+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Релейная защита и автоматика — Википедия

Релейная защита — комплекс устройств, предназначенных для быстрого, автоматического (при повреждениях) выявления и отделения от электроэнергетической системы повреждённых элементов этой электроэнергетической системы в аварийных ситуациях с целью обеспечения нормальной работы всей системы. Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Релейная защита (РЗ) осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания).

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.

Современные устройства защиты могут строиться на схеме, включающей в себя программируемый (микро)контроллер.

Селективность (избирательность)[править | править код]

Селективность — свойство релейной защиты, характеризующее способность выявлять именно поврежденный элемент электроэнергетической системы и отключать этот элемент от исправной части электроэнергетической системы (ЭЭС). Защита может иметь абсолютную или относительную селективность. Защиты с абсолютной селективностью действуют принципиально только при повреждениях в их зоне. Защиты с относительной селективностью могут действовать при повреждениях не только в своей, но и в соседней зоне. А селективность отключения поврежденного элемента ЭЭС при этом обеспечивается дополнительными средствами (например, выдержкой времени срабатывания).

Быстродействие[править | править код]

Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.

Чувствительность[править | править код]

Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы. Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).

Надёжность[править | править код]

Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов, при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено. Иными словами, надежность — это свойство релейной защиты, характеризующее её способность выполнять свои функции в любых условиях эксплуатации. Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).

Пусковые органы[править | править код]

Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.

Измерительные органы[править | править код]

Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.

Логическая часть[править | править код]

Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.

Пример логической части релейной защиты[править | править код]

Катушка реле тока K1 (контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока ТА. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения уставки реле K1, оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами +EC и -EC замкнётся, и запитает сигнальную лампу HLW.

Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.

Для обеспечения надежной и экономичной работы энергосистем и энергетического оборудования, а также бесперебойного электроснабжения потребителей в электросетевых организациях проводится комплекс организационно-технических мероприятий по оснащению, эксплуатации и поддержанию на высоком техническом уровне устройств релейной защиты, электроавтоматики, дистанционного управления и сигнализации, сокращенно именуемых устройствами

РЗА.

В России эта деятельность регулируется отраслевыми нормативно-техническими документами, основными из которых являются:

Для осуществления указанного комплекса мероприятий на всех уровнях управления электроэнергетики России в соответствующих организациях создаются службы релейной защиты, автоматики и измерений (служба РЗА — СРЗА, служба РЗАИ — СРЗАИ), в подразделениях нижнего уровня (производственные отделения, предприятия электрических сетей (ПЭС)) — местные службы РЗАИ (МС РЗАИ), на электростанциях и каскадах ГЭС — службы РЗАИ или электротехнические лаборатории (ЭТЛ).

  • Федосеев А. М. «Релейная защита энергетических систем»: Учебник для вузов. М.: «Энергия», 1976. − 560 с. с ил.
  • Чернобровов Н. В., Семенов В. А. «Релейная защита энергетических систем»: Учеб. пособие для техникумов. — М.: Энергоатомиздат, 1998. −800с.: ил.
  • Павлов, Г. М. «Автоматизация энергетических систем» : Учеб.пособие / Г. М. Павлов .— Ленинград : Изд-во Ленингр. ун-та, 1977 .— 237 с. : ил .— Библиогр.: с.233-234.
  • Булычев, А. В. Релейная защита электроэнергетических систем: учебное пособие / А. В. Булычев, В. К. Ванин, А. А. Наволочный, М. Г. Попов. — СПб.: Изд-во Политехн. ун-та, 2008. — 211 с.
  • РД 153-34.0-04.418-98 «Типовое положение о службах релейной защиты и электроавтоматики».
  • Шнеерсон Э. М. «Цифровая релейная защита» — М.: Энергоатомиздат, 2007. −549с.: ил.

ru.wikipedia.org

Релейная защита: назначение, виды, устройство

В соответствии с требованиями правил технической эксплуатации электроустановок (сокращенно ПТЭ) силовое оборудование электросетей, подстанций и самих электрических станций должно быть обязательно защищено от токов КЗ и сбоев нормального режима работы. В качестве средств защиты используются специальные устройства, основным элементом которых является реле. Собственно, поэтому они так и называются – устройства релейной защиты и электроавтоматики (РЗА). На сегодняшний день существует множество аппаратов, способных в кратчайшие сроки предотвратить аварию на обслуживаемом участке электросети или в крайнем случае предупредить персонал о нарушении рабочего режима. В этой статье мы рассмотрим назначение релейной защиты, а также ее виды и устройство.

Для чего она нужна?

Первым делом расскажем о том, зачем нужно использовать РЗА. Дело в том, что существует такая опасность, как возникновение тока КЗ в цепи. В результате КЗ очень быстро разрушаются токопроводящие части, изоляторы и само оборудование, что влечет за собой не только возникновение аварии, но и несчастного случая на производстве.

Помимо короткого замыкания может возникнуть перенапряжение, утечка тока, выделение газа при разложении масла внутри трансформатора и т.д. Для того чтобы своевременно обнаружить опасность и предотвратить ее, используются специальные реле, которые сигнализируют (если сбой в работе оборудования не представляет угрозы) либо мгновенно отключают питание на неисправном участке. В этом и заключается основное назначение релейной защиты и автоматики.

Основные требования к защитным устройствам

Итак, по отношению к РЗА предъявляются следующие требования:

  1. Селективность. При возникновении аварийной ситуации должен быть отключен только тот участок, на котором обнаружен ненормальный режим работы. Все остальное электрооборудование должно работать.
  2. Чувствительность. Релейная защита должна реагировать даже на самые минимальные значения аварийных параметров (заданы уставкой срабатывания).
  3. Быстродействие. Не менее важное требование к РЗА, т.к. чем быстрее реле сработает, тем меньше шанс повреждения электрооборудования, а также возникновения опасности.
  4. Надежность. Само собой аппараты должны выполнять свои защитные функции в заданных условиях эксплуатации.

Простыми словами назначение релейной защиты и требования, предъявляемые к ней, заключаются в том, что устройства должны контролировать работу электрооборудования, своевременно реагировать на изменения рабочего режима, мгновенно отключать поврежденный участок сети и сигнализировать персонал об аварии.

Классификация реле

При рассмотрении данной темы нельзя не остановиться на видах релейной защиты. Классификация реле представлена следующим образом:

  • Способ подключения: первичные (включаются в цепь оборудования напрямую) и вторичные (подключение осуществляется через трансформаторы).
  • Вариант исполнения: электромеханические (система подвижных контактов расцепляет схему) и электронные (отключение происходит с помощью электроники).
  • Назначение: измерительные (осуществляют замер напряжения, силы тока, температуры и других параметров) и логические (передают команды другим устройствам, осуществляют выдержку времени и т.д.).
  • Способ воздействия: релейная защита прямого воздействия (связана механически с отключающим аппаратом) и косвенного воздействия (осуществляют управление цепью электромагнита, который отключает питание).

Что касается самих видов РЗА, их множество. Сразу же рассмотрим, какие бывают разновидности реле и для чего они используются.

  1. Максимальная токовая защита (МТЗ), срабатывает если ток достигает заданной производителем уставки.
  2. Направленная максимальная токовая защита, помимо уставки осуществляется контроль направления мощности.
  3. Газовая защита (ГЗ), используется для того, чтобы отключать питание трансформатора в результате выделения газа.
  4. Дифференциальная, область применения – защита сборных шин, трансформаторов, а также генераторов за счет сравнения значений токов на входе и выходе. Если разница больше заданной уставки, релейная защита срабатывает.
  5. Дистанционная (ДЗ), отключает питание, если обнаружит уменьшение сопротивления в цепи, что происходит в том случае, если возникает ток КЗ.
  6. Дистанционная защита с высокочастотной блокировкой, используется для отключения ВЛ при обнаружении короткого замыкания.
  7. Дистанционная с блокировкой по оптическому каналу, более надежный вариант исполнения предыдущего вида защиты, т.к. влияние электрических помех на оптический канал не такое значительное .
  8. Логическая защита шин (ЛЗШ), также используется для выявления КЗ, только в этом случае на шинах и фидерах (питающих линиях, отходящих от шин подстанции).
  9. Дуговая. Назначение – защита комплектных распределительных устройств (КРУ) и комплектных трансформаторных подстанций (КТП) от возгорания. Принцип работы основан на срабатывании оптических датчиков в результате повышения освещенности, а также датчиков давления при повышении давления.
  10. Дифференциально-фазная (ДФЗ). Применяются для контроля фаз на двух концах питающей линии. Если ток превышает уставку, реле срабатывает.

Отдельно хотелось бы также рассмотреть виды электроавтоматики, назначение которой в отличие от релейной защиты наоборот включать питание обратно. Итак, в современных РЗА используют автоматику следующего вида:

  1. Автоматический ввод резерва (АВР). Такую автоматику часто используют при подключении генератора к сети, как резервного источника электроснабжения.
  2. Автоматическое повторное включение (АПВ). Область применения – ЛЭП напряжением 1 кВ и выше, а также сборные шины подстанций, электродвигатели и трансформаторы.
  3. Автоматическая частотная разгрузка, которая отключает сторонние приборы при понижении частоты в сети.

Помимо этого существуют следующие виды автоматики:

Вот мы и рассмотрели назначение и области применения релейной защиты. Последнее, о чем хотелось бы рассказать – из чего состоит РЗА.

Конструкция РЗА

Устройство релейной защиты представляет собой схему из следующих частей:

  1. Пусковые органы – реле напряжения, тока, мощности. Предназначены для контроля режима работы электрооборудования, а также обнаружения нарушений в цепи.
  2. Измерительные органы – могут также находиться в пусковых органах (реле тока, напряжения). Основное назначение – запуск других устройств, подача сигнала в результате обнаружения ненормального режима работы, а также мгновенное отключение приборов или с задержкой по времени.
  3. Логическая часть. Представлена таймерами, а также промежуточными и указательными реле.
  4. Исполнительная часть. Отвечает непосредственно за отключение или же включение коммутационных аппаратов.
  5. Передающая часть. Может быть использована в дифференциально-фазной защите.

Напоследок рекомендуем вам просмотреть полезное видео по теме:

РЗА в энергетике для новичков

Это и все, что мы хотели рассказать вам о назначении релейной защиты и требованиях, предъявляемых к ней. Надеемся, теперь вы знаете, что такое РЗА, какая у нее область применения и из чего она состоит.

Будет полезно прочитать:

samelectrik.ru

Ошибка 404. Страница не найдена!

Ошибка 404. Страница не найдена!

К сожалению, запрошенная вами страница не найдена на портале. Возможно, вы ошиблись при написании адреса в адресной строке браузера, либо страница была удалена или перемещена в другое место.

 

 

 

www.elec.ru

Релейная защита. Виды и устройство. Работа и особенности

Согласно правилам эксплуатации электроустановок силовые устройства электрических сетей и электростанций должны быть обеспечены защитой от сбоев в эксплуатации и токов короткого замыкания. Средствами защиты являются специальные устройства, выполненные на основе реле, что оправдывает их название релейная защита и автоматика (РЗА). В настоящее время существует много различных устройств, способных в короткие сроки блокировать возникшую аварию в электрической сети, либо подать предупредительный сигнал о возникновении аварийного режима.

Релейная защита работает чаще всего совместно с автоматикой, и их устройство взаимосвязано со специфическими видами аварийных режимов сети:

  • Уменьшение частоты тока, возникающей при внезапной перегрузке генераторов вследствие короткого замыкания, либо отключения части других источников из сети.
  • Повышенное напряжение. Увеличение этого параметра на 10% уменьшает срок службы ламп освещения в два раза. Такой режим возникает при внезапной разгрузке сети.
  • Токовая перегрузка способствует излишнему нагреванию изоляции проводников и кабелей, создает искрообразование в контактных соединениях.
Виды релейной защиты
Реле классифицируются по определенным признакам:
  • Методу подключения: первичные, которые подключаются непосредственно в цепь устройства, и вторичные, которые подключаются посредством трансформатора.
  • Типу исполнения: электромеханические, состоящие из подвижных контактов, отключающих цепь, и электронные, обесточивающие цепь с использованием полупроводниковых элементов.
  • Назначению: измерительные, которые выполняют измерение параметров, и логические, которые подают сигналы и команды другим устройствам, выполняют задержку по времени.
  • Методу работы: прямого действия, которые связаны с устройством отключения механическим путем, и косвенного действия, которые управляют электрической цепью электромагнита, обесточивающего сеть питания.
Релейная защита и автоматика бывают различных видов:
  • Максимальная токовая защита, включается при достижении определенной величины тока, заданной при настройке.
  • Направленная наибольшая токовая защита, кроме настройки тока учитывает направление мощности.
  • Дифференциальная, применяется для защиты сборки генераторов, трансформаторов, шин путем сравнения величин токов на выходе и входе. При разнице, превышающей заданное значение, срабатывает релейная защита.
  • Газовая и струйная, применяется для обесточивания трансформатора и других устройств, работающих в емкостях с маслом. При возникновении неисправностей образуется повышенная температура, и из масла выделяются газы, снижается диэлектрическое свойство масла и разлагается его химический состав. На такие аварийные режимы срабатывают механические реле, которые действуют с учетом возникновения газа в емкости, а также веществ, образующихся при разложении масла. При срабатывании защиты подается команда на действие логической схемы.
  • Логическая, защищает шины, применяется для определения места короткого замыкания на питающих линиях, которые отходят от шин электростанции, и на шинах.
  • Дистанционная, имеющая блокировку по оптическому каналу, является более надежным способом защиты, в отличие от дистанционной защиты с ВЧ блокировкой, так как электрические помехи не оказывают большого влияния на оптический канал.
  • Дистанционная с ВЧ блокировкой, применяется для обесточивания воздушных линий при возникновении коротких замыканий.

  • Удаленная защита используется в сложных схемах сетей, где из-за чувствительности и быстродействия не могут применяться простые виды защит. Защита выявляет расстояние до места аварии или короткого замыкания, и в зависимости от расстояния срабатывает с большей или меньшей задержкой по времени. Современные новые системы защит обладают ступенчатыми свойствами времени. Они каждый раз не измеряют величину сопротивления для определения расстояния до аварийного участка, а только осуществляют контроль участка, на котором выявлена неисправность.
  • Дифференциально-фазная, используется для контроля фаз по концам линии питания. При превышении настроенного значения тока, реле обесточивает линию.
  • Защита минимального напряжения. В аварийных режимах, особенно при коротком замыкании, возможна просадка напряжения. Для обеспечения отключения электрооборудования при снижении напряжения ниже критического значения предназначена защита минимального напряжения. Такая защита в свою очередь делится на групповую и индивидуальную.
    — Групповая защита отключает группу потребителей с помощью реле минимального напряжения. Которое работает совместно с промежуточным реле, отключающим своими силовыми контактами целую группу потребителей нагрузки. Такая релейная защита используется чаще всего на электростанциях для создания надежности функционирования наиболее ответственного оборудования при кратковременном резком снижении напряжения. Она отключает на время падения напряжения менее ответственное оборудование, для создания более благоприятных условий ответственных электрических устройств.
    — Индивидуальная защита работает аналогичным образом, но отключает только один потребитель.
  • Защита максимального напряжения. Имеется два вида реле, защищающих потребители от повышенного напряжения. Первый вид – это защита, действующая по принципу отвода удара молнии по молниеотводу на контур заземления. Второй вид – это устройства, компенсирующие энергию рассеянным теплом во внешнюю среду. Они не применяют релейную основу, а действуют сразу в силовой схеме. Защита максимального напряжения проектируется по принципу минимальных, с такими же измерительными элементами. Реле настраивается на срабатывание по уставке повышения напряжения, превосходящей некоторый допустимый предел напряжения эксплуатации цепи.
Некоторые виды автоматики предназначены для подачи электроэнергии, в отличие от релейной защиты:
  • Автоматическая частотная разгрузка, выключает электрические устройства при снижении частоты тока в сети.
  • Автоматическое повторное включение, используется на линиях электропередач выше 1000 вольт, а также в сборках трансформаторов, электродвигателей и шин подстанций.
  • Автоматический ввод резерва, применяется при коммутации генератора в сеть в качестве резервного источника питания электроэнергией.
Релейная защита. Устройство

Электромеханические конструкции релейной защиты постоянно модернизируются и совершенствуются. Внедряются инновационные технологические разработки и проекты. В новейших энергетических системах объединены статические, индукционные, электромагнитные устройства с микропроцессорными и полупроводниковыми элементами.

Однако основной смысл и порядок работы релейной защиты для всех новых устройств остается неизменным. Схема структуры релейной защиты показана на рисунке.

1 — Электрический сигнал
2 — Блок наблюдения электрических процессов
3 — Блок логики и анализа
4 — Исполнительный блок
5 — Сигнальный блок

Блок наблюдения

Главной функцией этого блока является мониторинг электрических процессов, происходящих в электрической системе, путем измерений такими устройствами, как трансформаторы напряжения и тока.

Сигналы выхода на блоке могут передаваться непосредственно логическому блоку для сравнения параметров с настроенными пользователем значениями отклонений от нормальных значений, которые называются уставками. Также сигналы блока наблюдения могут сначала преобразовываться в цифровой вид, а затем передаваться дальше.

Блок логики

В этом блоке выполняется сравнение поступивших сигналов с предельными значениями уставок. Даже незначительное совпадение этих параметров между собой приводит к возникновению команды на срабатывание защиты.

Исполнительный блок

Этот блок все время находится в состоянии, готовом к срабатыванию, при поступлении команды от блока логики. При срабатывании осуществляются переключения цепи электроустановки по запланированному алгоритму, который составлен по принципу недопущения неисправностей электрооборудования и удара электрическим током работников.

Сигнальный блок

В электрической системе все процессы происходят очень быстро, поэтому человек не в состоянии воспринимать их. Чтобы сохранить происходящие в системе события, применяют специальные сигнальные устройства. Которые работают путем звукового и визуального оповещения, а также сохраняют все происходящие события в памяти устройства.

Все виды устройств после их срабатывания переводятся в исходное состояние оператором вручную. Это позволяет гарантированно сохранить информацию о действии автоматики и релейной защиты.

Принципы работы
Релейная защита может иметь нарушения в своей работоспособности, которые выражаются следующими факторами:
  • Ложные срабатывания при исправной электрической системе и отсутствии каких-либо повреждений.
  • Излишние сработки, когда не требуется работа исполнительного блока.
  • Повреждения внутри устройства защит.
Чтобы исключить отказы при функционировании релейной защиты, вырабатываются специальные требования к ней при проектировании, установке, настройки с запуском в работу, и техническом обслуживании:
  • Надежность функционирования.
  • Чувствительность к моменту запуска оборудования.
  • Быстродействие (время сработки).
  • Селективность.
Принцип надежности
Этот принцип определяется:
  • Безотказностью в эксплуатации.
  • Пригодностью к ремонту.
  • Долгим сроком службы.
  • Сохраняемостью.

Каждый из этих факторов имеет свою оценку.

Обслуживание и эксплуатация релейной защиты имеет три варианта надежности по срабатыванию при:
  1. Внутренних КЗ в рабочей зоне.
  2. Возникновении внешних КЗ за границей рабочей зоны.
  3. Работе без неисправностей.
Надежность устройств защиты бывает:
  • Эксплуатационная.
  • Аппаратная.
Принцип чувствительности

Этот принцип дает возможность определить виды предполагаемых расчетных повреждений и ненормальных режимов энергетической системы в рабочей зоне защиты.

Кч = Iкз min/Iсз

Чтобы определить его числовое значение, используется коэффициент Кч. Коэффициент рассчитывается отношением наименьшего тока короткого замыкания рабочей зоны к величине тока срабатывания. Релейная защита работает в нормальном режиме при:

Iсз < Iкз min

Наиболее приемлемая величина коэффициента чувствительности находится в диапазоне 1,5-2.

Принцип быстродействия
Время обесточивания поврежденного участка состоит из двух составляющих:
  1. Сработки защиты.
  2. Действия привода выключателя.

Первую составляющую можно отрегулировать, начиная от наименьшего значения, которое зависит от устройства защиты и числа применяемых элементов. Задержка по времени на сработку формируется, путем внедрения в схему специальных реле, имеющих возможность регулировки. Она применяется для наиболее удаленных защит.

Устройства, находящиеся рядом с местом неисправности, должны настраиваться на действие с наименьшими возможными диапазонами времени на срабатывание.

Принцип селективности

Этот принцип по-другому называется избирательностью. С помощью нее можно найти и локализовать место возникшего повреждения в структуре сети любой сложности.

Например, генератор вырабатывает и подает электроэнергию различным потребителям, находящимся на участках 1, 2, 3, которые оснащены каждый своей защитой. При коротком замыкании внутри устройства потребителя на 3-м участке, ток будет протекать по всем устройствам защиты, начиная от источника питания.

Но в таком случае целесообразно будет отключить цепь участка, имеющего неисправность электродвигателя, при этом оставляя в работе остальные исправные потребители. Для этого существуют уставки релейной защиты, отдельно для каждой цепи, еще на стадии проектирования схемы защиты.

Устройства защиты 5, 3-го участка должны обнаружить ток неисправности раньше, и оперативнее сработать, отключив поврежденный участок от цепи генератора. Поэтому значения токовых и временных уставок на каждом участке снижаются от генератора к потребителю, по принципу: чем дальше от неисправного места, тем ниже чувствительность.

В результате исполняется принцип резервирования. Который учитывает возможность поломки любых устройств, включая системы защиты более низкого уровня. Это означает, что при повреждении защиты 5 участка №3, при возникновении аварии должны сработать устройства защиты 3 или 4 участка 2. А эти участки в свою очередь подстрахованы устройствами защиты участка 1.

Особенности управления релейной защитой

Релейная защита как отдельный блок является самостоятельной схемой. Он входит в общие комплексы, которые составляют систему противоаварийного управления энергетической системы. В такой системе все элементы взаимосвязаны между собой и выполняют поставленные задачи в комплексе.

Коротко перечень защитных функций и работа автоматики изображены на схеме.

Изучив особенности эксплуатации автоматики и релейной защиты, можно сказать, что необходимо постоянно совершенствовать знания и практические навыки, которые требуются при поступлении в работу нового оборудования для защиты.

Похожие темы:

electrosam.ru

Назначение РЗА в системах электроснабжения

Назначение автоматических устройств в системах электроснабжения

  Надежное и экономичное функционирование системы электроснабжения возможно только при автоматическом (без непосредственного участия человека-оператора) управлении. Автоматическое управление осуществляется комплексом автоматических управляющих устройств, среди которых первостепенное значение имеют устройства автоматической релейной защиты, действующие при повреждении электрических установок.

  Короткие замыкания (кз) и ненормальные режимы могут сопровождаться изменениями тока, напряжения, частоты, направления, мощности. Помимо короткого замыкания  может возникнуть: перенапряжение, утечка тока, выделение газа при разложении масла (под действием электрической дуги) внутри трансформатора и т.д. Релейную защиту можно выполнить действующей в зависимости от изменения одной или нескольких электрических величин.

Релейная защита это вид автоматики, нашедший применение в системах электроснабжения раньше других автоматических устройств:

устройство автоматического включения резерва (УАВР),

— устройство автоматического повторного включения (УАПВ),

— устройства автоматической частотной разгрузки (УАЧР), 

— устройства автоматического регулирования возбуждения синхронных генераторов (УАРВ),

—  устройства автоматического регулирования коэффициентов трансформации трансформаторов с УРПН (устройствами регулирования под нагрузкой).

   В системах электроснабжения применяются и другие устройства автоматики энергосистем, например автоматические устройства синхронизации генераторов, синхронных компенсаторов и электродвигателей, автоматические регуляторы частоты вращения и активной мощности синхронных генераторов.

   Для автоматического управления системой электроснабжения в целом и обеспечения экономичности нормальных режимов ее работы в настоящее время создается автоматизированная система управления (АСУ), построенная на основе использования цифровых универсальных и специализированных (управляющих) электронных вычислительных машин (ЭВМ).

 Должны удовлетворять ряду требований: селективность, чувствительность, быстродействие, надежность, достоверность.

 Селективность — свойство релейной защиты, действующей на отключение, определять поврежденный элемент и отключать только его.

  Если по принципу действия защита срабатывает только при коротких замыканиях на защищаемом элементе, то ее относят к защитам, обладающим абсолютной селективностью.

  Имеются защиты, которые действуют и как резервные, т. е. при повреждении на смежном элементе, если оно не отключается (относи тельная  селективность). Чувствительность РЗ — способность реагировать на возможные повреждения в минимальных режимах работы системы электроснабжения, когда изменения воздействующих величин минимальны.

Чувствительность защиты оценивают коэффициентом чувствительности, равным отношению значения воздействующей величины при повреждении в защищаемой зоне к установленному на защите значению параметра ее срабатывания.

Быстродействие защиты при коротком замыкании обеспечивает: уменьшение вероятности нарушения синхронной работы генераторов, компенсаторов и электродвигателей; снижение продолжительности работы электроприемников при пониженном напряжении; снижение торможения асинхронных электродвигателей и нарушений технологических процессов; уменьшение разрушений изоляции и токоведущих частей токами к.з.; снижение вероятности несчастных случаев; повышение эффективности УАПВ и УАВР.

Под надежностью применительно к релейной защите, автоматике и телемеханике понимают свойство этих устройств выполнять заданные функции, сохраняя эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени.

Достоверность оценивает качество передачи информации (абсолютная погрешность —  разность между значениями измеряемой величины, отсчитанными по шкале приемного измерительного прибора на ДП и шкале образцового прибора, установленного на КП). Смотри рис. ниже: трехступенчатая схема селективности с токами защиты и диаграммы токов короткого замыкания (КЗ):

 


 Выбор параметров максимальной токовой защиты

Выбор выдержки времени

Δt —  ступень селективности, t1=t2+Δt                                    

Выбор тока срабатывания

При выборе тока срабатывания защиты Iс.з необходимо исходить из условий возврата измерительного органа в начальное положение после его срабатывания при отключении внешнего короткого замыкания. Ток возврата защиты больше максимально возможного тока в линии Iз mах после отключения внешнего короткого замыкания , т. е. Iв.з > Iз mах.

 Ток Iз mах обычно больше длительно существующего максимального рабочего тока Iраб mах , что учитывается коэффициентом самозапуска kсз ≈2,5÷3. В связи с этим селективное действие защиты обеспечивается, если Iв.з > kс.зIраб mах или с учетом коэффициента запаса  kзап,

Iв.з = kс.зIраб mахkзап                                                       

Коэффициент запаса (погрешности реле, неточности расчета) kзап  = 1,1÷1,2.

Iс.з= kзап kс.зIраб mах/kв                                                    

Чувствительность максимальной токовой защиты характеризуется коэффициентом чувствительности,

kч=Iр / Iс. р                                                                      

Проверку чувствительности производят по минимальному току к. з. Iк min. . kч> 1,5(ПУЭ).

Продолжение раздела в РЗА →  Токовая отсечка со ступенчатой характеристикой выдержки времени.  

energetik.com.ru

Релейная защита и автоматика — Википедия

Релейная защита — комплекс устройств, предназначенных для быстрого, автоматического (при повреждениях) выявления и отделения от электроэнергетической системы повреждённых элементов этой электроэнергетической системы в аварийных ситуациях с целью обеспечения нормальной работы всей системы. Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Релейная защита (РЗ) осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания).

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.

Современные устройства защиты могут строиться на схеме, включающей в себя программируемый (микро)контроллер.

Основные виды защит

Требования предъявляемые к релейной защите

Селективность (избирательность)

Селективность — свойство релейной защиты, характеризующее способность выявлять именно поврежденный элемент электроэнергетической системы и отключать этот элемент от исправной части электроэнергетической системы (ЭЭС). Защита может иметь абсолютную или относительную селективность. Защиты с абсолютной селективностью действуют принципиально только при повреждениях в их зоне. Защиты с относительной селективностью могут действовать при повреждениях не только в своей, но и в соседней зоне. А селективность отключения поврежденного элемента ЭЭС при этом обеспечивается дополнительными средствами (например, выдержкой времени срабатывания).

Быстродействие

Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.

Чувствительность

Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы. Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).

Надёжность

Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов, при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено. Иными словами, надежность — это свойство релейной защиты, характеризующее её способность выполнять свои функции в любых условиях эксплуатации. Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).

Основные органы релейной защиты

Пусковые органы

Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.

Измерительные органы

Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.

Логическая часть

Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.

Пример логической части релейной защиты

Катушка реле тока K1 (контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока ТА. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения уставки реле K1, оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами +EC и -EC замкнётся, и запитает сигнальную лампу HLW.

Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.

Эксплуатация РЗА

Для обеспечения надежной и экономичной работы энергосистем и энергетического оборудования, а также бесперебойного электроснабжения потребителей в электросетевых организациях проводится комплекс организационно-технических мероприятий по оснащению, эксплуатации и поддержанию на высоком техническом уровне устройств релейной защиты, электроавтоматики, дистанционного управления и сигнализации, сокращенно именуемых устройствами РЗА.

В России эта деятельность регулируется отраслевыми нормативно-техническими документами, основными из которых являются:

Для осуществления указанного комплекса мероприятий на всех уровнях управления электроэнергетики России в соответствующих организациях создаются службы релейной защиты, автоматики и измерений (служба РЗА — СРЗА, служба РЗАИ — СРЗАИ), в подразделениях нижнего уровня (производственные отделения, предприятия электрических сетей (ПЭС)) — местные службы РЗАИ (МС РЗАИ), на электростанциях и каскадах ГЭС — службы РЗАИ или электротехнические лаборатории (ЭТЛ).

См. также

Литература

  • Чернобровов Н. В., Семенов В. А. «Релейная защита энергетических систем»: Учеб. пособие для техникумов. — М.: Энергоатомиздат, 1998. −800с.: ил.
  • Павлов, Г. М. «Автоматизация энергетических систем» : Учеб.пособие / Г. М. Павлов .— Ленинград : Изд-во Ленингр. ун-та, 1977 .— 237 с. : ил .— Библиогр.: с.233-234.
  • Булычев, А. В. Релейная защита электроэнергетических систем: учебное пособие / А. В. Булычев, В. К. Ванин, А. А. Наволочный, М. Г. Попов. — СПб.: Изд-во Политехн. ун-та, 2008. — 211 с.
  • РД 153-34.0-04.418-98 «Типовое положение о службах релейной защиты и электроавтоматики».
  • Шнеерсон Э. М. «Цифровая релейная защита» — М.: Энергоатомиздат, 2007. −549с.: ил.

Ссылки

wikipedia.green

Релейная защита и автоматика электроснабжения, устройство, виды и принцип работы систем

Термин «релейная защита» относится к очень широкому кругу устройств, применяемых в электроэнергетике.

К основным функциям защитных релейных устройств (РЗ), относятся:

  • выявление повреждений элементов систем электроснабжения;
  • локализация и отключение повреждённого участка или электроустановки для сохранения работоспособности остальной части системы;
  • определение отклонений от нормального режима отдельных электроустановок и частей энергосистемы, в результате которых может произойти повреждение оборудования или потеря устойчивости системы электроснабжения;
  • автоматическое выполнение действий, направленных на восстановление нормального режима (отключение части электрооборудования, включение устройств компенсации).

Таким образом, в одних случаях защитная аппаратура на основе реле способна предотвратить опасность выхода из строя установок и элементов энергосистем, в других – среагировать на факт повреждения и остановить дальнейшее развитие аварийной ситуации.

Эти действия релейной автоматики позволяют минимизировать ущерб, нанесённый в результате повреждения оборудования и ущерб от недоотпуска электрической энергии потребителям.

Необходимый уровень укомплектованности сетей и систем электроснабжения устройствами релейной защиты и автоматики (УРЗА) определён действующими нормативными документами в области энергетики. Ни одна электроустановка не может быть введена в работу, не будучи укомплектованной защитными устройствами в минимальном объёме, определённом действующими правилами.

На каждом предприятии, имеющем на балансе электрооборудование, оснащённое защитными релейными устройствами, должен быть составлен график регулярной проверки и обслуживания релейной автоматики. Контроль выполнения плановых работ по проверке, испытаниям и обслуживанию релейной защиты осуществляется органами государственного энергетического надзора.

ОБЩИЕ ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ЗАЩИТНЫХ РЕЛЕЙНЫХ УСТРОЙСТВ

Защитные устройства на базе реле разнообразны и могут быть построены по отличающимся принципиальным схемам, реализованным на различной элементной базе.

Общим для всех устройств релейной защиты является наличие одних и тех же функциональных блоков:

  • измерительных органов;
  • логики;
  • исполнительных устройств;
  • сигнализации.

Измерительный орган реле получает в непрерывном режиме информацию о состоянии контролируемого объекта, которым может быть отдельная установка, элемент или участок электрической сети. Существует несколько подходов к классификации структурных блоков релейных защит.

Измерительные релейные органы иногда называют пусковыми, но это не меняет сути. Контроль состояния объекта заключается в получении и обработке технических параметров электроснабжения – тока, напряжения, частоты, величины и направления мощности, сопротивления.

В зависимости от значения этих параметров, на выходе релейного органа измерения формируется дискретный логический сигнал («да», «нет»), который поступает в блок логики.

Логический орган, получив дискретную команду релейного блока измерения, в соответствии с заданной программой или логической схемой формирует необходимую команду исполнительному блоку или механизму.

Блок сигнализации обеспечивает работу сигнальных устройств, которые отображают факт срабатывания релейного защитного комплекта или отдельного его органа.

Для успешного выполнения своего предназначения, УРЗА должны обладать определёнными качествами. Выделяют четыре основных требования, которые предъявляются к аппаратуре РЗ. Рассмотрим их по отдельности.

Селективность.

Это свойство защитных систем заключается в выявлении повреждённого участка электрической сети и выполнении отключений в необходимом и достаточном объёме с целью его отделения. Если в результате работы защитной автоматики произошло излишнее отключение оборудования системы электроснабжения, такое срабатывание автоматики называется неселективным.

Различают системы защитной автоматики с абсолютной и относительной селективностью. К первому типу относятся устройства, реагирующие только на нарушения режима строго в пределах защищаемого участка.

Примером такой защитной системы может служить дифференциальный токовый защитный комплект, срабатывающая только при повреждениях между точками сети, в которых контролируется разность токов.

Относительной селективностью обладают системы максимального тока, которые, как правило, реагируют на нарушения режима на участках, смежных с непосредственно защищаемой ими зоной. Обычно во избежание неселективного срабатывания, такие системы автоматики имеют искусственную выдержку времени, превосходящую время срабатывания защитных комплектов на смежных участках.

Примечание. Искусственной называют выдержку времени, создаваемую специальными органами задержки срабатывания (реле времени).

Быстродействие.

Отключение повреждённого участка или элемента сети должно быть осуществлено как можно быстрее, что обеспечивает устойчивость работы остальной части системы и минимизирует время перерыва питания потребителей.

Главным показателем быстродействия служит время срабатывания защищающего устройства, которое отсчитывается от момента возникновения аварийного режима до момента подачи защитой сигнала на отключение выключателя.

Иногда время срабатывания системы автоматики трактуют как время между возникновением повреждения и отключением повреждённого участка, то есть, включают в него время работы выключателя. Это не совсем верно, так как выключатель не является частью УРЗА и по его параметрам нельзя оценивать эффективность релейной защиты сетей и систем электроснабжения.

То есть, учитывать время отключения выключателя необходимо, но следует помнить, что это не характеристика РЗ. Для справки можно заметить, что время отключения выключателя значительно больше времени срабатывания собственно реле автоматики (без учёта искусственной задержки).

Чувствительность.

Данное качество характеризует способность системы автоматики к гарантированному срабатыванию во всей зоне её действия при всех видах нарушений режима, на которые данная автоматика рассчитана. Чувствительность системы автоматики является точным численным показателем, значение которого проверяется в расчётных режимах с минимальными значениями параметров её срабатывания.

Надёжность.

Универсальная характеристика всех технических устройств, заключающаяся в способности РЗ функционировать длительно и безотказно. В соответствии со своим основным предназначением.

ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Типы УРЗА можно классифицировать по параметрам режима работы сети, на которые они реагируют.

Токовые защиты.

Наибольшее распространение получили токовые защиты, поскольку именно повышенное значение тока является критерием такого частого вида нарушения режима работы как короткое замыкание. В основе токовой релейной защиты находится реле тока.

Традиционно используемыми являются реле электромеханического типа, состоящие из токовой катушки и подвижной электромагнитной системы, замыкающей контакты. На смену этим приборам пришли полупроводниковые устройства, а с развитием цифровых технологий и микропроцессорные системы релейной защиты.

Независимо от элементной базы, логика работы защит остаётся в принципе той же. Конечно, микропроцессорные системы способны реализовать более сложный и разветвлённый алгоритм действий.

В простейшем случае, на реле выставляется требуемая уставка – значение тока, при котором реле должно сработать. Первичными преобразователями тока являются измерительные трансформаторы или датчики тока.

К разновидности токовых защит относятся дифференциальные защиты, реле которых включается на разность токов. Дифференциальные токовые реле входят в комплект релейной защиты трансформаторов и шин подстанций.

Защиты по напряжению.

Среди самых распространённых представителей этого класса групповая секционная защита минимального напряжения.

Логика работы этой автоматики увязана с технологическим процессом, электропривод оборудования которого питается от одной секции подстанции. Автоматика минимального напряжения имеет двухступенчатое исполнение. Типовая последовательность работы выглядит следующим образом.

Секция, к которой подключены электродвигатели приводов механизмов технологического процесса (например, это могут быть механизмы котла тепловой электростанции), имеет два питания – от рабочего и резервного трансформаторов.

При отключении рабочего трансформатора срабатывает автоматика включения резерва (АВР). Через небольшой промежуток времени к секции подключается резервный трансформатор.

За время бестоковой паузы нагруженные механизмы успевают затормозиться. После подключения резервного трансформатора начинается самозапуск электродвигателей механизмов.

Повышенный ток, обусловленный групповым запуском двигателей, вызывает посадку напряжения на секции. При снижении напряжения до уставки первой ступени автоматики, происходит отключение наименее значимых для технологического процесса механизмов.

Делается это для того, чтобы облегчить запуск более важного оборудования и удержать станционный котёл (или другой агрегат) в работе.

Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования. В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла).

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


eltechbook.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о