+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

проверенный способ соединения, формула, типы подключений

Если нужно срочно отремонтировать технику, а нужного конденсатора нет, то можно увеличить емкость конденсатора, как известно из школьной программы, соединив несколько приборов в одну цепь.

Такая проблема может также возникнуть, если, например, нужного номинала нет в продаже, то есть для нестандартных подключений, например, в радиотехнических опытах.

Электрическая емкость

При соединении приборов для конденсации заряда, как правило, техника интересует электрическая емкость, которая получится в итоге.

Электроемкость показывает способность двухполюсника накапливать в себе заряд и измеряется в фарадах. Может показаться, что чем выше это значение, тем лучше, но на практике не существует возможности создать все возможные на свете емкости, более того, часто это и не нужно, так как во всех приборах, использующихся повседневно, применяются стандартные приборы для конденсации.

Можно соединить несколько приборов для конденсации в цепь, создав одну конденсирующую емкость, при этом значение характерной величины будет зависеть от типа подключения, и для его расчета есть давно известные формулы.

Параллельное соединение

Существует два типа подключения приборов в цепь: последовательное и параллельное. Каждый из них обладает своими свойствами, но, как правило, используется параллельное соединение конденсаторов.

Параллельное соединение обладает такими свойствами:

  1. Емкость составного двухполюсника увеличивается по сравнению с каждым отдельным прибором.
  2. Напряжение в сети не изменяется.

Соединить конденсаторы для увеличения емкости, как показывают свойства, лучше этим способом. Для этого нужно соединить выводы с каждого двухполюсника по группам: у каждого из них два вывода. Нужно создать две группы: в одну соединить все конденсаторы с одного вывода, а во вторую с оставшегося.

При таком соединении приборы для конденсации образуют одну емкость, поэтому верна такая формула: С=С1+С2+…СN, где N — количество конденсаторов в цепи.

Например, если имеются номинальные значения 50мкф, 100мкф и 150мкф, то при последовательном подключении общее значение в цепи будет 300мкф.

В жизни это подключение используют довольно часто, например, если при расчетах оказалось, что требуется такой двухполюсник, которого в продаже точно не найти. С помощью этого способа можно варьировать емкость конденсатора так, как это потребуется, при этом не изменяя напряжение в сети.

Последовательное включение конденсаторов

Свойства последовательного включения конденсаторов:

  1. Емкость последовательно соединенных приборов для конденсации заряда в отличие от емкости параллельно соединенных конденсаторов уменьшается.
  2. Напряжение на приборах растет.

Для такого подключения нужно просто соединять выводы двухполюсников один с другим, образуя цепочку: вывод первого будет соединен с выводом второго, оставшийся вывод второго с выводом третьего и так далее.

Формула подключения: 1/(1/С1+1/С2+…+1/СN), где N — это количество приборов в соединении.

Например, есть три конденсатора по 100мкф. 1/100+1/100+1/100=0,03мкф. 1/0,03=33мкф.

Заряды распределятся с чередующимся знаком, а емкостное значение будет ограничено только им же для самого слабого звена в цепи. Как только он получит свой заряд, передача тока в цепи прекратится.

Для чего тогда нужен подобный способ подключения? Такая цепь более устойчива и может выдержать большее напряжение при подключении в схему при меньшем емкостном номинале конденсатора. Однако в продаже имеются приборы, которые и без того обладают нужными свойствами, поэтому-то такое подключение в жизни практически не используется, а если используется, то для специфических задач.

Смешанный способ

Сочетает в себе параллельное и последовательное подключения.

При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.

Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.

Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.

Сравнение различных вариантов

 ЕмкостьНапряжение
ПараллельноеУвеличиваетсяНе изменяется
ПоследовательноеУменьшаетсяУвеличивается
СмешанноеИзменяетсяУвеличивается

Для выбора соединения можно воспользоваться такой таблицей. Слева тип соединения приборов, сверху свойства прибора для конденсации заряда.

Если требуется увеличить емкость, то нужно использовать параллельное соединение, а если увеличить напряжение — то последовательное. Если же требуется и то, и то, то нужно будет рассчитывать смешанное подключение конденсаторов в цепь.

Схема подключения конденсатора к сабвуферу и усилителю

Эквивалентное последовательное сопротивление (ESR), Ом

Схема подключения конденсатора к сабвуферу: рассмотрим подробно

Схема подключения конденсаторов для сабвуфера с магнитолой, усилителем и другими потребителями

Как подключить конденсатор к сабвуферу и зачем он нужен, знают только те, кто уже сталкивался с работой по улучшению автозвука, потому что, когда самостоятельно устанавливаете аудиосистему, поневоле приходится изучить множество различных материалов. Среди материалов, встречаются те, что рекомендуют совместно с усилителем обязательно установить накопитель либо конденсатор своими руками. Действительно ли необходим конденсатор, или это очередная выдумка, а если нужен, то для чего, сейчас разберемся.

Вот так выглядит современный накопитель для сабвуфера

В наши дни все чаще встречаются накопители для сабвуфера, в устройстве которых применяются конденсаторы, фото выше (от латинского Condense — накапливать):

  • Раньше подобные фильтры для сабвуферов встречались лишь в навороченных системах топового уровня, однако сегодня все чаще они встречаются и среди бюджетных вариантов инсталляций
  • Сейчас подробно разберемся для чего так необходим конденсатор (далее кондер) в аудио системе автомобиля
  • Сегодня современный активный сабвуфер при воспроизведении музыки на кратковременных пиках звучания потребляет значительный (повышенный) ток
  • Однако необходимую мощность тока сегодня не в состоянии будут обеспечить даже наиболее мощные аккумуляторы
  • Без применения кондеров в эти моменты появляется ощутимые провалы при работе сабвуфера, что значительно снижает качество его звучания Чтобы решить проблемы с накоплением дополнительного напряжения и применяются накопители
  • Главным назначением этой детали в схеме является аккумулирование заряда, который, в случае необходимости отдается в сеть к усилителю для сабвуфера
  • Сразу после отдачи заряда, конденсатор заряжается вновь (см. Как зарядить конденсатор для сабвуфера самостоятельно) для обеспечения нового пика баса сабвуфера
  • Схема установки сабвуфера и конденсатора показана на первом рисунке
  • Происходит весь процесс за долю секунды, что позволяет постоянно обеспечивать качественное звучание
  • При этом даже в дешевых инсталляциях с использованием сабвуфера качество звучания улучшается кардинальным образом
  • Сразу исчезает столь неприятное каждому невнятное бубнение, которое возникает при провалах (недостатке) напряжения
  • Так ли нужен этот конденсатор?
  • Ведь известно, что цена за него увы, не маленькая, поэтому не далеко не каждый автомобилист, даже среди любители качественного звука, может себе позволить подобную роскошь
  • Но с другой стороны, практически каждый меломан обзаводится рано или поздно мощной музыкальной аппаратурой и доводит её звучание до совершенства
  • Мощность звучания – это хорошо, однако, чем мощнее ваша система, тем больше она требует энергии

Внимание: Ни один аккумулятор не способен отдавать такую мощную энергию, в результате этого происходит просадка напряжения, которая выражается в том, что фары у вас начинают «моргать», заметно падает мощность усилителя, от этого бас исходящий от сабвуфера, ранее абсолютно четкий, становится «размытым». В особо тяжелых случаях такое резкое падение напряжения на усилителе приводит к клиппингу, это грозит вам повреждением динамиков.

  • И по сегодняшний день в Интернете, на форумах, в блогах и сайтах ведутся горячие дискуссии, относительно необходимости либо бесполезности подобного накопителя
  • Споры эти, к большому сожалению всех любителей хорошего автозвука, не приводят к истине («в споре истина умирает»- как сказал ещё древнегреческий философ)
  • Они бесполезны, просто потому, что зачастую оппоненты не имеют даже начального, «школьного» представления, относительно физики протекающих процессов

Примечание: Самой большой глупостью, которую легко можно отыскать на подобных форумах, является утверждение, что — надо выбирать конденсатор исходя из расчета исключительно количества фарад на киловатт, подобные рекомендации не верны в корне, абсолютно не понятно, откуда они берутся.

  • Чтобы раскрыть завесу хоть в некоторой степени, сейчас вернемся к урокам физики
  • И по мере обновления (освежения) в нашей памяти полезных знаний, все мифы развеются, как утренний туман

Прежде чем изучать вопрос, как правильно подключить конденсатор для сабвуфера, нужно понимать для чего, поэтому давайте разберемся:

  • Конденсатор является тем же потребителем питания, он не способен самостоятельно вырабатывать электроэнергию, однако он способен накапливать её, а затем расходовать на собственные утечки, не на утечки аккумулятора
  • Задачей конденсатора является накопление энергии, а затем её отдача потребителю
  • Накопитель обладает низким внутренним сопротивлением, по этой причине он «расстается» с накопленной энергией быстро (кстати, накапливает энергию он так же быстро)

Примечание: Отличается конденсатор от аккумулятора тем, что вершина отдачи энергии в конденсаторе приходится лишь на первый миг, затем происходит резкое падение заряда, а вместе с зарядом падает и скорость его отдачи. В аккумуляторе отдача идет без скачков и падений в течение продолжительного времени.

  • Сегодня существует альтернатива конденсаторам – ионисторы, рассмотрим их плюсы и минусы

Ионисторы

Ионисторы – модные заменители накопителей, то, что зачастую возит в багажнике большинство меломанов, они отличаются от конденсаторов следующими параметрами:

  • Большими потерями энергии
  • Огромным сопротивлением
  • Отдают заряд намного медленнее накопителей
  • Стоят дешевле в несколько раз, чем накопители такой же емкости
  • Оптимальным временем работы ионистора является: 1 секунда/83 кул.

Инструкция рекомендует проверить ионистор, чтобы понять, работает ли он, и как он работает:

  • Цепляете ионистор к акустической системе с просадками питания
  • Заводите мотор и наблюдаете, если напряжение на его клеммах усиливается, значит пока все у вас в порядке
  • Увеличиваете громкость и замечаете, как напряжение садится от 13-ти до 10-ти вольт

Примечание: Это означает одно, при первом же ударе мощности саба заряд падает и ионистор превращается в лишний компонент в системе питания, поскольку активным и полезным он бывает тогда, когда заряд его выше напряжения внутри сети.

  • Подобную ситуацию любители автозвука называют просадкой, она может стать значительно большей, если вы применяете в системе питания тонкие и некачественные провода из дешевого обмедненного алюминия
  • В таком случае к стандартной просадке добавляется просадка от кабеля

Примечание: Стоит знать, чем грозит вам просадка кабеля. Причина в том, что от резкого возрастания потребления происходит возрастание реактивного сопротивления.

И чем быстрее и больше пользователь хочет взять через кабель энергию, тем кабель сильнее будет этому мешать (особенно если он у вас тонкий и очень длинный). Проблема от дешевого и низкокачественного кабеля отражается на ионисторе, который после разрядки, не сможет больше снова накопить энергию, поэтому решайте сами

Установка конденсатора

Схема подключения конденсатор для сабвуфера, то с чего следует начинать работу:

Схема подключения в цепь конденсатора

  • Устанавливая кондер, рекомендуется подключить его параллельно, относительно питания усилителя
  • Располагать его нужно, по возможности ближе к усилителю, причем не дальше 60 сантиметров
  • Если вы на место популярного ионистора вы поставите накопитель, тогда результат от него получится намного эффективнее
  • Генератор вашего автомобиля следует отремонтировать или поставить новый
  • От генератора прокладываете провода на плюс и массу
  • Устанавливаете новый аккумулятор, или старый после профилактики
  • Клеммы либо тщательно зачищаете, либо заменяете новыми
  • Прокладываете силовой кабель из меди хорошего качества и с хорошим сечением
  • Подключаете усилитель, не забываете при этом про предохранитель

Совет: Пока не проверите контакт всех клемм и не убедитесь, что в сети есть 14вольт, не подсоединяйте конденсатор.

  • После проверки, можете подключать накопитель
  • Не удивляйтесь, когда замеры на клеммах вам покажут те же значения, если цепь «живая», питания в ней хватает, тогда конденсатору включаться не нужно, он просто ждет своего часа, сработает, когда в этом будет необходимость

Примечание: Еще одно распространенное заблуждение по поводу конденсаторов, якобы они нужны в системах, где вам необходима максимальная громкость либо на соревнованиях в мощности звучания, для фанатов эс пи эль. На самом деле, при обычных случаях, он будет удачно заменять ионистор.

Доказать что кондер необходим в обычных акустических автомобильных системах можно:

  • Замеры накопителя могут длиться долго, при этом «проснется» даже кислотный аккумулятор, и сумеет отдать свой потенциал
  • Среди фанатов звучания (так называемого братства эс пи эль «SPL») более принято применение гелеевых батарей, которые способны «стрелять» с поразительной скоростью сотнями ампер
  • Поэтому как бы ни был хорош кондер, однако такой скорости он не выдержит и окажется не у дел
  • Опять же, в «SPL» конденсатор будет потребителем, а для таких систем, это явное зло
  • Проще говоря в системах эс пи эль никакой конденсатор либо иной накопитель не применяется
  • Сегодня на рынке накопителей, и любой другой звуковой продукции очень много
  • Некоторые из производители усилителей, заранее предусматривают в аппаратуре клеммы, специально для подключения накопителей, и выпускают сами кондеры для своей аппаратуры

Производитель Focal

Вот, например, известный производитель высококачественной аудиотехники и усилителей из Франции, Фокал, использует в своих моделях такое решение:

  • Для кондеров в них предусматривается место, сразу после блока питания в усилителе
  • Именно в них, по утверждению экспертов, эффективность применениям дополнительных накопителей выше во много раз

Примечание: Единственным недостатком этого фирменного конденсатора, является то обстоятельство, что он подходит исключительно к усилителям марки Фокал.

Особенности кондера Фокал следующие:

  • Он значительно повышает характеристики звучания
  • Модуль состоит из нескольких кондеров, работающих параллельно

Примечание: Количество кондеров в модуле соответствует количеству блоков питания в усилителях.

  • Осуществляется подключение через комплектный кабель и специальный разъем
  • При сложных режимах работы стабильность усилителя повышается за счет встроенной технологии High-Cap
  • Схемы подключения конденсатора для сабвуфера прилагаются
  • Как становится понятно, накопитель в системе необходим, он эффективнее ионистора, но и гораздо дороже, выбирать лучше той же фирмы, что и усилитель, чтобы не было проблем
  • Подключать нужно качественными медными проводами, с хорошим сечением, чтобы не появилась просадка из-за проводов
  • Не забывайте про хороший контакт, зачищайте клеммы и про мощный аккумулятор
  • Применяйте исправный генератор
  • Тогда звучание будет просто супер

Остается пожелать вам успешного подключения и порекомендовать видео, для успешного выполнения работы.

Выбор и подключение конденсатора для сабвуфера

Сегодня найти данное устройство несложно. Оно есть во многих магазинах, которые занимаются продажей аксессуаров и других предметов для автомобиля. При этом, выбор их огромный. Они отличаются как качественными характеристиками, так и наличием дополнительных функций. Каждый может выбрать тот вариант, который будет ему по душе.

Что касается подключений устройства, то можно воспользоваться помощью специалистов. Они быстро и качественно выполнят необходимую работу, но за это потребуется заплатить определенную сумму денег. Если вы хотите сэкономить, то подключить сабвуфер и все его составляющие можно и своими руками. Это совершенно не сложно, поэтому каждому под силу. Но есть некоторые нюансы и тонкости, которые важно знать. В противном случае ошибки неизбежны.

Конденсатор

Конденсатор на сабвуфер: для чего он нужен?

Сабвуфер представлен в виде сложной системы, которая состоит из разных элементов. Особенно важными являются конденсаторы. Также их называют накопителями. Они выполняют роль фильтра и ранее устанавливались только на дорогостоящих устройствах. Сегодня же их можно встретить и на бюджетных вариантах.

Конденсатор на сабвуфере обеспечивает аккумулирование заряда. Он передается усилителю, что приводит к улучшению качества звучания аудиосистемы. После того как разряд передан, конденсатор возвращается в свое первоначальное состояние разряженности. Таким образом он готов к принятию нового баса. При этом данная процедура проходит за доли секунды. Заметить человек ее не может, но сразу заметит изменения звучания в лучшую сторону.

У многих возникает вопрос, нужен ли конденсатор для сабвуфера? Ответ прост. Да. Наличие конденсатора на сабвуфере препятствует появлению невнятного бубнения устройства. Последнее образуется в результате провала напряжения. Касается это даже дешевых музыкальных устройств. В итоге музыкальная композиция воспроизводится чисто и без посторонних шумов.

Сабвуфер: какой динамик выбрать?

Прежде чем приступить к обустройству аудиосистемы в автомобиле, а также установке сабвуфера, необходимо продумать, какие динамики будут использоваться, так как они являются важным ее элементом и тоже определяют качество звучания. В машинах используются разные колонки, но, как показывает практика, самый лучший их размер 11-12 дюймов. Более высокие значения могут не только не поместиться в машину, но и будут искажать звуковой сигнал.

Мощность динамиков может быть разная. Нет общего принципа ее выбора, но стоит обратить внимание на данный показатель усилителя. В динамике мощность должна быть выше. Если же это правило не соблюдать, то при высокой громкости возможно искажение звука.

Сабвуфер и усилитель

Если подключение сабвуфера проводится своими руками, то не стоит забывать и об усилителе. Он может быть устроен в системе или подсоединяться отдельно. Усилитель не является основным компонентом, но все же рекомендуется, особенно если сабвуфер подключается к штатной магнитоле.

Усилитель – это колонка, воспроизводящая низкие частоты. Она имеет вид деревянной коробки. Такая конструкция обеспечивает дополнительные возможности устройству. Они касаются мощного баса на выходе. Как показывает практика, лучше использовать отдельный усилитель, так как он самостоятельно подключается к магнитоле и является связующим звеном между колонкой и самим устройством. Передает сигналы, которые отвечают за воспроизведение низких частот. Если же его не будет, то возможно замыкание системы. Поэтому стоит побеспокоиться о его наличии, особенно если он не встроенный.

Как подключить конденсатор для сабвуфера?

Подключение конденсатора к сабвуферу – несложный процесс, но трудоемкий. Важно выполнить его правильно, так как от этого напрямую зависит работа устройства. Первое, что понадобится, – схема подключения. Ее стоит изучить и только после этого приступать к основной работе.

Судя по схеме, кабель плюсовой клеммы подсоединяется к плюсу конденсатора. А от последнего к плюсу, который есть на усилителе. Потом проводится подключение минусового кабеля АКБ. Он, соответственно, соединяется с минусом конденсатора, затем и с усилителем, причем тоже с минусом. Подсоединение конденсатора проводится параллельно.

Рекомендации специалистов

В данном вопросе важны рекомендации специалистов. Ими пренебрегать не стоит. Первое, на что следует обратить внимание, – это расположение конденсатора. Он должен находиться как можно ближе к усилителю. Длинна провода, который их соединяет, составляет не более 45 см. Таким образом польза от устройства будет больше.

Также стоит отметить, что перед установкой конденсатор необходимо зарядить. Особенно это касается устройств большой емкости. В противном случае горячее подключение может привести к реакции, подобной замыканию. Но вот последствия будут намного серьезнее и печальнее. Зарядить конденсатор можно при помощи специального устройства, которое идет с ним в комплекте. Если его нет, то отлично подойдет и лампочка, которая предназначена для использования в автомобиле.

После того, как схема собрана, можно подсоединять провод АКБ и аккумулятор. Что касается минусовой клеммы, то сначала должна пройти полная зарядка конденсатора. Только после этого ее подключают к аккумулятору.

Если вся работа выполнена правильно, то и музыкальная система будет работать качественно с отличным звучанием. В противном случае ошибки дадут о себе знать. Исправить ситуацию можно будет лишь повторным проведением данной работы. Если с ней возникают  трудности, то стоит обратиться к специалистам, так как повреждение устройства или его составных частей может привести к новым проблемам, а иногда и необходимости приобретения нового конденсатора и сабвуфера.

Конденсатор для сабвуфера: схема подключения и зарядка

Прежде чем рассказывать про актуальность установки конденсатора для сабвуфера в транспортном средстве, следует задать автолюбителю вопрос – а зачем вообще они монтируют в свои автомобили подобное оборудование? Ответ очевиден: чтобы наслаждаться максимально возможным звучанием своих любимых композиций, которым добавляет дополнительной «сочности» проигрывание их в условиях очень ограниченного пространства.

Казалось бы, что для этого нужно? Купить хорошую магнитолу, усилитель и колонки. Но, как показывает практика, данного набора может не хватить для получения запланированного результата. Почему?

Для чего нужен конденсатор на сабвуфер

Автомобильная аудиосистема функционирует за счет аккумулятора и генератора, которые входят в перечень обязательных механизмов современного транспортного средства. Но даже самое мощное оборудование не способно обеспечить необходимый ток во время пиковых нагрузок на установленный усилитель. Это приводит к эффекту проседания звука. Подключение конденсатора к сабвуферу нужно для того, чтобы нивелировать лишнее сопротивление электрических проводов, тем самым, предоставляя «усилку» всю необходимую мощность.

Видео: Краткий ликбез + установка

Также актуальным является установка конденсатора для сабвуфера в том случае, если в машине присутствует кондиционер, так как при его эксплуатации теряется как минимум тридцать процентов вырабатываемого тока.

схема подключения конденсатора к сабвуферу

Большинство популярных схем предлагают подключить это устройство в непосредственной близости к автомобильному аудио усилителю. Некоторые модели могут дополнительно комплектоваться цифровыми вольтметрами и датчиками заряда. Естественно, что емкость конденсатора для сабвуфера со временем снижается, поэтому в будущем автовладельцу требуется владеть информацией о том, как вернуть состояние этого устройства к первоначальному.

Как зарядить конденсатор для сабвуфера

Процедура подзарядки конденсатора в автомобиле редко вызывает затруднения у опытных водителей – для этого достаточно четко следовать ниже описанной инструкции:

  1. Подготовить все необходимое для задуманной процедуры: резистор (который всегда идет в комплектации к изделию), АКБ, провода.
  2. Выполнить правильное подключение изделия к автомобильному аккумулятору.
  3. Временно отключить предохранитель используемой аудиосистемы.
  4. Отсоединить провод с плюсовой клеммы АКБ.
  5. Аккумулятор подсоединяется к сети.
  6. Резистор устанавливается между плюсовой клеммой конденсатора и питающим проводом.
  7. На место возвращается ранее снятый предохранитель.
  8. Примерно через пару минут отсоединяется резистор, а питающий кабель подключается к положительному контакту автомобильного аккумулятора.

Схема зарядки конденсатора

Собственно, задуманная процедура закончена, что позволит еще очень долгое время наслаждаться качественным звучанием любимой музыки в салоне собственного средства передвижения.



Подключение конденсатора в электросхему — КиберПедия

Подключение конденсатора к аудиоаппаратуре в автомобиле (автомагнитола, сабвуфер, усилитель) должно осуществляться в соответсвии с замыслом элетротехнического элемента.

Подключить конденсатор необходимо перед входом на потребитель, согласно полярности питания и конденсатора, то есть плюс с плюсом и минус с минусом (рисунок 2а).

Но при этом подключении необходимо четко понимать, для чего нужен конденсатор. В нашем случае конденсатор необходим только для звуковоспроизводящей аппаратуры (магнитола, усилитель, сабвуфер). Производя подключение сабвуфера, магнитолы, усилителя и впоследствии конденсатора мы забываем, что автомобиль это не студия звукозаписи, а уже сложившееся конструкторское решение по схемотехнике, со своими потребителями в том числе. В итоге получается если осуществить подключение по рисунку 2а, то кроме питания магнитолы, сабвуфера, усилителя мы фактически будем поддерживать и дополнительных потребителей автомобиля, которые на данном рисунке не учтены, но они есть. Для исключения питания дополнительных потребителей конденсатором, необходимо установить диод (рисунке 2б). Диод будет ограничивать разряд конденсатора на дополнительных потребителей автомобиля, тем самым позволяя конденсатору максимально эффективно использовать свою емкость только для аудиоустройств.
(магнитола, усилитель, сабвуфер)


Умный конденсатор или как ограничить излишнее энергопотребление и предотвратить нагрузку на проводку автомобиля.


Но и это оказывается не все. Как ранее мы говорили конденсатор имеет свойство саморазряжаться, это свойство фактически ставит конденсатор в один ряд с потребителями. Излишние потребители на автомобиле пагубно сказываются на аккумуляторе (о чем ранее писалось и про магнитолу в разделе Подключение автомагнитолы в автомобиле. Как правильно подключить магнитолу с ISO разъемом.), особенно при длительной стоянке и в зимнее время. Когда аккумулятор не получает необходимой зарядки и о режимах работы и зарядки аккумулятора — можно посмотреть в разделе Аккумуляторная батарея кислотно-щелочная, гелиевая (аккумулятор) обслуживание, характеристики, выбор. Для решения данной задачи в настоящий момент уже выпускаются специализированные конденсаторы с системой запуска, то есть конденсатор подключается в сеть только при поступлении напряжении на один из специализированных выводов (Ignition) рисунок 3.

Рисунок 3 конденсатор для магнитолы, сабвуфера, усилителя с отключением из сети

Часто конденсаторы бывают с вольтметрами для визуального контроля за «провалами» напряжения питания, рисунок 4.

рисунок 4. Конденсатор с встроенным вольтметром.

Если вы будет применять один из таких конденсаторов, то обратите внимание на то, что питание на проводе запуска (Ignition) при стоянке отсутствовало, тем самым это будет блокировать подключения конденсатора в сеть автомобиля. Если у вас обычный конденсатор, то несложно и самому реализовать схему отключения питания конденсатора от питания, при помощи реле. На рисунке 5 показана такая схема.

рисунок 5. Подключение конденсатора для сабвуфера, автомагнитолы, усилителя.

Выключатель для включения, выключения конденсатора можно вывести в любое удобное место, в салоне автомобиля.

Параллельное соединение конденсаторов: необходимость и схема

Параллельное соединение конденсаторов – это батарея, где конденсаторы находятся под одинаковым напряжением, а суммарный ток равен полной алгебраической сумме токов указанных элементов.

Основные тезисы

При параллельном включении конденсаторов их ёмкости складываются, позволяя быстро вычислить результат. Рабочее напряжение конденсаторов одинаковое, а заряды складываются воедино. Это следует из формулы, выведенной Вольтой в XVIII веке:

C = q/U, тогда C1 + C2 + … = q1 + q2 + …/U.

Параллельное включение конденсаторов превращается в единственный конденсатор большой ёмкости.

Зачем включать конденсаторы параллельно

  • В радиоприёмниках подстройка под частоту волны выполняется коммутацией блоков конденсаторов, обеспечивая ввод резонансного контура в резонанс.
  • В фильтрах мощных блоков питания за рабочий цикл предстоит запасать массу энергии. Строить его на индуктивностях экономически нецелесообразно. Применяют параллельный набор из больших электролитических конденсаторов.
  • Параллельное включение конденсаторов встречается в измерительных схемах. Эталоны ответвляют на себя часть тока, по величине оценивается номинал – размер ёмкости исследуемого конденсатора.
  • Параллельно периодически устанавливаются компенсаторы реактивной мощности. Это устройства, блокирующие выход лишней энергии в питающую сеть. Что предотвращает образование помех, перегрузку генераторов, трансформаторов и избыточный нагрев проводки.

Реактивная мощность сети

Когда работает асинхронный двигатель, происходит расхождение тока и напряжения по фазе. Это отмечается по причине наличия обмотки, показывающей индуктивное сопротивление. Как результат, часть мощности отражается обратно в цепь. Эффект возможно устранить, если индуктивное сопротивление компенсировать ёмкостным. Иной способ – использование синхронных двигателей, эффективен при напряжениях 6 – 10 кВ.

По возможности предприятия должно потреблять всю произведённую собственную реактивную мощность. Но синхронные двигатели не всегда подходят условиям технологических процессов. Тогда ставят конденсаторные установки. Их реактивное сопротивление предвидится равным индуктивностям двигателей. Конечно, в идеале, ведь на производстве условия постоянно меняются и сложно отыскать золотую середину.

Если использовать параллельное соединение конденсаторов и коммутировать при помощи реле должным образом, задача просто решается. Отдельные предприятия за отражённую реактивную мощность тоже платят. При неиспользовании предвидятся экономические потери. Поставщиков энергии можно понять: реактивная мощность забивает линию ЛЭП, нагружает трансформаторы и тогда оборудование не способно выдавать полную нагрузку. Если каждое предприятие станет загружать канал лишним током, экономическое положение энергетиков немедленно пошатнётся.

Реле реактивной мощности массово распространены и помогут определить, какую часть конденсаторов включить в работу. Пример графика расчёта затрат приведён на рисунке. Имеется оптимальная точка, перешагивать которую экономически нецелесообразно. Но допускается сделать из-за иных мотивов.

Схема соединения компенсирующих установок

В трёхфазных сетях компенсирующие конденсаторы ставят тройками по двум общеизвестным схемам:

  1. Звезда.
  2. Треугольник.

Реактивная мощность в этих случаях вычисляется по формулам, представленным на рисунке. Через греческую омегу обозначена круговая частота сети (2 х Пи х 50 Гц). Из соотношений получается, что схема включения конденсаторов треугольником выгоднее: мощность выросла в 3 раза. Объяснение – звезда использует фазное напряжение, в 1,73 раза меньше линейного. Компенсируемая реактивная мощность зависит от квадрата этого параметра.

Из этих соображений трёхфазные конденсаторы всегда изготавливаются треугольником, а под звезду нужно выпросить индивидуальный заказ (три однофазных конденсатора). Есть оборотная сторона медали: на вольтаж 1,05; 3,15; 6,3; 10,5 кВ все конденсаторы однофазные. Допустимо соединять, как заблагорассудится. У звезды, к примеру, меньше рабочее напряжение, значит, каждый конденсатор в отдельности выйдет дешевле. Обе схемы нельзя отнести к параллельным включениям, подобные тройки, впрочем, объединяются в:

  • группы;
  • секции;
  • установки.

И внутри объединений однофазные конденсаторы могут включаться последовательно и параллельно, а трёхфазные – исключительно параллельно. Рекомендуется номиналы всех отдельных элементов выбирать одинаковы. Это упрощает расчёт, уравнивает нагрузку по частям электрической схемы. Известны установки, где присутствует смешанное соединение по каждой фазе. Образуются параллельные ветви последовательного включения конденсаторов.

Установки выполняют однофазными или трёхфазными. В сетях с напряжением 380 В всегда применяется параллельное соединение конденсаторов. Исключением признаётся случай использования оборудования с одной фазой на 220 В (фазное) и 380 В (линейное). Тогда под прибор ставится индивидуальная установка (или группа), компенсирующая реактивную мощность. В осветительных сетях конденсаторы по большей части ставят уже после выключателя по очевидным причинам. В прочих случаях – в зависимости от особенностей функционирования объекта.

Для напряжений 3, 6 и 10 кВ однофазные конденсаторы включаются обычной или двойной звездой (см. рис.). Один вывод бывает заземлен (глухозаземленная нейтраль). По этой причине допускается использование однофазных конденсаторов, включая с единственным изолированным выводом. В последнем случае нужно убедиться, что нулевой проводник выходит на корпус изделия.

Главный выключатель ставится в определённой секции защищаемого оборудования (территориально) и управляет цепью компенсации в общем, задействует или убирает дополнительное реактивное сопротивление. Если в конкретном секторе технологическое оборудование простаивает, главный выключатель разорвёт цепь компенсации. Конденсаторные установки обычно стоят в выделенном помещении вместе, электрически соединены параллельно. Перед каждой стоит выключатель цепи релейной регуляции для повышения или уменьшения общей ёмкости компенсаторов.

В зависимости от оборудования, используемого предприятием, объем реактивной мощности обусловливает помощь конденсаторных установок, гибко подстраиваемых под имеющиеся нужды. В итоге:

  1. Секции оборудования включены параллельно. Это легко понять, если представить бытовые приборы, питаемые одним удлинителем. Все включены параллельно. Но установлены, к примеру, в разных цехах, секторах и пр. Встречаются случаи, когда одна крупная энергетическая установка (допустим, генератор ГЭС) делится на сравнительно независимые секции.
  2. Конденсаторные установки включены параллельно, но, как правило, в одном месте, чтобы удавалось автоматически или вручную легко регулировать общую ёмкость посредством коммутации выключателей облегчённого типа. Один конденсатор может работать для компенсации реактивной мощности любой из секций либо сразу обеих.

Особенности конденсаторной защиты

Главные выключатели, как правило, используются при авариях и вырубают сразу целую секцию оборудования. Конденсаторные установки набираются в секции параллельным включением. Тогда главный выключатель сразу вырубит подобную «батарею». А прочие секции конденсаторных установок останутся в действии. Важно понять, что защитное оборудование, как и защищаемое, удаётся группировать разными методами. В зависимости от удобства и экономической обоснованности.

Облегчённые выключатели применяются, как правило, в цепях регуляции. Управляются через реле и повышают или понижают общую ёмкость конденсаторных установок. В качестве главного выключателя выбирается вакуумный или элегазовый.

Особенностью цепей выше 10 кВ считается использование однофазных конденсаторов, собираемых по схеме звезды или треугольника, в каждой ветви которых стоит параллельно-последовательная группа ёмкостей (см. рис.). При наличии изделий с высоким рабочим напряжением допустимо делать наоборот, применять последовательно-параллельно включение. Тогда рабочие напряжения конденсаторов выбираются так, чтобы количество групп, включенных друг за другом оказалось минимальным. Напряжение на каждом из элементов, естественно, увеличивается. Для справки: последовательное соединение конденсаторов.

Если сделать все по описанному распорядку, при выходе из строя любого элемента цепи компенсации реактивной мощности прочие продолжат работать в относительно щадящем режиме. Разумеется, параметры цепи нужно контролировать, а эксплуатирующий персонал, согласно методикам, ведёт проверку конденсаторных установок на исправность. При проектировании нужно учесть небольшую особенность:

Чем больше в цепи компенсации последовательных групп конденсаторов, тем сложнее для каждой обеспечить равномерное распределение напряжения. В частности, возможны частые перегрузки определённого сегмента.

Вдобавок сложные электрические соединения непросто проверять обслуживающему персоналу. Витиеватая схема плохо поддаётся монтажу, часты ошибки. Идеальным считается параллельное соединение конденсаторных блоков по каждой фазе. Тогда и монтировать легко, и методика проверки упрощается максимально.

Разряд конденсаторов

Включенные параллельно конденсаторы обладают большой ёмкостью, при прекращении работы на них остаётся заряд. Это возможно прочувствовать, если коснуться штекера только что выключенной старенькой дрели. В новых моделях фильтр устроен так, что цепь разряжается через резистор, и подобного не наблюдается.

Для снижения напряжения допустимо использовать и индуктивности, включенные параллельно конденсаторам. В этом случае сопротивление заземления переменному току весьма велико, а для постоянного – несложно преодолеть этот участок. В период работы оборудования ток здесь мал, потери невелики. После останова технологической линии заряд понемногу сливается через высокоомный резистор или индуктивность. Разумеется, не запрещено поставить в цепи заземления реле, замыкающее контакты только после выключения всех устройств. Конструкция дороже и требует автоматизации.

Процесс разряда цепи важен с точки зрения обеспечения безопасности. Представим: конденсатор, заряжённый от розетки, долго хранит разность потенциалов и представляет опасность для окружающих. В однофазных сетях с напряжением 220 В разряд выполняется через входные фильтры при условии, что корпус правильно заземлён. Сопротивление в цепи, включенной параллельно конденсаторам, определяется по формуле, представленной ниже.

Под Q подразумевается реактивная мощность установки в варах (ВАР), а Uф – фазное напряжение. Легко показать, что формула дана из расчёта времени разряда: Q зависит линейно от ёмкости, будучи перенесена в левую часть формулы, даст постоянную времени RC. За три таких периода батарея разряжается на 97%. Исходя из указанных условий можно найти и параметры индуктивности. А лучше – последовательно с нею включить резистор, как часто и делается в реальных схемах.

Параллельное и последовательное соединение конденсаторов, схемы, расчет

Радиоэлементы можно соединить между собой тремя способами. Существует   параллельное и последовательное соединение конденсаторов, а также смешанный тип. Всегда можно точно определить емкость равноценного конденсатора по этому показателю. Его можно поменять на ряд соединенных в цепь других, более мелких по емкости конденсаторов. Для равнозначного конденсаторы должно быть выполнено некоторое условие, а именно подключенное напряжение к конденсатору равно напряжению на зажимах этой группы этих.

Таким же образом подключается все радиоэлементы, существующие на данный момент. Главным образом используются параллельное и последовательное соединение конденсаторов.   В данной статьи рассмотрены все типы соединений конденсаторов. В качестве бонуса. в статье есть видеоролик и статья, посвященные этой теме.

 

Виды соединения конденсаторов в обмотке.

Последовательное и параллельное соединение конденсаторов

Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным (смешанным). Если провести аналогию между соединением конденсаторов и соединением резисторов, то стоит отметить, что формулы расчета общей емкости и общего сопротивления идентичны, только между разными типами соединений: Формула Cобщ при параллельном соединении конденсаторов = формула Rобщ при последовательном соединении резисторов.

  • Cобщ — общая емкость.
  • Rобщ — общее сопротивление.

При последовательном соединении конденсаторов (рис. 3) на обкладках отдельных конденсаторов электрические заряды по величине равны:  Q1 = Q2 = Q3 = Q.  Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименые электрические заряды.

Соединения конденсаторов.

Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1, U1 = Q/C2, U1 = Q/C3, а общее напряжение U = U1 + U2 + U3. Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов. Формулы эквивалентных емкостей аналогичны формулам эквивалентных проводимостей.

Материал в тему: все о переменном конденсаторе.

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов. При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов. Поскольку емкость конденсаторов прямо пропорциональна площади обкладок, общая емкость Собщ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи.

Напряжение при параллельном соединении

На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:

  • ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVC/Δt – Скорость изменения напряжения

При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:

Последовательное соединение конденсаторов

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным.  При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины, а остальные пластины заря­жаются через влияние. При этом заряд пла­стины будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения.

Типы соединений конденсаторов.

Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы. Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Последовательное соединение конденсаторов – это соединение двух или более конденсаторов в форме цепи, в которой каждый отдельный конденсатор соединяется с другим отдельным конденсатором только в одной точке. Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения.

Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости. Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора. Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд.

Стоит почитать: все об электолитических конденсаторах.

Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи. В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится. При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.

Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи. На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет. Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов.

Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3. Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.

Интересно почитать: принцип действия и основные характеристики варисторов.

Если в цепи есть и последовательное и параллельное соединение, то такую цепь называют смешанной или последовательно-параллельной. Тем не менее, смешанное соединение может иметь как последовательный, так и параллельный характер.

Типы соединений конденсаторов.

Общая емкость смешанного соединения конденсаторов

Чтобы посчитать общую емкость смешанного соединения конденсаторов, следуют такому же алгоритму, как и при расчете общего сопротивления смешанного соединения резисторов.

  • Цепь разбивают на участки с только пареллельным или только последовательным соединением
  • Вычисляют общую емкость для каждого отдельного участка.
  • Вычисляют общую емкость для всей цепи смешанного соединения.

Вполне справедливым может оказаться вопрос, для чего надо соединять конденсаторы последовательно, если общая емкость будет меньше? Скорее всего, первым что приходит в голову — это чтобы получить новый эквивалентный конденсатор с меньшей емкостью. Но в производстве микросхем вряд ли будут делать подобное, поскольку, во -первых, обычно нужно экономить место на печатной плате, а во-вторых, нет смысла тратить деньги на два компонента или больше, если можно купить один с требуемой емкостью.

Но если в параллельном или последовательном соединении конденсаторов еще есть хоть какая-то логика, то кому вообще нужно смешанное? Дело в том, что емкостью, то есть способностью накапливать электрический заряд, обладает любое тело в природе, даже человеческое.

Если мы говорим о электрической цепи, то все ее элементы на практике обладают емкостью, и их можно представить, как конденсаторы. Часто такую емкость еще называют паразитической, потому как она создает разного рода помехи.

Например, у нас есть какая-то электронная цепь с множеством различных компонентов, которая принимает сигнал, обрабатывает его определенным образом и выдает на выход результат. Известно, что время задержки сигнала, в основном, зависит от паразитической емкости электронных компонентов схемы. Поскольку должно пройти время зарядки паразитической емкости, прежде чем она начнет пропускать сигнал. Если мы хотим узнать время задержки, нужно посчитать общую емкость всех компонентов, конвертировав их в цепь из конденсаторов.

Материал в тему: описание и область применения подстроечного резистора.

Последовательное и параллельное соединение конденсаторов

Последовательное и параллельное соединение конденсаторов применяют в зависимости от поставленной цели. При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов. А общее напряжение будет равняться сумме напряжений всех конденсаторов. Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.

При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора. C = C1 + C2 + C3 + C4 + …Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.

Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления. Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратным формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.

Более подробно о типах подключения конденсаторов можно узнать  прочитав статью подключения конденсаторов. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electricalschool.info

www.sxemotehnika.ru

www.katod-anod.ru

www.hightolow.ru

 

Предыдущая

КонденсаторыКонденсатор — простыми словами о сложном

Следующая

КонденсаторыКак обозначаются конденсаторы на схеме?

Последовательное и параллельное соединение.

 Иногда нужно увеличить ёмкость или сопротивление, а подходящих деталей на нужное сопротивление нет, или размеры конструкции не позволяют вставить один большой конденсатор на 3000 мкф. 

В этом случае можно набрать необходимые ёмкость или сопротивление из нескольких деталей, а вместо конденсатора на 3000 микрофарад вставить 3 штуки по 1000 микрофарад.

Для увеличения ёмкости конденсаторы соединяются параллельно.

Для увеличения сопротивления резисторы соединяются последовательно.
Вода через трубу с двумя валенками течёт хуже, чем через трубу с одним валенком.

Последовательное соединение — когда детали стоят друг за дружкой, «в очереди», будто за колбасой, потому оно так и называется.

Не путайте эти соединения, для увеличения ёмкости конденсаторы соединяются параллельно, а резисторы для увеличения сопротивления последовательно !

Со сложением ёмкостей и сопротивлений всё легко.

С параллельным соединением резисторов и последовательным соединением конденсаторов слегка посложнее, но к нашему счастью конденсаторы довольно редко соединяют последовательно, а резисторы параллельно.
Последовательное соединение конденсаторов может понадобиться например в сборке гаусс-гана (электромагнитной стрелялки), когда под рукой конденсаторы только на 400 вольт, а нам нужен 800-вольтовый конденсатор, а их редко где найдёшь и они дорогие.

Параллельное соединение резисторов считается вот по какой формуле:

Через три трубы, в которых в каждой по валенку, вода лучше потечёт, чем через одну трубу с одним валенком. Или если в бочке проковырять три дырки, то вода быстрее выльется, чем если бы мы проковыряли одну дырку.

Последовательное соединение конденсаторов считается по той же формуле.

Если два одинаковых конденсатора по 680uF с максимальным напряжением 400В поставить последовательно, то получится конденсатор на 340 uF с напряжением 800 вольт.
Ёмкость уменьшается, зато вырастает максимальное допустимое напряжение, а запасаемая в обеих конденсаторах энергия остаётся та же самая.

Как подключить конденсаторы параллельно — Инженер ПТО

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом. Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей. Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Параллельное соединение конденсаторов:

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния. По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников. В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом. Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

В предыдущих статьях были рассмотрены вопросы работы и характеристики конденсаторов. Сейчас Я расскажу о всех методах соединения конденсаторов для подключения в схему. Сразу скажу, что в жизни практически везде, за исключением редких случаев используется только параллельная схема подключения.

Следует знать, что в цепи переменного тока конденсатор выступает еще как емкостное сопротивление. При чем с увеличением величины емкости конденсатора- уменьшается сопротивление в цепи переменного тока.

Параллельное соединение конденсаторов

При параллельной схеме подключения все обкладки конденсаторов соединяются в две группы, причем один вывод с каждого конденсатора соединяется в одну группу с другими, а второй — в другую. Наглядный пример параллельного соединения и схема на картинке.
Все параллельно соединенные конденсаторы подключаются к одному источнику напряжения, поэтому существует на них две точки разности потенциалов или напряжения. На всех выводах конденсаторов будет абсолютно одинаковое напряжение.

При подключении параллельно все конденсаторы вместе, образуют принципиально одну емкость, величина которой будет равняться сумме всех емкостей подключенных в цепи конденсаторов.При параллельном подключении через каждый из конденсаторов потечет разный ток, который будет зависеть от величины емкости каждого из них. Чем выше емкость, тем больший ток потечет через неё.

Параллельное соединение очень часто встречается в жизни. С его помощью можно из группы конденсаторов собрать любую необходимую емкость. Например, для запуска 3 фазного электродвигателя в однофазной сети 220 Вольт в результате расчетов Вы получили что необходима рабочая емкость 125 мкФ. Такой емкости конденсаторов Вы не найдете в продаже. Для того, что бы получить необходимую емкость придется купить и соединить параллельно 3 конденсатора один на 100 мкФ, второй- на 20, и третий на 5 мкФ.

Соединение конденсаторов последовательно

При последовательном соединении конденсаторов каждая из обкладок соединяется только в одной точке с одной обкладкой другого кон­денсатора. Получается цепочка конденсаторов. Крайние два вывода подключаются к источнику тока, в результате чего происходит перераспределение между ними электрических зарядов. Заряды на всех промежуточных обкладках одинаковые величине с чередованием по знаку.

Через все соединенные конденсаторы последовательно протекает одинаковой величины ток, потому что у него нет другого пути прохождения.
Общая же емкость будет ограничиваться площадью обкладок самого маленького по величине, потому что как только зарядится полностью конденсатор с самой маленькой емкостью- вся цепочка перестанет пропускать ток и заряд остальных прервется. Высчитывается же емкость по этой формуле:Но при последовательном соединении увеличивается расстояние (или изоляция) между обкладками до величины равной сумме расстояний между обкладками всех последовательно подключенных конденсаторов. Например, если взять два конденсатора с рабочим напряжением 200 Вольт и соединить последовательно, то изоляция между их обкладками сможет выдержать 1000 Вольт при подключении в схему.

Из выше сказанного можно сделать вывод, что последовательно соединять необходимо:

  1. Для получения эквивалентного меньшего по емкости конденсатора.
  2. Если необходима емкость, работающая на более высоких напряжениях.
  3. Для создания емкостного делителя напряжения, который позволяет получить меньшей величины напряжение из более высокого.

Практически, для получения первого и второго достаточно просто купить один конденсатор с необходимой величиной емкости или рабочим напряжением. Поэтому данный метод соединения в жизни не встречается.

Смешанное соединение конденсаторов

Встречается смешанное соединение только на различных платах. Для него характерно наличие в одной цепи параллельного и последовательного соединения конденсаторов. При чем смешанное соединение может быть как последовательного, так параллельного характера.

В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям, поэтому не буду на этом подробно останавливаться.

Из следующей статьи Вы узнаете как правильно проверить и определить емкость конденсатора.

Оценка индуктивности подключения разделительных конденсаторов

То, что многие люди называют эквивалентной последовательной индуктивности (ESL) конденсатора, является индуктивностью контура, образованного током, который течет по одному выводу и выходит из другого вывода. Для конденсаторов SMT правильнее называть это индуктивностью соединения , поскольку она в гораздо большей степени зависит от геометрии соединения, чем от внутренней конструкции конденсатора. Индуктивность подключения является наиболее важным фактором, влияющим на способность развязывающего конденсатора подавать ток на высоких частотах.Оценивая индуктивность соединения, можно определить эффективную полосу пропускания стратегии развязки. Ниже описывается метод, с помощью которого можно оценить индуктивность подключения различных разделительных конденсаторов.

Шаг 1. Определите петлю

Первым шагом в оценке индуктивности развязывающего конденсатора является определение токовой петли развязки. Будут рассмотрены два случая: развязывающие конденсаторы на платах с подачей питания на дорожки и развязывающие конденсаторы на платах с силовой и обратной плоскостями.

A. Геометрия, в которой питание направляется на дорожки

Токовая петля будет состоять из пути между разделительным конденсатором и устройством, которое снимает заряд с конденсатора. На рисунке ниже текущий путь показан красным.

B. Разделительные конденсаторы, подключенные к силовым плоскостям

Токовая петля в этой конфигурации начинается с развязывающего конденсатора, проходит через переходное отверстие к одной из плоскостей питания, затем от одной плоскости питания к другой и, наконец, через переходное отверстие обратно к конденсатору.Импеданс пути между плоскостями питания и возврата, Zboard, обычно не считается частью индуктивности соединения. Zboard можно рассчитать независимо от индуктивности участка петли над плоскостями. Импеданс соединения с плоскостями тогда определяется выражением Z conn = jωL + Z board , где L — индуктивность пути тока над плоскостями питания. Этот путь показан красным на рисунке ниже.

Шаг 2: Определите эквивалентную геометрию

Для оценки индуктивности развязывающих конденсаторов будет использоваться индуктивность эквивалентной геометрии.Это упрощение позволит нам использовать простые выражения в замкнутой форме для расчета индуктивности.

Шаг 3: Оценка параметров расчетов индуктивности замкнутой формы

A. Оценка ширины петли ‘w’

Ширина петли «w» — это расстояние, на котором ток проходит через конденсатор. Ниже приведены несколько примеров.

B. Оценка высоты петли ‘h’

Высота петли «h» для конденсатора, присоединенного к силовым плоскостям, будет приблизительно равна половине высоты развязывающего конденсатора плюс расстояние между конденсатором и ближайшей силовой плоскостью.

C. Расчет радиуса провода ‘a’

Эквивалентный радиус провода развязывающего конденсатора или плоской дорожки можно оценить как 1/4 ширины корпуса конденсатора или дорожки. Конечно, большинство соединений состоит из переходных отверстий, дорожек, контактных площадок и корпусов конденсаторов, которые имеют разные эквивалентные радиусы проводов. Оценка индуктивности соединения в наихудшем случае получается при использовании наименьшего эквивалентного радиуса.

Пример 1: Печатная плата без силовых панелей

Рассчитайте индуктивность подключения для конденсатора, подключенного к устройству по дорожкам, как показано ниже.Следы имеют ширину 1 мм. Все остальные размеры показаны ниже.

Решение:

Индуктивность подключения может быть приблизительно определена с помощью уравнения прямоугольной петли (https://cecas.clemson.edu/cvel/emc/calculators/Inductance_Calculator/rectgl.html). Длина и ширина самого прямоугольника оценивается по текущему пути, показанному красной пунктирной линией на рисунке выше. Длина эквивалентной прямоугольной петли оценивается в 8 мм плюс половина длины треугольной части токовой петли (22 мм / 2 = 11 мм).Эквивалентный радиус провода a составляет 1/4 ширины дорожки.

Отв. L соед. = 29 нГн ≈ 30 нГн

Пример 2: Разделительные конденсаторы, подключенные к плоскостям питания

Рассчитайте индуктивность соединения между конденсатором и устройством, предполагая, что оба подключены к плоскости питания и возврата. Диаметр переходных отверстий составляет 2 мм, а погружной корпус и конденсатор находятся примерно на 3 мм над поверхностью пары плоскостей питания и возврата. Пренебрегайте импедансом через плоскости питания.

Решение:

Индуктивность подключения конденсатора

Для расчета индуктивности развязывающего конденсатора L cap будет использоваться формула индуктивности «прямоугольной петли над плоскостью» (https://cecas.clemson.edu/cvel/emc/calculators/Inductance_Calculator /rectgl.html). Длина и ширина эквивалентной петли для развязывающего конденсатора составляют 10 мм и 3 мм соответственно. Эквивалентный радиус петли будет радиусом переходных отверстий 1 мм.

L цоколь = 3,6 нГн ≈ 4 нГн Индуктивность подключения DIP-корпуса

Индуктивность подключения корпуса DIP к плоскостям питания, LDIP, будет рассчитана по формуле «длинный прямоугольный контур над плоскостью» (https://cecas.clemson.edu/cvel/emc/calculators/Inductance_Calculator/g- wire.html). Длина петли будет 30 мм, высота петли — 3 мм, а эквивалентный радиус будет приблизительно равен 0,1 мм.

L DIP = 24.6 нГн ≈ 25 нГн

L соед. = L крышка + L DIP = 28,2 нГн ≈ 28 нГн

Пример 3: Индуктивность контура развязывающего конденсатора

На рисунке ниже показано несколько площадок развязывающего конденсатора на печатной плате. Расстояние между верхним слоем и парой плоскостей питания / возврата составляло 0,02 дюйма; все остальные измерения показаны на рисунке. Индуктивность контактных площадок следующих конструкций была измерена с помощью анализатора цепей, и результаты суммированы ниже.

Корпус л (нГн)
А 0,61
B 1,32
С 2,00
D 7,11
E 15,7
Ф 10,3

Индуктивность корпуса C:

Метод 1. Использование алгоритма «прямоугольная петля над плоскостью»

Вт = 0.5 дюймов, h2 = 0,02 дюйма, h = 2h2, a = 0,025 дюйма
ANS: L = 3,1 нГн ≈ 3 нГн

Метод 2: Использование алгоритма «длинный прямоугольный цикл над плоскостью»

Длина = 0,5 дюйма, h = 0,02 дюйма, a = 0,025 дюйма
ANS: L = 0,75 нГн ≈ 1 нГн

(Примечание: метод 2 игнорирует индуктивность из-за части магнитного потока, охватывающей переходные отверстия. Это разумная оценка индуктивности из-за потока, охватывающего только корпус конденсатора. Поток, охватывающий корпус конденсатора, преобладает в случае A.)

Индуктивность корпуса E:

Метод: использование алгоритма «длинный прямоугольный контур над плоскостью» один раз для трасс, проложенных к переходному отверстию, и еще раз для части контура с контактной площадкой и корпусом конденсатора.

Вклад в индуктивность контура от трасс:

Длина = 1,0 «, h = 0,02», a = w / 4 = 0,002 «
ANS: L t = 15,24 нГн ≈ 15 нГн

Вклад в индуктивность контура от контактной площадки и корпуса конденсатора:

Длина = 0,5 дюйма, h = 0,02 дюйма, a = w / 4 = 0,02 дюйма
ANS: L p / c = 0,76 нГн ≈ 1 нГн

Общая индуктивность контура: L t + L p / c ≈ 16 нГн

Какое соединение лучше для конденсаторных батарей типа «звезда» или «треугольник»?


В большинстве случаев конденсаторная батарея подключается по схеме «Дельта», но для некоторых приложений она также подключается по схеме «звезда».Теперь возникает вопрос, когда конденсаторная батарея подключена в Star, а когда подключена в Delta? Какое соединение лучше для Capacitor Bank Star или Delta? В этой статье вы найдете преимущества и недостатки как конденсаторной батареи, соединенной звездой, так и конденсаторной батареи, соединенной треугольником.

Конденсаторная батарея используется для коррекции коэффициента мощности. Для коррекции коэффициента мощности в трехфазной системе необходима трехфазная конденсаторная батарея, которая может быть соединена звездой или треугольником.

Блок конденсаторов Delta connected


Конденсаторные батареи, соединенные треугольником обычно используются для низкого и среднего напряжения. Конденсаторная батарея, соединенная треугольником, может использоваться для высокого напряжения, но иногда это невозможно, потому что при соединении треугольником на каждый конденсатор подается полное фазное напряжение, тогда как при соединении звездой на конденсатор подается в 3 раза меньшее, чем фазное напряжение.

Итак, вы можете понять, что если мы используем конденсаторную батарею, соединенную треугольником, при высоком напряжении, номинальное напряжение конденсатора должно быть высоким.Поэтому производство высоковольтных конденсаторов дорого, а иногда и невозможно.


Преимущества соединения треугольником в конденсаторной батарее


1. KVAR, генерируемый конденсатором, пропорционален квадрату приложенного напряжения, что означает, что если напряжение больше, KVAR также будет больше. Таким образом, конденсаторная батарея, соединенная треугольником, обеспечивает больше KVAR по сравнению с конденсаторной батареей, соединенной звездой, потому что при соединении звездой на конденсатор подается меньшее напряжение, чем при соединении треугольником.

2. Соединение треугольником Конденсаторная батарея может циркулировать гармонический ток, поэтому он может уменьшить гармонический эффект в электрической системе.

3. Конденсаторная батарея, соединенная треугольником, обеспечивает сбалансированную емкость для каждой фазы электрической системы, а также поддерживает сбалансированное напряжение.

4. Если конденсаторная ячейка в одной фазе выходит из строя внутри конденсаторной батареи, напряжение на каждой фазе остается неизменным, только KVAR падает.

Недостаток соединения треугольником в конденсаторной батарее


1. Единственным недостатком конденсаторной батареи, соединенной треугольником, является высокое напряжение на каждом конденсаторе, что сокращает срок службы конденсатора, и его нельзя использовать для приложений с высоким напряжением.

Конденсаторная батарея с подключением звездой


Конденсаторная батарея , соединенная звездой, используется для приложений среднего и высокого напряжения. При соединении звездой напряжение на каждом конденсаторе в корне в 3 раза меньше, чем фазное напряжение, поэтому напряжение на конденсаторах невелико даже в приложениях с высоким напряжением.В конденсаторной батарее есть два типа соединения звездой.
  1. Подключение звездой с заземлением
  2. Незаземленное соединение звездой

При заземленном соединении звездой нейтральная точка соединена с землей или она заземлена, но при незаземленном соединении звездой нейтральная точка изолирована от земли или земли.

Преимущества батареи конденсаторов с подключением звездой

1. Простая в подключении конденсаторная батарея, соединенная звездой.

2. Напряжение на каждом конденсаторе меньше, поэтому срок службы конденсаторов увеличивается.

Недостатки Star Connected Capacitor Bank

1. Конденсаторная батарея, соединенная звездой, обеспечивает меньшее количество кВАр, чем конденсаторная батарея, соединенная треугольником, потому что напряжение на конденсаторе меньше.

2. Конденсаторная батарея, соединенная звездой, не может передавать гармонический ток в электрической системе.

3. Незаземленная конденсаторная батарея, соединенная звездой, не может поддерживать балансное напряжение и не может обеспечивать балансную емкость.

4. Если конденсаторный элемент в одной фазе выходит из строя, в электрической системе возникает несимметричное напряжение.

Заключение

Вы можете понять, что конденсаторная батарея, соединенная треугольником, дает больше преимуществ и преимуществ, чем конденсаторная батарея, соединенная звездой. Так что соединение треугольником лучше для конденсаторной батареи. По этим причинам конденсаторные батареи в основном соединяются треугольником.

Читайте также:


Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений.

Онлайн-расчет емкости последовательного соединения конденсатора


Калькуляторы и формулы для расчета последовательного включения конденсатора

Последовательное соединение конденсатора

Когда конденсаторы соединены последовательно, полный ток протекает через все конденсаторы.

Расчет последовательного включения конденсаторов

Чтобы рассчитать емкость, введите значения отдельных конденсаторов, разделенных секколоном.
Пример: 3.3; 12; 22

Экспоненты не допускаются. Вместо этого введите значения в подходящей единице измерения. Если вы введете все значения в нано-фарадах, результат также отобразится в нано-фарадах.


Калькулятор серии конденсаторов


Формулы для расчета общей мощности

Общая емкость последовательного соединения рассчитывается с использованием обратной величины отдельных конденсаторов. Отдельные обратные значения добавляются для расчета общей емкости.Итак, формула для трех последовательно соединенных конденсаторов:

\ (\ displaystyle \ frac {1} {C_ {ges}} = \ frac {1} {C_1} + \ frac {1} {C_2} + \ frac {1} {C_3} \)

Следующая формула может использоваться для расчета общей емкости двух последовательно соединенных конденсаторов.

\ (\ Displaystyle C_ {ges} = \ гидроразрыва {C_1 · C_2} {C_1 + C_2} \)

Эта страница полезна? да Нет

Спасибо за ваш отзыв!

Извините за это

Как мы можем это улучшить?

послать


Конденсатор

в последовательной, параллельной и цепях переменного тока

Конденсатор — один из наиболее часто используемых электронных компонентов.Он обладает способностью накапливать внутри себя энергию в виде электрического заряда, создающего статическое напряжение (разность потенциалов) на его пластинах. Проще говоря, конденсатор похож на небольшую перезаряжаемую батарею. Конденсатор представляет собой просто комбинацию двух параллельных проводящих или металлических пластин, которые электрически разделены хорошим изолирующим слоем (также называемым диэлектриком ) , состоящим из вощеной бумаги, слюды, керамики, пластика и т. Д.

Существует множество применений конденсатора в электронике, некоторые из них перечислены ниже:

  • Накопитель энергии
  • Регулировка мощности
  • Коррекция коэффициента мощности
  • Фильтрация
  • Осцилляторы

Теперь дело в том, как конденсатор работает ? Когда вы подключаете источник питания к конденсатору, он блокирует постоянный ток из-за изолирующего слоя и позволяет напряжению присутствовать на пластинах в виде электрического заряда.Итак, вы знаете, как работает конденсатор и каково его использование или применение, но вы должны научиться использовать конденсатор в электронных схемах.

Как подключить конденсатор в электронную схему?

Здесь мы собираемся продемонстрировать вам подключение конденсатора и связанный с ним эффект на примерах.

  • Конденсатор серии
  • Параллельный конденсатор
  • Конденсатор в цепи переменного тока

Конденсатор в последовательной цепи

В схеме, когда вы соединяете конденсаторы последовательно, как показано на изображении выше, общая емкость уменьшается.Ток, проходящий через конденсаторы последовательно, равен (т.е. i T = i 1 = i 2 = i 3 = i n ). Следовательно, заряд, накопленный конденсаторами, также одинаков (т.е. Q T = Q 1 = Q 2 = Q 3 ), потому что заряд, накопленный пластиной любого конденсатора, исходит от пластины соседнего конденсатор в цепи.

Применяя в цепи Закон Кирхгофа (KVL) о напряжении, мы получаем

  V  T  = V  C1  + V  C2  + V  C3 … уравнение (1)  

Как известно,

  Q = CV 
  Итак, V = Q / C  

Где, V C1 = Q / C 1 ; V C2 = Q / C 2 ; V C3 = Q / C 3

Теперь, поместив вышеуказанные значения в уравнение (1)

   (1 / C  T ) = (1 / C  1 ) + (1 / C  2 ) + (1 / C  3 )  

Для n последовательно подключенных конденсаторов уравнение будет

.
  (1 / C  T ) = (1 / C  1 ) + (1 / C  2 ) + (1 / C  3 ) +….+ (1 / Cn)  

Следовательно, приведенное выше уравнение является уравнением конденсаторов серии .

Где, C T = Общая емкость цепи

C 1 … n = емкость конденсаторов

Уравнение емкости для двух особых случаев определено ниже:

Случай I: , если два конденсатора включены последовательно, с разным значением емкость будет выражена как:

  (1 / C  T ) = (C  1  + C  2 ) / (C  1  * C  2 ) 
  Или, C  T  = (C  1  * C  2 ) / (C  1  + C  2 )… уравнение (2)  

Случай II: , если два конденсатора включены последовательно, с одинаковым значением емкость будет выражаться как:

  (1 / C  T ) = 2 / C  2  = 2 / C 
  Или, C  T  = C / 2  

Пример цепи последовательного конденсатора:

Теперь в приведенном ниже примере мы покажем вам, как рассчитать общую емкость и индивидуальное среднеквадратичное падение напряжения на каждом конденсаторе.

Как и на приведенной выше принципиальной схеме, есть два конденсатора , соединенных последовательно с разными номиналами. Значит, падение напряжения на конденсаторах также неодинаково. Если мы подключим два конденсатора с одинаковым значением, падение напряжения также будет одинаковым.

Теперь для определения общего значения емкости воспользуемся формулой из уравнения (2)

  Итак, C  T  = (C  1  * C  2 ) / (C  1  + C  2 ) 
  Здесь C  1  = 4.7 мкФ и C  2  = 1 мкФ 
  C  T  = (4,7 мкФ * 1 мкФ) / (4,7 мкФ + 1 мкФ) 
  C  T  = 4,7 мкФ / 5,7 мкФ 
  C  T  = 0,824 мкФ  

Теперь падение напряжения на конденсаторе C 1 составляет:

  VC  1  = (C  T  / C  1 ) * V  T  
  VC  1  = (0,824 мкФ / 4,7 мкФ) * 12 
  ВК  1  = 2,103 В  

Теперь падение напряжения на конденсаторе C 2 составляет:

  VC  2  = (C  T  / C  2 ) * V  T  
  ВК  2  = (0.824 мкФ / 1 мкФ) * 12 
  ВК  2  = 9,88 В  

Конденсатор в параллельной цепи

При параллельном подключении конденсаторов общая емкость будет равна сумме емкостей всех конденсаторов. Потому что верхняя пластина всех конденсаторов соединена вместе, как и нижняя пластина. Таким образом, при соприкосновении друг с другом эффективная площадь пластин также увеличивается. Следовательно, емкость пропорциональна отношению площади и расстояния.

Применяя Текущий закон Кирхгофа (KCL) в вышеупомянутой схеме,

  i  T  = i  1  + i  2  + i  3   

Как известно, ток через конденсатор выражается как;

  i = C (dV /   dt  ) 
  Итак, i  T  = C  1  (dV /   dt  ) + C  2  (dV /   dt  ) + C  3  (dV /   dt  ) 
  А,
   i    T     = (C  1  + C  2  + C  3 ) * (dV /   dt  ) 
  i  T  = C  T  (dV /   dt  )… уравнение (3)  

Из уравнения (3) уравнение параллельной емкости:

  C  T  = C  1  + C  2  + C  3   

Для числа n конденсаторов, подключенных параллельно, приведенное выше уравнение выражается как:

  C  T  = C  1  + C  2  + C  3  +… + Cn  

Пример параллельной цепи конденсатора

На приведенной ниже принципиальной схеме три конденсатора соединены параллельно .Поскольку эти конденсаторы подключены параллельно, эквивалентная или полная емкость будет равна сумме индивидуальных емкостей.

  C  T  = C  1  + C  2  + C  3  
  Где, C  1  = 4,7 мкФ; C  2  = 1 мкФ и C  3  = 0,1 мкФ 
  Итак, C  T  = (4,7 +1 + 0,1) мкФ 
  C  T  = 5,8 мкФ  

Конденсатор в цепях переменного тока

Когда конденсатор подключен к источнику постоянного тока, конденсатор начинает медленно заряжаться.И, когда напряжение зарядного тока конденсатора равно напряжению питания, это считается полностью заряженным. Здесь в этом состоянии конденсатор работает как источник энергии, пока на него подается напряжение. Кроме того, конденсаторы не позволяют току проходить через него после полной зарядки.

Каждый раз, когда на конденсатор подается переменное напряжение, как показано на чисто емкостной схеме выше. Затем конденсатор непрерывно заряжается и разряжается до каждого нового уровня напряжения (заряжается при положительном уровне напряжения и разряжается при отрицательном уровне напряжения).Емкость конденсатора в цепях переменного тока зависит от частоты входного напряжения, подаваемого в цепь. Сила тока прямо пропорциональна скорости изменения напряжения, приложенного к цепи.

  i = dQ /   dt   = C (dV /   dt  )  

Векторная диаграмма конденсатора в цепи переменного тока

Как вы видите на векторной диаграмме конденсатора переменного тока на изображении ниже, ток и напряжение представлены в виде синусоидальной волны.При наблюдении при 0 ° зарядный ток достигает своего пикового значения из-за постоянного увеличения напряжения в положительном направлении.

Теперь при 90 ° ток через конденсатор не протекает, потому что напряжение питания достигает максимального значения. При 180 ° напряжение начинает медленно снижаться до нуля, а ток достигает максимального значения в отрицательном направлении. И снова заряд достигает своего пикового значения на 360 °, потому что напряжение питания находится на минимальном значении.

Таким образом, из приведенного выше сигнала мы можем видеть, что ток опережает напряжение на 90 °.Итак, мы можем сказать, что напряжение переменного тока отстает от тока на 90⁰ в идеальной конденсаторной цепи .

Реактивное сопротивление конденсатора (Xc) в цепи переменного тока

Рассмотрим приведенную выше принципиальную схему, поскольку мы знаем, что входное напряжение переменного тока выражается как

  V = V  м  Sin  вес   

А, заряд конденсатора Q = CV,

Итак, Q = CV м Sin wt

А, ток через конденсатор, i = dQ / dt

Итак,

  i = d (CV  м  Sin  wt ) / dt 
  i = C * d (V  m  Sin  wt ) / dt 
  i = C * V  m  Cos  wt  * w 
  i = w * C * V  м  Sin (wt + π / 2) 
  ат, wt = 0 
  sin (wt + π / 2) = 1 
 , следовательно, i  m  = wCV  m  
  V  м  / i  м  = 1 / wC  

Как известно, w = 2πf

Итак,

  Емкостное реактивное сопротивление (Xc) = V  м  / i  м  = 1 / 2πfC  

Пример емкостного реактивного сопротивления в цепи переменного тока

диаграмма

Рассмотрим значение C = 2.2uf и напряжение питания V = 230 В, 50 Гц

  Теперь емкостное реактивное сопротивление (Xc) = V  м  / i  м  = 1 / 2πfC 
  Здесь C = 2,2 мкФ и f = 50 Гц 
  Итак, Xc = 1/2 * 3,1414 * 50 * 2,2 * 10 -6  
  Xc = 1446,86 Ом  

создавать кроссплатформенные приложения с Интернетом

Сетевой API предоставляет информацию о сети и подключениях.

Установить

  npm install @ конденсатор / сеть
npx cap sync  

Пример

  импорт {Сеть} из '@ конденсатор / сеть';

Сеть.addListener ('networkStatusChange', status => {
  console.log ('Статус сети изменен', статус);
});

const logCurrentNetworkStatus = async () => {
  const status = ожидание Network.getStatus ();

  console.log ('Статус сети:', статус);
};  

API

getStatus ()

  getStatus () => Promise   

Запросить текущий статус сетевого подключения.

Возвращает: Обещание

С момента: 1.0.0


addListener («networkStatusChange»,…)

  addListener (eventName: 'networkStatusChange', listenerFunc: ConnectionStatusChangeListener) => Обещание  & PluginListener86432Handle 17
 

Слушайте изменения в сетевом подключении.

Возврат: Promise и PluginListenerHandle

Начиная с: 1.0.0


removeAllListeners ()

  removeAllListeners () => Promise   

Удалите всех слушателей (включая изменения статуса сети) для этого плагина.

Начиная с: 1.0.0


Интерфейсы

ConnectionStatus

Представляет состояние и тип сетевого подключения.

Опора Тип Описание С
подключен логическое Есть ли активное соединение. 1.0.0
Тип соединения Тип подключения Тип используемого в настоящее время сетевого подключения.Если нет активного сетевого подключения, connectionType будет «нет» . 1.0.0
PluginListenerHandle
Prop Тип
удалить () => Обещание

Псевдонимы типов

ConnectionType

Тип сетевого подключения, которое может иметь устройство.

«Wi-Fi» | «сотовый» | «нет» | 'unknown'

ConnectionStatusChangeListener

Обратный вызов для получения уведомлений об изменении статуса.

(статус: ConnectionStatus): недействителен

Предыдущая

<- Motion

Next

Push-уведомления ->

Contribute ->

Соединение конденсаторов звездой и треугольником - нарушение напряжения

Силовые конденсаторы в 3-фазных соединениях конденсаторных батарей соединяются треугольником или звездой (звезда).Между этими двумя типами соединений существуют различия в их применениях, номинальном значении кВАр, обнаружении неисправных конденсаторов и т. Д. В этой статье обсуждается разница между конденсаторами, соединенными звездой и треугольником, а также преимущества конденсаторных батарей, соединенных звездой и треугольником.

Калькулятор, представленный ниже, можно использовать для расчета эффективных кВАр, произведенных для конденсатора при соединении треугольником или звездой.

Конденсаторы высокого напряжения

Блок конденсаторов с подключением треугольником Конденсаторы

, соединенные треугольником, чаще всего используются при низком напряжении, хотя их можно применять и при более высоких напряжениях.Каждый конденсатор будет иметь полное фазное напряжение, приложенное к его клемме. Почему низковольтные конденсаторные батареи соединяются треугольником? Помните, что генерируемая кВАр изменяется как квадрат приложенного напряжения. Формула для VAR, генерируемого в конденсаторной батарее, имеет следующий вид:

Подключение конденсаторной батареи по схеме треугольника дает больше VAR по сравнению с подключением по схеме звезды. Это связано с тем, что при соединении звездой на конденсатор подается только напряжение фаза-нейтраль, а в случае соединения треугольником - полное фазное напряжение.

Соединение конденсаторов треугольником

Соединение конденсаторов треугольником требует двух вводов. Поскольку нет соединения с землей, конденсаторная батарея не может быть «стоком» для любых токов заземления или токов нулевой последовательности . Отдельную ветвь конденсатора, соединенного треугольником, необходимо защитить от межфазного короткого замыкания с помощью токоограничивающего предохранителя.

Блок конденсаторов со звездообразной связью

При соединении звездой напряжение на каждом конденсаторе в 1 / sqrt (3) раз больше напряжения фаза-фаза. Следовательно, полученный VAR также будет соответственно меньше по сравнению с соединением треугольником . Соединение звездой в основном используется в системах среднего напряжения (> 1 кВ). Одним из основных преимуществ использования соединения звездой является то, что конденсатор должен быть рассчитан только на напряжение фаза-нейтраль системы по сравнению с номиналом фаза-фаза в системе треугольника . Следовательно, отдельные конденсаторы среднего напряжения будут подвергаться нагрузке только при более низком уровне напряжения, что увеличивает срок их службы. Есть и другие преимущества использования звездообразного соединения на конденсаторах среднего напряжения.Существует два основных типа соединения звездой:

Заземленная звезда (звезда)

При соединении «звезда» или «звезда» нейтральная точка батареи надежно заземлена. Это означает, что нейтраль не нужно изолировать до уровня BIL всей системы. Следовательно, при использовании этого соединения может быть достигнута некоторая экономия средств. Кроме того, в этой связи переходное восстанавливающееся напряжение (TRV) может быть менее серьезным. Неисправность одной фазы конденсаторной батареи не приведет к повышению напряжения на других исправных ветвях батареи.Как показано ниже, неисправность конденсатора фазы B не приведет к повышению напряжения на других исправных фазах.

Подключение конденсатора звездой с заземлением

Недостатком заземленного соединения звездой является то, что заземленная нейтраль может пропускать токи земли и гармонические токи нулевой последовательности . Это может вызвать помехи от телефона. Кроме того, заземленная звездочка также вносит ток короткого замыкания в систему во время замыкания фазы на землю. Из-за заземленного соединения может протекать высокий ток между фазой и землей, когда конденсатор не замыкается на землю.Это требует использования токоограничивающих предохранителей для этого приложения.

Незаземленная звезда (звезда)

При подключении незаземленной звездой нейтраль конденсаторной батареи , а не соединена с землей. Следовательно, это соединение не допускает протекания токов заземления и гармонических токов нулевой последовательности. При замыкании фазы на землю в системе незаземленная звездочка не вносит тока замыкания.

Недостатком этого подключения является то, что нейтраль батареи должна быть полностью изолирована от фазного напряжения системы.Нейтральная точка может находиться под потенциалом фаза-фаза во время переключения или во время неисправности. Для банков выше 15 кВ это может стать дорогим.

Еще одним недостатком этого подключения является то, что при выходе из строя конденсатора на одной фазе нейтральная точка смещается. Напряжение на исправных фазах возрастет до полного фазо-фазного потенциала. Ток через неисправные конденсаторы достигает 1,732 о.е., а максимальный ток на поврежденной фазе будет 3 о.е. Такое увеличение напряжения и тока в банке могло привести к дополнительным сбоям.

Как показано ниже, неисправность конденсатора фазы B приведет к повышению напряжения в 1,732 (квадрат 3) раз от номинального напряжения между фазой и нейтралью, которое является полным фазным напряжением на других исправных фазах. Следовательно, исправные конденсаторы будут перенапряжены, и защитное реле должно будет быстро устранить неисправность, чтобы предотвратить повреждение исправных конденсаторов.

Звезда незаземленного подключения конденсатора

Существуют и другие варианты этого соединения, например, , незаземленная звезда с разъемом и , заземленная звездочка с разъемом .

Дополнительное чтение:

кВАр в амперах Расчет

Калькулятор преобразования дельта-звезда

Векторная диаграмма соединения звездой и треугольником

5-проводная электрическая схема конденсатора потолочного вентилятора

В этом посте я пишу о схеме подключения 5-проводного конденсатора потолочного вентилятора , в моем последнем посте я писал о 3-проводной схеме конденсатора, которую мы используем для вентилятора и можем регулировать скорость с помощью переключателя управления скоростью. Теперь вы узнаете о 5-проводном конденсаторе потолочного вентилятора и его схеме.

5-проводная электрическая схема конденсатора потолочного вентилятора

В потолочных вентиляторах мы используем 5-проводный конденсатор для скоростей, низкой, средней и высокой скорости. В конденсаторах этого типа имеется пять проводов, два из которых являются общими, а три других - для разной емкости в микрофарадах.
На диаграмме ниже показан 5-проводной конденсатор двигателя вентилятора с его конденсаторной схемой.
На приведенной выше диаграмме я показал изображение конденсатора двигателя вентилятора CBB61 и 5-проводного конденсатора, два серых провода являются общими, а красный - 4.5 мкФ 250 В, коричневый - 6 мкФ 250 В, а фиолетовый - 5 мкФ и 250 В.

Потолочный вентилятор 5-проводной конденсатор Схема работы и инстилляции для вентилятора, регулирующего скорость: низкая, средняя, ​​высокая

Также прочтите
3-проводную схему подключения конденсатора потолочного вентилятора
Схема подключения конденсатора потолочного вентилятора
Роль конденсатора в потолочном вентиляторе или однофазном двигателе

В основном мы используем этот тип конденсатора для скоростей, как я сказал выше, так что вот форма схемы, по которой вы можете получить представление об использовании этого конденсатора.На диаграмме ниже показано, как можно регулировать скорость вентилятора. Здесь я показал схему, на которой я показал главную обмотку потолочного вентилятора / рабочую обмотку и вспомогательную / пусковую обмотку с конденсатором с регулятором скорости / селекторным переключателем и односторонним переключателем с низкой, средней и высокой скоростью.

На приведенной выше схеме я показан источник переменного тока, и я подключаю нейтральный провод к обмотке двигателя (общая точка обмотки), а фаза (горячий провод) подключается к одностороннему переключателю и формирует переключатель, подключаемый к основной обмотке электродвигателя и конденсатору, все провода емкости что равно 4.5 мкФ, 4 мкФ и 6 мкФ. и вы можете видеть, что переключатель выбора скорости находится в низком направлении, и когда он; s переключатель перемещается на 5 мкФ, потолочный вентилятор будет работать на средней скорости, а на 6 мкФ скорость будет высокой. Это базовая диаграмма Схема подключения конденсатора потолочного вентилятора с 5 проводами и работает.
Подключен

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *