Емкостное сопротивление — Большая Энциклопедия Нефти и Газа, статья, страница 1
Емкостное сопротивление
Cтраница 1
Емкостное сопротивление зависит от емкости конденсатора и частоты, причем с увеличением частоты емкостное сопротивление в отличие от индуктивного уменьшается. [2]
Емкостное сопротивление обратно пропорционально частоте. [3]
Емкостное сопротивление зависит не только от частоты переменного тока, но и от величины емкости, включенной в цепь. [4]
Емкостное сопротивление обратно пропорционально частоте приложенного напряжения. [5]
Емкостное сопротивление велико, и здесь, по-видимому, решающее значение в исходе поражения имел ток в переходном процессе. [7]
Емкостное сопротивление изменяется обратно пропорционально частоте / и емкости С. [9]
Емкостное сопротивление обратно пропорционально емкости и частоте переменного тока. [10]
Емкостное сопротивление изменяется обратно пропорционально частоте f и емкости С. Уменьшение частоты вызывает увеличение емкостного сопротивления, так что при постоянном напряжении ( при / 0) емкостное сопротивление хс — и постоянный ток через емкостный элемент не проходит. [11]
Емкостное сопротивление Z2, наоборот, мало для токов ВЧ. [13]
Емкостное сопротивление контролируется индексом емкости, который равен отношению наблюдаемой величины емкости к начальной. Т
Активное, емкостное и индуктивное сопротивление. Закон Ома для цепей переменного тока
Активное сопротивление
Определение 1
Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:
\[I\left(t\right)=I_m{sin \left(\omega t\right)\ \left(1\right).\ }\]Рисунок 1.
Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:
\[U=IR=I_m{Rsin \left(\omega t\right)\ \left(2\right),\ }\]где $U$ — напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:
\[U_m=RI_m\left(3\right),\]где коэффициент $R$ — называется активным сопротивлением. Наличие активного сопротивления в цепи всегда приводит к выделению тепла.
Ёмкостное сопротивление
Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.
Рисунок 2.
Мы можем использовать следующие соотношения:
Готовые работы на аналогичную тему
Если $I(t)$ определена уравнением (1), то заряд выражен как:
где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:
Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $\frac{\pi }{2}.$ Амплитуда напряжения на емкости равна:
Величину $X_C=\frac{1}{\omega C}$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=\infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.
Индуктивное сопротивление
Пусть участок цепи имеет только индуктивность (рис.3). Будем считать $I>0$, если ток направлен от $а$ к $в$.
Рисунок 3.
Если в катушке течет ток, то в индуктивности появляется ЭДС самоиндукции, следовательно, закон Ома примет вид:
По условию $R=0. \mathcal E$ самоиндукции можно выразить как:
Из выражений (8), (9) следует, что:
Амплитуда напряжения в данном случае равна:
где $X_L-\ $индуктивное сопротивление (кажущееся сопротивление индуктивности).
Закон Ома для цепей переменного тока
Определение 2
Выражение вида:
\[I_m=\frac{U_m}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}\left(12\right).\]где
\[Z=\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}(13)\]называют полным электросопротивлением, или импедансом, иногда называют законом Ома для переменного тока. Однако необходимо помнить, что формула (12) относится к амплитудам тока и напряжения, а не мгновенным их значениям.
Пример 1
Задание: Чему равно действующее значение силы тока в цепи. Цепь переменного тока состоит из последовательно соединенных: конденсатора емкостью $C$, катушки индуктивности $L$, активного сопротивления $R$. На зажимы цепи подается напряжение действующее напряжение $U$ частота которого $\nu$.
Решение:
Так как все элементы цепи соединены последовательно, то сила тока во всех элементах одинакова.
Амплитудное значение силы тока выражается «законом Ома для переменного тока»:
\[I_m=\frac{U_m}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}\left(1.1\right)\]оно связано с действующим значением силы тока как:
\[I=\frac{I_m}{\sqrt{2}}\left(1.2\right).\]В условиях задачи мы имеем действующее значение напряжения $U$, нам в формуле (1.1) требуется амплитуда напряжения, используя формулу:
\[U=\frac{U_m}{\sqrt{2}}\to U_m=\sqrt{2}U\left(1.3\right).\]Подставим в формулу (1.2) формулы (1.1) и (1.3), получим:
\[I=\frac{1}{\sqrt{2}}\frac{\sqrt{2}U}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}=\frac{U}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}=\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},\]где $\omega =2\pi \nu .$
Ответ: $I=\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$
Пример 2
Задание: Используя условия задачи в первом примере, найдите действующие значения напряжений на катушке индуктивности ($U_L$), сопротивлении ($U_R$), конденсаторе ($U_C$).
Решение:
Используем результат примера 1. Напряжение на катушке индуктивности выражается формулой:
\[U_L=I\omega L=2 \pi \nu L\frac{U}{\sqrt{R^2+{\left(2 \pi \nu L-\frac{1}{2 \pi \nu C}\right)}^2}}.\]Напряжение на активном сопротивлении ($U_R$) равно:
\[U_R=IR=\frac{UR}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.\]Напряжение на конденсаторе ($U_C$) определяется как:
\[U_C=\frac{I}{C2 \pi \nu}=\frac{1}{C2 \pi \nu}\frac{U}{\sqrt{R^2+{\left(2 \pi \nu L-\frac{1}{2 \pi \nu C}\right)}^2}}.\]Ответ: $U_L=2\pi \nu L\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},\ U_R=\frac{UR}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},U_C=\frac{1}{C2\pi \nu }\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$
Емкостное сопротивление в цепи переменного тока | |
При включении конденсатора в цепь постоянного напряжения сила тока I=0, а при включении конденсатора в цепь переменного напряжения сила тока I ? 0. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока. | |
Мгновенное значение напряжения равно . Мгновенное значение силы тока равно: Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2. | |
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где — емкостное сопротивление. | |
Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты). | |
Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току). | |
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной. | |
Индуктивное сопротивление в цепи переменного тока | |
В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения. | |
Мгновенное значение силы тока: | |
Мгновенное значение напряжения можно установить, учитывая, что u = — εi, где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению. | |
. Следовательно , где амплитуда напряжения. Напряжение опережает ток по фазе на π/2. | |
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой. | |
Величина — индуктивное сопротивление. | |
Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления. | |
В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка. | |
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной. |
Емкостное сопротивление в цепи переменного тока | |
При включении конденсатора в цепь постоянного напряжения сила тока I=0, а при включении конденсатора в цепь переменного напряжения сила тока I 0. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока. Мгновенное значение напряжения равно u = U0 cos(ωt). Мгновенное значение силы тока равно: I = q/ = (Cu)/ = -CU0ωsin(ωt) = I0cos (ωt +π/2) Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2. | |
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где Xc — емкостное сопротивление. | |
Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты). Закон Ома для цепи переменного тока с емкостным сопротивлением: | |
Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току). | |
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка называется реактивной.
| |
Индуктивное сопротивление в цепи переменного тока | |
В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения. | |
Мгновенное значение силы тока: i = I0 sin (ωt) | |
Мгновенное значение напряжения можно установить, учитывая, что u = — εi, где u – мгновенное значение напряжения, εi – мгновенное значение ЭДС самоиндукции. При изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению:
Следовательно , u = LωI0 cos (ωt) = U0cos (ωt) = U0 sin (ωt + π/2), где U0 = I0 ωL – амплитуда напряжения. Напряжение опережает ток по фазе на π/2 | |
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим закон Ома для цепи с чисто индуктивной нагрузкой: . Величина XL = ω L — индуктивное сопротивление Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления. В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка. Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка называется реактивной. |
Активное и индуктивное сопротивление | У электрика.ру
Различные факторы играют важную роль для вычисления потерь в линиях транспортировки электрической энергии. Для постоянного тока вполне хватает стандартных данных об омическом сопротивлении. А вот для цепей переменной разновидности необходимо учитывать активное и индуктивное сопротивление в сочетании с емкостной проводимостью токопроводников.
Можно воспользоваться для вычислений специальными таблицами. В них представлены с большой точностью различные варианты для выполнения расчетов в сетях переменного тока. Но, чтобы быстро разобраться в специфике представленных характеристик, желательно знать природу подобного явления и его основные характеристики.
Особенности активного сопротивления
В общем виде данный параметр выглядит, как противодействие определенного участка цепи проходящему по нему току. Полученная в результате такого процесса величина участвует в преобразовании энергии и ее переходе в какое-то другое состояние.
Важно! Это явление наблюдается исключительно в ситуациях с переменным током. Только он способен образовывать в кабелях оба вида противодействия.
Величина активного сопротивления обусловлена эффектом поверхностного типа. Наблюдается процесс своеобразного перемещения тока от центра к поверхности проводника. Сечение кабеля используется не полностью, а возникающее противодействие будет значительно превышать аналогичный омический показатель.
Обратим внимание на такой момент:
- Поверхностный эффект имеет незначительную величину в линиях из металлов, относящихся к категории цветных. Активное сопротивление приравнивают к омическому и считают его при условной температуре в +20°С, без учета фактических показателей окружающей среды. В справочниках имеются данные определения для использования в основном выражении R=r0l, с учетом того, что r0 – это номинальное значение искомой величины для 1 км провода, а l – его фактическая протяженность.
- А вот в стальных изделиях данный показатель намного выше. Обязательно потребуется брать во внимание, зависящее от сечения явление перемагничивания и влияние таких компонентов, как вихревые токи. На практике обычно при больших нагрузках пользуются справочными данными. При этом, само явление ослабевает в проводниках многопроволочного типа.
Индуктивное сопротивление
Созданное в ходе передачи энергии переменное магнитное поле становится источником реактивного сопротивления подобного вида. Индуктивный вариант в основном зависит от характеристик проходящего тока, диаметра и расстояния между проводами.
Само сопротивление обычно классифицируют следующим образом:
- зависящее от параметров тока и материала — внутреннее;
- обусловленное геометрическими особенностями линии — внешнее. В этом случае данный показатель будет постоянной величиной, не зависящей от каких-либо других факторов.
Заводы по производству кабельной продукции всегда указывают в своих каталогах информацию об индуктивном сопротивлении.
Данный параметр обычно определяется следующим выражением:
в котором индуктивный показатель для 1 км провода – , а L – протяженность.
Х километрового участка рассчитывается по следующей формуле:
Где: Dср – расстояние среднее по центральной оси имеющихся проводов, мм; d – диаметр рабочего токопроводника, мм; μт –относительная магнитная проницаемость.
Принцип действия индуктивного сопротивления линий
Именно индуктивность признана главной характеристикой для катушек наряду с аналогичным показателем для их обмоток. R реактивного вида, проявляющееся под действием самоиндукционной ЭДС, растет в прямой пропорции с частотой тока.
Реактивная и активная составляющие обуславливают полное сопротивление, которое можно представить в виде суммы квадратов каждого показателя.
Оперативно справиться с поставленной задачей по расчету номинальных показателей помогут специальные таблицы. В них для самых распространенных проводников приведены все главные характеристики. Но на практике часто требуется узнать Х для участка с конкретной протяженностью. В этом случае главным инструментом является уже приводившееся выражение
Емкостная проводимость
Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.
Для его определения в трехфазной линии воздушных передач применяется выражение:
Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.
Проводимость подобного вида в воздушных линиях одноцепной конструкции рассчитывается так:Токи емкостного происхождения существенно влияют на работу линий с рабочими характеристиками напряжения лот 110 кВ и более, а также в магистралях уложенными кабелями с идентичными параметрами выше 10 кВ.
Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.
Для начала линии, когда мы имеем дело с холостым ходом, емкостный ток определяется так:
Данный показатель будет объективным только при полностью обесточенных приемниках электричества.
Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.
Для воздушной линии действительна такая формула:
Для кабельных магистралей:
Поделиться ссылкой:
Похожее
формула, от чего зависит, в чем измеряется реактивное сопротивление
Сопротивлением в электротехнике называют такую величину, которая характеризует противодействие отдельность части электрической сети или ее элементов электрическому току. Это основано на том, что сопротивление изменяет электрическую энергию и конвертирует ее в другие типы. Например, в сетях с переменных электротоком происходят необратимые изменения энергии и ее передача между участниками этой электроцепи.
Сопротивление как физическую величину трудно переоценить, так как она является одной из ключевых характеристик электричества в сети и прямо или пропорционально определяет силу тока и напряжение. Этот материал познакомит с такими понятиями как: активное сопротивление и реактивное сопротивление в цепи переменного тока, как проявляется зависимость активного сопротивления от частоты.
Векторное изображение полного импедансаКакое сопротивление называется реактивным, какое активным
Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.
Типы рассматриваемой величины и формулы ее расчетаРеактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.
Течение переменного электротока не зависит от типа сопротивляемости элементов и всей сетиКакие отличия
Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.
Индуктивная величина и ее формулыВажно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть.
Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.
Комплексная сопротивляемость отдельного элетроэлемента сети RВ активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.
Активная сопротивляемость в цепи переменного синусоидального токаОт чего зависит активное сопротивление
Активное электросопротивление зависит от сечения проводника. Это значит, что полезным сечением при электротоке с высокой частотой будет только тонкий наружный слой проводника. Из этого исходит также то, что активностное электросопротивление только возрастает с увеличением частоты электротока переменного типа.
Для того чтобы уменьшить поверхностный эффект проводника, по которому течет электроток высокой частоты, его изготавливают трубчатым и покрывают напылением металла, хорошо проводящего электрический ток, например, серебром.
Схема косвенного метода амперметра, вольтметра и ваттметраВ чем измеряется реактивное сопротивление
Само по себе, явление реактанса характерно только для цепей с электрическим током переменного типа. Обозначается оно латинской буквой «X» и измеряется в Омах. В отличие от активностного варианта, реактанс может иметь как положительное, так и отрицательное значение. Знак «+» или «-» соответствует знаку, по которому сдвигается фаза электротока и напряжения. Знак положительный, когда ток отстает от напряжения и отрицателен, когда кот опережает напряжение.
Важно! Абсолютно чистое реактивное электросопротивление имеет сдвиг фазы на ± 180/2. То есть, фаза «двигается» на π/2.
Примером активной сопротивляемости — линия электропередачКак правильно измерять сопротивление
При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.
Активом сопротивляемости может выступать любой резисторКосвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра. Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².
Обмотка трансформатора — один из примеров актива по превращению электроэнергииОбласти проявления
Реактанс электросопротивления проявляется в емкости и индукции. Первое обуславливается наличием емкости проводниках и обмотках или включением в электрическую цепь переменного тока различных конденсаторов. Чем выше емкость потребителя и угловой частоты сигнала электротока, тем меньше емкостная характеристика.
Сопротивляемость, которую оказывает проводник переменному току и электродвижущей силе самоиндукции, называется индуктивным. Оно зависит от индуктивности потребителя. Чем выше его индуктивность и выше частота переменного электротока, тем выше индуктивное электросопротивление. Выражается оно формулой: xl = ωL, где xl — это электросопротивление индукции, L — индуктивность, а ω — угловая частота тока.
Емкостный реактанс электросопротивление проявляется, например, в конденсаторе, который накапливает электроэнергию в виде электромагнитного поля между своими обкладками. Индуктивное электросопротивление можно наблюдать в дросселе, который накапливает энергию в виде магнитного поля внутри своей обмотки.
Активностным же электросопротивлением может обладать любой резистор, линии электропередач, обмотки трансформатора или электрического двигателя.
Индукция ЭДС может наблюдаться в дросселеТаким образом, активный резист и реактанс во многом отличаются друг от друга не только разницей по названию, но и по физическим свойствам. Первый вид превращает электроэнергию в другой вид и отдает ее в окружающую среду. Второй же — возвращает ее обратно в электросеть.
Измерение уровня емкости Принцип работы Контрольно-измерительные приборы
Измерение уровня емкости:
Емкостный датчик уровня является примером косвенного измерения уровня
Датчики уровня емкости используются для широкого спектра твердых, водных и органических жидкостей , и суспензии. Метод часто упоминается как RF , поскольку радиочастотные сигналы поступают в емкостную цепь. Датчики могут быть спроектированы так, чтобы определять материал с диэлектрической проницаемостью всего 1.1 (кокс и летучая зола) и достигает 88 (вода) или более. Также могут быть обнаружены шламы и шламы, такие как обезвоженный кек и суспензия сточных вод (диэлектрическая проницаемость около 50), а также жидкие химические вещества, такие как негашеная известь (диэлектрическая постоянная около 90). Двойной зонд Емкостные датчики уровня могут также использоваться для определения границы раздела двух несмешивающихся жидкостей с существенно разными диэлектрическими постоянными.
Поскольку емкостные датчики уровня являются электронными устройствами, фазовая модуляция и использование более высоких частот делают датчик подходящим для приложений, в которых диэлектрическая проницаемость аналогична.
Принцип работы :
Принцип емкостного измерения уровня основан на изменении емкости. Изолированный электрод действует как одна пластина конденсатора, а стенка резервуара (или электрод сравнения в неметаллическом сосуде) действует как другая пластина. Емкость зависит от уровня жидкости. Пустой резервуар имеет меньшую емкость, а заполненный резервуар имеет более высокую емкость.
Простой конденсатор состоит из двух электродных пластин, разделенных небольшой толщиной изолятора, такого как твердый, жидкий, газовый или вакуумный.Этот изолятор еще называют диэлектриком.
Значение C зависит от используемого диэлектрика, площади пластины, а также расстояния между пластинами.
Где:
C = емкость в пикофарадах (пФ)
E = постоянная, известная как абсолютная диэлектрическая проницаемость свободного пространства
K = относительная диэлектрическая проницаемость изоляционного материала
A = эффективная площадь проводников
d = расстояние между проводниками
Это изменение емкости можно измерить с помощью моста переменного тока.
Измерение:
Измерение производится путем подачи радиочастотного сигнала между проводящим зондом и стенкой сосуда.
ВЧ-сигнал приводит к очень слабому току, протекающему через диэлектрический технологический материал в резервуаре от датчика к стенке резервуара. Когда уровень в резервуаре падает, диэлектрическая проницаемость падает, вызывая падение показаний емкости и незначительное падение тока.
Это изменение обнаруживается внутренней схемой реле уровня и преобразуется в изменение состояния реле реле уровня в случае обнаружения предельного уровня.
В случае детекторов постоянного уровня выходом является не состояние реле, а масштабированный аналоговый сигнал.
Измерение уровня можно разделить на три категории:
- Измерение непроводящего материала
- Измерение проводящего материала
- Бесконтактное измерение
Непроводящий материал:
Для измерения уровня непроводимости Для жидкостей используется неизолированный датчик, поскольку сопротивление жидкости достаточно велико, чтобы сделать его диэлектрическим.Поскольку электрод и резервуар зафиксированы на месте, расстояние (d) постоянно, емкость прямо пропорциональна уровню материала, действующего как диэлектрик.
Проводящий материал:
В проводящих жидкостях пластины зонда изолированы тонким покрытием из стекла или пластика во избежание короткого замыкания. Проводящий материал действует как пластина заземления конденсатора.
Измерения приближения (измерения бесконтактного типа):
В При измерении уровня приближения площадь емкостных пластин фиксирована, но расстояние между пластинами меняется.
Измерение уровня приближения не дает линейного выходного сигнала и используется, когда уровень изменяется на несколько дюймов.
Преимущества емкостного измерения уровня:
- Относительно недорогой
- Универсальный
- Надежный
- Требует минимального обслуживания
- Не содержит движущихся частей
- Легко устанавливается и легко адаптируется для емкостей различного размера
- Хорошо диапазон измерения: от нескольких сантиметров до примерно 100 м.
- Прочный
- Простой в использовании
- Легко очищаемый
- Может быть разработан для работы с высокими температурами и давлением.
Области применения:
Датчики уровня емкости используются для измерения уровня
- жидкостей
- Энергетические и гранулированные твердые вещества
- Жидкие металлы при очень высокой температуре
- Сжиженные газы при очень низкой температуре
- Коррозионные материалы как фтористоводородная кислота
- Промышленные процессы под очень высоким давлением.
Недостатки:
Материалы с небольшой плотностью менее 20 фунтов / фут3 и материалы с размером частиц более 1/2 дюйма.в диаметре могут быть проблемой из-за их очень низкой диэлектрической проницаемости (вызванной большим количеством воздушного пространства между частицами).
.Что такое емкостный преобразователь? — Определение, принцип, преимущества, недостатки и применение
Определение: Емкостной преобразователь используется для измерения смещения, давления и других физических величин. Это пассивный преобразователь, поэтому для работы ему требуется внешнее питание. Емкостной преобразователь работает по принципу переменной емкости. Емкость емкостного преобразователя изменяется по многим причинам, таким как перекрытие пластин, изменение расстояния между пластинами и диэлектрическая проницаемость.
Емкостной преобразователь содержит две параллельные металлические пластины. Эти пластины разделены диэлектрической средой, которая представляет собой воздух, материал, газ или жидкость. В обычном конденсаторе расстояние между пластинами фиксировано, но в емкостном преобразователе расстояние между ними варьируется.
Емкостной преобразователь использует электрическую величину емкости для преобразования механического движения в электрический сигнал. Входная величина вызывает изменение емкости, которая напрямую измеряется емкостным преобразователем.
Конденсаторы измеряют как статические, так и динамические изменения. Смещение также измеряется напрямую путем подсоединения измеряемых устройств к подвижной пластине конденсатора. Он работает как в контактном, так и в бесконтактном режимах.
Принцип работы
Уравнения ниже выражают емкость между пластинами конденсатора
Где A — площадь перекрытия пластин в м 2
d — расстояние между двумя пластинами в метрах
ε — диэлектрическая проницаемость среды в Ф / м
ε r — относительная диэлектрическая проницаемость
ε 0 — диэлектрическая проницаемость свободного места
Принципиальная схема емкостного преобразователя с параллельными пластинами показана на рисунке ниже.
Изменение емкости происходит из-за физических переменных, таких как смещение, сила, давление и т. Д. Емкость преобразователя также изменяется в зависимости от изменения их диэлектрической проницаемости, что обычно связано с измерением уровня жидкости или газа.
Емкость преобразователя измеряется по мостовой схеме. Выходное сопротивление преобразователя равно
. Где, C — емкость
f — частота возбуждения в Гц.
Емкостной преобразователь в основном используется для измерения линейного смещения. Емкостной преобразователь использует следующие три эффекта.
- Изменение емкости преобразователя из-за перекрытия пластин конденсатора.
- Изменение емкости связано с изменением расстояний между пластинами.
- Емкость изменяется из-за диэлектрической проницаемости.
Для измерения смещения используются следующие методы.
1. Преобразователь, использующий изменение площади пластин — Уравнение ниже показывает, что емкость прямо пропорциональна площади пластин. Соответственно изменяется и емкость с изменением положения пластин.
Емкостные преобразователи используются для измерения больших перемещений от 1 мм до нескольких см. Площадь емкостного преобразователя изменяется линейно в зависимости от емкости и смещения.Изначально нелинейность в системе возникает из-за ребер. В противном случае он дает линейный отклик.
Емкость параллельных пластин определяется как
где x — длина перекрывающейся части пластин,
ω — ширина перекрывающейся части пластин.
Чувствительность смещения постоянна, поэтому она дает линейную зависимость между емкостью и смещением.
Емкостной преобразователь используется для измерения углового смещения.Он измеряется подвижными пластинами, показанными ниже. Одна из пластин преобразователя неподвижная, а другая подвижная.
Векторная диаграмма преобразователя показана на рисунке ниже.
Угловое перемещение изменяет емкость преобразователей. Емкость между ними максимальна, когда эти пластины перекрывают друг друга. Максимальное значение емкости выражается как
Емкость при угле θ выражается как
θ — угловое смещение в радианах.Чувствительность к изменению емкости определяется как
.180 ° — это максимальное значение углового смещения конденсатора.
2. Преобразователь использует изменение расстояния между пластинами — Емкость преобразователя обратно пропорциональна расстоянию между пластинами. Одна пластина преобразователя неподвижна, а другая подвижна. Смещение, которое необходимо измерить, связано с подвижными пластинами.
Емкость обратно пропорциональна расстоянию, из-за которого конденсатор показывает нелинейный отклик.Такой тип преобразователя используется для измерения малых перемещений. Векторная диаграмма конденсатора представлена на рисунке ниже.
Чувствительность преобразователя непостоянна и варьируется от места к месту.
Преимущества емкостного преобразователя
Ниже приведены основные преимущества емкостных преобразователей.
- Для работы требуется внешняя сила, поэтому он очень полезен для небольших систем.
- Емкостной преобразователь очень чувствителен.
- Дает хорошие частотные характеристики, поэтому используется для динамического исследования.
- Преобразователь имеет высокое входное сопротивление, следовательно, они имеют небольшой эффект нагрузки.
- Для работы требуется небольшая выходная мощность.
Недостатки емкостного преобразователя
Основные недостатки преобразователя следующие.
- Металлические части преобразователей требуют изоляции.
- Корпус конденсатора требует заземления для уменьшения влияния паразитного магнитного поля.
- Иногда преобразователь демонстрирует нелинейное поведение из-за краевого эффекта, который контролируется с помощью защитного кольца.
- Кабель, соединяющий датчик, вызывает ошибку.
Использование емкостного преобразователя
Ниже приведены варианты использования емкостного преобразователя.
- Емкостной преобразователь используется для измерения как линейного, так и углового смещения. Он чрезвычайно чувствителен и используется для измерения очень малых расстояний.
- Используется для измерения силы и давления. Сила или давление, которые должны быть измерены, сначала преобразуются в смещение, а затем смещение изменяет емкости преобразователя.
- Он используется как датчик давления в некоторых случаях, когда диэлектрическая проницаемость датчика изменяется в зависимости от давления.
- Влажность газов измеряется емкостным датчиком.
- Преобразователь использует механический модификатор для измерения объема, плотности, веса и т. Д.
Точность преобразователя зависит от изменения температуры до высокого уровня.
.