Сдвиг фаз переменного тока и напряжения
Мощность постоянного тока, как мы уже знаем, равна произведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При переменном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденсаторов и катушек индуктивности.
Для этого случая формула мощности
остается справедливой.
На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.
Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.
При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.
О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.
Представим себе, что при начале вращения радиусы-векторы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.
Рассмотрим, как будут изменяйся при этом ток и напряжение. Из построенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.
Затем напряжение достигает своей наибольшей величины и начинает уже убывать, а ток хотя и становится положительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направление, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряжения. Между фазами напряжения и тока существует постоянный
Действительно, если мы посмотрим на рисунок 2, то заметим, что синусоида тока сдвинута вправо относительно синусоиды напряжения. Так как по горизонтальной оси мы откладываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.
Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с направлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величины на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источником ее.
Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрицательной, тем, следовательно, меньше будет средняя мощность тока.
При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).
Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.
Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т.
в этом случае будут неверны
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Измерение петли фаза-ноль | Заметки электрика
Уважаемые, посетители!!!
Приветствую Вас на своем ресурсе «Заметки электрика».
В прошлой статье мы узнали с Вами, что такое петля фаза-ноль и для чего нужно проводить измерение сопротивления петли фаза-ноль.
Сегодняшняя статья будет посвящена теме измерения петли фаза-ноль, т.е. разберем пошагово и подробно как самостоятельно произвести измерение. Измерение будем проводить в 2 этапа:
1. Внешний осмотр
Проводим тщательный внешний осмотр:
2. Измерение петли фаза-ноль
Перед измерением необходимо проверить плотность соединения проводов к аппаратам защиты. Если провода не протянуты — то смысла измерения нет, т.к. полученные показатели получатся не достоверными.
Цель — это выяснить соответствие номинального тока аппаратов защиты и сечение проводов измеряемой цепи.
Замер петли фаза-ноль производим на самой удаленной точке измеряемой линии.
Если же проблематично определить самую дальнюю точку линии, то проводим измерение по всем точкам этой линии.
Измеренные величины записываем в блокнот.
Методика измерения петли фаза-ноль. Как провести замер?
Существует несколько методов измерения:
метод падения напряжения в отключенной цепи
метод падения напряжения на нагрузочном сопротивлении
метод короткого замыкания цепи
Наша электролаборатория использует для измерения петли фаза-ноль электроизмерительный прибор MZC-300 от фирмы Sonel, который работает по методу падения напряжения на нагрузочном сопротивлении.
Данный метод измерения я считаю более удобным, а главное безопасным.
Измерение в рабочей цепи А (L1) — N
Измерение в защитной цепи А (L1) — PE
Проверка защиты от замыкания на корпус электрооборудования в системе заземления TN
Проверка защиты от замыкания на корпус электрооборудования в системе заземления TT
Более подробно видах систем заземления читайте в статьях: TN-C, TN-C-S, TN-S и TT.
Измерение сопротивления петли мы проводим на электроустановке, которая находится под напряжением.
Как пользоваться прибором MZC-300, более подробно, можно узнать в руководстве по эксплуатации данного прибора.
Периодичность проведения измерений
Согласно нормативно-технического документа ПТЭЭП, измерение петли фаза-ноль проводится с определенной периодичностью, установленной системой ППР организации. Система ППР, включающая в себя циклы текущих и капитальных ремонтов электрооборудования, утверждается техническим руководителем организации.
Для электроустановок во взрывоопасных зонах, не менее 1 раза в 2 года.
При отказе устройств защиты электроустановок должны выполняться внеплановые электрические измерения.
Как сделать заключение?
Выполнив замер петли фаза-ноль по вышеприведенным схемам, на дисплее прибора отразится величина однофазного тока короткого замыкания.
Это значение сравниваем по время-токовым характеристикам с током срабатывания расцепителя автоматического выключателя или с плавкой вставкой предохранителя, и делаем соответствующее заключение.
Чтобы сделать правильное и верное заключение необходимо внимательно прочитать выдержки из ПТЭЭП и ПУЭ 7 издания. Я их совместил для Вашего удобства в одну картинку.
(для увеличения нажмите на картинку)
Для более наглядного представления, как сделать правильное заключение при измерении ПФО, приведу Вам пример из личного опыта.
Пример:
Производили замер петли фаза-ноль в помещении библиотеки. Измеряемая линия питается от силовой сборки ЩС автоматическим выключателем с номинальным током 16 (А) и характеристикой С (подробнее о всех видах характеристиках).
Как я уже говорил в статье, измерение проводим на самой отдаленной точке этой линии, в нашем случае это розетка, расположенная в самом дальнем углу библиотеки.
Электроснабжение библиотеки выполнено системой заземления TN-C. Поэтому измерение производим в рабочей цепи (фаза — ноль).
Измеренный ток однофазного короткого замыкания, который показал нам прибор, составлял 87 (А).
Внимательно читаем информацию, приведенную на картинке выше.
В данном примере воспользуюсь пунктом из ПТЭЭП. Т.е. ток однофазного замыкания должен быть не менее, чем 1,1 * 16 * 10 = 176 (А). А у нас ток получился 87 (А) — условие не выполняется.
При токе 87 (А) электромагнитная защита автоматического выключателя не сработает, а сработает тепловая защита, выдержка времени которой составит несколько секунд (больше, чем 0,4 секунды — ПУЭ). За это время есть большой риск возникновения воспламенения или пожара электропроводки.
Вывод:
В моем примере условие не удовлетворяет требованиям ПТЭЭП и ПУЭ. Поэтому необходимо:
- увеличить сечение проводов, измеряемой линии (при увеличении сечения провода уменьшается его сопротивление, а значит и увеличится ток однофазного замыкания, который пройдет по нашим условиям)
- установить автоматический выключатель с меньшим номинальным током (при уменьшении номинала автомата мы тем самым жертвуем мощностью линии)
Форма протокола измерения петли фаза-ноль
Самым последним этапом является занесение величин измерений в протокол.
(для увеличения нажмите на картинку)
(для увеличения нажмите на картинку)
P.S. Если у Вас в процессе изучения материала появились какие-нибудь вопросы, то смело задавайте их в комментариях. А сейчас смотрите видеоролик про «Измерение петли фаза-ноль в мастерской», который я приготовил специально для Вас.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
faza в домашней электросети, зачем нужен ноль в электричестве, чем отличаются эти понятия
Замена розетки или выключателя — довольно простая работа. Однако при ее выполнении начинающие домашние мастера сталкиваются с необходимостью определения фазного и нулевого проводников. Это необходимо для правильного подключения устанавливаемого устройства, а также позволяет избежать удара током. Каждый владелец квартиры или частного дома должен понимать, что собой представляют фаза и ноль.
Устройство бытовой электросети
Сначала стоит выяснить, откуда берется ток в квартире, после чего будет проще понять, что называется нулем и фазой. В дома электрическая энергия подается с трансформаторной подстанции, задача которой заключается в преобразовании высоковольтного напряжения промышленной сети. Вторичная обмотка трансформатора соединяется в соответствии со схемой «звезда» — три ввода подключены к общей точке 0, а оставшиеся 3 подсоединяются к клеммам А, В, С. Соединенные вместе контакты также подключаются к заземляющему контуру подстанции.
В нулевой точке одновременно сделано расщепление на два проводника:
- Рабочий ноль.
- Защитный провод РЕ.
Рассмотренная схема носит название TN-S и используется во всех жилых домах. Таким образом, в распределительном щитке строения, кроме двух нулевых проводов, присутствуют еще и три фазных. В домах старой постройки часто встречается четырехпроводная схема — TN-C, в которой отсутствует проводник РЕ. Из распределительного щитка строения по квартирам разводится напряжение лишь одной фазы в 220 В и защитный РЕ-провод.
Следует помнить, что в старых домах последний элемент схемы может отсутствовать, если реконструкция электрической проводки не проводилась. Таким образом, «нуль» в квартире — провод, подсоединенный к контуру земли в подстанции и используемый для создания нагрузки от фазы.
Благодаря проводнику faza, электрический ток поступает к потребителю. Ноль не только позволяет добиться движения тока к нулевому контуру, но и способствует выравниванию фазного напряжения.
Довольно важным понятием является и РЕ-провод. Он исключен из схемы электроснабжения и необходим для устранения последствия различных аварийных ситуаций и неисправностей. В электросетях, созданных в соответствии со схемой TN-S, нагрузка распределяется равномерно, так как на каждом этаже распределительный щиток подключен к конкретным линиям 220 В общей сети подъезда.
Равномерное соединение «звезда» полностью повторяет все векторные характеристики подстанции. Если в квартире выключены все потребители электроэнергии, то ток в цепи отсутствует. В трехфазных сетях сумма электротоков складывается в соответствии с законом векторной графики в нулевом проводнике. Зная, чем отличается фаза и ноль в электрике, можно самостоятельно решать различные задачи.
Способы определения
В любом современном электроприборе предусматривается наличие заземления. Благодаря этому удается снизить показатель силы тока до безопасного. Заземляющий провод отводит большую часть электронов в землю, защищая тем самым человека от поражения электротоком. Простейшим способом обнаружения такого проводника является окраска его изоляционного слоя — желто-зеленая.
Однако из-за ошибки электромонтера такое предположение может оказаться неверным. Именно поэтому важно не только понимать, что значат фазные, заземляющие и нулевые провода, видеть различия между ними, необходимо уметь самостоятельно их находить. Чтобы обнаружить фазу тока и нулевой проводник в домашней электросети, можно использовать несколько методов. Наиболее простыми среди них являются три, которые и стоит рассмотреть.
Индикаторная отвертка
Это недорогой и весьма эффективный инструмент, с помощью которого можно быстро найти фазу и ноль в домашней электросети. Индикаторная отвертка работает по принципу прохождения через корпус емкостного электротока. Инструмент состоит из нескольких элементов:
- Металлический наконечник, напоминающий плоскую отвертку. Его необходимо последовательно прикладывать к тестируемым проводникам.
- Неоновая лампа. Загорается при появлении тока и это сигнализирует о наличии фазы.
- Резистор. Предназначен для ограничения силы тока и предотвращает выход из строя инструмента.
- Контактная площадка. Прикосновение к ней позволяет создать электроцепь.
Единственным недостатком индикаторной отвертки является сравнительно слабое свечение сигнальной неоновой лампы. Если проверка проводится в светлое время суток, то необходимо быть максимально внимательным. В противном случае можно просто не заметить подаваемый инструментом сигнал о наличии фазового тока.
Мультиметр или электрическая лампочка
Домашний тестер также может стать отличным средством поиска фазы и нуля в сети. Для выполнения работы прибор необходимо перевести в режим вольтметра и попарно определить показатель напряжения между проводами. Между любым проводником и фазой он всегда составит 220 В. Если коснуться щупами нуля и заземляющего провода, то напряжение будет отсутствовать.
Перед тем как приступить к решению задачи с помощью лампы, придется собрать простейшее устройство. В любой подходящий патрон следует вкрутить лампочку и подключить к клеммам проводники. Концы проводов следует зачистить с помощью обычного ножа либо стриппера. После этого можно приступать к определению фазового и нулевого проводника. Для этого предстоит поочередно прикладывать провода к проверяемым жилам. Как только лампа загорится, фаза будет найдена.
Последствия обрыва фазы или нуля
Такая ситуация встречается в домашних электросетях достаточно часто. Основной причиной ее появления может стать плохой контакт или высокие нагрузки, что приводит к отгоранию металлических токоведущих элементов. Зная, зачем нужен ноль в электричестве, что называется фазой, можно сделать вывод и о возможных последствия.
Совершенно неважно, какой из этих двух проводников оказался разорван, включенный в неисправную цепь потребитель работать не будет. Аналогичным образом обстоит ситуация и с обрывом провода любой фазы в общедомовой сети. В такой ситуации все квартиры, подсоединенные к этой линии, будут лишены электроэнергии. При этом в двух оставшихся цепях проблем с работой электроприборов наблюдаться не будет, лишь увеличиться сила тока в нулевом проводнике.
При всех этих обрывах повреждение бытовых приборов исключено.
Наибольшую опасность представляет ситуация, в которой пропадает соединение между заземляющим контуром подстанции и средней точкой подсоединения нагрузок подъездного либо общедомового распределительного электрощита. Это связано с тем, что электроток не сможет двигаться по нулевому контуру, а пойдет по пути наименьшего сопротивления — внешним контурам. Стоит помнить, что к ним подсоединено напряжение в 380 В.
Если в одной квартире нагрузка на сеть мала, а в другой высокая, то, согласно закону Ома, у второго хозяина могут возникнуть серьезные проблемы, к нему будет подаваться напряжение близкое к 380 В. Чтобы избежать подобных неприятностей, в распредщитках устанавливаются специальные средства защиты. Однако некоторые владельцы квартир устанавливают у себя дополнительные устройства, чтобы избежать преждевременного выхода из строя сложных электроприборов.
Разобраться с понятиями нулевого и фазного проводников в электротехнике достаточно легко. Даже начинающий домашний мастер в этом преуспеет. Однако следует помнить, что работа с электросетью может быть опасной для жизни. Чтобы избежать серьезных неприятностей, необходимо всегда проявлять максимальную осторожность. В лучшем случае последствием ошибки станет выход из строя электроприборов, но ведь возможно и поражение электрическим током.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Трехфазное питание: лучший выбор для энергии для орошения
Трехфазное питание — наиболее экономичный источник энергии для орошения с меньшими затратами на ежедневную энергию, техническое обслуживание, оборудование и средства управления.
Электроэнергия является наименее дорогим источником энергии для орошения, когда она легкодоступна. Сравнение нескольких источников энергии, обсуждаемых в «Сопоставимых затратах различных источников энергии для ирригационных насосов» Университета Пердью, показывает, что это соответствует обычному электрическому тарифу, равному 10.4 цента за киловатт-час, вам понадобится дизельное топливо по цене 1,31 доллара за галлон.
Электроэнергия дает много преимуществ для орошения. Хранилища жидкого топлива, расположенные рядом с колодцами и поверхностными водами, создают потенциальные экологические риски, которых можно избежать при использовании электроэнергии. Насосными установками с электрическим приводом легче управлять дистанционно, что является преимуществом для технически подкованного менеджера по орошению. Более высокие первоначальные инвестиции в насосное оборудование и более высокие ежегодные затраты на техническое обслуживание двигателя внутреннего сгорания подталкивают больше орошения к использованию электроэнергии.Вопрос для большинства оросителей заключается в том, сколько будет стоить электрическое обслуживание ирригационной системы. Ответ на этот вопрос зависит от вашего местоположения, поставщика услуг и наличия электроэнергии в настоящее время.
Почти все хозяйства имеют однофазную электроэнергию. Электродвигатели и органы управления для систем орошения в масштабе поля рассчитаны на трехфазное питание. Поставляемые на ферме электрические преобразователи фаз или системы частотно-регулируемых приводов могут использоваться для выработки трехфазной электроэнергии из однофазной линии, но часто ограничиваются небольшими двигателями, чтобы уменьшить проблемы с отключением электроэнергии в линии обслуживания.Согласно расширению Мичиганского государственного университета, для дальнейшего уменьшения проблем с отключением электроэнергии поставщики услуг электроснабжения могут также потребовать от хозяйств покупать и обслуживать двигатели насосов с плавным пуском или системы частотно-регулируемых приводов, чтобы снизить пусковую нагрузку двигателей насосов большей мощности.
Наличие трехфазной электроэнергии, обеспечиваемой вашим поставщиком электрических услуг в месте расположения насоса, является самым простым и безопасным источником энергии. Для работы ирригационных систем требуется наименьшее количество оборудования, принадлежащего / обслуживаемого фермой.Поставщики электрических услуг часто могут составить смету для добавления трехфазной электроэнергии в ваше местоположение. В некоторых ситуациях оценки могут быть свободными с обязательством использовать определенное количество энергии в будущем. Более вероятно, что простой отказ от нового набора трансформаторов на существующей трехфазной линии может стоить от 500 до 2000 долларов. Если трехфазное питание отсутствует рядом с местом, затраты на установку службы оцениваются в пределах от 10 000 до 30 000 долларов за милю. Эти расходы должен оплачивать потенциальный ороситель для улучшения обслуживания в этом районе.
Ирригаторы часто рассчитывают экономию на начальном оборудовании и ежегодных затратах на техническое обслуживание и энергию для электроэнергии по сравнению с двигателем внутреннего сгорания за период от 5 до 10 лет. 10-летняя экономия на типичном орошаемом поле площадью 160 акров может составлять 25 000 долларов или больше, что может быть использовано для улучшения инфраструктуры электроэнергетики в районе. У некоторых энергетических компаний есть программа возмещения части затрат первоначальному инвестору, если другие пользователи подключатся к новой трехфазной линии в ближайшие несколько лет.
В связи с быстрыми темпами роста ирригации и других расширений, связанных с сельским хозяйством, спрос на трехфазную электроэнергию в районах интенсивного сельского хозяйства высок. У Мичиганского сельскохозяйственного электрического совета (MAEC) есть целевая группа, занимающаяся вопросом расширения доступности электроэнергии. Если вы приложили усилия для расширения своей деятельности, связанной с сельским хозяйством, и наличие трехфазной электроэнергии по доступной цене было ограничивающим фактором, свяжитесь с Джимом Байрамом из Мичиганской ассоциации агробизнеса.Байрам является членом целевой группы, занимающейся повышением доступности электроэнергии для сельского хозяйства Мичигана. Адрес: 1501 North Shore Dr., Suite A, East Lansing, MI 48823, 517-336-0223 , [email protected].
Вы нашли эту статью полезной?
Расскажите, пожалуйста, почему
Представлять на рассмотрениеВлияние условий обрыва фазы на электрические системы атомных электростанций
Описание
Эта публикация охватывает соответствующие аспекты условий разомкнутой фазы (OPC), возникающие в системах передачи или электрических системах на месте установки.В нем подробно описаны методы, которые можно использовать для выявления уязвимости OPC в существующих схемах электрической защиты. Предоставляемое техническое руководство поможет повысить безопасность атомных электростанций и устранить уязвимость к OPC в электрических системах станции. Публикация послужит полезным руководством с акцентом на электроэнергетические системы для всего персонала, участвующего в проектировании, производстве, квалификации, эксплуатации, техническом обслуживании, управлении и лицензировании ядерных объектов.
Дополнительная информация о повторном использовании материалов, охраняемых авторским правом МАГАТЭ.
Ключевые слова
Атомные электростанции, Электрооборудование, Меры безопасности, Электроэнергетические системы, Защита, Условия обрыва фазы, OPC, Системы передачи, Дизайн, Уязвимости, Опыт эксплуатации, Извлеченные уроки, Анализ, Положения по проектированию, Защитные схемы, Методология, Рекомендации, Обнаружение, Ядерная Оборудование, Несбалансированное напряжение, Профилактические действия, Электрооборудование, Оценка, Техническое обслуживание, Функции безопасности, ДисбалансПубликации по теме
2021
2021
2021
2021
2021
2021
2021
2021
2020
2020
2020
2020
2020
2020
2020
2020
2019
2019
.