Схема однофазного двигателя с конденсатором
Главная » Блог » Схема однофазного двигателя с конденсаторомПодключение однофазного конденсаторного двигателя
Здравствуйте, уважаемые читатели и гости сайта http://zametkielectrika.ru. Несколько дней назад ко мне обратился один из моих читателей с просьбой о подключении однофазного двигателя серии АИРЕ 80С2. На самом деле этот двигатель является не совсем однофазным. Его будет точнее и правильнее отнести к двухфазным из категории асинхронных конденсаторных двигателей. Поэтому в данной статье речь пойдет о подключении именно таких двигателей. Итак, у нас имеется асинхронный конденсаторный однофазный двигатель АИРЕ 80С2, который имеет следующие технические данные:- мощность 2,2 (кВт)
- частота вращения 3000 об/мин
- КПД 76%
- cosφ = 0,9
- режим работы S1
- напряжение сети 220 (В)
- степень защиты IP54
- емкость рабочего конденсатора 50 (мкФ)
- напряжение рабочего конденсатора 450 (В)
Асинхронный конденсаторный однофазный двигатель состоит из двух одинаковых обмоток, которые сдвинуты в пространстве относительно друг друга на 90 электрических градусов:
Главную обмотку такого двигателя подключают непосредственно в однофазную сеть. Вспомогательную обмотку подключают в эту же сеть, но только через рабочий конденсатор.
На этом этапе многие электрики путаются и ошибаются, потому что в обычном асинхронном однофазном двигателе вспомогательную обмотку после пуска нужно отключать. Здесь же вспомогательная обмотка всегда находится под напряжением, т.е. в работе. Это значит, что конденсаторный однофазный двигатель имеет вращающуюся магнитодвижущую силу (МДС) на протяжении всего рабочего процесса. Вот поэтому он по своим характеристикам практически не уступает трехфазным. Но тем не менее недостатки у него имеются:Если по условиям пуска однофазного двигателя требуется более высокий момент, то параллельно рабочему конденсатору на время пуска необходимо подключить пусковой конденсатор, емкость которого выбирают опытным путем для получения наибольшего пускового момента. По опыту могу сказать, что емкость пускового конденсатора можно взять в 2-3 раза больше рабочего.
Вот пример подключения однофазного конденсаторного двигателя с тяжелым пуском:
Подключить пусковой конденсатор можно с помощью кнопки или же использовать более сложную схему, например, на реле времени.Забыл сказать о роторах.
Чаще всего роторы однофазных двигателей выполняются короткозамкнутыми. Более подробно о короткозамкнутых роторах я рассказывал в статье про устройство асинхронных двигателей. Ну вот мы добрались и до схемы подключения конденсаторного двигателя. На клеммнике такого двигателя расположены 6 выводов:Вот так выглядит клеммник с выводами двигателя АИРЕ 80С2:
Чтобы подключить двигатель в прямом направлении, нужно подать переменное напряжение ~220 (В) на клеммы W2 и V1, а перемычки поставить, как показано на картинке ниже, т.е. между клемм U1-W2 и V1-U2.
Чтобы подключить двигатель в обратном направлении, нужно подать переменное напряжение ~220 (В) на те же клеммы W2 и V1, а перемычки поставить, как показано на картинке ниже, т.е. между клемм U1-V1 и W2-U2. Думаю с этим все понятно. Устанавливаем перемычки для нужного вращения двигателя и подключаем однофазный двигатель к питающей сети, как показано на рисунках выше. Но что делать когда нам необходимо дистанционно управлять направлением вращения? А для этого нам нужно собрать схему реверса однофазного двигателя. Как это сделать Вы узнаете из следующей моей статьи. Чтобы не пропустить выпуск новой статьи, подпишитесь (форма подписки находится в конце статьи и в правой колонке сайта), указав свой адрес электронной почты.Как определить рабочую и пусковую обмотки у однофазного двигателя
Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.
Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.
У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.
У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.
То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.
Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.
Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.
Рис. 1. Рабочая и пусковая обмотки однофазного двигателя
А теперь несколько примеров, с которыми вы можете столкнуться:
Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.
Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.
Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.
Автор: Л. Рыженков
Редактировал А. Повный
electrik.info
Однофазный асинхронный двигатель, схема подключения и запуска
Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.
Содержание:
Отличие от трехфазных двигателей
Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.
Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:
- добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
- для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.
Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.
После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.
Схема подключения коллекторного электродвигателя в 220В Схема подключения однофазного асинхронного двигателя (схема звезда)Как это работает
Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.
Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.
Основные схемы подключения
В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.
Различают три основные способа запуска однофазного асинхронного двигателя через:
- рабочий;
- пусковой;
- рабочий и пусковой конденсатор.
В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.
Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).
Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.
Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.
Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.
Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.
На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.
Другие способы
При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.
С экранированными полюсами и расщепленной фазой
В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.
После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.
Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.
С асимметричным магнитопроводом статора
Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.
Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.
Подбор конденсатора
Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя. Керамический и электролитический конденсатор
Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.
Это может быть интересно:tokidet.ru
Подключение электродвигателя через конденсатор
Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов.
Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.
Коротенько про трехфазные асинхронные электродвигатели
Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.
Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).
Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.
Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и для электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.
работа трехфазного электродвигателя без одной фазы при постоянной нагрузке
Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.
А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.
почему для пуска от однофазной сети используют именно конденсаторы
Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.
На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.
Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.
А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.
Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.
как подключить электродвигатель через конденсатор
Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.
Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.
конденсаторы для запуска электродвигателя
Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.
Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше выбор конденсаторов осуществляется по двум формулам:
схема “звезда”:
Рабочая емкость = 2800*Iном.эд/Uсети
схема “треугольник”:
Рабочая емкость = 4800*Iном/Uсети
Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.
В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(~127, ~220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:
Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.
Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.
Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.
pomegerim.ru
Схема подключения двигателя с двумя обмотками
2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Схема подключения двигателя через конденсатор
Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Схема подключения однофазного двигателя через конденсатор
При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.
- 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
- 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
- 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Схема подключения трёхфазного двигателя через конденсатор
Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.
Онлайн расчет емкости конденсатора мотора
Введите данные для расчёта конденсаторов — мощность двигателя и его КПД
Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:
Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.
Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.
Пусковые конденсаторы для моторовЭти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.
Реверс направления движения двигателя
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Как подключить однофазный двигатель
Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.
Асинхронный или коллекторный: как отличить
Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.
Так выглядит новый однофазный конденсаторный двигатель
Как устроены коллекторные движки
Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.
Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.
Строение коллекторного двигателя
Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.
Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.
Асинхронные
Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.
Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.
Строение асинхронного двигателя
Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
- Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
подключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Toyota Tercel Франкенштейн › Бортжурнал › Схемы включения асинхронных двигателей
Простые способы включения трехфазных двигателей в однофазную сеть
Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.
Переключение двигателя с одного напряжения на другое производится подключением обмоток «на
звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в
каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
— обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).
В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:
Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется
6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.
можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.
Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не
корректными по следующим причинам:
1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
как следствие увеличенного тока в обмотке.
2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
/- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
ненагруженного двигателя можно обойтись только рабочим конденсатором.
Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б
или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C
мкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты
от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому
подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и
Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,
затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от
нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что
относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.
Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной
кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей
мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой
переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя,
между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не
отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует
контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-
графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,
если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле
более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле
отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры
оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в
однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.
Практические схемы включения
Работает схема следующим образом: при переводе переключателя в положение 3 и
нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий
конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение
1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки
необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому
переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение
1 должно быть включено только при удержании. При мощности двигателя до 300Вт и
необходимости быстрого торможения, гасяший резистор можно не применять, при большей
мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно
быть меньше сопротивления обмотки двигателя.
Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в
электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в
любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть
двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя
до начала торможения. Если время работы двигателя между пуском и торможением превышает 1
минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение
конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от
фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель
переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение
постоянным током. Используется обычный переключатель на два положения.
Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть система торможения, но ее при ненадобности легко
выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого
при включении треугольником. Для изменения направления вращения нужно поменять местами
начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск
происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости
конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на
номинальные обороты. Емкость можно брать с запасом, так как после заряда конденсатор не
оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора
и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248
подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и
мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение
по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.
Использование электролитических конденсаторов в качестве пусковых и рабочих
Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.
Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не
намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не
дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее
350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком
случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы
С1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать
батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость
нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости
может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать
взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,
особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,
необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (
взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от
разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,
теперь немного о конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,
конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать
изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно
расположить на изоляционной пластинке и при большой мощности поставить их на небольшие
радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.
Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как
пусковыми так и рабочими.
Включение пускового конденсатора при помощи реле тока.
Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочего
двигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя в
однофазную сеть, можно осуществить автоматически, — при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машины
типа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую или
угольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.
при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, и
стандартные контакты свариваются между собой. При применении графита, такого явления не
наблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки
40-45 витков.
Однофазные асинхронные двигатели на службе человечества
Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.
Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям
История возникновения
Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.
В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.
Применение однофазных асинхронных двигателей
Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:
- пылесосы;
- вентиляторы;
- электронасосы;
- холодильники;
- машины для переработки сырья.
Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц. Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.
Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:
- Статор (неподвижный элемент).
- Ротор (вращающаяся часть).
- Механическое соединение этих двух частей.
- Поворотные подшипники.
Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.
Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена другая катушка. Обмотка стартера установлена со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:
- Активное сопротивление.
- Емкостное.
- Индуктивное.
В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.
Принцип действия
Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.
Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.
Момент запуска
Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.
Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.
Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.
Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.
Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.
Варианты подключения
Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.
Известны два типа однофазных двигателей в зависимости от способа подключения:
- Однофазный асинхронный двигатель с пусковой обмоткой.
- Однофазный двигатель с конденсатором.
Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.
Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.
Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.
Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.
Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.
Различные варианты подключения:
- временное включение электрического тока на стартовую обмотку через конденсатор;
- подача на пусковое устройство через резистор, без конденсатора;
- запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.
Расчет проводной принадлежности
Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.
Выбор емкости конденсатора
Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.
Проверка работоспособности
Тестирование начинается с визуального осмотра. Возможные неисправности:
- Если опорная часть на устройстве была сломана, это может привести к неисправностям.
- При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
- Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.
Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.
Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.
Достоинства и недостатки
Основными плюсами являются:
- простота конструкции;
- повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).
К минусам можно отнести следующие обстоятельства:
- невысокий пусковой момент двигателя;
- низкая эффективность.
Заключение
Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.
Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.
Toyota Tercel Франкенштейн › Бортжурнал › Схемы включения асинхронных двигателей
Простые способы включения трехфазных двигателей в однофазную сеть
Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.
Переключение двигателя с одного напряжения на другое производится подключением обмоток «на
звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в
каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
— обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).
В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:
Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется
6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.
можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.
Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не
корректными по следующим причинам:
1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
как следствие увеличенного тока в обмотке.
2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
/- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
ненагруженного двигателя можно обойтись только рабочим конденсатором.
Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б
или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C
мкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты
от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому
подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и
Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,
затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от
нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что
относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.
Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной
кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей
мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой
переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя,
между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не
отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует
контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-
графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,
если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле
более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле
отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры
оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в
однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.
Практические схемы включения
Работает схема следующим образом: при переводе переключателя в положение 3 и
нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий
конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение
1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки
необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому
переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение
1 должно быть включено только при удержании. При мощности двигателя до 300Вт и
необходимости быстрого торможения, гасяший резистор можно не применять, при большей
мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно
быть меньше сопротивления обмотки двигателя.
Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в
электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в
любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть
двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя
до начала торможения. Если время работы двигателя между пуском и торможением превышает 1
минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение
конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от
фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель
переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение
постоянным током. Используется обычный переключатель на два положения.
Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть система торможения, но ее при ненадобности легко
выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого
при включении треугольником. Для изменения направления вращения нужно поменять местами
начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск
происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости
конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на
номинальные обороты. Емкость можно брать с запасом, так как после заряда конденсатор не
оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора
и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248
подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и
мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение
по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.
Использование электролитических конденсаторов в качестве пусковых и рабочих
Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.
Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не
намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не
дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее
350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком
случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы
С1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать
батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость
нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости
может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать
взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,
особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,
необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (
взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от
разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,
теперь немного о конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,
конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать
изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно
расположить на изоляционной пластинке и при большой мощности поставить их на небольшие
радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.
Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как
пусковыми так и рабочими.
Включение пускового конденсатора при помощи реле тока.
Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочего
двигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя в
однофазную сеть, можно осуществить автоматически, — при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машины
типа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую или
угольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.
при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, и
стандартные контакты свариваются между собой. При применении графита, такого явления не
наблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки
40-45 витков.
Пусковая и рабочая обмотка однофазного двигателя: как отличить?
Для определения типа обмотки однофазного двигателя достаточно взглянуть на маркировку на шильдике и схему. Но бывают ситуации, когда любые маркировочные определения отсутствуют, что, в свою очередь, существенно усложняет задачу. К тому же вид обмотки электродвигателя, который уже ремонтировали, лучше определять самостоятельно, во избежание неприятных неожиданностей.
Что такое пусковая обмотка
Несмотря на свое название, однофазные двигатели имеют двухфазную обмотку: основную и вспомогательную, именно последняя делит электрические моторы небольшой мощности на виды. Так, встречаются бифилярные и конденсаторные электродвигатели, и если первые имеют пусковую обмотку, то вторые обладают пусковым конденсатором. И если у второго вида второстепенная обмотка все время находится в рабочем состоянии, то у первого она отключается от сети сразу после того, как мотор наберет нужный разгон. Таким образом, вспомогательная катушка включается на короткий промежуток времени.
Характеристики рабочей обмотки
Основной или рабочей обмоткой является та, которая работает постоянно, создавая магнитное поле. Как следствие, она обладает большим сечением проводника и меньшим активным сопротивлением из-за постоянной нагрузки. Однако, несмотря на всю ее значимость, она не может работать без пускового механизма, которым и является вспомогательная катушка.
Как отличить на однофазном двигателе
Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.
По цветовой маркировке
К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.
Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок.
Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.
По толщине проводов
Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.
Однако не всегда можно определить толщину сечения проводов невооруженным глазом, иногда разница между ними совсем незаметна человеку.
Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.
При помощи мультиметра
Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:
- Возьмите мультиметр и выберите нужную функцию.
- Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.
- Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
- Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
- Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.
После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.
Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.
Как подключить однофазный двигатель
Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные моторы, питающиеся от одной фазы, которая обычно имеет напряжение 220 Вольт. Они очень распространены в бытовой сфере и мелком производстве, частном предпринимательстве.
Подключение однофазного асинхронного двигателя
Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.
Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.
С пусковой емкостью
В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.
Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.
Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.
С рабочей емкостью
Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.
Схема обеспечивает хорошие характеристики при работе в номинальном режиме.
С обоими конденсаторами
Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.
Расчет емкостей
Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:
- Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
- Для пускового конденсатора: больше в 2,5 раза.
Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.
Подключение однофазного синхронного электродвигателя
Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.
Метод разгона
Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.
Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:
- Вручную;
- С использованием второго двигателя.
Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.
При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.
Асинхронный пуск синхронного мотора
Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.
Важно! Вспомогательные металлические стержни должны обладать высоким активным сопротивлением. В противном случае пусковой момент будет недостаточным для разгона ротора. А закорачивать намотку возбуждения необходимо по одной простой причине: если этого не сделать, то у нее в момент пуска случится пробой, потому что она задает вращение в том же направление, что и пусковая обмотка.
Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.
Изменить направление вращения однофазного двигателя с конденсатором
Рис. 1 Схема подключения двигателя однофазного асинхронного двигателя с пусковым конденсатором.
Возьмем за основу уже подключенный однофазный асинхронный двигатель, с направлением вращения по часовой стрелке (рис.1).
- точками A, B условно обозначены начало и конец пусковой обмотки, для наглядности к этим точкам подключены провода коричневого и зеленого цвета соответственно.
- точками С, В условно обозначены начало и конец рабочей обмотки, для наглядности к этим точкам подключены провода красного и синего цвета соответственно.
- стрелками указано направление вращения ротора асинхронного двигателя
Задача.
Изменить направление вращения однофазный асинхронный двигатель в другую сторону – против часовой стрелки. Для этого достаточно переподключить одну из обмоток однофазного асинхронного двигателя – либо рабочую либо пусковую.
Вариант №1
Меняем направление вращения однофазного асинхронного двигателя, путем переподключения рабочей обмотки.
Рис.2 При таком подключении рабочей обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.
Вариант №2
Меняем направление вращения однофазного асинхронного двигателя, путем переподключения пусковой обмотки.
Рис.3 При таком подключении пусковой обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.
Важное замечание.
Такой способ изменить направление вращения однофазного асинхронного двигателя возможен только в том случае, если на двигателе имеется отдельные отводы пусковой и рабочей обмотки.
Рис.4 При таком подключении обмоток двигателя, реверс невозможен.
На рис. 4 изображен довольно распространенный вариант однофазного асинхронного двигателя, у которого концы обмоток В и С, зеленый и красный провод соответственно, соединены внутри корпуса. У такого двигателя три вывода, вместо четырех как на рис. 4 коричневый, фиолетовый, синий провод.
UPD 03/09/2014 Наконец то удалось проверить на практике, не очень правильный, но все же используемый метод смены направления вращения асинхронного двигателя. Для однофазного асинхронного двигателя, который имеет только три вывода, возможно заставить ротор вращаться в обратном направлении, достаточно поменять местами рабочую и пусковую обмотку. Принцип такого включения изображен на рис.5
Рис. Нестандартный реверс асинхронного двигателя
Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?
Постановка задачи
Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.
Уточним важные моменты:
- Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
- Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
- Направление вращения ротора обозначено с помощью стрелок.
Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.
Вариант 1: переподключение рабочей намотки
Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:
- Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
- Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.
В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.
Вариант 2: переподключение пусковой намотки
Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:
- Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
- Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.
После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.
Вариант 3: смена пусковой обмотки на рабочую, и наоборот
Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.
На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.
В этом случае поступают так:
- Снимают конденсатор с начального вывода А;
- Подсоединяют его к конечному выводу D;
- От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).
Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.
Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:
- Длина пусковой и рабочей намоток одинакова;
- Площадь их поперечного сечения соответствует друг другу;
- Эти провода изготовлены из одного и того же материала.
Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.
Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.
Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.
Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?
Постановка задачи
Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.
Уточним важные моменты:
- Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
- Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
- Направление вращения ротора обозначено с помощью стрелок.
Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.
Вариант 1: переподключение рабочей намотки
Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:
- Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
- Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.
В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.
Вариант 2: переподключение пусковой намотки
Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:
- Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
- Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.
После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.
Вариант 3: смена пусковой обмотки на рабочую, и наоборот
Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.
На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.
В этом случае поступают так:
- Снимают конденсатор с начального вывода А;
- Подсоединяют его к конечному выводу D;
- От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).
Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.
Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:
- Длина пусковой и рабочей намоток одинакова;
- Площадь их поперечного сечения соответствует друг другу;
- Эти провода изготовлены из одного и того же материала.
Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.
Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.
Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.
Однофазный асинхронный двигатель запускается несколькими способами. Механические методы — не очень практичные методы, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель. Однофазные асинхронные двигатели классифицируются по вспомогательным средствам, используемым для запуска двигателя. Они классифицируются следующим образом:
1.Двухфазный асинхронный двигатель:Асинхронный двигатель с расщепленной фазой также известен как двигатель с резистивным пуском . Он состоит из одноклеточного ротора, а его статор имеет две обмотки? основная обмотка и пусковая (также называемая вспомогательной) обмотка. Обе обмотки смещены в пространстве на 90 °, как обмотки в двухфазном асинхронном двигателе. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление. Рисунок: Асинхронный двигатель с разделением фаз (a) Принципиальная схема (b) Диаграмма Характеристики двигателя:Пусковой момент асинхронного двигателя с резистивным пуском составляет около 1.5-кратный крутящий момент при полной нагрузке. Максимальный крутящий момент или крутящий момент отрыва примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Двигатель с расщепленной фазой имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки. Приложения:Электродвигателис разделенной фазой наиболее подходят для легко запускаемых нагрузок, где частота запуска ограничена, и они очень дешевы.
Конденсаторные двигатели:Конденсаторные двигатели — это двигатели, у которых есть конденсатор в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках.Есть три типа конденсаторных двигателей. 2. Конденсаторно-пусковой двигатель:Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, т. Е. От 3,0 до 4,5 раз больше крутящего момента при полной нагрузке. Для получения высокого пускового момента значение пускового конденсатора должно быть большим, а сопротивление пусковой обмотки должно быть низким. . Из-за высокого номинального значения VAr необходимого конденсатора используются электролитические конденсаторы порядка 250 Ф. Конденсатор Cs рассчитан на кратковременный ток. Эти двигатели более дорогие, чем двигатели с расщепленной фазой, из-за дополнительной стоимости конденсатора. Рисунок: Конденсаторный пусковой двигатель (а), принципиальная схема (б) Диаграмма Приложения:
3. Двухзначный конденсаторный двигательЭтот двигатель имеет ротор с сепаратором, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку. Две обмотки смещены в пространстве на 90 °. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора подключаются параллельно. Рисунок: Конденсаторный двигатель с двумя значениями Приложения:
4. Двигатель с постоянным разделением конденсаторов (PSC):Эти двигатели имеют ротор с сепаратором, и его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки. Однофазный асинхронный двигатель имеет только один конденсатор С, который включен последовательно с пусковой обмоткой. Конденсатор C постоянно включен последовательно с пусковой обмоткой.Конденсатор C постоянно включен в цепь в условиях запуска и работы. ПреимуществаОднозначный конденсаторный двигатель имеет следующие преимущества:
Ограничения конденсаторного двигателя с постоянным разделением:
Приложения:
5. Двигатель с экранированными полюсами:Двигатель с расщепленными полюсами — это простой тип однофазного асинхронного двигателя с самозапуском. Он состоит из статора и ротора клеточного типа. Статор состоит из выступающих полюсов. У каждого полюса есть прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку, известную как затеняющая катушка. Рис.: Двигатель с расщепленными полюсами и двумя полюсами статора. Приложения:
|
Вспомогательная обмотка — обзор
20.5.3 Стратегия управления для трехфазного источника напряжения SPIM на основе инвертора с рабочим конденсатором
Соответствующий рис. 20.5C, аналогичный трехфазный инвертор с источником напряжения, включающий шестифазный инвертор. На рис. 20.12 применен транзисторный мост, единственное отличие от рис. 20.8 — рабочий конденсатор, подключенный к вспомогательной обмотке. В связи с внедрением рабочего конденсатора потребность в высоком напряжении во вспомогательной обмотке снижается, но надежность и срок службы двигателя могут быть поставлены под угрозу из-за использованного конденсатора.
Рис. 20.12. Схема инвертора источника трехфазного напряжения и SPIM использует рабочий конденсатор во вспомогательной обмотке.
Как и в предыдущем случае, основная обмотка SPIM подключается между точками подключения трехфазного инвертора a и b , а вспомогательная обмотка подключается к точкам подключения c и b . Напряжение основной обмотки и напряжение вспомогательной обмотки могут быть представлены в формулах.(20.9a), (20.9b).
В отличие от предыдущего случая без рабочего конденсатора во вспомогательной обмотке, поскольку рабочий конденсатор может сделать сопротивление вспомогательной обмотки емкостным, и в результате ток основной обмотки и ток вспомогательной обмотки имеют фазовый сдвиг примерно 90 градусов, а напряжение основной обмотки В основной и напряжение вспомогательной обмотки В aux могут поддерживаться в фазе.Обратите внимание, что это сдвиг фазового угла может изменяться при разных скоростях, поскольку емкость вспомогательной обмотки зависит от частоты управления.
Блок управления для этого случая почти такой же, как и в предыдущем случае, показанном на рис. 20.9, поэтому для простоты повторять его здесь не будем.
Подобно модуляции напряжения в предыдущем случае, V main и V aux могут быть получены на основе выходного напряжения трехфазного инвертора, как показано ниже:
(20.14) Va = Mcosω ∗ t + VDC / 2Vb = VDC / 2Vc = Acosω ∗ t + VDC / 2
, где M — амплитуда напряжения основной обмотки V main , A is амплитуда напряжения вспомогательной обмотки V aux , V DC — это напряжение промежуточного контура, а ω — регулируемая частота управляющих напряжений.
Затем, основываясь на формуле. (20.14), V main и V aux для SPIM с рабочим конденсатором во вспомогательной обмотке могут быть представлены как,
(20.15) Vmain = Va − Vb = Mcosω ∗ tVaux = Vc − Vb = Acosω ∗ t
Это можно наблюдать из уравнения. (20.15) что V main и V aux имеют одинаковую частоту и находятся в фазе, что отличается от случая SPIM без рабочего конденсатора, описанного ранее. Однако с другой точки зрения, основываясь на характеристиках предложенной топологии с трехфазным инвертором, также можно гибко подавать различные напряжения переменного тока (включая изменение амплитуды и частоты) на основную обмотку и вспомогательную обмотку в соответствии с требования к эксплуатации.Такая гибкость управляющих напряжений может рассматриваться как преимущество привода переменного тока этого типа.
Рис. 20.13 показывает векторную диаграмму двух управляющих напряжений в формуле. (20.15). Как видно из рис. 20.13, максимальное пиковое напряжение как В, , , , так и основного и В вспомогательного составляет 0,5 о.е. ( В DC /2, при условии, что V DC равно 1,0 о.е.). Эта характеристика модуляции накладывает определенные ограничения на производительность SPIM из-за ограниченного доступного напряжения промежуточного контура.
Рис. 20.13. Векторная диаграмма двух управляющих напряжений В, , , , основной, , и , В, , , , вспомогательный, , для SPIM с рабочим конденсатором.
Однофазные двигатели переменного тока
ОДНОФАЗНЫЕ ДВИГАТЕЛИ / ДВИГАТЕЛИ переменного тока. Высокий или низкий крутящий момент, в зависимости от того, что вам нужно. Линейка однофазных двигателей, специально разработанных для обеспечения высокой производительности с низким уровнем вибрации и шума. СЕРИЯ AMD: двигатели с рабочим конденсатором, идеально подходящие для приложений с низким моментом инерции, особенно для систем отопления, вентиляции и кондиционирования воздуха.
Измерения привода ШИМ для двигателей переменного тока. При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто необходимо измерять как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности. Эта установка может не только измерять трехфазную мощность, она также может измерять мощность постоянного или однофазного тока. См. Рисунок 1.
200 Вт 110 В 50 Гц 60 Гц Обычный асинхронный асинхронный двигатель переменного тока Однофазный реверсивный малый электродвигатель Изображение от Changzhou Lunyee Machinery Manufacturing Co., Ltd. См. Фотографию двигателя переменного тока с высоким крутящим моментом, двигателя переменного тока с низкой частотой вращения, малого двигателя переменного тока с редуктором.Свяжитесь с китайскими поставщиками для получения дополнительных продуктов и цен.
Однофазные электродвигатели Фильтр товаров Сбросить все фильтры. Бренды. Кларк Размер. 2 HP 3 HP 0,5 HP 0,75 HP 1 HP 1,5 HP Подробнее. Кол-во поляков. Сортировать по значению. 2 …
29 марта 2018 · Однофазные двигатели широко используются в быту. Однофазные асинхронные двигатели с расщепленными полюсами и конденсаторным пуском с расщепленной фазой очень популярны благодаря своей прочности и сравнительно низкой стоимости. В последнее время однофазные двигатели с линейным пуском завоевывают долю рынка.Однако их превосходный КПД и плотность крутящего момента уравновешиваются более высокой стоимостью конструкции ротора …
Во многих однофазных асинхронных двигателях с короткозамкнутым ротором используется специальная пусковая обмотка, на которую подается питание только при низкой (или нулевой) скорости. . Когда ротор достигает полной рабочей скорости, пусковой выключатель размыкается, чтобы обесточить пусковую обмотку: Асинхронный двигатель с короткозамкнутым ротором Переключатель скорости C Пусковая обмотка Пусковая обмотка К источнику переменного тока. . … . Ротор
В отличие от трехфазных двигателей, в однофазном двигателе для работы используется конденсатор.Если тесты свинца дали нормальные показания, следующим шагом будет проверка конденсатора. Найдите конденсатор и снимите его.
Однофазные асинхронные двигатели. Глава 13 — Двигатели переменного тока. Однофазные асинхронные двигатели могут иметь катушки, встроенные в статор для двигателей большего размера. Тем не менее, меньшие размеры требуют менее сложных для создания концентрированных обмоток с выступающими полюсами.
Реверсивный синхронный двигатель MTR4b представляет собой двигатель с постоянным магнитом, с двумя обмотками статора, для однофазного переменного тока 50/60 Гц.Сдвиг фазы тока возбуждения достигается последовательным подключением конденсатора к одной из обмоток статора.
Как конденсатор работает в цепи двигателя переменного тока 120 В?
Пытаться запустить однофазный двигатель только с одной обмоткой — все равно что пытаться запустить велосипед только с одной педалью. Все в порядке, если у вас все получится, но пытаться получить правильное направление старта и начинать с верхней или нижней мертвой точки неудобно.
смоделировать эту схему — Схема, созданная с помощью CircuitLab
Асинхронный двигатель с квадратным ротором, поскольку в редакторе схем нет инструмента круга.
Однофазный асинхронный двигатель аналогичен. Чтобы решить эту проблему, к двигателю добавляется вспомогательная, обычно более слабая, обмотка, которая смещена от основной обмотки, скажем, на 30 °. Конденсатор включен последовательно с этой катушкой, и он вызывает сдвиг фазы тока во вспомогательной обмотке относительно фазы основной обмотки. В результате магнитное поле в одной обмотке ведет к другой, и это сообщает ротору вращающую силу, достаточную для:
- получить его для начала.
- старт в правильном направлении.
Некоторые двигатели оснащены центробежным переключателем, который отключает вспомогательную обмотку, когда двигатель превышает определенную скорость, поскольку она больше не требуется. Это экономит немного энергии и снижает нагрев двигателя.
Что такое ток конденсатора
Но не могли бы вы прояснить мне эту часть? Когда крышка полностью заряжается, когда 120v пересекает ноль, что происходит с накопленным отрицательным зарядка на насыщенной крышке пластины? Пульсирует ли он вверх по потоку от предыдущий поток напряжения или он просто там сидит? — Скотт
Обычно мы узнаем о конденсаторах в цепях постоянного тока, где легко визуализировать заряд конденсатора, а затем его разрядку, а напряжение конденсатора следует кривой заряда / разряда RC.Обычно в этих сценариях подаваемое напряжение не меняется выше и ниже нуля вольт. Такой образ мышления не очень помогает нам при анализе цепей переменного тока.
Снова рассмотрим пусковую обмотку. Для простоты мы проигнорируем индуктивность обеих обмоток и будем рассматривать их как резисторы. Используя нашу простую модель:
- Ток в главной обмотке будет соответствовать напряжению L-N и будет синфазным с ним.
- Мы хотим, чтобы фазовый сдвиг тока в ветви L2-C1 генерировал вращение.
Ток конденсатора определяется правилом \ $ I = \ frac {dQ} {dt} \ $, где Q — заряд. Это просто говорит нам о том, что ток будет наибольшим, когда скорость движения заряда наибольшая. Заряд конденсатора определяется как \ $ Q = C \ cdot V \ $, и объединяя их, мы получаем \ $ I = C \ frac {dV} {dt} \ $. Все, что мы здесь говорим, это то, что : ток конденсатора пропорционален скорости изменения напряжения .
смоделировать эту схему
Упрощение : Мы снова игнорируем индуктивность и рассматриваем обмотки как резисторы низкой мощности (относительно импеданса конденсатора).
При 270 ° напряжение (красный) максимально отрицательное. Конденсатор заряжен полностью отрицательно, и, поскольку напряжение перестало падать (становиться отрицательным), ток упал до нуля (синяя кривая находится на нуле).
С 270 ° до 0 ° напряжение будет увеличиваться. Скорость изменения будет становиться все быстрее и быстрее по мере приближения к нулю. По этой причине ток будет увеличиваться от нуля до максимального тока при 0 °.
При 0 ° конденсатор полностью разряжен, но скорость изменения напряжения самая высокая (самая крутая на кривой).Это зарядит конденсатор, и, поскольку скорость заряда — ток — пропорциональна скорости изменения напряжения, ток здесь достигает максимума.
Для следующего от 0 ° до 90 ° скорость изменения напряжения уменьшается, и ток уменьшается до нуля.
Тот же рисунок повторяется, но в противоположных направлениях на следующие 180 °.
Примечания:
- При таком расположении формы сигналов напряжения и тока всегда синусоидальны.Нет внезапных зарядов / разрядов или скачков напряжения или тока.
- Единственная «бесконечная пауза» — это когда напряжение или ток меняют направление. Это не более чем пауза, чем когда поршень двигателя достигает максимума хода. Скорость = 0 на мгновение, но в этот момент ускорение самое высокое (если я правильно думаю).
- То, что входит в провод под напряжением / под напряжением на этой ножке, должно выходить на нейтраль на этой ножке.
- C1, и коммутатор может работать с любой стороны от L2.
: схема работы и приложения
Поскольку требования к питанию систем с одной нагрузкой обычно невелики, все наши дома, офисы снабжены только однофазным источником переменного тока. Чтобы обеспечить надлежащие условия работы при использовании этого однофазного источника питания, необходимо использовать совместимые двигатели. Помимо совместимости, двигатели должны быть экономичными, надежными и простыми в ремонте. Все эти характеристики легко найти в однофазном асинхронном двигателе.Подобно трехфазным двигателям, но с некоторыми модификациями, однофазные асинхронные двигатели являются отличным выбором для бытовой техники. Их простой дизайн и низкая стоимость привлекли множество приложений.
Однофазный асинхронный двигатель Определение
Однофазные асинхронные двигатели — это простые двигатели, которые работают от однофазного переменного тока и в которых крутящий момент создается за счет индукции электричества, вызванного переменными магнитными полями. Однофазные асинхронные двигатели бывают разных типов в зависимости от условий запуска и различных факторов.Это-
1). Двигатели с расщепленной фазой.
- Электродвигатели с резистивным пуском.
- Двигатели емкостные пусковые.
- Двигатель с постоянным разделенным конденсатором.
- Конденсаторный двигатель с двумя номиналами.
2). Асинхронные двигатели с расщепленными полюсами.
3). Асинхронный двигатель с резистивным пуском.
4). Отталкивание — пуск асинхронного двигателя.
Конструкция однофазного асинхронного двигателя
Основными частями однофазного асинхронного двигателя являются статор, ротор и обмотки.Статор — это неподвижная часть двигателя, на которую подается переменный ток. Статор содержит два типа обмоток. Одна — основная обмотка, другая — вспомогательная. Эти обмотки размещены перпендикулярно друг другу. К вспомогательной обмотке параллельно подключен конденсатор.
Поскольку для работы однофазного асинхронного двигателя используется источник переменного тока, необходимо учитывать определенные потери, такие как — потери на вихревые токи, потери на гистерезис. Для устранения потерь на вихревые токи статор имеет пластинчатую штамповку.Для уменьшения потерь на гистерезис эти штамповки обычно изготавливают из кремнистой стали.
Ротор — это вращающаяся часть двигателя. Здесь ротор похож на ротор с короткозамкнутым ротором. Ротор не только цилиндрический, но и имеет по всей поверхности прорези. Чтобы обеспечить плавную и стабильную работу двигателя, предотвращая магнитную блокировку статора и ротора, пазы скошены, а не параллельны.
Жилами ротора являются алюминиевые или медные стержни, которые вставляются в пазы ротора.Торцевые кольца, изготовленные из алюминия или меди, замыкают проводники ротора. В этом однофазном асинхронном двигателе не используются контактные кольца и коммутаторы, поэтому их конструкция становится очень простой и легкой.
Эквивалентная схема однофазного асинхронного двигателя
На основе теории двойного вращающегося поля можно нарисовать эквивалентную схему однофазного асинхронного двигателя. Схема изображена в двух положениях — состояние покоя ротора состояние заблокированного ротора.
Двигатель с заблокированным ротором работает как трансформатор с короткозамкнутой вторичной обмоткой.
Эквивалентная схема однофазного асинхронного двигателяВ состоянии покоя ротора два вращающихся магнитных поля имеют противоположное направление с одинаково разделенными величинами и кажутся соединенными последовательно друг с другом. Цепь однофазного асинхронного двигателя
в состоянии покоя ротораПринцип работы однофазного асинхронного двигателя
Основная обмотка однофазного асинхронного двигателя питается от однофазного А.C. ток. Это создает флуктуирующий магнитный поток вокруг ротора. Это означает, что при изменении направления переменного тока изменяется направление генерируемого магнитного поля. Этого условия недостаточно, чтобы ротор вращался. Здесь применяется принцип теории двойного вращающегося поля.
Согласно теории двойного вращающегося поля, одиночное переменное поле возникает из-за комбинации двух полей равной величины, но вращающихся в противоположном направлении. Величина этих двух полей равна половине величины переменного поля.Это означает, что при приложении переменного тока создаются два поля половинной величины с равными величинами, но вращающимися в противоположных направлениях.
Итак, теперь в статоре течет ток, а на роторе вращается магнитное поле, таким образом, закон электромагнитной индукции Фарадея действует на ротор. Согласно этому закону вращающиеся магнитные поля производят электричество в роторе, которое создает силу «F», которая может вращать ротор.
Почему однофазный асинхронный двигатель не запускается автоматически?
Когда к ротору применяется закон электромагнитной индукции Фарадея, индуцируется электричество и создается сила на стержнях ротора.Но согласно теории двойного вращающегося поля, существуют два магнитных поля с одинаковой величиной, но вращающиеся в противоположном направлении. Таким образом, создаются два вектора силы с одинаковой величиной, но противоположными по направлению.
Таким образом, эти векторы силы, поскольку они имеют одинаковую величину, но противоположны по направлению, не вызывают вращения ротора. Итак, однофазные асинхронные двигатели не запускаются автоматически. Мотор в таком состоянии просто гудит. Для предотвращения этой ситуации и вращения ротора необходимо приложить пусковое усилие для однофазного двигателя.Когда сила в одном направлении становится больше, чем сила в другом направлении, ротор начинает вращаться. В однофазных асинхронных двигателях для этой цели используются вспомогательные обмотки.
Способы пуска однофазного асинхронного двигателя
Однофазный асинхронный двигатель не имеет пускового момента, поэтому для обеспечения этого пускового момента требуется внешняя схема. Для этого в статоре этих двигателей имеется вспомогательная обмотка. Вспомогательная обмотка подключена параллельно конденсатору.Когда конденсатор включен, аналогично основной обмотке, на вспомогательной обмотке наблюдаются вращающиеся два магнитных поля одинаковой величины, но в противоположном направлении.
Из этих двух магнитных полей вспомогательной обмотки одно компенсирует одно из магнитных полей основной обмотки, а другое складывается с другим магнитным полем основной обмотки. Таким образом, в результате получается одно вращающееся магнитное поле большой величины. Это создает силу в одном направлении, следовательно, вращает ротор.Когда ротор начинает вращаться, он вращается, даже если конденсатор выключен.
Существуют различные способы определения однофазных асинхронных двигателей. Обычно эти двигатели выбираются в зависимости от способа их запуска. Эти методы можно классифицировать как
- Пуск с разделением фаз.
- Пуск с расщепленными полюсами.
- Пуск отталкивающего двигателя
- Пуск с противодействием.
При двухфазном пуске статор имеет два типа обмоток — основная обмотка и вспомогательная обмотка, соединенные параллельно.Двигатели с этим типом пуска:
- Резисторные двухфазные двигатели.
- Электродвигатели конденсаторные, двухфазные.
- Конденсаторы запускают и запускают двигатели.
- Двигатель с конденсаторным питанием.
Однофазный индукционный двигатель с конденсаторным пуском
Его также называют конденсаторным электродвигателем с разделенной фазой. Здесь количество витков вспомогательной обмотки равно количеству витков основной обмотки. Конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная обмотка отключается с помощью центробежного переключателя, когда ротор достигает 75% синхронной скорости.Двигатель продолжает ускоряться, пока не достигнет нормальной скорости.
Номинальная мощность двигателей с конденсаторным пуском составляет от 120 до 750 Вт. Эти двигатели обычно выбирают для таких применений, как холодильники, кондиционеры и т. Д. Из-за их высокого пускового момента.
Применение однофазных асинхронных двигателей
Эти двигатели находят применение в вентиляторах, холодильниках, кондиционерах, пылесосах, стиральных машинах, центробежных насосах, инструментах, небольших сельскохозяйственных приборах, воздуходувках и т. Д.Они в основном используются для маломощных устройств с постоянной скоростью, таких как сельскохозяйственные инструменты и оборудование, где трехфазное питание недоступно. Двигатели от 1/400 кВт до 1/25 кВт используются в игрушках, фенах и т. Д.…
Итак, в основном, мы часто используем однофазные асинхронные двигатели в повседневной жизни. Эти моторы легко ремонтировать. Тем не менее, у этих двигателей есть некоторые недостатки. С каким недостатком этих моторов вы столкнулись? Вы можете назвать некоторые из них?
Источник изображения: Цепи однофазных асинхронных двигателей
Типы однофазных асинхронных двигателей
Однофазные асинхронные двигатели используются в широком диапазоне приложений, где доступно только однофазное питание.
Они производятся в дробном диапазоне киловатт для удовлетворения требований различных приложений, таких как потолочные вентиляторы, миксеры для пищевых продуктов, холодильники, пылесосы, переносные дрели, фены для волос и т. Д.
Давайте обсудим различные типы однофазных асинхронных двигателей в краткий.
Введение в однофазные асинхронные двигатели
Как следует из названия, эти двигатели работают от однофазного источника переменного тока. Однофазные асинхронные двигатели широко используются в маломощных устройствах, например, в бытовых приборах, как упоминалось выше.
Они небольшие по размеру и менее дорогие в производстве. Эти двигатели также называются двигателями с дробной мощностью кВт, потому что большинство из этих двигателей имеют дробную киловаттную мощность.
Однофазные асинхронные двигатели состоят из двух основных частей; статор и ротор. По конструкции эти двигатели более или менее похожи на трехфазные асинхронные двигатели с короткозамкнутым ротором.
Статор представляет собой неподвижную часть и имеет многослойную конструкцию, состоящую из штамповок.Эти штамповки состоят из пазов по периферии для крепления обмотки статора. Эта обмотка возбуждается однофазным источником переменного тока.
Ротор является вращающейся деталью и имеет конструкцию с короткозамкнутым ротором. Ротор состоит из неизолированных алюминиевых или медных стержней, которые вставляются в пазы.
Эти стержни ротора постоянно закорочены с обоих концов с помощью концевых колец, как показано на рисунке.
Между статором и ротором нет физического соединения, но между ними есть небольшой и равномерный зазор.
Ротор действует как проводник, который при помещении в магнитное поле статора индуцирует в нем ЭДС, создает собственное магнитное поле, которое в дальнейшем взаимодействует с полем статора для создания крутящего момента.
Когда на обмотку статора подается однофазный переменный ток, вокруг статора создается переменное магнитное поле.
Из-за пульсирующей природы поля, которое меняет направление на каждый полупериод, не может производить вращение в неподвижном роторе с короткозамкнутым ротором.
В случае трехфазного асинхронного двигателя поле, создаваемое источником питания, имеет вращающийся тип, и, следовательно, они являются самозапускающимися двигателями.
Но в случае однофазных двигателей поле, создаваемое статором, не вращается (а только переменно), и, следовательно, однофазные двигатели не запускаются самостоятельно.
Но, если ротор вращается любым другим способом (рукой или любым инструментом), индуцированные токи в роторе будут помогать токам статора создавать вращающееся поле. Это поле заставляет двигатель вращаться в том направлении, в котором он запускается, даже с одной обмоткой.
Однако невозможно каждый раз начинать вращение извне, если двигатели подключены к нагрузкам. Этой проблемы можно избежать, временно преобразовав однофазный двигатель в двухфазный, чтобы создать вращающийся магнитный поток. Это достигается за счет включения пусковой обмотки в дополнение к основной или рабочей обмотке.
Вспомогательная или пусковая обмотка сделана высокоомной, тогда как основная или рабочая обмотка сделана высокоиндуктивной.
Из-за большой разницы фаз между ними крутящий момент, создаваемый ротором, достаточно высок для его запуска.Когда двигатель достигает 75 процентов своей скорости, вспомогательная обмотка может быть отключена центробежным переключателем, и двигатель может работать от одной основной обмотки.
Однофазные асинхронные двигатели используются в основном в быту и легкой промышленности, где трехфазное питание обычно отсутствует.
Типы однофазных асинхронных двигателей
Как упоминалось выше, из-за вращающегося магнитного поля статора асинхронный двигатель самозапускается.Есть много способов сделать однофазный асинхронный двигатель самозапускающимся.
По способу пуска однофазные асинхронные двигатели в основном подразделяются на следующие типы.
- Двухфазный двигатель
- Конденсаторный пусковой двигатель
- Конденсаторный пусковой двигатель
- Конденсаторный конденсаторный пусковой двигатель
- Электродвигатель с экранированными полюсами
Вращающееся магнитное поле создается при наличии минимум двух переменных потоков, имеющих фазу разница между ними.
Результирующая этих двух потоков создает вращающийся поток, который вращается в пространстве в одном определенном направлении. Таким образом, во всех вышеупомянутых методах или, скажем, типах асинхронных двигателей дополнительный магнитный поток, отличный от основного потока, должен иметь определенную разность фаз относительно основного потока или потока статора.
Если разность фаз больше, пусковой момент будет больше. Таким образом, пусковой момент двигателя зависит от вращающегося магнитного поля и, следовательно, от дополнительных средств (будь то вспомогательная обмотка или что-то еще).
Когда двигатель набирает скорость, эта дополнительная обмотка отключается от питания. Это основной принцип, которому следуют все эти типы однофазных асинхронных двигателей.
Обсудим вкратце эти типы двигателей.
Асинхронный двигатель с разделенной фазой
Это один из наиболее широко используемых типов однофазных асинхронных двигателей. Основные части двигателя с расщепленной фазой включают главную обмотку, вспомогательную обмотку и центробежный переключатель.
Это простейшая конструкция для создания вращающегося магнитного поля путем размещения двух обмоток на одном сердечнике статора, как показано на рисунке.
Вспомогательная или пусковая обмотка имеет последовательное сопротивление, так что ее полное сопротивление по своей природе становится очень резистивным.
Она не намотана идентично основной обмотке, но содержит меньше витков и гораздо меньшего диаметра по сравнению с основной обмоткой.
Это уменьшит величину отставания пускового тока от напряжения.Основная обмотка является индуктивной по своей природе, так что ток отстает от напряжения на некоторый угол. Эта обмотка рассчитана на работу при синхронной скорости 75% и выше.
Эти две обмотки подключены параллельно к источнику питания. Из-за индуктивного характера ток через главную обмотку отстает от напряжения питания на большой угол, в то время как ток через пусковую обмотку почти синфазен с напряжением из-за резистивной природы.
Следовательно, существует разность фаз между этими токами и, следовательно, разность фаз между потоками, создаваемыми этими токами.Результирующая этих двух потоков создает вращающееся магнитное поле и, следовательно, пусковой момент.
Центробежный выключатель включен последовательно с пусковой обмоткой. Когда двигатель достигает 75-80 процентов синхронной скорости, центробежный переключатель размыкается механически, и, таким образом, вспомогательная обмотка выходит из цепи. Поэтому двигатель работает только с основной обмоткой.
Двигатели с расщепленной фазой выдают плохой пусковой момент из-за небольшой разности фаз между основным и вспомогательным токами.К тому же коэффициент мощности этих моторов оставляет желать лучшего. Они в основном используются для легко запускаемых нагрузок, таких как нагнетатели, вентиляторы, стиральные машины, шлифовальные машины и т.д. обмотка. Это модифицированная версия двигателя с расщепленной фазой.
Поскольку конденсатор потребляет опережающий ток, использование конденсатора увеличивает фазовый угол между двумя токами (основным и вспомогательным) и, следовательно, пусковой момент.Это основная причина использования конденсатора в однофазных асинхронных двигателях.
Здесь конденсатор сухой электролитический, рассчитанный только на переменный ток. Из-за недорогого типа конденсаторов эти двигатели становятся все более популярными для широкого применения.
Эти конденсаторы предназначены для определенного рабочего цикла, но не для непрерывного использования. Принципиальная схема конденсаторного пускового двигателя показана на рисунке ниже.
Работа этого двигателя аналогична работе двигателя с расщепленной фазой, где пусковой момент обеспечивается дополнительной обмоткой.
После набора скорости дополнительная обмотка вместе с конденсатором удаляется из цепи с помощью центробежного выключателя. Но разница в том, что крутящий момент, создаваемый этим двигателем, выше, чем у двигателя с расщепленной фазой, из-за использования конденсатора.
Из-за наличия конденсатора ток, проходящий через вспомогательную обмотку, опережает приложенное напряжение на некоторый угол, больший, чем у разъемного типа.
Таким образом, увеличивается разность фаз между основным и вспомогательным токами и, следовательно, пусковой момент.
Характеристики этого двигателя идентичны характеристикам двигателя с расщепленной фазой, когда он работает с частотой вращения, близкой к полной нагрузке. Благодаря конденсатору в этом двигателе уменьшаются пусковые токи.
Эти двигатели имеют очень высокий пусковой момент до 300% момента полной нагрузки. Однако коэффициент мощности низкий при номинальной нагрузке и номинальной скорости.
Благодаря высокому пусковому крутящему моменту эти двигатели используются как в быту, так и в промышленности, например, в водяных насосах, шлифовальных станках, токарных станках, компрессорах, сверлильных станках и т. Д.
Асинхронный электродвигатель с постоянным конденсатором
Этот электродвигатель также называется электродвигателем с конденсаторным приводом, в котором конденсатор низкого уровня подключен последовательно с пусковой обмоткой и не удаляется из цепи даже в рабочем состоянии. Благодаря такому расположению центробежный переключатель не требуется.
Здесь конденсатор может работать непрерывно. Конденсатор низкой емкости производит больший фазовый сдвиг вперед, но меньший общий пусковой ток, как показано на векторной диаграмме.
Следовательно, пусковой момент, создаваемый этими двигателями, будет значительно ниже, чем у конденсаторного пускового двигателя.Принципиальная схема этого двигателя показана на рисунке ниже.
В этом случае вспомогательная обмотка и конденсатор остаются в цепи постоянно и работают примерно в двухфазном режиме при номинальной нагрузке. Это ключевая сила этих моторов.
Это приведет к повышению коэффициента мощности и эффективности. Однако пусковой крутящий момент у этих двигателей намного ниже, обычно около 80 процентов крутящего момента при полной нагрузке.
Из-за непрерывной работы вспомогательной обмотки и конденсатора номинальные характеристики этих компонентов должны выдерживать рабочие условия, и, следовательно, двигатель с постоянным конденсатором больше, чем эквивалентный двигатель с разделенной фазой или конденсаторный пуск двигателя.Эти двигатели используются в вытяжных и приточных вентиляторах, блочных нагревателях, воздуходувках и т. Д.
Асинхронный двигатель с конденсаторным запуском и запуском от конденсатора
Эти двигатели также называются двухзначными конденсаторными двигателями. Он сочетает в себе преимущества конденсаторных двигателей с пуском и асинхронных двигателей с постоянным конденсатором.
Этот двигатель состоит из двух конденсаторов разной емкости для запуска и работы. Конденсатор большой емкости используется для условий запуска, а конденсатор низкого значения — для условий работы.
Следует отметить, что в этом двигателе используется то же расположение обмоток, что и в двигателе с конденсаторным пуском при запуске и в двигателе с постоянным конденсатором во время работы. Схематическое устройство этого двигателя показано на рисунке ниже.
При запуске пусковой и рабочий конденсаторы подключаются последовательно со вспомогательной обмоткой. Таким образом, пусковой момент двигателя больше по сравнению с двигателями других типов.
Когда двигатель достигает определенной скорости, центробежный выключатель отключает пусковой конденсатор и оставляет рабочий конденсатор последовательно со вспомогательной обмоткой.
Таким образом, как рабочая, так и вспомогательная обмотки остаются в рабочем состоянии, тем самым улучшая коэффициент мощности и эффективность двигателя.
Это наиболее часто используемые однофазные двигатели из-за высокого пускового момента и лучшего коэффициента мощности. Они используются в компрессорах, холодильниках, кондиционерах, конвейерах, потолочных вентиляторах, циркуляторах воздуха и т. Д.
Асинхронный двигатель с экранированными полюсами
Этот двигатель использует совершенно другую технику запуска двигателя по сравнению с другими двигателями, которые мы обсуждали до сих пор. .
В этом двигателе не используется вспомогательная обмотка, и даже у него нет вращающегося поля, но поля, проходящего через поверхности полюсов, достаточно для приведения в действие двигателя. Таким образом, поле перемещается от одной стороны полюса к другой стороне полюса.
Хотя эти двигатели имеют небольшие характеристики, неэффективны и имеют низкий пусковой крутящий момент, они используются в различных приложениях из-за их выдающихся характеристик, таких как надежность, низкая начальная стоимость, небольшие размеры и простая конструкция.
Двигатель с экранированными полюсами состоит из статора с выступающими полюсами (или выступающими полюсами) и ротора с короткозамкнутым ротором. В этом случае статор сконструирован особым образом для создания движущегося магнитного поля.
Полюса статора возбуждаются собственными возбуждающими катушками, получая питание от однофазной сети. Конструкция 4-полюсного двигателя с экранированными полюсами показана на рисунке ниже.
Каждый выступ делится на две части; заштрихованные и незатененные. Затеняющая часть — это прорезь, прорезанная поперек пластин на расстоянии примерно одной трети от одного края, и вокруг нее помещено тяжелое медное кольцо (также называемое затеняющей катушкой или медной затеняющей полосой).
Эта часть, где размещается затеняющая катушка, обычно называется заштрихованной частью опоры, а оставшаяся часть называется незатененной частью, как показано на рисунке.
Обсудим, как происходит размашистое действие поля.
Когда на катушки статора подается переменное питание, будет создаваться переменный магнитный поток. На распределение потока в области лицевой стороны полюса влияет наличие медной полосы затемнения.
Давайте рассмотрим три момента, t1, t2 и t3 переменного потока для полупериода потока, как показано на рисунке.
- В момент t = t1 скорость изменения потока (возрастание) очень высока. Из-за этого потока в медной полосе затенения индуцируется ЭДС, и по мере того, как медная полоса затенения замыкается, через нее циркулирует ток. Это заставляет ток создавать собственное поле. Согласно закону Ленца, ток через медную полосу затенения противодействует причине, то есть увеличению тока питания (и, следовательно, увеличению основного потока). Следовательно, поток, создаваемый затеняющим кольцом, противостоит основному потоку. Таким образом, происходит ослабление потока в заштрихованной части при скоплении потока в незатененной части.Таким образом, ось общего потока смещается в незатененную часть полюса, как показано на рисунке.
- В момент t = t2 скорость нарастания магнитного потока почти равна нулю, и, следовательно, в заштрихованной полосе индуцируется очень малая ЭДС. Это приводит к незначительному потоку заштрихованного кольца и, следовательно, не оказывает большого влияния на распределение основного потока. Следовательно, распределение потока равномерно, а общая ось потока лежит в центре полюса, как показано на рисунке.
- В момент t = t3 скорость изменения потока (уменьшение) очень высока и вызывает ЭДС в полосе затенения меди.Теперь поток, создаваемый затеняющим кольцом, противостоит причине согласно закону Леннца. Здесь причина — уменьшение потока, а противоположное означает, что его направление совпадает с направлением основного потока. Следовательно, этот поток усиливает основной поток. Таким образом, в затененной части будет скопление флюса по сравнению с незатененной частью. Из-за этого общая ось потока смещается к середине заштрихованной части. Эта последовательность будет повторяться и для отрицательного цикла, и, следовательно, она создает движущееся магнитное поле для каждого цикла от незатененной части полюса к заштрихованной части полюса.Благодаря этому полю двигатель создает пусковой крутящий момент. Этот пусковой крутящий момент составляет от 40 до 50 процентов крутящего момента при полной нагрузке. Поэтому эти двигатели используются в приложениях с низким пусковым моментом, таких как вентиляторы, игрушечные двигатели, воздуходувки, фены, копировальные машины, кинопроекторы, рекламные дисплеи и т. Д.
Кредиты на изображения
Руководство по поиску и устранению неисправностей — Двигатели переменного тока
Используйте этот ресурс для устранения неполадок двигателя переменного тока. Если проблемы с двигателем не могут быть решены с помощью этого списка, обратитесь за помощью к поставщику .
1. Двигатель не запускается при первоначальной установке
- Двигатель подключен неправильно
- Обратитесь к электрической схеме, чтобы убедиться, что двигатель подключен правильно.
- Двигатель поврежден, ротор задевает статор
- Проверните вал двигателя и нащупайте его на ощупь.
- Электропитание или неисправность линии
- Проверить источник питания, перегрузку, предохранители, элементы управления и т. Д..
2. Двигатель работал, затем не запускается
- Сработал предохранитель или автоматический выключатель
- Замените предохранитель или переустановите прерыватель.
- Статор закорочен или заземлен (двигатель издает гудение, и срабатывает автоматический выключатель или предохранитель)
- Проверьте катушки на утечки. При обнаружении утечек мотор необходимо заменить.
- Двигатель перегружен или заклинило
- Убедитесь, что нагрузка свободна.Сравните потребляемую мощность двигателя с номиналом, указанным на паспортной табличке.
- Возможно, вышел из строя конденсатор (на однофазном двигателе)
- Сначала разрядите конденсатор. Чтобы проверить конденсатор, установите вольтметр на шкалу RX100 и прикоснитесь щупами к клеммам конденсатора. Если конденсатор в порядке, стрелка подскочит до нуля Ом и снова переместится на высокое значение. Постоянное нулевое сопротивление указывает на короткое замыкание; устойчиво высокое сопротивление указывает на обрыв цепи.
3.Мотор работает, но гаснет
- Падение напряжения
- Если напряжение ниже 90% номинального значения двигателя, обратитесь в свою энергетическую компанию или убедитесь, что другое оборудование не отнимает мощность у двигателя.
- Нагрузка увеличена
- Убедитесь, что нагрузка не изменилась и оборудование не затянулось. Если это вентилятор, убедитесь, что поток воздуха не изменился.
4.Мотор слишком долго разгоняется
- Неисправен конденсатор
- Проверьте конденсатор согласно предыдущим инструкциям.
- Неисправные подшипники
- Подшипники с шумом или шероховатостью должны быть заменены поставщиком двигателя.
- Напряжение слишком низкое
- Убедитесь, что напряжение находится в пределах 10% от номинального значения двигателя, указанного на паспортной табличке. В противном случае обратитесь в свою энергетическую компанию или проверьте, не отнимает ли какое-либо другое оборудование питание от двигателя.
5. Двигатель вращается в неправильном направлении
- Неправильная разводка
- Перемонтируйте двигатель согласно схеме, прилагаемой к двигателю. Электрические схемы Groschopp можно найти на странице «Электрические схемы» в нашем разделе ресурсов или на страницах отдельных двигателей.
6. Двигатель перегружен / постоянно срабатывает термозащита
- Слишком высокая нагрузка
- Убедитесь, что груз не зажат.Если двигатель заменяется, убедитесь, что номинальные характеристики такие же, как у старого двигателя. Если предыдущий двигатель был особой конструкции, штатный двигатель не сможет воспроизвести его характеристики. Снимите нагрузку с двигателя и проверьте мощность двигателя без нагрузки. Оно должно быть меньше номинальной нагрузки, указанной на паспортной табличке (верно только для трехфазных двигателей).
- Слишком высокая температура окружающей среды
- Убедитесь, что в двигатель поступает достаточно воздуха для надлежащего охлаждения.Большинство двигателей рассчитаны на работу при температуре окружающей среды не выше 40 ° C. (Примечание: исправный двигатель может быть горячим на ощупь.)
7. Перегрев двигателя
- Перегрузка. Сравните фактический (измеренный) ток с номиналом на паспортной табличке.
- Найдите и удалите источник чрезмерного трения в двигателе или нагрузке. Уменьшите нагрузку или замените двигатель на двигатель большей мощности.
- Однофазный (только трехфазный)
- Проверить ток на всех фазах.Должно быть примерно так же.
- Неправильная вентиляция
- Проверьте внешний вентилятор охлаждения, чтобы убедиться, что воздух правильно движется через каналы охлаждения. Если накопилось слишком много грязи, очистите двигатель.
- Несимметричное напряжение (только трехфазное)
- Проверить напряжение на всех фазах. Должно быть примерно так же.
- Трение ротора о статор
- Повышенное или пониженное напряжение
- Проверьте входное напряжение на каждой фазе двигателя, чтобы убедиться, что двигатель работает при напряжении, указанном на паспортной табличке.
- Обрыв обмотки статора (только трехфазный)
- Проверьте сопротивление статора на всех трех фазах на предмет баланса.
- Неправильные соединения
- Проверьте все электрические соединения на предмет надлежащей заделки, зазоров, механической прочности и целостности цепи. См. Схему подключения двигателя.
8. Двигатель вибрирует
- Двигатель смещен относительно нагрузки
- Несбалансированная нагрузка (приложение с прямым приводом)
- Снимите двигатель с нагрузки и осмотрите двигатель самостоятельно.Убедитесь, что вал двигателя не погнут.
- Неисправные подшипники двигателя
- Проверить двигатель самостоятельно. Если подшипники неисправны, вы услышите шумы или почувствуете неровности.
- Слишком малая нагрузка (только одна фаза)
- Некоторая вибрация при небольшой нагрузке является стандартной. Рассмотрите возможность перехода на двигатель меньшего размера из-за чрезмерной вибрации.
- Неисправна обмотка
- Проверить обмотку на короткое замыкание или разрыв цепи.Усилители также могут быть высокими. При дефектной обмотке замените двигатель.
- Высокое напряжение
- Проверьте источник питания, чтобы убедиться в правильности напряжения.
9. Отказ подшипников
- Нагрузка на двигатель может быть чрезмерной или несбалансированной
- Проверьте нагрузку двигателя и проверьте натяжение приводного ремня, чтобы убедиться, что оно не слишком туго. Несбалансированная нагрузка также приведет к выходу подшипников из строя.
- Высокие температуры окружающей среды
- Если двигатель используется в среде с высокими температурами окружающей среды, может потребоваться другой тип смазки для подшипников.Возможно, вам потребуется проконсультироваться с заводом-изготовителем.