+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Что такое потери напряжения и причины образования потерь напряжения

Утраты напряжения в полосы

Для осознания, что такое утрата напряжения, разглядим векторную диаграмму напряжения трехфазной полосы переменного тока (рис. 1) с одной нагрузкой в конце полосы (I).

Представим, что вектор тока разложен на составляющие Iа и Iр. На рис. 2 в масштабе построены векторы фазного напряжения в конце полосы U3ф и тока I, отстающего от него по фазе на угол φ2.

Для получения вектора напряжения сначала полосы U1ф следует у конца вектора U2ф выстроить в масштабе напряжения треугольник падений напряжения в полосы (abc). Для этого вектор аb, равный произведению тока на активное сопротивление полосы (IR), отложен параллельно току, а вектор bc, равный произведению тока на индуктивное сопротивление полосы (IХ), — перпендикулярно вектору тока. При этих критериях ровная, соединяющая точки О и с, соответствует величине и положению в пространстве вектора напряжения сначала полосы (U1ф) относительно вектора напряжения в конце полосы (U2ф). Соединив концы векторов U1ф и U2ф, получим вектор падения напряжения на полном сопротивлении полосы ac=IZ.

 

 

Рис. 1. Схема с одной нагрузкой на конце полосы

 

 

Рис. 2. Векторная диаграмма напряжений для полосы с одной нагрузкой. Утраты напряжения в полосы.

Договорились именовать потерей напряжения алгебраическую разность фазных напряжений сначала и конце полосы, т. е. отрезок ad либо практически равный ему отрезок ас’.

Векторная диаграмма и выведенные из нее соотношения демонстрируют, что утрата напряжения находится в зависимости от характеристик сети, также от активной и реактивной составляющих тока либо мощности нагрузки.

При расчете величины утраты напряжений в сети активное сопротивление нужно учесть всегда, а индуктивным сопротивлением можно пренебречь в осветительных сетях и в сетях, выполненных сечениями проводов до 6 мм2 и кабелей до 35 мм2.

 

 

Определение утраты напряжения в полосы

 

Утрату напряжения для трехфазной системы принято обозначать для линейных величин определять по формуле

 

где l — протяженность соответственного участка сети, км.

Если поменять ток мощностью, то формула воспримет вид:

 

где Р — активная мощность, Q— реактивная мощность, кВар; l — протяженность участка, км; Uн — номинальное напряжение сети, кВ.

 

Допустимые утраты напряжения

Для каждого приемника электроэнергии допускаются определенные утраты напряжения. К примеру, асинхронные движки в обычных критериях допускают отклонение напряжения ±5%. Это означает, что если номинальное напряжение данного электродвигателя составляет 380 В, то напряжения U‘доп = 1,05 Uн = 380 х1,05 = 399 В и U«доп = 0,95 Uн = 380 х 0,95 = 361 В следует считать его максимально допустимыми значениями напряжения. Естественно, что все промежные напряжения, заключенные меж значениями 361 и 399 В, также будут удовлетворять потребителя и составят некую зону, которую можно именовать зоной хотимых напряжений.

Потому что при работе предприятия имеет место неизменное изменение нагрузки (мощность либо ток, протекающий по проводам в данное время суток), то в сети будут иметь место и разные утраты напряжения, изменяющиеся от больших значений, соответственных режиму наибольшей нагрузки dUmaх, до меньших dUmin, соответственных малой нагрузке потребителя.

Для подсчета величины этих утрат напряжения следует пользоваться формулой:

 

Из векторной диаграммы напряжений (рис. 2) следует, что действительное напряжение у приемника U2ф можно получить, если из напряжения сначала полосы U1ф отнять величину dUф, либо, переходя к линейным, т. е. междуфазным напряжениям, получим U2 = U1 — dU

 

Расчет утрат напряжения

Пример. Потребитель, состоящий из асинхронных движков, подключен к шинам трансформаторной подстанции предприятия, на которых поддерживается неизменное в течение суток напряжение U1 = 400 В.

Большая нагрузка потребителя отмечена в 11 ч утра, при всем этом утрата напряжения dUмакс = 57 В, либо dUмакс% = 15%. Меньшая нагрузка потребителя соответствует обеденному перерыву, при всем этом dUмин — 15,2 В, либо dUмин% = 4%.

Нужно найти действительное напряжение у потребителя в режимах большей и меньшей нагрузок и проверить лежи г ли оно в зоне хотимых напряжений.

 

Рис. 3. Возможная диаграмма для полосы с одной нагрузкой для определения утрат напряжения

 

Решение. Определяем действительные значения напряжений:

U2макс = U1 — dUмакс = 400 — 57 = 343 В

U2мин = U1 — dUмин = 400 — 15,2 = 384,8 В

Желаемые напряжения для асинхронных движков с Uн = 380 В должны удовлетворять условию:

399 ≥ U2жел ≥ 361

Подставив в неравенство вычисленные значения напряжений, убеждаемся, что для режима больших нагрузок соотношение 399 > 343 > 361 не удовлетворяется, а для меньших нагрузок 399 > 384,8 > 361 удовлетворяется.

Вывод. В режиме больших нагрузок утрата напряжения так велика, что напряжение у потребителя выходит за границы зоны хотимых напряжений (понижается) и не удовлетворяет потребителя.

Этот пример можно проиллюстрировать графически возможной диаграммой рис. 3. При отсутствии тока напряжение у потребителя будет численно равно напряжению на питающих шинах. Потому что утрата напряжения пропорциональна длине питающей полосы, то напряжение при наличии нагрузки меняется повдоль полосы по наклонной прямой от величины U1 = 400 В до величины U2макс = 343 В и величины U2мин = 384,8 В.

Как видно из диаграммы, напряжение в режиме большей нагрузки вышло из зоны хотимых напряжений (точка Б графика).

Таким макаром, даже при неизменной величине напряжения на шинах питающего трансформатора, резкие конфигурации нагрузки могут сделать у приемника недопустимую величину напряжения.

Не считая того, возможно окажется, что при конфигурациях нагрузки в сети от большей нагрузки в дневное время до меньшей нагрузки в ночное время сама энергетическая система не сумеет обеспечить подабающей величины напряжения на выводах трансформатора. В обоих этих случаях следует прибегнуть к средствам местного, приемущественно, ступенчатого конфигурации напряжения.

Утрата напряжения в трансформаторе (в картинах)

 

elektrica.info

Что такое потеря напряжения в кабеле и чем она опасна?

Во время передачи электроэнергии по проводам к электроприемникам ее небольшая часть расходуется на сопротивление самих проводов, т.е. на их нагрев. Чем выше протекаемый ток и больше сопротивление провода, тем больше на нем будет потеря напряжения. Величина тока зависит от подключенной нагрузки, а сопротивление провода тем больше, чем больше его длина. Логично? Поэтому нужно понимать, что провода большой длины могут быть не пригодны для подключения какой-либо нагрузки, которая, в свою очередь, хорошо будет работать при коротких проводах того же сечения.

В идеале все электроприборы будут работать в нормальном режиме, если к ним подается то напряжение, на которые они рассчитаны. Если провод рассчитан не правильно и в нем присутствуют большие потери, то на вводе в электрооборудование будет заниженное напряжение. Это очень актуально при электропитании постоянным током, так как тут напряжение очень низкое, например 12 В, и потеря в 1-2 В тут будет уже существенной.

Чем опасна потеря напряжения в электропроводке?

  1. Отказом работы электроприборов при очень низком напряжении на входе.

В выборе кабеля необходимо найти золотую середину. Его нужно подобрать так, чтобы сопротивление провода при нужной длине соответствовало конкретному току и исключить лишние денежные затраты. Конечно, можно купить кабель огромного сечения и не считать в нем потери напряжения, но тогда за него придется переплатить. А кто хочет отдавать свои деньги на ветер? Давайте ниже разберемся, как учесть потери напряжения в кабеле при его выборе.

Для того чтобы избежать потерь мощности нам нужно уменьшить сопротивление провода. Мы знаем что, чем больше сечение кабеля, тем меньше его сопротивление. Поэтому эта проблема в длинных линиях решается путем увеличения сечения жил кабеля.

Вспомним физику и перейдем к небольшим формулам и расчетам.

Напряжение на проводе мы можем узнать по следующей формуле, зная его сопротивление (R, Ом) и ток нагрузки (I, А).

U=RI

Сопротивление провода рассчитывается так:

R=рl/S, где

р — удельное сопротивление провода, Ом*мм2

/м;

l — длина провода, м;

S — площадь поперечного сечения провода, мм2.

Удельное сопротивления это величина постоянная. Для меди она составляет р=0,0175 Ом*мм2, и для алюминия р=0,028 Ом*мм2. Значения других металлов нам не нужны, так как провода у нас только с медными или с алюминиевыми жилами.

Приведу небольшой пример расчета для медного провода. Для алюминиевого провода суть расчета будет аналогичной.

Например, мы хотим установить группу розеток в гараже и решили протянуть туда медный кабель от дома длинной 50 м сечением 1,5 мм2. Там будем подключаться нагрузка 3,3 кВт (I=15 А).

Учтите, что ток «бежит» по 2-х жильному кабелю туда и обратно, поэтому «пробегаемое» им расстояние будет в два раза больше длины кабеля (50*2=100 м).

Потеря напряжения в данной линии будет:

U=(рl)/s*I=0,0175*100/1,5*15=17,5 В

Что составляет практически 9% от номинального (входного) значения напряжения.

Значит в розетках будет уже напряжение: 220-17,5=202,5 В. Этого будет маловато для нормальной работы электрооборудования. Также свет может гореть тускло (в пол накала).

На нагрев провода будет выделяться мощность P=UI=17,5*15=262,5 Вт.

Также учтите, что здесь не учтены потери в местах соединения (скрутках), в вилке электроприбора, в контактах розетки. Поэтому реальные потери напряжения будут больше полученных значений.

Давайте повторим данный расчет, но уже для провода сечением 2,5 мм2.

U=(рl)/s*I=0,0175*100/2,5*15=10,5 В или 4,7%.

Теперь повторим данный расчет, но уже для провода сечением 4 мм2.

U=(рl)/s*I=0,0175*100/4*15=6,5 В или 2,9%.

Согласно ПУЭ, отклонения напряжения в линии должны составлять не более 5%.

Поэтому в нашем случае нужно выбирать кабель сечением 2,5 мм2 для нагрузки мощностью 3,3 кВт (15 А), а не 1,5 мм2.

Для постоянного тока такие сечения при указанных длинах использовать нельзя. Допусти, что необходимо запитать электроприбор током 15 А от источника постоянного тока 12 В (например, от аккумулятора или понижающего трансформатора). Используется кабель сечением 2,5 мм2 длинной 50 м.

Потери тут будут 10,5 В. Это значит, что на входе в электроприбор будет присутствовать напряжение 12-10,5=1,5 В. Это бред и ничего работать не будет. Даже кабель сечением 25 мм2 не спасет. Тут выход один — это нужно переносить источник питания ближе к потребителю.

Если ваша розетка находится очень далеко от щитка, то обязательно посчитайте потери напряжения в данной линии.

Не забываем улыбаться:

Звонок мужу в командировку:
— Дорогой, а почему в кране нет воды?
— Понимаешь, мы живем на 22 этаже и давления, которое создает насос возможно недостаточно…
— Милый, а почему газа нет?
— Понимаешь, сейчас зима и давление в магистральном газопроводе вследствие большого разбора несколько понижено…
— Родной, но почему же тогда нет электроэнергии?!
— Пойди заплати за коммуналку, дура!

sam-sebe-electric.ru

Потеря напряжения — это… Что такое Потеря напряжения?


Потеря напряжения
– величина, равная разности между установившимися значениями напряжения, измеренными в двух точках системы электроснабжения.

ГОСТ 23875—88.

Коммерческая электроэнергетика. Словарь-справочник. — М.: Энас. В.В. Красник. 2006.

  • Потери электроэнергии в электрических сетях
  • Потеря связи

Смотреть что такое «Потеря напряжения» в других словарях:

  • потеря напряжения — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN loss of voltage …   Справочник технического переводчика

  • потеря напряжения — įtampos išnykimas statusas T sritis radioelektronika atitikmenys: angl. voltage disappearance; voltage loss vok. Spannungsausfall, m rus. исчезновение напряжения, n; потеря напряжения, f pranc. disparition de tension, f …   Radioelektronikos terminų žodynas

  • потеря напряжения — Разность модулей напряжения по концам элемента электрической системы …   Политехнический терминологический толковый словарь

  • потеря напряжения в системе электроснабжения — Величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения. [ГОСТ 23875 88] Тематики качество электрической энергииэлектромагнитная совместимость Синонимы потеря… …   Справочник технического переводчика

  • потеря напряжения в линии — Разность между значениями напряжения, измеренными в двух точках электрической линии в данный момент времени. [ОСТ 45.55 99] Тематики электроснабжение в целом …   Справочник технического переводчика

  • потеря напряжения в системе электроснабжения — 3.1.27 потеря напряжения в системе электроснабжения (потеря напряжения): Величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения. [ГОСТ 23875 88, пункт 27] Источник:… …   Словарь-справочник терминов нормативно-технической документации

  • потеря напряжения в системе электроснабжения UΔ — 44 потеря напряжения в системе электроснабжения UΔ Потеря напряжения: Разность напряжений в начальной и конечной точках электрической линии в данный момент времени de. Verlust der Spannung en. Voltage loss fr. Perte de tension dans le réseau… …   Словарь-справочник терминов нормативно-технической документации

  • Потеря напряжения в системе электроснабжения (Потеря напряжения) — English: Voltage loss Величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875 88) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • наибольшая потеря напряжения электрической сети — Наибольшее из значений суммарной потери напряжения в данной электрической сети …   Политехнический терминологический толковый словарь

  • суммарная потеря напряжения — Сумма потерь напряжения в последовательно включенных элементах электрической системы …   Политехнический терминологический толковый словарь

Книги

  • Нора Вебстер, Тойбин К.. 1960-е. Ирландия, городок Эннискорти — тот самый, откуда уехала в Америку Эйлиш, героиня предыдущего романа Колма Тойбина «Бруклин» . Тихая, размеренная, старомодная жизнь на фоне назревающей… Подробнее  Купить за 417 руб

commercial_electric_power.academic.ru

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

rusenergetics.ru

Справочник электрика. Потери напряжения, мощности и энергии

Основной причиной появления отклонений напряжения в электрической сети являются потери напряжения в линиях электропередачи и силовых трансформаторах, причем, главное значение имеют потери напряжения в линиях. На рис. 1, а приведены электрическая схема, включающая в себя источник питания С и две подстанции, связанные линией W без ответвлений. Здесь U1 — напряжение в начале, U2 — в конце линии.

Векторная диаграмма электрических величин для линии W, построенная на основе ее схемы замещения (рис. 1, б), приведена на рис. 1, в. Обычно нагрузка линии имеет активно-индуктивный характер, поэтому вектор тока İ отстает по фазе от вектора напряжения Ú2 конца линии на угол φ. Вектор напряжения в начале линии Ú1, получается в результате суммирования вектора напряжения в конце линии Ú2 с активной ΔÚwa =İR и реактивной ΔÚwp = jİX составляющими падения напряжения на линии İZw, где R, jX, Z — соответственно активное, индуктивное и полное сопротивления линии.

Модуль (длину) вектора İZw называют падением напряжения на линии. Вектор падения напряжения на линии можно разложить на две составляющие:

направленную по вектору Ú2 — продольную составляющую падения напряжения ΔÚw;

направленную перпендикулярно вектору Ú2 — поперечную составляющую падения напряжения δÚw.


Рис. 1. Потеря напряжения в линии

Из точки 0 на рис. 1, в радиусом, равным длине вектора 0, можно провести дугу окружности до пересечения в точке b с прямой Оα (по направлению вектора Ú2). Отрезок 0b равен модулю вектора Ú1 т. е. напряжению в начале линии. Потеря напряжения в линии равна длине отрезка cb, т. е. арифметической разности U1 – U2 Для упрощения потерю напряжения вычисляют приближенно и полагают ее равной не отрезку cb, а отрезку cd. Ошибка, получающаяся в результате такой замены, относительно невелика и допустима в расчетах. Тогда можно получить следующее выражение для потери напряжения в линии:

 

где Р, Q — соответственно, активная Р и реактивная Q мощности нагрузки в конце линии; U2 — напряжение в конце линии.

Таким образом, нужно различать падение напряжения и потерю напряжения на линии. Падение напряжения — это модуль геометрической разности векторов напряжения по концам линии

|ΔÚw| = |Ú1 — Ú2|.

Потеря напряжения — это арифметическая разность напряжений по концам линии, т. е. ΔUw = U1 — U2.

Потеря напряжения показывает, насколько напряжение в конце линии отличается от напряжения в ее начале. Падение напряжения обычно больше потери напряжения из-за сдвига по фазе векторов Ú1 и Ú2. Практику в ГРС интересует потеря напряжения, а не падение напряжения, потому что потеря напряжения связывает наиболее простой формулой напряжения в начале и конце линии.


www.proektant.ru

Потеря напряжения в системе электроснабжения (Потеря напряжения)



Строительный словарь.

  • Потери трансформатора
  • Потребитель электрической энергии (Потребитель)

Смотреть что такое «Потеря напряжения в системе электроснабжения (Потеря напряжения)» в других словарях:

  • потеря напряжения в системе электроснабжения — Величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения. [ГОСТ 23875 88] Тематики качество электрической энергииэлектромагнитная совместимость Синонимы потеря… …   Справочник технического переводчика

  • потеря напряжения в системе электроснабжения — 3.1.27 потеря напряжения в системе электроснабжения (потеря напряжения): Величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения. [ГОСТ 23875 88, пункт 27] Источник:… …   Словарь-справочник терминов нормативно-технической документации

  • потеря напряжения в системе электроснабжения UΔ — 44 потеря напряжения в системе электроснабжения UΔ Потеря напряжения: Разность напряжений в начальной и конечной точках электрической линии в данный момент времени de. Verlust der Spannung en. Voltage loss fr. Perte de tension dans le réseau… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 23875-88: Качество электрической энергии. Термины и определения — Терминология ГОСТ 23875 88: Качество электрической энергии. Термины и определения оригинал документа: Facteur de distortion (d’une tension ou d’un courant alternatif non sinusoïdal) 55 Определения термина из разных документов: Facteur de… …   Словарь-справочник терминов нормативно-технической документации

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

  • отклонение — 1.3.2.28 отклонение: Максимальное отклонение от температурной уставки, указанное изготовителем. Источник: ГОСТ Р 51983 2002: Устройства многофункциона …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 50030.5.1-2005: Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления — Терминология ГОСТ Р 50030.5.1 2005: Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления оригинал документа: (обязательное)… …   Словарь-справочник терминов нормативно-технической документации

  • трехфазный источник бесперебойного питания (ИБП) — трехфазный ИБП [Интент] Глава 7. Трехфазные ИБП … ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8 25 кВА – переходный. Для такой мощности… …   Справочник технического переводчика

  • скорость — 05.01.18 скорость (обработки) [rate]: Число радиочастотных меток, обрабатываемых за единицу времени, включая модулированный и постоянный сигнал. Примечание Предполагается возможность обработки как движущегося, так и неподвижного множества… …   Словарь-справочник терминов нормативно-технической документации

dic.academic.ru

3.4. Падение и потеря напряжения в линии

На рис. 3.2, е приведена векторная диаграмма для ли­- нейных напряжений в начале и в конце линии и . Эта диаграмма аналогична диаграмме на рис. 3.2, в.

Падение напряжения—геометрическая (векторная) разность между комплексами напряжений начала и конца линии. На рис. 3.2, е падение напряжения — это вектор , т. е.

. (3.26)

Продольной составляющей падения напряжения называют проекцию падения напряжения на действитель­- ную ось или на напряжение , =АС на рис. 3.2, е. Индекс «к» означает, что — проекция на напряжение конца линии . Обычно выражается через данные в конце линии: , , .

Поперечная составляющая падения напряжения это проекция падения напряжения на мнимую ось, =В на рис. 3.2, е. Таким образом,

. (3.27)

Часто используют понятие потеря напряжения это ал- гебраическая разность между модулями напряжений на­- чала и конца линии. На рис. 3.2,е . Если попе­- речная составляющая мала (например, в сетях кВ), то можно приближенно считать, что потеря напряжения равна продольной составляющей падения на­- пряжения.

Расчет режимов электрических сетей ведется в мощно­- стях, поэтому выразим падение напряжения и его состав­- ляющие через потоки мощности в линии.

Известны мощность и напряжение в конце линии (рас- чет напряжения в начале линии по данным конца). Выра­- зим ток в линии в (3.27) через мощность в конце про­- дольной части линии и напряжение :

. (3 28)

В результате получим

. (3.29)

Приравняв в (3.29) действительные и мнимые части, по­- лучим выражения продольной и поперечной составляющих падения напряжения по данным конца:

; (3.30)

. (3.31)

Напряжение в начале линии

, (3.32)

где известно; , определяем из (3.30) и (3.31).

Соответственно модуль и фаза напряжения в начале ли­- нии (см. рис. 3.2, е)

; (3.33)

. (3.34)

Определение напряжения в начале линии по данным конца по выражениям (3.32), а также (3.30), (3.31) экви­- валентно использованию закона Ома.

Пример 3.2. Определим падение и потерю напряжения в линии, рас­- смотренной в примере 3.1, по известным мощности нагрузки =15+ +j10 МВА и напряжению в конце линии j2,65 кВ.

Используя параметры линии, а также мощность в конце линии , приведенные в примере 3.1, по (3.30), (3.31) найдем продольную и поперечную составляющие падения напряжения по данным конца:

кВ ;

кВ .

Напряжения иприведены на рис. 3.2, з. В большем мас­- штабе продольная и поперечная составляющие падения напряжения изображены на рис 3.2, и.

Напряжение в начале линии по (3.32) равно

кВ.

Модуль напряжения в начале линии

кВ.

Потеря напряжения

кВ.

Известны мощность и напряжение в начале линии (рас- чет напряжения в конце линии по данным начала). Напра­- вим по действительной оси, т.е. примем, что (рис. 3.2, ж). На рис. 3.2, ж изменилось положение осей в сравнении с рис. 3.2, е. Продольная составляющая паде­- ния напряжения =ВСэто проекция падения на­- пряжения на действительную ось или на . Поперечная составляющая падения напряжения =АС’—это про­- екция падения напряжения на мнимую ось. Один и тот же вектор падения напряжения проектируется на различ­- ные оси. Поэтому

,.

Если выразить ток в линии аналогично (3.28) через известные в данном случае мощность в начале продольной ветви линии и , то получим выражения, аналогичные (3.30), (3.31):

; (3.35)

. (3.36)

Напряжение в конце линии

, (3.37)

где известно; , определяются из(3.35), (3.36). Модуль и фаза равны

; (3.38)

. (3.39)

Определение напряжения в конце линии по данным на­- чала по выражениям (3.37), а также (3.35), (3.36) эквива­- лентно применению закона Ома в виде (3.25).

Пример 3.3. Определим падение и потерю напряжения в линии, рассмотренной в примере 3.1, по известным мощности в начале линии =15,61+j9,6 МВА и напряжению в начале линии кВ; = 115,9 кВ.

Используя параметры линии, приведенные в примере 3.1, по выра­- жениям (3.35), (3.36) найдем продольную и поперечную составляющие падения напряжения по данным начала:

кВ:

кВ.

Напряжение в конце линии по (3.37)

кВ.

Модуль напряжения в конце линии

кВ.

Потеря напряжения кВ.

Результаты определения напряжений в примерах 3.1, 3.2 и 3.3 раз­- личаются на погрешность округления, в примере 3.1 кВ, а в примере 3.2 кВ. Соответственно в примерах 3.2, 3.3 потери напряжения равны 6,1 и 6,2 кВ. При проведении расчетов напряжений с четырьмя значащими цифрами погрешность округления при опреде­- лении, например, в данных примерах равна 116—115,9=0,1 кВ. Ес­- ли проводить расчеты с восемью значащими цифрами, то результаты определения и различаются на 0,00094 кВ, т. е. погрешность ок­- ругления равна 0,001 кВ.

studfile.net

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *