+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Какой пункт правил говорит о периодичности замера сопротивления изоляции электропроводки? | ЭлектроАС

Дата: 17 сентября, 2009 | Рубрика: Вопросы и Ответы, Электроизмерения
Метки: Замер сопротивления изоляции, ПТЭЭП, Электроизмерения, Электролаборатория

Этот материал подготовлен специалистами компании «ЭлектроАС».
Нужен электромонтаж или электроизмерения? Звоните нам!

Юрий
Какой пункт правил говорит о периодичности замера сопротивления изоляции электропроводки?

Ответ:

Испытаниям и электроизмерениям подлежат все электроустановки здания, от вводного аппарата защиты в вводно-распределительном устройстве до розеток и светильников в помещениях. На всех распределительных и групповых кабельных линиях должно быть проведено измерение сопротивление изоляции.

Потребитель электроэнергии обязан проводить обследования, испытания и электроизмерения электроустановок в соответствии с ПУЭ и ПТЭЭП. Чем чаще будут проводиться обследования, испытания и электроизмерения электроустановок, тем безопаснее и надёжнее будет эксплуатация электроснабжения. Периодичность испытаний и электроизмерений строго регламентируется в ПУЭ (правила устройства электроустановок) и ПТЭЭП (правила технической эксплуатации электроустановок потребителей).

В комплекс электроизмерений входит:
1. Электролаборатория проводит визуальный осмотр электропроводки и электрооборудования
2. Электролаборатория. Замер заземления. Электропроводка. Электрооборудование
3. Электролаборатория. Замер сопротивления изоляции. Электроизмерения. Электропроводка
4. Электролаборатория. Замер сопротивления цепи “фаза-нуль”. Электроизмерения
5. Электролаборатория – замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО)
6. Электролаборатория выполняет испытания (прогрузку) автоматических выключателей
7. Электролаборатория проводит электроизмерение “Замер сопротивления заземляющих устройств”

На основании правил технической эксплуатации электроустановок потребителей (ПТЭЭП), измерения сопротивления цепи «фаза-нуль» и измерения цепи между заземлёнными установками и элементами заземлённой установки должны проводиться с периодичностью, установленной системой планово-предупредительного ремонта (ППР), утвержденного техническим руководителем Потребителя.

В соответствии с требованиями Госпожнадзора и Энергонадзора, комплекс испытаний и электроизмерений, в который входят: замер сопротивления петли «фаза-нуль» и замер цепи между заземлёнными установками и элементами заземлённой установки, проводят не реже чем 1 раз в 3 года.

Замеры сопротивления изоляции проводов и кабелей проводятся не реже чем 1 раз в 3 года.

Визуальный осмотр между защитным проводником и электрооборудованием производиться не реже 1 раза в 6 месяцев.

При отказе устройств защиты электроустановок и после переустановки электрооборудования, требуется выполнить электроизмерения цепи между заземлёнными установками и элементами заземлённой установки и электроизмерения сопротивления петли «фаза-нуль».

ПТЭЭП
2.7.9
Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным.
При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.

Результаты осмотров должны заноситься в паспорт заземляющего устройства.

2.7.13
Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования (Приложение 3) должны производиться:
измерение сопротивления заземляющего устройства;
измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
измерение токов короткого замыкания электроустановки, проверка состояния пробивных предохранителей;
измерение удельного сопротивления грунта в районе заземляющего устройства.
Для ВЛ измерения производятся ежегодно у опор, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, а также выборочно у 2% железобетонных и металлических опор в населенной местности.


Измерения должны выполняться в период наибольшего высыхания грунта (для районов вечной мерзлоты — в период наибольшего промерзания грунта).
Результаты измерений оформляются протоколами.
На главных понизительных подстанциях и трансформаторных подстанциях, где отсоединение заземляющих проводников от оборудования невозможно по условиям обеспечения категорийности электроснабжения, техническое состояние заземляющего устройства должно оцениваться по результатам измерений и в соответствии с п.п.2.7.9-11.

2.7.14
Измерения параметров заземляющих устройств – сопротивление заземляющего устройства, напряжение прикосновение, проверка наличия цепи между заземлителями и заземляемыми элементами — производится также после реконструкции и ремонта заземляющих устройств, при обнаружении разрушения или перекрытия изоляторов ВЛ электрической дугой.

При необходимости должны приниматься меры по доведению параметров заземляющих устройств до нормативных.

2.12.17
Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3).

3.4.12
В электроустановках напряжением до 1000 В с глухозаземленной нейтралью (системы TN) при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года, должно измеряться полное сопротивление петли фаза-нуль электроприемников, относящихся к данной электроустановке и присоединенных к каждой сборке, шкафу и т.д., и проверяться кратность тока КЗ, обеспечивающая надежность срабатывания защитных устройств.

Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.

3.6.2
Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее — К), при текущем ремонте (далее — Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее — М), определяет технический руководитель Потребителя на основе Приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий.


Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1-28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.

3.6.3
Для видов электрооборудования, не включенных в настоящие нормы, конкретные нормы и сроки испытаний и измерений параметров должен устанавливать технический руководитель Потребителя с учетом инструкций (рекомендаций) заводов-изготовителей.

3.6.4
Нормы испытаний электрооборудования иностранных фирм должны устанавливаться с учетом указаний фирмы-изготовителя.

Приложение 3
26
Заземляющие устройства
К, Т, М — производятся в сроки, устанавливаемые системой ППP

28
Электроустановки, аппараты, вторичные цепи, нормы испытаний которых не определены в разделах 2-27, и электропроводки напряжением до 1000 В К, Т, М — производятся в сроки, устанавливаемые системой ППP

28.4
Проверка срабатывания защиты при системе питания с заземленной нейтралью (TN-C, TNC-S, TN-S)
Проверяется непосредственным измерением тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим определением тока короткого замыкания. У электроустановок, присоединенных к одному щитку и находящихся в пределах одного помещения, допускается производить измерения только на одной, самой удаленной от точки питания установке. У светильников наружного освещения проверяется срабатывание защиты только на самых дальних светильниках каждой линии. Проверку срабатывания защиты групповых линий различных приемников допускается производить на штепсельных розетках с защитным контактом.

28.5
Проверка наличия цепи между заземленными установками и элементами заземленной установки:
Производится на установках, срабатывание защиты которых проверено.

Приложение 3.1
Таблица 37
— Электропроводки, в том числе осветительные сети:
Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.
В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.

— Стационарные электроплиты:

Измерения сопротивления изоляции производится при нагретом состоянии плиты не реже 1 раза в год

Прочая и полезная информация

Прочая и полезная информация

Как проходят измерения сопротивления изоляции проводки

Проверка состояния изоляции кабелей является важной составляющей мер безопасности. Для замеров созданы специальные лаборатории, оснащенные необходимым оборудованием. В каких случаях, и как именно происходят замеры сопротивления?

В каких случаях проводятся измерения

Согласно действующим нормативам измерение сопротивления изоляции электропроводки осуществляется в следующих случаях:

  • при проведении технического обслуживания (ТО) любой категории сложности;
  • по окончании пусковых испытаний электротехнических объектов;
  • в случаях обнаружения неисправностей, проявляющихся в процессе текущей эксплуатации в виде токовых утечек;
  • по окончании ремонта электросетей и оборудования.

При техобслуживании замер сопротивления изоляции электропроводки составляет основу используемых при испытаниях методик, согласно которым электрические цепи проверяются на отсутствие утечек. Аналогичным образом проводятся замеры и во всех остальных случаях, отличающихся от техобслуживания только особенностями организации предстоящих испытаний.

В соответствии с действующими стандартами при проведении ТО параметры изоляции электропроводки, в том числе сопротивление, проверяются между всеми её жилами (фазной, нулевой и заземляющей). Особую важность приобретает это требование в случае проверки питающих цепей электродвигателей самых различных классов.

Теми же нормативами (ПТТЭП, в частности) оговаривается и периодичность измерения параметров изоляции в рамках техобслуживания электропроводки.

Измерительные средства

Для проведения испытаний электрического провода или кабеля на целостность изоляции используются специальные приборы, называемые мегомметрами (делают замер высокого сопротивления).

Они работают по принципу воздействия на измеряемую цепь высоковольтным напряжением, формируемым встроенной в устройство схемой.

Современные образцы этих приборов работают от аккумулятора с формирователем высокого напряжения.

Известные модели мегомметров различаются по величине испытательного напряжения, подаваемого на изоляцию проверяемой цепи. Согласно этому показателю они делятся на устройства с номинальными контрольными напряжениями из следующего ряда: 100, 500, 1000 и 2500 Вольт.

Сразу оговоримся, что померить сопротивление изоляционной оболочки с помощью обычного цифрового прибора не представляется возможным. Указанное ограничение объяснятся тем, что изоляция электропроводки обладает высоким сопротивлением и напряжение, выдаваемое прибором в соответствующем режиме, очень мало для оценки защитных свойств оболочки провода.

Мультиметром удаётся проверить лишь целостность оболочки силовых проводов, для чего сначала следует внимательно осмотреть их изоляцию, а затем зачистить места вывода контактных групп.

И только после этого можно будет подсоединять к ним щупы мультиметра, переведённого в режим замера «Ω» (на пределе десятки кОм). При исправной изоляции прибор будет показывать сопротивление в пределах 3,5-10 кОм.

Нормируемые показатели

Для современных кабельных изделий действующие нормативы по сопротивлению изоляции в режиме проверки постоянным током выглядят следующим образом:

  1. для силового кабеля, эксплуатируемого в сетях с напряжениями более 1000 Вольт, величина сопротивления строго не нормируется; при этом её рекомендуемое значение должно превышать 10 МОм;
  2. для образцов кабельной продукции, работающих в сетях с максимумом напряжения до 1000 Вольт, нормируемое сопротивление не должно быть меньше, чем 0,5 МОм;
  3. для проводных изделий контрольного назначения сопротивление не должна быть менее 1 МОм.

При изучении вопроса о том, какова периодичность проведения испытаний изоляции, необходимо отметить, что этот показатель определяется нормативами, приводимыми в ПТЭЭП.

Так для осветительных установок и сетей, например, сопротивление изоляции измеряется один раз в три года. Аналогичные требования предъявляются и к электропроводке большинства категорий промышленных сетей.

Дополнительная информация! В наружных электрических сетях, а также в особо опасных помещениях проверка изоляции проводки организуется ежегодно.

Такие же сроки должны соблюдаться и в случаях, когда испытывают проводку промышленного оборудования специального назначения (краны, лифты и тому подобное).

Правила работы с мегомметром

Для проведения специальных испытаний, организуемых с учётом требований к периодичности замеров сопротивления у изоляции электропроводки, применяются мегомметры с пределами замеров до нескольких Мегом.

При работе с этими приборами должны соблюдаться определённые правила, позволяющие избегать опасных ситуаций в обращении с высоковольтным оборудованием.

Последнее означает, что непосредственно перед началом замеров сопротивления следует проверить мегомметр на работоспособность. Для этого необходимо закоротить контрольные выводы прибора, а затем, вращая ручку встроенного в него генератора, убедиться в наличии короткого замыкания по отклонению стрелки прибора.

Вслед за тем следует разомкнуть концы измерительных шин и тем же способом проверить отсутствие отклонения, свидетельствующего об обрыве цепи.

При выполнении контрольных замеров должны быть приняты необходимые меры защиты от высоковольтного напряжения, позволяющие организовать проверку без повышенной опасности для испытателя.

С этой целью перед обследованием промышленных установок с помощью мегомметра со всех цепей, на которых должно замеряться сопротивление изоляции, в первую очередь необходимо снять рабочее напряжение.

И лишь после этого можно приступать к проверке изоляции между фазным, нулевым и заземляющим проводниками электрической цепи. Во всех указанных случаях показания прибора должны превышать 0,5 МОм.

После того, как испытание изоляции завершено, все замеры выполнены – фазный провод исследуемой цепи следует разрядить, прикоснувшись к нему хорошо заземлённым проводом.

Внимательное ознакомление с приведённым материалом позволит пользователю иметь представление о сроках и методах проведения испытаний. При этом всегда следует помнить о том, что подобными замерами занимаются специальные лаборатории, оснащённые высоковольтным оборудованием и располагающие штатом классных специалистов.

Замер сопротивления Изоляции | ИЗМЕРЕНИЕ проводятся аттестованной ЭлектроЛабораторией в Москве и МО

Мероприятия по измерению сопротивления изоляции проводятся с целью исключения утечки тока, сохранения безопасности человека и работоспособности приборов. При этом исследование лицензированной электролабораторией осуществляется измерение изоляционного сопротивления проводки, кабеля и точек соединения электролинии. Эти электроизмерения выполняются с использованием специального оборудования – мегаомметра, который улавливает показатели утечки тока между 2 цепями электросети. Чем они выше, тем ниже изоляционное сопротивление, а это уже повод для беспокойства и тщательной ревизии электроустановки.

Специалисты компании ТМ-Электро выполняют замеры сопротивления изоляции электрооборудования с помощью современных цифровых электроизмерительных приборов компаний Sonel и Merten.

Профессиональное лабораторное измерительное оборудование позволяет провести измерение сопротивления изоляции более точно, не мешая работе организации Заказчика и выпонять поставленные задачи в кратчайшие сроки по невысокой цене. Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Например, для изоляции электропроводки осветительной сети составляет 1 раз в 3 года. Эти же нормы действуют для электроустановок офисных помещений и торговых павильонов, складов, предприятиях и общественных заведениях.

Внешняя электропроводка и электроустановки в особо опасных помещениях, должны проходить замер сопротивления изоляции ежегодно. Также необходимо ежегодно выполнять измерения сопротивления изоляции проводов, кабелей, кабельных трасс,электрооборудования и электроустановки в школах, институтах, детских, медицинских и оздоровительных учреждениях, в жилых многоквартирных домах.

Какие бывают измерения сопротивления изоляции:

Лабораторные измерения проводятся c определенной периодичностью, в случае:

  • Приемо-сдаточные испытания;
  • Выполняются после того, как завершены все электромонтажные мероприятия (новое строительство или реконструкция).
  • Эксплуатационные испытания;
  • Проводятся на промышленных или торговых объектах в соответствии с требованиями пожарного надзора, Ростехнадзора, прочих контролирующих организаций, с периодичностью, необходимой для нормального функционирования объекта, согласно ПУЭ.
  • Профилактические испытания.

Измерения электрики осуществляются для предотвращения возгорания или поражения человека электрическим током. Периодичность проведения определяется ответственным за электрохозяйство. Профессионально замерить сопротивление изоляции могут только опытные инженеры лаборатории по электрике, имеющие необходимый допуск, к производству электроизмерительных работ.

Также, организация оказывающая услуги электроизмерения обязана иметь действующее Свидетельство о регистрации электролаборатории выданное Ростехнадзором. Свидетельство выдается сроком на 3 года и должно быть актуально на момент исследования.

Юридическую силу имеют документы выданные только лицензированной электролабораторией и только после проведения реального исследования объекта.

Большое доверие вызывает компания, в которой имеется свой полный штат сотрудников электроизмерительной лаборатории и парк приборов необходимых для проверки электрики. Привлечение не обладающих должным опытом лиц для оказания услуги замера сопротивления изоляции приводит к снижению качества работ и не нужным рискам для Заказчика.

Компания ТМ-Электро обладает своим полным парком электроизмерительного оборудования для проведения любых измерений и испытаний, в штате компании только профессиональные сотрудники, постоянно повышающие свою квалификацию, имеющие группы допуска и все необходимые разрешения и свидетельства. Гарантируем точное соблюдение сроков и условия договора. Грамотно составим Технический отчет и дадим рекомендации. В случае необходимости предоставим свою электромонтажную бригаду.

Измерение сопротивления изоляции электрических аппаратов, вторичных цепей и электропроводок напряжением до 1кВ (1000В).

Измерение сопротивления изоляции является, пожалуй, самым необходимым лабораторным испытанием. В Техническом отчете — Протокол №3. Если говорить кратко, то это измерение нужно для проверки состояния изоляции проводов и кабелей. Сопротивление изоляции силовых кабельных линий до 1000 В измеряется мегаомметром или современным электронным оборудованием на напряжение 2500 В в течение одной минуты. Показатели сопротивления изоляции должны быть не менее 0,5 МОм. Полученные данные заносятся в журнал протокола с соответствующей пометкой “соответствует” или “не соответствует”.

При несоответствии нормативным значениям кабельную трассу рекомендуется заменить.

Очень часто изоляция кабеля повреждается при выполнении электромонтажных работ, при протаскивании через гильзы, отверстия с острой кромкой, при общестроительных работах (например, шурупом, во время крепления гипсокартона, плохо заизолированы кабельные муфты в земле) и т.д. В этих случаях очень помогут измерения сопротивления изоляции при выполнении комплекса приемо-сдаточных испытаний. Своевременно обнаруженный дефект проще устранить.

Периодичность проведения испытаний, обычно 1 раз в 3 года. Школьные и дошкольные учреждения 1 раз в год. По Нормативной документации Правительства г. Москвы изоляция бытовых стационарных электроплит измеряется не реже 1 раза в год в нагретом состоянии плиты. Сопротивление изоляции должно быть не менее 1 МОм.

Изоляция силовых и осветительных электропроводок измеряется мегаомметром на 1000В при снятых плавких вставках на участке между снятыми предохранителями или за последними предохранителями между любым проводом и землёй, а также между двумя проводами. Проверка состояния таких цепей, провода, кабеля, электроприборов и аппаратов должна проводиться путём тщательного внешнего осмотра не реже 1 раза в год!

Стоит напомнить, что работы связанные с напряжением должен проводить только подготовленный технический персонал, прошедший необходимое обучение, получивший соответствующие удостоверения с правом проведения измерительных работ. Все испытания проводятся правильно откалиброванным оборудованием, прошедшим ежегодную поверку в сертифицированном центре.

Использование современного электронного оборудования компаний Sonel, Metrel, Fluke – гарантирует качество и удобство проведения работ.

Внимание, остерегайтесь пользоваться услугами неатестованных лабораторий и частников! Грамотные инженеры с современным оборудованием не нанесут вреда вашей электроустановке и подключенным приборам. При заказе работ требуйте документы подтверждающие квалификацию инженеров, свидетельство на лабораторию и поверку измерительных приборов. Не соглашайтесь на Технические отчеты “без выезда”! Ни одна уважающая себя лаборатория не будет даже предлагать подобные работы, т.к. это влечёт за собой административную и уголовную ответсвенность. Скорее всего, подобная организация пришла на рынок ненадолго и ответственность за выполненние работ ляжет на энергетическую службу предприятия Заказчика работ или директора.

Измерение сопротивления изоляции электрооборудования

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Стандарты измерения изоляции

Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов ( кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли. Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители. В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей. Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.

Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение. Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими. Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.

Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы. Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В — 100 кОм. Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.

Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ — не ниже четвертой ( IV) , у члена бригады –должна быть третья группа ( III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ. Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.

В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение. Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования ( ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.

Важно, чтобы соблюдался температурный режим и уровень влажности, допустимый при измерении сопротивления: температура изоляции не должна подниматься выше +35 градусов Цельсия и опускаться ниже +5 градусов. Степень увлажненности рассчитывается по формуле Kабс=R60/R15, где R60 – измеренное сопротивление изоляции через 60 секунд после приложения напряжения мегаоомметра, R15 – через 15 секугд. Отношение этих двух величин называется коэффициентом абсорбции. Практика измерения сопротивления изоляции электрооборудования показывает, что оптимальная влажность воздуха для достижения коэффициента абсорбции, отличающегося от заводских показателей не более, чем на 20%, должна быть не выше 80%. Коэффициент абсорбции не должен превышать величину 1,3 (нормируется в ПТЭЭП) при температуре от +10 до +30 градусов Цельсия. Если по результатам измерений электрооборудование имеет коэффициент абсорбции ниже 1,3- оно подлежит сушке.

Измерение сопротивления изоляции электроустановок производится с помощью цифровых измерителей с преобразованием напряжения, либо мегаоомметры генераторного типа. Ежегодная поверка приборов проводится органами Госстандарта РФ, в Санкт-Петербурге — ФГУ Тест –Санкт Петербург, или ВНИИМ им. Д.И.Менделеева о чем выдаются свидетельства о проверке. Если проверка не проведена в срок, прибор к эксплуатации не допускается. Измерение сопротивления изоляции групповых кабельных линий электропроводок проводится мегаоомметрами на 1 кВ для магистральных кабелей — на напряжение 2,5 кВ . Для измерения сопротивления изоляции электрооборудования после монтажа значения напряжения мегаомметра (0,5 или 1 кВ) указаны в НД ПУЭ ,глава 1.8 в таб. 1.8.34. Заключение о непригодности проводки делается в случае, если после измерения сопротивления изоляции выясняется, что сопротивление менее нормируемого значения.

Порядок измерения сопротивления изоляции

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5). Мегаомметры серии Ф. 4100, с электронным питанием от электросети, рассчитаны на номинальное рабочее напряжение 100, 500, 1000 (Ф4101, Ф4102). Мегаоомметры ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) уже не выпускаются, тем не менее, мегаомметры типа M l101 М, МС-05, МС-06 используются с большим успехом. Минимальный класс точности приборов – четвертый. Измерение сопротивления изоляции электроустановок происходит путем присоединения мегаоомметров к схеме. Присоединение проводится с помощью гибких одножильных проводов. Сопротивление изоляции этих проводов, длина которых должна составлять не менее 2-3 метров, должна составлять 100 Мом. Концы проводов маркируются, на них со стороны мегаоомметра надеваются оконцеватели, а противоположные концы снабжаются зажимами типа «крокодил», при этом зажимы снабжаются специальными щупами или изолированными ручками. Провода при измерении сопротивления изоляции электроустановок «не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей. При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) — к проводнику тока».

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало измерения сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаоомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию. При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках. Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Правила измерения регулируются ГОСТ Р 50345-99 и ГОСТ Р 50030.2-99, которых рассматриваются разные типы УЗО и АВ, первый устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции 2 или 5 МОм (п.п. 1,2 и п.3 — соответственно), второй документ устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции не менее 0,5 МОм. Согласно ГОСТам, измерение сопротивления изоляции электрооборудования такого типа производятся:

  1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО;
  2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО;
  3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При работе с измерительными приборами в части замеров сопротивления изоляции УЗО и АВ, необходимо помнить о разнице параметров выходного напряжения и наибольшего значения измеряемого сопротивления у разных видов измерительных приборов: только в семействе мегаомметров Ф4100 насчитывается пять разных типов.

Все виды измерений сопротивления изоляции электрооборудования проводятся нашими специалистами в точном соответствии с требованиями ГОСТ Р, ПТЭЭП, ПУЭ , ОиНИЭ и других нормативных документов, оформляются протоколами со всеми необходимыми приложениями. Электроизмерительная лаборатория имеет все разрешительные документы для проведения видов работ.

Замеры сопротивления изоляции электропроводки. Проведение замеров сопротивления изоляции в Москве.


Компания «Строй-ТК» предоставляет услугу собственной электролаборатории с новым и современным оборудованием в Москве — измерение сопротивления изоляции, электрических проводок, обмоток электродвигателей и другого электрооборудования в электроустановках до 1000 В.

Замеры сопротивления изоляции – это один из этапов комплекса электроизмерительных мероприятий, по результатам которых подготавливается Технический отчет электролаборатории. Актуальность услуги – и как части комплекса электроизмерительных работ, и отдельно – весьма высока. Её заказывают и энергетики крупных предприятий в рамках эксплуатационных испытаний, и подрядчики, выполняющие электромонтажные работы в рамках приемо-сдаточных испытаний, и сотрудники фирм, отвечающие за состояние электросети объектов, принадлежащих фирме или находящихся в аренде, и частные/юридические лица, по заказу которых были проведены электромонтажные работы – при необходимости проверить их качество. Цена на замеры невелика, поэтому заказывают их часто – как юридические, так и частные лица.

Услуга замера сопротивления

Услуга предполагает проведения испытаний кабелей и проводов, объединяющих всех потребителей электроэнергии в пределах объекта или его части. Замер сопротивления изоляции кабеля или проводки позволяет получить детальную информацию о наличии/отсутствии дефектов в проводке и кабелях, степени их износа и необходимости ремонта: иными словами, оценивается, в каком состоянии находятся участки электроустановки, соединяющие потребителей электроэнергии и распределительные щиты, щиты учета и т.д.

Цель проведения работ по замеру сопротивления изоляции

Проведение этого вида электроизмерительных работ необходимо для анализа состояния кабеля и электропроводки, оценки дефектов и выявления необходимости в ремонте и/или замене всей проводки или отдельных её участков. Протокол испытаний фиксирует все проведенные работы на всех участках кабеля и проводки, на основании чего заказчиком делаются соответствующие выводы.

В ряде случаев анализ состояния проводки необходим для предоставления органам МЧС, Ростехнадзора и муниципальным органам – то есть контролирующим и проверяющим организациям.

Сергей Борисов

(вед. инженер ЭТЛ)

Замеры сопротивления изоляции в первую очередь необходимы самому заказчику: дешевле выявить, локализовать и устранить неисправность в момент её зарождения и развития, нежели впоследствии разгребать последствия аварийной ситуации.

Периодичность проведения работ

Для разных типов электроустановок предусмотрена разная периодичность проведения замеров сопротивления изоляции. Для большинства электроустановок (под электроустановкой понимается совокупность кабелей, проводки, потребителей электроэнергии и прочих приборов) необходимо проводить замер сопротивления изоляции электропроводки раз в три года. Для отдельных типов электроустановок – чья эксплуатация проводится в помещениях, микроклимат и условия в которых опасны для электротехники – периодичность составляет раз в год, а для мобильных – раз в 6 месяцев.

Почему портится изоляция?

Причиной порчи изоляции могут стать:
  • механические повреждения;
  • износ;
  • неподходящие условия эксплуатации;
  • перегрузки в электросети.

Порядок проведения замеров

  • визуальный осмотр;
  • отключение от сети участков кабеля и проводов с потребителями;
  • замер сопротивления изоляции кабеля и проводов;
  • составление Протокола, который включает в себя информацию о том, какие участки были проверены, о дефектах и данных, показанных мегомметром.

Для получения подробной информации по услугам нашей электролаборатории обратитесь к нам в офис по телефону

Другие услуги

Измерение сопротивления изоляции | Вольт Энерго

Электролаборатория ВОЛЬТ ЭНЕРГО предоставляет услугу по замеру сопротивления изоляции силовых кабельных линий, электрических аппаратов, вторичных цепей и электропроводки на объектах заказчика по всей Украине.

Целью данного вида измерений является проверка изоляции на соответствие требованиям нормативных документов и выявлению ее дефектов.

Измерение сопротивления изоляции — один из основных видов измерений, которые электролаборатория ВОЛЬТ ЭНЕРГО проводит на объектах заказчика. Если проверка цепи фаза-ноль оценивает соответствие уставок автоматов сечениям отходящих линий, то измерение сопротивления изоляции позволяет оценить состояние самих проводов и кабелей.

Проверка целостности и сопротивления изоляции входит практически в каждый перечень работ, осуществляемых электролабораторией ВОЛЬТ ЭНЕРГО, — так как именно протокол измерения сопротивления изоляции в первую очередь интересует контролирующие органы и прочие инстанции.

Все результаты проведенных испытаний оформляются протоколами электроизмерений, которые в свою очередь объединяются в Техническом отчете, содержащем всю информацию о реальном положении дел на объекте заказчика.

  • кабельных линий, проводов
  • обмоток трансформаторов
  • обмоток двигателей
  • других электро- и телекоммуникационных установок

Периодичность проведения электроизмерений сопротивления изоляции

Измерение сопротивления изоляции кабельных линий, проводится согласно Правилам пожарной безопасности в Украине и ПТЕЕС.
— 1 раз в 2 года, согласно ППБУ Украины, от 3.10.2017, П.1.20. глава 4.
— обязательно каждый раз после монтажных работ и ремонта кабельных линий – перед включением согласно ПТЕЕС Приложение 2, табл. 11.;
— 1 раз в год для особо опасных помещений и согласно ПТЕЕС Приложение 2, табл. 48. П.5
— 1 раз в 3 года во взрывоопасных и пожароопасных помещениях, а также в помещениях с массовым скоплением людей, согласно ПТЕЕС Приложение 2, табл. 48. П.5
— при вводе электроустановок в эксплуатацию либо после ее ремонта/модернизации – обязательно для населений (частный сектор), согласно ПТЕЕС Приложение 2, табл. 48. П.5

Измерение сопротивления изоляции кабельных линий, электрооборудования мегаомметром

ООО «Электролаборатория»  проведет весь комплекс работ по измерению сопротивления изоляции в электросетях и электрооборудовании

Измерение сопротивления изоляции — является обязательным видом измерений, которые должны проводится на некоторых стадиях электромонтажных работ, при пусконаладке и в процессе эксплуатации электрооборудования в электроустановках (а также в жилых и общественных зданиях (помещениях)). Контроль сопротивления изоляции дает возможность оценить состояние изоляции проводов, кабелей и электрооборудования.

Пренебрежение измерением сопротивления изоляции кабеля и электрооборудования, может оказаться чревато для собственника, например: пробой изоляции кабеля (провода, электропроводки), электротравмы (людей, животных (в плоть до летального исхода), возгорание электропроводки (проводов, кабелей), выход из строя электрооборудования (с последующим ремонтом или замены его на новое) и т.д.

Звоните нам! 8 (8442) 98-95-47 и 8 (927) 253-36-76

Измерение сопротивления изоляции мегаомметром 

Методика измерения сопротивления изоляции электрооборудования и кабельных линий такова, что для контроля состояния изоляции во многих случаях достаточно произвести замеры мегаомметром. Этот прибор (в зависимости от типа) позволяет измерить сопротивление изоляции при высоком напряжении постоянного тока (100, 500, 1000, 2500 В). Применение ступеней напряжения в приборе, при измерениях, зависит от класса напряжения проверяемого электрооборудования. Полученные значения должны удовлетворять требованиям ПУЭ, ПТЭЭП, ГОСТ Р 50571.16-2007,где обозначены нормы измерения сопротивления изоляции кабеля. В настоящее время существуют мегометры (например ЦС0202 и др.) позволяющие автоматически вычислять и показывать на дисплее степень увлажненности изоляции(коэффициент абсорбции).

Периодичность измерения сопротиления изоляции

Срок службы изоляции проводов, кабелей и оборудования не вечен. В нормальных условиях эксплуатации он может достигать несколько десятков лет, но по «факту» изоляция портится и стареет гораздо быстрее. На состояние изоляции влияют огромное количество факторов, такие как: солнечный свет, температура окружающего воздуха, микроповреждения, повышенное напряжение (гармоники), ток (значение которого выше допустимого), влажность, активные среды, качество диэлектрического материала и т.д.

После проведенных работ по контролю сопротивления изоляции электрооборудования, инженерами электролаборатории, заказчику выдается технический отчет (протокол измерения сопротивления изоляции) установленной формы, содержащий результаты измерений и оценки технического состояния изоляции, а так же заключение о соответствии (не соответствии) измеренных параметров требованиям НТД. Данные документы, как правило интересуют инспекторов Ростехнадзора и МЧС.

Узнайте, как проводится проверка сопротивления изоляции

Разработанный в начале 20 века тест сопротивления изоляции (IR) является старейшим и наиболее широко используемым тестом для оценки качества изоляции. Проверка сопротивления изоляции — это второй тест, требуемый стандартами испытаний на электробезопасность. Проверка сопротивления изоляции заключается в измерении сопротивления изоляции тестируемого устройства, при котором фаза и нейтраль замыкаются накоротко.Измеренное сопротивление должно быть выше указанного в международных стандартах предела. Мегомметр (также называемый тестером сопротивления изоляции, тераомметром) используется для измерения омического значения изолятора при постоянном напряжении с большой стабильностью.

Изоляция не может быть идеальной так же, как что-то не может быть без трения. Это означает, что всегда будет проходить небольшой ток. Это известно как «ток утечки». Это приемлемо с хорошей изоляцией, но если изоляция ухудшится, утечка может вызвать проблемы.Так что же делает изоляцию «хорошей»? Что ж, ему нужно высокое сопротивление току, и он должен быть в состоянии выдерживать высокое сопротивление в течение длительного времени

Почему проводится проверка сопротивления изоляции?

Изоляция начинает стареть сразу после ее изготовления. С возрастом его изоляционные свойства ухудшаются. Любые суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, ускоряют этот процесс. Напряжения из-за различных факторов, таких как:

  • Электрические напряжения: В основном связаны с повышенным и пониженным напряжением.
  • Механические напряжения: Частые запуски и остановки могут вызвать механические нагрузки.
  • Проблемы с балансировкой вращающегося оборудования и любые прямые нагрузки на кабели и установки в целом.
  • Химическая нагрузка: Близость химикатов, масел, агрессивных паров и пыли в целом влияет на изоляционные характеристики материалов.
  • Напряжения, связанные с колебаниями температуры: В сочетании с механическими напряжениями, вызванными последовательностями пуска и останова, напряжения расширения и сжатия влияют на свойства изоляционных материалов.Эксплуатация при экстремальных температурах также приводит к старению материалов.
  • Загрязнение окружающей среды вызывает ускорение старения изоляции.

Этот износ может снизить удельное электрическое сопротивление изоляционных материалов, тем самым увеличивая токи утечки, которые приводят к инцидентам, которые могут быть серьезными как с точки зрения безопасности (людей и имущества), так и затрат, связанных с остановками производства. Таким образом, важно быстро выявить это ухудшение, чтобы можно было предпринять корректирующие действия.В дополнение к измерениям, проводимым на новом и отремонтированном оборудовании во время ввода в эксплуатацию, регулярные испытания изоляции на установках и оборудовании помогают избежать таких инцидентов за счет профилактического обслуживания. Эти испытания обнаруживают старение и преждевременное ухудшение изоляционных свойств до того, как они достигнут уровня, который может вызвать описанные выше инциденты.

Это испытание часто используется в качестве приемочного испытания заказчиком с минимальным сопротивлением изоляции на единицу длины, часто указываемым заказчиком.Результаты, полученные с помощью IR Test, не предназначены для использования при обнаружении локальных дефектов в изоляции, как в тесте trueHIPOT, а скорее дают информацию о качестве материала, используемого в качестве изоляции.

Производители проводов и кабелей используют испытание сопротивления изоляции для отслеживания процессов производства изоляции и выявления возникающих проблем до того, как переменные процесса выйдут за допустимые пределы.

Что делается во время измерения сопротивления изоляции?

Измерение сопротивления изоляции — это стандартное стандартное испытание, выполняемое для всех типов электрических проводов и кабелей.Его цель — измерить сопротивление изоляции при постоянном напряжении с высокой стабильностью, обычно 50, 100, 250, 500 или 1000 В постоянного тока. Омическое значение сопротивления изоляции выражается в мегомах (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.

Стабильность напряжения критична; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.

После того, как все необходимые подключения выполнены, вы прикладываете испытательное напряжение в течение одной минуты. В течение этого интервала сопротивление должно падать или оставаться относительно стабильным. В более крупных изоляционных системах будет наблюдаться неуклонное снижение, в то время как меньшие системы останутся стабильными, поскольку емкостные токи и токи поглощения падают до нуля быстрее в меньших системах изоляции. Через одну минуту прочтите и запишите значение сопротивления

.

Выбор ИК-тестеров (Megger):

Напряжение Уровень ИК-тестер
650 В 500 В постоянного тока
1.1КВ 1 кВ постоянного тока
3,3 кВ 2,5 кВ постоянного тока
66кВ и выше 5 кВ постоянного тока

Как измеряется сопротивление изоляции?

Измерение сопротивления изоляции выполняется с помощью ИК-тестера. Это портативный инструмент, который представляет собой более или менее омметр со встроенным генератором, который используется для выработки высокого постоянного напряжения. Напряжение обычно составляет не менее 500 В и вызывает протекание тока по поверхности изоляции.Это дает показание ИК в омах.

Измерение сопротивления изоляции основано на законе Ома. (R = V / I). Подавая известное постоянное напряжение ниже, чем напряжение для испытания диэлектрика, а затем измеряя протекающий ток, очень просто определить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому, измеряя протекающий слабый ток, мегомметр показывает значение сопротивления изоляции, предоставляя результат в кВт, МВт, ГВт, а также TW (на некоторых моделях).Это сопротивление характеризует качество изоляции между двумя проводниками и дает хорошее представление о рисках протекания токов утечки.

Что ж, если вы смотрите на большое количество ИК-излучения, у вас хорошая изоляция. С другой стороны, если он относительно низкий, значит, изоляция плохая.

Однако это еще не все — на ИК может влиять множество факторов, в том числе температура и влажность. Со временем вам придется провести ряд тестов, чтобы убедиться, что значение IR остается более или менее неизменным.Значение сопротивления изоляции часто выражается в гигаомах [ГОм].

Хорошая изоляция — это когда показания мегомметра сначала увеличиваются, а затем остаются постоянными. Плохая изоляция — это когда показания мегомметра сначала увеличиваются, а затем уменьшаются.

Ожидаемое значение IR попадает на Темп. От 20 до 30 градусов по Цельсию. Если эта температура снизится на 10 градусов по Цельсию, значения ИК увеличатся в два раза. Если выше температура увеличится на 70 градусов по Цельсию, значения ИК уменьшатся в 700 раз.

Для измерения большого электрического сопротивления измерительное напряжение должно быть намного выше, чем при стандартных измерениях сопротивления.Это напряжение часто находится в диапазоне от 100 до 1000 В постоянного тока, и его нельзя использовать для измерения сопротивления электронных компонентов, поскольку они могут быть повреждены.

Сопротивление высокого значения

Для измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения прикладывается к измеряемому сопротивлению, и результирующий ток считывается высокочувствительной схемой амперметра, которая может отображать значение сопротивления.

В нашем ассортименте тестеров сопротивления изоляции используются два типа цепей амперметра, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.

Цепь шунтирующего амперметра

Вход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра. Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI. Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений.

Цепь амперметра обратной связи

Эта схема чаще всего используется в наших приборах. Он охватывает измерение сопротивления высоких значений.

Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность — два важных параметра, которые влияют на значение сопротивления изолятора.

Разница между испытанием на диэлектрическую прочность и испытанием на ИК-излучение

Испытание на электрическую прочность, также называемое «испытанием на пробой», измеряет способность изоляции выдерживать скачки напряжения средней продолжительности без искрового пробоя.В действительности, этот скачок напряжения может быть вызван молнией или индукцией, вызванной неисправностью в линии электропередачи. Основная цель этого испытания — убедиться, что соблюдаются правила строительства, касающиеся путей утечки и зазоров. Этот тест часто выполняется с применением переменного напряжения, но также может выполняться с постоянным напряжением. Для этого типа измерения требуется высокопроизводительный тестер. Полученный результат представляет собой значение напряжения, обычно выражаемое в киловольтах (кВ). Диэлектрические испытания могут иметь разрушительные последствия в случае неисправности в зависимости от уровней испытаний и доступной энергии в приборе.По этой причине он зарезервирован для типовых испытаний нового или отремонтированного оборудования.

Однако измерение сопротивления изоляции не является разрушающим при нормальных условиях испытаний. Выполняется путем подачи напряжения постоянного тока с меньшей амплитудой, чем при испытании диэлектрика, дает результат, выраженный в кВт, МВт, ГВт или ТВт. Это сопротивление указывает на качество изоляции между двумя проводниками. Поскольку он является неразрушающим, он особенно полезен для контроля старения изоляции в течение срока службы электрического оборудования или установок.Это измерение выполняется с помощью измерителя сопротивления изоляции, также называемого мегомметром

.

Факторы, влияющие на значения сопротивления изоляции:
  • Емкостной зарядный ток: ток, который начинается с высокого уровня и падает после того, как изоляция заряжена до полного напряжения (подобно потоку воды в садовом шланге, когда вы впервые открываете кран).
  • Ток поглощения: Также изначально высокий ток, который затем падает (по причинам, обсуждаемым в разделе «Метод сопротивления времени»).
  • Ток проводимости или утечки Небольшой, по существу, постоянный ток как через изоляцию, так и над ней.

Требования безопасности для Измерение сопротивления изоляции
  • Все тестируемое оборудование должно быть отключено и изолировано.
  • Оборудование должно быть разряжено (шунтировано или закорочено) по крайней мере до тех пор, пока подавалось испытательное напряжение, чтобы быть абсолютно безопасным для человека, проводящего испытание.
  • Никогда не используйте Megger во взрывоопасной атмосфере.
  • Убедитесь, что все переключатели заблокированы, а концы кабелей промаркированы должным образом для безопасности.
  • При проверке заземления убедитесь, что дальний конец проводника не соприкасается, в противном случае проверка покажет неисправную изоляцию, хотя на самом деле это не так.
  • Убедитесь, что все соединения в испытательной цепи затянуты.
  • Концы кабеля, которые необходимо изолировать, должны быть отключены от источника питания и защищены от контакта с источником питания, земли или случайного контакта.
  • Установка защитных ограждений с предупреждающими знаками и открытый канал связи между испытательным персоналом.

О Megger:

Мегаомметр обычно оснащен тремя выводами.

  1. Клемма «LINE» (или «L») является так называемой «горячей» клеммой и подключается к проводнику, сопротивление изоляции которого вы измеряете. Помните: эти тесты выполняются при обесточенной цепи.
  2. Клемма «EARTH» (или «E») подключается к другой стороне изоляции, заземляющему проводнику.
  3. Клемма «GUARD» (или «G») обеспечивает обратную цепь, которая обходит счетчик. Например, если вы измеряете цепь, имеющую ток, который вы не хотите включать, вы подключаете эту часть цепи к клемме «GUARD». Это самый простой из тестов.

Почему ультиметр M не используется для измерения сопротивления изоляции?

Мультиметр может измерять различные величины, в том числе электрическое сопротивление, которое измеряется в омах.Его работа, в частности, для измерения сопротивления, обеспечивается действием внутренней батареи (низкое напряжение), которая пропускает небольшой ток через измеряемое сопротивление или, в случае его отсутствия, через проводник или обмотку. Полученное значение в омах относится к электрическому сопротивлению, которое заставляет ток проходить через проводник, и увеличивается в зависимости от его долготы и сечения.

С другой стороны, мегомметр, также известный как Megger, часто используется для измерения сопротивления изоляции изолированного тела.Для своей работы он использует генератор постоянного тока или аккумулятор, способный генерировать значения выходного напряжения до 5000 В. Результаты, полученные при испытании на сопротивление, относятся к сопротивлению изоляции, которое имеет изолированный элемент, относящийся к активному элементу или проводнику.

Несмотря на некоторое сходство между обоими инструментами, сопротивление изоляции в обязательном порядке измеряется с помощью мегомметра (или аналогичного устройства), поскольку он может генерировать высокое напряжение, которое создает момент напряжения в изоляции.Сопротивление изоляции обычно рассчитывается в мега- или тераомах, включая

.

В заключение, мультиметр измеряет электрическое сопротивление проводника (катушки), в то время как мегомметр измеряет сопротивление изоляции изолированной группы (две катушки относительно массы), что не может сделать мультиметр.

Типы испытаний сопротивления изоляции

Кратковременный или точечный тест
В этом методе вы просто подключаете прибор Megger к проверяемой изоляции и используете его в течение короткого определенного периода времени, вы просто выбираете точку на кривой возрастающего сопротивления. значения; довольно часто значение будет меньше на 30 секунд, больше на 60 секунд.Помните также, что температура и влажность, а также состояние изоляции влияют на ваши чтения.

Если тестируемое устройство имеет очень маленькую емкость, например, короткое замыкание в домашней проводке, то все, что необходимо, — это проверка точечного считывания. В течение многих лет специалисты по техническому обслуживанию использовали правило одного МОм для установления допустимого нижнего предела сопротивления изоляции. Можно сформулировать правило: сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения при минимальном значении в один МОм.

Метод сопротивления времени
Этот метод практически не зависит от температуры и часто может дать вам окончательную информацию без учета прошлых испытаний. Он основан на поглощающем эффекте хорошей изоляции по сравнению с влажной или загрязненной изоляцией. Испытания этим методом иногда называют испытаниями на абсорбцию.

Этот тест имеет ценность еще и потому, что он не зависит от размера оборудования. Увеличение сопротивления чистой и сухой изоляции происходит одинаково, независимо от того, большой или маленький двигатель.Таким образом, вы можете сравнить несколько двигателей и установить стандарты для новых, независимо от их номинальной мощности.

Сопротивление изоляции должно быть выполнено для предотвращения таких опасностей, как поражение электрическим током и короткое замыкание, вызванное тем, что изоляция электрических устройств, деталей и оборудования, используемых на промышленных предприятиях, зданиях и других объектах, ухудшается в течение длительного периода использования.

Измерение сопротивления изоляции (IR)

Дефекты изоляции

Измерение сопротивления изоляции — это обычная стандартная проверка, проводимая для всех типов электрических проводов и кабелей.Как производственное испытание, это испытание часто используется как приемочное испытание заказчиком, с минимальным сопротивлением изоляции на единицу длины, часто указываемым заказчиком.

Измерители сопротивления изоляции Megger MIT1020 10 кВ разработаны специально для помощи пользователю при тестировании и обслуживании высоковольтного оборудования.

Результаты, полученные с помощью IR Test, не предназначены для использования при обнаружении локализованных дефектов изоляции, как в реальных условиях. Тест HIPOT, а скорее дает информацию о качестве сыпучего материала, используемого в качестве изоляции.

Даже когда это не требуется конечному потребителю, многие производители проводов и кабелей используют испытание сопротивления изоляции для отслеживания процессов производства изоляции и выявления возникающих проблем до того, как переменные процесса выйдут за допустимые пределы.


Выбор ИК-тестеров (Megger):

Доступны тестеры изоляции с испытательным напряжением 500, 1000, 2500 и 5000 В. Рекомендуемые характеристики тестеров изоляции приведены ниже:

Уровень напряжения ИК-тестер
650 В 500 В постоянного тока
1.1 кВ 1 кВ постоянного тока
3,3 кВ 2,5 кВ постоянного тока
66 кВ и выше 5 кВ постоянного тока

Испытательное напряжение для измерения мегомметров:

составляет:
Испытательное напряжение (перем. ток) = (2X напряжение с паспортной таблички) +1000.

Когда используется напряжение постоянного тока (чаще всего используется во всех мегомметрах)
Испытательное напряжение (постоянный ток) = (2X напряжение с паспортной таблички).


Характеристики оборудования / кабеля Испытательное напряжение постоянного тока
24 В до 50 В 50 В до 100 В
50 В до 100 В 100 В до 250 В
100 240 В 250 В до 500 В
440 В до 550 В 500 В до 1000 В
2400 В 1000 В до 2500 В
4100 В от 1000 В до 5000 В

Megger Измерение

Испытательное напряжение Диапазон измерений
250 В пост. Тока от 0 МОм до 250 ГОм
500 В пост. Тока от 0 МОм до 500 ГОм
1 кВ пост. 2.5 кВ пост. Тока от 0 МОм до 2,5 ТОм
5 кВ пост. Тока от 0 МОм до 5 ТОм

Меры предосторожности при выполнении мегомметра

Перед мегомметром:

Убедитесь, что все соединения в испытательной цепи надежны. Перед использованием проверьте мегомметр, дает ли он значение INFINITY , когда он не подключен, и НУЛЬ, когда два терминала соединены вместе и ручка вращается.


Во время измерения в режиме мегомметра:

При проверке заземления убедитесь, что дальний конец проводника не соприкасается, в противном случае тест покажет неисправную изоляцию, когда это не так.

Убедитесь, что заземление, используемое при тестировании заземления и разомкнутых цепей, хорошее, иначе тест даст неверную информацию. Запасные жилы не следует перерабатывать, когда другие рабочие жилы того же кабеля подключены к соответствующим цепям.


После завершения измерения кабеля:

  • Убедитесь, что все проводники подключены правильно.
  • Проверьте функции точек, треков и сигналов, подключенных через кабель, на предмет их правильного отклика.
  • В случае сигналов аспект необходимо проверять лично.
  • В случае точек проверьте позиции на месте. Убедитесь, что полярность проводов, проходящих через кабель, случайно не заземлена.

Требования безопасности для Meggering:

  • Все тестируемое оборудование ДОЛЖНО быть отключено и изолировано.
  • Оборудование должно быть разряжено (шунтировано или закорочено), по крайней мере, на время подачи испытательного напряжения, чтобы быть абсолютно безопасным для человека, проводящего испытание.
  • Никогда не используйте Megger во взрывоопасной атмосфере.
  • Убедитесь, что все переключатели заблокированы, а концы кабеля промаркированы должным образом в целях безопасности.
  • Изолируемые концы кабеля должны быть отключены от источника питания и защищены от контакта с источником питания, земли или случайного контакта.
  • Установка защитных ограждений с предупреждающими знаками и открытый канал связи между испытательным персоналом.
  • Не выполняйте мегомметр при влажности более 70%.
  • Хорошая изоляция: показания мегомметра сначала увеличиваются, а затем остаются постоянными.
  • Плохая изоляция: показания мегомметра сначала увеличиваются, а затем уменьшаются.
  • Ожидаемое значение IR попадает на Темп. От 20 до 30 градусов по Цельсию.
  • Если указанная выше температура снизится на 10 градусов по Цельсию, значения ИК-излучения увеличатся в два раза.
  • Если выше температура увеличится на 70 градусов по Цельсию, значения ИК-излучения уменьшатся в 700 раз.

Как использовать Megger

Meggers оснащен тремя соединительными клеммами линии (L), клеммами заземления (E) и защитными клеммами (G).

Соединения мегомметра

Сопротивление измеряется между клеммами линии и заземления, где ток будет проходить через катушку 1. Клемма «Guard» предназначена для особых ситуаций тестирования, когда одно сопротивление должно быть изолировано от другого. Давайте рассмотрим одну ситуацию, когда необходимо проверить сопротивление изоляции в двухпроводном кабеле.

Чтобы измерить сопротивление изоляции между проводником и внешней стороной кабеля, нам необходимо подключить «линейный» вывод мегомметра к одному из проводов и подключить заземляющий провод мегомметра к проводу, намотанному на оболочку. кабеля.

Конфигурация мегомметра

В этой конфигурации мегомметр должен считывать сопротивление между одним проводником и внешней оболочкой.

Мы хотим измерить сопротивление между проводником-2 и оболочкой, но на самом деле мегомметр измеряет сопротивление параллельно с последовательной комбинацией сопротивления проводник-проводник ( R c1-c2 ) и первым проводником к оболочке ( R c1-s ).

Если нас не волнует этот факт, мы можем продолжить тест в соответствии с настройками.Если мы хотим измерить только сопротивление между вторым проводником и оболочкой ( R c2-s ), тогда нам нужно использовать клемму мегомметра « Guard ».

Megger — Подключение клеммы защиты

При подключении клеммы «Guard» к первому проводнику два проводника имеют почти равный потенциал .

При небольшом напряжении между ними или его отсутствии сопротивление изоляции почти бесконечно, и поэтому между двумя проводниками не будет тока .Следовательно, показание сопротивления мегомметра будет основываться исключительно на токе, протекающем через изоляцию второго проводника, через оболочку кабеля и к намотанному вокруг провода, а не на токе, протекающем через изоляцию первого проводника.

Защитный зажим (если он установлен) действует как шунт для отключения подключенного элемента от измерения. Другими словами, это позволяет вам избирательно оценивать определенные компоненты большого электрического оборудования.Например, рассмотрим двухжильный кабель с оболочкой.

Как показано на диаграмме ниже, необходимо учитывать три сопротивления.

Меггеринг проводка

Если мы измеряем между сердечником B и оболочкой без подключения к клемме защиты, некоторый ток пройдет от B к A и от A к оболочке. Наше измерение было бы низким. При подключении защитной клеммы к A две жилы кабеля будут иметь почти одинаковый потенциал, и, таким образом, эффект шунтирования устранен.

Продолжение здесь — Измерение сопротивления изоляции (IR) — Часть 2

Тестирование кабеля 600 В — Журнал IAEI

Время считывания: 13 минут

Существует множество технологий и методов, используемых для проверки изоляции проводов и кабелей, в том числе высоконагруженная заливка, очень низкая частота (VLF), коэффициент мощности, частичный разряд, рефлектометрия во временной области (TDR), и «грудь.«Как и при посещении кабинета врача, каждый тест исследует тестируемый элемент по-своему и ищет разную реакцию со стороны изоляционного материала. Какие тесты и сколько использовать — это разумное решение, которое принимает квалифицированный специалист. В этой статье мы сосредоточимся только на самом основном и фундаментальном тесте — сопротивлении изоляции. Среди профессионалов отрасли до сих пор ведутся споры о ценности тестирования, о том, когда и как часто, какие методы и напряжения использовать и так далее. В литературе можно найти разные мнения и советы.Эта статья основана на признании тестирования как имеющего фундаментальную ценность.

Безусловно, наиболее широко используемый и общий тест, тест сопротивления изоляции дает (сравнительно) высокое напряжение на изоляционном материале, измеряет величину протекающего тока и просто использует закон Ома для преобразования этих двух битов критических данных в сопротивление. По определению, изоляция должна препятствовать прохождению тока так, чтобы он продолжался через схему, как задумано, и нигде больше, например, через землю или через человека.Но никакая изоляция не идеальна и может остановить весь ток . Удобный способ представить это — изобразить удар молнии. Воздух — хороший изолятор. Фактически, существует электрическое оборудование с воздушной изоляцией. Но когда между облаками и землей возникает достаточный градиент напряжения, возникает ток, причем самым драматичным образом! Показание «бесконечность» (∞), знакомое операторам аналоговых тестеров, не означает, что сопротивление изоляции на самом деле «бесконечно».Это просто указывает на то, что это выходит за пределы диапазона измерений тестера, каким бы он ни был.

Мегомметр

Рис. 1. Испытательное напряжение в зависимости от характеристик оборудования

Калькулятор и закон Ома могут легко дать оценку задействованных величин. Когда ток утечки достигает уровня миллиампер, материал начинает больше походить на полупроводник, чем на изолятор. При системном напряжении около 5 мА обычно считается уровнем шока для человеческого тела.Таким образом, требования к изоляционному материалу весьма высоки, и тестеру необходимо обеспечить лишь небольшой ток, прежде чем изоляция перестанет быть действительно изоляцией. Однако, поскольку большинство испытаний проводится на более или менее хорошей изоляции, требуется высокое напряжение, чтобы эффективно использовать состояние материала и обеспечить надежную индикацию. Оставленные незамеченными и неконтролируемыми, эти небольшие пути утечки будут постоянно увеличиваться и, в конечном итоге, вызывать короткое замыкание оборудования.

Рисунок 2.Сравнение тенденций: Аппарат A — высокие показатели, но быстро падают; Аппарат B — нижние показания, удерживая неподвижно

Испытательное напряжение

После производства проводятся испытания постоянного тока для приемки, установки, текущего обслуживания, поиска и устранения неисправностей и ремонта. Выбор испытательного напряжения в значительной степени остается на усмотрение оператора, но промышленным стандартом является выполнение испытаний «в соответствии с номинальными» и «дважды номинальными». Для кабеля на 600 В было бы более практично рассматривать выбор «как номинальный» как «примерно номинальный».«Сложные и более дорогие модели могут иметь выбор на 600 В, но у большинства обычных тестеров есть тест на 500 В. Это подойдет. Для дважды оцененных, опять же, можно использовать некоторую практичность. Относительно недорогие портативные тестеры обычно имеют максимум 1 кВ. Опять же, этого должно хватить. Выбор теста 1200 В и выше требует качественного скачка к более дорогим приборам на 5 кВ.

Таблица 1. Состояние изоляции с указанием коэффициентов диэлектрической абсорбции

Испытания в соответствии с номинальными показателями хорошо подходят для текущего обслуживания и ведения записей.Сопротивление кабеля измеряется при напряжении, которое приблизительно соответствует тому, которое он будет испытывать во время работы, и число дает полезную индикацию общего состояния кабеля. Двойной рейтинг полезен для устранения неполадок. Изоляционный материал, который обычно ухудшается из-за воды или старения, будет отражать это состояние практически при любом испытательном напряжении. Таким образом, оценочный тест будет отражать общее загрязнение как значительно более низкое значение, чем в предыдущих тестах или ожиданиях. Но в противном случае хорошая изоляция может иметь локальные участки повреждения, такие как разрыв, вызванный изгибом кабелепровода или точечное отверстие из-за скачка напряжения, идущего на землю.Это первопричины дьявольских перемежающихся неисправностей. Схема работает, потом нет, а потом работает. Никакие приборы или процедуры не могут безошибочно идентифицировать прерывистые реакции на первом снимке. Их бывает трудно заметить. Но более высокое испытательное напряжение — это один из способов. Например, этого может быть достаточно, чтобы протянуть дугу к трубопроводу. Испытательные напряжения могут быть дополнительно увеличены сверх обычно вдвое номинальных значений, и это может выявить проблемы, которые до сих пор не учитывались. Но этот процесс должен быть сбалансирован с максимальным напряжением, которое может выдержать кабель.Помните, что тестер подает постоянное напряжение, а не всплеск.

Таблица 2. Температурный поправочный коэффициент

Тестовое соединение

Рисунок 3. Защитный кожух 1

Тестирование цепи на землю — это быстрый способ измерить общее состояние кабеля. Чем больше нагрузка прикладывается к испытанию, тем ниже будут показания, поскольку будет больше изоляционного материала, пропускающего ток утечки. Если три фазы объединить и проверить на землю, показание будет ниже, чем при тестировании каждой по отдельности.Если показания удовлетворительны, такая проверка экономит время. Если это не удовлетворительно, то можно потратить больше времени на тестирование каждой фазы индивидуально и друг для друга. Чтобы приспособить зажимы испытательных зажимов, фазы могут быть соединены вместе неизолированным проводом, а различные косички и гибкие оболочки могут быть адаптированы для разных размеров. Тест «все-в-одном» — удобный способ получить результаты планового технического обслуживания; в то время как для устранения известной или предполагаемой проблемы предпочтительны более конкретные тесты.Также не забудьте указать длину кабеля. Сопротивление изменяется обратно пропорционально длине и прямо пропорционально. Чем больше материала, тем больше утечка и ниже показание. Можно ожидать, что две схемы из одного и того же провода с одинаковым использованием и возрастом будут достаточно сопоставимы. Если значение будет заметно ниже, это может быть признаком зарождающейся проблемы. Но если он вдвое больше, показания по сути эквивалентны.

Рисунок 4. Защитный кожух 2

Терминал охраны

Дополнительной возможностью многих мегомметров является использование защитного терминала.Это третий терминал, обычно отмеченный буквой «G». Не путайте это с «заземлением», как с защитным заземлением. Это не причинит вреда, но приведет к нарушению цели теста. Охранник действует как шунт. При наличии нескольких параллельных путей утечки он направляет ток по одному или нескольким путям вокруг измерительного модуля, так что измеряется только утечка через неохраняемый путь. Наиболее фундаментальное применение ограждения при испытании кабеля — устранение поверхностной утечки на заделках.Когда мегомметр подключен к оконечной нагрузке, скажем, от проводника к оболочке, ток будет проходить по поверхности от одного аллигатора к другому. Чем грязнее или влажнее поверхность, тем сильнее ток и ниже результат измерения. Однако это может быть не то измерение, которое хочет оператор. Это указывает на что-то о прекращении контакта, и если его очистить и / или высушить, показание может заметно возрасти. Но состояние изоляционного материала зависит от утечки через , а не от через , изоляции.Охранник позволяет считывать только этот параллельный путь. Обернув кабель между двумя испытательными зажимами оголенным проводом, ток, проходящий по поверхности, перехватывается и снимается с измерения. Показание будет расти, и степень подъема будет показателем состояния поверхности на заделке. Однако не следует игнорировать поверхностную утечку. Это также будет способствовать появлению следов прожига, и можно приложить усилия, чтобы минимизировать его. Этот метод можно расширить, чтобы исключить любую параллельную утечку при измерении.Поверхностная утечка может быть устранена с обоих концов кабеля и утечка на другие проводники при измерении сопротивления между любыми двумя проводниками. Сосредоточив испытание на конкретной паре проводов, защита добавляет возможность секционировать кабель, просто переключая клеммы. Однако не забудьте проверить точность защиты. Тестеры, спроектированные по низкой цене, имеют тенденцию сокращать использование защитного устройства и, как следствие, могут вносить значительные ошибки в показания.

Рисунок 5.Охранник 3

Ход испытаний

Для непосвященного оператора наиболее запутанной частью тестирования изоляции является перемещение аналогового указателя и нестабильность цифровых показаний. Тестеры обычно опираются на верхнюю границу шкалы, поэтому при запуске теста указатель будет резко указывать на нижнюю границу, и цифровые показания будут начинаться с низкого уровня. Затем указатель вернется в исходное положение, в то время как цифры будут продолжать расти. Это потому, что кабель заряжается.Текущий поток на самом деле состоит из трех отдельных элементов. Поскольку проводники соединены параллельно и разделены изоляцией, они действуют как конденсатор и потребляют зарядный ток. В то же время сам изоляционный материал поляризуется на молекулярном уровне под действием поля напряжения. Это составляет движение заряда, следовательно, ток, и называется током поглощения. Емкость заряжается быстро и учитывает начальный острие указателя. Поскольку поглощение происходит в изоляционном материале, плохом проводнике, оно занимает гораздо больше времени и объясняет неуклонный рост аналоговых указателей и цифровых чисел.Итак, когда чтение «правильное»?

Рис. 6. Кривые испытания методом ступенчатого напряжения, сравнение результатов с хорошей и плохой изоляцией

Все показания верны для данного времени испытания. Но оператор ищет состояние изоляции, которое является фактором третьего компонента — утечки. Это то, что остается в потоке после завершения всей зарядки. Почему бы просто не подождать до тех пор? Проблема двоякая: время и признание. Чем крупнее тестируемый объект, тем больше емкость, больше поглощение и тем больше времени потребуется для полной зарядки.Это может быть непомерно долгих часов, даже часов. Более того, рост сопротивления замедлится, так что он станет похож на часовую стрелку, движущуюся, но не видимую. Следовательно, количество раз , в течение которого был проведен тест, всегда следует включать в отчеты и для повторных или последующих тестов. Тот же самый кабель, проверенный в течение тридцати секунд, может показывать явно меньше, чем шестьдесят секунд, и, если не принимать во внимание, может привести к неправильным выводам. Кроме того, ход стрелки должен быть плавным .Ветеранский персонал часто смотрит только на путешествия. Плавный ход означает равномерную зарядку. Неустойчивый указатель указывает на искрение, испарение влаги или другие проблемы. Цифры в этом отношении не так легко читать, но постоянно растущие числа — это то, что нужно видеть. На дисплее будут обновляться числа в соответствии с частотой дискретизации, и они должны отражать продолжающийся рост. С помощью высококачественных инструментов научитесь искать единицу измерения, а не просто число. Эти модели могут автоматически изменять диапазон от мегомов до гигаомов или даже тераомов (символы МОм, ГОм, ТОм).

Устные переводы

После получения показаний работа сделана? Нет. Прочтение еще нужно интерпретировать, и это может быть самой сложной частью. Это не похоже, скажем, на измерение напряжения. Предположительно 120, но может быть 115 или 123; это НЕ будет 5 мВ или 20 кВ! Но тестирование изоляции охватывает огромный диапазон возможных измерений. Это требует некоторой адаптации в процессе оценки. Наиболее узнаваемым «правилом» является правило одного мегомма, согласно которому на каждый кВ номинального напряжения должен приходиться как минимум один мегом, но никогда не меньше одного (для 120, 240, 480 и т. Д.).). Однако это руководство очень снисходительно и не подразумевает ничего, кроме того, что цепь будет включаться без отключения выключателей, возникновения пожара или поражения электрическим током. Он может не работать в течение приемлемого времени.

Рис. 7. Типовая шкала

Безусловно, наиболее надежным показателем является тот, который выгодно отличается от предыдущего теста. Со временем изоляция ухудшится из-за проникновения коррозионных материалов и влаги, электрических напряжений из-за пусков и сбоев в линии, механических напряжений из-за вибрации и множества других повреждающих воздействий.В конце концов, произойдет поломка и отказ, но это может быть очень долго — или не так долго. Соответственно, показания изоляции действуют как одометр на автомобиле, но в обратном порядке. Они начинаются высоко при установке и со временем смещаются вниз. Или может произойти катастрофический отказ, например, от наводнения, пожара или скачков напряжения, например от ударов молнии. Тестовые показания приблизительно фиксируют, где находится кабель в жизненном цикле, а затем, сравнивая последовательные показания, можно установить продолжительность этого цикла.

Тем не менее, очень высокие показания могут быстро падать из-за воздействия какого-либо повреждающего фактора, например, воздействия чрезмерной влажности. Показание , а не особенно высокое, может быть связано с равномерно распределенной утечкой по всему телу материала, которая может не ухудшаться и может сохранять свое значение в течение многих лет. Но предыдущие результаты часто недоступны. Соответственно, были установлены стандартные процедуры тестирования, которые помогают решать как проблемы времени тестирования, так и интерпретации.Проведение единичного измерения, как описано выше, может называться тестом на точечное считывание. Этот тест имеет ограничение, заключающееся в предоставлении единственного числа, которое необходимо оценить, а также на него сильно влияет температура. Показания изоляции обычно снижаются вдвое при повышении температуры на 10 ° C, поэтому этот эффект весьма заметен. В разных материалах опубликованы поправочные коэффициенты, и показания следует приводить к общей температуре. Как упоминалось ранее, время теста также должно быть стандартизировано.Влажность также может играть роль, но ее нельзя измерить напрямую, и ее следует рассматривать только как возможный фактор аномальных показаний. После внесения этих исправлений остается число, которое является надежным, но все же требует оценки.

Методы испытаний

Автономный тест, который обеспечивает автоматическую оценку, — это давний тест на индекс поляризации (PI). При этом одноминутное чтение делится на последнее чтение десятиминутного теста. Эта процедура решает как проблемы времени, так и интерпретации.Это полезно для длительных пробегов, когда емкость велика и показания могут продолжать расти в течение значительного времени. Если показание через десять минут заметно выше, чем за одну, это указывает на то, что большая часть тока представляет собой зарядный ток, а не утечку, потому что утечка постоянна для данного напряжения (точно так же, как цепь будет пропускать тот же ток, пока напряжение стабильно) и сохранит окончательное значение. Оператор освобождается от цифр и просто смотрит на соотношение; чем выше, тем лучше.Эта концепция распространяется на тест коэффициента диэлектрической абсорбции, который представляет собой просто индекс поляризации, выполняемый в другие интервалы времени. Новые материалы дают более высокие начальные показания (теперь в диапазоне тераомов) и более короткое время поглощения, так что таких соотношений, как одна минута к трем и даже тридцать секунд к одной минуте, может быть достаточно для обеспечения оценки.

Другой стандартизированной процедурой со встроенной интерпретацией является Тест ступенчатого напряжения. Здесь вместо времени манипулируют приложенным напряжением.Промышленный стандарт — увеличивать напряжение с интервалом в одну минуту в течение пяти минут. Но изменение с учетом имеющихся напряжений на конкретном приборе все же может дать ценные результаты. Здоровая изоляция однородна и выдерживает повышение напряжения. Но при ухудшении качества каждое увеличение приведет к утечке через дополнительные дефекты, и показания каждый раз будут заметно падать. Этот тест особенно хорош для выявления локальных повреждений, поскольку при достижении соответствующего напряжения внезапно возникает дуга, похожая на точечное отверстие.В дополнение к этим стандартным тестам, которые предоставляют свою собственную интерпретацию, результаты также могут быть оценены по спецификациям производителя (хотя часто их трудно получить), рекомендациям стандартов независимых агентств или по сравнению с аналогичными схемами (но не забудьте учитывать длину).

Комната, полная инженеров, может спорить весь день, и тестирование кабеля может быть вредным при неправильном проведении . Но существует надежная информация для описания процедуры и интерпретации.Проведенное соответствующим образом тестирование кабеля является ценным инструментом технического обслуживания электрооборудования.


Безопасность

Несмотря на высокое напряжение, хорошо сконструированные мегомметры не являются смертоносными инструментами. Доступен только небольшой ток, обычно несколько миллиампер. Сила тока ограничена, потому что изоляция будет очень слабой, оставаясь при этом изоляцией. Выше нескольких миллиампер материал больше не изолирует. Ограниченный ток ограничивает «опасность», которую представляют испытатели, делая их предметом для розыгрышей.Эта практика не одобряется всеми уважаемыми производителями.

Но хотя тестер является безопасным инструментом, тест , элемент , может быть смертельным! Для оценки безопасности не забудьте различать тестер и тест. Тестер может быть сконструирован с максимальными функциями безопасности, но нет такого контроля на оборудовании, к которому он может быть подключен. Возможно, наибольшую опасность представляет накопленный на тестируемом объекте заряд. Поскольку мегомметры применяют постоянное напряжение, они будут заряжать емкость и абсорбционную способность испытуемого объекта.Это может вызвать значительный статический заряд, даже смертельный. Особенно опасны предметы с большой намоткой или длинными отрезками кабеля. Поэтому тестируемый элемент (IUT) должен быть эффективно разряжен, прежде чем к нему прикасаться по завершении теста. Много лет назад тестеры поставлялись с выключателем разряда, но современные устройства делают это автоматически. Необходимость задействовать переключатель приводит к человеческой ошибке. По завершении теста цепь резистивного разряда в тестере автоматически сбрасывает статический заряд, а функция вольтметра контролирует его, чтобы оператор знал, когда можно безопасно приближаться к IUT.

В старых моделях было больше человеческого участия. Общепринятое эмпирическое правило заключалось в том, что для завершения разряда требуется примерно в четыре раза больше времени теста. В целях экономии времени этот процесс можно ускорить, применив резистивный разрядный стержень или стержни. Эти устройства представляют собой изолированные полюса с высокой диэлектрической проницаемостью, содержащие цепь резисторов. Зажим заземления прикрепляется к соответствующему заземлению, а металлический крюк на другом конце контактирует с разряжаемым предметом.По истечении допустимого времени выгрузки прикладывается второй крючок, расположенный дальше вниз по рукоятке, для создания короткого замыкания. Его оставляют на месте, пока применяются постоянные заземляющие соединения, так как IUT может опасно перезарядиться из-за молекулярной перестройки изоляционного материала. Никогда не пытайтесь разрядить, применяя короткое замыкание. Может возникнуть опасное искрение, а высокочастотная обратная связь может повредить IUT.

Опасность также может возникнуть из-за случайного подключения к действующей системе или из-за подачи питания на IUT во время выполнения теста.У старых тестеров иногда был выбор вольтметра, но опять же, это может быть упущено из-за человеческой ошибки. Современные приборы имеют автоматическое предупреждение о напряжении. Если кто-то замыкает переключатель во время выполнения теста или в линии возникает неисправность, тестер должен немедленно выдать визуальные и звуковые предупреждения, а также может отображаться фактическое измерение напряжения. Испытания изоляции никогда не проводятся на оборудовании под напряжением. [Обязательно соблюдайте стандартные процедуры блокировки / маркировки.] Помимо угрозы оператору, внешнее напряжение под напряжением также может повредить мегомметр. Старые модели регулярно «готовили» неосторожные операторы, которые не обращали внимания на внешнее напряжение и проводили испытания. Хорошо спроектированные устройства теперь имеют схемы блокировки, которые обеспечивают защиту устройства. Для максимальной безопасности эти средства защиты должны работать, несмотря на перегоревшие предохранители.

Наконец, операторы всегда должны знать рейтинги категории IEC61010-1 по защите от дугового разряда и дугового разряда. Эти характеристики устанавливают способность тестера выдерживать внутреннюю дугу в случае скачка напряжения из-за нарушения или неисправности в проверяемой линии.Тестер должен быть соответствующим образом рассчитан на электрическую среду, в которой он будет использоваться.

Не пропустите тест , площадь . Никто не должен касаться IUT во время выполнения теста. Должны быть установлены соответствующие барьеры и предупреждения. Остерегайтесь всего, что ведет от зоны, например, кабелепровода, который может каким-то образом стать живым и представлять для прохожих металлическую поверхность под напряжением. Удаленные части системы могут оказаться под напряжением; держите другой конец цепей изолированным и отключите оборудование.Также проверьте измерительные провода, чтобы убедиться, что они в хорошем состоянии. Выводы с высокой утечкой из-за плохого качества или износа могут исказить результаты и также могут представлять угрозу безопасности. Обязательно просмотрите функции безопасности прибора И установите безопасную процедуру, прежде чем приступить к тесту. Прибор не может защитить от всех возможностей неосторожного или неподготовленного оператора, в то время как наиболее квалифицированный персонал все еще подвергается риску из-за плохо спроектированного тестера.

Сопротивление изоляции: Измерение утечки проводов

Целостность изоляции проводов является фундаментальной частью характеристик проводов.Без него значительно снижается безопасность и надежность провода. За прошедшие годы в отрасли разработаны десятки методов оценки целостности изоляции.

Среди множества тестов, существующих в мире электромонтажа, одним из тестов, которые часто неправильно понимают или применяют неправильно, является испытание сопротивления изоляции. Несмотря на то, что это часть квалификационных испытаний почти для всех проводов, представленных на рынке, испытание сопротивления изоляции может быть неправильно применено и неправильно понято.

В этой статье представлен обзор этого теста, показано, как разные значения могут повлиять на производительность системы и на что обращать внимание в устаревших системах.

Основы

На фундаментальном уровне провод представляет собой комбинацию проводящей среды, защищенной резистивной средой. Характеристики этого резистора или изолятора значительно различаются в зависимости от материала, толщины и условий эксплуатации. В большинстве случаев предпочтительно, чтобы изолятор имел высокое сопротивление; это обеспечивает безопасность для тех, кто обращается с проводами во время подачи питания. Кроме того, это гарантирует, что любой сигнал или мощность, передаваемые по проводу, не попадут по непредусмотренному пути, например, по другому проводу или токопроводящей цели (например,грамм. состав).

Изоляция проводов — не идеальный изолятор. Когда на проводник подается высокое напряжение, через изоляцию будет протекать электрический ток. Сила тока зависит от конструкции провода, материалов, имеющихся повреждений, ухудшения характеристик, влажности и напряжения.

Испытание сопротивления изоляции позволяет оценить сопротивление изоляции провода. При выполнении в лабораторных условиях проволока погружается в водяную баню концами над водой.На проводник подается высокое напряжение, а электрическое заземление помещается в водяную баню. Хотя установка для теста проста, сбор полезных данных требует осторожности.

Одна из трудностей при выполнении теста сопротивления изоляции (IR) заключается в том, что он требует специального испытательного оборудования и проводов значительной длины. В качестве примера, метод тестирования AS4373 предлагает использовать провод длиной не менее 26 футов, и для этого есть причина: современные типы изоляции проводов являются очень хорошими резисторами.

Для определения сопротивления компонента требуется один из двух методов: сравнительное падение напряжения или прецизионные измерения электрического тока. Сложность проведения сравнительных измерений падения напряжения заключается в том, что в большинстве вольтметров для измерений используется внутренний резистор 10 МОм. Измерения резисторов выше 10 МОм неточны.

Для решения этой проблемы обычно применяемый метод требует точного измерения электрического тока или пикоамперметра.В этой конфигурации непосредственно измеряется ток утечки через изолятор. Учитывая, что большинство типов проводов имеют сопротивление изоляции в гига-омах на тысячу футов, электрический ток, протекающий через изоляцию, даже с длиной провода 100 футов, часто измеряется в наноамперах.

Правильный блок питания

Для правильного выполнения ИК-теста необходимо использовать источник постоянного тока. Источник питания постоянного тока является предпочтительным, поскольку он позволяет избежать повторяющихся зарядов и разрядов изоляции.В лабораторной испытательной установке изоляция действует как диэлектрик конденсатора. Если источник питания не выдает чистую мощность без пульсаций, будет выполнено непоследовательное и ненадежное измерение сопротивления изоляции.

Последствия для высокого напряжения

Важно отметить, что измерения сопротивления изоляции не дают никакого представления о высоковольтных характеристиках изоляции. Типы изоляции с высоким сопротивлением могут по-прежнему иметь относительно низкие начальные напряжения частичных разрядов.Другие тесты лучше подходят для определения характеристик высокого напряжения и долговечности.

Выполнение IR в поле

Сопротивление изоляции проводов с возрастом снижается. Это может быть электрическое напряжение на изоляции, воздействие повышенных температур, вызывающее деградацию полимера, термоциклирование, вызывающее трещины, механическое повреждение или множество других источников разрушения. Для некоторых типов проводов сопротивление изоляции может использоваться как индикатор состояния провода; конечно, те провода, у которых было значительное сокращение (т.е. 90%) следует немедленно рассмотреть для замены. Однако снижение сопротивления изоляции напрямую не означает, что провод следует заменять. Многочисленные исследования показали, что сопротивление изоляции — это всего лишь одно значение, которое следует учитывать.

Например, те, кто использует тестеры привязных ремней в самолетах, часто обнаруживают разные (низкие) значения сопротивления изоляции влажным утром и сухим днем. Кроме того, температура играет важную роль в инфракрасном излучении.У некоторых изоляционных материалов ИК-излучение снижается на 50% при повышении температуры на 10 o ° C. Из-за этой изменчивости важно, чтобы сравнительное тестирование или оценка состояния здоровья проводились в аналогичных условиях; невыполнение этого может привести к неверным выводам.

Заключение

Испытание сопротивления изоляции — отличный способ оценить характеристики провода / кабеля и целостность изоляции. Также важно знать, что то, как проводится тест, так же важно, как и сами результаты; без четкого понимания оборудования, напряжений и системы, подлежащих оценке, результаты могут быть бессмысленными.

Чтобы получить максимальную отдачу от тестов по оценке проводов / кабелей, свяжитесь с Lectromec.

Михаил Траскос

Президент, Lectromec
[email protected]

Майкл более десяти лет занимается оценкой деградации и отказов проводов. Он работал над десятками проектов по оценке надежности и квалификации компонентов EWIS. Майкл является FAA DER с делегированными полномочиями в отношении сертификации EWIS и председателем комитета по установке EWIS SAE AE-8A.

Что такое мультиметр изоляции?

Изоляционный мультиметр Fluke серии 15×7 — это новая категория измерительных приборов, сочетающая в себе полнофункциональный мультиметр True RMS и мегомметр. Это интегрированный инструмент для обслуживания и устранения неисправностей систем двигателей, распределения электроэнергии и производственного оборудования.

Ношение этого нового инструмента позволит вам чаще проверять изоляцию, делая ваши проверки технического обслуживания более тщательными, а устранение неисправностей более эффективным.Это также избавит вас от необходимости возвращаться «в магазин» за тестером изоляции. В этой заметке по применению рассматриваются функции измерения в этом новом классе приборов, включая два примера, которые иллюстрируют, как эти функции работают вместе.

Обзор измерительных функций

Более высокая плотность схем и прогресс в конструкции безопасности позволили инженерам объединить несколько приборов без увеличения физического размера и без ущерба для функций поиска и устранения неисправностей или функций безопасности.

Изоляционные мультиметры серии 15×7 имеют класс безопасности 600 В категории IV и 1000 В категории III. Они предназначены для использования на служебных входах до 600 В и на шинах постоянного тока инвертора ШИМ до 1000 В.

В таблице на следующей странице перечислены все измерения, доступные в мультиметре изоляции, а также некоторые приложения для поиска и устранения неисправностей. .

Поиск и устранение неисправностей при измерениях Приложения
Вольт переменного тока
  • Уровень линейного напряжения
  • Несимметрия фазного напряжения
Вольт переменного тока, с нижним проходом
  • «Огибающая» измерение напряжения на выходе ШИМ-привода двигателя
Вольт постоянного тока
  • Напряжение батареи
  • Напряжение на источниках постоянного тока, используемых в электронном оборудовании
  • Шины постоянного тока на приводах двигателей и источниках бесперебойного питания
Ампер с токовыми клещами
  • Рабочий ток
  • Несимметрия тока
А, линейный
  • Слаботочные цепи управления, такие как 4-20 мА или системы сигнализации
Ом
  • Сопротивление катушек в контакторах, отн. ays
  • Сопротивление контактов в переключателях, автоматических выключателях
  • Используется для проверки датчиков температуры сопротивления (RTD) или термисторов
  • Проверить тензодатчики
Целостность цепи
  • Проверить целостность проводника
  • Проверить целостность соединения
  • Проверить предохранители
Испытание сопротивления изоляции
  • Проверка на ухудшение изоляции проводника до кабелепровода
  • Проверка на ухудшение изоляции между проводниками, имеющими общий кабелепровод или кабелепровод
  • Проверка на ухудшение изоляции обмотки двигателя на клеевой каркас
  • Проверка изоляции деградация трансформаторов
Температура *
  • Проверить температуру воздуха в системах отопления, вентиляции и кондиционирования воздуха
  • Проверить температуру поверхности корпуса двигателя
  • Проверить температуру поверхности распределительного устройства и корпусов трансформатора
  • 90 013 Подтвердите другие термометры, термостаты или датчики температуры
Частота
  • Проверьте выход генератора
  • Проверьте датчики потока импульсного выхода
  • Проверьте импульсный выход оптических энкодеров
  • Проверьте выходную частоту шестиступенчатого привода двигателя
Частота, с ФНЧ
  • Проверка выходной частоты привода двигателя с ШИМ
Емкость

Проверьте правильность емкости:

  • Фильтрующие конденсаторы на источниках питания постоянного тока
  • Запуск двигателя и рабочие конденсаторы
Диод
  • Проверить выпрямительные диоды на короткое замыкание и обрыв в источниках питания, приводах двигателей и ИБП / светодиодах
Мин. / макс. / средн. запись
  • Проверить переменный ток скачки и провалы сетевого напряжения
  • Использование по току настройка для отслеживания Макс. нагрузка
  • Отслеживание колебаний температуры
Другое
  • Давление с соответствующими аксессуарами, такими как PV350

Пример: Машина выключается во время перегрузки

A 230 В поперек — линейный двигатель вращает вентилятор в системе пневмотранспорта.В двигателе используется электромеханический стартер. Ближе к концу квартала, когда завод пытается отгрузить как можно больше, мотор несколько минут ужасно звучит, а затем перегорает предохранитель. Вроде бы случается чаще.

Поскольку тесты без напряжения всегда безопаснее, вы решаете провести их в первую очередь. Вы используете надлежащие процедуры блокировки / маркировки, чтобы убедиться, что цепь остается обесточенной во время тестирования.

Вы проверяете изоляцию между фазами и массой.Вы начинаете тестирование со стартера, так как это позволит вам проверить проводники, питающие двигатель, а также обмотки. На пускателе вы прикрепляете «-» провод от изоляционного мультиметра к металлическому кабелепроводу с помощью прилагаемого зажима-крокодила. Вы устанавливаете тестовый уровень на 500 В и проверяете одну из фаз с помощью щупа «+». Показание составляет 0,8 МОм, что ниже, чем можно было ожидать. Поскольку обмотки двигателя соединены внутри двигателя и представляют собой путь с низким сопротивлением для постоянного тока, все фазные проводники и обмотки подняты до испытательного напряжения.

Итак, у одного из фазных проводов или обмоток двигателя низкое сопротивление изоляции, но какой? Вы отсоединяете двигатель от его распределительной коробки. Вы проверяете сопротивление изоляции между обмотками двигателя и корпусом двигателя (массой). Обмотки имеют сопротивление изоляции в гигомах. Проблема не в моторе.

Вы внимательно смотрите на распределительную коробку двигателя и замечаете некоторое обесцвечивание. Когда двигатель был установлен, кто-то снял слишком много изоляции с провода фазы B.Когда оборудование использовалось интенсивно, проводник соединялся с соединенным кабелем по дуге. Накопление углерода облегчило возникновение короткого замыкания, но также позволило изоляционному мультиметру найти проблему.

Пример: неисправный привод, неисправный двигатель или ни то, ни другое?

Моторный привод с ШИМ используется для привода конвейера материала. Он подключен к системе питания через предохранитель и до недавнего времени работал нормально. Иногда двигатель работает нормально, но часто после работы в течение 15–30 минут перегорает предохранитель, питающий привод в фазе B или C.Кажется случайным, открывается ли B или C. После замены предохранителя и повторного включения привода единственная неисправность, о которой он сообщает, — это потеря питания. В чем проблема и почему это только что появилось? Диск испортился?

Конечно, вы берете с собой мультиметр для измерения изоляции. Опять же, поскольку вы не знаете, почему срабатывает предохранитель, вы решаете сначала проверить обесточенную систему. Вы блокируете и помечаете разъединение.

Маловероятно, что это проблема двигателя, поскольку привод двигателя имеет сложную диагностику, которая постоянно контролирует выходы привода.Если бы проблема была в двигателе, привод, вероятно, вышел бы из строя до того, как сгорел предохранитель. Открытие предохранителя определенно указывает на какое-то состояние перегрузки по току, например, на прерывистое короткое замыкание. Итак, вы начинаете с линейной стороны привода.

Вы начинаете с проверки проводов от разъединителя к приводу. Подавать испытательное напряжение изоляции на вход привода — не лучшая идея, поэтому вы отключите привод от сети. Вы используете мультиметр изоляции, чтобы проверить сопротивление изоляции каждого проводника относительно земли и каждого проводника к двум другим.Показания сопротивления изоляции превышают 1 гигом, так что это не проблема с изоляцией.

Вы хотите исключить входную схему привода. Привод использует на входе диодный выпрямительный мост, и вы используете диодную функцию измерителя для его проверки. Но вы не найдете закороченных или открытых диодов.

Тест без напряжения исключил короткое замыкание кабеля и в приводе. Итак, вы повторно подключаете диск, нажимаете кнопки и включаете систему. Привод включается нормально.Убедитесь, что вы носите соответствующие средства индивидуальной защиты, прежде чем открывать любой из корпусов для измерения.

Двигатель запускается отлично, и вы решаете проверить мощность привода. Вы используете функцию напряжения нижних частот для измерения выходной мощности привода. Эта функция изоляционного мультиметра использует фильтр нижних частот для сигнала ШИМ и позволяет измерять напряжение огибающей ШИМ, а не отдельные импульсы. Это позволяет напрямую сравнивать показания привода с дисплеем счетчика.Вы обнаружите, что фазы сбалансированы и соответствуют отображению привода. Вы также можете использовать функцию нижних частот для проверки выходной частоты привода. Выходная частота имеет смысл по сравнению с отображением привода. Кажется, что привод работает нормально.

Далее вы переходите ко входу привода. Вы измеряете линейное напряжение на входе, и фаза A значительно ниже, чем две другие фазы. Затем вы подключаете токовые клещи к мультиметру изоляции и проверяете фазные токи.Вы обнаружите, что токи в фазах B и C слишком велики, а ток в фазе A слишком мал. Оказывается, привод и двигатель в порядке. Что-то нарушило баланс линейного напряжения.

Прослеживая линию, вы обнаруживаете, что кто-то подключил необычную однофазную промышленную печь к фазе А, никому об этом не сообщая. Это вызывало несимметрию напряжения. Привод потреблял больше тока от двух других фаз, чтобы компенсировать разницу, и нужно было следить за тем, какой предохранитель откроется первым.

Духовка была перемонтирована, и с тех пор двигатель работает нормально. С помощью мультиметра изоляции вы смогли быстро диагностировать проблему и проверить целостность систем изоляции в процессе.

Обзор тестирования и диагностики силовых кабелей

В этой статье представлен обзор некоторых широко используемых методов технического обслуживания и диагностики, которые коммерчески доступны для проведения полевых испытаний силовых кабелей среднего и высокого напряжения. Фото: TestGuy.

Полевые испытания кабелей среднего и высокого напряжения могут проводиться по разным причинам, например, приемка после установки, определение постепенного ухудшения изоляции с течением времени, проверка стыков и стыков, а также специальный ремонт. Эта оценка относится как к самому кабелю, так и к связанным с ним аксессуарам (сращиваниям и заделкам), именуемым «кабельной системой».

В соответствии с ICEA, IEC, IEEE и другими согласованными стандартами испытания могут проводиться с использованием постоянного тока, переменного тока промышленной частоты или переменного тока очень низкой частоты.Эти источники могут использоваться для проведения испытаний на стойкость изоляции, базовых диагностических испытаний, таких как анализ частичных разрядов, а также для определения коэффициента мощности или коэффициента рассеяния.

В этой статье представлен обзор некоторых широко используемых методов технического обслуживания и диагностики, которые коммерчески доступны для проведения полевых испытаний силовых кабелей среднего и высокого напряжения. Из-за различных доступных методов тестирования кабелей выбор метода тестирования должен производиться только после оценки каждого метода тестирования и тщательной проверки установленной кабельной системы сертифицированным агентством по тестированию и владельцем кабеля.

Соображения безопасности

При испытании кабелей безопасность персонала является наиболее важной. Все испытания кабелей и оборудования должны выполняться только квалифицированными специалистами в изолированных и обесточенных системах, если иное не требуется и не разрешено. Бывают случаи, когда переключатели могут быть подключены к концу кабеля и служить для изоляции кабеля от остальной системы. Соблюдайте особую осторожность после обесточивания силовых кабелей, поскольку они способны удерживать большие емкостные заряды, используйте подходящие средства индивидуальной защиты и инструменты электробезопасности для правильной разрядки кабелей до и после испытания.


Типы испытаний кабелей

Полевые диагностические испытания могут проводиться на кабельных системах на различных этапах их эксплуатации. В соответствии со стандартом IEEE 400 испытания кабеля определяются как:

  • Проверка установки: Выполняется после установки кабеля, но перед установкой любых принадлежностей (стыков / сращиваний и концевых заделок). Эти испытания предназначены для обнаружения любых повреждений кабеля при изготовлении, транспортировке и установке.
  • Приемочное испытание: Выполняется после установки всех кабелей и принадлежностей, но до подачи на кабель системного напряжения. Его цель — обнаружение повреждений при транспортировке и установке как в кабеле, так и в кабельных аксессуарах. Также называется «испытанием после укладки».
  • Тест на техническое обслуживание: Выполняется на протяжении всего срока службы кабельной системы. Его цель — оценить состояние и проверить работоспособность кабельной системы, чтобы можно было инициировать соответствующие процедуры обслуживания.

  • Методы испытаний кабелей

    Выбор метода тестирования во многом зависит от возраста и типа установленной кабельной системы. Многие из методов, описанных в этой статье, могут быть выполнены как приемочные или эксплуатационные испытания, в зависимости от таких условий, как приложенное испытательное напряжение или продолжительность испытания.

    Выбор метода тестирования во многом зависит от возраста и типа установленной кабельной системы.

    Целью любого диагностического теста является выявление проблем, которые могут существовать с кабелем — неразрушающим способом — с тем, чтобы можно было принять превентивные меры, чтобы избежать потенциального отказа этого кабеля во время эксплуатации.Диагностические оценки могут применяться к кабельным системам, состоящим из самого кабеля и связанных с ним аксессуаров, таких как сращивания и заделки.


    1. Испытание на диэлектрическую стойкость

    Испытание на диэлектрическую стойкость — это базовое испытание на электрическую нагрузку, проводимое для обеспечения достаточного срока службы системы изоляции. Для испытания на стойкость испытуемая изоляция должна выдерживать заданное приложенное напряжение, которое выше, чем рабочее напряжение на изоляции, в течение заданного периода без пробоя изоляции.

    Величина выдерживаемого напряжения обычно намного больше, чем у рабочего напряжения, и время, которое прикладывается, зависит от срока службы и других факторов.

    Испытание на устойчивость к диэлектрику — сравнительно простое испытание. Если к концу испытания не наблюдается никаких признаков повреждения или нарушения изоляции, образец считается пройденным. Однако, если приложенное напряжение приведет к внезапному разрушению изоляционного материала, будет протекать сильный ток утечки, и изоляция будет признана непригодной для эксплуатации, так как может представлять опасность поражения электрическим током.

    1а. Выдерживаемое напряжение диэлектрика постоянного тока (DC)

    При проведении испытания с высоким напряжением постоянного тока напряжение постепенно повышается до заданного значения с постоянной скоростью нарастания, обеспечивающей постоянный ток утечки, пока не будет достигнуто окончательное испытательное напряжение. Обычно считается, что для достижения конечного испытательного напряжения достаточно от минуты до 90 секунд.

    Последнее испытательное напряжение затем удерживают в течение 5-15 минут, и если ток утечки недостаточно высок для отключения испытательной установки, изоляция считается приемлемой.Этот тип проверки обычно выполняется после монтажа и ремонта кабеля.

    Испытание на высоковольтное напряжение постоянного тока измеряет сопротивление изоляции кабелей путем подачи высокого напряжения и измерения тока утечки, а сопротивление рассчитывается по закону Ома. Значения испытательного напряжения для испытаний с высоким напряжением постоянного тока основаны на окончательном заводском испытательном напряжении, которое определяется типом и толщиной изоляции, размером проводов, конструкцией кабеля и применимыми отраслевыми стандартами.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение постоянного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    ANSI / NETA-MTS 2019 Рекомендуемое испытательное напряжение постоянного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    Важно знать, что тестирование высокого напряжения постоянного тока не обеспечивает тщательного анализа состояния кабеля, а вместо этого предоставляет достаточную информацию о том, соответствует ли кабель определенным требованиям по прочности на высоковольтный пробой. Одним из преимуществ высоковольтного испытания на постоянном токе является то, что точки срабатывания по току утечки могут быть установлены на гораздо более низкое значение, чем при испытании напряжением переменного тока.

    В прошлом испытание диэлектрика на стойкость к постоянному току было наиболее широко используемым испытанием при приемке и техническом обслуживании кабелей. Однако недавние исследования отказов кабелей показывают, что испытание на перенапряжение постоянного тока может вызвать большее повреждение изоляции некоторых кабелей, таких как сшитый полиэтилен (XLPE), чем польза, полученная при испытании.

    При проведении профилактических испытаний существующих кабелей в процессе эксплуатации с использованием высокого напряжения постоянного тока необходимо учитывать множество факторов, чтобы правильно выбрать правильное испытательное напряжение диэлектрической прочности.Как правило, самые высокие значения для технического обслуживания не должны превышать 60% окончательного заводского испытательного напряжения, а минимальное испытательное значение должно быть не менее эквивалента постоянного рабочего напряжения переменного тока.

    Примечание: Если кабель нельзя отсоединить от всего подключенного оборудования, испытательное напряжение следует снизить до уровня напряжения подключенного оборудования с наименьшими номиналами.

    1б. Частота сети (50/60 Гц) выдерживаемое напряжение диэлектрика

    Кабели и аксессуары могут также выдерживать испытания с использованием напряжения промышленной частоты, хотя обычно этого не делают, поскольку для этого требуется тяжелое, громоздкое и дорогое испытательное оборудование, которое может быть недоступно в полевых условиях.

    Используемое испытательное оборудование переменного тока должно иметь адекватную вольт-амперную (ВА) емкость для обеспечения требуемых требований к току зарядки проверяемого кабеля. Тесты переменного тока с высоким напряжением могут проводиться только в режиме «годен — не годен» и, следовательно, могут вызвать серьезные повреждения в случае выхода из строя тестируемого кабеля.

    Если необходимо провести приемочные испытания и техническое обслуживание кабелей переменного тока, то следует признать, что это испытание не очень практично. Наиболее распространенные полевые испытания, выполняемые на кабелях, — это испытания на постоянном токе или СНЧ вместо испытаний на переменном токе.

    Хотя это может быть не очень практично в полевых условиях, испытание с высоким напряжением переменного тока имеет явное преимущество, заключающееся в том, что изоляция кабеля подвергается нагрузке, сравнимой с нормальным рабочим напряжением. Этот тест повторяет заводское испытание, проведенное на новом кабеле.

    Высоковольтные испытания на переменном токе включают параллельное включение емкостного и резистивного тока, частота источника играет наибольшую роль в величине мощности, необходимой для зарядки емкости испытуемого образца. При выполнении теста переменного тока с высоким напряжением необходимо учитывать соответствие испытательного оборудования для успешной зарядки испытуемого образца.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение переменного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    2. Выдерживаемое напряжение диэлектрика при очень низких частотах (СНЧ)

    Испытание

    VLF можно классифицировать как испытание на устойчивость или диагностическое испытание, то есть его можно проводить как контрольное испытание для приемки или как испытание при техническом обслуживании для оценки состояния кабеля. В отличие от испытания напряжением постоянного тока, очень низкая частота не разрушает хорошую изоляцию и не приводит к преждевременным отказам.

    VLF-тестирование выполняется с помощью высокого напряжения переменного тока с частотой от 0,01 до 1 Гц. Наиболее широко распространенная частота тестирования — 0,1 Гц, однако частоты в диапазоне 0,00011 Гц могут быть полезны для диагностики кабельных систем, которые превышают ограничения тестовой системы при 0,1 Гц.

    Процедура тестирования VLF почти идентична процедуре тестирования постоянного тока с высоким напряжением, а также проводится как тест «годен — не годен». Если кабель выдерживает приложенное напряжение в течение всего испытания, это считается пройденным.

    Схема подключения для тестирования кабеля VLF. Фото: High Voltage, Inc.

    .

    Правильное испытательное напряжение и продолжительность имеют решающее значение для успеха испытания СНЧ. Если применяемое испытательное напряжение слишком низкое и / или слишком короткое по продолжительности, риск отказа в работе может возрасти после испытания.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение СНЧ. Фотография: ANSI / NETA

    .

    ANSI / NETA-MTS 2019 Рекомендуемое испытательное напряжение СНЧ.Фотография: ANSI / NETA

    .

    VLF-тестирование используется не только для тестирования кабелей с твердым диэлектриком, любое приложение, требующее тестирования переменного тока нагрузок с высокой емкостью, может быть протестировано с использованием очень низкой частоты. Основное применение — испытание кабеля с твердым диэлектриком (согласно IEEE 400.2) с последующим испытанием большого вращающегося оборудования (согласно IEEE 433-1974), а иногда и испытания больших изоляторов, разрядников и т. Д.


    3. Напряжение затухающего переменного тока (DAC)

    Тестирование напряжением ЦАП — один из альтернативных методов тестирования напряжения переменного тока, применимый для широкого диапазона кабелей среднего, высокого и сверхвысокого напряжения.Затухающие напряжения переменного тока генерируются путем зарядки тестируемого объекта до заданного уровня напряжения и затем разряда его емкости через подходящую индуктивность.

    На стадии разряда присутствует ЦАП с частотой, зависящей от емкости тестируемого объекта и индуктивности. Емкость тестируемого объекта подвергается воздействию постоянно увеличивающегося напряжения со скоростью, зависящей от емкости тестируемого объекта и номинального тока источника питания.

    Большинство приложений ЦАП основаны на сочетании выдерживаемого напряжения и расширенных диагностических измерений, таких как частичный разряд и коэффициент рассеяния. Тестирование ЦАП — это усовершенствованный инструмент обслуживания, предлагающий больше, чем простое решение «пойти или нет»


    4. Коэффициент мощности / коэффициент рассеяния (тангенциальный треугольник)

    Tan Delta, также называемый испытанием угла потерь или коэффициента рассеяния (DF), представляет собой диагностический метод испытания кабелей для определения качества изоляции.Если изоляция кабеля не имеет дефектов, таких как деревья, влага, воздушные карманы и т. Д., Кабель приближается к свойствам идеального конденсатора.

    В идеальном конденсаторе напряжение и ток сдвинуты по фазе на 90 градусов, а ток через изоляцию является емкостным. Если в изоляции есть загрязнения, сопротивление изоляции уменьшается, что приводит к увеличению резистивного тока через изоляцию.

    Tan Delta / Dissipation Factor Угол.Фото: High Voltage, Inc.

    .

    Кабель становится менее совершенным конденсатором, и фазовый сдвиг будет меньше 90 градусов. Степень, в которой фазовый сдвиг составляет менее 90 градусов, называется «углом потерь», который указывает уровень качества / надежности изоляции.

    Кабели с плохой изоляцией имеют более высокие значения DF, чем обычно, и будут демонстрировать более высокие изменения значений тангенса дельты при изменении уровней приложенного напряжения. Хорошие кабели имеют низкие индивидуальные значения TD и низкие изменения значений тангенса дельты при более высоких уровнях приложенного напряжения.

    На практике в качестве источника напряжения для подачи напряжения на кабель для испытаний по касательной-дельте чаще всего используется высокочастотный высокочастотный переменный ток. Очень низкая частота предпочтительнее 60 Гц по двум причинам:

  1. Повышенная допустимая нагрузка в полевых условиях, в которых 60 Гц слишком громоздкие и дорогие, что делает практически невозможным испытание кабеля значительной длины. При типичной частоте СНЧ 0,1 Гц для тестирования того же кабеля требуется в 600 раз меньше энергии по сравнению с 60 Гц.
  2. Величина тангенциального дельта-числа увеличивается с уменьшением частоты, что упрощает измерения.

При выполнении тангенциального треугольника тестируемый кабель должен быть обесточен и каждый конец изолирован. Испытательное напряжение подается на кабель, пока прибор для измерения тангенса дельта проводит измерения.

Приложенное испытательное напряжение повышается ступенчато, при этом сначала проводятся измерения до 1Uo или нормального рабочего напряжения между фазой и землей. Если желто-коричневые дельта-числа указывают на хорошую изоляцию кабеля, испытательное напряжение повышается до 1.5 2Uo.

Само испытание может занять менее двадцати минут, в зависимости от настроек прибора и количества используемых различных уровней испытательного напряжения. Для проведения анализа необходимо всего лишь зафиксировать несколько периодов формы волны напряжения и тока.


5. Сопротивление изоляции постоянного тока

Сопротивление изоляции кабеля измеряется мегомметром. Это простой неразрушающий метод определения состояния изоляции кабеля на предмет загрязнения из-за влаги, грязи или карбонизации.

Образец соединений для измерения сопротивления изоляции кабеля и трансформатора с помощью клеммы Guard. Фото: TestGuy.

Измерения сопротивления изоляции следует проводить через регулярные промежутки времени, а протоколы испытаний сохранять для целей сравнения. Продолжающаяся тенденция к снижению указывает на ухудшение изоляции, даже если измеренные значения сопротивления превышают минимально допустимый предел.

Показания должны быть скорректированы до базовой температуры (например, 20 ° C) для корректного сравнения.Имейте в виду, что измерения сопротивления изоляции не позволяют измерить общую диэлектрическую прочность изоляции кабеля или слабых мест в кабеле.

При испытании кабеля на перенапряжение обычно сначала проводят измерение сопротивления изоляции, а затем проводят испытание на перенапряжение постоянного тока, если достигаются приемлемые показания. После завершения испытания на перенапряжение постоянного тока снова проводится испытание сопротивления изоляции, чтобы убедиться, что кабель не был поврежден высоким потенциалом.

Типичные кривые, демонстрирующие эффект диэлектрической абсорбции при испытании «сопротивление времени», выполненном на емкостном оборудовании, таком как обмотка большого двигателя. Фото: Megger US.

Индекс поляризации — это еще один метод испытания сопротивления изоляции, который оценивает качество изоляции на основе изменения значения МОм с течением времени. После подачи напряжения значение IR считывается в два разных времени: обычно либо 30 и 60 секунд (DAR), либо 60 секунд и 10 минут (PI).

«Хорошая» изоляция со временем показывает постепенно увеличивающееся значение IR. Когда второе показание делится на первое показание, и полученное соотношение называется коэффициентом диэлектрического поглощения (DAR) или индексом поляризации (PI).


6. Частичная разрядка

Частичный разряд — это локальный электрический разряд, который может возникать в пустотах, зазорах и подобных дефектах в кабельных системах среднего и высокого напряжения. Если не устранить должным образом, частичный разряд приведет к разрушению изоляции кабеля, обычно образуя древовидную структуру износа (электрическое дерево), и в конечном итоге приводит к полному выходу из строя и выходу из строя кабеля или аксессуара.

Испытание включает приложение напряжения, способствующего частичному разряду, а затем прямое или косвенное измерение импульсов тока разряда с помощью калиброванных датчиков частичных разрядов. Характеристики частичного разряда зависят от типа, размера и расположения дефектов, типа изоляции, напряжения и температуры кабеля.

Известно, что испытание частичных разрядов обнаруживает небольшие дефекты изоляции, такие как пустоты или пропуски в изоляционном экранирующем слое, однако частичные разряды должны присутствовать для обнаружения любых частичных разрядов.Измерения могут проводиться на вновь установленных и прошедших срок эксплуатации кабелях, чтобы обнаружить любые повреждения, возникшие во время установки нового кабеля, или ухудшение изоляции кабеля в процессе эксплуатации из-за частичных разрядов.

6а. Online PD (50/60 Гц)

Выполняемое без прерывания обслуживания, онлайн-тестирование частичного разряда — это неразрушающий, неинвазивный инструмент для профилактического обслуживания, который измеряет состояние стареющих кабельных систем на основе измерения частичных разрядов при рабочем напряжении кабеля.

6б. Автономный PD

Offline Partial Discharge Testing предлагает значительное преимущество перед другими технологиями, поскольку позволяет измерять реакцию кабельной системы на определенный уровень нагрузки и прогнозировать ее будущие характеристики, не вызывая неисправностей. Автономное тестирование также известно своей способностью определять точное местоположение дефекта на устаревшем оборудовании, что позволяет управляющему активами точно планировать техническое обслуживание и ремонт.

Проблема автономного тестирования заключается в том, что оборудование необходимо вывести из эксплуатации.Измерения выполняются при более высоком напряжении, чем рабочее напряжение кабеля, чтобы повторно инициировать активность частичных разрядов в обесточенном кабеле, что увеличивает риск отказов во время испытания.

Продолжительность теста должна быть достаточно большой, чтобы позволить электронам инициировать частичные разряды, но после обнаружения частичных разрядов напряжение должно подаваться достаточно долго, чтобы собрать достаточно данных о частичных разрядах.

ANSI / NETA-ATS 2017 Требования к частичной разрядке. Фотография: ANSI / NETA

.

Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

(PDF) Влияние колебаний напряжения и частоты на качество изоляции высоковольтного кабеля

Влияние колебаний напряжения и частоты

на качество изоляции высоковольтного кабеля

Celal Kocatepe # 1, Celal Fadl Kumru № 1, Рамазан Аяз № 1, Октай Аркан № 1, Хакан Акча № 1

№ Кафедра электротехники, Технический университет Йылдыз

Кампус Давутпаша 34210, Эсенлер, Стамбул, Турция

1 kocatepe @ yildiz.edu.tr

1 [email protected]

1 [email protected]

1 [email protected]

1 [email protected] Реферат

занимает важное место в высоковольтных системах на протяжении долгих лет. В особенности для высоковольтных кабелей

, которые являются одним из наиболее важных элементов в системах питания

, измерения коэффициента рассеяния или тангенса угла наклона

имеют большое значение для срока службы изоляции.Кроме того, когда параметры энергосистемы

, такие как частота и уровень напряжения,

нестабильны, значения тангенса дельты также будут изменены.

Следовательно, измерение тангенса угла диэлектрических потерь и диэлектрических потерь должно быть выполнено в случае нестабильного состояния энергосистемы

, чтобы получить более

точных результатов. В этом исследовании выполняется измерение тангенса угла дельта для одножильного высоковольтного кабеля 20,1 / 34,5

кВ. Путем изменения частоты и уровня напряжения

, коэффициента рассеяния, емкости (Cs), сопротивления изоляции

(Rs) и диэлектрических потерь (Pk) можно получить

значений.

Ключевые слова: Tan delta, диэлектрические потери, кабель высокого напряжения (HV), измерение HV

, кабель из сшитого полиэтилена.

I. ВВЕДЕНИЕ

Надежность высоковольтного оборудования, используемого в электроэнергетических системах

, такого как силовые кабели, силовые трансформаторы

, конденсаторы и т. Д., Существенно зависит от материала изоляции

[1-2]. Диэлектрические потери, которые возникают в высоковольтном оборудовании

, являются важным показателем изоляции [1-4].

Следовательно, тангенс угла наклона дельта и емкости изоляционного материала

являются важными параметрами для определения диэлектрических характеристик высоковольтных кабелей

[5].

С изоляцией из сшитого полиэтилена (XLPE) высокого напряжения

Кабели

являются одними из наиболее важных компонентов в системах питания

. Хотя эти кабели обладают высокой механической прочностью,

низкими диэлектрическими потерями и низкой диэлектрической проницаемостью, существуют

некоторых факторов, которые могут ухудшить диэлектрические материалы, а

влияют на изоляционные характеристики этих кабелей [6].

Влажность, воздушные полости и вода в диэлектрическом материале подземных кабелей

приводят к увеличению коэффициента диэлектрических потерь (тангенса дельта),

, который является важным критерием при определении характеристик кабеля

. При увеличении этих потерь на

изоляция кабеля подвергается

напряжению и нагреву. Вследствие этих изменений может произойти

тепловых и электрических пробоев [7].

Разность фаз между током и напряжением идеального конденсатора

составляет 90 °.Однако изоляционные материалы

, используемые в приложениях, не совсем подходят для идеального конденсатора.

Следовательно, помимо конденсатора, в эквивалентной схеме изоляционного материала

используется сопротивление. В этом случае

фазовый угол между током и напряжением отличается от 90o.

Касательная этого угла выражается как «коэффициент диэлектрических потерь»

, а потребляемая мощность на сопротивлении называется «диэлектрические потери

».

Анализ коэффициента рассеяния и емкости обсуждался в

нескольких исследованиях в литературе. В исследовании A. Ponniran

и M. S. Kamaruddin они исследовали изменение параметров tan и емкости

с учетом старения

на подземных кабелях из сшитого полиэтилена [5]. П. Верелиус и его друзья

представили свои исследования, согласно которым частотная характеристика изоляционного материала

с точки зрения емкости и коэффициента диэлектрических потерь

зависит не только от изоляционного материала, но и от температуры материала

[7].T. J. Person и R. F. Eaton

исследовали влияние диэлектрических потерь на силовые кабели

с различными полимерными материалами в своем исследовании [8]. G.

Танимото и его друзья исследовали значения танимото-дельта для

различных полиэтиленовых материалов при высоких температурах [9]. W. J.

К. Раймонд и его друзья в своем исследовании представили измерение коэффициента рассеяния

в свинцовом кабеле с бумажной изоляцией

на сверхвысокой частоте [10].В исследовании

, проведенном J. C. Hernández-Mejía и его друзьями, исследуются характеристики

тангенса дельта на старом и нестареющем кабеле среднего напряжения на очень низкой частоте

[11]. С. Ким и его друзья

исследовали характеристики тангенса дельта на очень низкой частоте

на кабелях среднего напряжения [12].

Напряжение и частота

, особенно в сети, могут изменяться из-за гармоник. В таком случае необходимо выполнить анализ tan до

для различных значений напряжения и частоты.

Провод

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *