+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

назначение, сопротивление и характеристики, маркировка, принцип работы, как проверить и подключить

Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.

Что такое терморезистор, общие положения

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов.  Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

  1. Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.
  2. Позисторы — элементы, имеющие «плюсовой» температурный коэффициент (PTC). В отличие от прошлого вида, при повышении T сопротивление, наоборот, растет.

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

  1. КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
  2. БЕСКОНТАКТНЫЕ. В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

  1. НИЗКОТЕМПЕРАТУРНЫЕ. Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 102С). 1 Кельвин = минус 272,15С.
  2. СРЕДНЕТЕМПЕРАТУРНЫЕ. Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
  3. ВЫСОКОТЕМПЕРАТУРНЫЕ. Терморезисторы такого класса работают при температурах от 570 Кельвинов.
  4. ОТДЕЛЬНЫЙ КЛАСС. Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

  1. ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
  2. КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Читайте также:

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

  1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
  2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
  3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Читайте также:

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Алгоритм действий:

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

<

Термистор — это… Что такое Термистор?

Датчик температуры на основе термистора Символ терморезистора, используемый в схемах Вольт-Амперная характеристика (ВАХ) для позистора. Зависимость сопротивления Термистора от температуры. 1:для R0

Термистор — полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры.
Для термистора характерны большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

Терморезистор изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1—10 мкм до 1—2 см.

Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.

Термистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году и имеет патент США номер #2,021,491.

Различают терморезисторы с отрицательным (термисторы) и положительным (позисторы) ТКС.
Терморезисторы с отрицательным ТКС изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoO?, NiO, CuO), легированных Ge и Si, полупроводников типа AIII BV, стеклообразных полупроводников и других материалов.

Различают терморезисторы низкотемпературные (рассчитанные на работу при температуpax ниже 170 К), среднетемпературные (170—510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4,2 К и ниже и при 900—1300 К. Наиболее широко используются среднетемпературные терморезисторы с ТКС от — 2,4 до −8,4 %/К и номинальным сопротивлением 1—106 Ом.

Режим работы терморезисторов зависит от того, на каком участке статической вольт-амперной характеристики (ВАХ) выбрана рабочая точка. В свою очередь ВАХ зависит как от конструкции, размеров и основных параметров терморезистора, так и от температуры, теплопроводности окружающей среды, тепловой связи между терморезистором и средой. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрической цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электро-магнитного излучения на СВЧ, стабилизаторов температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой.
Изготовляются также терморезисторы специальной конструкции — с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.

Из терморезисторов с положительным температурным коэффициентом наибольший интерес представляют терморезисторы, изготовленные из твёрдых растворов на основе BaTiO3. Такие терморезисторы обычно называют позисторами. Известны терморезисторы с небольшим положительным температурным коэффициентом (0,5—0,7 %/К), выполненные на основе кремния с электронной проводимостью; их сопротивление изменяется с температурой примерно по линейному закону. Такие терморезисторы используются, например, для температурной стабилизации электронных устройств на транзисторах.

Стоит отметить, что график изображённый на рисунке «Вольт-Амперная характеристика (ВАХ) для позистора.» некорректен, так как неправильно расположены оси — нужно поменять их местами. Для получения ВАХ термистора график необходимо повернуть влево на 90 градусов и инвертировать по вертикали.

Литература

  • Шефтель И Т., Терморезисторы
  • Мэклин Э. Д., Терморезисторы
  • Шашков А. Г., Терморезисторы и их применение
  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 401-407. — 479 с. — 50 000 экз.

См. также

Категории:
  • Полупроводниковые приборы
  • Электронные компоненты
  • Датчики

Wikimedia Foundation. 2010.

принцип действия, схемы и т.д.

Термистор — это чувствительный к изменениям температуры элемент, изготовленный из полупроводникового материала. Он ведет себя как резистор, чувствительный к изменениям температуры. Термин «термистор» — это сокращение от термочувствительного резистора. Полупроводниковый материал — это материал, который проводит электрический ток лучше, чем диэлектрик, но не так хорошо, как проводник.

Термистор
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термистора

Подобно термометрам сопротивления термисторы используют изменения величины сопротивления в качестве основы измерений. Однако сопротивление термистора обратно пропорционально изменениям температуры, а не прямо пропорционально. По мере увеличения температуры вокруг термистора, его сопротивление понижается, а по мере понижения температуры его сопротивление увеличивается.

Хотя термисторы выдают такие же точные показания, как и термометры сопротивления, однако, термисторы чаще конструируются для измерений в более узком диапазоне. Например, диапазон измерений термометра сопротивления может быть в пределах от -32°F до 600°F, а термистор будет измерять от -10°F до 200°F. Диапазон измерений для конкретного термистора зависит от размера и типа полупроводникового материала, который в нем используется.

Как термометры, термисторы реагируют на изменения температуры пропорциональным изменением сопротивления, они оба часто используются в мостовых схемах.

Мостовая схема с термистором

В данной цепи изменение температуры и обратно пропорциональная зависимость между температурой и сопротивлением термистора будет определять направление протекания тока. Иначе цепь будет функционировать таким же образом как в случае с термометром сопротивления. По мере изменения температуры термистора, изменяется его сопротивление и мост становится неуравновешенным. Теперь через прибор будет протекать ток, который можно будет измерить. Измеряемый ток можно преобразовать в единицы измерения температуры с помощью переводной таблицы, или откалибровав соответствующим образом шкалу.

Терморезисторы. Виды и устройство. Работа и параметры — Электросам.Ру

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

На электрических схемах терморезисторы обозначаются:

Основные параметры
  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Применение термисторов:
  • Измерение температуры.
  • Бытовая техника: морозильники, фены, холодильники и т.д.
  • Автомобильная электроника: измерение охлаждения антифриза, масла, контроль выхлопных газов, системы торможения, температура в салоне.
  • Кондиционеры: распределение тепла, контроль температуры в помещении.
  • Отопительные котлы, теплые полы, печи.
  • Блокировка дверей в устройствах нагревания.
  • Электронная промышленность: стабилизация температуры лазерных фотоэлементов и диодов, а также медных обмоток катушек.
  • В мобильных телефонах для компенсации нагрева.
  • Ограничение тока запуска двигателей, ламп освещения, импульсных блоков питания.
  • Контроль наполнения жидкостей.
Применение позисторов:
  • Защита от короткого замыкания в двигателях.
  • Защита от оплавления при токовой перегрузке.
  • Для задержки времени включения импульсных блоков питания.
  • Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
  • В пускателях компрессоров холодильников.
  • Тепловая блокировка трансформаторов и двигателей.
  • Приборы измерения.
  • Автоматика управления техникой.
  • Устройства памяти информации.
  • В качестве нагревателей карбюраторов.
  • В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.
Похожие темы:

характеристики и параметры, принцип действия и классификация

Развитие электроники с каждым годом набирает обороты. Но, несмотря на новые изобретения, в электрических схемах надёжно работают устройства, сконструированные ещё в начале XX века. Один из таких приборов — термистор. Форма и назначение этого элемента настолько разнообразны, что быстро отыскать его в схеме удаётся только опытным работникам сферы электротехники. Понять, что такое термистор, можно лишь владея знаниями о строении и свойствах проводников, диэлектриков и полупроводников.

Описание прибора

Датчики температуры широко используются в электротехнике. Почти во всех механизмах применяются аналоговые и цифровые микросхемы термометров, термопары, резистивные датчики и термисторы. Приставка в названии прибора говорит о том, что термистор — это такое устройство, которое зависит от влияния температуры. Количество тепла в окружающей среде — главенствующий показатель в его работе. Благодаря нагреванию или охлаждению, меняются параметры элемента, появляется сигнал, доступный для передачи на механизмы контроля или измерения.

Термистор — это прибор электроники, у которого значения температуры и сопротивления связаны обратной пропорциональностью.

Существуют и другое его название — терморезистор. Но это не вполне правильно, так как на самом деле термистор является одним из подвидов терморезистора. Изменение теплоты может влиять на сопротивление резистивного элемента двумя способами: либо увеличивая его, либо уменьшая.

Поэтому термосопротивления по температурному коэффициенту подразделяются на РТС (положительные) и NTC (отрицательные). РТС — резисторы получили название позисторов, а NTC — термисторов.

Отличие РТС и NTC приборов состоит в изменении их свойств при воздействии климатических условий. Сопротивление позисторов прямо пропорционально количеству тепла в окружающей среде. При нагреве NTC — приборов его значение уменьшается.

Таким образом, повышение температуры позистора приведёт к росту его сопротивления, а у термистора — к падению.

Вид терморезистора на электрических принципиальных схемах похож на обыкновенный резистор. Отличительной чертой является прямая под наклоном, которая перечёркивает элемент. Тем самым показывая, что сопротивление не постоянно, а может изменяться в зависимости от увеличения или уменьшения температуры в окружающей среде.

Основное вещество для создания позисторов — титанат бария. Технология изготовления NTC — приборов более сложная из-за смешивания различных веществ: полупроводников с примесями и стеклообразных оксидов переходных металлов.

Классификация термисторов

Габариты и конструкция терморезисторов различны и зависят от области их применения.

Форма термисторов может напоминать:

  • плоскую пластину;
  • диск;
  • стержень;
  • шайбу;
  • трубку;
  • бусинку;
  • цилиндр.

Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

Классификация терморезисторов по числу градусов в Кельвинах:

  • сверх высокотемпературные — от 900 до 1300;
  • высокотемпературные — от 570 до 899;
  • среднетемпературные — от 170 до 510;
  • низкотемпературные — до 170.

Максимальный нагрев хоть и допустим для термоэлементов, но сказывается на их работе ухудшением качества и появлением значительной погрешности в показателях.

Технические характеристики и принцип действия

Выбор терморезистора для контролирующего или измерительного механизма проводят по номинальным паспортным или справочным данным. Принцип действия, основные характеристики и параметры термисторов и позисторов похожи. Но некоторые отличия все же существуют.

РТС — элементы оцениваются тремя определяющими показателями: температурной и статической вольт — амперной характеристикой, термическим коэффициентом сопротивления (ТКС).

У термистора список более широкий.

Помимо параметров, аналогичных позистору, показатели следующие:

  • номинальное сопротивление;
  • коэффициенты рассеяния, энергетической чувствительности и температуры;
  • постоянная времени;
  • температура и мощность по максимуму.

Из этих показателей основными, которые влияют на выбор и оценивание термистора, являются:

  • номинальное сопротивление;
  • термический коэффициент сопротивления;
  • мощность рассеяния;
  • интервал рабочей температуры.

Номинальное сопротивление определяется при конкретной температуре (чаще всего двадцать градусов Цельсия). Его значение у современных терморезисторов колеблется в пределах от нескольких десятков до сотен тысяч ом.

Допустима некоторая погрешность значения номинального сопротивления. Она может составлять не более 20% и должна быть указана в паспортных данных прибора.

ТКС зависит от теплоты. Он устанавливает величину изменения сопротивления при колебании температуры на одно деление. Индекс в его обозначении указывает на количество градусов Цельсия либо Кельвина в момент измерений.

Выделение теплоты на детали появляется из-за протекания по ней тока при включении в электрическую цепь. Мощность рассеяния — величина, при которой резистивный элемент разогревается от 20 градусов Цельсия до максимально допустимой температуры.

Интервал рабочей температуры показывает такое её значение, при котором прибор работает длительное время без погрешностей и повреждений.

Принцип действия термосопротивлений основан на изменении их сопротивления под влиянием теплоты.

Происходит это по нескольким причинам:

  • из-за фазового превращения;
  • ионы с непостоянной валентностью более энергично обмениваются электронами;
  • сосредоточенность заряженных частиц в полупроводнике распределяется другим образом.

Термисторы используются в сложных устройствах, которые применяются в промышленности, сельском хозяйстве, схемах электроники автомобилей. А также встречаются в приборах, которые окружают человека в быту — стиральных, посудомоечных машинах, холодильниках и другом оборудовании с контролем температуры.

Термистор — электронный компонент, области применения, для чего нужен

Термистор (терморезистор, temperature-sensitive resistor — eng.) – резистор на основе полупроводника, значительно уменьшающий своё сопротивление при понижении температуры. На основе этих данных можно измерять температуру в понятном для микроконтроллёров виде.

Основным материалом для изготовления термистора (с отрицательным ТКС*) служат поликристаллические оксидные полупроводники (окислы металлов).

Существует также разновидность терморезисторов (с положительным ТКС*) – позисторы. Их получают из титана вкупе с бариевой керамикой и редкоземельными металлами. Значительно увеличивают сопротивление при увеличении температуры. Основное применение – температурная стабилизация устройств на транзисторах.

Термистор изобретён Самуэлем Рубеном (Samuel Ruben) в 1930 году.

Термисторы применяются в микроэлектронике для контроля температур, тяжёлой промышленности, мобильных измерительных устройствах, выполняют функцию защиты импульсных блоков питания от больших зарядных токов конденсаторов & etc.

Очень часто встречаются на компьютерных комплектующих.

Позволяют измерять температуру процессоров, оперативной памяти, видеокарт, систем питания, чипсетов, жёстких дисков и прочих компонентов. Довольно надёжны, хотя не редок заводской брак, когда температура смещена на несколько десятков градусов, либо вообще находится в минусе.

Существуют также термисторы с собственным встроенным подогревом. Служат для ручного включения подогрева и подачи сигнала с резистора о изменении сопротивления, либо для контроля подачи питания сети (при отключении резистор перестанет нагреваться и изменит сопротивление).

Формы и размеры термисторов могут быть разными (диски, бусинки, цилиндры & etc).

Основными характеристиками полупроводникового термистора являются: ТКС*, диапазон рабочих температур, максимально допустимая мощность рассеяния, номинальное сопротивление.

Термисторы (большинство) выносливы к различным температурам, механическим нагрузкам, к износу от времени, а при определённой обработке и к агрессивным химическим средам.

*Температурный Коэффициент Сопротивления

характеристики и параметры, принцип действия и классификация

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Схемы подключения

Подключение термистора

Наиболее простым вариантом подключения является схема A. При выборе номинала резистора RA примерно равным сопротивлению термистора в районе измеряемых температур, значения U будут изменяться ближе к линейным, что обеспечит большую точность при интерполяции табличных значений.

Выбирая номиналы RA и термистора, следует учесть, что протекающий через термистор ток вызывает его нагрев и, как следствие, искажение показаний. Желательно чтобы мощность на термисторе не превышала 1 мВт. А значит, при напряжении U = 5В, RA должен быть как минимум, 10 килоОм. Сопротивление термистора в измеряемом диапазоне должно иметь примерно тот же порядок.

Схема B призвана ограничить мощность, рассеиваемую на термисторе.

Схемы C и D являются обратными к A и B. Их имеет смысл использовать, если требуется измерять низкие температуры, когда референтное значение АЦП (Uref) ниже U.

Подключение к АЦП микроконтроллера ATmega

Подключение АЦП микроконтроллеров ATmega

У контроллеров ATmega для снижения шумов используется отдельная линия питания для модуля АЦП. Инструкция рекомендует подключать эти входы через фильтр: индуктивность L = 10мкГн, и конденсатор C2 = 0,1мкФ.

Микроконтроллер может использовать либо внешнее референтное напряжение для АЦП, либо внутреннее (2,56В или 1,1В), либо, в качестве такового, использовать напряжение питания АЦП: AVCC. При использовании внешнего напряжения, оно должно быть подано на вход AREF. При использовании AVCC, или внутреннего напряжения 2,56В, между этим входом и землёй должен быть размещён конденсатор (на схеме C1). Инструкция не даёт чёткого указания для выбора ёмкости конденсатора, рекомендую использовать керамический конденсатор 0,1мкФ и более.

Для снижения измеряемых шумов, рекомендую термистор также подключать к фильтрованному напряжению параллельно AVCC, и настроить на использование этого напряжения в качестве референтного.

Дополнительно, для подавления шумов возникающих на линиях, можно установить конденсатор C3 в диапазоне 1-100нФ.

Следует учесть, что помимо модуля АЦП, вход AVCC запитывает также некоторые из портов ввода/вывода (как правило, на тех же выводах, что используются для АЦП). Использование этих портов на вывод и подключение к ним нагрузки может создать дополнительные шумы в работе АЦП.

Чтобы нивелировать шумы, возникающие на АЦП, рекомендую провести замеры несколько раз подряд и просуммировать полученные значения. В микроконтроллерах ATmega АЦП – 10-разрядный. Просуммировав результаты 64 подряд идущих измерений, результат остаётся в пределах 16-битного беззнакового целого, что не потребует дополнительной памяти для сохранения таблицы значений. При большем числе измерений также можно оставаться в пределах 16 бит, соответствующим образом сдвигая или деля результат.

Как проверить позистор в телевизоре

Позистор и резистор – элементы, которые способны менять свое сопротивление при нагревании. У резисторов наблюдаются незначительные повышения температуры. Позистор же блокирует поступающее к нему электрическое напряжение, поэтому его температура может сильно повышаться.

Чтобы проверить позистор на работоспособность, необходимо определить характеристики, которые считаются стандартными при работе. Если в них замечены отклонения, значит, произошла поломка. Характеристики следующие:

  1. Сопротивление номинальное. Это условие работает только при нормальной температуре помещения (не ниже 18 и не выше 27 градусов).
  2. Сопротивление определяют по точке, которая характеризует зависимость сопротивления от перепадов температуры в помещении. Этот параметр работает при повышении сопротивления в два раза относительно стандартного значения.
  3. Существует определенное максимальное напряжение. Если его превысить, есть риск, что оборудование сломается.
  4. Параметры токовой нагрузки делятся на несколько видов. Среди них: номинальное, переключение, максимум и опрокидывание. Они важны, если позистор будет использован в схеме высокой точности.

Алгоритм поиска неисправности

Визуальный осмотр

Любой ремонт начинается с внешнего осмотра платы

Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов

Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.

Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.

Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:

  1. Обрыв.
  2. Короткое замыкание.
  3. Несоответствие номиналу.

Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:

Проверка резистора на обрыв

Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.

Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв

Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром

Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.

Проверка короткого замыкания

Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.

Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:

  1. Измерить омметром, прозвонкой или другим прибором участок цепи.
  2. Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
  3. Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
  4. Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
  5. Проверить результаты работы на наличие КЗ.

Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:

Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.

На видео ниже наглядно показывается, как проверить резистор мультиметром:

Дополнительная литература

Если вы используете нестандартную термистор или вы просто хотите получить больше информации о том, как они работают, проверить эти страницы из:

Вычисление Термистор Beta / Значения Rz

Это, как вы вычислить ‘Beta’ и ‘Rz’ значения для термистора. Вам нужно будет с ними, если вы планируете использовать нестандартную термистор. На следующей странице содержится Javascript калькулятор, чтобы помочь сделать вещи легко.

Расчет PIC Температуры

ПИК использует конденсатор и заряжает его через терморезистором. Он посылает температуру обратно на хост в качестве чтения таймера. Эта страница описывает, как она рассчитывается и как правильно выбрать конденсатор.

Конструкция и разновидности терморезисторов

Термисторы с аксиальными выводами

SMD-термисторы

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы) температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для NTC-термисторов увеличение температуры приводит к падению их сопротивления.

Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO3, что даёт положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • номинального (при 25 °C) электрического сопротивления;
  • температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор и гальванически развязанный от него нагревательный элемент, задающий температуру терморезистора, и, соответственно, его электросопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого комбинированного прибора.{-7}}.

Технические характеристики

Каждое устройство обладает набором параметров, на которые нужно обращать внимание при выборе:

  1. Номинальное сопротивление. Это значение, полученное при фиксированной температуре (стандарт – 20 градусов).
  2. ТКС – обратимое изменение сопротивления на каждый градус.
  3. Максимальная мощность рассеяния. Иногда называют просто мощностью резистора. Показывает предельное значение, которое рассеивает ТР без необратимых последствий. Показатель актуален только в условиях соблюдения температурного режима.
  4. Температурная чувствительность. Определяется в определенном диапазоне и зависит от свойств полупроводникового материала.

Эти значения нужно учитывать для приборов с отрицательным температурным коэффициентом сопротивления.

Отрицательный коэффициент ТКС

Дело в том, что зависимость сопротивления от температуры у термисторов экспоненциальная. При этом номинальное сопротивление отдельного ТР может изменяться в больших пределах. Расчеты параметров полупроводниковых приборов сложнее – у позисторов принцип работы основан на линейной зависимости.

Конструкция и материалы

Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), цилиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток. Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 С.

Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора r (25 C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.

Устройство терморезистора.

При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок.

Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения.

Краткие сведения из теории о терморезисторах

Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры. Удельная электрическая проводимость полупроводников:

В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь.

Подвижность носителей при нагревании изменяется сравнительно слабо, а концентрация очень сильно. Поэтому температурная зависимость удельной проводимости полупроводников подобна температурной зависимости концентрации основных носителей, а электрическое сопротивление терморезисторов может быть определено по формуле:

где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника.

Экспериментально коэффициент температурной чувствительности определяют по формуле:

где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2. 

Рис. 1 График зависимости сопротивления полупроводникового резистора от температуры.

Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный коэффициент и называемые позисторами. При нагревании величина сопротивления терморезисторов убывает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение  аR приводится для температуры 20 оС.

Терморезистор характеризуется определенной тепловой инерцией, зависящей от химических свойств полупроводника и конструкции элемента (площади излучающей поверхности). Тепловая инерция оценивается постоянной времени т – временем, за которое разность между собственной температурой тела и температурой среды уменьшается в е раз. 

Если терморезистор, имеющий определённую температуру, поместить в среду с иной температурой, то его температура будет изменяться с течением времени по показательному закону:

С остыванием терморезистора сопротивление его увеличивается (рис. 2).

Рис 2. Процесс изменения температуры и сопротивления терморезистора при его остывании

Оцените статью:

Что такое термистор и как он работает? Для чего они нужны?

Термин термистор происходит от терминов «термический» и «резистор». Термистор — это тип резистора, сопротивление которого зависит от температуры; это термометр сопротивления. Они сделаны из оксида металла, которому придают форму бусинки, диска или цилиндра, а затем покрывают эпоксидной смолой или стеклом.

Термисторы плохо работают при экстремальных температурах, но они идеально подходят для измерения температуры в определенной точке; они точны, когда используются в ограниченном диапазоне температур i.е. в пределах 50 ° C от заданной температуры; этот диапазон зависит от сопротивления базы.

Термисторы просты в использовании, относительно дешевы и долговечны. Они обычно используются в цифровых термометрах, в транспортных средствах для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, и предпочтительны для приложений, где для безопасной работы требуются схемы защиты от нагрева или охлаждения.

Термистор встроен для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью.Например, термистор на 10 кОм является стандартным, встроенным в лазерные блоки.

Как работает термистор?

Существует два типа термисторов. Наиболее часто используется термистор с отрицательным температурным коэффициентом (NTC). Сопротивление NTC уменьшается с повышением температуры, и наоборот. При использовании термистора с положительным температурным коэффициентом (PTC) сопротивление увеличивается с увеличением температуры и наоборот; обычно используется как предохранитель.

Тип материала, используемого в термисторе, будет определять степень изменения сопротивления, которое изменяется в зависимости от температуры. Термисторы нелинейны, то есть связь между сопротивлением и температурой не будет прямой линией, она будет образовывать кривую на графике; где находится линия и насколько она меняется, зависит от того, как сделан термистор.

Как изменение сопротивления преобразуется в измеряемые данные?

Изменение сопротивления необходимо преобразовать в температуру, чтобы получить измеряемые данные.

Сравнение термисторов с другими датчиками

К другим типам используемых датчиков температуры относятся резистивные датчики температуры (RTD) и интегральные схемы. У каждого типа датчика есть свои плюсы и минусы, и приложение определит лучший инструмент для использования.

1. Термистор

Преимущества:

* кВт изображение

  • Долговечный
  • Чувствительный
  • Маленький
  • Относительно доступный
  • Лучше всего подходит для измерения температуры в одной точке

Недостатки:

  • Изогнутый выход
  • Ограниченный диапазон температур

2.Температурные датчики сопротивления

Преимущества:

  • Чрезвычайно точный
  • Линейный выход
  • Широкий диапазон температур

Недостатки:

Типы термисторов:

От микросхемы до стержневой формы, существует множество формы, доступные для поверхностного монтажа или встраивания.

Форма определяется типом контролируемого материала, т. Е. Твердым, жидким или газообразным. Они могут быть заключены в смолу / стекло, обожжены на феноле или окрашены в зависимости от области применения.Например, микросхемы термисторов устанавливаются на печатные платы, тогда как термистор с шариками может быть встроен в устройство. Независимо от области применения, максимальный контакт поверхности с контролируемым устройством и использование теплопроводящей (не электропроводящей) пасты или эпоксидного клея для соединения являются идеальным решением.

Как термистор работает в управляемой системе?

Контроллер температуры контролирует температуру термистора, который затем дает команду нагревателю или охладителю, когда нужно включить или выключить, чтобы поддерживать температуру датчика (термистора), а также целевого устройства.Они широко используются в таких приложениях, как кондиционирование воздуха, холодильники / морозильники с витринами и многое другое.

Через датчик проходит небольшой ток (ток смещения), который посылается контроллером температуры. Контроллер не может считывать сопротивление, поэтому его необходимо преобразовать в изменения напряжения, используя источник тока для подачи тока смещения через термистор для создания управляющего напряжения.

Чтобы гарантировать точность, термистор должен быть размещен рядом с устройством, требующим контроля температуры, встроенным или присоединенным.Если термистор расположен слишком далеко от устройства, то время тепловой задержки резко снизит точность измерения температуры, а размещение термистора слишком далеко от термоэлектрического охладителя (нагревает и охлаждает целевое устройство) снижает стабильность. Чем ближе термистор к устройству, тем быстрее он будет реагировать на изменения температуры и тем точнее будет, что очень важно, когда требуются точные температуры.

После определения размещения термистора необходимо определить сопротивление базового термистора, ток смещения и заданную (желаемую) температуру нагрузки на контроллере температуры.

Как определить, какое сопротивление и ток смещения использовать?

Термисторы классифицируются по величине сопротивления, измеренной при комнатной температуре, например, 25 ° C; производитель определяет определенные технические характеристики для оптимального использования.

Температуры и диапазон:
Термисторы лучше всего работают при измерении одной температуры в диапазоне от -55 ° C до + 114 ° C, то есть при измерении в пределах 50 ° C от окружающей среды; очень высокие или низкие температуры регистрируются неправильно.Лучше всего использовать термистор, когда заданная температура находится в середине диапазона.

В зависимости от тока смещения от контроллера каждый термистор имеет идеальный диапазон, то есть диапазон температур, в котором точно регистрируются небольшие изменения температуры. Чувствительность термистора зависит от температуры. Например, некоторые термисторы более чувствительны при более низких температурах, чем при более высоких температурах.

Пределы напряжения на входе термистора контроллера температуры:

Изготовитель указывает пределы напряжения обратной связи термистора с регулятором температуры.Лучше всего выбрать комбинацию термистора и тока смещения, которая обеспечивает напряжение в пределах диапазона, разрешенного регулятором температуры, а в идеале — в середине диапазона.

Вход обратной связи регулятора температуры должен быть под напряжением, которое исходит от сопротивления термистора; обычно это необходимо изменить на температуру. Самый точный способ преобразовать сопротивление термистора в температуру — использовать уравнение Стейнхарта-Харта.

Что такое уравнение Стейнхарта-Харта и как оно используется?

Уравнение Стейнхарта-Харта — это простой метод более простого и точного моделирования температур термисторов.Это был ручной расчет, который был разработан до компьютеров, но теперь может быть рассчитан автоматически с помощью компьютерного программного обеспечения.

Уравнение вычисляет фактическое сопротивление термистора как функцию температуры с максимальной точностью; чем уже диапазон температур, тем точнее будет расчет сопротивления.


Вкратце:

Термисторы изменяют сопротивление при изменении температуры; это резисторы, зависящие от температуры.Они идеально подходят для сценариев, в которых необходимо поддерживать одну определенную температуру, они чувствительны к небольшим изменениям температуры. Они могут измерять жидкость, газ или твердые тела, в зависимости от типа термистора.

Это лучший способ измерить и контролировать температуру термоэлектрического охладителя, как часть системы контроля температуры, благодаря их способности регулировать с небольшими приращениями. Чем ближе термистор к устройству, за которым нужно следить, тем лучше будет результат; они могут быть встроены в устройство или закреплены на поверхности.

Обратите внимание, что термисторы бывают самых разных типов. Если вам нужен термистор производства Pyrosales — предоставьте как можно больше информации, включая стоимость лампы. Свяжитесь с нами для получения дополнительной информации или позвоните нам по телефону 1300 737 976 .

Что такое термистор

Термистор — это термочувствительный резистор, который демонстрирует точное и предсказуемое изменение сопротивления, пропорциональное небольшим изменениям температуры тела. Насколько изменится его сопротивление, зависит от его уникального состава.Термисторы являются частью большой группы пассивных компонентов. И в отличие от своих активных компонентов, пассивные устройства не способны обеспечить усиление мощности или усиление схемы.

История термистора

Майкл Фарадей; Английский ученый впервые открыл концепцию термисторов в 1833 году, когда писал о полупроводниковом поведении сульфида серебра. В ходе своих исследований он заметил, что сопротивление сульфидам серебра снижается с повышением температуры.Это открытие позже привело к коммерческому производству термисторов в 1930-х годах, когда Самуэль Рубен изобрел первый коммерческий термистор. С тех пор технология улучшилась; прокладывая путь к совершенствованию производственных процессов; наряду с наличием более качественного материала.

Типы термисторов

Есть два типа термисторов. NTC или термисторы с отрицательным температурным коэффициентом и PTC или термисторы с положительным температурным коэффициентом .Разница в том, что термисторы NTC демонстрируют УМЕНЬШЕНИЕ сопротивления при повышении температуры тела, в то время как термисторы PTC демонстрируют УВЕЛИЧЕНИЕ сопротивления при повышении температуры тела.

Применения термисторов NTC и PTC включают:

  • Температурная компенсация
  • Измерение температуры
  • Контроль температуры
  • Ограничение пускового тока

Преимущества термисторов NTC и PTC

Термисторы

NTC отличаются прочностью, надежностью и стабильностью, и они лучше других типов датчиков температуры приспособлены для работы в экстремальных условиях окружающей среды и обладают помехоустойчивостью.

  • Компактный размер : варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика : Небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Рентабельность : Термисторы не только дешевле, чем другие типы датчиков температуры; Если у приобретенного термистора правильная кривая RT, никакая другая калибровка не требуется во время установки или в течение его срока службы.
  • Точечное совпадение : Возможность получения определенного сопротивления при определенной температуре.
  • Curve match : Сменные термисторы с точностью от + 0,1 ° C до + 0,2 ° C.

Общие рекомендации по выбору

Независимо от того, устанавливаете ли вы новую систему или просто заменяете устройство в существующей системе, вы должны рассмотреть эти ключевые моменты, прежде чем делать свой выбор, чтобы гарантировать желаемый результат.

  1. Базовое сопротивление : Если вы устанавливаете новое приложение, обязательно выберите правильное базовое сопротивление в соответствии с требованиями вашего приложения.Если вы заменяете термистор, убедитесь, что оно соответствует текущему сопротивлению базы.
  2. Кривая зависимости сопротивления от температуры : Если вы устанавливаете новое приложение, определите правильную зависимость сопротивления от кривой температуры. Если вы заменяете устройство, убедитесь, что совпадают данные с существующим термистором.
  3. Упаковка термистора : Убедитесь, что выбранная упаковка соответствует требованиям вашего приложения.

Для получения дополнительной помощи в процессе выбора посетите нашу страницу Выбор термисторов NTC

Термисторы NTC нелинейны, и, как следует из их названия, их сопротивление уменьшается с увеличением температуры.Явление, называемое самонагревом, может повлиять на сопротивление термистора NTC. Когда ток проходит через термистор NTC, он поглощает тепло, вызывая повышение собственной температуры.

Приложения

  • Измерение температуры
  • Температурная компенсация
  • Контроль температуры

Посетите нашу страницу, посвященную применению термисторов, чтобы получить дополнительную информацию обо всем, от расчета температурного коэффициента термистора до измерения температуры с помощью моста Уитстона.

Преимущества

  • Время отклика до (± 1%).
  • Точность: термисторы NTC имеют диапазон точности от 0,05 до 0,20 ˚C с долговременной стабильностью. Другие датчики температуры могут со временем дрейфовать.
  • Упаковка: Термисторы NTC настраиваются в соответствии с требованиями различных приложений.
  • Помехозащищенность: термисторы NTC обеспечивают превосходную устойчивость к электрическим помехам и сопротивление проводов больше, чем другие типы датчиков температуры.
  • Рентабельность: из-за своего небольшого размера и простоты производства термисторы с NTC и PTC оказываются очень экономичным выбором.

Производственный процесс NTC

Мы производим термисторы NTC, используя смесь оксидов металлов, таких как марганец, никель или медь; вместе со связующими и стабилизаторами. Материал прессуется в вафельные формы и спекается при экстремальных температурах; делая пластины готовыми либо к нарезке на термисторы меньшего размера, либо оставленным в виде дискового термистора.

Конфигурации

Термисторы

NTC доступны в различных конфигурациях, как указано ниже:

  • Диск и микросхема : Они поставляются с покрытием или без покрытия с лужеными медными выводами с быстрым откликом (± 1%). Также имеется широкий диапазон значений сопротивления для любой ситуации
  • Эпоксидное покрытие : Эпоксидное покрытие, нанесенное методом погружения и припаянное между тефлоновыми / ПВХ проводами с оболочкой. Их небольшие размеры позволяют легко устанавливать, и они могут быть согласованы по точкам или кривой
  • Glass-Encapsulated : отличный выбор при работе в экстремальных условиях окружающей среды.Конфигурации включают радиальные или осевые выводы
  • Зонд в сборе : Доступен в различных корпусах в зависимости от требований приложения
  • Поверхностный монтаж : Варианты конфигурации включают в себя навал, ленту и катушку, двусторонний и наматывающий с наконечниками из палладиевого серебра. Эти термисторы, изготовленные с никелевым барьером, отлично работают в прецизионных схемах

Словарь термисторов NTC

  • Константа рассеяния (D.C. или дельта d) : Константа рассеяния — это отношение, обычно выражаемое в милливаттах на градус C (мВт / ° C) при заданной температуре окружающей среды, между изменением рассеиваемой мощности в термисторе и результирующим изменением температуры тела
  • Постоянная материала (бета β) : Постоянная материала термистора NTC является мерой его сопротивления при одной температуре по сравнению с его сопротивлением при другой температуре. Его значение может быть рассчитано по приведенной ниже формуле и выражено в градусах кельвина (° k).β = ln (R @ T2 / R @ T1) / (T2- 1 — T 1-1)
  • Максимальная номинальная мощность : Максимальная номинальная мощность термистора — это максимальная мощность, выраженная в ваттах или милливаттах (Вт или мВт), которую термистор будет рассеивать в течение длительного периода времени при приемлемой стабильности его характеристик
  • Steinhart-Hart : Это эмпирическое выражение, которое было определено как лучшее математическое выражение для определения зависимости сопротивления от температуры термисторов NTC и узлов датчиков NTC
  • Температурный коэффициент сопротивления (Alpha, α) : Отношение при заданной температуре T скорости изменения сопротивления при нулевой мощности с температурой к сопротивлению при нулевой мощности термистора.Температурный коэффициент; обычно выражается в процентах на градус Цельсия (% / ˚C)
  • Температурный допуск : Температурный допуск равен тому, сколько изменений в inC можно ожидать от термистора при определенной температуре
  • Тепловая постоянная времени (T.C. или tau, t) : Время, необходимое термистору для изменения 63,2% от общей разницы между его начальной и конечной температурой корпуса, когда он подвергается ступенчатому изменению температуры в условиях нулевой мощности.Обычно выражается в секундах

Термисторы с положительным температурным коэффициентом (PTC)

предлагают пассивный подход к ограничению пускового тока. Используя термистор с положительным температурным коэффициентом, вы, вероятно, увидите снижение эксплуатационных расходов при более высокой надежности; без ущерба для защиты. Термисторы PTC испытывают изменение сопротивления при изменении температуры окружающей среды или при самонагреве устройства из-за поглощения входящего тока.А поскольку ограничение пускового тока зависит от указанного сопротивления термистора PTC, правильный выбор играет решающую роль в защите системы.

Типы термисторов PTC

  • Керамические переключающие термисторы PTC
  • Кремниевые кремниевые термисторы PTC
  • Полимерные термисторы PPTC

Процесс производства термистора PTC

Производственный процесс PTC требует тщательного контроля как материала, так и размера частиц, чтобы производить качественные устройства с надлежащими характеристиками переключения и номинальными напряжениями.

Общие приложения термистора PTC

  • Задержка по времени
  • Размагничивание
  • Запуск двигателя
  • Максимальная токовая защита

Если вы хотите узнать больше о термисторах с положительным температурным коэффициентом и о том, чем они отличаются от термисторов с отрицательным температурным коэффициентом, посетите Википедию

.

Керамические переключающие термисторы с положительным температурным коэффициентом

Термисторы этого типа демонстрируют сильно нелинейную кривую зависимости сопротивления от температуры. И поскольку термисторы PTC обладают сопротивлением с положительным температурным коэффициентом, они показывают незначительную часть отрицательного температурного коэффициента, пока не достигнут критической температурной точки, известной как «кюри» или переходное состояние.Когда это произойдет, устройство начнет показывать положительный температурный коэффициент и значительное увеличение сопротивления.

Производственный материал

Керамические переключающие термисторы PTC

изготавливаются из поликристаллического керамического материала, содержащего титанат бария, который был легирован редкоземельными материалами для придания ему сопротивления с положительным температурным коэффициентом.

Приложения

  • Защита от перегрева
  • Защита от перегрузки по току
  • Температурная компенсация
  • Задержка по времени

Преимущества термисторов PTC для ограничения пускового тока

Чтобы продемонстрировать универсальность термисторов PTC, ниже приведены некоторые примеры, в которых их использование в качестве ограничителя пускового тока является оптимальным выбором.

  • Температура окружающей среды выше 65 ° C.
  • Температура окружающей среды ниже нуля ° C.
  • Время возврата должно быть близко к нулю ° C.
  • Проблемы с коротким замыканием.

Посетите Термисторы PTC для ограничения пускового тока, чтобы увидеть, как термистор PTC сравнивается с термистором NTC, и получить дополнительную информацию об особых обстоятельствах, когда термистор PTC явно является лучшим выбором для ограничения пускового тока.

Конфигурации

  • С радиальными выводами
  • Крепление на поверхность

Словарь термисторов PTC

  • Константа рассеяния (постоянный ток или дельта d) : Константа рассеяния — это отношение, обычно выражаемое в милливаттах на градус C (мВт / ° C) при заданной температуре окружающей среды, изменения рассеиваемой мощности в термисторе к результирующее изменение температуры тела.
  • Теплоемкость (Hc) : Теплоемкость термистора — это количество тепла, необходимое для повышения температуры его тела на один градус Цельсия (1 ° C).Теплоемкость — это общий показатель стандартных термисторов PTC, который выражается в ватт-секундах на кубический дюйм на градус Цельсия (ватт-сек / м3 / ° C). Отношение теплоемкости на единицу объема стандартных термисторов PTC составляет примерно 50 Вт-сек / м3 / ° C.
  • Максимальный ток в установившемся режиме (Imax) : Максимальный ток в установившемся режиме — это номинальное значение максимального тока, обычно выражаемого в амперах (A), который может проводиться термистором NTC, ограничивающим броски тока, в течение длительного периода времени.
  • Рабочая температура : Рабочая температура — это диапазон температур, в котором термистор может работать без сбоев.
    Switch Current: Минимальный ток, обычно выражаемый в амперах (A), который при прохождении через стандартный термистор PTC требуется для переключения в состояние с высоким сопротивлением.
  • Температура переключения : Температура стандартного термистора PTC, при которой его сопротивление начинает быстро увеличиваться.
  • Время переключения : Время, необходимое для переключения PTC в состояние высокого сопротивления.
  • Температура переключения переключателя : Двойное сопротивление нулевой мощности PTC при 25 ˚C.

Кремниевые PTC-термисторы

Silicon « Silistor » PTC-термисторы — это линейные устройства, которые демонстрируют значительное сопротивление с положительным температурным коэффициентом. Однако, если температура превысит 150 ° C, они, скорее всего, будут иметь отрицательный температурный коэффициент.

Приложения

  • Температурная компенсация
  • Датчик температуры

Преимущества

Что такого особенного в кремниевых термисторах? Во-первых, кремний по своей природе является стабильным материалом, поэтому, если вам нужен термистор, который обеспечивает стабильность и более длительный срок службы, кремниевые термисторы будут хорошим выбором.

Другие преимущества включают:

  • Высокотемпературный коэффициент
  • Несколько конфигураций
  • Высокая надежность

Производственный материал

Материалы, используемые для изготовления кремниевых термисторов, представляют собой композит из полимерных материалов, таких как полупроводниковый монокристаллический кремний, а также других проводящих частиц.

Конфигурации

  • Чип SMD
  • Эпоксидная
  • Стекло-инкапсулированный
  • Зонд в сборе

Полимерные термисторы PPTC

Полимерный термистор (PPTC) — это термистор с положительным температурным коэффициентом, также известный как «самовосстанавливающийся предохранитель », и он демонстрирует нелинейный эффект PTC. Поскольку они являются термически активируемыми устройствами, любые колебания окружающей температуры будут влиять на работу термистора.В нормальных условиях эксплуатации полимерный PTC демонстрирует минимальное сопротивление по сравнению с остальной частью цепи и практически не влияет на характеристики цепи в целом.

Однако, если система переходит в состояние отказа, PPTC реагирует переходом в состояние с высоким сопротивлением или состояние « отключение» . После устранения условий отказа PPTC сбрасывается, и схема возвращается в нормальное рабочее состояние. Посетите Википедию для получения дополнительной информации о сбрасываемых предохранителях и о том, как они работают.

Приложения

  • Управление технологическим процессом и защита медицинского оборудования
  • Бытовая электроника
  • Автомобильная промышленность
  • Telcom

Производственный материал

Непроводящие кристаллические органические материалы, смешанные с частицами сажи, используются для создания полимерных термисторов, благодаря чему они становятся проводящими.

Преимущества

Вам следует рассмотреть термисторы PPTC, если вы часто сталкиваетесь с перегрузками по току или если приложение требует постоянного времени безотказной работы.Вы не можете отрицать, что стоимость компонентов — не единственная проблема. Спрос на более мелкие технологии, такие как носимые устройства, никуда не денется, и защита схем имеет решающее значение. Стоимость гарантийного ремонта может быстро перевесить стоимость датчиков, которые их защищают. Если вам необходимо определить надежность термистора для вашего приложения, посетите нашу страницу «Надежность термистора», чтобы просмотреть формулу для расчета надежности термистора PPTC.

Другие преимущества включают:

  • Сбрасываемый
  • Компактный размер
  • Минимальная потеря мощности.
  • Низкое сопротивление
  • Конфигурации
  • С радиальными выводами
  • Крепление на поверхность

Посетите Википедию, чтобы узнать больше о полимерных термисторах PPTC.

Полимерный термистор PPTC Глоссарий

  • Удерживающий ток : Удерживающий ток — это максимальный установившийся ток, который может пройти через сбрасываемый предохранитель PPTC при 23 ˚C, не вызывая его срабатывания.
  • Максимальный ток : Максимальный ток — это максимальный ток повреждения, который может протекать через PPTC.
  • Максимальное начальное сопротивление : Это максимальное сопротивление PPTC в исходном состоянии при 23 ˚C.
  • Максимальное напряжение : Максимальное напряжение — это максимальное значение напряжения, которому может подвергаться PPTC.
  • Минимальное начальное сопротивление : Это минимальное сопротивление PPTC в его начальном состоянии при 23 ˚C.
  • Post Trip R1 : Это максимальное сопротивление PPTC через час после срабатывания.
  • Рассеиваемая мощность : Рассеиваемая мощность — это количество рассеиваемой мощности, когда PPTC находится в отключенном состоянии.
  • Время до отключения : Это время, необходимое PPTC для переключения в состояние отключения после подачи определенного тока.
  • Ток отключения : Ток отключения — это минимальный ток, протекающий через PPTC, который вызывает его отключение при 23 ˚C.

Ресурсы термистора

Узнайте больше о термисторах и их использовании. Следуйте ссылкам на другие ценные ресурсы и информацию.

Математика термистора

Зонд в сборе и кривые NTC RT

Таблица температурных коэффициентов

Мы здесь, чтобы помочь

Наша миссия компании Ametherm — обеспечить вас всеми необходимыми инструментами и знаниями для правильного выполнения работы с первого раза.Вот почему наша команда инженеров всегда готова помочь вам. Свяжитесь с нами по телефону 800-808-2434 или 775-884-2434 , где по вы получите техническую поддержку в реальном времени. Вы также можете в любое время зайти в Интернет, чтобы задать нам вопрос. Ваш успех это и наш успех!

Оцените нашу продукцию

Мы знаем, что выбор подходящего термистора для работы очень важен, поэтому мы рекомендуем вам протестировать нашу продукцию, прежде чем вы решите купить что-то, что окажется неправильным решением.Свяжитесь с нами, чтобы заказать бесплатный образец, и мы бесплатно отправим его по США и Канаде. Позвоните нам по телефону 800-808-2434 или 775-884-2434 или нажмите здесь, чтобы начать.

Наши продукты доступны для немедленной доставки через наших дистрибьюторов. Пожалуйста, посетите их сайты для получения дополнительной информации о продукте.

Что такое термистор? И как они используются?

Что такое термистор? И как они используются?

Что такое термистор? Слово Термистор происходит от слов ТЕРМОЧувствительный резистор.

Термистор — это термочувствительный керамический полупроводник, сопротивление которого изменяется при изменении температуры.

Как работает термистор?

Существует два типа термисторов: термисторы с отрицательным температурным коэффициентом (отрицательный температурный коэффициент) и термисторы с положительным температурным коэффициентом.

Термисторы

NTC (отрицательный температурный коэффициент) обладают множеством преимуществ в области измерения температуры, включая чувствительное измерение изменения температуры (изменение сопротивления от -3% до -6% при повышении температуры на 1 ° C). , что делает его очень точным средством измерения температуры.

Термистор PTC — это термочувствительный резистор, сопротивление которого значительно увеличивается с температурой. Термисторы PTC обычно используются в защите двигателей в качестве устройств ограничения тока.

Общие приложения термистора

Ответив на вопрос « Что такое термистор ?» Теперь мы можем дать базовый общий обзор того, как они используются: —

Термисторы используются в качестве датчиков температуры. Их можно найти в бытовых приборах, таких как пожарная сигнализация, духовки и холодильники.Они также используются в цифровых термометрах и во многих автомобильных приложениях для измерения температуры.

Еще несколько коммерческих применений термисторов включают приложения в промышленной электронике, медицинской электронике, обработке пищевых продуктов, аэрокосмической промышленности, связи и приборостроении.

Какие типы термисторов может предложить Variohm?

У нас есть ряд термисторов, которые были разработаны и одобрены для различных промышленных применений.Ознакомьтесь с нашим ассортиментом термисторов и термисторов NTC . Мы также предлагаем множество различных типов датчиков температуры , ознакомьтесь со всеми здесь .

Термисторы

— обзор | Темы ScienceDirect

2 АНЕМОМЕТРИЯ ТЕРМИСТОРА

Термисторы могут обеспечивать измерения скорости в ответ на изменения теплопередачи, которая для данной геометрии в основном зависит от скорости и температуры воздуха.Преимущества термисторов перед другими термоанемометрами, такими как термоанемометры, включают точность при низких скоростях, надежность и стабильность. Небольшой размер и низкая стоимость термисторов означает, что, несмотря на то, что они являются устройством вмешательства, их можно использовать в большом количестве по всей плоскости радиатора. Высокое разрешение устройства, которое можно получить с помощью термисторной анемометрии, рассматривается как главное преимущество этого метода.

Термисторы — это полупроводники, которые демонстрируют значительные и точные изменения электрического сопротивления в ответ на изменения температуры их тела.Термисторы, которые использовались во время этого исследования, были термисторами с герметизированными стеклянными шариками с отрицательным температурным коэффициентом (NTC).

Расмуссен [3] показал, что термисторы NTC демонстрируют следующее соотношение между температурой и сопротивлением ( R T ):

RT = R0eβ1T − 1T0

Где R 0 — эталонное сопротивление термистора. при эталонной температуре T 0 , и β — постоянная материала.Температурный коэффициент сопротивления α равен:

[3] α = 1RdRdT = −βT2

Если питание подается на термистор посредством приложения электрического тока I , рассеиваемая мощность составляет P, и температура окружающей жидкости составляет T e , , тогда уравнение теплопередачи принимает следующий вид:

[3] cdTdt = P − κT − Te

Где c — теплоемкость, которая является свойством материала и конструкции термистора, а κ — коэффициент рассеяния.

Коэффициент рассеяния можно интерпретировать как мощность, необходимую для повышения температуры термистора на один градус выше температуры окружающей жидкости. Температура термистора и, следовательно, его сопротивление будут реагировать на изменение коэффициента рассеяния. Именно эта характеристика делает термисторы подходящими для таких применений, как анемометрия. Если термистор используется в однонаправленном ламинарном потоке с постоянными другими свойствами жидкости, коэффициент рассеяния можно рассматривать только как функцию скорости жидкости.Следуя Расмуссену [3]:

T = Te + Pκ (U)

Если эталонное сопротивление термистора ( R e ) измеряется при температуре жидкости, температуру корпуса термистора можно выразить следующим образом:

T = αeTe2αeTe −lnRRe

Приравнивание двух приведенных выше уравнений дает:

κ (U) = PTeαeTelnRRe − 1

Это уравнение обеспечивает метод расчета значения коэффициента рассеяния в терминах просто определяемых значений. К сожалению, трудно найти аналитические решения для взаимосвязи между скоростью жидкости и коэффициентом рассеяния, поскольку форма, соотношение материалов и, следовательно, тепловые характеристики значительно различаются между отдельными термисторами.Измерение постоянной рассеяния или зависимости между сопротивлением термистора и скоростью потока лучше всего достигается эмпирическим путем с помощью калибровки.

Как работают термисторы? | Sciencing

Термисторы, как компоненты схемы, сопротивление которых зависит от температуры, находят широкое применение в электронной промышленности. Все материалы обладают сопротивлением, и в некоторой степени это сопротивление зависит от температуры для всех материалов. В проводнике или обычном резисторе это изменение незначительно, но в термисторе изменение температуры на один градус может вызвать изменение сопротивления на 100 Ом или более.Каждый термистор работает в определенном температурном диапазоне.

Термисторы NTC и PTC

Сопротивление термистора с отрицательным температурным коэффициентом, который является наиболее распространенным типом термистора, уменьшается при повышении температуры; у термистора с положительным температурным коэффициентом увеличивается с повышением температуры. Производители формируют термисторы различной формы для использования в различных типах цепей. Самым распространенным является термистор с шариком, который выглядит как обычный резистор с цилиндрическим корпусом и выводами, выходящими с каждого конца.Варианты включают термисторы в форме диска, микросхемы, стержня и шайбы. Термисторы — это небольшие, прочные твердотельные устройства, не очень дорогие в производстве, поэтому они имеют широкий спектр применения.

Характеристики термисторов NTC

Термисторы

NTC классифицируются в соответствии с их значениями R25 или сопротивлением при 25 градусах Цельсия, а также временем реакции на изменение температуры и номинальной мощностью по току. Эти значения определяются полупроводниковыми материалами, используемыми при производстве.Эти материалы включают оксиды марганца, никеля, меди, кобальта или железа, которые измельчаются в порошок, смешиваются со связующим и подвергаются термообработке для получения керамического материала. Выводы могут быть вставлены в суспензию перед термообработкой или добавлены после нее. Они стратегически разнесены, чтобы использовать проводящие свойства термисторной среды.

Два типа термисторов с положительным температурным коэффициентом

В термисторе с отрицательным температурным коэффициентом сопротивление уменьшается с повышением температуры, поскольку тепло заставляет полупроводящие материалы в суспензии выделять больше проводящих электронов.Однако в термисторе PTC температура снижает проводимость материала. Термистор PTC может быть изготовлен из кремния, который называют «силистором», или из поликристаллического керамического материала, легированного для придания ему полупроводимости. Оба становятся более устойчивыми к прохождению тока при повышении температуры, но во втором случае соотношение между сопротивлением и температурой быстро меняется при пороговой температуре, и устройство быстро становится очень устойчивым. Этот тип термистора известен как переключающий термистор.

Применение термисторов

Свойства термисторов PTC полезны для защиты от перегрузки по току, поскольку сопротивление вызывает перегрев самого устройства. Они также используются в саморегулирующихся нагревателях, в качестве переключателей с выдержкой времени и в двигателях для отключения тока зажигания при запуске двигателя. Термисторы NTC, которые могут точно контролировать температуру, имеют больше применений, чем термисторы PTC. Они входят в состав многих типов термостатов, как в строительстве, так и в автомобилях, и поскольку они также могут определять присутствие жидкостей по температурным характеристикам, они используются в насосах для скважин и других типах переключателей.Термисторы NTC обычно являются компонентами цифровых термометров и датчиков, которые регулируют мощность устройства в зависимости от температуры.

Определение термистора, символ и типы

А резистор это тип пассивного компонента, который ограничивает поток электрический ток до определенного уровня. Резисторы в основном делятся на два типа: постоянные резисторы и переменные резисторы.

Фиксированный резистор — это тип резистора, который ограничивает только протекает электрический ток, но не контролирует (увеличивает и уменьшение) протекания электрического тока.С другой стороны, переменный резистор — это тип резистора, который управляет (увеличивает и уменьшает) поток электрического тока вручную уменьшая и увеличивая его сопротивление.

В постоянных или переменных резисторах, если мы вручную установите сопротивление как постоянное, сопротивление изменится слегка при повышении или понижении температуры. Однако по используя специальный тип резистора, мы можем быстро изменить сопротивление резистора при изменении температуры.Этот специальный тип резистора называется термистором.

Спрос на точные компоненты или устройств (термисторов) в последние годы увеличилось. Термисторы точно измеряют температуру и работают эффективно в течение многих лет.

Термистор определение

Термистор — это тип резистора, сопротивление быстро меняется при небольшом изменении температуры.Другими словами, это тип резистора, в котором изменяется поток электрического тока быстро при небольшом изменении температуры. Слово термистор происходит от словосочетания «тепловой» и «резистор».

Термистор символ

Американский стандарт и международный Стандартный символ термистора показан на рисунке ниже.

Типы термисторов

Термисторы делятся на два типа в зависимости от того, как они себя ведут при изменении температуры:

  • Термисторы с отрицательным температурным коэффициентом (NTC)
  • Термисторы с положительным температурным коэффициентом (PTC)
  • Отрицательный Термисторы с температурным коэффициентом (NTC)

Сопротивление NTC (отрицательное Температурный коэффициент термистора уменьшается с увеличением температура.Другими словами, электрический ток проходит через термисторы с отрицательным температурным коэффициентом (NTC) увеличивается с повышением температуры.

Большинство термисторов NTC изготовлены из прессованный диск, стержень или литая микросхема из полупроводникового материала, такого как спеченные оксиды металлов.

В термисторах NTC носители заряда генерируется допинг-процессом.Из-за этого процесса допинга генерируется большое количество носителей заряда.

Если температура немного повышена, большое количество носителей заряда (бесплатно электронов) сталкивается с валентными электроны других атомов и дает им достаточно энергии. Валентные электроны, которые набирают достаточную энергию, разрушаются. связь с родительским атомом и свободно перемещается с одного места в другое место.Электроны, которые свободно перемещаются из одного места в другое место называются свободными электронами. Эти электроны переносить электрический ток при перемещении с одного места на другое место. Валентный электрон, который становится свободным электрон снова столкнется с другими валентными электронами и делает их свободными.

Так же небольшое повышение температуры производит миллионы свободных электронов.Больше свободных электронов или Носители заряда означают больше электрического тока. Таким образом, небольшой повышение температуры приведет к быстрому снижению сопротивления Термистор NTC и пропускает большое количество электрического тока.

  • Положительных Термисторы с температурным коэффициентом (PTC)

Сопротивление положительной температуре Коэффициент термистора (PTC) увеличивается с увеличением температура.Наибольший положительный температурный коэффициент (PTC) термисторы изготовлены из легированной поликристаллической керамики. Термисторы с положительным температурным коэффициентом (PTC) также называемые позисторами.

История термисторов

Первый NTC (отрицательная температура Коэффициент полезного действия) термистор был открыт Майклом Фарадеем. в 1833 г.Майкл Фарадей заметил, что сопротивление серебра сульфид быстро уменьшается при повышении температуры.

Преимущества и недостатки термисторов

Преимущества термисторов

  • Сопротивление термисторов быстро меняется при малых изменение температуры.
  • Низкая стоимость
  • Малый размер
  • Термисторы легко переносить с места на место место.

Недостатки термисторов

  • Термисторы не подходят для широкого рабочего диапазона
  • Зависимость сопротивления от температуры равна нелинейный.

Приложения термисторов

  • Термисторы используются в медицинском оборудовании
  • Термисторы используются в хотэндах 3D-принтеров.
  • Термисторы используются в бытовой технике, например, в духовках, в прическах. сушилки, тостеры, холодильники и др.
  • Современные кофеварки используют термисторы для точного измерения и контролировать температуру воды.
  • Термисторы используются в компьютерах.
  • Термисторы используются в качестве датчиков температуры.
  • Термисторы используются в качестве ограничителя пускового тока.


Что такое термистор? | ШИБАУРА ЭЛЕКТРОНИКС КО., ЛТД.

Что такое термистор? | ШИБАУРА ЭЛЕКТРОНИКС КО., ЛТД.

ЗАКРЫТЬ

Термистор — это электрический компонент, и его сила, препятствующая прохождению тока (то есть сопротивление), зависит от температуры.Когда температура увеличивается (или уменьшается), сопротивление становится ниже (или выше) *. Следовательно, ток, протекающий через термистор, представляет собой текущую температуру. Поскольку термисторы обладают высокой термочувствительностью, небольшими размерами и устойчивы к ударам и вибрации, они используются в различных продуктах, поддерживающих нашу повседневную жизнь. Вот три знакомых нам продукта.

* Примечание) Технически это называется отрицательным температурным коэффициентом (NTC).

а) Кондиционер

Кондиционер понижает температуру в помещении за счет поглощения тепла и подачи холодного воздуха с внутренним блоком, а также отвода поглощенного тепла через наружный блок.Для контроля температуры как во внутреннем, так и во внешнем блоках используются термисторы.

б) Автомобиль

В автомобиле обычно используется около 15 термисторов. Некоторые из них используются для проверки двигателя и внешней температуры. Они помогают оптимизировать сгорание внутри двигателя.

в) Кофеварка

Кофеварка, которую часто можно увидеть в кафе или дома, использует термистор для надлежащего контроля температуры горячей воды.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *