+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Трансформаторы, их виды и назначение

Что такое трансформатор
Принцип работы трансформатора
Виды трансформаторов
Режимы работы трансформатора
Уравнения идеального трансформатора
Магнитопровод трансформатора
Обмотка трансформатора
Применение трансформаторов
Схема трансформатора

Что такое трансформатор

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть. Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.

Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

В начало

Принцип работы трансформатора

В трансформаторе принято выделять первичную и вторичную обмотку. К первичной обмотке напряжение подводится, а от вторичной отводится. Действие трансформатора основано на законе Фарадея (законе электромагнитной индукции): изменяющийся во времени магнитной поток через площадку, ограниченную контуром, создает электродвижущую силу. Справедливо также обратное утверждение: изменяющийся электрический ток индуцирует изменяющееся магнитное поле.

В трансформаторе есть две обмотки: первичная и вторичная. Первичная обмотка получает запитку от внешнего источника, а с вторичной обмотки напряжение снимается. Переменный ток первичной обмотки создает в магнитопроводе переменное магнитное поле, которое, в свою очередь, создает ток во вторичной обмотке.

В начало

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

В начало

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В.

Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор.

Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины.

Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем.

Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

В начало

Уравнения идеального трансформатора

Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора. Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки. Именно поэтому мы можем написать:
P1= I1*U1 = P2 = I2*U2,
где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.

В начало

Магнитопровод трансформатора

Магнитопровод представляет собой пластины из электротехнической стали, которые концентрируют в себе магнитное поле трансформатора. Полностью собранная система с деталями, скрепляющими трансформатор в единое целое – это остов трансформатора. Та часть магнитопровода, на которой крепятся обмотки, называется стержнем трансформатора. Часть магнитопровода, которая не несет на себе обмотку и замыкает магнитную цепь, называется ярмом.

В трансформаторе стержни могут располагаться по-разному, поэтому выделяют такие четыре типа магнитопроводов (магнитных систем): плоская магнитная система, пространственная магнитная система, симметричная магнитная система, несимметричная магнитная система.

В начало

Обмотка трансформатора

Теперь поговорим об обмотке трансформатора. Основная часть обмотки – виток, который однократно обхватывает магнитопровод и в котором индуцируется магнитное поле. Под обмоткой понимают сумму витков, ЭДС всей обмотки равна сумме ЭДС в каждом витке.

В силовых трансформаторах обмотка обычно состоит из проводников, имеющих квадратное сечение. Такой проводник по-другому еще называется жилой. Проводник квадратного сечения используется для того, чтобы более эффективно использовать пространство внутри сердечника. В качестве изоляции каждой жилы может использоваться либо бумага, либо эмалевый лак. Две жилы могут быть соединены между собой, и иметь одну изоляцию – такая конструкция называется кабелем.

Обмотки бывают следующих типов: основные, регулирующие и вспомогательные. Основной называется обмотка, к которой подводится или от которой отводится ток (первичная и вторичная обмотка). Обмотка с выводами для регулирования коэффициента трансформации напряжения называется регулирующей.

В начало

Применение трансформаторов

Из курса школьной физики известно, что потери мощности в проводах прямо пропорциональны квадрату силы тока. Поэтому для передачи тока на большие расстояния напряжение повышают, а перед подачей потребителю наоборот, понижают. В первом случае нужны повышающие трансформаторы, а во втором – понижающие. Это основное применение трансформаторов.

Трансформаторы применяются также в схемах питания бытовых приборов. Например, в телевизорах применяют трансформаторы, имеющие несколько обмоток (для питания схем, транзисторов, кинескопа, и т.д.).

В начало

Схема трансформатора

  1. Изоляция трансформатора на основе безматричной вакуумной пропитки и работает в среде с высокой влажностью воздуха и в химически агрессивной атмосфере.
  2. Минимальное выделение энергии горения (например, 43 кг для трансформатора 1600 кВА соответствуют 1,1% веса). Другие изоляционные материалы являются практически негорючими, самозатухающими и не содержат каких-либо токсичных добавок.
  3. Устойчивость трансформатора к загрязнениям благодаря конвекционным самоочищающимся дискам обмотки.
  4. Большая длина утечки по поверхности дисков обмотки, которые создают эффект изоляционных барьеров.
  5. Устойчивость трансформатора к температурной ударной нагрузке даже при крайне низких температурах (-50°С).
  6. Керамические блоки прокладки (без возможности возгорания) между дисками обмотки.
  7. Изоляция проводников стекло-шелк.
  8. Безопасность эксплуатации трансформатора благодаря специальной структуре обмотки Воздействие напряжения на изоляцию никогда не превышает напряжение изоляции (не более 10 В). Частичные разряды в изоляции физически невозможны.
  9. Охлаждение трансформатора обеспечивается вертикальными и горизонтальным каналам охлаждения, а минимальная толщина изоляции обеспечивают возможность работы трансформатора при больших кратковременных перегрузках в защитном корпусе IP 45 без принудительного охлаждения.
  10. Изоляционный цилиндр сделан и практически негорючего и самозатухающего материала, армированного стекловолокном.
  11. Обмотка низкого напряжения из стандартного провода или фольги; в качестве материала обмотки используется медь.
  12. Динамическая устойчивость трансформатора к коротким замыканиям обеспечивается керамическими изоляторами.


В начало

Трансформаторы напряжения. Всё, что о них нужно знать

Что необходимо о них знать? Расскажем об этом в предлагаемой статье.

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.

Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.

Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

Устройство трансформатора напряжения

ТН состоят из двух главных элементов:

  • Стального магнитопровода.

  • Обособленных друг от друга, изолированных обмоток (первичной и вторичной).

На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.

Принцип работы

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

  • Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.

  • Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.

  • К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

  • Число фаз: одно- и трехфазные.

  • Количество обмоток – две или три.

  • Класс точности – диапазон допустимых параметров погрешности.

  • Тип охлаждения – масляные и сухие (воздушное охлаждение).

  • Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

  • Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.

  • Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.

  • Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.

  • Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.

  • Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.

  • Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Трансформаторы

 

3.6. Трансформаторы

 

Трансформатор – это устройство, служащее для повышения или понижения переменного напряжения без изменения его частоты и практически без потерь мощности. Трансформатор состоит из двух или более катушек, надетых на общий сердечник. Катушка, которая подключается к источнику переменного напряжения, называется первичной, а катушка, к которой присоединяется нагрузка (потребители электрической энергии), — вторичной (рис. 3.22). Сердечники трансформаторов изготавливаются из электротехнической стали и набираются из отдельных изолированных друг от друга пластин (для уменьшения потерь энергии вследствие возникновения в сердечнике вихревых токов) – рисунок 3.23.

Катушки трансформатора, как правило, содержат разное количество витков, причем большее напряжение оказывается приложено к катушке с большим числом витков. Если трансформатор используется для повышения напряжения, то обмотка с меньшим числом витков подключается к источнику напряжения, а к обмотке с большим числом витков присоединяется нагрузка. Для понижения напряжения все делается наоборот. При этом не следует забывать, что подавать на первичную обмотку можно напряжение не больше номинального (того, на которое она рассчитана).

Коэффициентом трансформации называют отношение числа витков в первичной обмотке к числу витков во вторичной обмотке. Он равен также отношению ЭДС в обмотках.      

При отсутствии потерь в обмотках коэффициент трансформации равен отношению напряжений на зажимах обмоток: k=U1/U2.

Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего — меньше 1.

Принцип работы трансформатора основан на явлении электромагнитной индукции. При протекании переменного тока через первичную катушку вокруг нее возникает перемененное магнитное поле и магнитный поток, который пронизывает также и вторую катушку. В результате во вторичной катушке появляется вихревое электрическое поле и на ее зажимах возникает ЭДС индукции.

Трансформатор характеризуется коэффициентом полезного действия, равным отношению мощности, выделяющейся во вторичной катушке, к мощности, потребляемой первичной катушкой от сети. У хороших трансформаторов КПД составляет 99 — 99,5%.

Важным свойством трансформатора является его способность преобразовывать сопротивление нагрузки. Рассмотрим трансформатор с КПД приблизительно равным 100%. В этом случае мощность, выделяющаяся во вторичной цепи трансформатора, будет равна мощности, потребляемой первичной обмоткой от источника напряжения. Для такого трансформатора мощность, потребляемая от источника напряжения, будет чисто активной. Мощность в первичной цепи трансформатора P1=(U12)/R1, а во вторичной цепи P2=(U22)/R2.

Так как P1=P2 и U1=kU2 , то R1=k2R2.

Таким образом, нагрузка сопротивлением R2, подключаемая к источнику переменного напряжения через трансформатор, по мощности будет эквивалентна нагрузке сопротивлением R1, подключаемой без трансформатора.

Для регулировки переменного напряжения широко применяются лабораторные автотрансформаторы. Автотрансформаторы рассчитаны на подключение к сети переменного напряжения 220 В или 127 В. Как правило, выходное напряжение автотрансформатора регулируется плавно до 250 В. Принципиальная схема автотрансформатора приведена на рисунке  3.24а, а его устройство

показано на рисунке 3.24 б. Обмотка трансформатора выполнена изолированным проводом в один слой. На участках обмотки, которых касается подвижный контакт с угольной вставкой, изоляция очищена. При перемещении контакта угольная вставка закорачивает виток провода. Однако вследствие небольшого напряжения на одном витке и заметного сопротивления угольной вставки через замкнутый виток протекает допустимый ток.

Первичная обмотка автотрансформатора является частью его вторичной обмотки и поэтому между первичной и вторичной обмоткой трансформатора имеется гальваническая связь. К вторичной обмотке автотрансформатора нельзя непосредственно подключать потребители, один из проводов которых может оказаться соединенным с землей. Такое подключение приведет к аварии или несчастному случаю. При работе с автотрансформатором запрещается заземлять вторичную цепь.

Рассмотрим кратко простейший расчет маломощных трансформаторов бытовой радиоаппаратуры. Мощность трансформатора (в Вт) численно равна квадрату площади (в см2) поперечного сечения среднего стержня магнитопровода. Зная номинальную мощность трансформатора, можно  найти ток в первичной обмотке при номинальной нагрузке во вторичных обмотках. Диаметр провода обмотки выбирается из расчета (2,5-3)А/мм2 поперечного сечения провода. Для стандартных магнитопроводов, применяемых для изготовления трансформаторов, число витков на 1 вольт примерно равно частному от деления 50 на площадь поперечного сечения центрального стержня магнитопровода, выраженную в см2. Однако в зависимости от качества магнитопровода коэффициент может изменяться от 35 до 65.

Полное сопротивление катушки индуктивности с ферромагнитным сердечником зависит от силы протекающего через нее тока. Сопротивление катушки в зависимости от силы протекающего тока сначала увеличивается, достигает максимального значения, а затем уменьшается. На рисунке 3.25 приведена зависимость тока, протекающего в обмотке ненагруженного трансформатора, от приложенного к ней напряжения (исследован трансформатор источника ВУ-4/36 в режиме повышения напряжения).

Зависимость, приведенную на рисунке 3.25, называют характеристикой холостого хода трансформатора. Нелинейное возрастание тока холостого хода в зависимости от приложенного к первичной обмотке напряжения начинается примерно с 0,8Uном. Номинальное напряжение первичной обмотки трансформатора выбирают так, чтобы ток холостого хода составлял 5-10% от номинального тока. При напряжении 1,1Uном ток холостого хода не должен превышать 20-25% номинального тока нагруженного трансформатора.

 

 

Устройство трансформатора | Полезные статьи

Устройство, служащее для преобразования электрической энергии посредством эффекта электромагнитной индукции с одними параметрами переменного напряжения и тока на входе к другим параметрам этих величин на выходе, без изменения частоты, называется трансформатором.
Схематично Устройство трансформатора состоит из двух изолированных друг от друга обмоток, размещённых на ферромагнитном сердечнике. Магнитный поток от тока в первичной обмотке возбуждает ЭДС во вторичной обмотке, как это можно увидеть на Рис.1.
 

Первичная обмотка трансформатора

Первичная обмотка трансформатора запитывается переменным напряжением  U_1, порождающим в ней ток  I_1.

Вторичная обмотка трансформатора

Вторичная обмотка трансформатора, при взаимодействии с магнитным потоком Ф, генерирует в своих витках ЭДС, что приводит к возникновению напряжения на обмотке U_2 и тока I_2, зависящие от общего сопротивления вторичной цепи.
 

ВИДЫ ТРАНСФОРМАТОРОВ

Остановимся на наиболее распространённых видах трансформаторов.

Силовой трансформатор

Силовые трансформаторы преобразуют переменное напряжение низких частот (50-60 Гц) и рассчитаны на большую мощность. Они обеспечивают приём и передачу электроэнергии в магистральных линиях с напряжением до 1150 кВ и в городских с напряжением до 10 кВ. Один из трансформаторов такого типа можно посмотреть на Рис.2. Там же приведено и описание его устройства.
Наибольшее распространение получили трёхфазные силовые трансформаторы из-за большего КПД.

 

 

Сетевой трансформатор

Эти устройства, как правило однофазные, обеспечивают преобразование напряжения бытовой электросети (порядка 220 вольт, 50 Гц) в напряжения питания различных систем электроприборов в диапазоне 5–48 вольт. 
На Рис.3 показаны некоторые из них с Ш-образными и тороидальным сердечником. Тороидальные сердечники обеспечивают большую компактность устройства.
 

Автотрансформатор

Обмотки этого устройства являются одной цепью и их взаимодействие между собой обеспечивается как электромагнитной, так и гальванической связью. Они позволяют на разных выводах от группы витков получать различные выходные напряжения. Примеры трансформаторов можно посмотреть на Рис.4.
 
Экономия провода на обмотке и на количестве материала сердечника позволяет уменьшить стоимость и вес устройства. Наличие же гальванической связи между обмотками является его недостатком.
Автотрансформаторы применяются в системах автоматики, широко применяются в высоковольтных сетях. Большое распространение получили трёхфазные автотрансформаторы.
Силовые автотрансформаторы применяются в системах пуска мощных электродвигателей и имеют собственную мощность сотни мегаватт.
Одной из разновидностей автотрансформатора является лабораторный автотрансформатор (ЛАТР), который позволяет произвольно менять выходное напряжение в рамках диапазона регулирования. Контактный движок с угольной щёткой может перемещаться от витка к витку обмотки на тороидальном сердечнике посредством поворотной ручки, что и обеспечивает плавное изменение выходного напряжения.
Наиболее часто применяемые ЛАТР – однофазные с диапазоном напряжения на выходе 0-250 вольт и трёхфазные 0-450 вольт.

 

 

Сварочный трансформатор

Эти устройства предназначены для получения выходного тока большой силы с соответственным понижением выходного напряжения. Устройство такого трансформатора можно посмотреть на Рис.5
 


Измерительный трансформатор или трансформатор тока

Первичная обмотка такого устройства чаще всего имеет один виток либо прямой провод, пропущенный через сердечник и последовательно включённый в цепь измеряемого переменного тока. Вторичных обмоток может быть несколько. К ним подключаются измерительные приборы и устройства защиты. Измерительные приборы и устройства защиты должны иметь малое внутреннее сопротивление. Ток во вторичных обмотках пропорционален току первичной обмотки с коэффициентами трансформации К.
 
Для трансформаторов тока К должен быть значительно больше единицы.
Измерительные трансформаторы гальванически развязывают рабочую и измерительные цепи, что делает работу в измерительных цепях безопасной. Требование включения нагрузки в измерительные цепи обязательно, иначе трансформатор может выйти из строя.
Такие трансформаторы широко применяются в схемах релейной защиты.

Импульсные трансформаторы


Эти устройства широко используют в схемах балласта энергосберегающих ламп, в зарядных устройствах, в блоках питания аппаратуры, в сварочных аппаратах и инверторах, в других маломощных или силовых преобразователях электроэнергии. Они выполняются на ферритовых сердечниках, что позволяет работать с высокими частотами.

Существуют импульсные трансформаторы тока, которые применяются в импульсных схемах для измерения величины и/или направления тока.
На Рис.6 показаны различные импульсные трансформаторы.
 

 

Устройство и принцип действия понижающего трансформатора

Трансформатор понижающий представляет собой электромагнитный прибор, который состоит из ферромагнитного сердечника и двух проволочных обмоток – первичной и вторичной.


Трансформатор понижающий представляет собой электромагнитный прибор, который состоит из ферромагнитного сердечника и двух проволочных обмоток – первичной и вторичной.

Магнитопровод – это совокупность элементов ферромагнитного материала (обычно электротехническая сталь), которые собраны в определенной геометрической форме. В нем происходит локализация основного магнитного поля трансформатора понижающего.

Вся магнитная система вместе со всеми компонентами называется остовом. При этом часть, где располагаются основные обмотки, называют стержнем. А часть, необходимая для замыкания магнитной цепи, – это ярмо.

В соответствии с расположением стержней в пространстве понижающий трансформатор может иметь плоскую, пространственную, симметричную либо несимметричную магнитную систему.

Понижающие трансформаторы напряжения отличаются конструктивными особенностями. Производители делают выбор в пользу одной из двух концепций – броневая или стержневая. Принципиальное отличие технических решений сводится к тому, что в первом случае обмотки заключены в сердечнике броневого типа, а во втором – сердечник заключен в обмотках стержневого типа. При этом в устройствах первого типа ось обмоток может располагаться вертикально или горизонтально, в то время когда во втором случае – ось размещается вертикально.

Однако способ производства не влияет на эксплуатационные характеристики и надежность устройства. Предприятие выбирает тот вариант, который считает наилучшим с точки зрения организации технологического процесса.

Принцип действия понижающего трансформатора основан на использовании явления взаимной индукции, которая действует через магнитное поле, и обеспечивает передачу электроэнергии из одного контура устройства в другой.

На сегодняшний день в продаже представлен трансформатор понижающий различных типов и видов: одно- или трехфазный, с открытым корпусом или с защитным кожухом.

Одна из важнейших характеристик прибора – это коэффициент трансформации, который не должен превышать 1.

В зависимости от модификации устройство преобразовывает электрический ток разного начального напряжения, которое может достигать 660В. Трансформатор, понижающий до 220В, получил наибольшее распространение. Существует также понижающий до 380 Вольт трансформатор.

В соответствии с предъявляемыми требованиями для каждого случая выходное напряжение может быть разным: например, трансформатор понижающий до 36 Вольт, а также 12, 24, 42В и т.д.

Понижающий трансформатор (220B 110В) обеспечивает нормальную работу оборудования и электроприборов, которые изготовлены в странах, где нормы сетей электропитания отличаются от российского стандарта.

Понижающие трансформаторы напряжения имеют широкую область применения, однако чаще всего они используются в источниках питания различных приборов и в электросетях. Выбор конкретного устройства необходимо осуществлять с учетом определенных запросов для каждого отдельного случая.

Обмотки ВН и НН — Проектэлектротехника

г. Москва, ул. Кузнецкий мост, дом 21/5 [email protected]Обратный звонок +7 (8352) 23-70-20

О компании— Качество работ и услуг— НовостиПродукция— Сухие трансформаторы—— Распределительные трансформаторы—— Преобразовательные трансформаторы—— Трансформаторы морского исполнения —— Сухие трансформаторы с литой изоляцией—— Сухие трансформаторы мощностью 10 кВА—— Трехфазные трансформаторы— Специальные трансформаторы— Обмотки ВН и НН— Реакторное оборудование— Комплектные трансформаторные подстанции— Передвижные КТП на шасси— Электротехнические блок-боксы— Аксессуары под заказ— Защитные кожухи для трансформаторов — Дизельные электроагрегаты и электростанции—— Электростанции АД30-Т400—— Электростанции АД100-Т400—— Дизельные электроагрегаты серии АД—— Дизельные электроcтанции серии АД—— Передвижные дизельные электростанции—— Электроагрегат АД8-Т400-1, 2, 3Р (П)—— ЭЛЕКТРОАГРЕГАТ ДИЗЕЛЬНЫЙ АД16-Т400-1, 2, 3Р—— Электроагрегат АД20-Т400-1, 2, 3Р (П)—— Электроагрегат АД30-Т400-1, 2, 3Р (П)—— Электроагрегат АД50-Т400-1, 2, 3Р (П)—— Электроагрегат АД60-Т400-1, 2, 3Р (П)—— Электроагрегат АД100-Т400-1, 2, 3Р (П)—— Электроагрегат АД200-Т400-1, 2, 3Р (П)—— Электростанция ЭД30-Т400-1РПУ1—— Электростанция ЭД2х60-Т400-1, 2, 3РН—— Электростанция ЭД2х100-Т400-1, 2, 3РН—— Электростанция ЭД200-Т400-1, 2, 3РН— Сетевые накопители энергии— Контроллер управления «Вектор Э»— Проходные изоляторы трансформатора— Трансформаторные подстанции— Силовые трансформаторы— Виброгасители для трансформаторовУслуги— Ремонт силовых трансформаторовСкладOn-line заявкаОбъявленияПартнерам— Наши заказчики— ОтзывыКонтакты

  • О компании
  • Продукция
    • Сухие трансформаторы
    • Специальные трансформаторы
    • Обмотки ВН и НН
    • Реакторное оборудование
    • Комплектные трансформаторные подстанции
    • Передвижные КТП на шасси
    • Электротехнические блок-боксы
    • Аксессуары под заказ
    • Защитные кожухи для трансформаторов
    • Дизельные электроагрегаты и электростанции
      • Электростанции АД30-Т400
      • Электростанции АД100-Т400
      • Дизельные электроагрегаты серии АД
      • Дизельные электроcтанции серии АД
      • Передвижные дизельные электростанции
      • Электроагрегат АД8-Т400-1, 2, 3Р (П)
      • ЭЛЕКТРОАГРЕГАТ ДИЗЕЛЬНЫЙ АД16-Т400-1, 2, 3Р
      • Электроагрегат АД20-Т400-1, 2, 3Р (П)
      • Электроагрегат АД30-Т400-1, 2, 3Р (П)
      • Электроагрегат АД50-Т400-1, 2, 3Р (П)
      • Электроагрегат АД60-Т400-1, 2, 3Р (П)
      • Электроагрегат АД100-Т400-1, 2, 3Р (П)
      • Электроагрегат АД200-Т400-1, 2, 3Р (П)
      • Электростанция ЭД30-Т400-1РПУ1
      • Электростанция ЭД2х60-Т400-1, 2, 3РН
      • Электростанция ЭД2х100-Т400-1, 2, 3РН
      • Электростанция ЭД200-Т400-1, 2, 3РН
    • Сетевые накопители энергии
    • Контроллер управления «Вектор Э»
    • Проходные изоляторы трансформатора
    • Трансформаторные подстанции
    • Силовые трансформаторы
  • Услуги
  • Склад
  • On-line заявка
  • Объявления
  • Партнерам
  • Контакты

Работа трансформатора, повышающего или понижающего напряжение. Что делает повышающий трансформатор

Трансформатор, устройство, которое передает электрическую энергию от одной части схемы к другой за счет магнитной индукции и, как правило, с изменением величины напряжения. Трансформаторы работают только с переменным электрическим током (AC).

Трансформаторы имеют важное значение в распределении электроэнергии. Они повышают напряжение, вырабатываемое на электростанциях до высоких значений с целью эффективной передачи электроэнергии. Другие трансформаторы понижают это напряжение в местах потребления.

Многие бытовые приборы оборудованы трансформаторами, для того чтобы по мере необходимости повысить или понизить напряжение поступающее из домашней электросети. Например, для работы телевизора и аудиоусилителя необходимо повышение напряжения, а для работы дверного звонка или термостата низкое напряжение.

Как работает трансформатор

Как правило, простой трансформатора состоит из двух катушек намотанных изолированным проводом. В большинстве трансформаторов, провода намотаны на стержень из железа, называемый сердечником.

Одна из обмоток, ее еще называют первичной обмоткой, подключается к источнику переменного тока, что в свою очередь приводит к появлению постоянно переменного магнитного поля вокруг обмотки. Это переменное магнитное поле, в свою очередь, создает переменный ток в другой обмотке (вторичной обмотке).

Величина, определяемая как отношение числа витков в первичной обмотке к числу витков во вторичной обмотке, определяет масштаб понижения или повышения напряжения во вторичной обмотки. Данную величину еще называют коэффициентом трансформации.

Например, если у трансформатора имеется 3 витка первичной обмотке и 6 витков во вторичной обмотки, то напряжение во вторичной обмотке будет в 2 раз больше, чем в первичной. Такой трансформатор называется повышающий трансформатор.

И на оборот, если есть 6 витков в первичной обмотке и 3 виток во вторичной, то напряжение снимаемое с вторичной обмотки будет в 2 раз ниже чем в первичной обмотке. Этот вид трансформатора носит название понижающий трансформатор.

Так же следует иметь ввиду, что соотношение тока в обеих катушках находится в обратной зависимости к соотношению их напряжений. Таким образом, электрическая мощность (напряжение умноженное на силу тока) является одинаковой в обеих катушек.

Импеданс (сопротивление потоку переменного тока) первичной катушки зависит от импеданса вторичной цепи и коэффициента трансформации. При правильном соотношении витков трансформатора можно добиться практически одинакового сопротивления обоих контуров.

Согласованные сопротивления имеют важное значение в стерео системах и других электронных систем, потому это позволяет передавать максимальное значение энергии от одного блока схемы другому.

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n
  3. согласующий – трансформатор параметры напряжения не изменяет, происходит только гальваническая развязка цепей (n~1), например, применяется в звуковых усилителях.

В основе работы трансформатора лежит принцип электромагнитной индукции и для наиболее полной передачи энергии, для уменьшения потерь при трансформации, устройство обычно выполняется на магнитопроводе.

Как правило, первичная катушка одна, а вот вторичных может быть несколько, все зависит от назначения трансформатора.

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести . Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Чтобы питать электроприборы, нужно обеспечить номинальные значения параметров электропитания, заявленные в их документации. Безусловно большинство современных электроприборов работают от сети переменного тока 220 Вольт, но бывает так, что нужно обеспечить питание приборов для других стран, где напряжение другое или запитать что-нибудь от бортовой сети автомобиля. В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и что для этого нужно.

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – , особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, мы рассказали в статье, на которую сослались.

Цепи постоянного тока

Всем известно, что на постоянном токе трансформаторы не работают, тогда как в таких случаях повысить напряжение? В большинстве случаев постоянку повышают с помощью , полевого или биполярного транзистора и ШИМ-контроллера. Другими словами, это называется бестрансформаторный преобразователь напряжения. Если эти три основных элемента соединить как показано на рисунке ниже и на базу транзистора подавать ШИМ сигнал, то его выходное напряжение повысится в Ku раз.

Ku=1/(1-D)

Также рассмотрим типовые ситуации.

Допустим вы хотите сделать подсветку клавиатуры с помощью небольшого отрезка светодиодной ленты. Для этого вполне хватит мощности зарядного от смартфона (5-15 Вт), но проблема в том, что его выходное напряжение составляет 5 Вольт, а распространенные типы светодиодных лент работают от 12 В.

Тогда как повысить напряжение на зарядном устройстве? Проще всего повысить с помощью такого устройства как «dc-dc boost converter» или «импульсный повышающий преобразователь постоянного напряжения».

Такие устройства позволяют повысить напряжение с 5 до 12 Вольт, и продаются как с фиксированной величиной, так и регулируемые, что позволит в большинстве случаев поднять с 12 до 24 и даже до 36 Вольт. Но учтите, что выходной ток ограничен самым слабым элементом цепи, в обсуждаемой ситуации – током на зарядном устройстве.

При использовании указанной платы выходной ток будет меньше входного во столько раз, во сколько поднялось напряжение на выходе, без учета КПД преобразователя (он в районе 80-95%).

Подобные устройства строят на базе микросхем MT3608, LM2577, XL6009. С их помощью можно сделать устройство для проверки реле регулятора не на генераторе автомобиля, а на рабочем столе, регулируя значения с 12 до 14 Вольт. Ниже вы видите видео-тест такого устройства.

Интересно! Любители самоделок часто задают вопрос «как повысить напряжение с 3,7 В до 5 В, чтобы сделать Power bank на литиевых аккумуляторах своими руками?». Ответ прост – использовать плату-преобразователь FP6291.

На подобных платах с помощью шелкографии указано назначение контактных площадок для подключения, поэтому схема вам не понадобится.

Также часто возникающая ситуация — необходимость подключить к автомобильному аккумулятору 220В прибор, а бывает что за городом очень нужно получить 220В. Если бензинового генератора у вас нет – используйте автомобильный аккумулятор и инвертор, чтобы повысить напряжение с 12 до 220 Вольт. Модель мощностью в 1 кВт можно купить за 35 долларов – это недорогой и проверенный способ подключить 220В дрель, болгарку, котёл или холодильник к 12В аккумулятору.

Если вы водитель грузовика, вам не подойдёт именно указанный выше инвертор, из-за того, что в вашей бортовой сети скорее всего 24 Вольта. Если вам нужно поднять напряжение с 24В до 220В – то обратите на это внимание при покупке инвертора.

Хотя стоит отметить, что есть универсальные преобразователи, которые могут работать и от 12, и от 24 вольт.

В случаях, когда нужно получить высокое напряжение, например, поднять с 220 до 1000В, можно использовать специальный умножитель. Его типовая схема изображена ниже. Он состоит из диодов и конденсаторов. Вы получите на выходе постоянный ток, учтите это. Это удвоитель Латура-Делона-Гренашера:

А так выглядит схема несимметричного умножителя (Кокрофта-Уолтона).

С его помощью вы можете повысить напряжение в нужное число раз. Это устройство строится каскадами, от числа которых зависит сколько вольт на выходе вы получите. В следующем видео описан принцип работы умножителя.

Кроме этих схем существует еще множество других, ниже изображены схемы учетвертителя, 6- и 8-кратных умножителей, которые используются для повышения напряжения:

В заключении хотелось бы напомнить о технике безопасности. При подключении трансформаторов, автотрансформаторов, а также работе с инверторами и умножителями будьте аккуратны. Не касайтесь токоведущихчастей голыми руками. Подключения следует выполнять при отключенном питании от устройства, а также избегать их работы во влажных помещениях с возможностью попадания воды или брызг. Также не превышайте заявленный производителем ток трансформатора, преобразователя или блока питания, если не хотите, чтобы он у вас сгорел. Надеемся, предоставленные советы помогут вам повысить напряжение до нужного значения! Если возникнут вопросы, задавайте их в комментариях под статьей!

Наверняка вы не знаете:

Нравится(0 ) Не нравится(0 )

Вам понадобится

  • — отвертка;
  • — молоток;
  • — мультиметр;
  • — намоточный станок со счетчиком;
  • — обмоточный провод;
  • — паяльник, припой и нейтральный флюс;
  • — мегомметр

Инструкция

Убедитесь, что трансформатор является разборным. Если его сердечник собран склейкой лаком, или, тем более, сваркой, а также если прибор герметизирован любым способом, то для перемотки он непригоден.

У некоторых трансформаторов имеется несколько вторичных обмоток. Соединяя их последовательно, можно получать различные напряжения. Если некоторые из таких обмоток не задействованы, включив их последовательно с уже использующимися, можно повысить выходное напряжение , не прибегая к разборке трансформатора.Все перепайки выполняйте при отключенном питании. Если снимаемое напряжение после переделки не увеличилось, а уменьшилось, значит, дополнительная обмотка подключена в неправильной фазировке. Поменяйте местами ее выводы.

Убедившись в том, что трансформатор имеет разборную конструкцию, можно приступить к его разборке. Сняв крепление сердечника, разберите его легкими ударами молотка, запоминая расположение пластин.Освободив катушку от сердечника, намотайте на нее измерительную обмотку, имеющую несколько десятков витков. Изолируйте ее, выводы вытащите наружу, после чего соберите трансформатор.

Подключите к измерительной обмотке мультиметр, работающий в режиме измерения переменного напряжения, подайте на первичную обмотку трансформатора номинальное напряжение питания. Разделив число витков измерительной обмотки на измеренное напряжение, вы получите число витков на вольт.

Рассчитайте число витков новой вторичной обмотки, которую необходимо включить последовательно с имеющейся, по следующей формуле:Nдоп=(U2-U1)*(Nизм/Uизм), где:
Nдоп — искомое число витков дополнительной обмотки;
U2 — напряжение, которое необходимо получить;
U1 — напряжение имеющейся вторичной обмотки;
Nизм — число витков измерительной обмотки;
Uизм — напряжение, снятое с измерительной обмотки.Снова разберите трансформатор, смотайте измерительную обмотку и вместо нее намотайте дополнительную. Используйте провод того же сечения, что и у имеющейся вторичной обмотки, при этом, следите, чтобы диаметр катушки не увеличился слишком сильно, иначе сердечник будет невозможно надеть. Если соблюсти это требование не получается, от переделки трансформатора придется отказаться.

Изолируйте дополнительную обмотку, соберите трансформатор, после чего включите новую обмотку последовательно с вторичной. Обеспечьте ее правильную фазировку способом, описанным выше.

После переделки трансформатора ни в коем случае не снимайте с него мощность, превышающую ту, на которую он был рассчитан изначально. Рассчитать эту мощность можно, умножив снимаемое напряжение на потребляемый ток.

С помощью мегомметра убедитесь, что утечка между первичной и вторичной обмотками, а также между каждой из них и сердечником отсутствует даже после длительного прогрева при номинальной снимаемой мощности. Удостоверьтесь, что в ходе испытания не появляются запах гари, дым.

Иногда случается так, что напряжение в сети несколько ниже того, которое необходимо для нормального функционирования приборов. Из этого положения есть выход. Повысить напряжение можно очень просто. Для этого достаточно элементарных знаний по электротехнике.

Вам понадобится

  • Трансформатор

Инструкция

Для того чтобы повысить напряжение , понадобятся простой по и трансформатор ( именно – станет ясно после некоторых нехитрых расчетов, указанных ниже). Итак, первичная обмотка трансформатора должна быть на , а вторичная его обмотка должна быть рассчитана на то напряжение , на которое как раз и нужно повысить напряжение в сети.

Теперь возьмите и проанализируйте следующие :Iн = Рн? Uн и P = U2 ? I2. При помощи первой формулы вычислите ток вторичной обмотки трансформатора. После того как в результате расчетов станет известна P, то по полученным результатам подберите трансформатор, наиболее подходящий по параметрам (мощность и выходное напряжение ).

Далее поработайте с этими формулами:Uвых = Uвх ± (Uвх? Ктр) и Ктр = U1 ? U2. Благодаря этим формулам становится понятным, что для правильного результата достаточно просто фазировать (первичной или вторичной).

Полученное устройство установите в таком месте, из которого оно не будет мешать, так как в процессе работы от трансформатора исходит довольно гул. Поэтому целесообразно устанавливать трансформатор где- в подвале или в подсобном помещении.

Видео по теме

Обратите внимание

Следует также учесть тот факт, что в случае стабилизации напряжения в сети и достижения его нормального значения (220 вольт), на выходе этого трансформатора все равно будет напряжение повышенное, что может привести к выходу из строя бытовых приборов. Поэтому для того, чтобы перестраховаться, используйте в процессе эксплуатации получившегося прибора специальные розетки, реагирующие на изменения напряжения в сети и способные в нужный момент отключить трансформатор от сети.

Источники:

  • как поднять напряжение в 2019

Очень сложно придумать что-либо более интригующее, нежели трансформатор Теслы . В свое время, когда автор данного изобретения – сербский ученый Никола Тесла – продемонстрировал его широкой публике, он получил репутацию колдуна и мага. Самое удивительное, что собрать трансформатор Теслы без особого труда можно у себя дома, а затем, при демонстрации этого агрегата, вызывать шоковое состояние у всех своих знакомых.

Инструкция

Для начала нам будет любой источник тока напряжения. Нужно найти генератор или трансформатор с напряжением не менее 5 кВ. Иначе эксперимент не получится. Затем данный источник тока необходимо подключить к конденсатору. Если емкость выбранного будет большой, то тогда также будет необходим мост. Затем нужно создать так называемый «искровой промежуток». Для этого нужно взять два медных провода, концы которых согнуть в стороны, а основание крепко обмотать изолентой.

Далее необходимо изготовить Теслы . Для этого нужно обмотать проводом любую круглую деталь без сердечника (так, чтобы посередине была пустота). Первичная обмотка должна состоять из трех-пяти толстого медного провода. Вторичная обмотка должна содержать не менее 1000 витков. В итоге, должны получиться катушки в форме чечевицы.

Затем необходимо подключить провода к первичной обмотке катушки, а также источнику . Самый простой трансформатор Теслы готов. Он сможет давать разряды не менее 5 сантиметров, а также создать «корону» вокруг катушек. Стоит только отметить, что явления, создаваемые трансформатор ом Теслы , пока не изучены. Если же вы изготовили трансформатор Теслы , который дает разряды до одного , то ни в коем случае не становитесь под этот разряд, хоть это и безболезненно. Токи высоких энергий не вызывают сенсорной реакции , но могут сильно разогревать ткани. Последствия от подобных экспериментов скажутся с годами.

Видео по теме

Источники:

  • как собрать катушку тесла в 2019

В радиолюбительской практике нередко возникает необходимость изготовить трансформатор с нестандартными значениями тока и напряжения. Хорошо, когда удается найти готовое устройство с требуемыми обмотками, в другом случае изготовить его придется самостоятельно.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это Рекламное объявление

Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несут электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 300 000 до 750 000 вольт, а некоторые линии работают при еще более высоком напряжении.[1] Но бытовая техника в наших домах использует напряжение в тысячи раз меньшее — обычно всего от 110 до 250 вольт. Если вы пытались включить тостер или телевизор от опоры электричества, мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка убьет вас.) какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами. Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором.Давайте подробнее рассмотрим, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси. Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Ваш первый вопрос, вероятно, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию как непослушный школьники бегут по коридору. Вот почему провода нагреваются, когда через них течет электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом.Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает электроэнергией маленькую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома.Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам могут потребоваться источники питания на 400 вольт или около того. Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции по-прежнему очень неэффективны.Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны. Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Рекламные ссылки

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда по проводу течет колеблющийся электрический ток, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него.Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока. Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе.Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток. Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй катушки, вторичная напряжение меньше, чем первичное напряжение:

Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷ Первичное напряжение = Количество витков во вторичной обмотке ÷ Количество витков в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке уменьшат напряжение в 10 раз, но одновременно умножьте ток в 10 раз.Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), поэтому вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что некоторая часть «магнитного потока» просачивается наружу сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов. и города, где подведена высоковольтная электроэнергия от входящих линий электропередач. преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор.Таким образом, электронные устройства, подобные этим, имеют небольшие размеры. встроенные в них трансформаторы (часто устанавливаются в конце силового свинец) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Индукционные зарядные устройства

Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество. в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашей фотографии выше, шириной примерно с небольшой автомобиль, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным ( не будем забывать, что сотни или даже тысячи людей могут зависеть от мощности одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (интенсивность его использования), сезонный диапазон наружных (окружающих) температур и даже высоту (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отработанного тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из того, что было сказано выше, вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.

Рекламные ссылки

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Справочник по проектированию трансформаторов и индукторов, составленный полковником Уильямом Т. Маклайманом. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • «Электрические трансформаторы и силовое оборудование» Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к описанию соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
Книги более общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих собственных книг описывает, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов.Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351 589: Система распределения электроэнергии Люсьена Голарда и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система по всему миру.
  • Патент США 433702: Электрический трансформатор или индукционное устройство, Никола Тесла, 5 августа 1890 г.Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель, автор Отто Титус Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения подаваемого тока, Эдмунд Берри, 11 июля 1922 года. Трансформатор со шкалой, позволяющей регулировать выходное напряжение.

Новостные статьи

  • Трансформаторы: супергерои электротехнических изобретений Вацлава Смила. IEEE Spectrum. 25 июля 2017 года. На планете миллиарды трансформаторов — в вашем смартфоне, ноутбуке, зубной щетке и других местах; не пора ли нам оценить их немного больше? Включает в себя горшечную историю.
  • «Умные трансформаторы» сделают сеть более чистой и гибкой, Субхашиш Бхаттачарья, IEEE Spectrum, 29 июня 2017 г. Взгляд в будущее на твердотельных трансформаторах.
  • Мэттью Л. Уолд, «Упражнение по замене важнейших трансформеров (не голливудского типа)». Нью-Йорк Таймс. 14 марта 2012 г. Если трансформаторы являются неотъемлемой частью электросети, как их можно удалить во время технического обслуживания или отказа компонентов?
  • Next for the Grid: Solid State Transformers Майкл Канеллос, Green Tech Media, 15 марта 2011 г. Обзор того, как твердотельные трансформаторы могут революционизировать наши электрические сети.

Список литературы

  1. ↑ Напряжение передачи варьируется от страны к стране в зависимости от расстояния, на которое необходимо передать электроэнергию, но обычно колеблется от 45 000 до 750 000 вольт. (45–750 кВ).Однако некоторые линии дальней связи работают при напряжении более 1 миллиона вольт (1 000 000 вольт или 1000 кв). См. «Технологии защиты систем передачи переменного тока сверхвысокого напряжения» Бин Ли и др. Elsevier, 2020, стр. 1–5. Линии высокого напряжения классифицируются как 45–300 кВ; диапазон сверхвысокого напряжения от 300 кВ до 750 кВ; а сверхвысокие напряжения обычно превышают 800 кВ, согласно данным «Воздушные линии электропередачи: планирование, проектирование, строительство» Фридриха Кисслинга и др. Springer, 2003/2014, стр.6.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2007, 2021. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитируйте эту страницу

Вудфорд, Крис. (2007/2021) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это Рекламное объявление

Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несут электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 300 000 до 750 000 вольт, а некоторые линии работают при еще более высоком напряжении. [1] Но бытовая техника в наших домах использует напряжение в тысячи раз меньшее — обычно всего от 110 до 250 вольт. Если вы пытались включить тостер или телевизор от опоры электричества, мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка убьет вас.) Так что должно быть какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами. Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором. Давайте подробнее рассмотрим, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси. Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Ваш первый вопрос, вероятно, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию как непослушный школьники бегут по коридору.Вот почему провода нагреваются, когда через них течет электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом. Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает электроэнергией маленькую английскую деревню, где я живу.Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам могут потребоваться источники питания на 400 вольт или около того.Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Рекламные ссылки

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда по проводу течет колеблющийся электрический ток, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него. Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока.Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток.Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй катушки, вторичная напряжение меньше, чем первичное напряжение:

Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷ Первичное напряжение = Количество витков во вторичной обмотке ÷ Количество витков в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке уменьшат напряжение в 10 раз, но одновременно умножьте ток в 10 раз.Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), поэтому вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что некоторая часть «магнитного потока» просачивается наружу сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов. и города, где подведена высоковольтная электроэнергия от входящих линий электропередач. преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор.Таким образом, электронные устройства, подобные этим, имеют небольшие размеры. встроенные в них трансформаторы (часто устанавливаются в конце силового свинец) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Индукционные зарядные устройства

Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество. в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашей фотографии выше, шириной примерно с небольшой автомобиль, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным ( не будем забывать, что сотни или даже тысячи людей могут зависеть от мощности одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (интенсивность его использования), сезонный диапазон наружных (окружающих) температур и даже высоту (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отработанного тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из того, что было сказано выше, вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.

Рекламные ссылки

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Справочник по проектированию трансформаторов и индукторов, составленный полковником Уильямом Т. Маклайманом. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • «Электрические трансформаторы и силовое оборудование» Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к описанию соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
Книги более общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих собственных книг описывает, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов.Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351 589: Система распределения электроэнергии Люсьена Голарда и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система по всему миру.
  • Патент США 433702: Электрический трансформатор или индукционное устройство, Никола Тесла, 5 августа 1890 г.Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель, автор Отто Титус Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения подаваемого тока, Эдмунд Берри, 11 июля 1922 года. Трансформатор со шкалой, позволяющей регулировать выходное напряжение.

Новостные статьи

  • Трансформаторы: супергерои электротехнических изобретений Вацлава Смила. IEEE Spectrum. 25 июля 2017 года. На планете миллиарды трансформаторов — в вашем смартфоне, ноутбуке, зубной щетке и других местах; не пора ли нам оценить их немного больше? Включает в себя горшечную историю.
  • «Умные трансформаторы» сделают сеть более чистой и гибкой, Субхашиш Бхаттачарья, IEEE Spectrum, 29 июня 2017 г. Взгляд в будущее на твердотельных трансформаторах.
  • Мэттью Л. Уолд, «Упражнение по замене важнейших трансформеров (не голливудского типа)». Нью-Йорк Таймс. 14 марта 2012 г. Если трансформаторы являются неотъемлемой частью электросети, как их можно удалить во время технического обслуживания или отказа компонентов?
  • Next for the Grid: Solid State Transformers Майкл Канеллос, Green Tech Media, 15 марта 2011 г. Обзор того, как твердотельные трансформаторы могут революционизировать наши электрические сети.

Список литературы

  1. ↑ Напряжение передачи варьируется от страны к стране в зависимости от расстояния, на которое необходимо передать электроэнергию, но обычно колеблется от 45 000 до 750 000 вольт. (45–750 кВ).Однако некоторые линии дальней связи работают при напряжении более 1 миллиона вольт (1 000 000 вольт или 1000 кв). См. «Технологии защиты систем передачи переменного тока сверхвысокого напряжения» Бин Ли и др. Elsevier, 2020, стр. 1–5. Линии высокого напряжения классифицируются как 45–300 кВ; диапазон сверхвысокого напряжения от 300 кВ до 750 кВ; а сверхвысокие напряжения обычно превышают 800 кВ, согласно данным «Воздушные линии электропередачи: планирование, проектирование, строительство» Фридриха Кисслинга и др. Springer, 2003/2014, стр.6.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2007, 2021. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитируйте эту страницу

Вудфорд, Крис. (2007/2021) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают повышающие и понижающие трансформаторы?

Что такое электромагнитная индукция?

Если магнетизм может быть произведен из электричества, Фарадей выдвинул гипотезу, что электричество может быть произведено с помощью магнетизма.Фарадей использовал аппарат, состоящий из сердечника из мягкого железа, подобного показанному ниже. Катушка слева была подключена к батарее, а катушка справа — к гальванометру. Когда ток течет через левую катушку, подключенную к батарее, создается магнитное поле. Сила магнитного поля увеличивается за счет железного сердечника. Хотя Фарадей не мог создать ток в левом проводе, но, как ни странно, он заметил, что ток возникает при изменении тока.Фарадей пришел к выводу, что, хотя постоянное магнитное поле не производит электрического тока, изменение магнитного поля действительно производит ток. Такой ток называется индуцированным током . Процесс, при котором ток возникает при изменении магнитных полей, называется электромагнитной индукцией.

Примечание: Электромагнитная индукция была независимо открыта Майклом Фарадеем и Джозефом Генри в 1831 году. Связь между электродвижущей силой, ЭДС (напряжением) и магнитным потоком была формализована в уравнении, которое теперь называется Закон индукции Фарадея

Как работают трансформаторы

Трансформатор — это устройство, повышающее или понижающее напряжение переменного тока.Ток в одной катушке индуцирует ток в другой катушке.

Трансформатор состоит из двух катушек (одна катушка является первичной, а другая — вторичной), намотанных на металлический сердечник. (см. изображения —) Когда переменный ток проходит через первичную катушку и индуцируется магнитное поле, электромагнитная индукция вызывает ток во вторичной катушке. Если количество витков провода одинаково в обеих катушках, индуцированное напряжение во вторичной катушке будет одинаковым.Если количество витков во вторичной катушке больше, чем в первичной катушке, напряжение во вторичной катушке будет больше. Это пример повышающего трансформатора.

Как количество петель влияет на напряжение?

Если количество витков во вторичной катушке меньше, чем в первичной, то напряжение будет меньше. Это называется понижающим трансформатором.

СТУПЕНЧАТЫЙ ТРАНСФОРМАЦИЯ 10 КАТУШЕК В 2 КАТУШКИ 5: 1 ВОЛЬТ

Если количество витков вторичной катушки больше, чем первичной, то напряжение будет больше.Это называется повышающим трансформатором.

СТУПЕНЧАТЫЙ ТРАНСФОРМАТОР 2 КАТУШКИ НА 10 КАТУШЕК 1: 5 ВОЛЬТ

Почему трансформаторы важны для передачи электроэнергии.

Повышающие трансформаторы используются компаниями при передаче электроэнергии по линиям электропередачи. Затем компании используют понижающие трансформаторы для создания 120 В, используемых в домах.Повышающие трансформаторы также используются в домашних телевизорах, где требуется высокое напряжение. Понижающие трансформаторы также используются в радиоприемниках, компьютерах и калькуляторах


Проверьте свой Понимание:

Как работают трансформаторы — инженерное мышление

Узнайте, как работают трансформаторы, как создать магнитное поле с помощью электричества, почему в трансформаторах можно использовать только переменный ток, как работает базовый трансформатор, повышающие и понижающие трансформаторы и, наконец, трехфазные трансформаторы.Эта статья является продолжением нашей серии по электротехнике, так что ознакомьтесь с другими статьями ЗДЕСЬ , если вы еще этого не сделали.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube

Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.

Основы трансформатора

Есть два типа электричества; Переменный и постоянный ток, но трансформаторы могут работать только от переменного или переменного тока.Теперь, если вы не знаете разницы между этими двумя, то, пожалуйста, прежде всего, прочтите статьи по основам электричества. Проверьте эти ЗДЕСЬ. Когда мы подключаем генератор переменного тока к замкнутому контуру кабеля, через этот кабель может протекать ток, и направление тока будет чередоваться взад и вперед при вращении генератора.

Как это работает?

Чередование означает, что ток достигает максимальной и минимальной точки в течение цикла, что придает ему синусоидальную форму при подключении к осциллографу.Вы можете думать об этом как о приливе на море; по мере того, как он меняет направление и достигает своей максимальной и минимальной точки. Когда ток течет по кабелю, он допускает магнитное поле. Если мы пропустим через кабель постоянный ток, магнитное поле останется постоянным, но если мы пропустим через кабель переменный ток, то магнитное поле будет увеличиваться и уменьшаться по силе и меняет полярность по мере изменения направления тока.

Переменный ток

Если мы разместим несколько кабелей вместе и пропустим через них ток, то магнитные поля объединятся, чтобы создать более сильное магнитное поле.Если затем свернуть кабель в катушку, магнитное поле станет еще сильнее. Если мы поместим вторую катушку в непосредственной близости от первой катушки, а затем пропустим переменный ток переменного тока через первую катушку, то создаваемое ею магнитное поле вызовет ток во вторую катушку, и эта магнитная сила будет толкать и тянуть свободные электроны. заставляя их двигаться.

Электродвижущая сила

Ключевым моментом здесь является то, что магнитное поле меняет полярность, а также интенсивность.Это изменение интенсивности и направления магнитного поля постоянно мешает свободным электронам во вторичной катушке и заставляет их двигаться. Это движение известно как электродвижущая сила или ЭДС.

Магнитное поле, изменяющее полярность

Электродвижущая сила не возникает, когда мы пропускаем постоянный ток через первичную катушку, и это потому, что магнитное поле является постоянным, поэтому электроны не вынуждены двигаться. Единственный раз, когда это вызовет ЭДС, — это очень короткое время, когда первичная цепь размыкается и замыкается, или когда напряжение увеличивается или уменьшается.И это потому, что эти действия приводят к изменению магнитного поля. Поэтому мы используем переменный ток, так как это изменение происходит постоянно.

Постоянный ток через первичную обмотку

Проблема с этой установкой заключается в том, что большая часть магнитного поля с первичной стороны тратится впустую, потому что оно находится вне диапазона вторичной обмотки.

Как это исправить?

Чтобы исправить это, место инженера, сердечник или ферромагнитный материал, такой как железо, в петле между первичной и вторичной обмотками.Теперь этот контур направляет магнитное поле по пути к вторичной катушке, так что они разделяют магнитное поле, и это делает трансформатор намного более эффективным.

Ферромагнитный материал

В настоящее время использование железного сердечника не является идеальным решением. Некоторая энергия будет потеряна из-за того, что известно как вихревые токи, когда ток закручивается вокруг сердечника, и это нагревает трансформатор, что означает, что энергия теряется в виде тепла. Чтобы уменьшить это, инженеры используют ламинированные листы железа для формирования сердечника, что значительно снижает вихревые токи.

через GIPHY

Повышающие и понижающие трансформаторы

Трансформаторы

производятся как повышающие или понижающие трансформаторы, и они используются для увеличения или уменьшения напряжения просто путем использования другого числа витков в катушке на вторичной стороне. В повышающем трансформаторе напряжение во вторичной обмотке увеличивается, и это будет означать, что ток будет уменьшаться, но не беспокойтесь сейчас о том, почему это происходит. Мы рассмотрим это в следующей статье по электротехнике.Для увеличения напряжения в повышающем трансформаторе; нам просто нужно добавить больше витков к катушке на вторичной стороне, чем на первичной стороне. В понижающем трансформаторе это напряжение снижается во вторичной обмотке, что означает, что ток увеличивается. Для этого мы просто используем меньше витков в катушке на вторичной стороне по сравнению с первичной стороной.

Например, электростанции необходимо транспортировать вырабатываемую ею электроэнергию в город на некотором расстоянии. Электростанция будет использовать повышающий трансформатор для увеличения напряжения и уменьшения тока, поскольку это снизит потери в длинных кабелях передачи.Затем, когда он достигнет города, его необходимо будет уменьшить, чтобы сделать его безопасным и пригодным для использования в зданиях и домах, поэтому потребуется понижающий трансформатор. Трансформаторы для коммерческих зданий и электростанций обычно имеют трехфазную конфигурацию. Вы увидите, как они размещены вокруг ваших городов, и они будут выглядеть примерно так.

Пример трансформатора

Эти трехфазные трансформаторы могут быть изготовлены либо из трех отдельных трансформаторов, которые соединены вместе, либо они могут быть встроены в один большой блок с общим железным сердечником.

В этой схеме катушки обычно располагаются концентрически одна в другой, причем катушка с более высоким напряжением находится снаружи, а катушка с более низким напряжением находится внутри. Теперь эти катушки изолированы друг от друга, так что между двумя катушками будет проходить только магнитное поле. Для соединения двух сторон существует множество различных конфигураций, но одна из наиболее часто используемых — это соединение катушек в конфигурации, известной как Delta Wye, иногда называемой Delta Star. Это относится к первичной стороне, подключенной по схеме треугольника, а к вторичной стороне — к широкой в ​​конфигурации звезды.Центральная точка стороны звезды, где встречаются все три разъема, часто заземляется, что позволяет также подключить нейтральную линию.

Конфигурация «треугольник» и «звезда»

Мы рассмотрим подключение трансформатора и расчеты в других более сложных статьях, поскольку это может оказаться довольно сложным. Так что пока просто сосредоточьтесь на том, как они работают, чтобы накапливать ваши базовые знания.


Фактов о трансформаторах для детей

Трансформатор — это устройство, которое передает электрическую энергию от одной электрической цепи к другой посредством взаимной (электромагнитной индукции) и без изменения частоты.Трансформаторы — важная часть электрических систем.

Трансформаторы

производятся разных размеров, от очень маленького трансформатора связи внутри сценического микрофона до больших блоков, которые переносят сотни МВА, используемых в электрических сетях.

Основная причина использования трансформатора — преобразование мощности одного уровня напряжения в мощность другого уровня напряжения. Высокое напряжение легче отправить на большие расстояния, но меньшее напряжение проще и безопаснее использовать в офисе или дома. Трансформаторы используются для увеличения или уменьшения напряжения переменного тока в цепях.Трансформатор обычно состоит из двух катушек на одном сердечнике. Первичная катушка или входная катушка подключены к стороне питания, а вторичная катушка подает питание на нагрузку. Вторая называется выходной катушкой. Энергия передается от первичной обмотки к вторичной за счет электромагнетизма. В электрических сетях используется много трансформаторов. Это сети для доставки электроэнергии от генератора к пользователю.

Трансформаторы в вашем районе, на опорах или трансформаторы, подключенные к подземным проводам, обычно преобразуют высокое напряжение 7200 вольт в 220–240 вольт электричества для питания освещения и таких приборов, как холодильники в домах и на предприятиях.В некоторых странах, например в Америке, в домах используется другое напряжение, например 120 вольт. Трансформаторы не могут увеличивать мощность, поэтому при повышении напряжения пропорционально снижается ток. Если напряжение понижается, ток пропорционально увеличивается.

Трансформаторы внутри электронного оборудования вырабатывают электричество, необходимое для различных частей.

Существует несколько основных типов трансформаторов:

  • Повышающий трансформатор: выходное напряжение больше входного напряжения.
  • Понижающий трансформатор: входное напряжение больше выходного напряжения.
  • Некоторые трансформаторы имеют то же выходное напряжение, что и входное, и используются для гальванической развязки двух электрических цепей.

Галерея

Детские картинки

  • Распределительный трансформатор на опоре со вторичной обмоткой с отводом от средней точки, используемый для обеспечения «расщепленной фазы» электропитания для жилых и легких коммерческих предприятий, которое в Северной Америке обычно рассчитано на 120/240 В.

  • Измерительный трансформатор с точкой полярности и маркировкой X1 на выводе со стороны низкого напряжения

  • Состояние перевозбуждения силового трансформатора, вызванное понижением частоты; поток (зеленый), магнитные характеристики железного сердечника (красный) и ток намагничивания (синий).

  • Чередующиеся пластинки трансформатора E-I, показывающие воздушный зазор и пути потока

  • Испытание трансформатора подстанции.

  • Трансформатор на станции производства известняка в Манитобе, Канада

  • Пластины E-образной формы для сердечников трансформаторов, разработанные Westinghouse

  • Эквивалентная схема реального трансформатора

  • Трансформатор с ламинированным сердечником, на фото

    вверху видна кромка пластин.
  • Малый трансформатор с тороидальным сердечником

  • Обмотки обычно располагаются концентрически, чтобы минимизировать утечку магнитного потока.

  • Трансформатор, погруженный в жидкость, в разрезе. Консерватор (резервуар) наверху обеспечивает изоляцию жидкости от атмосферы при изменении уровня охлаждающей жидкости и температуры. Стенки и ребра обеспечивают необходимый отвод тепла.

  • Эксперимент Фарадея с индукцией между витками проволоки

  • Индукционная катушка, 1900, Бремерхафен, Германия

  • Кольцевой трансформатор Фарадея

  • Трансформатор формы оболочки.Набросок, использованный Уппенборном для описания патентов 1885 года инженеров ZBD и самых ранних статей.

  • Команда ZBD состояла из Кароли Зиперновски, Отто Блати и Миксы Дери.

Что такое трансформатор? | Вондрополис

Что вы считаете величайшим научным открытием или изобретением всех времен? Для некоторых открытие электричества Бенджамином Франклином, вероятно, окажется в верхней части списка. В конце концов, без электричества наша жизнь была бы совсем другой, чем сегодня.

Задумывались ли вы когда-нибудь о том, как электричество поступает от электростанции в ваш дом? Просто подключить электронное устройство к ближайшей розетке — это удобство, которое мы часто принимаем как должное. Однако путь электричества к этим маленьким розеткам в стене — увлекательное путешествие.

Если вы когда-либо видели предметы, свисающие с верхних столбов инженерных сетей или большие ящики, стоящие рядом со зданиями, то вы знакомы с некоторыми из наиболее важных частей оборудования в системе, которая обеспечивает энергией ваш дом.Эти машины называются трансформаторами. Нет, они не превращаются в машины супергероев, когда вы не смотрите, но все они о переменах!

Трансформаторы — это электрические машины, которые переводят электричество с одного напряжения на другое. Напряжение — это мера электрической силы, которая толкает электроны по цепи. В некоторых случаях трансформаторы могут брать электричество с более низким напряжением и переключать его на более высокое напряжение. Такие трансформаторы называются повышающими трансформаторами.

Однако большинство трансформаторов являются понижающими трансформаторами.Они берут электричество с высоким напряжением и меняют его на более низкое напряжение. Это критический шаг в процессе доставки энергии, поскольку электричество, поступающее от электростанции, находится под чрезвычайно высоким напряжением, которое слишком велико для использования в вашем доме.

Например, линия электропередачи электростанции может передавать электричество напряжением от 400 000 до 750 000 вольт. Электричество отправляется с таким высоким напряжением, потому что ему часто приходится преодолевать большие расстояния. Использование более высоких напряжений помогает минимизировать потери энергии при перемещении.

В определенных областях, называемых электрическими подстанциями, огромные трансформаторы снижают это высокое напряжение до более низкого напряжения, которое направляется в определенные области. Вы когда-нибудь видели электрическую подстанцию ​​возле своего дома? Обычно по ним можно узнать по наличию большого количества электрических линий и оборудования, в том числе многочисленных трансформаторов.

Понижающие трансформаторы на подстанциях понижают высокое напряжение до более низкого в диапазоне 7200 вольт. Когда электричество достигает вашего района, трансформаторы на опорах или заземляющих коробках, подключенных к подземным проводам, снижают напряжение электричества до 220–240 вольт для использования в вашем доме.Некоторые основные электроприборы, такие как водонагреватели, плиты и кондиционеры, будут использовать 220–240 вольт, в то время как большинство других небольших электроприборов будут использовать 110–120 вольт.

Так как же трансформаторы творит эту электрическую магию? Все это происходит из-за пары простых фактов об электричестве. Трансформаторы работают, потому что колеблющийся электрический ток (известный как переменный ток или AC), протекающий по проводам, входящим в трансформатор (первичный ток), создает магнитное поле.Это флуктуирующее магнитное поле создает ток (вторичный ток) во втором наборе проводов, покидающих трансформатор, в результате процесса, называемого электромагнитной индукцией.

Чтобы сделать этот процесс более эффективным, провода, входящие в трансформатор и выходящие из него, скручены в петли или витки вокруг железного стержня, называемого сердечником. Если первичная и вторичная катушки имеют одинаковое количество витков или витков, напряжение будет одинаковым в каждой. Однако, если вторичная катушка имеет больше или меньше петель или витков, тогда напряжение вторичного тока будет больше или меньше первичного тока.

Например, если первичная обмотка имеет 10 витков, а вторичная обмотка — один виток, то трансформатор снизит первичное напряжение в 10 раз. Таким образом, ток, входящий в трансформатор при 1000 вольт, покинет трансформатор при 100 вольт. .

Что такое трансформатор? | FierceElectronics

Трансформатор — это электрическое устройство, которое использует принцип электромагнитной индукции для передачи энергии от одной электрической цепи к другой.Он предназначен для увеличения или уменьшения переменного напряжения между цепями при сохранении частоты тока. Трансформаторы делают это без проводящего соединения между двумя цепями. Это возможно благодаря применению закона индукции Фарадея, который описывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).

Базовый трансформатор состоит из трех частей: магнитопровода, первичной обмотки и вторичной обмотки.Первичная обмотка подключена к источнику переменного тока под напряжением. Это создает переменное магнитное поле, окружающее обмотку. Это вызывает ЭДС во вторичной обмотке. Если цепь вторичной обмотки замкнута, то по ней будет протекать переменный ток. Эти обмотки имеют общий магнитный сердечник, который обычно изготавливается из многослойных стальных листов и обеспечивает путь с низким сопротивлением для магнитного поля. Соотношение между выходным напряжением и входным напряжением такое же, как отношение количества витков между двумя обмотками.В понижающем трансформаторе вторичная обмотка будет иметь меньше витков, чем первичная, а в повышающем трансформаторе — больше.

Базовая конструкция трансформатора Shutterstock

Первый трансформатор был изобретен в 1884 году в Англии и произвел революцию в способах использования переменного тока. Этот трансформатор был впервые использован на первой электростанции переменного тока, паровой электростанции Рим-Черки, в 1886 году. С помощью трансформатора можно было генерировать и подавать мощность переменного тока при высоком напряжении (от 1400 до 2000 вольт), а затем понижать на более безопасное и пригодное для использования напряжение для использования в домах и на предприятиях.

Хотя эта первоначальная базовая конструкция используется до сих пор, современные трансформаторы используются для самых разных целей. Те, которые используются на электростанциях, могут быть высотой в несколько этажей и использоваться для передачи энергии при высоком напряжении, что более эффективно, чем при низком напряжении, поскольку снижает потери мощности из-за тепла. Преобразователи сигналов и аудио намного меньше по размеру и используются для согласования выхода микрофонов и других аудиоустройств с входом усилителей. Измерительные трансформаторы преобразуют мощность основной линии электропередачи в более низкое напряжение, которое затем можно измерить для определения выходной мощности без повреждения чувствительного оборудования.Импульсные трансформаторы доставляют импульсы из первичной цепи во вторичную цепь для передачи цифровой информации на логические вентили или драйверы в электронных устройствах.

Большинство приведенных выше приложений описывает однофазные трансформаторы. Этот тип трансформатора имеет одну первичную обмотку и одну вторичную обмотку. Однако трансформаторы также бывают трехфазными. Трехфазные трансформаторы имеют три набора обмоток. Эти трансформаторы используются для питания промышленных нагрузок и генерации трехфазной энергии.

Для обзора вот основы трансформатора:

  • Трансформатор использует электромагнитную индукцию для передачи переменного тока от одной цепи к другой, увеличивая или уменьшая напряжение.
  • Базовый трансформатор состоит из трех частей: первичной обмотки, вторичной обмотки и магнитопровода.
  • Существуют трансформаторы всех типов размеров и применений, от массивных трансформаторов, используемых на электростанциях, до
  • крошечных трансформаторов, используемых в электронике.

Разные способы изображения трансформеров Getty Images

    Источники:

    1. https://www.galco.com/comp/prod/trnsfmrs.htm

    2. https://www.dfliq.net/blog/the-basics-of-electrical-transformers/

    3. https://www.electrical4u.com/what-is-transformer-definition-working-principle-of-transformer/

    .
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *