+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

что это такое, описание и характеристики

Профессиональные электрики хорошо разбираются в понятиях фаза и ноль. Разобраться в терминологии и уметь определять параметры электрических сетей будет полезно простым обывателям и новичкам профессий, так или иначе связанных с электромонтажными работами. Подобные знания позволят безопасно подключить бытовые приборы, оборудование, розетки или осветительную арматуру.

Что такое фаза и ноль

Ток поступает в помещение от генераторов, установленных на подстанциях. Из агрегата выходят три фазы и один ноль. Движение электричества закольцовано. По фазовому проводу ток поступает к потребителям, а выходит обратно с помощью нулевого и возвращается в трансформатор. Если движение остановлено, то электроэнергия отсутствует.

Источник: avatars.mds.yandex.net

Приборы с помощью розетки включаются в это движение. Возникает вопрос, почему нулевой провод, по которому тоже проходит электричество, не опасен.

Все дело в потенциале. Ноль имеет нулевой потенциал. Чтобы разобраться в этом понятии, можно представить два резервуара, один из которых установлен на земле, а второй – зафиксирован на высоте. Если пробить дно второй емкости, то жидкость из нее польется под напором. Потенциал и есть сила течения воды в данном случае. При повреждении дна резервуара, стоящего на земле, жидкость не польется, то есть потенциал будет нулевым. Движение потока из верхней емкости в нижнюю объясняется разницей потенциалов. Применимо к электротехнике, отличие между потенциалами ноля и фазы равно 220 Вольт (для России).

Тело человека обладает нулевым потенциалом. Нулевой провод заземлен, его потенциал сбрасывается в землю. При отсутствии разницы в потенциалах движение электрического тока отсутствует. Таким образом, человек не получает удара. Опоры электропередач и подстанции конструируют таким образом, чтобы потенциал с ноля сбрасывался в землю.

Источник: avatars.mds.yandex.net

Фаза предназначена для движения электрического тока. Когда электроприбор подключается с помощью розетки, цепь замыкается. В случае, когда нулевой провод сбрасывает этот потенциал на ближайшей опоре, а человек касается оголенного ноля этой точки, потенциал будет сбрасываться через проводник по пути наименьшего сопротивления, то есть через тело.

Источник: avatars.mds.yandex.net

По этой причине электрооборудование в обязательном порядке заземляется. В этом случае при повреждении проводки и протекания потенциала через корпус устройства, потенциал будет сбрасываться в землю, и не пройдет через человека при контакте. Фаза всегда обладает потенциалом, а нулевой провод только в том случае, когда есть соединение с фазовым кабелем через нагрузку, то есть подключенный потребитель, и до ближайшего места сброса этого потенциала в землю.

Варианты определения проводников «фаза»/«ноль»

Важно соблюдать технику безопасности для обозначения параметров электропроводки. Для этого необходимо использовать специальные приборы. Предварительно следует остановить движение тока, чтобы цепь не была замкнута нагрузкой. Ремонтируемый участок электропроводки отключается от общей цепи. Существует несколько простых способов отличить фазу и ноль в домашних условиях.

Как правило, провода обладают цветной маркировкой. Корректность выбора цвета определяется качеством работ и опытом специалиста. Поэтому доверять подобной индикации следует не всегда, лучше проверить самостоятельно фазу и ноль, либо поставить задачу опытному электрику.

Проверка с помощью электрической лампы

Способ достаточно прост для применения. Понадобиться стандартный патрон и лампочка. Два провода необходимо соединить со штатными местами подключения патрона. Один из проводников следует соединить с заземлением в розетке, а второй – подключить к любому силовому разъему. Если при подключении к разъему лампочка загорается, то найдена фаза.

Источник: rusenergetics.
ru
Индикаторная отвертка

С помощью бытового указателя напряжения можно быстро обнаружить фазный провод  в электросети, напряжение в которой составляет 220-230 Вольт. Индикаторные отвертки представлены в богатом ассортименте и доступны в любом магазине с электротоварами.

Источник: rusenergetics.ru

При работе с любыми электроприборами необходимо соблюдать правила безопасности. Так как инструкция к индикаторной отвертке обычно отсутствует, следует руководствоваться полезными советами специалистов:

  1. Применять индикатор согласно его целевому назначению, то есть для электромонтажных работ.
  2. Перед тем как приступить к изысканиям, следует убедиться в целостности и надежности изоляционного материала, которым оснащены рукоять и жало инструмента.
  3. Убедиться в достоверности результатов измерений можно, если заранее испытать отвертку на электрических установках под напряжением.

Если пользователь сомневается в корректной работе индикаторной отвертки,  не следует доверять показаниям прибора. В этом случае целесообразно использовать профессиональный инструмент.

Мультиметр

Бытовые мультиметры представляют собой простые в эксплуатации приборы. С их помощью можно определить, находится ли сеть под напряжением, и каково его значение. Это наиболее безопасный способ определить фазу и ноль. Щупы инструмента оснащены диэлектрической рукояткой. Принцип работы устройства заключается в подключении одного щупа к земле розетке, а второго – к одному из двух контактов розетки.

Источник: rusenergetics.ru

Фаза в электричестве, определение понятия, характеристика

Понятие фазного провода связано с определением напряжения. Данная величина обозначает, насколько напряжено электрическое поле в рамках данной точки или цепи. По-другому, это потенциал. Под действием такой силы электроны движутся по проводникам. Один из проводов, которые подключаются к потребителям, называется фазой. Именно этот проводник находится под напряжением.

Фазу в понимании электротехники можно сравнить с плюсом в автотранспорте, то есть фазный провод представляет собой основное питание для электрической цепи.

Источник: rusenergetics.ru

Что такое ноль в электричестве, определение

Нулевой провод отличается от фазы тем, что не находится под напряжением. Ноль не перегружается, когда происходит отбор мощности, но по проводнику также транспортируется электричество. Направление этого движения будет обратным фазному. Если в сети отсутствует напряжение, то ноль безопасен для человека и не способен поразить его электрическим током.

Зачем нужен ноль в электричестве

Нулевой провод необходим для замыкания электросети. С помощью ноля обеспечивается необходимая мощность для включения электрических приборов. При его отсутствии электричества будет отключено. По своей сути нулевой проводник представляет собой землю.

Основным назначением ноля является обеспечение электроснабжения объектов разного назначения. Нулевой провод замыкает электрическую цепь, таким образом, создается электрический ток, и работают электроприборы. Электричество появляется из-за разности потенциалов, которая возникает между двумя проводами. Ноль характеризуется нулевым потенциалом. Поэтому напряжение в цепи определяется, как 220 – 230 Вольт.

Что представляет собой петля «ноль/земля»

Нулевой провод выходит из трансформатора, который соединяется с помощью нулевой шины с заземлением, выполненным в виде контура. Вначале цепи именно земля представляет собой нулевой потенциал, что служит причиной путаницы при определении земли и ноля. Конструкция воздушной линии электропередачи, выходящей из комплектной трансформаторной подстанции, включает три фазных проводника и один ноль. Нулевой провод  на выходе подсоединяется к нулевому контакту трансформатора. Повторное заземление выполняется на каждой второй опоре, по которым проложена воздушная линия электропередачи. С его помощью производится дополнительное соединение ноля с землей.

Такое решение является гарантией полноценной связи цепи «фаза – ноль», что обеспечивает потребителя электричеством с напряжением не менее 220 Вольт.

Источник: rusenergetics.ru

Элементарные знания электротехники необходимы не только для профессиональной деятельности, но и полезны для обывателя. Электричество питает разнообразные потребительские товары. Обеспечить бесперебойное электроснабжение можно, если правильно определять фазу и ноль при подключении инженерных коммуникаций. Подобная информация будет полезна также студентам политехнических вузов.

Если в процессе обучения возникают проблемы, всегда можно обратиться к специалистам сервиса Феникс.Хелп.

Фаза это плюс — Всё о электрике

Что такое фаза в электричестве

При проведении электромонтажных работ дома или в квартире самостоятельно жильцы часто интересуются, что такое фаза, зачем она нужна, и какими способами можно ее обнаружить. Ниже рассмотрены понятия фаза и ноль в электрике.

Принцип работы сети переменного тока

Чтобы понять, что такое фаза в электричестве, нужно представлять особенности переменного тока. От постоянного он отличается периодическими изменениями, как по значению, так и по направлению. Его характеристики – напряжение в данный момент времени и частота (отношение числа циклов к единице времени). Переменный ток находится в розетках и прямых подключениях к электрическому щиту.

Однофазный ток

Он направляется от распределительного щитка по двум проводам (фазному и нулевому), между которыми находится 220-вольтное напряжение. В электричестве фаза – это провод, по которому электроток направляется к розетке или прибору. Что такое в электричестве ноль? Это, в свою очередь, кабель, идущий от розетки, по которому ток направляется обратно. Иногда вопросом, что такое ноль, интересуются в контексте заземления. Физически это разные провода, хотя их потенциалы совпадают. Однофазный ток можно подвести к потребителю как двумя проводами (без заземления), так и тремя (с ним). Заземление производится для отвода утечки, защиты жильцов от удара током и приборов – от перегрузок.

Двухфазный ток

Это сочетание двух однофазных, смещенных относительно друг друга на 90 °. Конструктивно это выглядит как сочетание двух проводов-фаз (с указанным сдвигом) и двух нулевых.

Трехфазный ток

Здесь конструкция состоит уже из трех фаз тока, каждая из последующих смещена относительно предыдущей на 120 °. По жилым домам такой ток распределяют четырьмя проводами (три фазы и ноль) либо пятью (указанные плюс заземление). После прохождения через распределительный щит розетки в квартире им питают через одну фазу и ноль.

Структура электросети, основные элементы

Электросеть является связующим звеном между генераторами и реципиентами электрической энергии. Источниками энергии во внутренних сетях производственных и жилых помещений являются ВРУ (вводно-распределительные устройства). К ним посредством коммутаторов и предохранителей подключаются кабели, осуществляющие запитку электрического оборудования либо группы приемников через шинопроводы и ящики коммутации.

Устройство бытовой электропроводки

Стандартная схема электрической проводки содержит следующие элементы:

  • многотарифный электросчетчик;
  • выключатель-автомат с номинальным значением тока 25 А;
  • механизм отключения, предохраняющий от короткого замыкания и перегрузок сети;
  • дифференциальный автоматический выключатель с порогом срабатывания 30 мА (ток утечки), он защищает розетки;
  • шкаф для монтажа с шинами (ноль и заземление) и дощечками для установки выключателей;
  • несколько автоматов для освещения с номинальным значением тока 10 А;
  • кабели с коробками распределения, направляющиеся к розеткам и приборам, освещающим помещения.

Часто владельцы квартир интересуются, фаза это плюс или минус, и в чем разница между нолем и землей. Поскольку электрическая фаза обладает переменным потенциалом, то показатель оного в проводе фазы становится то положительным, то отрицательным. Посему утверждать, что фаза это минус (либо плюс), будет некорректно – эти понятия лежат в разных плоскостях.

Теперь о том, чем нуль отличается от земли. Отличие в том, что через нулевой провод проходит ток и размыкается автоматами (к примеру, вводным). Для заземления в многоквартирном доме нужно подсоединиться к расположенной в стояке жиле, предназначенной специально для этого. Любое другое место, в том числе и щитковый корпус, применять для заземления строго запрещено – это грозит серьезными проблемами для здоровья жильцов.

Что происходит в нуле и фазе при обрыве провода

Если электропровод оборвался, соответствующая розетка или подсоединенный к ней прибор перестает функционировать. При этом не имеет значение, фазный или нулевой провод пострадал. Если разорвался кабель между щитами многоквартирного дома и одного из его подъездов, электричества лишатся все квартиры, подсоединенные к подъездному щиту. Если в трехфазном сочленении оборвался один из фазных проводов, ток, который был в нем до этого, возникает в нулевом проводе, при этом в двух оставшихся фазах ничего не меняется.

Способы определения фазных и нулевых проводов

Зная, что в электротехнике фаза – это провод, по которому к прибору идет электричество, пользователь может заинтересоваться, можно ли найти фазу и нуль без использования приборов. Способ это сделать есть, хотя он не особенно надежен, так как не всегда прокладчики сетей соблюдают стандарты цветовой маркировки разных типов проводов. По стандартам, изоляция нулевого кабеля должна иметь голубой или синий цвет, заземления – быть окрашенной в желтую и зеленую полоску. Для фазного провода расцветка не регламентируется, она может быть разной, но только отличающейся от остальных кабелей.

Найти фазу можно по напряжению, которое измеряется мультиметром. В настройках указывают переменное напряжение более 220 В. Устанавливают контакт двух щупов с гнездами V и COM. Щупом, расположенным в V, касаются проводов – при прикосновении к нулю прибор ничего не покажет, а в фазе обнаружит напряжение в 7-15 В.

Также можно воспользоваться автоматом и индикаторной отверткой. С проводов счищают 1-2 см изоляции. Включают автомат и подносят отвертку рабочей стороной к проводу, держа при этом палец на металлическом отрезке рядом с рукоятью. При поднесении к фазе лампочка загорается.

Важно! При этом способе нельзя прикасаться пальцем к рабочей стороне отвертки. Провода перед процедурой надо развести подальше друг от друга, чтобы не случилось короткого замыкания.

Зануление в квартире

Это соединение зануляющего кабеля с нулевым проводником электросети и корпусом прибора. Предполагается, что процедура обеспечивает ускорение отключения устройства от сети при прикосновении к опасному месту, если напряжение выше некоторого порога. Но она сопряжена с дополнительной опасностью: при разрыве нуля все приборы, подключенные в этот момент к сети квартиры, будут на поверхности иметь фазу (а не ноль), что создает существенную угрозу для здоровья жильцов. Поэтому проведение таких монтажных работ жестко регламентируется.

Знать, что именно называется фазой в электросети, и как ее обнаружить, чрезвычайно важно при проведении электромонтажных работ. В противном случае высок риск нанести ущерб здоровью квартирантов или состоянию электроприборов.

Видео

All-Audio.pro

Статьи, Схемы, Справочники

Фаза это плюс или минус

Но это не совсем так. Действительно, обычная бытовая розетка служит для питания электроприборов переменным током. В ней есть два отверстия, в которых находятся фазный и нулевой контакты. Под понятием “фаза”, имеется ввиду проводник, подключенный к началу одной из фазных обмоток источника питания. Фазные они потому, что электрический ток, проходя по обмоткам, изменяется.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как определить полярность голыми руками?

фаза и ноль это плюс и минус

В то же время, что такое фаза в электричестве, особенно для новичка, известно немногим. Выглядит период следующим образом. Затем период повторяется 50 раз за каждую секунду. Если выразить фазу графически, где ось абсцисс будет шкалой времени, а ось ординат шкалой напряжения, то получится синусоида — волна, состоящая из гребня и впадины.

С нулем все намного проще. Он служит своеобразным коллектором, принимающим электрический ток, прошедший через нагрузку, например, через лампочку. Если ноль отключить, то электрический ток остановится и лампочка, оставаясь под напряжением, все равно светить не будет. Чтобы это объяснить предлагаем совершить маленькое путешествие вместе с переменным током, посмотрев для чего это нужно. Несколько огромных генераторов мощностью в десятки мегаватт. В статоре генератора расположены 3 обмотки.

Ротор вращается, создавая переменное магнитное поле, которое возбуждает в обмотках переменный ток. Как видите, ток уже появляется переменным. Учитывая огромную мощность, ток измеряется в миллионах ампер. Ток всего 0,25 А раскаляет нить лампочки до свечения, а что же произойдет с проводами при нескольких миллионах? Они попросту сгорят за долю секунды. Чтобы снизить ток, нужно поднять напряжение. Это можно сравнить с потоком воды по трубе. Если перекачивать десятки литров в секунду по тонкой трубке, то напор будет настолько сильный, что ее скорей всего порвет.

Но если применить толстую трубу, то все пройдет без сбоев. Из формулы видно, что чем больше U напряжение , тем меньше I ток , именно поэтому напряжение и повышают до — тыс. Повышают напряжение на трансформаторной станции. Для повышения напряжения, ток сначала нужно преобразовать в магнитное поле, а затем снова в ток. Процесс происходит в трансформаторе. Чтобы возбудить ток во вторичной обмотке трансформатора нужно переменное электромагнитное поле, которое индуцируется только переменным током.

В большинстве электробытовых приборов телевизор, компьютер, блок питания происходит аналогичный процесс трансформации, только напряжение наоборот понижается. Если бы в сети был постоянный ток, то его пришлось бы сначала преобразовывать в переменный.

На своем пути ток проходит еще много трансформаторных станций, понижая напряжение на каждом ответвлении. В конечном итоге ток напряжением 10 кВ попадает на последнюю ТП и там, понижаясь до V на каждой фазе, отправляется к конечному потребителю лампочки, телевизоры, утюги и другую технику. Когда включаем в розетку вилку, то где фаза и ноль неважно, но при подключении некоторого оборудования это имеет значение. Для определения электрической фазы существует очень простой прибор — индикатор, похожий на отвертку.

Хотя есть другие, например, ПИН или варианты индикаторов с ЖК- дисплеем, где, кроме индикации, отображается напряжение. Также существуют приборы, определяющие наличие напряжения через изоляцию. Индикацию фазы производят с целью определения, а также чтобы убедиться в отсутствии напряжения перед началом работ на линии. В 1-фазной внутриквартирной электрической сети проводка осуществляется трехжильным проводом, где каждая жила имеет изоляцию определенного цвета.

Цвета электрических проводов обозначают, где земля, фаза, ноль. Хотя в старых домах, где проводку осуществляли проводом АПВ, цветовая маркировка не практиковалась.

Сохранить моё имя, email и адрес сайта в этом браузере для последующих моих комментариев. Что такое фаза и ноль в электричестве. Добавить комментарий Отменить ответ Ваш e-mail не будет опубликован.

Комментарий Имя E-mail Сайт Сохранить моё имя, email и адрес сайта в этом браузере для последующих моих комментариев. Еще по этой теме:. Копирование контента допускается только при наличии активной ссылки на сайт electroadvice.

Каким проводом обозначается плюс и минус. Для чего выполняется цветовая маркировка проводов

В то же время, что такое фаза в электричестве, особенно для новичка, известно немногим. Выглядит период следующим образом. Затем период повторяется 50 раз за каждую секунду. Если выразить фазу графически, где ось абсцисс будет шкалой времени, а ось ординат шкалой напряжения, то получится синусоида — волна, состоящая из гребня и впадины.

Фаза это плюс

Некоторые российские физики-теоретики недовольны нашими публикациями о положительных и отрицательных электрических зарядах, так как они разрушают их теоретические построения, согласно которым электроны заряжают лишь отрицательную пластину конденсатора, а на положительной их нет, но причину этого они не знают. Ещё таинственнее ведёт себя их фотон. Он появляется в первом полупериоде колебаний и исчезает во втором. Куда исчезает? Они тоже не знают. Подобные заблуждения свойственны всем физикам – ортодоксам, поэтому мы не будем указывать их персонально. Если эти представления ошибочны, то они блокируют понимание неисчислимого количества физических процессов и явлений, и исключают корректную интерпретацию экспериментальных данных.

Обозначение плюс минус в электрике. Обозначения фазы и нуля в электрике

Когда вам в школе говорили “ток идет от плюса к минусу” вам немного недоговаривали : он может идти и от “большего плюса” к “меньшему плюсу” , а также от “меньшего минуса” к “большему минусу”. Либо от “плюса” к “нулю” нейтральной точке, “земле” либо от “нуля” к “минусу”. Поэтому она не плюс не минус , а почему она именно фаза это отдельная , интересная но долгая история. А нуль – всегда нуль.

Электрический ток, как понять фазу и ноль если есть плюс и минус?

О том, какого цвета провод фаза, ноль, земля, мы поговорим далее! Какого цвета провод фазы, заземления, ноля. Цветовая маркировка электрических проводов и кабелей Как найти фазу, заземление и ноль? Можно назвать по разному:ноль,фаза,минус,земля. Подскажите пожалуйста, существует ли схема, автоматически подающая фазу и ноль на нужные мне клеммы?

Как отличить плюс от минуса в проводке

Электрическая схема — это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение. Все условные условно-графические обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Эта статья посвящена практической задаче, которая не редкость в практике домашнего электрика — как определить фазу, ноль и землю, если есть трёхжильный кабель, но нет маркировки что где. Но прежде, чем будем выяснять, как найти фазу, вспомним, что это за зверь такой. Постоянный ток берётся из батарейки и имеет два полюса: плюс и минус. Заряд в батарейках аккумуляторах возникает вследствие химической реакции.

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти. В промышленных масштабах у нас производится трехфазный переменный ток , а в быту мы используем, как правило, однофазный. Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов рисунок 1 , причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения рисунок 2. Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки Lт трансформатора подстанции 1 , соединительной линии 2 , электропроводки нашей квартиры 3. Здесь обозначение фазы L, нуля – N.

В какой розетке? Там есть фаза и ноль. Определить можно с помощью индикаторной отвертки: там где фаза – будет светится, где 0 – нет. Если речь идет о розетке где напряжение постоянное например телефонная розетка – определить полярность можно с помощью мультиметра тестера , или светодиодом с резистором резистор должен быть рассчитан под соответствующее напряжение. Могу посоветовать Вам поискать по соседям, у кого есть мультиметр, и попросить что бы Вам объяснили как им пользоваться. В бытовой розетке переменный ток с частотой в 50Гц, другими словами каждую секунду 50 раз изменяется полярность. Розетки с постоянным током были еще на заре открытия электричества, такая розетка была у Томаса Эдисона, в современное время источниками постоянного тока служат батареи, термопары, аккумуляторы.

В статье будет рассмотрена информация о том, черный провод — плюс или минус. Если нет под рукой специальных приборов, то как определить полярность проводов. Рассмотрим на примере магнитолы, как определить полярность.

Особенности обозначение фазы и нуля

Для того чтобы самостоятельно выполнить установку и подключение различных видов электрооборудования: светильников, розеток, автоматов, электроплит, бойлеров и других, нужно понимать обозначение фазы и нуля для коммутации: L (фаза), N (ноль), PE (заземление). Государственными стандартами и нормами электрической безопасности установлены правила обозначения, что упрощает определение функционального назначения жил при монтаже, чтобы подключаемое устройство смогло правильно функционировать.

Обозначение фазы и ноля

Для безопасной организации электроснабжения в жилищном и промышленном секторах соединение электросхем выполняется изолированными кабелями с внутренними жилами, различающимися между собой буквенной и цветовой маркировкой изоляционного покрытия. Маркировка L в электрике помогает монтажникам быстрее и без ошибок выполнить ремонтно-сборочные операции. Электроустановки напряжением до 1000 В относятся к бытовой сфере эксплуатации, правила обозначения электропроводов регламентируются ГОСТ Р 50462/2009. Перед проведением любых работ на электрооборудовании надо знать, как обозначается фаза и ноль на схеме.

Обозначение фазы (L) определяет жилу переменной сети под напряжением. Английское слово «фаза» — переводится как «активный провод». Фазные линии обладают повышенной опасностью для людей и домашнего имущества, поэтому, чтобы обеспечить безопасную эксплуатацию электрооборудования, их закрывают изоляцией разного цвета. Обозначаться провода должны для правильного коммутирования с требуемыми зажимами/клеммами. В случае подключения трехфазных сетей предусмотрена цифровая маркировка L1/ L2/ L3.

N обозначение получено от сокращения английского слова «neutral» — нейтральный. Именно так в мире маркируют ноль-провод. Хотя многие мастера считают, что буквенное обозначение его взято от английского «Null» — нуль.

Цветовое и буквенное обозначение

Перед началом монтажных работ электрик должен уточнить обозначения L и N в электрических схемах и обязательно их придерживаться. Государственными нормами в электротехнике установлены обозначения фаза/ноль по ГОСТу Р 50462/2009, обязывающему производителей помещать L-жилы в изоляцию, окрашенную в коричневый или черный цвет, PE-жилы в желто-зеленый. Для N-провода применяют стандартный цвет — сине-голубой либо синее основание с белой полоской.

Электрическая маркировка наносится независимо от числа жил в пучке. PE- и L-жила могут также отличаться толщиной, первая тоньше, особенно в кабелях, используемых для питания переносного электрооборудования. Специалисты рекомендуют применять одинаковый цвет жил, когда нужно выполнить ответвление одной фазы от 3-фазной. Производители могут применять разнообразную цветную маркировку жил для фазной коммутации по схеме, при этом существует запрет на смежные цвета синему, зеленому и желтому.

Обозначение фазы и нуля на английском было принято стандартами ЕС и присутствует на всех европейских электроприборах. В 2004 году были внесены изменения в цветовую идентификации проводников как часть поправки стандартов ЕС No 2: 2004 к BS 7671: 2001. В однофазных установках используются традиционные цвета красного и черного для фазы, а нейтральные проводники заменяются цветами коричневого и синего (Правило 514-03-01). Защитные проводники остаются зелеными и желтыми.

Важно! Все устройства после 31 марта 2004 года и до 1 апреля 2006 года могут быть установлены в соответствии с Поправкой No 2: 2004 или Поправкой No 1: 2002, другими словами, они могут использовать гармонизированные цвета или старые цвета, но не оба.

Обозначение плюса и минуса

Используемые стандарты будут различаться в зависимости от того, в какой стране выполняется проводка, типа электричества и других факторов. Изучение различных вариантов, которые могут использоваться в данной ситуации, имеет важное значение для безопасности на рабочем месте.

При подключении к источнику постоянного тока обычно используются 2 либо 3 провода. Окраска выглядит следующим образом:

  • Красный — «+» плюс провод;
  • Черный — «-» минус провод;
  • Белый или серый — заземляющий провод.

Обратите внимание! Надежная и разборчивая маркировка должна быть обеспечена на границе раздела, где существуют новые и старые версии цветового кода для фиксированной электропроводки. Предупреждающее уведомление также должно быть заметно на соответствующем распределительном щите, управляющем цепью.

Проверка фазы ноля

Не все производители выполняют требования по маркировке сетей, кроме того, в старых кабелях «советских времен» она вообще отсутствует, что не позволяет предварительно уточнить назначение жил. Для того чтобы в этом случает правильно установить электрооборудование, например, розетку, обозначение уточняют приборным методом и в местах соединения маркируют ручным способом термоусадочной трубкой.

При выполнении работ по проверке фаза/нуль нужно принять меры безопасности, не рекомендуется проводить эти работы персоналу, не обученному правилам безопасной эксплуатации электроустановок, поскольку при несоблюдении их человек может быть смертельно травмирован электротоком, в этом случае лучше пригласить квалифицированного электрика. Мультиметр может проверять напряжение, сопротивление и ток. Это омметр, вольтметр и амперметр в одном приборе.

Подготовка электрического мультиметра к измерениям:

  1. Устанавливают True RMS на значение «AC» или «V» с волнистой линией, выбирают приблизительное напряжение, которое нужно проверить.
  2. Вставляют черный зонд в общий (COM) порт измерителя, а красный — в тестовый порт.
  3. При проведении испытаний убеждаются, что руки не будут соприкасаться с электрической цепью под напряжением или металлическим датчиком. Нужно прикасаться только к пластиковым или изолированным ручкам зонда.

Шаблон тестирования 3-х фазной сети:

  1. Помещают черный зонд в фазу 1, а красный зонд в фазу 2. Считывают и записывают напряжение между фазами 1 и 2.
  2. Затем оставляют черный зонд на фазе 1 и перемещают красный на фазу 3, также фиксируют напряжение между фазами 1 и 3.
  3. Помещают черный зонд на фазу 2, а красный зонд на фазу 3, контролируют напряжение между фазами 2 и 3.
  4. Усредняют все три ветви, сложив общее суммарное напряжение и разделив на три, находят рабочее напряжение.
  5. Убеждаются, что все трехфазные напряжения находятся в пределах 3%.

Дополнительная информация. С помощью мультиметра возможно определить фазу в домашней однофазной сети. Диапазон измерения — выше 220 В. Щуп нужно подключить к гнезду «V», им поочерёдно прикасаются к проводам. Когда на приборе появится 8-15 В — это будет означать, что есть фаза, а ноль на шкале это нулевой провод, поскольку в нем отсутствует нагрузка.

Можно отметить, что в современных сложных схемах электроснабжения невозможно обеспечить надежность и безопасность энергосистемы в целом без применения стандартизации цветового и буквенного обозначения кабелей, которая служит единственным источником для идентификации в распределительных цепях постоянного и переменного тока.

{SOURCE}

Что такое фаза и ноль и что такое трехфазное электричество читайте определение в статье

Каждый из нас изучал тему “Электричество” в школьном курсе физики, но мало кто может объяснить, что такое электричество. В статье мы подробно рассмотрим этот вопрос, объясним понятия, связанные с электричеством, простым языком. Электричество Общие сведения Электричество обусловлено свойством атомов обладать электрическим зарядом. Заряд бывает положительным и отрицательным, и атомы, разноименно заряженные, притягиваются друг к другу, а одноименно заряженные — притягиваются. Атом может терять и приобретать электроны. В тот момент, когда он теряет электрон, то другие электроны стремятся заполнить его место, — это движение заряженных частиц и есть электричество.

Что значит фаза и ноль в электричестве

Мы плавно подошли к вопросу о том, что такое фаза и ноль в электричестве. Когда мы говорим не просто об абстрактном атоме, а об электрических проводах, то его контакты называются по-разному. Что такое фаза в электричестве — это отрицательно заряженный контакт электрического провода. Что такое ноль в электричестве — это положительно заряженный контакт электрического провода.

Три фазы в электричестве — что это такое? Что такое фаза в электричестве — определение. Мы уже разобрались, что такое фаза в электричестве — отрицательно заряженный контакт электрического провода. Всего существует три вида тока:

  • Однофазный.
  • Двухфазный.
  • Трехфазный ток. Поскольку самым распространенным является трехфазный ток, на нем работает большинство электростанций, то для подробного рассмотрения мы возьмем именно его.

Нулевая фаза в электричестве

Прежде, чем мы рассмотрим трехфазное электричество, стоит сказать о том, что такое нулевая фаза в электричестве. Нулевая фаза — это часть электрического провода, в которой нет напряжения, но есть электрический ток. Это — проводник электрического тока.

Что значит “трехфазное электричество”

Трехфазное электричество формируют четыре электрических провода: три фазы и один ноль. Что это с профессиональной точки зрения — трехфазное электричество?

Трехфазное электричество состоит из трех однофазных цепей с равной частотой и амплитудой. Эти однофазные провода смещены друг относительно друга на 1/3 периода. Каждая из таких цепей — фаза, и все они вместе формируют то, что мы называем трехфазным током.

Что такое противофаза в электричестве

Противофаза может возникнуть, когда синусоида колебаний одной фазы полностью копирует синусоиду другой фазы, но с противоположной полярностью. В таком случае возникает противофаза (или обратная фаза).

Подводим итоги

В статье мы рассмотрели множество важных вопросов об электричестве. Например, мы поговорили о том, что такое три фазы в электричестве, узнали, что трехфазное электричество сейчас используется чаще всего. Школьный курс физики дал нам необходимые базовые знания об электричестве, но со временем многое забывается, а кто-то, может, и вовсе пропускал информацию мимо ушей. Бывает такое, что учитель объясняет тему неинтересно, и это — одна из причин, почему многим людям физика дается сложно. Мы же говорим о сложных вещах простым языком. Фаза и ноль в электричестве, противофаза, трехфазный ток — все это только звучит сложно, а по итогу оказывается очень просто, если подобрать правильные слова. Также электрический ток генерируют подобные генераторы на разное кол-во квт http://arenda-samat.ru/category/all/generatori/

Что такое нулевая фаза в электричестве. Что такое фаза ноль и земля и зачем они нужны. Определение фазы, нуля и заземления контрольной лампой

Чтобы понять основы электрики, не обязательно углубляться в технические подробности электрической цепи. Достаточно знать, способы передачи электрического тока, которые бывают однофазными или трехфазными. Трехфазная сеть – это, когда электричество поступает по трем проводам, а еще по одному должно вернуться обратно, к источнику тока, которым может быть трансформатор, электрический счетчик. Однофазная сеть – это, когда электричество поступает по одному проводу, а по другому возвращается обратно к источнику питания. Такая система называется электрическая цепь, а ее основы проходят на уроках физики.

Электроэнергетика генерирует трехфазный электрический ток для передачи через электрическую сеть для снабжения жилых домов, предприятий и промышленности электроэнергией. Большинство жилых домов и малых предприятий используют только однофазную электроэнергию, но заводы часто используют трехфазную мощность для крупных двигателей и других целей. Трансформаторы, которые питают трехфазную мощность, имеют два разных метода проводки, называемых дельтами и звездами. Небольшие различия в напряжении существуют, в зависимости от метода подключения.

Вспомните – электрическая цепь состоит из источника, потребителей, соединительных проводов и других элементов. В любом источнике тока «работают» положительно и отрицательно заряженные частицы. Они накапливаются на разных полюсах источника, один из которых становится положительным, а другой отрицательным. Если полюса источника соединить, возникает электрический ток. Под действием электростатической силы частицы приобретают движение только в одном направлении.

Проверка трехфазного напряжения довольно проста и проста. Переведите выключатель двигателя в положение «Выкл.». Выверните винты, удерживающие крышку на выключателе, и снимите крышку. Если мультиметр не является автоматическим мультиметром, выберите диапазон напряжения выше напряжения, которое вы планируете проверить. Загляните в коробку выключателя двигателя. Вы увидите один набор из трех проводов и один комплект из трех проводов.

Особенности поиска неисправностей

Для каждого теста должно быть одинаково показание напряжения. Переведите рычаг выключателя в положение «Вкл.». На любом испытании напряжение не должно изменяться более чем на несколько вольт. Однофазное напряжение составляет половину напряжения, проверенного между парами линий. Трехфазный ток от преобразователя поворотной фазы может иметь одну фазу с другим напряжением от двух других. Это напряжение также будет меняться в зависимости от условий нагрузки, например, когда двигатель работает.

Для начала рассмотрите пример однофазной сети: квартира, в которой электричество к чайнику, микроволновке, стиральной машине поступает по одному проводу, а назад к источнику тока — по другому проводу. Если такую цепь разомкнуть, то, электричества не будет. Провод, подающий ток, называется фазовым или фазой, а провод, по которому ток возвращается – нулевым или нулем.

Помните, что вы делаете в любое время. Тестирование электрического тока подвергает вас потенциально опасным для жизни напряжениям и токам. Обратите внимание на то, что вы делаете, и не позволяйте другим отвлекать вас. Выключатель двигателя на некоторых двигателях также является выключателем стоп-старта. Имейте в виду, что при перемещении разъединителя двигателя в положение «Вкл.» Двигатель запускается в этом случае.

Существует три типа фазовых откликов, которые могут иметь фильтры: нулевая фаза, линейная фаза и нелинейная фаза. Пример каждого из них показан на рисунке 19 Как показано на рисунке, фильтр нулевой фазы характеризуется импульсной характеристикой, симметричной вокруг нулевой точки. Фактическая форма не имеет значения, только то, что отрицательные пронумерованные образцы являются зеркальным отображением положительных пронумерованных выборок. Когда преобразование Фурье берется из этой симметричной формы волны, фаза будет полностью нулевой, как показано на рисунке.

Если сеть трехфазная, электричество будет поступать по трем проводам, а возвращаться так же по одному. Трехфазные сети чаще бывают в домах загородного типа. Если в такой сети разомкнуть один провод, то, на других фазах ток останется.

То есть, фаза в электрике – это провод, который подает ток от источника питания, а ноль – это провод, который отводит ток обратно, к источнику питания. Если току не обеспечить постоянную цепь – случились аварии на линии, произошел обрыв проводов, то, приборы могут просто перестать работать или сгорят от перенапряжения в электрической сети. В электрике это явление называется «перекос фаз». Если оборвался ноль, напряжение может измениться как в наибольшую, так и в наименьшую сторону.

Недостатком фильтра с нулевой фазой является то, что для этого требуется использование отрицательных индексов, с которыми может быть неудобно работать. Линейный фазовый фильтр — это путь. Импульсный отклик идентичен показанному, за исключением того, что он был сдвинут, чтобы использовать только положительные пронумерованные образцы. Импульсная характеристика по-прежнему симметрична между левым и правым; однако расположение симметрии смещено от нуля. Наклон этой прямой прямо пропорционален величине сдвига.

Зачем нужно зануление

Так как сдвиг в импульсной характеристике ничего не производит, но производит идентичный сдвиг в выходном сигнале, линейный фазовый фильтр эквивалентен фильтру нулевой фазы для большинства целей. На рисунке показан импульсный отклик, который не является симметричным между левым и правым. Соответственно, фаза не является прямой. Другими словами, он имеет нелинейную фазу. Не путайте термины: нелинейная и линейная фаза с понятием линейности системы, обсуждаемым в главе. Хотя оба слова используют линейное, они не связаны.

В наше время, когда практически любое строение оснащено хотя бы простейшей электропроводкой, профессия электрика очень востребована, поэтому все больше абитуриентов настроено на получение данной профессии.

Образование

Минимальным базовым образованием для начала обучения профессии электрик является неполное среднее образование. Это значит, что для начала обучения данной профессии необходимо окончить хотя бы 9 классов средней образовательной школы. Найти специальность «электрик» можно в техникуме, профессиональном техническом училище или колледже практически любого российского города областного значения. Также существуют специальные обучающие центры, предусматривающие подготовку специалистов по данному направлению.

Личные качества

Несмотря на кажущуюся доступность получения данной профессии, стать хорошим электриком не так уж просто. Необходимо обладать техническим складом ума, уметь работать руками и мыслить логически. Так же, ввиду большой травмоопасности занятия, потенциальному электрику следует быть аккуратным и уметь хорошо концентрироваться во время работы.

Группы электробезопасности и разряды

По окончании курса обучения по специальности «Электрик» студент, в зависимости от наполненности курса обучения и результатов сдачи итогового экзамена, получает либо второй либо третий квалификационный разряд. Всего разрядов для электриков шесть, существует также пять так называемых групп допуска (групп электробезопасности). Не следует путать разряд электрика с группой допуска электрика. Разряд показывает квалификацию электрика, то, насколько сложную работу в своей области он способен выполнить. Группа допуска, в свою очередь, показывает уровень опасности, с которым может справиться работник. Чем большие разряд и группу допуска имеет электрик, тем он более востребован и тем выше заработная плата, которую ему может предложить работодатель.

Удостоверение электрика

По результатам итоговых испытаний электрику выдается специальное удостоверение электрика, в котором указывается присвоенная ему группа по электробезопасности а также оценка его квалификации по пятибалльной шкале. Квалификацию электрика необходимо подтверждать каждые пять лет, кроме того, возможно проведение внеочередной проверки на квалификацию, к примеру, с целью повысить разряд и(или) группу по электробезопасности. Следует отметить, что электрик, имеющий 2-5 группу допуска, при проведении работ, соответствующих данному диапазону групп, обязательно должен иметь при себе удостоверение.

Почему кому-то нужно, если фаза линейна или нет? Цифры, и покажите ответ. Это импульсные ответы каждого из трех фильтров. Импульсный отклик представляет собой не более чем положительный ответ шага шага, за которым следует ответ отрицательного шага. Импульсный отклик используется здесь, потому что он показывает, что происходит с восходящим и спадающим фронтами в сигнале. Вот важная часть: фильтры с нулевой и линейной фазами имеют левый и правый края, которые выглядят одинаково, в то время как нелинейные фазовые фильтры имеют левый и правый края, которые выглядят по-разному.

Для начала проверьте, есть ли у вас всё необходимое для того, чтобы повесить люстру . Во-первых, у вас должна быть стремянка или другая устойчивая опора. Кроме того, вам понадобятся некоторые инструменты: пассатижи, кусачки, отвёртка с индикатором напряжения, отвёртка с узким жалом и монтажные зажимы (так называемые «лягушки»). Не забудьте также позаботиться о том, чтобы комната была достаточно хорошо освещена, ведь вы не сможете пользоваться осветительными приборами во время работы. Крайне желательно перед началом работ запастись фонариком.

Многие приложения не могут переносить левый и правый края, выглядящие по-разному. Одним из примеров является отображение осциллографа, где эта разница может быть неверно истолкована как признак измеряемого сигнала. Другой пример — обработка видео. Это связано с тем, что импульсный отклик непосредственно указан в процессе проектирования. Создание ядра фильтра имеет лево-правую симметрию — это все, что требуется. Импульсная характеристика рекурсивного фильтра не симметрична между левым и правым и, следовательно, имеет нелинейную фазу.

Аналогичные электронные схемы имеют такую ​​же проблему с фазовой характеристикой. Представьте себе схему, состоящую из резисторов и конденсаторов, сидящих на вашем столе. Если вход всегда равен нулю, выход также всегда будет равен нулю. Когда импульс подается на вход, конденсаторы быстро заряжаются до некоторого значения, а затем начинают экспоненциально спадать через резисторы. Импульсный отклик представляет собой комбинацию этих различных экспонирующих распада. Импульсный отклик не может быть симметричным, потому что выход был равен нулю перед импульсом, а экспоненциальный спад никогда не достигает значения снова нуля.

Люстры обычно вешаются на заранее подготовленный крюк. Его необходимо тщательно обмотать изолентой или другим не пропускающим ток материалом. Желательно нанести изоленту не менее чем в два слоя – для исключения непокрытой поверхности. Обязательно сверьтесь с инструкцией к вашему осветительному прибору и убедитесь, что его использование не требует обязательного заземления. В противном случае необходимо будет заземлить его.

Конструкторы аналоговых фильтров атакуют эту проблему с помощью фильтра Бесселя, представленного в главе. Фильтр Бесселя предназначен для того, чтобы иметь как можно более линейную фазу; однако он намного ниже производительности цифровых фильтров. Возможность обеспечить точную линейную фазу является явным преимуществом цифровых фильтров.

К счастью, существует простой способ изменения рекурсивных фильтров для получения нулевой фазы. На рисунке 19-8 показан пример того, как это работает. Входной сигнал для фильтрации показан на рисунке. На рисунке показан сигнал после того, как он был отфильтрован однополюсным низкочастотным фильтром. Поскольку это нелинейный фазовый фильтр, левый и правый края не выглядят одинаково; они являются перевернутыми версиями друг друга. Как было описано выше, этот рекурсивный фильтр реализуется, начиная с образца 0 и воздействуя на образец 150, вычисляя каждый образец по пути.

Теперь следует приступить к обесточиванию помещения. Для этого нужно выключить автоматический выключатель на электрическом счётчике, а отсутствие в сети напряжения проверить отвёрткой-индикатором. На потолке должны находиться три окончания провода (два конца – «фаза», а один конец – «нуль»). «Нулевой» кончик впоследствии будет направлен в монтажную коробку, а «фазные» — к выключателю. Все три конца зачищаются (следует оголить не менее 3-4 мм провода) и разводятся в стороны так, чтобы они не соприкасались.

Предположим теперь, что вместо перехода от образца 0 к образцу 150 мы начинаем с образца 150 и перемещаемся к образцу. Другими словами, каждый образец в выходном сигнале рассчитывается из входных и выходных выборок справа от обрабатываемого образца. Это означает, что уравнение рекурсии, 19-1, изменяется на.

На рисунке показан результат этой обратной фильтрации. Фильтрация в обратном направлении не дает никакой пользы сама по себе; отфильтрованный сигнал по-прежнему имеет левый и правый края, которые не похожи друг на друга. Магия происходит, когда комбинация прямой и обратной фильтрации. На рисунке показаны результаты фильтрации сигнала в прямом направлении и затем фильтрация в обратном направлении. Это создает рекурсивный фильтр с нулевой фазой. Фактически, любой рекурсивный фильтр может быть преобразован в нулевую фазу с помощью этой технологии двунаправленной фильтрации.

Теперь нам необходимо определить, какие же из окончаний являются «фазными», а какой – «нулевым». Для этого мы переводим автоматический выключатель во включённое положение и проверяем концы проводов отвёрткой-индикатором. На тех проводах, где будет «фаза», лампочка загорится, на «нуле» же – нет. Желательно пометить провода, чтобы не перепутать их впоследствии. Надо отметить, что современные провода не нужно проверять на фазность: они имеют обязательную маркировку. Провода с «фазой» маркируются чёрно-коричневым, а «нулевые» — синим цветом.

Непосредственно о таинственных фазе и нуле

Единственное наказание за эту улучшенную производительность — это два фактора во времени исполнения и сложности программы. Как вы находите импульсные и частотные характеристики общего фильтра? Величина частотной характеристики одинакова для каждого направления, а фазы противоположны по знаку. Когда два направления объединены, величина становится квадратной, а фаза отменяется до нуля. Во временной области это соответствует свертыванию исходного импульсного отклика с самой перевернутой версией слева направо.

Такая же маркировка может быть и у проводов люстры . В противном случае фазность проводов проверяется следующим образом. Два провода подсоединяются к розетке . Часть ламп должна загореться, помечаем провода, которые в этот момент были подсоединены к сети. Теперь меняем один из проводов на третий. В случае, если загорелась вторая часть ламп, первый провод является «нулевым», а второй и третий (которые менялись местами) – «фазные». Если же

Например, импульсная характеристика однополюсного низкочастотного фильтра является односторонней экспонентой. Импульсная характеристика соответствующего двунаправленного фильтра является односторонней экспонентой, которая распадается вправо, свернутая с односторонней экспонентой, которая распадается налево. Пройдя через математику, это оказывается двухсторонней экспонентой, которая распадается как слева, так и справа, с той же постоянной распада, что и исходный фильтр.

Некоторые приложения имеют только часть сигнала на компьютере в определенное время, например, системы, которые поочередно вводят и выводят данные на постоянной основе. Двунаправленную фильтрацию можно использовать в этих случаях, комбинируя ее с методом перекрытия-добавления, описанным в последней главе. Когда вы переходите к вопросу о том, как долго длится импульсная реакция, не говорите «бесконечно». Если вы это сделаете, вам нужно проложить каждый сегмент сигнала с бесконечным числом нулей. Помните, что импульсная характеристика может быть усечена, когда он затухает ниже уровня округленного шума, т.е. от 15 до 20 постоянных времени.

  • фаза электрическая
  • Начнём с основ.
    Допустим, на электростанции, вращается магнит (для примера — обычный, а в реальности — электромагнит), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (размазаны по статору).


    Вращает этот магнит, скажем, поток воды на ГидроЭлектроСтанции.



    Поскольку в таком случае магнитный поток, проходящий через катушки, меняется, то в катушках создаётся напряжение.
    Каждая из трёх катушек — отдельная цепь, и в каждой из этих трёх цепей возникает одинаковое напряжение, сдвинутое на треть окружности друг относительно друга.
    Получается «трёхфазный генератор» .


    Можно было бы с одной такой катушки два провода просто взять и вести к дому, а там от них чайник запитывать.
    Но можно сделать экономнее: зачем тащить два провода, если можно один конец катушки просто тут же заземлить, а от второго конца вести провод в дом.
    Этот провод назовём «фазой».
    В доме этот провод подсоединить к одному штырьку вилки чайника, а другой штырёк вилки — заземлить.
    Получим то же самое электричество.

    Теперь, раз уж у нас три катушки, сделаем так: (например) левые концы катушек соединим вместе тут же, и заземлим.
    А оставшиеся три провода и потянем к потребителю.
    Получится, мы тянем к потребителю три «фазы».
    Вот мы и получили «трёхфазный ток».
    Точнее, генератор «трёхфазного тока» .
    Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой).


    «Трёхфазный ток» был изобретён Николой Теслой.
    Передача электричества в виде трёхфазного тока, некоторые говорят, экономичнее (я не знаю, чем), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
    Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся хрень на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на окружности, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
    Такой агрегат называется «трёхфазным двигателем» .
    Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
    Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а ток — около трёхсот Амперов).

    Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак.
    Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение.
    При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов).
    Поэтому экономически целесообразно повышать мощность передаваемого тока наращивая напряжение.
    Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не что-то отдельное, поэтому его не волнует, каким образом эта мощность к нему в дом попадёт.

    Кстати, интересный момент: над силой тока в линии электропередачи мы вообще говоря не властны: сила тока — это мера того, как сильно ток течёт по проводам.
    Можно сравнить это с силой тока холодной воды по трубам: если все краны включат в ванных, то сила тока воды будет очень большой, а если, наоборот, все краны свои закроют, то вода по трубам вообще не будет течь, и мы никак не можем управлять этой силой тока.
    А вот напряжению тока вообще без разницы, потребляет ли кто-нибудь ток, или нет — оно полностью в нашей власти, и только мы можем им управлять.

    Поэтому в ЛЭП за основу берётся именно напряжение тока, и именно с ним работают: перед передачей тока по проводам, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома — наоборот, излишнее напряжение перегоняют обратно в силу тока, поскольку весь путь успешно пройден током с минимальными потерями.

    Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под проводом, или ещё чего-нибудь).
    Кстати, забавное видео про короткое замыкание на линии ЛЭП:



    Теперь рассмотрим подробнее «трёхфазный ток».
    Это три провода, по которым течёт одинаковый ток, но сдвинутый на 120 градусов (треть окружности) друг относительно друга.
    Какое напряжение у этого тока?
    Напряжение всегда измеряется между чем-то и чем-то.
    Напряжением трёхфазного тока называется напряжение между двумя его фазами («линейное» напряжение).
    Там, где мы соединили все три фазы вместе в одной точке (это называется соединением по схеме «звезда»), мы получили «нейтраль» (G на рисунке).
    В ней, как нетрудно догадаться (или посчитать по формулам тригонометрии) напряжение равно нулю.

    Пока просто попробуем подключить генератор к нагрузке, стоящей рядом.
    Если все три выходящие из генератора линии соединить, через сопротивления, во вторую «нейтраль» (точка G), то мы получим так называемый «нулевой провод» (от G до M).



    Зачем нам нужен нулевой провод?
    Можно было бы дома просто подсоединять одну из фаз на один шпенёк вилки, а другой шпенёк вилки соединять с землёй, и чайник бы кипел.
    Вообще, как я понял, так и делают в старых советских домах: там есть только фаза и земля в квартирах.
    В новых же домах в квартиры входят уже три провода: фаза, земля и этот «ноль».
    Это европейский стандарт.
    И правильно соединять именно фазу с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током («заземление»).
    Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится.
    Ещё некоторые мысли по поводу того, зачем нужны все три провода, есть в конце этой статьи, можете сразу пролистать и прочитать.

    Теперь попробуем посчитать напряжение между фазой и «нейтралью».
    Вот ещё ссылка с расчётами .
    Пусть напряжение между каждой фазой и «нейтралью» равно U.
    Тогда напряжение между двумя фазами равно:
    U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√ 3 U cos(a + 60).
    То есть, напряжение между двумя фазами в √ 3 раз больше напряжения между фазой и «нейтралью».
    Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
    Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше.
    Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы «перекос» (об этом ближе к концу статьи), и у кого-то что-то могло бы сгореть.

    Ещё один момент: выше мы рассмотрели введение нейтрали у генератора.
    А откуда взять нейтраль на дворовой подстанции?
    В дворовой подстанции трёхфазное напряжение снижается (трёхфазным) трансформатором до 380 Вольт на каждой фазе.
    Это будет похоже на генератор: тоже три катушки, как на рисунке.
    Поэтому их тоже можно друг с другом соединить, и получить «нейтраль» на подстанции. А из нейтрали — «нулевой провод».
    Таким образом, из подстанции выходят «фаза», «ноль» и «земля», идут в каждый подъезд (своя фаза в каждый подъезд, наверное), на каждую лестничную площадку, в электрораспределительные щитки.

    Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» («нейтраль») и «земля».
    «фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт).
    «ноль» — это провод от (заземлённой — воткнутой в землю — на подстанции) «нейтрали».
    «земля» — это провод от заземления (скажем, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю).

    По подъездам получается такая разводка (если предположить, что подъезд = квартира):



    На подстанции фазы с левой стороны все соединены и заземлены, образуя ноль, а в конечных точках — в конце подъезда, после того, как они пройдут по всем квартирам — вообще не соединены никуда.
    Потому что если бы в конце каждая фаза была бы замкнута на «ноль», то ток гулял бы себе по этому пути наименьшего (нулевого) сопротивления, и в квартиры (под нагрузку) вообще бы не заходил.
    А так, он вынужден будет идти через квартиры.
    И делиться будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше нагрузка.
    То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через счётчик, который это всё будет считать).
    Но для того, чтобы ток был постоянным по мере включения и отключения новых потребителей, нужно, чтобы сила тока в общем проводе каждый раз сама подстраивалась под подлюченную нагрузку.

    Что может быть, если все включат обогреватели зимним вечером?
    Ток в ЛЭП может превзойти допустимые пределы, и могут либо провода загореться, либо электростанция сгорит (что и было несколько раз в москве, но летом).

    Есть ещё один вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

    Фазу и землю тянуть не получится (в общем случае).
    Это выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
    А вот чему равно напряжение между фазой и землёй — это не факт.
    Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды»), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
    Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз» , и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
    Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже, что может привести к пожару.
    Точно такой же перекос фаз получится, если провод «нуля» оборвётся или отгорит на подстанции.
    Поэтому в домашней сети нужен ноль.

    Тогда зачем нам в доме нужен провод «земли»?
    Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током.
    Приборы тоже иногда ломаются.
    Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?
    Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по почти прямому замыканию фазы на ноль).
    Этот ток утечки будет замечен «Устройством Защитного Отключения» (УЗО), и оно разомкнёт цепь.
    УЗО наблюдает за входящим в квартиру током (фаза) и изходящим из квартиры током (ноль), и размыкает цепь, если эти токи не равны.
    Если эти токи разные — значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй.
    Если эта разница резко подскакивает — значит, где-то в квартире фаза замкнула на землю.
    Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на корпус компьютера, и лежал бы так себе, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления, то догадайтесь, что бы стало с этим человеком.
    Так что «земля» тоже нужна.

    Поэтому нужны все три провода: «фаза», «ноль» и «земля».

    В квартире к каждой розетке подходит своя тройка проводов «фаза», «ноль», «земля».
    Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета и мб какое-нибудь кабельное ТВ), и идут в квартиру.
    В квартире на стене висит внутренний щиток.
    Там на каждую «точку доступа» к электричеству стоит свой «автомат».
    От каждого автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка к печке, тройка к посудомойке, тройка на зальные розетки и свет в люстре, и т.п..
    Каждый «автомат» изготовлен на заводе под определённую максимальную силу тока.
    Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).
    Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.
    Вас самих он не спасёт (слишком медленный). Вас спасёт толькоУЗО .

    Под конец, просто так, напишу немного про «трансформатор» (читать не обязательно).

    Я пробовал несколько раз понять, как он работает, но так и не понял…

    Сила тока в цепи всегда подстраивается под подключённую нагрузку.

    Если мы не выводим оттуда ток, то вводящая катушка — сама по себе, и она создаёт магнитный поток, который в свою очередь создаёт «сопротивляющееся напряжение» (это называется «ЭДС самоиндукции»), равное напряжению во вводящей цепи, и сводящее его в ноль.
    Это «природное» свойство катушки («индуктивности») — она всегда сопротивляется какому бы то ни было изменению напряжения.
    И по подключенному участку вводящей цепи ток практически не идёт (этот участок отводится от ЛЭП параллельно, чтобы, если в нём ток пропадёт, то у всех остальных ток остался), и практически нет потерь на таком «холостом ходу» трансформатора.

    Потеряется только малость энергии, в том числе энергия, потраченная на «гистерезис» сердечника и на разогрев сердечника вихревыми токами (поэтому особо мощные трансформаторы погружают в масло для постоянного охлаждения).

    Магнитный поток, распространяясь по сердечнику внутрь выводящей катушки, создаёт в ней тоже напряжение, которое могло бы вызвать протекание тока, но поскольку в данном случае к выводящей цепи мы ничего не подключили, то тока там не будет.

    Если же мы начинаем выводить ток — замыкаем выводящую цепь — то по выводящей катушке начинает идти ток, и она тоже начинает создавать своё магнитное поле в сердечнике, противоположное магнитному полю, создаваемому вводной катушкой. Из-за этого ЭДС самоиндукции вводной катушки уменьшается, и более не компенсирует напряжение во вводной цепи, и по вводной цепи начинает течь ток. Ток нарастает до тех пор, пока магнитный поток «не станет прежним». Как это — я хз, в википедии так написано, а сам я так и не понял, как этот трансформатор работает.

    Поэтому получается, что ток на выходе из трансформатора сам себя регулирует: если нет нагрузки, то там не течёт ток; если есть нагрузка — то ток течёт соответствующий нагрузке.
    И если мы смотрим телевизор, а потом соседи включают пылесос, то у нас обоих ничего не «вырубается», так как сила тока тут же подстраивается под нас — потребителей электроэнергии.

    Каждый сегмент должен быть дополнен нулями слева и справа, чтобы обеспечить расширение во время двунаправленной фильтрации. Прежде чем приступить к правильной работе, необходимо иметь знания об условиях системы во время сбоев. Знание состояния электрических неисправностей требуется для размещения надлежащих различных защитных реле в разных местах электросети. Информация о значениях максимальных и минимальных токов повреждения при этих ошибках по величине и фазовому соотношению по токам в разных частях энергосистемы должна быть собрана для правильного применения системы в этих различных частях электрической системы.

    Фаза, ноль и земля – что это такое?

    Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС. До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру. Или по линии распределяется между частными домами поселка или деревни.

    Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор, с его обмоток низкого напряжения идет питание потребителю. Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток. Эти три проводника называются «фазами» (L1, L2, L3), а общий проводник – нулем (PEN).

    Система с глухозаземленной нейтралью

    Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью». Проводник PEN называется совмещенным нулевым проводником. До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением. Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

    Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ). Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции. На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

    Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

    Напряжение между фазами трехфазной системы называют линейным, а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В. Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

    К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали». Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

    В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

    Как распознать фазные и защитные проводники

    Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором. Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится. Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

    Конструкция однополюсного указателя напряжения
    Конструкция однополюсного указателя напряжения
    1корпус
    2разъемное соединение
    3пружина
    4индикаторная неоновая лампа
    5контакт для прикосновения
    6изолированная часть
    7резистор

    Распознать фазные проводники можно по их расцветке, для них используются черный, серый, коричневый, белый или красный цвет. Сложнее всего со старыми электрощитами: в них проводники одного цвета. Но «фазу» с помощью индикатора определить можно всегда и без ошибок.

    Нулевой рабочий проводник – синего (голубого) цвета, защитный маркируется желто-зелеными полосами. Напряжение на них отсутствует, но лучше без нужды их не касаться. Есть у электриков такой закон: если сейчас напряжения нет, то оно может появиться в любой момент.

    Оцените качество статьи:

    Что такое «фаза», «ноль» и «земля», и зачем они нужны.

    Сегодня решил попробовать разобраться с тем, что такое «фаза», «ноль» и «земля».
    Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
    Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
    Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.

    Если очень кратко, то фаза и ноль — для электричества, а земля — только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.


    Если начать с самого начала: откуда берётся электричество?
    Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое «переменное» магнитное поле), то в катушке возникает «переменный» электрический ток (и, соответственно, «переменное» напряжение).
    Этот величайший по своему значению эффект называется в физике «ЭлектроДвижущей Силой индукции», она же «ЭДС индукции», была открыта в середине XIX века.

    «Переменное» напряжение — это когда берётся обычное «постоянное» напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.


    Напряжение на катушке является «переменным» по своей природе (никто его специально не изгибает) — просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле «переменное», и поэтому получаемое на катушке напряжение тоже всегда будет «переменным»).

    Итак, значит, где-то в дебрях электростанции вращается магнит (для примера — обычный, а в реальности — «электромагнит»), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (равномерно «размазаны» по поверхности статора).

    Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в «Генераторе»).

    Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся «переменное» напряжение.

    Каждая из трёх катушек соединена в свою отдельную электрическую цепь, и в каждой из этих трёх электрических цепей возникает одинаковое «переменное» напряжение, только сдвинутое («по фазе») на треть окружности (120 градусов из полных 360-ти) друг относительно друга.


    Такая схема называется «трёхфазным генератором»: потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.
    (на рисунке выше «N-S» — это обозначение магнита: «N» — северный полюс магнита, «S» — южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии)

    Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
    Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём «фазой»).
    В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника — заземляется (грубо говоря, просто втыкается в землю).
    Получим то же самое электричество: одна дырка в розетке будет называться «фазой», а вторая дырка в розетке будет называться «землёй».

    Теперь, раз уж у нас три катушки, сделаем так: скажем, «левые» концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
    А оставшиеся три провода (получается, это будут «правые» концы катушек) по отдельности потянем к потребителю.
    Получится, мы тянем к потребителю три «фазы».

    Вот мы и получили «трёхфазный ток», идущий от генератора «трёхфазного тока».
    Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой, со знаком «осторожно, высокое напряжение»).
    И не только «к нам во двор» — по всей огромной России тянули наши предки эти ЛЭПы во времена ударных пятилеток коммунизма (а это огого какая гигантская работа: тянули электричество, прокладывали дороги, осушали болота, заводы строили по всей стране, поднимали целину — это не в офисах под кондиционерами сидеть).

    Изобретён этот «трёхфазный ток» был в самом конце XIX века.
    Передача электричества в виде именно трёхфазного тока, как некоторые говорят, экономичнее (возможно, меньше потерь в проводах, или что-нибудь типа того), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
    Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся штуковину на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на кольце, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
    Такой агрегат называется «трёхфазным двигателем».
    Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
    Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а сила тока в проводах при этом — около 300 Амперов).

    Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак, да и различные заводы потребляют порою огого сколько мощности: металлургические, например.
    Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение (потому что мощность тока — это сила тока умноженная на напряжение).
    При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов при передаче электроэнергии на расстояние по проводам (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов — именно поэтому чем толще провода в ЛЭП, тем экономичнее, потому что чем толще провод, тем меньше его сопротивление).
    Поэтому экономически целесообразно повышать мощность передаваемого тока, наращивая не силу тока, а напряжение (напряжению никак не мешает сопротивление проводов — такова его природа).
    Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не отдельно ток и не отдельно напряжение, поэтому его не волнует, в каком виде эта мощность к нему в дом придёт по проводам: будет ли там больше тока и меньше напряжения, или, наоборот, больше напряжения и меньше тока — потребителя волнует только мощность в целом.

    Поэтому на электростанции, перед передачей электроэнергии в провода ЛЭП, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома выполняется обратное преобразование — излишнее напряжение перегоняют обратно в силу тока, поскольку к этому моменту весь путь по ЛЭП уже успешно пройден электроэнергией с минимальными потерями.

    Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под ЛЭП, или ещё чего-нибудь).
    Вот забавное видео про короткое замыкание ЛЭП в 110 килоВольтов — весёлый феерверк:

    Занимательный факт: при длине ЛЭП переменного тока более нескольких тысяч километров возникает ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна.

    Я уже объяснил, что такое «фаза» и что такое «земля», и дальше я объясню, что такое «ноль» («нулевой провод») и зачем он нужен. Объяснение займёт следующие несколько абзацев, и может показаться непростым, но для понимания того, что такое «ноль», придётся понять это объяснение.

    Для упрощения, пока представим, что как будто бы трёхфазный генератор стоит не на ГидроЭлектроСтанции, а прямо у нас в квартире. Условно «левые» концы катушек на статоре мы, как и раньше, соединяем вместе.

    Такой способ соединения называется соединением по схеме «звезда». Полученная точка соединения трёх фазных проводов называется «нейтралью».


    «Нейтраль» обычно заземляют для большей безопасности: если нейтраль не заземлить, то потом когда одна из фаз случайно замкнётся на землю где-нибудь в доме, то полученная электрическая цепь будет разомкнутой — не будет токопроводящего пути от места касания фазой земли в доме обратно на эту фазу на подстанции. А если бы нейтраль заземлили на подстанции, то обратный путь с земли в доме на фазу на подстанции прошёл бы через землю: землю можно в данном случае представить как огромный проводник, хотя строго говоря это и не так, она же не металлическая, но для наглядности можно представить её как один огромный проводник. Итак, при отсутствии заземления «нейтрали» на подстанции, при коротком замыкании фазы на землю ток из фазы в землю не пойдёт (или, может быть, пойдёт, но будет относительно небольшим), и такая неисправность не будет засечена специально созданными для этого приборами («автоматами»), и эти приборы («автоматы») не смогут вовремя предотвратить опасное замыкание фазы на землю, выключив электричество. Подробнее принцип работы «автоматов» описан в конце этой статьи. А если вас заинтересует более подробное объяснение, зачем используется именно заземлённая нейтраль, то можете прочесть его по этой ссылке.

    В «нейтральной» точке, как можно посчитать по школьным формулам тригонометрии (или на глаз отмерить по графику с тремя фазами напряжения, который я давал в начале статьи), суммарное напряжение равно нулю. Всегда, в любой момент времени. Вот такая интересная особенность. Поэтому она и называется «нейтралью».

    Теперь возьмём и подсоединим к «нейтрали» провод, и этот, получается, уже четвёртый провод тоже будет тянуться рядом с тремя фазными проводами (и ещё рядом будет тянуться пятый провод — это «земля», которой можно будет заземлить корпус подключенного электроприбора).

    Получается, от генератора теперь будет идти четыре провода (плюс пятый — «земля»), а не три, как раньше.
    Подключим эти провода к какой-нибудь нагрузке (например, к какому-нибудь трёхфазному двигателю, который тоже стоит у нас в квартире).
    (на рисунке ниже генератор изображён слева, а трёхфазный двигатель — справа; точка G — это «нейтраль»).

    На нагрузке (на двигателе) все три фазных провода тоже соединяются в одну точку (только не напрямую, чтобы не было короткого замыкания, а через некоторые большие сопротивления), и получается ещё одна такая «как бы нейтраль» (точка M на рисунке).
    Теперь соединим четвёртый провод (идущий он «нейтрали»; точка G на рисунке) с этой второй «как бы нейтралью» (точка M на рисунке), и получим так называемый «нулевой провод» (идущий от точки G к точке M).


    Зачем нужен этот «нулевой» провод?
    Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
    Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода — провод фазы и провод земли.
    В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
    И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
    Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится, будет поставлен с ног на голову весь смысл заземления.

    Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и «нейтралью» (то же самое, что между фазой и «нулём»).
    (вот ещё ссылка с расчётами, если кто-то захочет заморочиться этим)
    Пусть амплитуда напряжения между каждой фазой и «нейтралью» равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
    Тогда напряжение между двумя фазами равно:
    U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
    То есть, напряжение между двумя фазами в √3 («квадратный корень из трёх») раз больше напряжения между фазой и «нейтралью».
    Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
    Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
    Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый «перекос фаз», и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.


    До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора, стоящего прямо в квартире.
    Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
    Мысленно перенесли.
    Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
    В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым «трёхфазным» трансформатором до 380 Вольт на каждой фазе.
    Трёхфазный трансформатор — это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу
    В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:


    Бывают маленькие, и не очень мощные, а бывают большие и мощные:
    Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза — на свою катушку), из которого уже «бесконтактным» способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
    Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, «левые») этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить «нейтраль» у себя на подстанции. А из нейтрали — вывести в жилой дом четвёртый «нулевой провод», вместе с тремя фазными (идущими от условно «правых» концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод — «землю».

    Таким образом, из подстанции в итоге выходят три «фазы», «ноль» и «земля» (всего — пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд — получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).

    Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» (иногда «ноль» называют ещё «нейтралью») и «земля».
    «фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
    «ноль» — это провод от «нейтрали» на подстанции.
    «земля» — это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).

    Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
    Соответственно, делиться ток по квартирам будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше подключенная нагрузка в каждой квартире.
    То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через квартирный счётчик, который это всё будет подсчитывать).

    Что может произойти, если все включат обогреватели зимним вечером?
    Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).

    Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

    Только фазу и землю тянуть не получится (в общем случае).
    Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
    А вот чему равно напряжение между фазой и землёй — это не факт.
    Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды», когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
    Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
    Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
    Точно такой же перекос фаз получится, если провод «нуля» оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше «перекос фаз», тем сильнее ток идёт по проводу нуля).
    Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
    Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что «а он не нужен»…

    Тогда зачем нам в доме нужен провод «земли»?

    Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током при прикосновении.

    Приборы тоже иногда ломаются.

    Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?

    Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (произойдёт короткое замыкание фазы на землю, вследствие чего упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по создавшемуся короткому замыканию фазы на землю).

    Этот ток утечки будет немедленно замечен либо «автоматом» стоящим в щитке, либо «Устройством Защитного Отключения» (УЗО), тоже стоящим в щитке, и оно сразу разомкнёт цепь.

    Почему недостаточно обычного «автомата», и зачем ставят именно УЗО? Потому что у «автомата» и у УЗО разный принцип работы (а ещё, «автомат» срабатывает гораздо позже, чем УЗО).


    УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как «автомат» измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
    Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
    УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
    Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
    А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от «автомата», который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже «зажарен». Казалось бы, тогда, можно и не заземлять корпусы электроприборов — УЗО же в любом случае «мгновенно» сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно «мгновенно» сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
    Так что и «земля» нужна, и УЗО нужно ставить.

    Поэтому нужны все три провода: «фаза», «ноль» и «земля».

    В квартире к каждой розетке подходит тройка проводов «фаза», «ноль», «земля».
    Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета — всё это называют «слаботочкой», потому что там протекают маленькие токи, неопасные), и идут в квартиру.
    В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
    Там эти три провода расщепляются и на каждую «точку доступа» к электричеству стоит свой отдельный «автомат», подписнанный: «кухня», «зал», «комната», «стиральная машина», и так далее.
    (на рисунке ниже: сверху стоит «общий» автомат; после которого стоят подписанные «отдельные» автоматы; зелёный провод — земля, синий — ноль, коричневый — фаза: это стандарт цветового обозначения проводов)


    От каждого такого «отдельного» автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..

    Наиболее популярно сейчас совмещать «главный» автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между «главным» общим автоматом (который имеет также встроенное УЗО) и остальными, «отдельными», автоматами (синий — ноль, коричневый — фаза, зелёный — земля: это стандарт цветового обозначения проводов):


    И вот ещё до кучи схема, по сути, о том же (только здесь главный автомат и УЗО — это разные устройства):

    Каждый «автомат» изготовлен на заводе под определённую максимально допустимую силу тока.

    Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).

    Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.

    Жизнь человека, при отсутствии правильного заземления электроприборов, автомат без УЗО не спасёт, так как автомат слишком медленно срабатывает (это более грубое устройство, так сказать).

    Вроде бы, по этой теме пока всё.

    Почему в электрике есть фаза и ноль


    Чтобы понять основы электрики, не обязательно углубляться в технические подробности электрической цепи. Достаточно знать, способы передачи электрического тока, которые бывают однофазными или трехфазными. Трехфазная сеть – это, когда электричество поступает по трем проводам, а еще по одному должно вернуться обратно, к источнику тока, которым может быть трансформатор, электрический счетчик. Однофазная сеть – это, когда электричество поступает по одному проводу, а по другому возвращается обратно к источнику питания. Такая система называется электрическая цепь, а ее основы проходят на уроках физики.

    Вспомните – электрическая цепь состоит из источника, потребителей, соединительных проводов и других элементов. В любом источнике тока «работают» положительно и отрицательно заряженные частицы. Они накапливаются на разных полюсах источника, один из которых становится положительным, а другой отрицательным. Если полюса источника соединить, возникает электрический ток. Под действием электростатической силы частицы приобретают движение только в одном направлении.

    Для начала рассмотрите пример однофазной сети: квартира, в которой электричество к чайнику, микроволновке, стиральной машине поступает по одному проводу, а назад к источнику тока — по другому проводу. Если такую цепь разомкнуть, то, электричества не будет. Провод, подающий ток, называется фазовым или фазой, а провод, по которому ток возвращается – нулевым или нулем.

    Если сеть трехфазная, электричество будет поступать по трем проводам, а возвращаться так же по одному. Трехфазные сети чаще бывают в домах загородного типа. Если в такой сети разомкнуть один провод, то, на других фазах ток останется.

    То есть, фаза в электрике – это провод, который подает ток от источника питания, а ноль – это провод, который отводит ток обратно, к источнику питания. Если току не обеспечить постоянную цепь – случились аварии на линии, произошел обрыв проводов, то, приборы могут просто перестать работать или сгорят от перенапряжения в электрической сети. В электрике это явление называется «перекос фаз». Если оборвался ноль, напряжение может измениться как в наибольшую, так и в наименьшую сторону.

    О фазах питания переменного тока


    Что такое фазы?

    Если вы посмотрите на бытовую электрическую мощность переменного тока через осциллограф, вы бы увидели синусоидальную волну:

    Вы увидите, как электроэнергия повторяет свой «цикл». В домашнем хозяйстве мощность это происходит 50 или 60 раз за одну секунду. Если у нас больше, чем одна из этих синусоидальных волн немного смещена, мы называем каждую из них отдельной «фазой».

    В простой модели, приведенной выше, это показывает, что электрическая мощность увеличивается до значение «+» 170 вольт, а затем снова падает до нуля и меняется полярность. на «-» 170 вольт.Фактическая мощность, которую мы можем получить от этого, составляет 120 вольт, это потому, что мы используем измерение среднеквадратичного значения мощности на маршруте (RMS). Узнайте, как рассчитать Мощность RMS здесь>

    Эта идеальная форма волны, конечно, теоретически, потому что в действительности что переходные процессы, гармоники, индукторы, все емкостные эффекты делают свое дело, искажая форму волны. Волна приведенная выше форма — это однофазная и та мощность, которая у вас есть в домашнее хозяйство.Мощность увеличивается вверх и обратно до нуля и т. Д., Однако это не лучший вид мощности для передачи на большие расстояния. Инженеры выяснили, что мы можем получить больше энергии от генератора, если он разделен на три фазы. Как вы можете видеть ниже, три фазы создают почти постоянный поток мощности (аналогично мощности постоянного тока). Расчет мощности переменного тока, особенно трехфазное питание переменного тока требует сложных уравнений, поскольку оно описывает продвинутая физика.


    Почему мы используем трехфазную систему питания Cегодня?

    Лайонел Бартольд, пионер инженерных систем, описывает почему мы используем 3 фазы.Он исследовал другие системы в своей компании. PTI и пришел к выводу, что 3 фазы по-прежнему являются лучшим способом транспортировка электроэнергии переменного тока на короткие расстояния (HVDC лучше для больших расстояний).

    Генераторы:

    Трехфазные генераторы имеют катушки, расположенные под углом 120 градусов друг к другу, поэтому Для генераторов вполне естественно вырабатывать трехфазную мощность. Перед AC генераторы энергии нуждались в коммутаторе, чтобы исправить реверс мощности и сделать постоянный ток.

    История:

    Первый переменный ток был однофазным. Ипполит Pixii разработала первый генератор переменного тока, но рано изобретателям было сложно понять, как использовать созданную им силу, потому что мощность меняла бы каждый цикл. Большинство изобретателей считали кондиционер бесполезным для совсем немного времени. В 1870-х годах Отто Блати, Микса Дери и Кароли Зиперновски был пионером в использовании переменного тока в Будапеште, Венгрия.Они сделали циклы так быстро, что появились огни постоянно гореть. Они использовали трансформаторы что может изменить напряжение для передачи на большие расстояния. Уильям Стэнли усовершенствовал полезный трансформатор, когда зажег Грейт-Баррингтон. в 1886 г. Он использовал однофазный генератор Сименса.

    Однофазное питание переменного тока оказалось полезным в 1886 году с демонстрацией Стэнли, однако у него была главная проблема, заключающаяся в том, что он не мог приводить в действие двигатели. AC двигатели нужно было «подтолкнуть», чтобы начать работу.Без хорошего мотора AC не мог конкурировать с с системами постоянного тока, которые уже находились в тяжелом состоянии. использование на фабриках, тележках и коммерческих здания.

    Полифазная электроэнергия была решением этой проблемы. Происхождение о многофазном питании не ясно, как писали в Европе еще в 1882 году. Николе Тесла сегодня уделяется наибольшее внимание полифазности, однако в то время он был не единственным сторонником многофазных систем.

    В 1888 году решение большой проблемы с двигателями появилось, когда Двигатели переменного тока, когда Галилео Феррарис изобрел многофазный асинхронный двигатель. Этот двухфазный электродвигатель может запускаться как двигатель постоянного тока. Тесла придумал свою версию 8 месяцев спустя и быстро заработал на продаже патенты на Westinghouse. С этого началось несколько лет улучшений. Westinghouse использованные электростанции, такие как Эймс в Теллурайде для проверки 2-х фазных энергосистем.

    Первые трехфазные системы:

    Мы можем присвоить C.S. Bradley изобретение первых трех фаз. генератора в 1887 году, однако только в 1891 году мир увидел полную Функциональная 3-х фазная система питания. Франкфурт демонстрация, разработанная Добровольским, укрепила полезность Электропитание переменного тока и положило конец Войне токов.

    Чарльз Стейнмец и Альберт Халл в исследовательской лаборатории GE экспериментировал с моноциклической мощностью переменного тока в 1908 и 1930-х годах, но пришли к такому же выводу, что 3 фазы были лучше.

    С тех пор различные компании пытались экспериментировать с другими вариантами многофазного электроэнергии, однако это не оказывается рентабельным. Единственный система, которая действительно угрожает свергнуть доминирующую трехфазную систему, является HVDC. HVDC эффективно передает мощность на большие расстояния с одним сплошным кабелем вместо 3. Постоянный ток также может питать дома и экономия затрат, поскольку в проводниках используется только часть меди.Поскольку сырье продолжает дорожать, возникает идея мира постоянного тока. чтобы выглядеть более привлекательно. Читать далее о будущее в DC с этой статьей IEEE>

    Назад к основам электричества

    Связанные темы:

    Трансмиссия


    М. Уилан
    Фото / Графика:
    Технический центр Эдисона

    Источники:
    Интервью с В.Kornrumpf. Технический центр Эдисона. 2013
    Интервью с Томом Блалоком. Технический центр Эдисона. 2014
    Интервью с Лайонелом Бартольдом. Технический центр Эдисона. 2011
    Школа физики UNSW, Сидней, Австралия
    Интервью в San Miguel Power Assc. Технический центр Эдисона. 2014 г.

    Однофазное и трехфазное питание. Объяснение

    Однофазный источник питания используется в большинстве домов и на малых предприятиях, поскольку его установка относительно проста и недорога. Коммерческие и промышленные предприятия с более высокими потребностями в электроэнергии предпочитают трехфазное питание, поскольку оно более эффективно и менее затратно в эксплуатации.Но в чем именно разница между однофазным и трехфазным питанием?

    Однофазное и трехфазное

    Чтобы проиллюстрировать разницу между однофазным и трехфазным, представьте себе гребца-одиночки в каноэ. Он может двигаться только вперед, пока его весло движется по воде. Когда он поднимает весло из воды, чтобы подготовиться к следующему гребку, мощность, подаваемая на каноэ, равна нулю.

    А теперь представьте ту же каноэ с тремя гребцами. Если их гребки синхронизированы, так что каждый из них разделен на 1/3 цикла гребка, каноэ получает постоянное и последовательное движение по воде.Подается больше мощности, и каноэ движется по воде более плавно и эффективно.

    Однофазное питание
    • Однофазное электричество используется в большинстве домов и малых предприятий
    • Обеспечивает достаточную мощность для большинства небольших потребителей, включая дома и небольшие непромышленные предприятия
    • Подходит для работы двигателей мощностью до 5 лошадиных сил; Однофазный двигатель потребляет значительно больше тока, чем эквивалентный трехфазный двигатель, что делает трехфазное питание более эффективным выбором для промышленного применения

    Трехфазное питание
    • Распространено в крупных компаниях, а также в промышленности и производстве по всему миру
    • Все более популярны в энергоемких центрах обработки данных с высокой плотностью данных
    • Дорогое преобразование из существующей однофазной установки, но трехфазная позволяет использовать меньшую, менее дорогую проводку и более низкое напряжение, что делает ее безопаснее и дешевле в эксплуатации.
    • Высокоэффективный для оборудования, рассчитанного на работу от 3-х фаз.

    Однофазные и трехфазные продукты от Tripp Lite

    Разница между однофазными и трехфазными источниками питания

    В этом руководстве мы изучим различия между однофазными и трехфазными источниками питания переменного тока.Мы познакомимся с некоторыми основами однофазных и трехфазных систем, преимуществами и недостатками, а также некоторыми ключевыми различиями между однофазными и трехфазными источниками питания.

    Введение

    Почти 90% электроэнергии, которую мы используем в повседневной жизни, вырабатывается из переменного источника. Будь то наша бытовая техника, офисное оборудование или промышленное оборудование, мы используем источник переменного тока для питания этих устройств.

    Если вы новичок, то переменный ток или просто переменный ток — это тип электроэнергии, в котором электрический ток периодически изменяется как по величине, так и по направлению.Кроме того, в зависимости от приложения, питание переменного тока может подаваться в однофазной или трехфазной системе.

    Однофазная система питания переменного тока состоит из двух проводов, известных как фаза (или иногда линия, ток или напряжение) и нейтральный провод. В случае трехфазной системы вы используете либо три провода, либо четыре провода для передачи мощности (нет нейтрали в трехпроводном трехфазном питании, и все три провода являются фазами).

    Давайте теперь подробно рассмотрим однофазные и трехфазные системы, а также посмотрим на разницу между однофазными и трехфазными источниками питания.

    Что такое однофазный источник питания?

    Как упоминалось ранее, в однофазном блоке питания мощность распределяется с использованием только двух проводов, называемых фазой и нейтралью. Поскольку мощность переменного тока принимает форму синусоидальной волны, напряжение в однофазном источнике питания достигает пика на 90 0 во время положительного цикла и снова на 270 0 во время отрицательного цикла.

    Фазный провод передает ток к нагрузке, а нейтральный провод обеспечивает обратный путь тока.Обычно однофазное напряжение составляет 230 В, а частота — 50 Гц (это зависит от того, где вы живете).

    Поскольку напряжение в однофазной сети повышается и падает (пики и падения), постоянная мощность не может подаваться на нагрузку.

    Преимущества
    • Это очень распространенная форма источника питания для самых малых требований к мощности. Практически все бытовые электропитания являются однофазными, поскольку бытовым приборам требуется небольшое количество энергии для работы освещения, вентиляторов, охладителей, обогревателей, небольших кондиционеров и т. Д.
    • Конструкция и работа однофазной системы электроснабжения часто просты.
    • В зависимости от региона однофазного источника питания достаточно для нагрузок до 2500 Вт.
    Недостатки
    • Небольшие однофазные двигатели (обычно менее 1 кВт) не могут запускаться напрямую с помощью однофазного источника питания, поскольку для двигателя недостаточно начального крутящего момента. Таким образом, для правильной работы необходимы дополнительные схемы, такие как пускатели двигателей (например, пусковой конденсатор в вентиляторах и насосах).
    • Тяжелые нагрузки, такие как промышленные двигатели и другое оборудование, не могут работать от однофазной сети.

    Что такое трехфазный блок питания?

    Трехфазный блок питания состоит из трех проводов питания (или трех фаз). Кроме того, в зависимости от типа цепи (которая бывает двух типов: звезда и треугольник) у вас может быть нейтральный провод, а может и нет. В трехфазной системе питания каждый сигнал питания переменного тока на 120 0 не совпадает по фазе друг с другом.

    В трехфазном источнике питания в течение одного цикла 360 0 каждая фаза имела бы пик напряжения дважды. Также мощность никогда не падает до нуля. Этот стабильный поток энергии и способность выдерживать более высокие нагрузки делают трехфазный источник питания подходящим для промышленных и коммерческих операций.

    Как упоминалось ранее, существует два типа схем в трехфазном источнике питания. Это Дельта и Звезда (Y или Wye). В конфигурации «Дельта» нет нейтрального провода, и все системы высокого напряжения используют эту конфигурацию.

    Что касается конфигурации «звезда» или «звезда», это нейтральный провод (общий вывод / точка цепи звезды) и провод заземления (иногда).

    Напряжение между двумя фазами в трехфазном источнике питания составляет 415 В, а между фазой и нейтралью — 240 В. Следовательно, вы можете обеспечить три однофазных источника питания, используя трехфазный источник питания (именно так это обычно делается для бытовых и малых предприятий).

    ПРИМЕЧАНИЕ: Существует разница между прямым трехфазным питанием и трехфазным питанием, разделенным на три однофазных источника питания.

    Преимущества
    • При одинаковой мощности трехфазный источник питания использует меньше проводов, чем однофазный источник питания.
    • Трехфазный источник питания обычно является предпочтительной сетью для коммерческих и промышленных нагрузок. Хотя в некоторых странах (например, в большинстве европейских стран) даже бытовое электроснабжение является трехфазным.
    • Вы можете легко запускать большие нагрузки.
    • Для больших трехфазных двигателей (обычно используемых в промышленности) не требуется пускатель, так как разность фаз в трехфазном источнике питания будет достаточной для обеспечения достаточного начального крутящего момента для запуска двигателя.
    • Почти вся мощность вырабатывается при трехфазном питании. Хотя существует концепция многофазного питания, исследования показали, что трехфазный источник питания более экономичен и прост в производстве.
    • Общая эффективность трехфазного источника питания выше по сравнению с однофазным источником питания для той же нагрузки.

    Разница между однофазными и трехфазными источниками питания

    Давайте теперь посмотрим на разницу между однофазными и трехфазными источниками питания.

    • В однофазном источнике питания питание подается по двум проводам, называемым фазой и нейтралью. В трехфазном источнике питания питание подается по трем проводам (четыре провода, если имеется нейтральный провод).
    • Напряжение однофазного источника питания составляет 230 В, тогда как оно составляет 415 В при трехфазном питании.
    • При той же мощности для однофазного источника питания требуется больше проводов, чем для трехфазного источника питания.
    • Эффективность трехфазного источника питания значительно выше, чем у однофазного источника питания, и возможность передачи мощности также больше.
    • Поскольку однофазный источник питания использует только два провода, общая сложность сети меньше по сравнению с четырехпроводным трехфазным источником питания (включая нейтраль).

    Сравнение однофазных и трехфазных источников питания

    Давайте теперь посмотрим на сравнение однофазных и трехфазных систем питания в таблице.

    9 0233
    Однофазный источник питания Трехфазный источник питания
    Однофазный источник питания требует двух проводов Трехфазный источник питания требует трех проводников
    Два провода (проводника) в однофазной системе являются называется фазой и нейтралью. трехфазный источник питания передает собственный сигнал переменного тока, и три сигнала разнесены на 120 °
    Подача энергии в однофазном питании не согласована из-за пиков и провалов напряжения Из-за трех проводников с разностью фаз 120 ° подача питания при трехфазном питании всегда стабильна и постоянна (пики и спады трех сигналов переменного тока компенсируются друг другом)
    Напряжение питания в однофазном блоке питания составляет ≈230 В В трехфазном блоке питания напряжение питания составляет ≈415 В
    Однофазное питание относительно менее эффективно, чем трехфазное при таком же питании Трехфазный источник питания более эффективен, поскольку он может обеспечивать в три раза большую мощность, чем однофазный источник питания, всего с одним дополнительным проводом
    Обычно однофазный источник питания используется для жилых и бытовых нужд (часто трехфазный источник питания) Трехфазный источник питания обычно подается в крупные коммерческие центры и отрасли промышленности
    Он идеально подходит для небольших нагрузок, таких как освещение и отопление Трехфазный источник питания может работать с большими промышленными двигателями
    Однофазный Источники питания всегда имеют нейтральный провод (он действует как обратный путь от нагрузки) Нейтральный провод не является обязательным в T Трехфазные источники питания (соединения треугольником не имеют нейтрального провода, но соединения звездой могут иметь или не иметь нейтральный провод)
    Вероятность неисправности выше, поскольку однофазный источник питания имеет только одну фазу (если он выходит из строя, то есть нет питания) Даже если есть неисправность в одной или двух фазах, оставшаяся фаза (-ы) будет продолжать подавать питание в трехфазном источнике питания.Таким образом, вероятность неисправности меньше

    Нужен ли вам трехфазный источник питания?

    В зависимости от ваших требований ваша энергораспределительная компания предложит однофазный или трехфазный источник питания. Для небольших домов и магазинов достаточно однофазного питания.

    Но если у вас большой дом с тремя-четырьмя кондиционерами (все могут работать одновременно), водонагревателями, большим погружным насосом, стиральной машиной, двухдверным холодильником и т. Д., то вам может потребоваться трехфазное питание, чтобы нагрузка на каждую фазу распределялась должным образом.

    Поскольку у нас нет прямых трехфазных устройств, то, что делает компания по распределению электроэнергии, состоит в том, что три фазы от трехфазного источника питания подаются как три отдельных однофазных источника. Например, если у вас есть три спальни с тремя кондиционерами, то в каждой комнате будет отдельная фаза.

    Квартиры и общины обычно имеют специальные трансформаторы, чтобы они могли понижать напряжение с 11 кВ, поступающего непосредственно с подстанции, до 240 В независимо от уличного трансформатора.

    Объяснение трехфазного электричества — инженерное мышление

    объяснение трехфазного электричества

    Как работает трехфазное электричество? В этой статье мы объясним, как работает трехфазное электричество, мы начнем с основ однофазного генератора переменного тока, а затем добавим вторую и третью фазы, чтобы понять, как работает трехфазное электричество. Мы также расскажем, почему и где используется трехфазное питание, а также почему мы не используем больше фаз. Прокрутите вниз, чтобы просмотреть видеоурок.

    Простой генератор переменного тока (без катушек)

    Итак, сначала давайте начнем с простого генератора переменного тока, мы начнем с одной фазы, чтобы понять, что происходит, а затем добавим другие фазы, пока не дойдем до трех фаз.

    Обмотка катушки генератора переменного тока

    Давайте возьмем медный провод и намотаем его на две катушки, затем поместим эти катушки друг напротив друга внутри статора и соединим концы вместе, чтобы создать законченную цепь.

    Вращающееся магнитное поле внутри генератора

    Теперь, если мы поместим магнит между этими катушками и начнем вращать магнит, то магнитное поле будет мешать свободным электронам внутри медной проволоки, и начнет течь электрический ток. Мы рассмотрели, как движутся свободные электроны в нашей предыдущей статье об основах электричества, поэтому, пожалуйста, проверьте это, если вы еще этого не сделали.щелкните здесь, чтобы просмотреть видео и статью о том, как работает электричество.

    При вращении магнита меняется и полярность магнитного поля. Как вы можете видеть на иллюстрации, северный и южный полюсы вращаются, и, вращаясь, они проходят через катушки, которые заставляют электроны двигаться.

    Магнитное поле нейтральное, минимальная и максимальная напряженность

    Обратите внимание, что линии магнитного поля имеют овальную форму с каждой стороны и пересекаются через центральную ось магнита.Вы можете думать, что одна сторона является положительной, а другая — отрицательной, и между этими овалами магнитное поле нейтрально. Вы можете видеть, что интенсивность магнитного поля увеличивается с обеих сторон до центра, где оно достигает максимальной силы, а затем снова уменьшается, пока не вернется в нейтральную точку.

    По мере того, как магнитное поле вращается через катушку, катушка будет испытывать возрастающую напряженность положительной половины магнитного поля. Во время этого увеличения интенсивности свободные электроны в медной катушке будут выталкиваться и начнут двигаться все быстрее и быстрее в одном направлении до тех пор, пока не достигнут максимальной точки магнитного поля, затем, когда магнитное поле уменьшается, начнется поток электронов. замедлить полностью, пока не достигнет нейтральной точки, где не будут течь электроны.Затем идет отрицательная сторона магнитного поля, поскольку оно проходит через свое намерение оттягивать свободные электроны назад. Снова поток электронов будет течь все быстрее и быстрее до точки максимума магнитного поля, а затем он снова уменьшится до нейтральной точки.

    Вот почему электричество переменного тока называется переменным током, потому что ток электронов чередуется в направлении назад и вперед, как прилив на море.

    Генератор синусоидального переменного тока

    Если бы мы изобразили на графике скорость электронов, текущих во время вращения, то мы получили бы картину синусоидальной волны.В этой синусоидальной волне вы можете видеть, что электроны в начале неподвижны в нейтральной зоне, а затем скорость увеличивается через положительную половину до максимума. Затем он уменьшается до нейтрального положения, когда электроны снова не текут, а затем наступает отрицательная половина, где электроны ускоряются до максимальной точки, а затем замедляются, пока магнит не совершит 1 полный оборот, где это будет повторяться.

    частота синусоидальной волны

    Это полное вращение называется циклом, а количество циклов в секунду называется частотой, которая измеряется в герцах.Вы, наверное, видели на своих электротоварах надпись 50 Гц или 60 Гц, это означает, что генератор электростанции совершает полный оборот 50 или 60 раз в секунду. Направление тока меняется 50 или 60 раз в секунду. Когда это написано на электротехнической продукции, это просто говорит пользователю, к какому типу электричества он должен быть подключен.

    Ток через генератор и лампу

    Теперь вернемся к синусоиде, которую мы видели ранее. Этот график тока также представляет мощность, и если мы подключим лампу к цепи, мы увидим, что она будет увеличивать яркость вплоть до пика, а затем уменьшать яркость до нейтральной точки, где лампа выключена, поскольку ток не течет. , но затем он снова увеличивается в яркости, поскольку электроны начинают течь через него в противоположном направлении, пока он снова не достигнет нейтральной точки.

    В нейтральной точке цикла лампа не излучает свет, в точках увеличения и уменьшения в цикле лампа тусклая. Лампа горит только полностью и ярко светится в максимальные моменты циклов. Это означает, что свет постоянно мигает и гаснет.

    Двухфазный генератор переменного тока

    Чтобы улучшить это, мы можем добавить еще один набор катушек или вторую фазу в генератор и разместить эти 120 градусов поворота от первого набора катушек, а затем подключить это к другой лампе.Это вращение означает, что катушки испытывают изменяющуюся напряженность магнитного поля в разные моменты времени. Первая катушка достигает максимального тока и яркости, и по мере ее уменьшения вторая катушка начнет увеличиваться.

    Это улучшило освещение, но все еще есть зазор, который вызовет мерцание, поэтому мы можем добавить третий набор катушек или третью фазу, и это будет означать, что одна из ламп почти всегда имеет максимальную яркость, поэтому освещение почти постоянный.Это основы трехфазного электричества. Это означает, что передается больше мощности и достигается более стабильная скорость.

    Трехфазный генератор переменного тока

    Между фазами все еще есть небольшие промежутки, и вы можете добавлять все больше и больше фаз, чтобы заполнить эти промежутки, но становится все дороже и дороже поддерживать все эти кабели, поэтому трехфазное электричество стало широко распространено, поскольку это хороший компромисс между предоставленной мощностью и стоимостью строительства.

    В реальном мире вы не собираетесь использовать три лампы на разных фазах для создания освещения.Все лампы в ваших домах работают в однофазном режиме, но они мерцают, просто они включаются и выключаются так быстро, что человеческий глаз не увидит этого, если вы не запишите лампу в замедленном темпе.

    Более практичным применением является питание электрических асинхронных двигателей и другого коммерческого и промышленного оборудования, поскольку трехфазный двигатель обеспечивает большую мощность для этих устройств, что означает, что вы можете качать воду выше и запускать двигатели быстрее.

    Трехфазное распределение электроэнергии

    Как правило, мощность генерируется и распределяется по трем фазам, а для изменения напряжения используются трансформаторы. Если вы хотите узнать, как работают трансформаторы, мы также рассмотрели это, ссылки находятся в описании видео ниже.

    Теперь одна из интересных вещей с трехфазным питанием заключается в том, что вы можете подключаться ко всем трем фазам и питать большое промышленное оборудование, или вы также можете подключаться только к одной из фаз, а также питать небольшие электрические товары.

    трехфазное распределение электроэнергии в здании

    Обычно так большие многоэтажки и небоскребы распределяют электричество по зданию. Двигатели лифтов и насосы кондиционеров нуждаются в трехфазном питании, а компьютеры и офисное оборудование — в однофазном питании.Таким образом, они распределяют трехфазное питание по зданию, а затем отводят от него по мере необходимости

    То же самое и с распределением электроэнергии по городу. Дома будут подключаться только к одной фазе, потому что они не требуют большой мощности, тогда как большие здания будут подключены к трем фазам, поскольку им требуется много энергии.

    Что, черт возьми, такое трехфазное питание (и как его получить)?

    Недавно я переехал в свой магазин, и помимо серьезных проблем, от аренды вилочного погрузчика до лишения сна, нам также пришлось иметь дело с такими вещами, как трехфазное питание, разновидность подачи питания, часто используемая для большого оборудования.В старом магазине он был, а в новом — нет. Так что, черт возьми, такое трехфазное питание и как вы можете преобразовать оборудование, чтобы перейти с более распространенного однофазного на трехфазное и наоборот? Читать дальше.

    Для нас воздействие было ограниченным, потому что только у воздушного компрессора был трехфазный двигатель. Некоторое сварочное оборудование работало от трехфазного тока, но его можно легко перенастроить для работы от трехфазного или однофазного тока.

    Но сначала краткое объяснение трехфазного питания.

    Переменный ток действует так, как следует из его названия, и циклически чередуется, сначала течет в одном направлении в цепи, а затем в обратном направлении, чтобы течь в другом. При этом величина подаваемого напряжения непрерывно изменяется от положительной до отрицательной максимальной амплитуды. В США и других странах с мощностью 60 Гц этот цикл повторяется 60 раз в секунду. Представьте себе синусоидальную волну: амплитуда подаваемого напряжения дважды за цикл проходит через ноль, и в эти моменты подаваемая мощность отсутствует.Хотя это не имеет значения для многих электроприборов, это имеет серьезные последствия для более крупного оборудования, особенно для двигателей.

    Трехфазное питание обеспечивает три переменных тока — по существу, три отдельные электрические цепи, равномерно разделенные по фазовому углу. То есть моменты времени, в которые каждая ветвь переменного тока достигает максимального напряжения, разделены 1/3 времени полного цикла. На практике это означает, что общая мощность, подаваемая всеми тремя переменными токами, остается постоянной.В большинстве установок три фазы имеют общую нейтральную ветвь.

    Для потребителей электроэнергии стабильность подачи электроэнергии является основным преимуществом. Конструкция трехфазных двигателей с одним набором обмоток для каждой фазы является высокоэффективной и позволяет трехфазным двигателям потреблять значительно меньший ток, чем эквивалентный однофазный двигатель.

    Домашние любители и владельцы небольших магазинов часто сталкиваются с проблемой трехфазного оборудования без трехфазного обслуживания. К счастью, есть несколько способов оживить это оборудование — часто большое, ценное и весьма полезное.

    1. Замените двигатель однофазным двигателем: Когда имеется только одна или две машины и двигатель имеет конфигурацию, к которой вы действительно можете добраться, это может быть самым простым решением проблемы. Основным недостатком является то, что эквивалентный однофазный двигатель (эквивалентный с точки зрения эксплуатационного фактора и мощности) потребляет значительно больший ток и будет больше по размеру. Еще один минус — довольно высокая стоимость новых электродвигателей-гигантов.

    2. Преобразователи статической фазы: Преобразователь статической фазы — это просто способ пуска трехфазных двигателей. Трехфазный двигатель не может запуститься от однофазного источника питания, но может работать от него после запуска. Это достигается за счет уменьшения на 2/3 номинальной мощности и сокращения ожидаемого срока службы двигателя. При запуске статический преобразователь временно обеспечивает третью ветвь трехфазного питания за счет разряда пусковых конденсаторов. Когда двигатель набирает нужную скорость, статический преобразователь просто пропускает однофазный источник питания, к которому он подключен.Мне не совсем понятно, какие приложения подходят для статического фазового преобразователя, и каждый, кого я спрашивал об этом, предостерегал от его использования. Логично, что нагрузка, которая не сильно пострадает от потребления тока только на двух из трех обмоток (т. Е. Не на двигателе), или двигатель, который нагружен значительно ниже его номинальной мощности и не останавливается и не запускается часто, будут единственными реальными кандидатами. Однако статические преобразователи дешевле вращающихся фазовых преобразователей.

    3. Поворотный фазовый преобразователь: Поворотный преобразователь представляет собой трехфазный электродвигатель с некоторыми схемами запуска и управления, которые вместе действуют как генератор, производящий почти сбалансированное трехфазное электричество. Двигатель, называемый холостым двигателем, работает без нагрузки на подаваемой однофазной мощности. Как описано выше, трехфазный двигатель может работать на однофазном электричестве с пониженной выходной мощностью, но он не может запуститься на однофазном без дополнительной помощи. Либо какое-либо механическое средство, такое как шнур питания или однофазный двигатель, либо какое-либо электрическое средство — статический преобразователь фазы — используются для запуска вращения холостого двигателя.Когда он вращается, он получает питание от двух из трех наборов обмоток от однофазного источника питания и, поскольку вращающийся электродвигатель является генератором, генерирует третью ногу. Вуаля: трехфазное питание для магазина. Это эффективный способ питания нескольких частей трехфазного оборудования при наличии вращающегося преобразователя подходящего размера. К этому типу системы относится одно предостережение, заключающееся в том, что обычно нельзя запускать более одной загрузки одновременно. Кроме того, определенные нагрузки относятся к разным классам «твердости для пуска» и требуют роторных преобразователей, размер которых превышает соответствующий коэффициент.Для воздушных компрессоров, считающихся одной из самых сложных пусковых нагрузок, рекомендуемый коэффициент составляет не менее 2. В моем случае это означало роторный преобразователь мощностью 10 л.с., что даже не из дешевых.

    4. Частотно-регулируемый привод: Используя ту же технологию, что и инверторы, вырабатывающие напряжение 110 В от автомобильного прикуривателя, частотно-регулируемые приводы используют инверторы для синтеза трехфазной энергии. Инверторы создают близкое приближение к синусоиде, используя транзисторы для переключения потока тока.Поскольку инвертор создает отдельный источник переменного тока от своей входной мощности, он может выдавать переменный ток с произвольной частотой, а также с произвольным соотношением фаз. Таким образом, частотно-регулируемый привод, или ЧРП, используемый в качестве преобразователя фазы, может не только синтезировать чистую и сбалансированную трехфазную мощность, но также может изменять частоту вырабатываемой мощности. При питании трехфазного оборудования от частотно-регулируемого привода скорость двигателя можно регулировать, изменяя частоту, при этом обеспечивая полную мощность.Это изящный трюк. Что должно быть очевидным как общая тема для каждого из этих решений, частотно-регулируемые приводы не особенно дешевы.

    Я решил просто заменить двигатель своего воздушного компрессора на однофазный. Пришлось несколько перенастроить стартер двигателя, но это был довольно простой процесс. Если бы в цехе было больше трехфазного оборудования, я бы, наверное, получил роторный преобразователь (который можно построить и купить). Если бы у нас был тип горизонтальной мельницы с трехфазным двигателем и регулировкой скорости только посредством выбора шкива, я бы очень серьезно посмотрел на частотно-регулируемый привод, обеспечивающий почти бесступенчатое регулирование скорости для этой машины.

    Руководство | NFCC CPO

    Однофазное электричество

    Однофазная система является наиболее распространенной и в основном используется в домах, в то время как трехфазная система распространена в промышленных или коммерческих зданиях, где требуются большие нагрузки электроэнергии.

    Однофазные системы используют электроэнергию переменного тока, в которой напряжение и ток меняются по величине и направлению циклически, обычно от 50 до 60 раз в секунду.В Великобритании однофазное напряжение составляет 230 вольт.

    В электротехнике однофазная электроэнергия относится к распределению с использованием системы, в которой все напряжения источника питания изменяются в унисон.

    Проще говоря, однофазное электричество можно рассматривать как каноэ для одного человека. Лопатка входит в воду, чтобы передать мощность, а затем покидает воду, прежде чем вторая лопасть снова войдет в воду, чтобы передать больше мощности, что приведет к изменению мощности.

    Иногда будет нулевая выходная мощность, а в цикле будет два пиковых выхода мощности, см. Диаграмму ниже.

    Рисунок 9: График однофазной мощности

    Однофазное распределение используется, когда нагрузки в основном освещают и обогревают, с небольшим количеством крупных электродвигателей. Однофазный источник питания, подключенный к электродвигателю переменного тока, не создает вращающегося магнитного поля; Однофазные двигатели нуждаются в дополнительных цепях для запуска, и такие двигатели редко встречаются с номинальной мощностью более 10 или 20 кВт.

    Специальные однофазные тяговые электрические сети могут работать на частоте 16,67 Гц или других частотах для питания электрических железных дорог.

    Трехфазное электричество

    Проще говоря, трехфазное электричество можно рассматривать как три однофазных источника электроэнергии, которые подают свою пиковую мощность на расстоянии 120 ° друг от друга.

    В качестве аналогии рассмотрим каноэ с тремя каноэ, гребущими на каноэ поочередно. В отличие от одного каноиста, всегда есть выходная мощность и никогда не бывает нулевой выходной мощности, что делает этот источник питания более подходящим для промышленных двигателей и оборудования.

    Рисунок 10: График трехфазной мощности

    Электрик Мельбурн: Что такое трехфазное питание и оно мне нужно?

    Большинство домов в Австралии имеют однофазное питание, но если у вас большой дом, вы можете быть подключены к сети с помощью трехфазного источника питания.Электричество вырабатывается и распределяется по 3 фазам, поэтому вы видите несколько воздушных кабелей на столбах на улице. Наличие трех фаз позволяет нам получать питание как 240 В, так и 415 В от одного источника электроэнергии.

    Вот советы от Kenner Electrics, вашего надежного электрика в Восточном Мельбурне.

    В чем разница между однофазным и трехфазным питанием?

    Однофазное питание двухпроводное; активный и нейтральный. Он обеспечивает питание напряжением около 240 вольт и используется в домах и на предприятиях для большинства бытовых приборов и освещения.

    Трехфазное питание по четыре провода; три активных и одна нейтраль, и обеспечивает питание как 240 В, так и 415 В. Когда мы вводим в дом трехфазное питание, доступная мощность увеличивается в три раза. Это связано с тем, что у нас есть доступ ко всем трем фазам, поэтому, по сути, это означает, что у нас подключены 3 однофазных источника питания.

    В больших домах, где могут быть сотни электрических розеток, множество кухонных приборов на 240 В и трехфазные кондиционеры на 415 В, важно иметь доступ к большей мощности, чтобы убедиться, что одна фаза не перегружена, что приведет к неудобствам поездка.

    Так зачем мне дома трехфазное питание?

    Трехфазное питание способно удовлетворить потребности в электроэнергии более крупных и мощных приборов. . Вот почему он чаще используется в коммерческих и промышленных условиях для управления крупногабаритным оборудованием, которому требуется много энергии. Но он может вам понадобиться для вашего дома, если у вас есть большая система кондиционирования воздуха, большая электрическая плита, мощная система мгновенного электрического горячего водоснабжения или домашняя мастерская с оборудованием.Переход на трехфазное питание означает, что вы можете безопасно запускать все свои устройства одновременно, не беспокоясь о том, что они отключат цепи.

    Большинству небольших домов и квартир не требуется трехфазное питание, поскольку все их приборы и электропитание отлично работают от однофазного источника питания. Но если вы ремонтируете или добавляете мощные электроприборы, поговорите со своим электриком, чтобы узнать, нужно ли вам трехфазное питание.

    Как мне узнать, какой тип электроэнергии есть у меня дома?

    Посмотрите на главный выключатель в распределительном щите.Если он имеет ширину 1 полюс (около 1 пальца), то у вас однофазное электроснабжение. Если главный выключатель трехполюсный (шириной около 3 пальцев), то, вероятно, у вас трехфазное питание.

    Другой способ сказать, что это обычно написано на вашем счетчике электроэнергии. Но если жаргон вашего электросчетчика слишком сложен для понимания, вы можете просто позвонить своему дистрибьютору электроэнергии (например, United Energy), и они смогут сообщить вам об этом.

    Связанные сообщения:

    — Зачем вам нужно освещение безопасности и установка видеонаблюдения?

    — Почему важна проверка электробезопасности?

    — Как решить проблему цепей отключения?

    Что мне делать, если мне нужно перейти на трехфазное питание?

    Если вам необходимо перейти на трехфазное питание или если вы строите новый дом с большими потребностями в электроэнергии, свяжитесь с Kenner Electrics.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *