемых сегодня способов подключения фаз в трехфазных электродвигателях: «звезда» и «треугольник», пусковых реостатов и трехфазных трансформаторов.

Система переменного тока, предложенная Вестингаузом

Подключение к однофазным и трехфазным источникам питания

По типу питающей сети электродвигатели переменного тока классифицируют на одно- и трехфазные.

Подключение асинхронных однофазных двигателей осуществляет очень легко – для этого достаточно подвести к двум выходам на корпусе фазный и нулевой провод однофазной 220В сети. Синхронные двигатели тоже можно запитывать от сети данного типа, однако подключение немного сложнее – необходимо соединить обмотки ротора и статора так, чтобы их контакты однополюсного намагничивания были расположены напротив друг друга.

Подключение к трехфазной сети представляется несколько более сложным. В первую очередь, следует обратить внимание, что клеммная коробка содержит 6 выводов – по паре на каждую из трех обмоток. Во-вторых, это дает возможность использовать один из двух способов подключения («звезда» и «треугольник»). Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора.

Главное функциональное отличие «звезды» и «треугольника» заключается в различном потреблении мощности, что сделано для возможности включения машины в трехфазные сети с различным линейным напряжением — 380В или 660В. В первом случае следует соединять обмотки по схеме «треугольник», а во втором – «звездой». Такое правило включения позволяет в обоих случаях иметь напряжение 380В на обмотках каждой фазы.

На панели подключения выводы обмоток располагаются таким образом, чтобы перемычки, используемых для включения, не перекрещивались между собой. Если коробка выводов двигателя содержит только три зажима, значит, он рассчитан для работы от одного напряжения, которое указано в технической документации, а обмотки соединены между собой внутри устройства.

Преимущества и недостатки электрических двигателей переменного тока

В наши дни среди всех электродвигателей устройства для переменного тока занимают лидирующую позицию по объему использования в силовых установках. Они обладают низкой себестоимостью, простой в обслуживании конструкцией и КПД не менее 90%. Кроме того, их устройство позволяет плавно изменять скорость вращения, не прибегая к помощи дополнительного оборудования вроде коробок передач.

Главным недостатком двигателей переменного тока с асинхронным принципом работы является тот факт, что регулировать их частоту вращения вала можно только изменяя входную частоту тока. Это не позволяет добиться постоянной скорости вращения, а также снижает мощность. Для асинхронных электродвигателей характерны высокие пусковые токи, но низкий пусковой момент. Для исправления этих недостатков применяется частотный привод, однако его цена противоречит одному из главных достоинств этих двигателей – низкой себестоимости.

Слабым местом синхронного двигателя является его сложная конструкция. Графитовые щетки довольно быстро выходят из строя под нагрузкой, а также теряют плотный контакт с коллектором из-за ослабления прижимной пружины. Кроме того, эти двигатели, как и асинхронные аналоги, не защищены от износа подшипников вала. К недостаткам также относится более сложный пуск, необходимость наличия источника постоянного тока и исключительно частотная регулировка частоты вращения.

Применение

На сегодняшний день электродвигатели со спецификацией на переменный ток распространены во всех сферах промышленности и жизнедеятельности. На электростанциях они устанавливаются в качестве генераторов, используются в производственном оборудовании, автомобилестроении и даже бытовой технике. Сегодня в каждом доме можно встретить как минимум одно устройство с электрическим двигателем переменного тока, например, стиральную машину. Причины столь большой популярности заключаются в универсальности, долговечности и легкости обслуживания.

Среди асинхронных электрических машин наибольшее распространение получили устройства с трехфазной спецификацией. Они являются наилучшим вариантом для использования во многих силовых агрегатах, генераторах и высокомощных установках, работа которых связана с необходимостью контроля скорости вращения вала.

Электродвигатели, преобразование энергии – РегионПривод

Электродвигатель – это механизм, который служит для преобразования электрической энергии в механическую. В основе принципа работы любого электродвигателя находится закон электромагнитной индукции. Обычно электродвигатель состоит из неподвижной части (статора) и ротора (или якоря), в которых создаются неподвижные или вращающиеся магнитные поля. Электродвигатели бывают самых различных типов и модификаций, широко применяются во многих отраслях человеческой деятельности, и представляют собой один из главных компонентов в механизмах и приводах самого различного назначения. ОТ характеристик электродвигателя напрямую зависит эффективность производства.


Классификация электродвигателей

Главными частями, из которых состоит Электродвигатели, являются статор и ротор. Ротор — та часть двигателя, которая вращается, а статор – которая остается неподвижной. Принцип работы электродвигателя заключен во взаимодействии вращающегося магнитного поля, создаваемого обмоткой статора и электрического тока, который находится в замкнутой обмотке ротора. Этот процесс инициирует вращение ротора в направлении поля.

Основные виды электродвигателей:

  • Двигатель переменного тока;
  • Двигатель постоянного тока;
  • Многофазный двигатель;
  • Однофазный двигатель;
  • Вентильный двигатель;
  • Шаговый двигатель;
  • Универсальный коллекторный двигатель.

Если говорить о таких электродвигателях как асинхронные электродвигатели, то они относятся к виду двигателей переменного тока. Такие двигатели бывают как однофазные электродвигатели, так и двух- и трехфазные. В асинхронных электродвигателях частота переменного тока в обмотке не совпадает с частотой вращения ротора. Процесс работы асинхронного электродвигателя обеспечивается разницей во времени генерации магнитных полей статора и ротора. Вращение ротора из-за этого задерживается относительно поля статора. Купить электродвигатель асинхронного типа можно для машин, в которых не требуются особые условия работы пускового механизма.

Виды электродвигателей по степени защищенности от внешней среды:

  • Взрывозащищенные;
  • Защищенные;
  • Закрытые.

Взрывозащищенные электродвигатели имеют прочный корпус, который если случится взрыв двигатели, предотвратит поражение всех других частей механизма и воспрепятствует возникновению пожара.

Защищенные электродвигатели при эксплуатации закрыты специальными заслонками и сетками, которые защищают механизм от попадания инородных предметов. Используются в среде, где нет повышенной влажности воздуха и примесей газов, пыли, дыма и химических веществ.

Закрытые электродвигатели имеют специальную оболочку, которая не дает проникать пыли, газам, влаге и другим веществам и элементам, которые способны причинить вред механизму двигателя. Такие электродвигатели бывают герметичными и негерметичными.

Электродвигатели siemens и электродвигатели able выпускаются в большинстве вышеперечисленных видов электродвигателей, и среди них довольно просто выбрать самый оптимальный вариант.

Электродвигатели с тормозом

Тормозные электродвигатели обычно устанавливаются на таком оборудовании, которому необходимо иметь возможность осуществить мгновенную остановку. Это может быть конвейерное или станочное оборудование, или другое оборудование, где остановка обусловлена требованиями техники безопасности. Они активно применяются в транспортных лифтах, подъемных кранах, складских укладочных машинах, прокатном и швейном оборудовании, эскалаторах, станках для дерева и металла, задвижках, прокатном оборудовании – одним словом везде, где необходима быстрая остановка системы в определенном положении и в определенное время.

Если не вдаваться в подробности, электродвигатель с тормозом представляет собой обычный промышленный асинхронный электродвигатель, в котором установлен электромагнитная тормозная система. Это обуславливает тот факт, что от обычных двигателей электродвигатель с тормозом отличается только длиной, тогда как все посадочные и соединительные элементы остаются на прежнем месте. Длина изменяется из-за необходимости установки на двигатель специального кожуха. Как и обычные двигатели, в зависимости от типа питания, электродвигатели с тормозом делятся на двигатели, питаемые переменным током, и электродвигатели, питаемые постоянным током.

Главными элементами тормозной системы электродвигателя являются:

  • Электромагнит, состоящий из корпуса, в котором находятся катушка или набор катушек;
  • Якорь, представляющий собой исполнительный элемент, или поверхность для тормозного диска;
  • Сам тормозной диск, который перемещается по зубчатой втулке, закрепленной на валу заторможенного привода или двигателя.

Когда двигатель находится в состоянии покоя, он заторможен. Пружинный нажим на якорь оказывает, в свою очередь, давление на тормозной диск, в связи с чем возникает его блокировка. Когда на катушку электромагнита подается электрический ток, возбужденный электромагнит притягивает к себе якорь, и происходит разблокировка тормоза. Нажим якоря снимается, и возникает свободное вращение вала электрического двигателя. Электродвигатели с тормозом маркируются буквой «Е», или «Е2» (для двигателей с ручной системой торможения).


Регулирование скорости вращения электродвигателя

Вопрос регулирования скорости вращения электродвигателя очень актуален, ведь снижение и повышение оборотов электродвигателя может понадобится в самых разнообразных механизмах, от бытовых приборов, таких как швейных машин или кухонной техники, до промышленных механизмов и станкового оборудования. Казалось бы, самый простой способ – просто понизить питающее напряжение электродвигателя. Это подходит для двигателей постоянного тока, регуляторы напряжения постоянного тока достаточно просты в производстве и доступны. Однако, в настоящее время основная масса приборов, механизмов и инструментов, занятых в производстве, базируются на асинхронных двигателях переменного тока. В этом случае при понижении напряжения электродвигатель резко снижает количество оборотов, теряет мощность и полностью останавливается. Как понизить обороты электродвигателя, или как увеличить их? Для регулировки скорости вращения таких электродвигателей и были разработаны частотные инверторные преобразователи, или как их чаще называют – частотники.

Область применения частотных преобразователей достаточно обширна. Они востребованы в станках и электроприводах промышленных механизмов, конвейерах, системах вытяжной вентиляции и так далее. Принцип работы частотника заключается в правиле вычисления угловой скорости вращения вала, которое включает в себя такой фактор как частота питающей сети. Таким образом, меняя частоту питания обмотки электродвигателя, можно регулировать скорость вращения ротора двигателя в прямой зависимости, таким образом уменьшить обороты электродвигателя или повысить их. Эти приборы имеют также название «инверторы», благодаря методу, при помощи которого решается задача одновременного регулирования частоты и напряжения на выходе преобразователя. Все частотные преобразователи в обязательном порядке маркируются табличками, ан которых указаны их характеристики:

  • Максимально возможная мощность электродвигателя;
  • Напряжение запитывающей сети;
  • Количество фаз (однофазный, трехфазный).

Большинство промышленных частотных преобразователей предназначены для работы в трехфазных сетях переменного тока, однако встречаются и другие модели, например частотники для однофазных двигателей.


Применение электродвигателя

Жизнь современного человека тяжело представить без такого механизма как электродвигатель. Оглянитесь вокруг – они получил практически повсеместное распространение. Сегодня они используются не только во всех отраслях промышленности, но и в транспорте, предметах и устройствах, окружающих в повседневной жизни, на работе и дома. Фены, вентиляторы, швейные машины, строительные инструменты – вот далеко не полный перечень устройств, где используются электродвигатели.

Особой надежностью отличаются именно асинхронные электродвигатели, благодаря чему они находят широкое применение в приводах металлообрабатывающих, деревообрабатывающих станков и других промышленных станков, в кузнечных прессах, грузоподъёмных машинах, лифтах, ткацких, швейных и землеройных машинах, промышленных вентиляторах, компрессорах, насосах, центрифугах, бетономешалках. Крановые электродвигатели используются в капитальном, промышленном и гражданском строительстве, в горнодобывающей, металлургической отраслях, энергетике, транспорте.

Метро, трамвай, троллейбус – все эти виды транспорта обязаны своему существованию электродвигателю. Любой офис или жилой дом сегодня невозможно представить без кондиционера или системы очистки воздуха – в них тоже применяются электродвигатели. Функционирование большинства современного оборудования невозможно без электродвигателя, в связи с чем очень многое зависит от качества и надежности этого механизма. Его поломка может привести к очень печальным результатам, вплоть до остановки производства и огромным финансовым убыткам. Следовательно, приобретать электродвигатели можно только у надёжного и проверенного поставщика, который гарантирует качество продукции.


Принцип работы электродвигателя

Принцип работы электродвигателя заключается в эффекте магнетизма, который позволяет эффективно преобразовывать электрическую энергию в механическую. Принцип преобразования энергии в разных типах электродвигателей одинаковый, для всех типов электродвигателей, но конструкция двигателей и способы контроля скорости вращающегося момента могут различаться. Всем со школьной скамьи известен простейший пример электродвигателя – когда рамка вращается между полюсами постоянного магнита. Разумеется, устройство электродвигателя, который применяется в промышленных механизмах или бытовых приборах намного сложнее. Давайте рассмотрим как работает асинхронный электродвигатель, который получил наибольшее распространение в промышленности.

Принцип работы асинхронного электродвигателя.

Принцип действия асинхронного двигателя, как и прочих, основан на использовании вращающегося магнитного поля. Скорость вращения магнитного поля принято называть синхронной, так как она соответствует скорости вращения магнита. При этом скорость вращения цилиндра принято называть асинхронной, то есть не совпадающей со скоростью вращения магнита. Скорость вращения цилиндра (ротора) отличается от синхронной скорости вращения магнитного поля на небольшую величину, называемую скольжением. Чтобы заставить заставить электрический ток создавать вращающееся магнитное поле и использовать его для вращения ротора обычно используется трехфазный ток.


Устройство электродвигателя

На полюсах железного сердечника кольцевой формы, называемого статором электродвигателя, размещаются три обмотки, сети трехфазного тока расположенные одна относительно другой под углом 120°. Внутри сердечника укреплен на оси металлический цилиндр, называемый ротором электродвигателя. Если обмотки соединить между собой и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый тремя полюсами, окажется вращающимся. Суммарный магнитный поток в тоже время будет менять свое направление с изменением направления тока в обмотках статора (полюсов). При этом за один период изменения тока в обмотках магнитный поток сделает полный оборот. Вращающийся магнитный поток будет увлекать за собой цилиндр, и мы получим, таким образом асинхронный электродвигатель.

Обмотки статора могут быть соединены «звездой», однако вращающееся магнитное поле образуется и при соединении их «треугольником». Если поменять местами обмотки второй и третьей фаз, то магнитный поток изменит направление своего вращения на обратное. Такого же результата можно добиться, не меняя местами обмотки статора, а направляя ток второй фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора. Таким образом, изменить направление вращения магнитного поля можно переключением двух любых фаз.


Подключение электродвигателя

Статор современного асинхронного электродвигателя имеет невыраженные полюсы, т. е. внутренняя поверхность статора сделана совершенно гладкой. Чтобы уменьшить потери на вихревые токи, сердечник статора набирают из тонких штампованных стальных листов. Собранный сердечник статора закрепляют в стальном корпусе. В пазы статора закладывают обмотку из медной проволоки. Фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником», для чего все начала и концы обмоток выводятся на корпус — на специальный изоляционный щиток. Такое устройство статора очень удобно, так как позволяет включать его обмотки на разные стандартные напряжения.

Ротор асинхронного двигателя, подобно статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка. В зависимости от конструкции ротора асинхронные электродвигатели делятся на двигатели с короткозамкнутым ротором и фазным ротором. Обмотка короткозамкнутого ротора сделана из медных стержней, закладываемых в пазы ротора. Торцы стержней соединены при помощи медного кольца. Такая обмотка называется обмоткой типа «беличьей клетки». Заметим, что медные стержни в пазах не изолируются.

Асинхронный двигатель с фазным ротором (с контактными кольцами) применяется обычно в электродвигателях большой мощности и в тех случаях; когда необходимо, чтобы электродвигатель создавал большое усилие при трогании с места. Достигается это тем, что в обмотки фазного двигателя включается пусковой реостат.


Расчёт мощности электродвигателя

Выбирая электродвигатель необходимо ориентироваться на потребляемую оборудованием мощность. Определить мощность можно расчетным путем, используя следующие формулы и коэффициенты:

Мощность на валу электродвигателя определяется по следующей формуле:

, где

Рм – потребляемая механизмом мощность;
ηп – КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов. При выборе электродвигателя запас должен быть небольшой мощности. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.


Расчет пускового тока электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток:

Номинальный ток трехфазных электродвигателей переменного тока:

, где

PH – номинальная мощность электродвигателя;
UH — номинальное напряжение электродвигателя,
ηH — КПД электродвигателя;
cosφH — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя. Зная значение номинального тока, можно рассчитать пусковой ток.


Формула расчета пускового тока электродвигателей.

, где

IH – номинальное значение тока;

Кп – кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.


Типы электродвигателей и их использование

Знание о различных типах электродвигателей всегда полезно благодаря широкому распространению двигателей от бытовых до промышленных. Если у вас есть система кондиционирования воздуха дома или вы используете воздушный компрессор на промышленном предприятии, вы используете электродвигатели. Следовательно, если вы знаете о различных типах электродвигателей, вы сможете лучше понять систему, которой владеете, и лучше контролировать ее работу.

Здесь, в Linquip, мы предоставили вам удобную платформу, чтобы вы могли найти тип электродвигателя, который вам нужен для вашего приложения.Кроме того, в этом посте мы пытаемся демистифицировать различные типы электродвигателей для вашей справки. Итак, следите за обновлениями!

Что такое электродвигатели?

Прежде чем узнать о различных типах электродвигателей, лучше начать с вопроса «что такое электродвигатель»? Что ж, самый короткий ответ заключается в том, что электродвигатель или просто двигатель — это электромеханическое устройство, которое получает электрическую энергию и преобразует ее в движение или механическую энергию.

Изображение из проекта по повышению осведомленности о стандартах устройств

Это движение в основном имеет вращательную форму.Поток электрического тока индуцирует магнитное поле, и в электродвигателе возникает вращательное движение, перпендикулярное направлению тока и магнитного поля.

Применение электродвигателей

Электродвигатели могут использоваться в домашних условиях, например, в электрических приборах, таких как кондиционеры, пылесосы, вентиляторы, кухонные комбайны и т. Д., В которых используется сила вращения электродвигателей в по-своему, или даже в игрушках, таких как игрушечные машинки или модели самолетов с дистанционным управлением или с помощью приложений.

Говоря об электрических моделях транспортных средств, более крупные и более сложные версии электродвигателей можно найти в электромобилях и самолетах реальных размеров (ну, эти самолеты все еще изучаются, чтобы стать коммерчески доступными).

И последнее, но не менее важное: некоторые типы электродвигателей широко используются в промышленности, например, в промышленных газовых компрессорах, насосах, подъемных транспортных средствах, смесителях и т. Д.

Способы классификации электродвигателей

Могут использоваться различные типы электродвигателей. классифицируются по-разному.Один из способов классификации основан на их вольерах. У нас есть двигатели с защитой от капель (ODP), подходящие для чистых, сухих и закрытых помещений, усовершенствованной версией которых являются двигатели с защитой от атмосферных воздействий с конфигурацией корпуса WP1 или WP2. У нас также есть полностью закрытые корпуса с вентиляторным охлаждением (TEFC), полностью закрытые надувные кожухи (TEAO), полностью закрытые с принудительной вентиляцией (TEFV) и полностью закрытые без вентиляции (TENV) для различных типов электродвигателей. Существуют также взрывозащищенные (Ex) двигатели, используемые во взрывоопасных зонах с возможностью взрыва из-за присутствия некоторых взрывоопасных жидкостей, пыли и т. Д.в области.

Тем не менее, электродвигатели обычно классифицируют по источнику питания. Существуют двигатели переменного тока или двигатели переменного тока, в которых ток меняет направление с некоторой частотой. Существуют также двигатели постоянного или постоянного тока, которые широко используются в небольших приложениях из-за их легкого регулирования скорости.

Двигатели переменного тока подразделяются на однофазные и трехфазные. Однофазный двигатель может достигать мощности около 3 кВт при питании от однофазного источника питания, что характерно для бытовых и коммерческих приложений.С другой стороны, трехфазный двигатель может производить мощность до 300 кВт. Эти двигатели — идеальный выбор для промышленного применения.

Двигатели переменного тока

Как упоминалось ранее, двигатель переменного тока является одним из типов электродвигателей, в которых используется ток переменного направления. Эти двигатели не так легко регулируются по скорости, как двигатели постоянного тока; однако, с небольшими потерями в мощности, можно использовать двигатели переменного тока с частотно-регулируемыми приводами, чтобы лучше регулировать скорость.

Существует два широко используемых типа двигателей переменного тока и еще один менее распространенный тип:

  • Асинхронные двигатели

Асинхронный или асинхронный двигатель — это механизм, который никогда не работает с синхронной скоростью.Этот двигатель преобразует электрическую энергию в механическую, используя явление электромагнитной индукции. В этих типах электродвигателей магнитное поле вращается в статорах, которые индуцируют ток в роторе, что приводит к вращению двигателя. Поскольку вращение ротора вызывается внешним магнитным полем, эти двигатели возбуждаются извне. Существует два типа асинхронных двигателей в зависимости от конструкции ротора: асинхронные двигатели с короткозамкнутым ротором и асинхронные двигатели с фазной обмоткой.

В синхронных типах электродвигателей происходит прямое приложение магнитного поля к обмоткам ротора, что имеет свои недостатки и преимущества. Такие двигатели с внутренним возбуждением требуют иных требований к защите и управлению, чем асинхронные двигатели.

Существуют также линейные типы электродвигателей, в которых статор и ротор не вращаются, и поэтому они создают линейную силу вместо крутящего момента. Этот тип двигателя обычно используется в раздвижных дверях и приводах.

Асинхронный двигатель

Асинхронный двигатель является одним из типов электродвигателей Elector, которые, вероятно, наиболее широко используются в промышленности. Статор намагничивается из-за его подключения к электросети, затем магнитное поле индуцирует напряжение и, следовательно, ток в обмотках ротора, затем индуцированный ток в роторе создает другое магнитное поле, а затем взаимодействие между этими двумя магнитными полями. создает вращающую силу или крутящий момент, приводящий в движение вал двигателя.

Эти двигатели имеют очень простую конструкцию, прочную конструкцию, низкую цену и простоту обслуживания. Они также имеют широкий диапазон номинальной мощности, как уже было сказано, наиболее широко используемые типы электродвигателей. Тем не менее, регулирование скорости непросто без частотно-регулируемого привода, который заставляет двигатель работать с запаздывающим коэффициентом мощности.

Асинхронный двигатель выпускается двух различных типов: короткозамкнутый ротор , асинхронный двигатель и асинхронный двигатель с фазным ротором , как упоминалось ранее.Каждый из этих двигателей также может быть однофазным или трехфазным. Однофазные асинхронные двигатели — менее распространенный тип асинхронных двигателей в промышленности. Сообщается, что трехфазный асинхронный двигатель является одним из типов электродвигателей, которые присвоили себе около 70% доли рынка промышленных асинхронных двигателей.

Двигатель с фазным ротором или электродвигатель с контактным кольцом имеет большее количество витков обмотки, что означает, что он имеет более высокое наведенное напряжение и снижает ток, чем асинхронный электродвигатель с короткозамкнутым ротором.Они также могли производить больший пусковой крутящий момент. С другой стороны, их сложнее производить из-за добавленного количества компонентов по сравнению с асинхронными двигателями с короткозамкнутым ротором, что значительно увеличивает их удельную стоимость, а также затраты на их обслуживание.

  • Короткозамкнутый ротор Асинхронный двигатель состоит из параллельно расположенных токопроводящих стержней, закороченных на обоих концах закорачивающими кольцами.
    • Однофазные асинхронные двигатели с короткозамкнутым ротором имеют одну обмотку статора, и всегда есть какое-то другое устройство, запускающее двигатель.Они идеально подходят для приложений, требующих всего несколько лошадиных сил, например, для бытовой техники. До сих пор они были наиболее широко используемыми для бытовой техники.
    • Трехфазные асинхронные двигатели с короткозамкнутым ротором могут работать с высокими требованиями к мощности; их номинальная мощность может варьироваться от очень небольшой до сотен лошадиных сил. Они тоже самозапускаются. Почти 90% трехфазных асинхронных двигателей, используемых в промышленности, таких как насосы, компрессоры и вентиляторы, относятся к типу с короткозамкнутым ротором.

  • Ротор Асинхронный двигатель имеет распределенную обмотку, состоящую из двух слоев. Причина названия в том, что ротор этих типов электродвигателей намотан на столько же полюсов, сколько и статор. Из-за более высокой стоимости двигатели с фазным ротором рассматриваются в ситуациях, когда требуется высокий пусковой момент.
    • Однофазные двигатели с фазным ротором подходят для более высоких номинальных мощностей, чем их аналоги с короткозамкнутым ротором.Они могут довольно комфортно стартовать и могут очень хорошо разгоняться. Некоторые машины, превышающие размеры бытовой техники, могут использовать эти типы электродвигателей, например, в сельском хозяйстве, небольших воздушных компрессорах, горнодобывающей промышленности и т.д. моторы используются в промышленности, но имеют хорошие характеристики своих братьев с короткозамкнутым ротором.

см. Здесь видео о том, как работает асинхронный двигатель.

Синхронные двигатели

В отличие от асинхронных двигателей, синхронные двигатели в основном не самозапускаются, несмотря на некоторые самовозбуждающие конфигурации, которые можно найти для некоторых небольших приложений. Создание магнитного поля ротора для этих типов электродвигателей не зависит от тока, а скорость вращения синхронного двигателя привязана к частоте сети. Другими словами, вращение вала синхронных электродвигателей происходит с синхронизацией скорости с частотой питающего тока.

Что делает их интересными для промышленных предприятий с более высокими требованиями к мощности, так это их высокая эффективность преобразования переменного тока в работу и их способность корректировать коэффициент мощности. Это означает, что они могут работать при единичном коэффициенте мощности, что предполагает равную активную мощность нагрузки с полной мощностью цепи.

Синхронные двигатели переменного тока бывают двух типов: без возбуждения и с возбуждением постоянным током. Синхронные электродвигатели без возбуждения подразделяются на три категории: с постоянным магнитом, реактивным сопротивлением и гистерезисным типом.

Синхронные двигатели без возбуждения

Электродвигатели синхронного типа без возбуждения спроектированы таким образом, чтобы их ротор следовал за синхронизированным вращающимся полем на разных этапах, что создавало бы постоянное поле. Когда ротор синхронных двигателей без возбуждения вращается, он взаимодействует со статором. Взаимодействие между полюсами поля статора и ротором приводит к тому, что ротор становится электромагнитным с северным и южным полюсами. Ротор этих типов электродвигателей обладает высокой удерживающей способностью, что означает, что он обладает высокой способностью удерживать или сопротивляться намагничиванию.

Как уже упоминалось, существует три типа синхронных двигателей без возбуждения, а именно синхронные двигатели с постоянным магнитом, реактивные и гистерезисные синхронные двигатели. Давайте обсудим их далее.

Постоянный магнит

В синхронных типах электродвигателей с постоянными магнитами стальной ротор прикреплен к постоянному магниту, например неодимовому магниту, который обеспечивает непрерывное непрерывное магнитное поле. Это реализуется посредством взаимодействия ротора с вращающимся полем, создаваемым статором, к которому подключен источник переменного тока.Постоянная часть ротора привязана к вращающемуся полю статора, что обеспечивает синхронную скорость вращения ротора. Эта конструкция похожа на бесщеточные двигатели постоянного тока, которые будут рассмотрены позже.

Для запуска этих типов электродвигателей необходим источник переменной частоты, поскольку ротор в этой конструкции представляет собой постоянный магнит, создающий постоянное магнитное поле. Управление скоростью осуществляется с использованием прямого управления крутящим моментом и управления с ориентацией на поле.

Сопротивление

Ротор для реактивных синхронных электродвигателей, не имеющих обмоток, изготовлен из ферромагнитного материала, на котором индуцируются непостоянные магнитные полюса. Причина названия в том, что он генерирует крутящий момент, используя магнитное сопротивление, то есть которое является мерой сопротивления или сопротивления материала магнитному потоку.

Изображение предоставлено ABB Group

Число полюсов ротора реактивных синхронных двигателей равно числу полюсов статора.Число полюсов всегда четное и обычно равно четырем или шести. Однако количество полюсов ротора меньше, чем количество полюсов статора, чтобы предотвратить пульсации крутящего момента. Пульсация крутящего момента — это периодическое увеличение и уменьшение крутящего момента, создаваемого валом двигателя, что не очень хорошо.

Когда ротор статора находится под напряжением, на ротор действует крутящий момент в направлении уменьшения магнитного сопротивления. Этот крутящий момент будет тянуть ближайший к ротору усилие, так что он будет выровнен с полем статора в положение с меньшим сопротивлением.Следовательно, чтобы поддерживать вращение, полюс статора должен постоянно выходить из полюса ротора, вращаясь впереди полюсов ротора.

Гистерезис

В синхронных двигателях с гистерезисом при вращении магнитного поля статора на ротор действует реверсивное магнитное поле. Причина этого явления в том, что цилиндрический ротор этих типов электродвигателей изготовлен из материала с высокой коэрцитивной силой. Это означает, что как только ротор намагничен в каком-то направлении, вы не сможете легко изменить его направление, не применяя большое обратное магнитное поле.

Изображение от Elprocus

Обратное магнитное поле, испытываемое каждым небольшим объемом ротора из-за вращения магнитного поля статора, будет продолжаться до тех пор, пока не будет достигнута синхронная скорость. Это дает нам преимущество синхронных двигателей с гистерезисом, которые могут создавать постоянный крутящий момент до достижения синхронной скорости без пульсаций крутящего момента. Еще один момент, связанный с этими типами двигателей, заключается в том, что, несмотря на то, что обычно имеется короткозамкнутая обмотка для запуска двигателя, двигатель может запускаться самостоятельно из-за того, что движение ротора зависит только от фазовой задержки между статором и магнитным полем ротора. поля.

Синхронные двигатели с возбуждением постоянным током

Ротор этих типов электродвигателей возбуждается с помощью внешнего источника постоянного тока, который создает магнитный поток, необходимый для приведения ротора в движение. Это можно сделать с помощью отдельного источника постоянного тока или источника, напрямую подключенного к валу двигателя.

Вы можете посмотреть видео здесь, чтобы увидеть, как работают синхронные двигатели.

Линейные

Линейные двигатели — это один из типов электродвигателей переменного тока, создающих линейную силу вместо крутящего момента.Они похожи на те, что уже обсуждались ранее, за исключением того, что их роторы и статоры развернуты. Они широко используются в таких приложениях, как электропоезда, приводы, используемые в раздвижных дверях и т. Д.

Это видео покажет вам, как работают такие двигатели.

Двигатели постоянного тока

В электродвигателях постоянного тока электрическая энергия постоянного тока преобразуется в механическую. Двигатели постоянного тока могут быть с самовозбуждением или с независимым возбуждением. Однако двигатели постоянного тока с самовозбуждением, вероятно, более интересны, если вы можете использовать их в своих приложениях.

Двигатели постоянного тока

также можно классифицировать в зависимости от того, являются ли они щеточными двигателями постоянного тока (BDC) или бесщеточными двигателями постоянного тока (BLDC). Щеточные двигатели постоянного тока дешевы и просты в разработке и производстве; однако двигатели BLDC сложны и дороги. В целом, небольшие и малочувствительные приложения, такие как электроприборы, автомобильные электрические стеклоподъемники и сиденья, могут использовать двигатели BDC, тогда как такие приложения, как HVAC и охлаждение, автомобильные электродвигатели и другие подобные промышленные системы, будут работать с BLDC.

Щеточный DC

Щеточные электродвигатели постоянного тока имеют внутреннюю коммутацию, что означает, что крутящий момент создается непосредственно из мощности постоянного тока, подаваемой с помощью стационарных постоянных магнитов или электромагнитов и вращающихся электромагнитов.

Достаточно недорогие и очень надежные. Вы можете легко контролировать их скорость, используя простую двухпроводную систему, хотя есть некоторые конструкции с фиксированной скоростью, для которых нет управления скоростью.

В щеточных двигателях постоянного тока также можно найти некоторые недостатки, такие как необходимость периодического технического обслуживания, обусловленного специально щетками, и малый срок службы для сложных работ, для которых высоки крутящий момент или скорость. Другой важной проблемой является их ограниченная скорость из-за щеток и генерации электромагнитных помех (EMI) из-за искрения щеток.

Изображение с двигателя ZGC
Шунтирующая обмотка

Катушки возбуждения или обмотки электродвигателей постоянного тока с шунтирующей обмоткой и щеткой подключены параллельно якорю; отсюда и название этих типов электродвигателей. В этой конфигурации обмоток подаваемый ток будет распределяться между шунтирующим якорем и обмотками возбуждения. С двигателями BDC с параллельной обмоткой регулировать скорость очень просто.

Когда нагрузка прилагается к электродвигателям постоянного тока с шунтирующей обмоткой и щеточным электродам, скорость имеет тенденцию к снижению, но в этой ситуации сетевое напряжение будет увеличиваться.Когда сетевое напряжение увеличивается, ток якоря увеличивается, а это означает, что будет генерироваться некоторый дополнительный крутящий момент, который компенсирует снижение скорости из-за приложения нагрузки, что делает эти типы электродвигателей устройствами с постоянной скоростью.

Все это означает, что вы, вероятно, захотите рассмотреть такой двигатель, если бы у вас был низкий пусковой крутящий момент, а также хорошее регулирование скорости.

Последовательная обмотка

Если вместо параллельного соединения обмоток якоря и возбуждения последовательно, а не параллельно, то получится щеточный электродвигатель постоянного тока с последовательной обмоткой.Понятно, что ток в обмотках возбуждения и якоря для этой конструкции будет одинаковым. Им потребуется значительный ток, но крутящий момент, который они создают, очень высок, особенно при запуске.

Однако эта конструкция не очень хороша для регулирования скорости. Причина в том, что, несмотря на повышенное напряжение из-за нагрузки, двигатель будет увеличивать ток для нарастания, но магнитное поле в конечном итоге будет насыщено, что означает, что магнитный поток между якорем и статором не будет расти достаточно быстро, что означает недостаточный крутящий момент. будет сгенерирован, чтобы вернуть скорость к предыдущим условиям.

Можно сказать, что вы могли бы рассмотреть типы электродвигателей, когда вам нужен высокий пусковой крутящий момент, но не слишком заботитесь о регулировании скорости.

Составная обмотка

Что делать, если вам нужен НМТ с высоким пусковым моментом, а также с хорошим контролем скорости? Что ж, для этого тоже есть решение: электродвигатели постоянного тока со сложной обмоткой и щеткой. Двигатели с комбинированной обмоткой — это «гибрид» двигателей постоянного тока с шунтирующей обмоткой и щеточных двигателей с последовательной обмоткой. В этих типах электродвигателей имеется обмотка возбуждения, включенная последовательно с обмоткой якоря, и еще одна обмотка возбуждения, шунтирующая с обмоткой якоря.

Существует конфигурация с коротким шунтом и конфигурация с длинным шунтом для двигателей BDC с комбинированной обмоткой. Если бы поле шунта было только параллельно якорю, это была бы конфигурация с коротким шунтом, но если бы поле шунта было параллельно с последовательностью якоря и последовательным полем, это был бы BDF с составной обмоткой с длинным шунтом.

У вас может быть полярность шунтирующего поля, совпадающая с полярностью последовательного поля, что создает кумулятивную составную обмотку BDC. Это двигатель с высоким пусковым моментом и хорошей регулировкой скорости.У вас также может быть полярность шунтирующего поля, противоположная последовательному полю, что делает дифференциальный двигатель с составной обмоткой.

Постоянный магнит

В щеточном двигателе постоянного тока с постоянными магнитами якорь окружен постоянными магнитами, прикрепленными к внутренней поверхности цилиндрического статора этих типов электродвигателей. Магниты установлены таким образом, чтобы противоположные полюса соседних магнитов были обращены к якорю. Якорь, который является проводником с током, будет поэтому испытывать механическую силу, действующую на него со стороны магнитного поля этой системы постоянных магнитов, и вращаться в его направлении.

Серводвигатель

Серводвигатели на самом деле могут не относиться к одному из типов электродвигателей и, вероятно, представляют собой отдельную категорию, но поскольку в самых простых небольших из них используются двигатели с постоянным магнитом BDC вместе с системой управления с обратной связью, мы решили упомяните их и здесь. Серводвигатели — это механические устройства или приводы, которые очень удобны, когда дело доходит до точного управления положением, скоростью или ускорением. Они состоят из двигателя постоянного тока, датчика положения и контроллера.

Бесщеточный DC

Вы, наверное, заметили, что щетки и их взаимодействие с механическим коммутатором двигателей BDC являются причиной появления бесщеточных электродвигателей постоянного тока. Что ж, щетки изнашиваются и требуют обслуживания и замены, а щетки создают искры, которые опасны для мест, где есть вероятность взрыва.

Бесщеточные двигатели постоянного тока коммутируются электронно, что обеспечивает им более длительный срок службы, лучшие характеристики скорости и крутящего момента, высокую эффективность, лучший динамический отклик и более высокие изменения скорости, а также бесшумную работу.

Эти типы электродвигателей могут использоваться как для переменных нагрузок, так и для приложений с фиксированной нагрузкой, а также для приложений позиционирования, и они набирают популярность на рынке.

Видео, в котором сравниваются щеточные двигатели постоянного тока с бесщеточными двигателями постоянного тока, и критерии выбора между ними см. Здесь.

Заключение

Таким образом, речь шла о типах электродвигателей. Мы попытались представить простое руководство по этим типам двигателей. В настоящее время существуют разные и гибкие.Назначение двигателя — всякий раз, когда «требуется управление движением», это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Это отличный шанс, если вам нужно больше узнать о типах электродвигателей, не стесняйтесь зарегистрироваться в Linquip. Наши специалисты будут рады получить ваши вопросы и с энтузиазмом на них ответить.

Электродвигатель: (Работа + Использование + Факты)

Электродвигатели — одни из самых распространенных электрических машин, которые можно найти в широком спектре электронных устройств.В доме вы найдете несколько предметов, в которых есть моторы, такие как вентиляторы, кофемолки, миксер, движущиеся игрушки и пылесосы.

Что такое электродвигатели?

Электродвигатели — это электрические машины, которые работают на электричестве для производства механической энергии. Механическая энергия может использоваться для вращения вентиляторов или перемещения электромобиля и т. Д. Электродвигатели бывают разных номиналов напряжения и мощности, например, 120 вольт, 220 вольт и 12 вольт. На них необходимо подавать номинальное напряжение, чтобы обеспечить бесперебойную работу и избежать повреждений.

Как работают электродвигатели?

Основным принципом работы электродвигателя является действие электромагнитных сил. Когда по проводу проходит электрический ток и помещают в магнитное поле (например, рядом с магнитом), он чувствует силу, которая толкает его в определенном направлении — в зависимости от ориентации провода и магнитных полюсов.

Корпус двигателя состоит из двух основных частей; статическая часть и вращающаяся часть. Статическая часть содержит постоянный магнит или электромагнит для создания магнитного поля.В то время как вращающаяся часть намотана изолированной медной проволокой. Когда электрический ток проходит через медный провод во вращающейся части, электромагнитные силы между статической частью и вращающейся частью вступают в действие и заставляют вращающуюся часть вращаться и генерировать механическую энергию.

Это простейшее определение того, как работает двигатель, но для более подробного понимания их работы перейдите по адресу: https://www.explainthatstuff.com/electricmotors.html.

Электродвигатели переменного и постоянного тока

Есть две широкие категории электродвигателей, которые используют разные типы токов для питания себя.Эти две категории — двигатели постоянного и переменного тока.

  • Двигатели постоянного тока — Эти двигатели нуждаются в постоянном токе для выполнения своих функций. Постоянный ток — это ток, который всегда течет в одном направлении — в одном направлении. Двигатели постоянного тока обычно оснащены постоянными магнитами в их статической части, но есть также некоторые двигатели, которые содержат электромагниты вместо постоянных магнитов в их статической части. Двигатели постоянного тока менее распространены в тяжелых.
  • Двигатели переменного тока — Эти двигатели работают на переменном токе (AC) для выполнения своей работы.Переменный ток отличается от постоянного, потому что он течет в двух направлениях — меняет направление с определенной частотой в герцах. Двигатели переменного тока не используют постоянные магниты в своей статической части, а используют катушки с проволокой для создания магнитного поля. Двигатели переменного тока в основном используются для тяжелых работ на фабриках и в домах (например, для перекачивания воды).

Применение электродвигателей

Бытовой водяной насос

Электричество — это наиболее экономичный способ передачи энергии на очень большие расстояния по проводам. Но мы не можем использовать электричество напрямую для выполнения нашей работы, например для перекачивания воды, для чего требуется механическая энергия.Нам нужен способ производства механической энергии из электричества для выполнения механической работы. Для этого мы используем электродвигатели, которые потребляют электричество на входе и выдают механическую энергию на выходе.

Вот основные задачи, для которых нам нужны электродвигатели:

  • Электромобили — Эти автомобили работают на электричестве, которое в основном вырабатывается от автомобильных аккумуляторов. Они получают механическую энергию от электродвигателей вместо двигателей внутреннего сгорания.
  • Отрасли промышленности — Существуют различные процессы во всех отраслях промышленности, в которых нам требуется механическая энергия от электродвигателей, например смешивание, подъем, вытягивание и т. Д.
  • Электрические игрушки — Игрушки, которые совершают какие-то движения, требуют электродвигателей.
  • Домашнее хозяйство — Мы полагаемся на многие электрические приборы, чтобы жить комфортно, для чего требуются электродвигатели, такие как кондиционер, электрические вентиляторы, пылесос, водяной насос, измельчитель, миксер и т. Д.

Факты

  • Электрогенераторы работать противоположно этому электродвигателю; они производят электричество, когда их вращающаяся часть вращается двигателем.
  • Теоретически, если вы вращаете вращающуюся часть электродвигателя, вы генерируете то же количество электроэнергии, которое потребляет двигатель для работы на этой скорости.
  • Майкл Фарадей и Генри Джозеф первыми совершили движение с помощью электрического тока.

Электродвигатель | Encyclopedia.com

Двигатель постоянного тока

Типы двигателей постоянного тока

Двигатели переменного тока

Принципы работы трехфазного двигателя

Ресурсы

Электродвигатель — это машина, используемая для преобразования электрической энергии в механическую.Электродвигатели важны для современной жизни, они используются в пылесосах, посудомоечных машинах, компьютерных принтерах, факсах, водяных насосах, производстве, автомобилях (как обычных, так и гибридных), станках, печатных станках, системах метро и т. Д.

Основные физические принципы работы электродвигателя известны как закон Ампера и закон Фарадея. Первый гласит, что электрический проводник, находящийся в магнитном поле, будет испытывать силу, если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к ​​этому полю.Изменение направления тока или магнитного поля приведет к возникновению силы, действующей в противоположном направлении. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет создавать разность потенциалов между концами проводника.

Электродвигатель состоит из двух основных элементов. Первый, статический компонент, состоящий из магнитных материалов и электрических проводников для создания магнитных полей желаемой формы, известен как статор .Второй, который также сделан из магнитных и электрических проводников для создания определенных магнитных полей, которые взаимодействуют с полями, создаваемыми статором, известен как ротор . Ротор содержит подвижный компонент двигателя, имеющий вращающийся вал для соединения с приводимой в действие машиной и некоторые средства поддержания электрического контакта между ротором и корпусом двигателя (обычно угольные щетки, прижатые к контактным кольцам). Во время работы электрический ток, подаваемый на двигатель, используется для создания магнитных полей как в роторе, так и в статоре.Эти поля сталкиваются друг с другом, в результате чего ротор испытывает крутящий момент и, следовательно, вращается.

Электродвигатели делятся на две широкие категории, в зависимости от типа применяемой электроэнергии: двигатели постоянного (DC) и переменного тока (AC).

Первый электродвигатель постоянного тока был продемонстрирован Майклом Фарадеем в Англии в 1821 году. Поскольку единственными доступными электрическими источниками были электродвигатели постоянного тока, первые коммерчески доступные электродвигатели были электродвигателями постоянного тока, которые стали популярными в 1880-х годах.Эти двигатели использовались как для маломощных, так и для больших мощностей, таких как электрические уличные железные дороги. Только в 1890-х годах, когда появилась электроэнергия переменного тока, двигатель переменного тока был разработан, в первую очередь, корпорациями Westinghouse и General Electric. В течение этого десятилетия было решено большинство проблем, связанных с однофазными и многофазными двигателями переменного тока. Следовательно, все основные характеристики электродвигателей были разработаны к 1900 году.

Работа двигателя постоянного тока зависит от взаимодействия полюсов статора с частью ротора или якоря.Статор содержит четное количество полюсов переменной магнитной полярности, каждый полюс состоит из электромагнита, образованного из обмотки полюса, намотанной на сердечник полюса. Когда через обмотку протекает постоянный ток, создается магнитное поле. Якорь также содержит обмотку, в которой ток течет в указанном направлении. Этот ток якоря взаимодействует с магнитным полем в соответствии с законом Ампера, создавая крутящий момент, который поворачивает якорь.

Если бы обмотки якоря вращались вокруг следующего полюсного наконечника противоположной полярности, крутящий момент работал бы в противоположном направлении, останавливая якорь.Чтобы предотвратить это, ротор содержит коммутатор, который изменяет направление тока якоря для каждого полюсного наконечника, мимо которого вращается якорь, таким образом гарантируя, что все обмотки, проходящие, например, через полюс северной полярности, будут иметь ток, протекающий в в том же направлении, в то время как обмотки, проходящие через южные полюса, будут иметь противоположно протекающий ток, чтобы создать крутящий момент в том же направлении, что и крутящий момент, создаваемый северными полюсами. Коммутатор обычно состоит из разъемного контактного кольца, по которому движутся щетки, протекающие по постоянному току.

Вращение обмоток якоря через поле статора создает на якоре напряжение, известное как противо-ЭДС (электродвижущая сила), поскольку оно противодействует приложенному напряжению: это следствие закона Фарадея. Величина противо-ЭДС зависит от напряженности магнитного поля и скорости вращения якоря. При первоначальном включении двигателя постоянного тока нет противодействия ЭДС, и якорь начинает вращаться. Счетчик ЭДС увеличивается с вращением.Действующее напряжение на обмотках якоря — это приложенное напряжение за вычетом противо-ЭДС.

Двигатели постоянного тока встречаются чаще, чем мы думаем. Автомобиль может иметь до 20 двигателей постоянного тока для привода вентиляторов, сидений и окон. Они бывают трех разных типов, классифицируемых в зависимости от используемой электрической схемы. В параллельном двигателе якорь и обмотки возбуждения соединены параллельно, поэтому токи через каждую из них относительно независимы. Ток через обмотку возбуждения можно регулировать с помощью реостата возбуждения (переменного резистора), что позволяет изменять скорость двигателя в широких пределах в широком диапазоне условий нагрузки.Этот тип двигателя используется для привода станков или вентиляторов, для которых требуется широкий диапазон скоростей.

В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря, что приводит к очень высокому пусковому моменту, поскольку как ток якоря, так и напряженность поля максимальны. Однако, как только якорь начинает вращаться, противо-ЭДС снижает ток в цепи, тем самым уменьшая напряженность поля. Серийный двигатель используется там, где требуется большой пусковой крутящий момент, например, в автомобильных стартерах, кранах и подъемниках.

Составной двигатель представляет собой комбинацию последовательного и параллельного двигателей с параллельными и последовательными обмотками возбуждения. Этот тип двигателя имеет высокий пусковой момент и способность изменять скорость и используется в ситуациях, требующих обоих этих свойств, таких как пробивные прессы, конвейеры и лифты.

Двигатели переменного тока встречаются гораздо чаще, чем двигатели постоянного тока, потому что почти все системы электроснабжения работают с переменным током. Существует три основных типа двигателей: многофазные асинхронные, многофазные синхронные и однофазные.Поскольку трехфазные источники питания являются наиболее распространенными многофазными источниками, большинство многофазных двигателей работают от трехфазных. Трехфазные источники питания широко используются в коммерческих и промышленных условиях, тогда как однофазные источники питания почти всегда используются в домашних условиях.

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения.По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в течение цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается. Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3 600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а

Ключевые термины

AC — Переменный ток, при котором ток, проходящий через цепь, меняет направление потока через равные промежутки времени.

DC — Постоянный ток, при котором ток в цепи примерно постоянен во времени.

Ротор — Та часть электродвигателя, которая может свободно вращаться, включая вал, якорь и связь с машиной.

Статор — Та часть электродвигателя, которая не может вращаться, включая катушки возбуждения.

Крутящий момент — Способность или сила, необходимые для поворота или скручивания вала или другого объекта.

— это, по сути, короткие замыкания. Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних песчанок. Когда двигатель первоначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, распространяющееся с синхронной скоростью.Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться. Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован.Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей.В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока. Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные двигатели и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным принципам, описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с разделенной фазой, конденсаторным пуском или с экранированными полюсами. Небольшие синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. П., Основаны на конструкциях с реактивным сопротивлением или гистерезисом.

КНИГИ

Красильщик. Катушки силы тока: как изготавливаются и как используются: с описанием электрического света, электрических звонков, электродвигателей, телефона, микрофона и фонографа . Бостон: Adamant Media Corporation, 2005.

Эмади, Али. Энергоэффективные электродвигатели . Нью-Йорк: CRC, 2004.

Hughes, Austin. Электродвигатели и приводы . Оксфорд, Великобритания: Newnes, 2005.

Иэн А. Макинтайр

Как работают электродвигатели?

Щелкните выключателем и мгновенно получите власть — как наши предки любили электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор. Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной — вытяжки и электробритвы; На кухне моторы есть практически во всех устройствах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей.Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они Работа!

Фото: Даже маленькие электродвигатели на удивление тяжелые. Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя действительно проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то. Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит.Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение. Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать.Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

Как работает электродвигатель — теоретически

Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше.Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях.Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно — и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении.Теперь силы на каждого сторона катушки перевернется. Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя в любом месте.

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле.Фото Джейсона Якобовица любезно предоставлено ВМС США.

Как работает электродвигатель — на практике

Есть два способа решить эту проблему. Один из них — использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение — добавить компонент назвал коммутатором концы катушки. (Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы».Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделал либо из кусочков графита (мягкий уголь, похожий на карандаш «свинец») или тонкие отрезки упругого металла, который (как название предполагает) «задела» коммутатор.С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность.Мы можем увеличить усилие поворота (или крутящий момент) что мотор может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки. На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью — и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах.В небольших бытовых приборах (например, кофемолках или электрических блендерах) обычно используются так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

  • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении.Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
  • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба, , меняют направление, точно синхронно, поэтому сила на катушке всегда в одном и том же направлении, а двигатель всегда вращается либо по часовой стрелке. или против часовой стрелки. А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда ток питания меняется на противоположное. Это означает, что сила на катушке всегда направлена ​​в одну сторону.

Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать как от постоянного, так и от переменного тока.Серый электромагнит по краю — это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

Электродвигатели прочие

Фото: Электродвигатели бывают всех форм и размеров. В этом школьном автобусе есть заменили старый грязный дизельный двигатель большим электродвигателем (белый квадрат) для уменьшения загрязнения воздуха. Фото Денниса Шредера любезно предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит.Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться. Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой.Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре и постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

Сколько электродвигателей в вашей машине? — Автомобильная промышленность — Технические статьи

Великобритания, Норвегия, Нидерланды, Дания и Франция уже предложили планы запретить двигатели внутреннего сгорания (ДВС), при этом Китай также изучает, когда следует запретить автомобили с ДВС. Итак, на стене написано, что мощные электродвигатели, также известные как тяговые двигатели, будут играть важную и все возрастающую роль в качестве двигателя, приводящего в движение транспортное средство. Но электродвигатели уже доминируют во многих других автомобильных приложениях.Давайте возьмем автомобильную перепись типичного автомобиля.

Рисунок 1: Применение электродвигателя в автомобиле

Существующее — и постоянно увеличивающееся — количество двигателей
Электростартерные двигатели используются в автомобилях с тех пор, как ваши прадеды решили, что должен быть лучший способ запуска автомобиля, чем ручная рукоятка. Стартерные двигатели, как правило, остаются самыми мощными электродвигателями, кроме тяговых. С появлением технологии старт-стоп и мягких гибридных автомобилей стартер трансформируется в стартер-генератор и берет на себя больше функций.В некоторых конструкциях усовершенствованный стартерный двигатель может быть использован для «ползания» вперед при остановках и движении, стирая границы между стартером и тяговым электродвигателем.

Стеклоочистители — это, пожалуй, самый распространенный пример электродвигателей в существующих автомобилях. В каждой машине есть хотя бы один электродвигатель стеклоочистителя для передних дворников. Популярность внедорожников и хэтчбеков с менее обтекаемыми задними окнами означала наличие задних дворников и соответствующих двигателей на значительной части автомобилей.Другой мотор подает омывающую жидкость к лобовым стеклам, а в некоторых автомобилях к фарам, у которых могут быть свои маленькие дворники.

Практически в каждой машине есть нагнетательные вентиляторы, обеспечивающие циркуляцию воздуха из системы отопления и охлаждения; многие автомобили имеют в салоне два или более вентилятора. В сиденья дорогих автомобилей встроены вентиляторы для мягкой вентиляции и распределения тепла.

Сиденья

Power — благодатная почва для тех, кто ищет электродвигатели. В автомобилях эконом-класса моторы обеспечивают удобную регулировку вперед и назад, а также наклон задней подушки.В автомобилях премиум-класса электродвигатели управляют такими опциями, как регулировка высоты, наклон нижней подушки, поясничная поддержка, регулировка подголовника и жесткость подушки. Другие функции сиденья, в которых используются электродвигатели, включают складывание сиденья с электроприводом и складывание задних сидений с электроприводом.

Окна раньше заводились вручную, но теперь электрические стеклоподъемники стали обычным явлением; будущие поколения не поймут традиционного кругового движения руки, когда они просят кого-нибудь опустить окна.

Каждое окно является еще одним потенциальным местом для установки электродвигателя, включая такие варианты, как люки на крыше и задние форточки в минивэнах.Приводы для этих окон могут быть такими же простыми, как реле, но требования безопасности, такие как обнаружение препятствия или защемленного объекта, приводят к более интеллектуальным вариантам привода с контролем движения и ограничениями движущей силы.

Замки

— еще один удобный вариант, в котором ручное управление уступило место электромоторному приводу. К преимуществам электрического управления относятся такие удобные функции, как дистанционное управление, повышенная безопасность и интеллектуальные функции, такие как автоматическая разблокировка после столкновения.В отличие от стеклоподъемников, дверные замки с электроприводом должны иметь возможность ручного управления, поэтому это влияет на конструкцию двигателя и механизма электрического дверного замка.

Индикаторы на приборной панели или кластере могут быть преобразованы в светоизлучающие диоды (светодиоды) или другие типы дисплеев, но на данный момент каждый циферблат и датчик используют небольшой электродвигатель. Другие электродвигатели в категории комфорта включают в себя общие функции, такие как складывание и регулировку положения боковых зеркал, а также более экзотические приложения, такие как складные крыши, выдвижные подножки и стеклянные перегородки между водителем и пассажирами.

Под капотом электродвигатели становятся все более распространенными в нескольких местах. В большинстве случаев электродвигатели заменяют механические компоненты с ременным приводом. Примеры включают вентиляторы радиатора, топливные насосы, водяные насосы и компрессоры. Перенос этих функций с ременной передачи на электропривод имеет несколько преимуществ. Во-первых, привод электродвигателей с современной электроникой может быть намного более энергоэффективным, чем использование ремней и шкивов, что дает такие преимущества, как более высокая топливная эффективность, уменьшенный вес и меньшие выбросы.Еще одно преимущество состоит в том, что использование электродвигателей, а не ремней, дает свободу в механической конструкции, поскольку положение установки насосов и вентиляторов не должно ограничиваться из-за того, что змеевиковый ремень идет к каждому шкиву.

Технологические тенденции
Большинство электродвигателей в современных автомобилях работают от стандартной автомобильной системы с напряжением 12 В, с генератором переменного тока с ременным приводом для генерации напряжения и свинцово-кислотными аккумуляторами для хранения. Эта схема отлично работает на протяжении десятилетий, но новейшим автомобилям требуется все больше и больше современных технологий для обеспечения комфорта, развлечений, навигации, помощи водителю и функций безопасности.

Система с двойным напряжением 12 В и 48 В может отключать некоторые из более высоких нагрузок от батареи 12 В. Преимущества использования источника питания 48 В заключаются в 4-кратном снижении тока при той же мощности и сопутствующем уменьшении веса кабелей и обмоток двигателя. Примеры сильноточных нагрузок, которые могут перейти на питание 48 В, включают стартер, турбонагнетатель, топливный насос, водяной насос и охлаждающие вентиляторы. Внедрение электрической системы на 48 В для этих компонентов может привести к экономии топлива примерно на 10%.


Как эволюционирует электрификация транспортных средств сети щитов напряжения

Электродвигатели постоянного тока

с щеткой — это традиционное решение для управления большинством электрических компонентов автомобильного кузова. Поскольку щетки обеспечивают коммутацию, эти двигатели просты в управлении и относительно недороги. В некоторых приложениях бесщеточные двигатели постоянного тока (BLDC) могут обеспечить значительные преимущества с точки зрения удельной мощности, тем самым снижая вес и обеспечивая лучшую экономию топлива и меньшие выбросы.Производители используют двигатели BLDC в дворниках, вентиляторах и насосах обогрева, вентиляции и кондиционирования воздуха (HVAC). В этих приложениях двигатель имеет тенденцию работать в течение длительного времени, в отличие от кратковременной работы, например, в электрических стеклоподъемниках или сиденьях с электроприводом, где простота и экономичность щеточных двигателей по-прежнему имеют преимущество.

Итак, сколько электродвигателей в вашей машине?
Вам будет сложно найти автомобиль последней модели с менее чем дюжиной электродвигателей, в то время как типичные современные автомобили на американских дорогах могут легко иметь 40 электродвигателей или больше.Растущая популярность электромобилей будет стимулировать многие инновации в автомобильных электродвигателях. Тем не менее, электродвигатели уже широко используются в транспортных средствах с ДВС, и в каждом последующем модельном году их применение увеличивается, что повышает удобство, интеллектуальность и безопасность эксплуатации при одновременном снижении воздействия на окружающую среду. Тем не менее — всегда есть место для большего.

Подробнее, чтобы узнать, «Как аналоговая интеграция упрощает конструкцию контроллеров двигателя кузова».»

Электродвигатель | Автопедия | Fandom

Электродвигатель использует электрическую энергию для производства механической энергии, как правило, посредством взаимодействия магнитных полей и проводников с током. Обратный процесс, производящий электрическую энергию из механической энергии, осуществляется генератором или динамо-машиной.Многие типы электродвигателей могут работать как генераторы и наоборот.Например, стартер / генератор для газовой турбины или тяговые двигатели, используемые на транспортных средствах, часто выполняют обе задачи.

Электродвигатели используются в самых разных областях, таких как промышленные вентиляторы, нагнетатели и насосы, станки, бытовая техника, электроинструменты и дисководы. Они могут питаться постоянным током (например, портативное устройство с батарейным питанием или автомобиль) или переменным током от центральной распределительной сети. Самые маленькие моторы можно найти в наручных электрических часах. Двигатели среднего размера с строго стандартизованными размерами и характеристиками обеспечивают удобную механическую мощность для промышленного использования.Самые большие электродвигатели используются для приведения в движение больших кораблей и для таких целей, как трубопроводные компрессоры, с мощностью в миллионы ватт. Электродвигатели можно классифицировать по источнику электроэнергии, по их внутренней конструкции, по их применению или по типу движения, которое они создают.

Физический принцип производства механической силы за счет взаимодействия электрического тока и магнитного поля был известен еще в 1821 году. Электродвигатели с повышенным КПД создавались на протяжении всего 19 века, но коммерческое использование электродвигателей в больших масштабах требовались эффективные электрические генераторы и электрические распределительные сети.

Некоторые устройства, такие как магнитные соленоиды и громкоговорители, хотя и генерируют некоторую механическую энергию, обычно не называются электродвигателями и обычно называются исполнительными механизмами [1] и преобразователями [2] соответственно.

История и развитие

Принцип

Преобразование электрической энергии в механическую с помощью электромагнитных средств было продемонстрировано британским ученым Майклом Фарадеем в 1821 году.Свободно висящий провод погружали в ванну с ртутью, на которую помещали постоянный магнит. Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода. [3] Этот двигатель часто демонстрируется на школьных уроках физики, но вместо токсичной ртути иногда используется рассол (соленая вода). Это простейшая форма класса устройств, называемых униполярными двигателями. Более поздняя доработка — Колесо Барлоу.Это были только демонстрационные устройства, непригодные для практического применения из-за своей примитивной конструкции.

В 1827 году венгр Аньош Йедлик начал эксперименты с электромагнитными вращающимися устройствами, которые он назвал «самовращающимися магнитами». Он использовал их в учебных целях в университетах, а в 1828 году продемонстрировал первое устройство, которое содержало три основных компонента практических двигателей постоянного тока: статор, ротор и коммутатор. Как неподвижная, так и вращающаяся части были электромагнитными, без постоянных магнитов. [4] [5] [6] [7] [8] [9] Опять же, устройства не имели практического применения.

Первые электродвигатели

Первый электродвигатель постоянного тока коммутаторного типа, способный вращать механизмы, был изобретен британским ученым Уильямом Стердженом в 1832 году. Следуя работе Стерджена, американцы Эмили построили электродвигатель постоянного тока коммутаторного типа, предназначенный для коммерческого использования. и Томас Дэвенпорт и запатентован в 1837 году.Их двигатели работали со скоростью до 600 оборотов в минуту, они приводили в действие станки и печатный станок. Из-за высокой стоимости цинковых электродов, необходимых для питания первичной батареи, двигатели были коммерчески неудачными, и Davenports обанкротились. Несколько изобретателей последовали за Sturgeon в разработке двигателей постоянного тока, но все столкнулись с одними и теми же проблемами стоимости с питанием от первичной батареи. В то время не было развито распределение электроэнергии. Как и в случае с двигателем Sturgeon, для этих двигателей не было практического коммерческого рынка.

В 1855 году Джедлик построил устройство, использующее принципы, аналогичные тем, которые использовались в его электромагнитных самовращателях, которое было способно выполнять полезную работу. В том же году он построил модель электромобиля. Нет никаких доказательств того, что этот эксперимент был доведен до сведения более широкого научного мира в то время или что он повлиял на развитие электродвигателей в последующие десятилетия.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил изобретенную им динамо-машину со вторым аналогичным устройством, управляя им как двигателем.Машина Gramme была первым электродвигателем, получившим успех в отрасли.

В 1886 году Франк Джулиан Спраг изобрел первый практический двигатель постоянного тока, неискрящий двигатель, способный работать с постоянной скоростью при переменных нагрузках. Другие электрические изобретения Sprague примерно в это время значительно улучшили распределение электроэнергии в сети [предыдущая работа была проделана, когда использовалась Эдисоном], позволили вернуть энергию от электродвигателей в электрическую сеть, обеспечили распределение электроэнергии между тележками через воздушные провода и опору троллейбуса, а также предоставлены системы управления электрическими операциями.Это позволило Спрэгу использовать электродвигатели для изобретения первой системы электрических тележек в 1887-88 годах в Ричмонде, штат Вирджиния, электрического лифта и системы управления в 1892 году, а также электрического метро с автомобилями с независимым приводом и централизованным управлением, которое было впервые установлено в 1892 году в Чикаго. у южной стороны надземной железной дороги, где он стал широко известен как «L». Двигатель Спрэга и связанные с ним изобретения привели к взрывному росту интереса к электродвигателям и их использованию в промышленности, в то время как почти одновременно с этим другой великий изобретатель разрабатывал своего основного конкурента, который стал гораздо более распространенным.

В 1888 году Никола Тесла изобрел первый практически осуществимый двигатель переменного тока, а вместе с ним и систему многофазной передачи энергии. Тесла продолжил свою работу над двигателем переменного тока в последующие годы в компании Westinghouse.

Разработка электродвигателей приемлемого КПД была отложена на несколько десятилетий из-за непонимания чрезвычайной важности относительно небольшого воздушного зазора между ротором и статором. Ранние двигатели для некоторых положений ротора имели сравнительно большие воздушные зазоры, которые составляли магнитную цепь с очень высоким сопротивлением.Они производили гораздо меньший крутящий момент, чем эквивалентная мощность, которую можно было бы произвести с помощью эффективных конструкций. Причина непонимания, по-видимому, в том, что ранние конструкции были основаны на знакомом нам далеком притяжении между магнитом и куском ферромагнитного материала или между двумя электромагнитами. Эффективные конструкции, как описано в этой статье, основаны на роторе со сравнительно небольшим воздушным зазором и диаграммах магнитного потока, которые создают крутящий момент.

Обратите внимание, что стержни якоря находятся на некотором расстоянии (неизвестно) от полюсных наконечников возбуждения, когда питание подается на один из магнитов возбуждения; воздушный зазор может быть значительным.В тексте говорится о неэффективности дизайна. (На практике электричество было создано за счет потребления цинка во влажных первичных элементах!)

В своих мастерских Фромент имел электродвигатель мощностью в одну лошадиную силу. Но, несмотря на интересное применение преобразования энергии, эти машины никогда не найдут практического применения в промышленных масштабах, поскольку за счет кислот и цинка, которые они используют, намного больше, чем у угля в паровых двигателях. та же сила.

[…] двигатели, работающие от электричества, независимо от стоимости конструкции или стоимости кислот, работают по крайней мере в шестьдесят раз дороже, чем паровые двигатели.

Хотя конструкция Грамма была сравнительно более эффективной, очевидно, двигатель Froment по-прежнему считался иллюстративным и спустя годы. Интересно, что двигатель Сент-Луиса, долгое время использовавшийся в учебных классах для иллюстрации принципов работы двигателя, крайне неэффективен по той же причине, а также не похож на современный двигатель.Фотография традиционной формы двигателя: обратите внимание на выступающие стержневые магниты и огромный воздушный зазор на концах, противоположных ротору. Даже современные версии имеют большие воздушные зазоры, если полюса ротора не выровнены.

Применение электродвигателей произвело революцию в отрасли. Промышленные процессы больше не ограничивались передачей мощности с помощью вала, ремней, сжатого воздуха или гидравлического давления. Вместо этого каждая машина может быть оснащена собственным электродвигателем, обеспечивающим простое управление в месте использования и повышающим эффективность передачи энергии.Электродвигатели, применяемые в сельском хозяйстве, лишили силы мускулов человека и животных при выполнении таких задач, как обработка зерна или перекачка воды. Использование электродвигателей в домашних условиях сократило объем тяжелого домашнего труда и сделало возможными более высокие стандарты удобства, комфорта и безопасности. Сегодня электродвигатели потребляют более половины всей производимой электроэнергии.

Категоризация электродвигателей

Классическое разделение электродвигателей на типы переменного тока (AC) и типы постоянного тока (DC).Это скорее фактическое соглашение, чем жесткое различие. Например, многие классические двигатели постоянного тока работают от переменного тока, эти двигатели называются универсальными двигателями.

Номинальная выходная мощность также используется для классификации двигателей. Например, двигатели мощностью менее 746 Вт часто называют двигателями с дробной мощностью (FHP) в соответствии со старыми британскими мерками.

Продолжающаяся тенденция к электронному управлению еще больше затрудняет различие, поскольку современные драйверы вынесли коммутатор из корпуса двигателя.Для этого нового поколения двигателей используются схемы драйверов для генерации синусоидальных управляющих токов переменного тока или некоторого их приближения. Двумя лучшими примерами являются: бесщеточный двигатель постоянного тока и шаговый двигатель, оба являются многофазными двигателями переменного тока, требующими внешнего электронного управления, хотя исторически шаговые двигатели (например, для морских и морских повторителей гирокомпасов) приводились в действие от постоянного тока, переключаемого контактами.

Учитывая, что все вращающиеся (или линейные) электродвигатели требуют синхронизма между движущимся магнитным полем и движущимся токовым слоем для создания среднего крутящего момента, существует более четкое различие между асинхронным двигателем и синхронным типом.Асинхронный двигатель требует проскальзывания между движущимся магнитным полем и обмоткой, чтобы индуцировать ток в обмотке, установленной за счет взаимной индуктивности; наиболее распространенным примером является обычный асинхронный двигатель переменного тока, который должен проскальзывать для создания крутящего момента. В синхронных типах индукция (или скольжение) не является обязательным условием для создания магнитного поля или тока (например, двигатели с постоянными магнитами, синхронные бесщеточные электрические машины с двойным питанием ротора).

Сравнение типов двигателей

Сравнение типов двигателей [10]
Тип Преимущества Недостатки Типичное применение Типичный привод
Индукция переменного тока
(экранированный полюс)
Самый дешевый
Long life
high power
Проскальзывание вращения от частоты
Низкий пусковой момент
Поклонники Uni / Poly-phase AC
Индукция переменного тока
(двухфазный конденсатор)
Высокая мощность
Высокий пусковой крутящий момент
Вращение смещается от частоты Приборы Uni / Poly-phase AC
переменного тока синхронный Вращение синхронно с частотой
долгий срок службы (генератор)
Дороже Промышленные двигатели
Часы
Проигрыватели виниловых пластинок
Ленточные накопители
Uni / Poly-phase AC
Шаговый DC Прецизионное позиционирование
Высокий удерживающий момент
Требуется контроллер Позиционирование в принтерах и флоппи-дисководах DC
Бесщеточный DC Длительный срок службы
Низкие эксплуатационные расходы
Высокая эффективность
Высокая начальная стоимость
Требуется контроллер
Жесткие диски
CD / DVD-плееры
электромобилей
DC
Матовый DC Низкая начальная стоимость
Простое регулирование скорости
Высокое обслуживание (щетки)
Малый срок службы
Тренажеры для беговой дорожки
Автомобильные стартеры
Прямой постоянный ток или ШИМ
Блинчик постоянного тока Компактная конструкция
Простое регулирование скорости
Средняя стоимость
Средняя продолжительность жизни
Office Equip
Вентиляторы / насосы
Прямой постоянный ток или ШИМ

Серводвигатель

Сервомеханизм или сервопривод — это автоматическое устройство, которое использует обратную связь с обнаружением ошибок для корректировки работы механизма.Этот термин правильно применяется только к системам, в которых сигналы обратной связи или коррекции ошибок помогают контролировать механическое положение или другие параметры. Например, управление автомобильным стеклоподъемником не является сервомеханизмом, поскольку нет автоматической обратной связи, которая контролирует положение — оператор делает это путем наблюдения. В отличие от этого круиз-контроль автомобиля использует обратную связь с обратной связью, которая классифицирует его как сервомеханизм.

Электродвигатель синхронный

Синхронный электродвигатель — это электродвигатель переменного тока, отличающийся тем, что ротор вращается с катушками, пропускающими магниты с той же скоростью, что и переменный ток, и результирующим магнитным полем, приводящим его в движение.Другими словами, он имеет нулевое проскальзывание при обычных условиях эксплуатации. Сравните это с асинхронным двигателем, который должен проскальзывать для создания крутящего момента. Синхронный двигатель похож на асинхронный двигатель, за исключением того, что ротор возбуждается полем постоянного тока. Контактные кольца и щетки используются для подачи тока к ротору. Полюса ротора соединяются друг с другом и движутся с одинаковой скоростью, отсюда и название синхронный двигатель.

Асинхронный двигатель

Асинхронный двигатель (IM) — это тип асинхронного двигателя переменного тока, в котором мощность подается на вращающееся устройство посредством электромагнитной индукции.Другое широко используемое название — это двигатель с короткозамкнутым ротором, потому что стержни ротора с короткозамыкающими кольцами напоминают клетку с коротким замыканием (колесо хомяка). Электродвигатель преобразует электрическую энергию в механическую в своем роторе (вращающейся части). Есть несколько способов подачи питания на ротор. В двигателе постоянного тока эта мощность подается на якорь непосредственно от источника постоянного тока, в то время как в асинхронном двигателе эта мощность индуцируется во вращающемся устройстве. Асинхронный двигатель иногда называют вращающимся трансформатором, потому что статор (неподвижная часть) по существу является первичной стороной трансформатора, а ротор (вращающаяся часть) — вторичной стороной.Широко используются асинхронные двигатели, особенно многофазные асинхронные двигатели, которые часто используются в промышленных приводах.

Электростатический двигатель (конденсаторный двигатель)

Электростатический двигатель или конденсаторный двигатель — это тип электродвигателя, основанный на притяжении и отталкивании электрического заряда. Обычно электростатические двигатели являются двойными по сравнению с обычными двигателями с катушкой. Обычно для них требуется источник питания высокого напряжения, хотя в очень маленьких двигателях требуется более низкое напряжение. Вместо этого обычные электродвигатели используют магнитное притяжение и отталкивание и требуют высокого тока при низких напряжениях.В 1750-х годах первые электростатические двигатели были разработаны Бенджамином Франклином и Эндрю Гордоном. Сегодня электростатический двигатель часто используется в микромеханических (МЭМС) системах, где их управляющее напряжение ниже 100 вольт и где движущиеся заряженные пластины гораздо проще изготовить, чем катушки и железные сердечники. Кроме того, молекулярный механизм, который управляет живыми клетками, часто основан на линейных и вращающихся электростатических двигателях.

Двигатели постоянного тока

Двигатель постоянного тока предназначен для работы от постоянного тока.Двумя примерами чистых конструкций постоянного тока являются униполярный двигатель Майкла Фарадея (что необычно) и двигатель на шарикоподшипниках, который (пока) является новинкой. Безусловно, наиболее распространенными типами двигателей постоянного тока являются щеточные и бесщеточные двигатели, в которых используется внутренняя и внешняя коммутация соответственно для создания колеблющегося переменного тока от источника постоянного тока, поэтому в строгом смысле они не являются чисто двигателями постоянного тока.

Двигатели постоянного тока с щетками

Классическая конструкция двигателя постоянного тока генерирует колебательный ток в роторе или якоре с помощью коммутатора с разъемным кольцом и статора с обмоткой или постоянным магнитом.Ротор состоит из одной или нескольких катушек проволоки, намотанных вокруг сердечника на валу; источник электроэнергии подключен к катушке ротора через коммутатор и его щетки, заставляя ток течь в нем, вызывая электромагнетизм. Коммутатор вызывает переключение тока в катушках при вращении ротора, предотвращая полное совпадение магнитных полюсов ротора с магнитными полюсами поля статора, так что ротор никогда не останавливается (как это делает стрелка компаса), но скорее, продолжает вращаться бесконечно (до тех пор, пока подается мощность, достаточная для двигателя, чтобы преодолеть крутящую нагрузку на валу и внутренние потери из-за трения и т. д.)

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. Искры создаются щетками, замыкая и размыкая цепи через обмотки ротора, когда щетки пересекают изоляционные зазоры между секциями коллектора. В зависимости от конструкции коммутатора, это может включать в себя замыкание щеток между соседними секциями — и, следовательно, концами катушки — на мгновение при пересечении зазоров. Кроме того, индуктивность катушек ротора заставляет напряжение на каждой из них повышаться при размыкании цепи, увеличивая искрение щеток.Это искрение ограничивает максимальную скорость машины, так как слишком быстрое искрение приведет к перегреву, разрушению или даже расплавлению коллектора. Плотность тока на единицу площади щеток в сочетании с их удельным сопротивлением ограничивает мощность двигателя. Замыкание и размыкание электрического контакта также вызывает электрический шум, а искры дополнительно вызывают радиопомехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию (на более крупных двигателях) или замене (на небольших двигателях).Сборка коммутатора на большой машине — дорогостоящий элемент, требующий точной сборки многих деталей. В небольших двигателях коллектор обычно постоянно встроен в ротор, поэтому его замена обычно требует замены всего ротора.

Большие щетки желательны для большей площади контакта щеток, чтобы максимизировать мощность двигателя, но маленькие щетки желательны для малой массы, чтобы максимизировать скорость, с которой двигатель может работать без чрезмерного подпрыгивания щеток и искрения (сравнимо с проблемой «клапана» поплавок »в двигателях внутреннего сгорания).(Маленькие щетки также желательны для более низкой стоимости.) Более жесткие щеточные пружины также могут использоваться, чтобы заставить щетки заданной массы работать с более высокой скоростью, но за счет больших потерь на трение (более низкая эффективность) и ускоренного износа щеток и коллектора. Следовательно, конструкция щетки двигателя постоянного тока предполагает компромисс между выходной мощностью, скоростью и эффективностью / износом.

Есть пять типов щеточных двигателей постоянного тока:

A. Двигатель постоянного тока с параллельной обмоткой

B. Двигатель постоянного тока с последовательной обмоткой

С.Составной двигатель постоянного тока (две конфигурации):

  • Суммарное соединение
  • Дифференциально компаундированный

D. Двигатель постоянного тока с постоянными магнитами (не показан)

E. Отдельно-возбужденные (сепекс) (не показаны).

Бесщеточные двигатели постоянного тока

Некоторые проблемы щеточного двигателя постоянного тока устранены в бесщеточной конструкции. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением ротора.Бесщеточные двигатели обычно имеют КПД 85-90% или более (более высокий КПД бесщеточного электродвигателя до 96,5% был зарегистрирован исследователями из Университета Токай в Японии в 2009 году), тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80%. .

На полпути между обычными двигателями постоянного тока и шаговыми двигателями лежит область бесщеточных двигателей постоянного тока. Построенные по принципу, очень похожему на шаговые двигатели, они часто используют внешний ротор с постоянным магнитом, три фазы управляющих катушек, один или несколько датчиков эффекта Холла для определения положения ротора и соответствующую приводную электронику.Катушки активируются, одна фаза за другой, управляющей электроникой в ​​соответствии с сигналами либо от датчиков эффекта Холла, либо от обратной ЭДС (электродвижущей силы) неприведенных катушек. По сути, они действуют как трехфазные синхронные двигатели, содержащие собственную электронику частотно-регулируемого привода. В специализированном классе контроллеров бесщеточных двигателей постоянного тока для определения положения и скорости используется обратная связь по ЭДС через основные фазовые соединения вместо датчиков Холла. Эти двигатели широко используются в электромобилях с радиоуправлением.Когда они сконфигурированы с магнитами снаружи, они называются моделистами двигателями с подъёмным механизмом.

Бесщеточные двигатели постоянного тока обычно используются там, где необходимо точное регулирование скорости, например, в дисководах компьютеров или кассетных видеомагнитофонах, в шпинделях приводов компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных изделий, таких как вентиляторы, лазерные устройства. принтеры и копировальные аппараты. У них есть несколько преимуществ перед обычными моторами:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока.Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток бесщеточный двигатель может использоваться в электрически чувствительных устройствах, таких как аудиооборудование или компьютеры.
  • Те же датчики на эффекте Холла, которые обеспечивают коммутацию, также могут обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением).В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Бесщеточные двигатели не имеют шансов искрообразования, в отличие от щеточных двигателей, что делает их более подходящими для сред с летучими химическими веществами и топливом. Кроме того, искрение генерирует озон, который может накапливаться в плохо вентилируемых зданиях, что может нанести вред здоровью людей.
  • Бесщеточные двигатели обычно используются в небольшом оборудовании, таком как компьютеры, и обычно используются для отвода нежелательного тепла.
  • Это также очень тихие двигатели, что является преимуществом при использовании в оборудовании, подверженном вибрации.

Современные бесщеточные двигатели постоянного тока имеют мощность от долей ватта до многих киловатт. В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт. Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника или железа

Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов.Этим фактом пользуется двигатель постоянного тока без сердечника или железа , специализированная форма щеточного или бесщеточного двигателя постоянного тока. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника. Ротор может иметь форму заполненного обмоткой цилиндра или самонесущей конструкции, содержащей только магнитный провод и связующий материал. Ротор может помещаться внутри магнитов статора; магнитомягкий неподвижный цилиндр внутри ротора обеспечивает обратный путь для магнитного потока статора.Во втором устройстве корзина обмотки ротора окружает магниты статора. В этой конструкции ротор помещается внутри магнитомягкого цилиндра, который может служить корпусом для двигателя, а также обеспечивает обратный путь для магнитного потока.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс. Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь.Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Соответствующие приводы с ограниченным ходом не имеют сердечника и катушки, размещенной между полюсами тонких постоянных магнитов с высокой магнитной индукцией. Это быстрые позиционеры головки для жестких дисков («жестких дисков»).

Двигатели постоянного тока с печатным рисунком якоря или блинчика

Довольно уникальная конструкция двигателя — двигатель с якорем-блинчиком / печатным рисунком имеет обмотки в форме диска, проходящего между массивами магнитов с большим магнитным потоком, расположенных по кругу, обращенных к ротору и образующих осевой воздушный зазор.Эта конструкция широко известна как двигатель-блинчик из-за ее чрезвычайно плоского профиля, хотя с момента ее создания у технологии было много торговых марок, таких как ServoDisc.

Якорь с печатным рисунком (первоначально сформированный на печатной плате) в двигателе с печатным якорем изготовлен из перфорированных медных листов, которые ламинированы вместе с использованием современных композитных материалов, чтобы сформировать тонкий жесткий диск. Печатная арматура имеет уникальную конструкцию в мире щеточных двигателей, в которой нет отдельного кольцевого коммутатора.Щетки движутся непосредственно по поверхности якоря, что делает всю конструкцию очень компактной.

Альтернативный метод производства заключается в использовании намотанного медного провода, уложенного плоско с центральным обычным коммутатором, в форме цветка и лепестка. Обмотки обычно стабилизируются путем пропитки систем электролитической эпоксидной заливки. Это эпоксидные смолы с наполнителем, которые имеют умеренную смешанную вязкость и длительное время гелеобразования. Они отличаются низкой усадкой и низким экзотермическим эффектом и, как правило, признаны UL 1446 в качестве заливочного компаунда для использования при температуре до 180 ° C (класс H) (файл UL No.E 210549).

Уникальное преимущество двигателей постоянного тока без железа состоит в том, что они не имеют зубцов (вибрации, вызванной притяжением между железом и магнитами), а паразитные вихревые токи не могут образовываться в роторе, поскольку он полностью без железа. Это может значительно повысить эффективность, но контроллеры с регулируемой скоростью должны использовать более высокую частоту переключения (> 40 кГц) или постоянный ток из-за уменьшения электромагнитной индукции.

Эти двигатели были первоначально изобретены для привода приводов магнитных лентопротяжных устройств в быстро развивающейся компьютерной индустрии.Блинные двигатели по-прежнему широко используются в высокопроизводительных сервоуправляемых системах, роботизированных системах гуманоидов, промышленной автоматизации и медицинских устройствах. Благодаря разнообразию конструкций, доступных в настоящее время, технология используется в приложениях, от высокотемпературных военных до недорогих насосов и базовых сервоприводов.

Универсальные двигатели

Двигатель с последовательной обмоткой называется универсальным двигателем, если он предназначен для работы от источника переменного или постоянного тока. Способность работать от переменного тока обусловлена ​​тем, что ток как в поле, так и в якоре (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) синхронно, и, следовательно, результирующая механическая сила будет действовать в постоянном направлении.

Универсальные двигатели, работающие на обычных частотах электросети, очень редко превышают мощность одного киловатта (около 1,3 лошадиных сил). Универсальные двигатели также составляют основу традиционного тягового двигателя на электрических железных дорогах. В этом приложении для поддержания высокого электрического КПД они работали от очень низкочастотных источников переменного тока, обычно с частотой 25 и 16,7 герц (Гц). Поскольку это универсальные двигатели, локомотивы, использующие эту конструкцию, также обычно могли работать от третьего рельса с питанием от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют некоторые характеристики, более общие для двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект — проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами и часто имеют высокие требования к пусковому крутящему моменту.Непрерывное управление скоростью универсального двигателя, работающего от переменного тока, легко достигается с помощью тиристорной схемы, в то время как (неточное) ступенчатое регулирование скорости может быть выполнено с помощью нескольких отводов на катушке возбуждения. Бытовые блендеры, рекламирующие много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает от полуволнового выпрямленного переменного тока).

Универсальные двигатели обычно работают на высоких скоростях, что делает их полезными для таких приборов, как блендеры, пылесосы и фены, где желательна работа на высоких оборотах.Они также обычно используются в портативных электроинструментах, таких как дрели, дисковые пилы и лобзики, где характеристики двигателя хорошо работают. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, в то время как Dremel и другие аналогичные миниатюрные шлифовальные машины часто превышают 30 000 об / мин.

Двигатель может выйти из строя из-за превышения скорости (работа на оборотах, превышающих расчетные пределы), если агрегат эксплуатируется без значительной нагрузки. На более мощных двигателях следует избегать внезапной потери нагрузки, и возможность такого возникновения включена в схемы защиты и управления двигателя.В некоторых небольших приложениях лопасть вентилятора, прикрепленная к валу, часто действует как искусственная нагрузка для ограничения скорости двигателя до безопасного значения, а также как средство для циркуляции охлаждающего воздушного потока по якорю и обмоткам возбуждения.

Двигатели переменного тока

В 1882 году Никола Тесла открыл вращающееся магнитное поле и впервые применил вращающееся силовое поле для работы машин. Он использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. В 1885 году Галилео Феррарис независимо исследовал эту концепцию.В 1888 году Феррарис опубликовал свое исследование в докладе Королевской академии наук в Турине.

Тесла предположил, что коммутаторы из машины могут быть удалены, и устройство может работать во вращающемся силовом поле. Его учитель профессор Пошель заявил, что это было бы похоже на создание вечного двигателя. Позже Тесла получил патент США № 0,416,194 «Электродвигатель» (декабрь 1889 г.), который напоминает двигатель, изображенный на многих фотографиях Теслы. Этот классический электромагнитный двигатель переменного тока был асинхронным.

Михаил Осипович Доливо-Добровольский позже изобрел трехфазный «клеточный ротор» в 1890 году. Этот тип двигателя сейчас используется в подавляющем большинстве коммерческих приложений.

Компоненты

Типичный двигатель переменного тока состоит из двух частей:

  • Внешний неподвижный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  • Внутренний ротор, прикрепленный к выходному валу, которому крутящий момент создает крутящий момент.

Моментные двигатели

Моментный двигатель (также известный как двигатель с ограниченным крутящим моментом) — это особый вид асинхронного двигателя, который может работать бесконечно долго при остановке, то есть с блокировкой вращения ротора без повреждения. В этом режиме работы двигатель будет прикладывать постоянный крутящий момент к нагрузке (отсюда и название).

Обычно моментный двигатель применяется в двигателях подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимые в действие низким напряжением, характеристики этих двигателей позволяют приложить к ленте относительно постоянное легкое натяжение независимо от того, протягивает ли ведущую ленту мимо головок ленты.Управляемые более высоким напряжением (и, следовательно, обеспечивающие более высокий крутящий момент), моментные двигатели также могут работать в режиме быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты. В мире компьютерных игр моментные двигатели используются в рулевых колесах с обратной связью по усилию.

Другое распространенное применение — управление дроссельной заслонкой двигателя внутреннего сгорания в сочетании с электронным регулятором. В этом случае двигатель работает против возвратной пружины, чтобы перемещать дроссельную заслонку в соответствии с выходной мощностью регулятора.Последний контролирует частоту вращения двигателя, считая электрические импульсы от системы зажигания или от магнитного датчика, и, в зависимости от скорости, вносит небольшие изменения в величину тока, подаваемого на двигатель. Если двигатель начинает замедляться относительно желаемой скорости, ток будет увеличиваться, двигатель будет развивать больший крутящий момент, натягиваясь на возвратную пружину и открывая дроссельную заслонку. Если двигатель работает слишком быстро, регулятор снизит ток, подаваемый на двигатель, в результате чего возвратная пружина отодвинется и закроет дроссельную заслонку.

Контактное кольцо

Контактное кольцо представляет собой компонент двигателя с фазным ротором в качестве индукционной машины (лучше всего демонстрируется конструкцией обычного автомобильного генератора переменного тока), где ротор состоит из набора катушек, которые электрически оканчиваются контактными кольцами. Это металлические кольца, жестко закрепленные на роторе, и в сочетании с щетками (как в коммутаторах) обеспечивают непрерывное некоммутируемое соединение с обмотками ротора.

В случае асинхронного двигателя с фазным ротором к щеткам могут быть подключены внешние импедансы.Статор возбуждается аналогично стандартному двигателю с короткозамкнутым ротором. Изменяя импеданс, подключенный к цепи ротора, можно изменять кривые скорость / ток и скорость / крутящий момент.

(Контактные кольца чаще всего используются в автомобильных генераторах переменного тока, а также в устройствах синхронной угловой передачи данных, среди других приложений.)

Электродвигатель с контактным кольцом используется в основном для пуска нагрузки с высоким моментом инерции или нагрузки, которая требует очень высокого пускового момента во всем диапазоне скоростей.При правильном выборе резисторов, используемых во вторичном резисторе или пускателе с контактным кольцом, двигатель может создавать максимальный крутящий момент при относительно низком токе питания от нулевой до полной скорости. Этот тип двигателя также обеспечивает регулируемую скорость.

Скорость двигателя можно изменить, поскольку кривая крутящего момента двигателя эффективно изменяется за счет величины сопротивления, подключенного к цепи ротора. Увеличение значения сопротивления приведет к снижению скорости максимального крутящего момента. Если сопротивление, подключенное к ротору, увеличивается за пределами точки, где максимальный крутящий момент возникает при нулевой скорости, крутящий момент будет еще больше уменьшен.

При использовании с нагрузкой, кривая крутящего момента которой увеличивается с увеличением скорости, двигатель будет работать на скорости, при которой крутящий момент, развиваемый двигателем, равен крутящему моменту нагрузки. Уменьшение нагрузки приведет к ускорению двигателя, а увеличение нагрузки приведет к замедлению двигателя до тех пор, пока нагрузка и крутящий момент двигателя не станут равными. При таком использовании потери скольжения рассеиваются на вторичных резисторах и могут быть очень значительными. Регулировка скорости и полезная эффективность тоже очень плохие.

Шаговые двигатели

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты, или магнитно-мягкий ротор с явными полюсами управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и вращающимся соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, шаговый двигатель не может вращаться непрерывно; вместо этого он «шагает» — запускается, а затем быстро останавливается — от одного положения к другому, поскольку обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности, ротор может вращаться вперед или назад, и он может произвольно менять направление, останавливаться, ускоряться или замедляться в любое время.

Простые драйверы шаговых двигателей полностью включают или полностью обесточивают обмотки возбуждения, приводя ротор к «зубчатой ​​передаче» в ограниченное количество положений; более сложные драйверы могут пропорционально управлять мощностью обмоток возбуждения, позволяя роторам располагаться между точками зубчатых колес и, таким образом, вращаться чрезвычайно плавно.Такой режим работы часто называют микрошагом. Шаговые двигатели с компьютерным управлением — одна из самых универсальных форм систем позиционирования, особенно когда они являются частью цифровой системы с сервоуправлением.

Шаговые двигатели можно легко поворачивать на определенный угол дискретными шагами, и, следовательно, шаговые двигатели используются для позиционирования головки чтения / записи в дисководах компьютерных гибких дисков. Они использовались для той же цели в компьютерных дисковых накопителях до гигабайтной эпохи, где точность и скорость, которые они предлагали, были достаточными для правильного позиционирования головки чтения / записи жесткого диска.По мере увеличения плотности накопителей ограничения точности и скорости шаговых двигателей сделали их устаревшими для жестких дисков — ограничение точности сделало их непригодными для использования, а ограничение скорости сделало их неконкурентоспособными — таким образом, в новых жестких дисках используются системы привода головки на основе звуковой катушки. (Термин «звуковая катушка» в этой связи является историческим; он относится к структуре в типичном (конусном) громкоговорителе. Эта структура некоторое время использовалась для размещения головок. Современные приводы имеют поворотное крепление катушки; катушка качается вперед и назад, что-то вроде лопасти вращающегося вентилятора.Тем не менее, подобно звуковой катушке, современные проводники катушки исполнительного механизма (магнитный провод) движутся перпендикулярно магнитным силовым линиям.)

Шаговые двигатели были и до сих пор часто используются в компьютерных принтерах, оптических сканерах и цифровых копировальных аппаратах для перемещения оптического сканирующего элемента, каретки печатающей головки (матричных и струйных принтеров) и валика. Точно так же многие компьютерные плоттеры (которые с начала 1990-х были заменены широкоформатными струйными и лазерными принтерами) использовали роторные шаговые двигатели для перемещения пера и валика; типичными альтернативами здесь были либо линейные шаговые двигатели, либо серводвигатели со сложной системой управления с обратной связью.

Так называемые кварцевые аналоговые наручные часы содержат самые маленькие обычные шаговые двигатели; они имеют одну катушку, потребляют очень мало энергии и имеют ротор с постоянными магнитами. Такой же двигатель приводит в действие кварцевые часы с батарейным питанием. Некоторые из этих часов, например хронографы, содержат более одного шагового двигателя.

Шаговые двигатели были модернизированы для использования в электромобилях под термином SRM (Switched Reluctance Motor).

Линейные двигатели

Линейный двигатель — это, по сути, электродвигатель, который был «раскручен» так, что вместо создания крутящего момента (вращения) он создает прямолинейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подвеске (Transrapid), где поезд «летит» над землей, и во многих американских горках, где быстрое движение безмоторного вагона контролируется рельсом. В меньшем масштабе, по крайней мере, один перьевой плоттер XY для компьютерной графики формата Letter (8,5 x 11 дюймов) производства Hewlett-Packard (с конца 1970-х до середины 1980-х годов) использовал два линейных шаговых двигателя для перемещения пера по двум ортогональным топоры.

Питание и обмотки

Электродвигатель с двойным питанием

Электродвигатели с двойным питанием имеют две независимые многофазные обмотки, которые активно участвуют в процессе преобразования энергии, причем по крайней мере один из наборов обмоток имеет электронное управление для работы с переменной скоростью. Два — это наиболее активные наборы многофазных обмоток, возможные без дублирования категорий с одиночным или двойным питанием в одном корпусе. В результате электродвигатели с двойным питанием представляют собой машины с эффективным диапазоном скорости с постоянным крутящим моментом, который в два раза превышает синхронную скорость для данной частоты возбуждения.Это в два раза больше диапазона скоростей с постоянным крутящим моментом, чем у электрических машин с однополярным питанием, у которых есть только одна активная обмотка.

Двигатель с двойным питанием позволяет использовать электронный преобразователь меньшего размера, но стоимость обмотки ротора и контактных колец может компенсировать экономию на компонентах силовой электроники. Трудности с контролем скорости в приложениях с ограничением синхронной скорости. [11]

Электродвигатель с однополярным питанием

Электродвигатели с однополярным питанием содержат одну многофазную обмотку, подключенную к источнику питания.Электромашины с однополярным питанием могут быть как индукционными, так и синхронными. Активным комплектом обмоток можно управлять с помощью электроники. Индукционные машины развивают пусковой момент при нулевой скорости и могут работать как автономные машины. Синхронные машины должны иметь вспомогательные средства для запуска, такие как пусковая индукционная обмотка с короткозамкнутым ротором или электронный контроллер. Электрические машины с однополярным питанием имеют эффективный диапазон скоростей с постоянным крутящим моментом до синхронной скорости для заданной частоты возбуждения.

Асинхронные двигатели (т.е.например, ротор с короткозамкнутым ротором или ротор с обмоткой), синхронные двигатели (т. е. двигатели с возбуждением от возбуждения, двигатели постоянного тока с постоянными магнитами или бесщеточные двигатели постоянного тока, реактивные двигатели и т. д.), которые обсуждаются на этой странице, являются примерами двигателей с однополярным питанием. Безусловно, двигатели с однополярным питанием являются наиболее распространенным типом двигателей.

Наномотор с нанотрубками

Исследователи из Калифорнийского университета в Беркли недавно разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (с размерами порядка 100 нм) к внешней оболочке подвешенной многослойной углеродной нанотрубки (например, вложенных углеродных цилиндров), они могут электростатически вращать внешнюю оболочку относительно внутреннего ядра.Эти подшипники очень прочные; устройства колебались тысячи раз без признаков износа. Эти наноэлектромеханические системы (НЭМС) являются следующим шагом в миниатюризации и могут найти свое применение в коммерческих приложениях в будущем.

Эффективность

Для расчета КПД двигателя механическая выходная мощность делится на входную электрическую:

, г.

где — эффективность преобразования энергии, — входная электрическая мощность и — механическая выходная мощность.

В простейшем случае и, где — входное напряжение, — входной ток, — выходной крутящий момент и — выходная угловая скорость. Можно аналитически вывести точку максимальной эффективности. Обычно он составляет менее 1/2 крутящего момента при остановке.

Последствия

Поскольку двигатель постоянного тока работает наиболее эффективно при меньшем, чем 1/2 его крутящего момента при остановке, двигатель «завышенного размера» работает с наивысшим КПД. IE: использование более мощного двигателя, чем необходимо, позволяет двигателю работать максимально близко к холостым или пиковым условиям.

Крутящий момент типов двигателей

При оптимальном проектировании для заданного активного тока (т. Е. Тока крутящего момента), напряжения, числа пар полюсов, частоты возбуждения (т. Е. Синхронной скорости) и плотности магнитного потока сердечника, все категории электродвигателей или генераторов будут демонстрировать практически одинаковый максимум. постоянный крутящий момент на валу (т. е. рабочий крутящий момент) в пределах заданного физического размера электромагнитного сердечника. Для некоторых приложений требуются всплески крутящего момента, превышающие максимальный рабочий крутящий момент, например, короткие всплески крутящего момента для ускорения электромобиля с места.Всегда ограниченная насыщением магнитного сердечника или безопасным повышением рабочей температуры и напряжения, способность к скачкам крутящего момента сверх максимального рабочего крутящего момента значительно различается между категориями электродвигателей или генераторов.

Примечание. Способность к скачкам крутящего момента не следует путать со способностью ослабления поля, присущей полностью электромагнитным электрическим машинам (за исключением электрических машин с постоянным магнитом (PM)). Ослабление поля, которое не всегда доступно для электрических машин с постоянным магнитом, позволяет электрической машине работать за пределами расчетной частоты возбуждения без электрического повреждения.

Электрические машины без топологии трансформаторной схемы, например, с полевой обмоткой (т. Е. С электромагнитом) или с постоянным магнитом (PM). Синхронные электрические машины не могут реализовать всплески крутящего момента выше максимального расчетного крутящего момента без насыщения магнитопровода и увеличения тока за ненадобностью. Кроме того, узел постоянных магнитов синхронных электрических машин с постоянным магнитом может быть непоправимо поврежден, если будут предприняты попытки увеличения крутящего момента, превышающего максимально допустимый рабочий крутящий момент.

Электрические машины с топологией трансформаторной схемы, такие как индукционные (т. Е. Асинхронные) электрические машины, индукционные электрические машины с двойной подачей питания и индукционные или синхронные электрические машины с двойной подачей ротора (WRDF), демонстрируют очень высокие всплески крутящего момента. потому что активный ток (т. е. магнитодвижущая сила или произведение тока и витков обмотки), индуцированный с обеих сторон трансформатора, противостоят друг другу, и в результате активный ток не влияет на плотность потока магнитного сердечника, подключенного к трансформатору. , что в противном случае привело бы к насыщению сердечника.

Электрические машины, основанные на принципах индукции или асинхронности, закорачивают один порт цепи трансформатора, и в результате реактивное сопротивление цепи трансформатора становится доминирующим по мере увеличения скольжения, что ограничивает величину активного (т. Е. Реального) тока. . Тем не менее, всплески крутящего момента, которые в два-три раза превышают максимальный расчетный крутящий момент, возможны.

Синхронная электрическая машина WRDF — единственная электрическая машина с действительно двухпортовой топологией трансформаторной схемы (т.е.е., оба порта независимо возбуждаются без короткозамкнутого порта). Топология схемы с двумя портами трансформатора, как известно, нестабильна и требует многофазного узла контактного кольца-щетки для передачи ограниченной мощности на обмотку ротора. Если бы были доступны прецизионные средства для мгновенного управления углом крутящего момента и проскальзыванием для синхронной работы во время движения или генерации, одновременно обеспечивая бесщеточную энергию для набора обмоток ротора (см. Бесщеточная электрическая машина с двойным питанием из обмотки ротора), активный ток синхронного WRDF электрическая машина не будет зависеть от реактивного сопротивления цепи трансформатора, и всплески крутящего момента, значительно превышающие максимальный рабочий крутящий момент, и намного превосходящие практические возможности любого другого типа электрической машины.Были рассчитаны всплески крутящего момента, превышающие рабочий крутящий момент в восемь раз.

Материалы

Надвигается нехватка многих редких сырьевых материалов, используемых при производстве гибридных и электрических автомобилей (Nishiyama 2007) (Cox 2008). Например, диспрозий из редкоземельных элементов требуется для производства многих современных электродвигателей, используемых в гибридных автомобилях (Cox 2008). Однако более 95% редкоземельных элементов в мире добывается в Китае (Haxel et al. 2005), и ожидается, что к 2012 году внутреннее потребление Китая покроет все поставки Китая (Cox 2008).

В то время как двигатели с постоянными магнитами, предпочитаемые гибридами, например, производимыми Toyota, часто используют в своих магнитах редкоземельные материалы, тяговые двигатели переменного тока, используемые в серийных электромобилях, таких как GM EV1, Toyota RAV4 EV и Tesla Roadster, не используют постоянные магниты или связанные с ними редкоземельные материалы. Двигатели переменного тока обычно используют обычную медную проволоку для катушек статора и медные или алюминиевые стержни или стержни для их ротора. В двигателях переменного тока редко используются редкоземельные материалы.

Стандарты двигателей

Ниже приведены основные стандарты проектирования и производства электродвигателей:

  • Международная электротехническая комиссия: IEC 60034 Вращающиеся электрические машины
  • Национальная ассоциация производителей электрооборудования (США): NEMA MG 1 Motors and Generators
  • Underwriters Laboratories (США): UL 1004 — Стандарт для электродвигателей

Использует

Электродвигатели используются во многих, если не в большинстве современных машин.Очевидно, что его можно использовать во вращающихся машинах, таких как вентиляторы, турбины, дрели, колеса электромобилей, локомотивы и конвейерные ленты. Кроме того, во многих вибрирующих или колеблющихся машинах электродвигатель вращает неправильную фигуру с большей площадью на одной стороне оси, чем на другой, из-за чего кажется, что она движется вверх и вниз.

Электродвигатели также популярны в робототехнике. Они используются для вращения колес автомобильных роботов, а серводвигатели используются для вращения рук и ног роботов-гуманоидов.В летающих роботах, наряду с вертолетами, двигатель заставляет пропеллер или широкие плоские лопасти вращаться и создавать подъемную силу, обеспечивая вертикальное движение.

Электродвигатели заменяют гидроцилиндры в самолетах и ​​военной технике. [12] [13]

На промышленных предприятиях электродвигатели используются для поворота пил и лезвий в процессах резки и нарезки, а также для вращения шестерен и миксеров (последние очень распространены в пищевой промышленности).Линейные двигатели часто используются для горизонтального выталкивания продуктов в контейнеры.

Многие кухонные приборы также используют электродвигатели для выполнения различных работ. Кухонные комбайны и кофемолки вращают лезвия, чтобы измельчать и измельчать продукты. Блендеры используют электродвигатели для смешивания жидкостей, а микроволновые печи используют электродвигатели, чтобы включить поднос с едой. В тостерах также используются электродвигатели, которые вращают конвейер для перемещения пищи по нагревательным элементам.

Список литературы

  1. ↑ «Что такое исполнительный механизм?», WrightGEEK .Conjecture Corp., 2010. Дата обращения 13 марта 2010.
  2. ↑ Schoenherr, Стивен Э. (2001), «История громкоговорителей». История записывающих технологий . Проверено 13 марта 2010.
  3. ↑ музей искры
  4. ↑ Электричество и магнетизм, перевод с французского Амеде Гиймен. Ред. И ред. Сильвануса П. Томпсона. Лондон, Макмиллан, 1891 г.
  5. ↑ Nature 53. (напечатано в 1896 г.) стр .: 516
  6. ↑ http://www.mpoweruk.com/timeline.htm
  7. ↑ http: // www.fh-zwickau.de/mbk/kfz_ee/praesentationen/Elma-Gndl-Generator%20-%20Druckversion.pdf
  8. ↑ http://www.uni-regensburg.de/Fakultaeten/phil_Fak_I/Philosophie/Wissenschaftsgeschichte/Termine/E-Maschinen-Lexikon/Chronologie.htm
  9. ↑ http://www.mpoweruk.com/history.htm
  10. ↑ http://www.circuitcellar.com/ Motor Comparison, Circuit Cellar Magazine, июль 2008 г., выпуск 216, Bachiochi, стр.78
  11. ↑ Cyril W. Lander, Power Electronics 3rd Edition , Mc Graw Hill International UK Limited, Лондон 1993 ISBN 0-07-707714-8 Глава 9-8 Управление индукционным электродвигателем с контактным кольцом
  12. ↑ Бриер Д.and Traverse, P. (1993) «Электрические средства управления полетом Airbus A320 / A330 / A340: семейство отказоустойчивых систем» Proc. FTCS, стр. 616-623.
  13. ↑ Север, Давид. (2000) «Поиск точек соприкосновения в системах защиты конвертов». Авиационная неделя и космические технологии , 28 августа, стр. 66–68.

Внешние ссылки

Различные типы двигателей и их применение

При покупке двигателя часто спрашивают, какая технология лучше, переменного или постоянного тока, но дело в том, что это зависит от области применения и стоимости.

Двигатели переменного тока

Двигатели переменного тока

обладают большой гибкостью по многим функциям, включая управление скоростью (VSD — приводы с регулируемой скоростью), и имеют гораздо большую установленную базу по сравнению с двигателями постоянного тока, некоторые из ключевых преимуществ:

  • Низкое энергопотребление при запуске
  • Контролируемое ускорение
  • Регулируемая рабочая скорость
  • Управляемый пусковой ток
  • Регулируемый предел крутящего момента
  • Снижение нарушений в ЛЭП

Текущая тенденция для VSD заключается в добавлении дополнительных функций и функций программируемого логического управления (ПЛК), которые добавляют преимущества, но требуют большего технического опыта во время обслуживания.

Щелкните здесь, чтобы увидеть пример двигателя переменного тока от RS

Типы двигателей переменного тока включают:

Синхронный

В этом типе двигателя вращение ротора синхронизировано с частотой питающего тока, а скорость остается постоянной при переменных нагрузках, поэтому он идеально подходит для привода оборудования с постоянной скоростью и используется в высокоточных устройствах позиционирования, таких как роботы. , КИПиА

Щелкните здесь, чтобы увидеть пример синхронного двигателя из RS

Индукция (асинхронная)

Этот тип двигателя использует электромагнитную индукцию из магнитного поля обмотки статора для создания электрического тока в роторе и, следовательно, крутящего момента.Это наиболее распространенный тип двигателей переменного тока, который важен для промышленности из-за их нагрузочной способности, при этом однофазные асинхронные двигатели используются в основном для небольших нагрузок, например, в бытовой технике, тогда как трехфазные асинхронные двигатели чаще используются в промышленности. приложения, включая компрессоры, насосы, конвейерные системы и подъемные механизмы.

Нажмите здесь, чтобы увидеть пример асинхронного двигателя RS

Двигатели постоянного тока

Двигатели постоянного тока

были первым широко используемым типом двигателей, и начальные затраты на системы (двигатели и привод) обычно ниже, чем на системы переменного тока для маломощных агрегатов.Однако при более высокой мощности общие затраты на техническое обслуживание увеличиваются, и это необходимо учитывать. Скорость двигателей постоянного тока можно регулировать путем изменения напряжения питания, они доступны в широком диапазоне напряжений, самые популярные типы — 12 и 24 В. Преимущества двигателя постоянного тока:

  • Простая установка
  • Регулировка скорости в широком диапазоне
  • Быстрый запуск, остановка, реверсирование и ускорение
  • Высокий пусковой крутящий момент
  • Линейная кривая скорость-крутящий момент

Двигатели постоянного тока широко используются в небольших инструментах и ​​бытовой технике, вплоть до электромобилей, подъемников и подъемников

Щелкните здесь, чтобы увидеть пример двигателей постоянного тока от RS

Два общих типа:

Матовый

Это более традиционный тип двигателя, который обычно используется в чувствительных к стоимости приложениях, где система управления относительно проста, например, в потребительских приложениях и более простом промышленном оборудовании, эти типы двигателей можно разбить на:

  • Series Wound — Здесь обмотка возбуждения соединена последовательно с обмоткой ротора, а регулирование скорости осуществляется путем изменения напряжения питания, однако этот тип обеспечивает плохое управление скоростью, и по мере увеличения крутящего момента на двигателе скорость падает.Применяется в автомобилях, подъемниках, подъемниках и кранах, поскольку он имеет высокий пусковой крутящий момент.
  • Шунтирующая обмотка — Этот тип имеет один источник напряжения, а обмотка возбуждения подключена параллельно обмотке ротора и может обеспечивать повышенный крутящий момент без снижения скорости из-за увеличения тока двигателя. Он имеет средний уровень пускового момента при постоянной скорости, поэтому подходит для применения в токарных станках, пылесосах, конвейерах и шлифовальных машинах.
  • Составная обмотка — это совокупность последовательностей и шунтов, где полярность шунтирующей обмотки такова, что она добавляется к последовательным полям.Этот тип имеет высокий пусковой крутящий момент и может плавно работать при незначительном изменении нагрузки, он используется для привода компрессоров, центробежных насосов с регулируемым напором, роторных прессов, дисковых пил, ножниц, элеваторов и конвейеров непрерывного действия
  • Постоянный магнит — Как следует из названия, вместо электромагнита используется постоянный магнит, который используется в приложениях, где требуется точное управление и низкий крутящий момент, например, в робототехнике, сервосистемах.

Бесщеточный

Бесщеточные двигатели устраняют некоторые проблемы, связанные с более распространенными щеточными двигателями (короткий срок службы для интенсивных применений), и имеют более простую механическую конструкцию (не имеют щеток).Контроллер мотора использует датчики Холла для определения положения ротора, с помощью этого контроллер может точно управлять мотором посредством тока в катушках ротора) для регулирования скорости. Преимущества этой технологии — долгий срок службы, небольшие затраты на обслуживание и высокая эффективность (85-90%), а недостатками являются более высокие начальные затраты и более сложные контроллеры. Эти типы двигателей обычно используются для регулирования скорости и положения в приложениях, где требуется надежность и устойчивость, таких как вентиляторы, насосы и компрессоры.

Примером бесщеточной конструкции являются шаговые двигатели, которые в основном используются для управления положением с разомкнутым контуром, от принтеров до промышленных приложений, таких как высокоскоростное оборудование для захвата и размещения.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован.