+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как подключить электродвигатель на 380 вольт через магнитный пускатель

Главная » Разное » Как подключить электродвигатель на 380 вольт через магнитный пускатель

Схема подключения электродвигателя 380 через пускатель

Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Как правильно провести подключение электродвигателя звездой и треугольником

  • Подключение звезда и треугольник – в чем разница?

  • Схема подключения электродвигателя на 220В через конденсатор

    СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ

    Прежде чем приступить к практическому подключению пускателя – напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

    Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

    Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп » и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск », «Вперёд », «Назад ».

    Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

    Схема подключения магнитного пускателя на 220 В

    Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения – «пуск» и SB1 для остановки – «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки.

    Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

    Схема подключения магнитного пускателя на 380 В

    Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае – L3 и ноль.

    На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

    При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

    Подключение магнитного пускателя через кнопочный пост

    В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

    Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

    Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

    Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

    Подключение двигателя через пускатели

    Нереверсивный магнитный пускатель

    Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

    Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

    Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

    Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

    Реверсивный магнитный пускатель

    Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

    Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

    При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

    Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

    Советы и хитрости установки

    • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
    • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
    • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
    • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

    А ещё вам понадобится полезный прибор – пробник электрика. который легко можно сделать самому.

    Подключение трехфазного двигателя через магнитный пускатель

    Подключаем магнитный пускатель

    Схема подключения магнитного пускателя 380 в через кнопочный пост. Электротехническ ий аппарат, который предназначен для удалённого управления электрического двигателя, его защиты, поддержания работоспособност и — это и есть аппарат магнитного пускателя. Часто, такие пускатели используют для автоматического подключения освещающих линий и др. Как провести подключение толково магнитного пускателя своими руками. Возможно ли это.

    Чтобы понять, каким образом осуществить подключение самостоятельно магнитного пускателя, в первую очередь нужно узнать об особенностях его работы, его характеристиках при приобретении.

    В данной статье пойдёт речь о том, как запустить включатель своими руками, как правильно выбрать реверсивный пускатель с пластиковым корпусом. В принципе, кнопки управления расположены на крышке, поэтому остаётся лишь подключить кабеля от питания.

    Для того чтобы приступить к работе по сборке и подключению магнитного пускателя нужно:

    1. Отключить питание и проверить отсутствие напряжения.

    2. Определить, какое рабочее напряжение у катушки, которая расположена на корпусе. Возможно два варианта. Когда напряжение равно 220 вольт, либо 380 вольт. В первом случае на контакты подают нуль и фазы. Если же напряжение равно 380, тогда разные фазы. Если сделать ошибку, то катушка перегорит, поэтому следует соблюдать внимательность.

    3. Силовые контакты используют фазы для включения и выключения магнитного пускателя. А нули и фазы нужно между собой соединить.

    Для того чтобы выполнить подключение пускателя необходимо

    1. Контакты, в наличии 3 штук. Благодаря им будет подаваться питание.

    2. Катушка, кнопки управления. Благодаря им будет поддерживаться блокировка ошибочных включений магнитного пускателя.

    3. Использование схемы с одним пускателем. Для этого понадобится трёхжильный кабель и несколько контактов.

    Если использовать схему подключения с катушкой на 380 вольт, то нужно использовать разноимённую фазу красного либо чёрного цвета. Также в контакте будет применяться свободная пара.

    Чтобы подключить цепь магнитного пускателя, нужна одна зелёная фаза, которая будет идти к контакту катушки. А со второго контакта будет идти на кнопку «Пуск». С кнопки «Пуск» на кнопку «Стоп».

    То есть при нажатии на «Пуск», будет подаваться 220 вольт, которые буду способствовать включению остальных контактов. Для отключения магнитного пускателя необходимо будет разорвать «ноль», а для включения обратно нажать «Пуск».

    Для подключения реле необходимо последовательно подключить его, подобрав рабочий ток для конкретного двигателя.

    Подключать его следует к магнитному выходу на электродвигатель. после на термореле и на электромотор.

    Источники: http://onlineelektrik. ru/eoborudovanie/edvigateli/sxema-podklyucheniya-trexfaznogo-elektrodvigatelya-k-trexfaznoj-seti.html, http://el-shema.ru/publ/skhemy_podkljuchenija/skhema_podkljuchenija_magnitnogo_puskatelja/13-1-0-429, http://ampersite.ru/ustanovka-i-podklyuchenie/podklyuchenie-magnitnogo-puskatelya-svoimi-rukami.html

  • Схемы подключения трехфазных электродвигателей

    Содержание:

    О том как подключить трехфазный электродвигатель в однофазную сеть вы можете посмотреть здесь.

    ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

    Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

    У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

    Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

    В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

    Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т. д.

    Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

    Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

    Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

    Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

    При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2  ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

    Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

    При необходимости  частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

    В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

    При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку  «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

    Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    ↑ Наверх

    Схемы подключения трехфазного двигателя к трехфазной сети — блог СамЭлектрик.ру

    1. Подключение трехфазного электродвигателя – общая схема

    Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

    Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что пускатель и контактор – это разные вещи. Что поделать, приелось это название.

    В статье  пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель.

    Будут рассмотрены различные схемы подключения электродвигателей, их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.

    Подключение трехфазного двигателя

    Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

    Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

    По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.

    Другие статьи по теме – Разница между трехфазным и однофазным напряжением, Системы заземления.

    В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

    2. Подключение двигателя через рубильник или выключатель

    Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

    Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.

    Схема подключения трехфазного двигателя в сеть через автоматический выключатель

    Поэтому более подробно общий случай будет выглядеть так:

    3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

    На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

    Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

    Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

    Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

    Она прекрасно работает, так же, как по многу лет может работать скрутка меди с алюминием. И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

    Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при пуске автомат не срабатывал.

    Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять).  Значит, трехполюсный автомат надо ставить на 3 или 4А.

    Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

    А что там свежего в группе ВК СамЭлектрик.ру?

    1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
    2. Невозможность дистанционного и автоматического включения/выключения двигателя.

    Эти недостатки можно устранить, в схемах ниже будет показано как.

    Подключение трехфазного двигателя через ручной пускатель

    Ручной пускатель, или мотор-автомат – более совершенное устройство. На нём есть кнопки “Пуск” и “Стоп”, либо ручка “Вкл-Выкл”. Его плюс – он специально разработан для пуска и защиты двигателя. Пуск по-прежнему ручной, а вот ток срабатывания можно регулировать в некоторых пределах.

    4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

    Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

    Ручной пускатель двигателя с дополнительным контрольным контактом.

    Вот что у него на боковой стенке:

    Автомат защиты двигателя – характеристики на боковой стенке

    Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

    В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

    Плюс схемы – можно регулировать уставку теплового тока. Минус  – тот же, что и в предыдущей схеме, нет дистанционного включения.

    Схема подключения двигателя через магнитный пускатель

    Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

    Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

    Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск” и “Стоп” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

    Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0. Про выбор, устройство и характеристики электромагнитных пускателей (контакторов) – прочитайте здесь.

    5. Схема подключения двигателя через пускатель с кнопками пуск стоп

    Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

    Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

    Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

    Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

    Подключение трехфазного двигателя через электронные устройства

    Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

    Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

    1. Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. Вот моя статья.
    2. Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему есть статья. Практическое применение устройств плавного пуска – здесь.
    3. Частотные преобразователи – самое совершенное устройство, что придумало человечество для подключения электродвигателя. Описывать частотники – дело не одной статьи.

    А если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

    Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:

    10. Подключение трехфазного двигателя – общая схема с электронной силой

    Двухскоростные электродвигатели

    Старый специфический способ подключения двухскоростных двигателей описан в статье Подключение двухскоростных асинхронных двигателей. Ключевые слова – Раритет, Ретро, СССР.

    На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

    Статья понравилась?Добавьте её в свою соц.сеть и дайте оценку!

    (16 оценок, среднее: 4,81 из 5) Загрузка…

    Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)

    Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.

    Сходство и различие контакторов и пускателей

    Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

    Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

    Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

    Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.

    Как работает пускатель

    Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к  другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.

    В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.

    Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.

    Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.

    Сеть на 220 вольт

    При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.

    Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.

    Кнопки «пуск» и «стоп»

    При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.

    Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.

    На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.

    Трехфазная сеть на 380 В

    При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль».  Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.

    Фото схемы подключения магнитного пускателя

    Вам понравилась статья? Поделитесь 😉  

    

    Схема подключения двигателя через пускатель. Схемы подключения трехфазного электродвигателя

    Рассмотрение общепринятых схем монтажа магнитного пускателя позволит пользователю самостоятельно подключить трехфазный асинхронный двигатель самостоятельно, избежав при этом распространённых ошибок, не прибегая к услугам профессиональных электриков.

    Необходимость в специфическом кнопочном контакте

    Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления.

    Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный (вспомогательный) контакт шунтирует (подключается параллельно) пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

    Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом.

    Исходя из этого, кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC) (см. рис.)

    Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

    Простая схема — нереверсивный режим двигателя

    Данный режим работы мотора означает, что вращение вала происходит только в одном направлении, запуск осуществляется при помощи кнопки «Пуск», а остановка происходит спустя некоторое время (из-за инерции) после нажатия «Стоп».

    Существуют две распространенные разновидности данной схемы подключения – с катушкой управления 220 В и 380 В (подключение между двумя фазами). Схема с применением катушки пускателя с номиналом на 220В требует подсоединения нулевого провода, но применение нуля более привычно для простого пользователя, поэтому вначале будет рассмотрен именно этот вариант подключения.


    Подключение эл. двигателя через магнитный пускатель на 220 В

    Нужно детально рассмотреть все соединения, чтобы полностью понять принцип работы данной схемы, после чего будет проще разобрать более сложные варианты.

    Детальное рассмотрение электромонтажа

    Для удобства нужно составить монтажную схему.




    Вначале подключается контактор (само собой, напряжение на входном кабеле должно отсутствовать). В приведённой выше схеме напряжение, необходимое для управления, снимается с фазы «В» (L2), но выбор фазного провода в этом случае не имеет никакого значения (как будет удобно).

    Проводник, идущий к кнопке «Стоп» подключается вместе с фазным проводом на клемме контактора. Чтобы не было путаницы, общепринято маркировать нормально разомкнутые контакты цифрами «1», «2», а размыкающие соответственно – «3», «4».

    После чего подсоединяется провод, идущий от клеммы «1» пусковой кнопки к выводу А1 управляющей катушки контактора.



    От клеммы «2» кнопки запуска нужно подсоединить провод к вспомогательному контакту NO13. В данном случае неважно, к какому выводу подключать данный провод, но лучше придерживаться схемы, чтобы потом не запутаться.


    Осталось подсоединить вывод А2 катушки управления к нулевой шине.

    Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.



    Убедившись в работоспособности схемы, можно подсоединять выводы обмоток двигателя к выходным клеммам контактора.

    Видео по подключению магнитного пускателя классическим способом:

    Использование катушки на 380В и теплового реле

    Разумеется, что подключение кнопочного поста и трехфазного двигателя необходимо делать не одиночными проводами, а защищённым кабелем – приведённые выше примеры даны для того, чтобы пошагово объяснить весь процесс монтажа.

    Выполняя шаг за шагом данные инструкции пользователь сможет самостоятельно собрать магнитный пускатель, даже не имея опыта в электротехнике.

    Набравшись опыта и поняв принцип работы, можно использовать контактор номиналом на 380 В, в этом случае вывод с катушки А2 подключается не на нулевую шину, к одной из двух фаз, к которым не подключена клемма «4» («Стоп»).

    Аналогично выглядит схема, если используется трёхфазная сеть с напряжением 220В.

    В магнитном пускателе с тепловым реле схема немного меняется за счёт включения размыкающего контакта в разрыв провода от клеммы А2 контактора. Вывод А2 с катушки управления подключается к фазе или нулю через размыкающий контакт данного теплового реле P, подключённого последовательно в силовые цепи обмоток.(см. схему ниже)

    Реверсивный электромагнитный пускатель

    Для реверса электродвигателя (вращения вала в обратную сторону), необходимо изменить последовательность фаз, для чего применяют два контактора и кнопочный пост с тремя кнопками.

    Подключение магнитных пускателей для реверса двигателя

    При этом, для блокировки случайного одновременного включения обеих пускателей необходимо цепи управления запуском подключать через размыкающие контакты смежных контакторов.

    Если у контакторов данные вспомогательные размыкающие контакты отсутствуют, то необходимо использовать контактную приставку.

    Принцип работы, с использованием самоподхвата, остается прежним, но схема немного усложняется за счёт включения новых элементов.


    Подключение эл. двигателя через реверсивные магнитные пускатели 220 В

    Ключевым моментом является то, что размыкающий контакт контактора КМ2 включён в пусковую цепь КМ1, и наоборот. Необходимо рассмотреть процесс включения с самого начала, когда вспомогательные контактные мостики КМ1 и КМ2 замкнуты, то есть существует возможность запуска двигателя в любую сторону.

    Запустим пускатель КМ1, при котором его нормально замкнутый контакт, через который подключёна цепь запуска в обратную сторону, разомкнётся, тем самым делая невозможным реверс до отключения КМ1. Аналогично блокируется КМ1 при работе КМ2. На контакторы устанавливается система перемычек.


    Подключение эл. двигателя через реверсивные магнитные пускатели 380 В

    Данный принцип сохраняется при использования катушек любого номинала.

    Реверс часто используют для торможения двигателя, контролируя его обороты с помощью специального контроллера.

    Переключение обмоток двигателя

    Известно, что асинхронный электродвигатель потребляет меньшие стартовые токи при подключении обмоток «звездой», но максимум мощности развивает, если используется схема включения по типу «треугольника».

    Поэтому, на производстве, для запуска особенно мощных электродвигателей используется переключение обмоток.


    Подключение обмоток двигателе по схеме 1.»звезда» и 2.»треугольник»

    Электронный прибор контролирует обороты электродвигателя – как только они достигнут номинального значения, инициируется сигнал, переключающий контакторы, вследствие чего обмотки двигателя переключатся от «звезды» к «треугольнику».

    Готовый вариант пускателя

    Тепловые реле, помимо уставки тока и регулировки выдержки, также имеют рычажок отключения, который часто используют в компактных магнитных пускателях, размещая кнопку «Стоп» на крышке корпуса напротив.

    Включение контактора происходит при механической передаче усилия нажатия от стартовой кнопки к специальной кнопочной приставке, прикрепляемой к контактору. Схема подключения остаётся прежней, только в данном случае кнопочный пост совмещён с контактором в едином корпусе магнитного пускателя.


    кнопочный пост в одном корпусе с магнитным пускателем

    Поскольку подсоединение и монтаж кнопок в данных изделиях осуществляются непосредственно производителем, то пользователю необходимо только подключить питание и нагрузку, и отрегулировать тепловое реле.

    Редуктора, насосы, вентиляторы и прочие механизмы объединяет использование приводных электродвигателей. Безопасная их работа возможна, если соблюдается правильная схема подключения пускателя – коммутирующего устройства релейного типа.

    Что собой представляет пускатель?

    С технической точки зрения, электромагнитный пускатель – это, по сути, не что иное, как контактор, но более совершенный (модифицированный), с более широким набором функций. Достигается это через комплектование различными дополнительными узлами, что переводит его в ранг комбинированных устройств, которые позволяют:

    • Подключать и отключать электродвигатель от цепи,
    • Осуществлять реверс (изменение направления вращения),
    • Обеспечивать защиту двигателя от перегрузок (срабатывает тепловое реле),
    • Осуществлять аварийное отключение при обрыве фаз,
    • Поддерживать работу цепей управления, в которых используются пусковые органы,
    • Контроль и оповещение о работе силовых цепей управления.

    Строение электромагнитный пускателя

    Практически любой пускатель состоит из следующих основных частей:

    • Электромагнитная часть. Это катушка, которая состоит из двух раздельных пластинчатых блоков: подвижного (якорь) и неподвижного (сердечник). Наборная схема магнитных элементов выбрана, чтобы снизить номиналы возникающих вихревых токов,
    • Система главных контактов. Одна пара контактов расположена на блоке с якорем, имя с ним механическую связь. Вторая – на корпусе. Эти контакты используются, когда необходимо коммутировать силовые мощные нагрузки,
    • Система блокировочных контактов. Дополнительная подпружиненная пара контактов для коммутации в управляющих сетях,
    • Система возврата. В большинстве случаев представляет собой пружину, которая возвращает якорь в исходное положение после обрыва питания, то есть, размыкает главные контакты.

    Количество контактных силовых пар может варьироваться от 3 до 5. Катушка также может иметь различную конструкцию, в зависимости от напряжения включения: 220В и 380В. В корпусе клеммы электромагнита подключают между фазным и заземляющим контактами при напряжении 220В, или между фазными – при 380В.

    Основные схемы подключения пускателей

    На практике, используется три основных вида схем подключения пускателей: прямая, реверсивная и звезда-треугольник. Каждая из них в свою очередь может быть разделена на подвиды в зависимости от напряжения.

    Нереверсивная схема

    Эта методика применяется, если нет необходимости менять в процессе работы направление вращения двигателя. В базовом исполнении, для 220 вольтовых катушек подобные схемы будут иметь вид:

    Та же схема, но для 380 вольтовых катушек:

    В состав каждой из них входят следующие элементы:

    • Автомат включения (QF),
    • Магнитный пускатель (KM1),
    • Блокирующие контакты (БК),
    • Реле тепловой защиты (P),
    • Двигатель асинхронного типа (M),
    • Предохранительный элемент (ПР),
    • Органы управления или кнопки (Пуск, Стоп).

    После подключения питания через автоматический выключатель QF, нажимается кнопка Пуск, которая замыкает контакты и подает напряжение на КМ1 Он осуществляет ввод в работу двигателя. После этого, кнопку Пуск можно отпустить, так как сработает блокировка на контактах БК. Отключение питания в автоматическом режиме происходит при падении напряжения (размыкаются удерживающие контакты БК) или перегрузке (срабатывает тепловое реле или предохранитель). Также можно остановить подачу напряжения вручную, через кнопку Стоп.

    Когда есть необходимость менять направление вращения электродвигателя, используют реверс, который базируется на блоке пускателей. Схемы подключения устройств для 220 и 380 вольт будут иметь следующий вид:

    Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Как можно видеть, здесь присутствуют те же элементы, что и в нереверсивных схемах, но добавлен еще один пускатель (КМ2) и кнопка для его запуска (Пуск2). Изменение направления вращения происходит за счет смены фаз. Но необходимо учесть ряд ключевых моментов, в частности предотвращение одновременного включения двух коммутаторов во избежание короткого замыкания. При подаче напряжения через автомат QF, включается пусковая кнопка на первый контактор (Пуск1, КМ1). В это же время происходит расщепление нормально замкнутых контактов БК1 перед реверсной кнопкой. Обратный ход включается аналогично, через Пуск 2, но перед этим необходимо отключить питание – Стоп (С).

    Схемы «звезда» и «треугольник» являются наиболее распространенными при подключении двигателя к электрической линии. В первом случае он будет работать плавно, но не сможет развить полную мощность. Соединение треугольником, в свою очередь, не дает столь ровных оборотов, но позволяет развить полную мощность, вплоть до полуторакратной паспортной.

    В двигателях большой мощности часто используют интересный ход: первоначальный плавный ввод организовывается по звезде, а после выхода на необходимые обороты, автоматически переходят на треугольник. Это позволяет в том числе значительно снизить потребляемые пусковые токи. Примерная схема включения пускателя и реле времени в таком режиме будет иметь следующий вид:

    Специфические виды пускателей и схемы их работы

    Помимо типичных задач, эти устройства, в силу своего функционала, могут использоваться и в более специфических условиях. Рассмотрим их кратко на примере тиристорного пускателя, взрывозащищенных коммутаторов типа ПВР-125р и ПВИ-250 В, подключения через контакторы терморегуляторов и организация АВР.

    Тиристорные пускатели и схема их включения

    Особенность данного типа пусковых реле состоит в том, что в них не используется метод прямого физического разрыва цепи. То есть, они являются бесконтактными и в принципе лишены ключевых недостатков привычных устройств (механического износа контактов, образования дуги и т.д.). Правильно включить электродвигатель можно на тиристорных устройствах ПТ, схема подключения которых выглядит следующим образом:

    В цепи задействованы следующие элементы:

    • L1, L2, L3 – фазные провода (полюса),
    • ТА1, ТА 2 – трансформаторы тока,
    • R1, R 2 – резисторы,
    • VD1, VD 2 – транзисторы,
    • VS1…VS6 – тиристоры,
    • БУ – блок управления,
    • SB1, SB2 – кнопки «Пуск» и «Стоп».

    Пускатели типа ПВР-125р и ПВИ-250 В

    Электродвигатели используются не только в более-менее привычных нам условиях: к примеру, на различных горнодобывающих предприятиях, шахтах и т.п., где сохраняется потенциальная взрывоопасная обстановка, запыленность и прочие негативные факторы. Следовательно, исполнение пусковых устройств должно предусматривать подобные ситуации. В таких условиях находят применение релейные модули ПВР-125р и ПВИ-250 В(БТ).

    Пускатель типа ПВР является реверсивным модульным блоком, который монтируется во взрывозащищенном корпусе. Он используется для ввода в работу трехфазных электродвигателей различно горнодобывающей техники, работающей в выработке угольных шахт. К ПВР предъявляются особые требования в части противодействия метану и пыли.

    Пускатель ПВР-125р

    Пускатель ПВИ-250 В (БТ, Д) используется в таких же условиях, как и ПВР, но исходя из маркировки обладает еще и искрозащитой. Предназначен для включения и выключения двигателей шахтной техники. Через ПВИ-250 обеспечивается дополнительная защита от возможных коротких замыканий или перегрузок в сети.

    Пускатель ПВИ-250 В

    Теплый пол или обогреватель инфракрасного типа дополнительно комплектуются терморегуляторами, для поддержки необходимого температурного фона. Использовать их можно не только в бытовых, но и в промышленных масштабах. Примерная схема подключения такой системы, когда терморегулятор цепи подключают не напрямую, а через контактор, выглядит следующим образом:

    Формирование АВР на пускателях

    Еще одним случаем, когда востребовано использование коммутаторов, является обустройство систем АВР (аварийного ввода резерва). Таким образом повышается надежность электроснабжения, поскольку существует как минимум два его источника. Правильно организовать узел ввода на АВР можно по такой схеме:

    Здесь можно видеть два источника питания (1 и 2), автоматические выключатели на каждой из линий (АВ1, АВ2), пускатели и их контактные узлы (ПМ1 и ПМ2). На случай, если источники электроэнергии не являются полностью независимыми (например, одна из линий идет от условного соседа), в схеме предусмотрено реле контроля напряжения РКН, которое выбирает гарантированную линию ввода.

    Пусковые магнитные устройства являются одними из важнейших элементов для правильного ввода в работу электрооборудования, в частности, двигателей синхронного типа, в том числе и в опасных условиях шахт (речь идет о контакторах ПВР и ПВИ). Подключение может быть организовано по прямой, реверсивной и комбинированной схеме (звезда-треугольник). Кроме того, пускатели находят широкое применение и в других областях, где нет необходимости использования двигателей, например, для организации подвода питания к домовым сетям или к системам обогрева по терморегуляторам, по прямому или резервному источнику (АВР).

    Контактор — это электромагнитный аппарат, предназначенный для коммутации, то есть включения и отключения, электрического оборудования. Он является двухпозиционным механизмом, который используется для частых коммутаций. Основными элементами его конструкции являются:

    1. Силовая контактная группа, которая может быть двух и трёхполюсной в зависимости от напряжения необходимого для работы исполнительного механизма.
    2. Дугогасительных камер, которые направлены на уменьшение дуги возникающей при разрыве электрического тока;
    3. Электромагнитного привода. Он предназначен для движения подвижной части силового контакта. В зависимости от конструкции он может быть рассчитан на разные напряжения как постоянного, так и переменного тока. Выполняется из П-образного, или Ш-образного сердечника;
    4. Системы блок-контактов, необходимой для сигнализации и управления оперативными цепями контактора. С помощью них можно подключить звуковую или световую сигнализацию показывающую позицию контактора, а также для цепи самоподхвата.

    Отличительной особенностью конструкции электромагнита, работающего с переменным током, является наличие короткозамкнутого витка, который препятствует гудению его железа во время работы. Если электромагнит работает от постоянного тока, то между рассоединяемыми частями его, должна присутствовать неметаллическая прокладка, которая препятствует залипанию сердечника. Контактор отличается от магнитного пускателя или реле, только работой с более мощной нагрузкой, от величины её зависят и размеры самого аппарата. Очень важно выбрать нужный контактор соответствующий тому току, который он будет коммутировать.

    Современные устройства серии КМИ обладают неплохими показателями надёжности и предназначены для общепромышленного применения. Благодаря своей конструкции имеют лёгкий способ крепления и небольшие габариты.

    Принцип работы

    При подаче напряжения на катушку электромагнита подвижная часть аппарата под воздействием электромагнитных сил приводится в движение и притягивается к неподвижной части. При этом происходит замыкание силовых контактов и подача напряжения на исполнительный механизм. И также при этом происходит движение и блок-контактов которые могут быть замыкающими или размыкающими.

    Как подключить контактор

    При подключении контактора сразу нужно определиться с механизмом, который он будет включать. Это может быть двигатель, насос, вентилятор, нагревательные элементы, компрессоров и т. д. Главной особенность контактора, отличающего его от автомата, является отсутствие всякой защиты. Поэтому продумывая цепи включения электрооборудования через контактор обязательно необходимо учесть ограничивающие ток и нагрев элементы. Для ограничения и отключения оборудования при коротких замыканиях и превышающих во много раз номинал нагрузках используются предохранители и автоматы. От длительного незначительно превышения номинальных токов работающего оборудования применяются тепловые реле.

    Для того чтобы правильно подключить контактор в схему нужно чётко понимать какие из контактов силовые, а какие из них вспомогательные, то есть блок-контакты. Также нужно посмотреть на номиналы катушки включения. Там должны быть указаны напряжение его тип и величина, а также токи которые через неё протекают для нормальной работы. Во время работы силовые контакты могут погорать, поэтому их необходимо регулярно осматривать и чистить.

    Как подключить модульный контактор

    Модульный контактор — это разновидность обычных таких же аппаратов для коммутации, только применяются они в основном для включения и отключения распределительных щитков дистанционно. То есть включая его, подаётся питание на группу автоматов, каждый из которых, отвечает за свою определённую цепь. Устанавливается он на DIN — рейке. Может коммутировать как цепи постоянного, так и переменного тока.

    Подключение контактора через кнопку

    Для подключения контактора через кнопку нужно изучить ниже приложенную схему. Она предназначена для пуска нагрузки, в данном случае двигателя, от контактора катушка которого рассчитана на 220 Вольт переменного напряжения. В зависимости от напряжения стоит продумать её питание. Поэтому при покупке и выборе контактора стоит учесть этот нюанс. Так как если электромагнит будет рассчитан на постоянное напряжение, то понадобится именно такой источник.

    При нажатии на кнопку пуск катушка электромагнита контактора получит питание и он включится. Замкнутся силовые контакты, тем самым подастся напряжение на асинхронный двигатель. Также замкнётся блок-контакт контактора К1, который подключен параллельно кнопке стоп. Он называется электриками контакт самоподхвата, так как именно он подаёт питание на включающую катушку после того, как кнопка пуска отпускается. При нажатии на кнопку стоп от электромагнита отключается питание, силовые элементы контактора разрывают цепь и двигатель отключается.

    Подключение контактора с тепловым реле

    Тепловое реле предназначено для недопускания длительных незначительных токовых перегрузок во время работы электрооборудования, ведь перегрев отрицательно сказывается на состоянии изоляции. Частые превышения температуры и токов приведут к её разрушению, а значит и к короткому замыканию, и выходу из строя дорогостоящего исполнительного элемента.

    При повышении тока в цепи статора электродвигателя элементы теплового реле КК будут нагреваться. При достижении заданной температуры, которая может быть регулирована, тепловое реле сработает и его контакты разорвут цепь катушки электромагнита контактора КМ.

    В целях безопасности нужно помнить, что работа в цепи контактора должна производиться при полном обесточивании его. При этом автомат питания должен быть заблокирован ключом или запрещающим плакатом от несанкционированного, или ошибочного включения. А также нельзя включать этот аппарат со снятыми дугогасительными камерами, это приведут к короткому замыканию.

    Видео о подключении контактора


    Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

    Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
    На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

    Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

    При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

    Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического «отключения» оборудования при «пропадание» электричества.
    Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка «Пуск» .

    Схемы подключения магнитного пускателя

    Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

    В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

    В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

    Цепь управления получает питание от фазы «А».
    В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

    При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на «3» контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

    Обратите внимание . В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
    Например если катушка магнитного пускателя на 220 вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.

    Если номинал катушки на 380 вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
    Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

    При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

    Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

    Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

    В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.


    Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.


    Как выглядит монтажная (практическая) схема подключения магнитного пускателя?

    Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на «3» контакт кнопки «Пуск».

    Как подключить магнитный пускатель в однофазной сети



    Схема подключения электродвигателя с тепловым реле и защитным автоматом

    Как выбрать автоматический выключатель (автомат) для защиты схемы?

    Прежде всего выбираем сколько «полюсов», в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

    Следующим важным параметром будет ток сработки.

    Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А.

    Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

    Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

    Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

    Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

    Например для двигателя на 4кВт, можно ставить автомат на 10А.

    Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

    В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

    С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

    Подключение электродвигателя через реверсивный пускатель

    Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.

    Смена направления вращения реализуется простим способом, меняются местами любые две фазы.

    Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

    Отличие между магнитным пускателем и магнитным контактором в том, какую мощность нагрузки могут коммутировать эти устройства.

    Магнитный пускатель может быть «1», «2», «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:

    Названия пускателей расшифровываются следующим образом:

    • Первый знак П — Пускатель;
    • Второй знак М — Магнитный;
    • Третий знак Е, Л, У, А… — это тип или серия пускателя;
    • Четвертый цифровой знак — величина пускателя;
    • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

    Некоторые характеристики магнитных пускателей можно посмотреть в таблице

    Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:

    Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов на включение могут размещаться в рабочих зонах пользователя.
    На схеме пускатель и контактор обозначаются таким схематичным знаком:

    где A1-A2 катушка электромагнита пускателя;

    L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

    13-14 контакты, блокирующие пусковую кнопку управления двигателем.

    Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
    Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

    Стандартная схема коммутации магнитных пускателей

    Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
    Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

    К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
    Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1». Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются, после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

    Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

    Схема коммутации магнитных пускателей через кнопочный пост

    Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

    Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

    Реверсивная схема коммутации магнитных пускателей

    Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

    Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

    Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

    К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

    Как подключить трехфазный электродвигатель через пускатель. Изучаем схему подключения магнитного пускателя.

    Пускатель магнитный (далее ПМ) – аппарат коммутации, являющийся одним и элементов магнитных контакторов, коммутирующий высокие нагрузки различных величин, а также применяется в электрических цепях с регулярным включением и выключением тока.

    Основной задачей ПМ называется запуск, приостановка и реверс трехфазовых асинхронных механизмов. Очень часто такого рода устройства применяются в замкнутых электрических схемах для управления на расстоянии. Примеры:

    1. компрессорные устройства;
    2. теплопечи;
    3. кондиционеры;
    4. конвейерные ленты различного назначения.

    Можно смело констатировать, что сфера применения магнитного контактора – очень широкая.

    Принцип работы, устройство магнитного пускателя

    Суть достаточно проста и понятна:

    1. На обмотку контактора подается питаемое напряжение.
    2. Сама обмотка возбуждает намагничиваемое поле, которое втягивает во внутреннее пространство металлический сердечник с закрепленными на нем рабочими электрическими контактами.
    3. Замыкание контактов, после этого в замкнутой электрической цепи возникает ток. Управление прибором производится контролерами:«вперед»,«назад»,«пуск»,«стоп».

    Операционные контролеры работают по принципу концевика, тем самым обеспечивая надлежащее управление работы механизма.

    ПМ имеет две основные части:

    1. Контактный блок (КБ). Работает зачастую по схемам, где необходимо применить вспомогательные контакты, примеры: реверс электрического электромотора, подключения при помощи пускателя дополнительного оборудования, рабочая сигнализация. Контактный блок (дополнение с контактными выходами) – необходим, для расширения числа электрических контактов.
    2. Магнитный пускатель (МП).

    Блок контактов имеет встроенный набор электроконтактов. Этот системный комплекс позволяет соединять конструкцию с самим пускателем и образовывать один цельный модуль.

    Как правильно подключить контактный блок?

    Установка данного блока происходит на верхней части контактора, где имеются специальный разъемы с зацепами.

    Рабочая схема имеет в наличии две пары замкнутых контактов, а также две пары коннекторов разомкнутых.


    Нормально разомкнутый контакт (NO) – при неработающем состоянии всегда находится в разомкнутом положении (пара 1-2). Следовательно, для прохождения по нему тока, необходимо его замыкание.

    Нормальный замкнутый контакт (NC) – его нерабочее положение является замкнутость коннекторов (пара 3-4). В данной ситуации при размыкании контакта, через магнитный пускатель ток будет отсутствовать.

    ПМ представляет собой конструкцию, состоящую из двух базовых фрагментов:

    1. верхняя;
    2. нижняя.

    Верхняя часть – движущаяся контактирующая система, камера дугогасительная и двигающийся элемент магнита электрического, связанный с коннекторами подвижной областью механизма.

    Нижняя часть – являет собой обмотку, пружину возвратную и второй фрагмент корпуса магнита.

    Роль пружины заключается в возврате исходного положения верхней области устройства, таким образом при отсутствии контакта магнитного коннектора, ток в обмотке отсутствует.

    Разновидности МП

    Существует большая разновидность пускателей. Данный раздел расскажет о магнитных пускателях шахтных и рудничных.

    Шахтные – применяются для запуска механизмов с реверсом, соблюдая безопасную дистанцию. Также основными задачами такого приспособления являются:

    1. нейтрализация короткого замыкания;
    2. перегрузка механизма трехфазного двигателя;
    3. заклинивание мотора.

    Шахтные контакторы зачастую используют сети трехфазного переменного тока с промышленной частотой (50 Hz) и величиной напряжения 380 – 650 V. Нейтраль электрических преобразователей создают изолированной для безопасной работы в условиях шахт угольных, а также во избежание воздействия фрагментов угольной пыли и опасных газов.

    Основные возможности:

    1. реверсивный магнитный пускатель осуществляет запуск электродвигателя;
    2. задействование ПМ вакуумного;
    3. достаточно большой диапазон используемых мощностей.

    Сам пускатель представляет совокупность электроаппаратов, сконструированных и подключаемых во взрывонепроницаемом корпусе. Защитная оболочка имеет несколько блоков, которыми разделены между собой коррозионностойкими перегородками.

    Верхняя половина корпуса оборудована смотровым окном со светодиодной приборной панелью. При работе в шахтах облегчить процесс позволяет подключение фотореле, оно в свою очередь оптимизирует работу магнитных устройств в условиях слабой освещенности.

    Рудничные пускательные механизмы необходимы в работе с трехфазной сетью переменного тока, с напряжением около 800 – 1000 В. Трансформаторная нейтраль, аналогично шахтному пускателю, изолирована от воздействия различного рода опасных газов и пыли. Механизмы рудничные имеют набор механизмов, установленные в оболочке, которая защищена от воздействия влаги и содержит основные элементы:

    1. вводные кабельные приспособления;
    2. крышка с моментальным ее открытием;
    3. взрывозащищенную оболочку;
    4. разъединитель блокировочный.

    Корпус, со стороны разъединителя закрывается крышкой с окном, позволяющее наблюдать за разъединительным механизмом. Со стороны крышки, имеется элемент, который блокирует открытие крышки в случае включения разъединителя.

    Отличительной чертой устройств данного типа можно назвать изготовление электросистемы в виде 3 блоков:

    1. защиты;
    2. управления;
    3. контакторный.

    Схема подключения

    Одним из базовых элементов магнитного контактора является кнопка.

    Кнопки осуществляют «Пуск», «Назад», «Вперед», «Стоп»

    Вышеупомянутые элементы обеспечивают дистанционное управление пускателя.

    Кнопка «Стоп» задействует размыкающий контакт, благодаря которому напряжение попадает на схему управления.

    Кнопка «Пуск» нужна для того, чтобы контакт замкнулся, через него будет течь ток.

    Схема, представленная на рис. 7 показывает стандартный запуск мотора двигателя.

    Как подключить магнитный пускатель? Нужно уделить надлежащее внимание вышеупомянутой схеме.

    Данная цепь поделена на две части:

    • Силовая – питание приходит от переменного источника напряжения (380 V) и подразделяется на три основных фазы:

    Силовой блок содержит выключать QF1, несколько силовых выводов: 1L1-2T1, 3L2-4L2, 5L3-6T3 и двигатель «М».

    • Цепь управления – получает сигнал с фазы «А». В этой же цепи присутствуют:
      • сигнал «стоп» — SB1;
      • сигнал «пуск» — SB2;
      • обмотки контактора КМ1;
      • дополнительный элемент 13НО-14НО.

    Схема включение 13НО-14НО осуществляется параллельно SB2.

    Запуская QF1 фазы «А», «В», «С» попадают на контакты 1L1, 3L2, 5L3 и переходят в дежурное положение. Поступление фазы «А» на контакт «3» осуществляется через кнопку «Стоп». Элемент 13НО продолжает оставаться в дежурном положении на этих двух контактах. Электрическая цепь готова. Обязательным условием работы с электродвигателями – электрические схемы с тепловым реле, имеющее свойство защиты прибора от токовых перегрузок.

    Современный пускатели контакторные, авто-выключатели могут быть размещены в одном щитку на одной DIN-рейке. Система автоматизированного управления (САУ), отвечающая за взаимодействие всех элементов магнитных установок, технологических процессов и контроллеров основана на применении магнитных пускателей.

    Приведенная информация данной статьи, позволит с легкостью сконструировать такого рода схему и использовать ее по необходимому назначению.

    Видео о подключении магнитного пускателя

    Я не буду вдаваться в подробности что такое или контактор, для чего они нужны и т.д.

    Сразу покажу как их подключать.

    Схема включения у них совершенно одинаковая независимо от размера и назначения, так как одинаков и принцип действия. Для дистанционного управления включения/отключения контактора применяется кнопочный пост ПКЕ с кнопками “Стоп” красного цвета и кнопкой “Пуск” черного.

    Кнопки с возвратом, то есть после их нажатия они возвращаются в исходное положение сами. Внутри кнопки есть контакт, который размыкается или замыкается при нажатии.

    Пуск” наоборот- замыкается.

    Логика работы схемы включения контактором проста:

    при нажатии на кнопку “Пуск” подается напряжение на катушку контактора и он включается, силовые контакты замыкаются и остаются во включенном положении даже после возврата кнопки “Пуск” в исходное состояние.

    Отключение контактора производится нажатием на кнопку “Стоп”.

    То есть обе кнопки нажимаются кратковременно.

    Каким образом контактор остается включенным после отпускания кнопки “Пуск”?

    Ведь контакт на включение вроде как разомкнут?

    Для этого у контактора есть блок-контакт или вспомогательный, не силовой контакт который замыкается или размыкается совместно с силовыми контактами контактора.

    Для схемы включения нужен нормально-разомкнутый контакт.

    После того как кнопку “Пуск” отпущена, фаза управления на катушку идет именно через этот замкнувшийся при включении блок-контакт. Катушки контакторов есть на разное напряжение- 220 или 380 Вольт.

    Независимо от напряжения подключение катушки одинаково- на один вывод напряжение питания подключается напрямую.

    На второй вывод фаза управления на катушку идет через кнопки.

    Я рассказываю самую упрощенную схему для дистанционного управления пускателем, на самом деле в схеме еще могут быть контакты тепловых реле и других защитных аппаратов.

    Итак, сборка схемы:

    Для подключения кнопок надо трехжильный кабель.

    Фаза управления берется обычно сразу с силовых контактов, куда приходит вводной кабель и идет на кнопку “Стоп”.

    После кнопки “Стоп” фаза управления подключается: -перемычкой на кнопку “Пуск” -на блок-контакт контактора После кнопки “Пуск”- на второй конец блок-контакта контактора и уже отсюда- на катушку контактора.

    То есть кнопка “Пуск” и блок-контакт подключены паралельно друг другу.

    Но тут важно не перепутать провода местами иначе контактор не включится.

    Надо запомнить: провод фазы управления, подключенный после кнопки “Стоп”(между ней и кнопкой “Пуск”) НЕ ДОЛЖЕН подключаться на катушку.

    У кого быстрый интернет- смотрите видео, которое я заснял буквально вчера специально для вас:

    Я считаю что как подключить пускатель и уметь каждый электрик.

    Узнайте первым о новых материалах сайта!

    Магнитный пускатель — это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя. Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

    Подключить пускатель своими руками несложно , как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

    Подготовительные работы

    Перед тем как приступить к сборке схемы подключения необходимо:

    Схема подключения магнитного пускателя

    Основная схема состоит из 2-ух частей:

    1. Силовых 3 пар контактов , которые подают электропитание на электрооборудование.
    2. Схемы управления , которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.

    Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

    Рассмотрим схему с подключением катушки на 220 вольт , если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу. В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых. Они все расположены сверху, но могут дополнительные находится и сбоку.

    На силовые контакты пускателя с автомата приходят три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

    Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки. Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск». С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

    Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

    Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

    Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

    Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из .

    Как подключить тепловое реле

    Между магнитным пускателем и асинхронным электродвигателем подключается последовательно , которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

    Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель, ток в нем проходит последовательно через нагреватели термореле, и далее- к электромотору.

    На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

    Принцип работы. Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока. В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

    Учитывайте, что сверху на тепловом реле есть регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

    Похожие материалы:

    Для работы асинхронного двигателя используются кнопочные посты. Однако подключать их можно только через магнитные пускатели. Как правило, для этого применяются переходники и контакторы. Однако важно учитывать тип выключателя и параметры пускателя. Чтобы детально разобраться в подключении устройства, надо рассмотреть стандартную схему.

    Схема подключения

    Схема подключения магнитного пускателя через кнопочный пост предполагает применение аналогового переходника. Существуют блоки на три и четыре выхода. Для подсоединения определяется направленность катода. Контакты пускателя подсоединяются через переключатель. Триггер для этого подходит двуканального типа. Если рассматривать устройства с автоматическими переключателями, то у них применяется электродный регулятор. При этом блоки могут находиться на контроллере. Наиболее распространенными считаются устройства с широкополосными разъемами.

    Рассмотрение выключателей QF1

    Схема подключения магнитного пускателя через кнопочный пост имеет два контроллера, которые подсоединяются через расширитель. Выходные контакты должны устанавливаться на обкладке. Триггер для устройств подходит аналогового типа. Нормально-замкнутый контакт первого порядка устанавливается по нулевой фазе. Сопротивление на магнитном пускателе должно составлять не менее 40 Ом. Перед подключением устройства проверяется переключатель.

    Токовое реле в цепи используется только двухканального типа. Контроллер при этом должен замыкаться на первой фазе. Переключатель выставляется в верхнее положение. При подсоединении расширителя зачищаются контакты и откручивается защитная пластина. Выпрямитель для стабилизации процесса подбирается открытого типа.

    Схема с нереверсивным пускателем

    Схема подключения магнитного пускателя через кнопочный пост предполагает применение низкоомного расширителя. Выпрямители в данном случае соединяются с обмоткой преобразователя. Нормально-замкнутый контакт выключателя устанавливается по первой фазе. Также надо отметить, что фильтры разрешается использовать с сеточным триодом.

    Сопротивление пускателя в среднем равняется 55 Ом. Если рассматривать схему с дипольным переходником, то регулятор устанавливается на импульсном выпрямителе. Выходные контакты замыкаются непосредственно на динисторе. Для проверки поста используется тестер. Также надо отметить, что встречаются переменные преобразователи. Пускатели с данными элементы можно подключать через контроллер по нулевой фазе. Однако потребуется фильтр с магнитным триодом.


    Применение реверсивных пускателей

    Схема подключения магнитного пускателя через кнопочный пост очень простая. Она предполагает применение только одного выпрямителя. А фильтр может использоваться с переменным триодом. У многих моделей имеется два преобразователя. В таком случае триггер устанавливается на три выхода. Нормально-разомкнутый контакт подключается к посту через первую фазу. Для проверки элемента понадобится тестер.

    Уровень сопротивления магнитного пускателя находится на уровне 50 Ом. Если рассматривать модификации с регулируемыми преобразователями, то динистор можно подбирать на двоичной фильтре. Некоторые специалисты говорят о том, что выходы на компараторе нужно тщательно зачищать. Также надо отметить, что тетрод в пускателях должен быть правильно выставлен.

    Инструкция по пускателям серии ПМЛ-1100

    Схема имеет три переходника. Выходные контакты должны замыкаться по нулевой фазе. Проверка поста происходит при помощи тестера. Специалисты говорят о том, что не стоит использовать аналоговые преобразователи, у которых низкий уровень сопротивления. Если рассматривать простые выключатели, то триггер выставляется на канальный прием. Токовое реле соединяется с преобразователем и замыкается на первой фазе. Если возникают проблемы с перегревом, то можно попробовать понизить нагрузку за счет компаратора.


    Подключение модульного пускателя

    Схема пускателя модульного типа содержит контактные переходники. Многие модели делаются на три разъема. У них имеется положительный контактор, который подсоединяется через преобразователь. Триггер в данном случае применяется с операционным фильтром. Если рассматривать простые выключатели, то модули подсоединяются через контроллер по первой фазе. Замыкающие контакты должны находиться вверху.

    Также надо отметить, что существуют модификации на четыре выхода. Триггеры у них устанавливаются с регуляторами. При подключении устройств важно тщательно зачистить контакты и проверить устройство тестером. У многих моделей показатель сопротивления максимум доходит до 40 Ом. постов замыкаются на пластине. Выпрямители используются положительной направленности. Динисторы часто устанавливаются на три переходника. Обычный пост подсоединяется по нулевой фазе. Если говорить про регулируемые пускатели, то триггер применяется аналогового типа. В данном случае потребуется только один переключатель. Чтобы сделать все правильно, придется замерить предельное сопротивление в цепи.


    Пускатели открытого исполнения

    Пускатель (ручной) открытого типа разрешается подсоединять через обычный триггер. Контроллеры чаще всего применяются на четыре разъема. Выходные контакты подключаются к посту по нулевой фазе, а сопротивление должно составлять около 45 Ом. Контроллеры проводного типа соединяются с преобразователем. Чтобы проверить фазу, используется тестер. Пускатели с динистором устанавливаются через электродный переходник. Довольно часто выпрямители используются низкой проводимости. Замыкающие контакты должны соединяться на верней панели. Для избегания проблем со сбоями важно проверить изоляцию и позаботиться о выпрямителе.

    Подключение пускателей закрытого исполнения

    Пускатели данного типа можно подключать через проводной котроллер. При этом выпрямитель стандартно применяется с подкладкой. Специалисты советуют использовать только фильтры с триодом. Если рассматривать посты на два переключателя, то триггер выбирается импульсного типа. При этом в первую очередь подключается котроллер. Положительные контакты соединяются по нулевой фазе. Сопротивление на контроллере должно составлять не менее 45 Ом.

    Если рассматривать модификации на емкостных триггерах, то они нуждаются в преобразователе. Использовать устройства можно только в цепи постоянного тока. Фильтры в данном случае устанавливаются с триодом. У многих пускателей применяется только один компаратор. Для защиты элемента используется обкладка. Также надо отметить, что специалисты рекомендуют тщательно зачищать контакторы триггера.


    Подключение через однопереходный триггер

    Подключение через однопереходный триггер может осуществляться только по первой фазе. Также надо отметить, что для этого подходят не все пускатели. Преобразователи можно использовать только проводного типа. Сопротивление у них обязано составлять не менее 55 Ом. Динисторы под пускатели подбираются с электродным триодом. Непосредственно контакты поста замыкаются на расширителе.

    Проверить проводимость элемента можно при помощи тестера. Специалисты не рекомендуют устанавливать фильтры при повышенном сопротивлении. Стандартная схема предполагает применение двоих выпрямителей. Если говорить про регулируемые пускатели для асинхронных двигателей, то у них имеется компаратор, который подключается через преобразователь.

    Применение двухпереходного триггера

    Двухпереходные триггеры можно использовать в цепи постоянного тока. У них высокий параметр сопротивления. И они подходят для пускателей разных типов. Преобразователи в стандартной схеме имеются дуплексного типа. Довольно часто встречаются цифровые аналоги, которые выпускаются на два выхода. Многие переключатели в устройствах используются с выпрямителем. Для подключения оборудования определяется первая фаза. При этом сопротивление может составлять не менее 45 Ом. При повышенной проводимости меняется триггер с обкладкой.


    Подключение через дипольный переходник

    Дипольные переходники разрешается подключать только через кнопочный пост на две и «Стоп». Триггеры используются, как правило, низкоомного типа. Если рассматривать простой пост, то верхние контакты замыкаются в первую очередь. Также надо отметить, что контроллер можно подключать через преобразователь, а сопротивление у него составляет 55 Ом. Динистор довольно часто используется с аналоговыми фильтрами, которые значительно повышают коэффициент проводимости. Также надо помнить, что для пускателей данного типа не подходят линейные триггеры. Переходник разрешается подсоединять с расширителем. Таким образом, сильно снимается перегрузка с пускателя. Фильтр в данном случае устанавливается за компаратором.

    Применение проводного переключателя

    Проводной переключатель можно подключать чрез трансивер, но только по первой фазе. Многие контроллеры применяются на два выхода. Расширитель в данном случае используется с одним фильтром. Пускатель замыкается на первой фазе. Также надо отметить, что пост следует установить за выходными контактами. При обнаружении проблем с пробоями в цепи проверяется расширитель.

    Подключение через модуль

    Через модуль разрешается подключать только электродные пускатели. Посты при этом подбираются двухкнопочного типа. В некоторых случаях модули производятся на три выхода. И у них имеется один контроллер. В такой ситуации для подключения применяется триод. Замыкающие контакты выставляются стразу по первой фазе. Также надо отметить, что расширитель подбирается дипольного типа. Если говорить про модели с обкладками, то замыкающие контакты надо проверять на предельное сопротивление. Выходы расширителя при этом тщательно зачищаются. Также надо отметить, что открытые контакты выставляются по нулевой фазе.

    Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

    Проведение подготовительных работ

    Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

    Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

    Важно! Величина рабочего напряжения катушки может быть 220 или 380 Вольт. При наличии первого показателя необходимо знать, что на ее контакты осуществляется подача фазы и ноля. Во втором случае это обозначает о наличии двух разноименных фаз.

    Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

    Для подключения данного оборудования необходимо использовать две кнопки:

    Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

    Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить. Коммутация этих приспособлений не производится.

    Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

    Особенности подключения магнитных пускателей

    Схема магнитного пускателя характеризуется наличием:

    • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
    • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

    Внимание. Наиболее часто используют схему, которая требует использования одного пускателя. Это объясняется ее простотой, что позволяет с ней справиться даже малоопытному мастеру.

    Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

    При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

    Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

    Важно. При этом необходимо к кнопке Пуск подключить провод, который идет с контакта катушки. С него также делают перемычку, которая идет к замкнутому контакту кнопки Стоп.

    Включение работы магнитного пускателя производится с помощью Пуск, которая смыкает цепь, а отключение — с помощью кнопки Стоп, которая производит расцепление цепи.

    Особенности подключения теплового реле

    Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.


    Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и в последствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

    Внимание. При подключении теплового реле, необходимо учитывать наличие на нем регулятора тока, который срабатывает в небольших пределах.

    Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

    Схема подключения пускателя — Статьи по электротехнике — Каталог статей


    Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди). Хоть Вы, возможно, конечно знаете принцип её  работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (ПМЛ).

    Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

    Схема пускателя упрощенный вариант

    А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя(ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования. Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля). Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт само подхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

    Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется само подхватом). Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска Пуска.
    Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает  нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.
    Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель. Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья: Схема пускателя упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни.

    Подключения пускателя по схеме — реверс

    Вариант приведенной выше схемы, используется для запуска электродвигателей, работающих в одном режиме, т. е. не меняя вращения (насосы, циркулярки, вентиляторы). Но для оборудования которое должно работать в двух направлениях, это кран  — балки, тельферы, лебедки, открывание-закрывание ворот и др. необходима другая электрическая схема. Для такой схемы нам понадобится не один, а два одинаковых пускателя и кнопка ПУСК-СТОП трех кнопочная, т. е. две кнопки ПУСК и одна СТОП. Могут в схемах реверс, использоваться пульты и на две кнопки, это участки, где промежутки работы очень короткие. Например небольшая лебедка, промежутки работы 3-10 секунд, для работы этого оборудования, вариант на две кнопки более подходящий, но кнопки обе пусковые, т. е. только с нормально открытыми контактами, и в схеме блок контакты  (пм1 и пм2) самоподхвата не задействуются, а именно  пока вы держите кнопку нажатой –  оборудование работает, как отпустили – оборудование остановилось. В остальном схема реверс аналогична схеме упрощенный вариант.

    Подключения пускателя по схеме – реверс

    Пускатель со схемой звезда – треугольник

    Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт, и высокооборотные ~3000 об/мин, иногда 1500 об/мин.

    Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Здесь в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не изменяется.

    Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).

    Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том что двигатель имеет мощность которая не зависит от того подключен он в звезду или на треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники «W=I*U»

    Мощность равна сила тока, умноженная на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220). В двигателе концы обмоток выведены на «клеммник»  таким образом что в зависимости от того каким образом поставить перемычки получится подключение в звезду или в треугольник.  Такая схема обычно на рисована на крышке. Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей.

    Схема звезда – треугольник

     Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

    К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Конта

    Цепь стартера двигателя

    | Pacific Yacht Systems

    Распространенная беда, из-за которой мы часто получаем запросы на обслуживание, — это двигатель, который не запускается или даже «не переворачивается». Большинство из нас знакомо со звуком низкого напряжения батареи стартера двигателя, который медленно переворачивает двигатель, но недостаточно быстро, чтобы запустить двигатель; некоторые люди, возможно, даже слышали «щелкающий» звук от батареи настолько низкого напряжения, что стартер даже не включается. Традиционные схемы стартера относительно просты, и базовое понимание схемы может позволить оператору найти неисправность в цепи.

    «Стартер» состоит из электродвигателя, достаточно мощного, чтобы вращать двигатель, из-за высокой силы тока, необходимой для работы двигателя, приведение в действие стартера для включения будет осуществляться с помощью соленоида (обычно прикрепленного к двигателю). Это позволит цепи с переключением на более низкую силу тока на мгновение задействовать стартер. Кабель высокого тока подключается к одной стороне соленоида, а другой вывод соленоида с высоким током подключается к стартеру.На соленоиде будет один или два (два, если соленоид имеет изолированное заземление) меньших клемм, которые обеспечивают электрическое срабатывание соленоида.

    Логика схемы стартера следует этому традиционному формату. Электропитание подается на сторону высокого тока соленоида стартера по кабелю, подключенному к выключателю пусковой аккумуляторной батареи двигателя. Выключатель стартерной батареи также будет обеспечивать питание остальной части цепи стартера, которая может включать дополнительный выключатель (также известный как выключатель).выключатель зажигания), но должен иметь выключатель мгновенного действия для приведения в действие соленоида стартера. Когда переключатель стартерной батареи двигателя находится в положении «включено», мощность должна присутствовать на одной стороне соленоида стартера и на одной стороне переключателя мгновенного действия стартера (возможно, от переключателя «зажигание»). Нажатие кнопки мгновенного стартера подает напряжение на клемму срабатывания соленоида стартера, замыкая контакт соленоида и активируя стартер.

    Руководство для начинающих: что такое стартер (и для чего он нужен)?

    После запуска двигателя вашего автомобиля, пока он получает воздух, топливо и искру, он будет эффективно работать бесконечно без посторонней помощи.Вот почему генераторы и ирригационные насосы можно использовать в отдаленных районах без постоянного ухода за ними со стороны инженера. Были даже разговоры об использовании внутреннего сгорания на спутниках и космических кораблях для выработки тепла и выработки электроэнергии (очевидно, им нужно было бы взять с собой запас кислорода).

    Но в первую очередь нужно запустить двигатель, и тут в дело вступает стартер! Вы представляете, какой была бы жизнь, если бы мы все еще крутили машины вручную?

    Чтобы вращать двигатель, вам нужен электродвигатель, который может обеспечивать большой крутящий момент в течение короткого периода времени, по требованию, снова и снова.Именно это и есть стартер, плюс механизм, позволяющий ему мгновенно включаться и отключаться механически.

    Чарльз Кеттеринг изобрел электрический стартер в 1911 году для использования на кадиллаках 1912 года, соединив электродвигатель, генератор и систему искрового зажигания, значительно модернизировав автомобили того времени. Винсент Бендикс разработал систему привода, которая позволяла шестерням стартера быстро и эффективно включаться и выключаться, что является важной частью системы запуска.Функции генерации и зажигания скоро будут отделены от стартера и получат свои собственные специализированные системы, но по иронии судьбы многие современные мягкие гибриды снова используют интегрированную систему генератора / стартера. Затем ведущая шестерня вращает маховик, и двигатель запускается. Как только двигатель запускается (и вы отпускаете ключ зажигания), соленоид позволяет ведущей шестерне втягиваться и отсоединяться от маховика, предотвращая повреждение стартера.

    а как работает стартер? На самом деле это относительно просто — когда вы поворачиваете ключ зажигания, мощность передается в систему зажигания для зажигания свечей зажигания и на более крупный магнитный переключатель, который посылает импульс мощности прямо от аккумулятора к стартеру.

    Этот магнитный переключатель называется соленоидом и обычно прикручивается болтами к самому стартеру, обеспечивая переключение большой силы тока и зацепление шестерен. Когда электромагнит включен, плунжер соленоида соединяет толстый кабель аккумулятора с обмотками внутри стартера, чтобы фактически вращать электродвигатель, плюс он толкает шток, зацепляя вилку, которая, в свою очередь, толкает ведущую шестерню (подключенную к двигателю) для автоматического зацепиться с маховиком.

    Как работает система запуска, стартер и привод стартера?

    В этой статье вы подробно узнаете, как работает система пуска, стартер и привод стартера, а также сможете найти и устранить неисправности системы пуска.

    Как работает система запуска?

    В автомобиле система запуска сначала проворачивает двигатель. Он заменил ручное усилие для проворачивания двигателя с помощью кривошипа, которое использовалось в древние времена.

    Первоначально двигатель требует запуска, но после завершения цикла он запускается и работает самостоятельно.

    В двухколесных транспортных средствах обычно используется «кик-старт» двигателя, но в последнее время ряд производителей ввели «запуск кнопкой».

    Для первоначального запуска двигателя предусмотрен электродвигатель, который получает входной электрический ток от аккумулятора.

    Механическая энергия в виде вращения вала передается на двигатель. Это обеспечивает начальное перемещение коленчатого вала, шатуна и поршня.

    Как только возникает искра, топливо воспламеняется, и мощность становится доступной от двигателя. Больше не нужно запускать двигатель, система запуска перестает работать, и двигатель работает сам по себе.

    Система запуска делает запуск автомобиля удобным. Система запуска состоит из запуска двигателя, магнитного выключателя, предохранительного выключателя, аккумулятора, кабелей и выключателя зажигания.

    Эти компоненты связаны друг с другом двумя цепями. Один из них — это пусковая цепь, в которой протекает большой ток, который используется для запуска двигателя. Во-вторых, это схема управления, в которой протекает слабый ток.

    Выключатель зажигания также действует как выключатель для цепей запуска. В цепи запуска ток течет от аккумуляторной батареи к стартеру через соленоид или магнитный переключатель. Цепь управления соединяет магнитный выключатель с аккумулятором через выключатель зажигания (рис.20.1).

    Как работает стартер?

    Стартер, как и любой другой электродвигатель, рассчитан на работу при высоких электрических перегрузках и выдает очень большую мощность. Благодаря этому двигатель может работать непродолжительное время.

    Для его работы необходим высокий ток, выделяющий тепло. Также требуется время, чтобы рассеять это тепло. Поэтому рекомендуется, чтобы у двигателя было достаточно промежутков между более чем одной попыткой пуска.

    Двигатель имеет катушки возбуждения с полюсными наконечниками, якорь и корпус, в котором они находятся.Кроме того, у него есть щетки, втулки, которые делают его работу более эффективной.

    Катушки возбуждения и полюсные наконечники создают сильные стационарные электромагнитные поля, когда через них проходит ток.

    Магнитная полярность (N или S) зависит от направления, в котором течет ток. Создаваемые магнитные поля имеют противоположный характер.

    Якорь находится между приводной и концевой рамами. Он имеет обмотки и коллектор, установленный на валу якоря. Обмотка состоит из нескольких витков по одной петле каждая.

    Они изолированы друг от друга и входят в пазы вала якоря. Коммутатор имеет тяжелые медные сегменты, окружающие вал, но изолированы друг от друга и вала.

    Якорь окружен обмотками возбуждения. В якорь подается ток, и он создает магнитное поле в каждом проводнике. Магнитные поля также создаются катушками возбуждения.

    Реакция между этими магнитными полями вызывает вращение якоря. Вращение передается на коленчатый вал двигателя через вал якоря.Это вызывает запуск двигателя.

    Ток от катушек возбуждения к якорю передается через щетки. Эти щетки удерживаются пружинами напротив коллектора. Щеток может быть от двух до шести для плавного движения и обеспечения постоянного крутящего момента.

    На рисунке 20.2 представлена ​​пусковая система со всеми ее компонентами.

    Катушки возбуждения создают стационарное магнитное поле. Обмотки якоря помещаются в это стационарное магнитное поле, и через него пропускается ток.Создается вторичное магнитное поле.

    Силовые линии стационарного магнитного поля движутся по обмотке. Они объединяются с одной стороны и усиливают магнитное поле. С другой стороны, они противоположны и, следовательно, ослабляют магнитное поле.

    Существует неуравновешенная магнитная сила, которая вызывает толчок в сторону более слабого магнитного поля.

    Обмотки якоря имеют форму катушек. Ток течет внутрь и наружу в противоположных направлениях. Это делает ориентацию магнитных сил в противоположном направлении в каждом сегменте намотки.

    Когда он находится в постоянном магнитном поле, одна часть обмотки якоря толкается в одном направлении, а другая часть — в противоположном. Это вызывает вращение обмотки якоря.

    Катушка обмотки, установленная на валу, вызывает вращение вала (рис. 20.3).

    Когда якорь вращается на половину оборота, ток меняет направление на противоположное из-за контакта между щетками и коммутатором.

    Сегмент коммутатора прикреплен к каждой катушке, и он входит в контакт с другой щеткой, когда проходит мимо одной щетки.Таким образом, ток сохраняется в одном направлении.

    Полярность сегментов вращающейся катушки якоря меняется на противоположную при ее вращении. Важно, чтобы крутящий момент при вращении коленчатого вала был постоянным, а для достижения этого количества сегментов якоря оставалось большим.

    Когда один сегмент проходит через полюс вторичного магнитного поля, другой сегмент немедленно заменяет его. Двигатели могут быть последовательными, параллельными или составными.

    Якорь соединен последовательно с катушками возбуждения и параллельно с катушками возбуждения в последовательных и параллельных двигателях.В составных двигателях это комбинация последовательного и параллельного подключения (рис. 20.4).

    Величина крутящего момента двигателя зависит от потребляемого им тока. При медленной работе двигатель потребляет более высокий ток. Поскольку для проворачивания вала двигателя требуется больший крутящий момент, пусковой двигатель требует более высокого тока.

    Как работает стартерный привод?

    Привод стартера передает движение от вала стартера к коленчатому валу двигателя. Он имеет шестерню, которая входит в зацепление с маховиком, установленным на коленчатом валу (рис.20.5).

    Маховик снабжен зубьями для зацепления с шестерней. Зацепление шестерни и маховика происходит до запуска двигателя. Это сделано, чтобы не повредить зубья шестерни или маховика.

    Обгонная муфта включена для защиты стартера.

    После запуска двигателя и начала вращения коленчатого вала со скоростью, превышающей скорость запуска двигателя, якорь отсоединяется от маховика с помощью обгонной муфты.

    Если не расцепить, якорь будет вращаться с очень высокой скоростью (частотой вращения двигателя), что может повредить его обмотку. Обгонная муфта имеет корпус, закрепленный на валу якоря посредством внутренних шлицев.

    Имеются подпружиненные ролики, и эти клинья плотно прилегают к цилиндру шестерни, когда они вдавливаются в их конические пазы.

    Шестерня и картер сцепления заблокированы вместе, и это вызывает передачу движения от вала якоря к коленчатому валу. Когда частота вращения коленчатого вала превышает скорость вала якоря, ролики освобождаются, а ведущая шестерня и вал якоря разблокируются (рис.20.6).

    На этом этапе шестерня наезжает на вал якоря до тех пор, пока она не будет выведена при запуске тяги привода. Тяга пускового привода также управляет обгонной муфтой.

    Цепь управления имеет предохранительный выключатель, также известный как предохранительный выключатель нейтрали. Он предотвращает срабатывание пусковой системы при включенной передаче.

    Для механических и автоматических коробок передач используются разные переключатели.

    Для МКПП это электрический выключатель, расположенный на полу (рис.20.7). Он приводится в действие, и его контакты замыкаются при нажатии педали сцепления.

    В автоматической коробке передач переключатель может быть электрическим или механическим. В электрическом переключателе точки контакта замкнуты, когда автомобиль находится в нейтральном положении. Переключатель находится возле селектора передач.

    Механический переключатель блокирует движение ключа зажигания при включении передач.

    Диагностика неисправностей системы запуска.

    Система запуска может иметь проблемы, например, двигатель не запускается или двигатель не запускается.Помимо этих проблем, соленоид может иметь некоторый шум; шестерня может не выйти из зацепления должным образом.

    Для диагностики неисправности необходимо включить фары и осмотреть их. Если огни не тускнеют и нет проворачивания, проверьте, есть ли напряжение на клеммах замка зажигания и пускового двигателя, когда ключ зажигания находится в положении «пуск». выписан. Если свет немного тускнеет и не происходит проворачивания, возможно, шестерня не входит в зацепление с коленчатым валом.

    Также может быть обрыв цепи в пусковом двигателе. Если свет полностью гаснет и не происходит проворачивания, возможно, аккумулятор неправильно подключен.

    Если нет индикаторов и не происходит проворачивания, значит, аккумулятор разомкнут или разряжен. Если двигатель проворачивается медленно и не запускается, это может быть связано с неисправным пусковым электродвигателем.

    Шум соленоида может быть из-за низкого заряда батареи или неисправной обмотки соленоида.

    Это все для работы системы пуска, стартера и привода стартера.Спасибо, что обратились сюда. Пожалуйста, не забудьте поделиться им.

    Все, что вам нужно знать о пускателе двигателя с прямым включением (DOL)

    Для запуска асинхронного двигателя требуются различные методы пуска, поскольку они потребляют больший пусковой ток. Чтобы предотвратить любые повреждения обмотки из-за протекания большого тока, используются различные типы пускателей.

    Одной из простейших форм пускателя двигателя , который используется для асинхронных двигателей, является пускатель прямого включения.Он состоит из MCCB или автоматических выключателей, контактора и реле перегрузки для защиты. Он имеет очень специфический контактор, который является электромагнитным, и он может быть отключен тепловым реле перегрузки в случае аварии.

    Обычно контактор управляется разными кнопками пуска и останова, а затем используется вспомогательный контакт на контакторе, который помещается поперек кнопки пуска для удержания контакта.

    Теперь давайте поговорим о принципе работы устройства прямого запуска (DOL)

    Итак, для начала контактор замыкается, подавая полное линейное напряжение на обмотки двигателя.Таким образом, сначала двигатель будет выделять очень высокий пусковой ток в течение короткого периода времени, магнитное поле в утюге и ток будут ограничены током заторможенного ротора, который присутствует в двигателе.

    На следующем этапе двигатель развивает крутящий момент заблокированного ротора и начинает разгоняться до полной скорости. И, когда они это сделают, ток начнет падать, но не будет значительно падать, пока двигатель не наберет высокую скорость, обычно около 85% от синхронной скорости. Одной из функций конструкции двигателя является кривая пускового тока и напряжение на клеммах, а также она полностью не зависит от нагрузки двигателя.

    Различные части стартеров DOL

    Деталь DOL — Контактор

    Присутствующие магнитные контакторы действуют как переключатели с электромагнитным управлением, которые обеспечивают безопасное и удобное средство для подключения ответвленных цепей. Они также используют электромагнитную энергию для включения переключателей. Электромагнит состоит из катушки с проволокой, размещенной на железном сердечнике.

    Итак, здесь происходит следующее: когда ток течет через катушку, железо магнита намагничивается и притягивает железный стержень, известный как якорь.Когда прерывание тока протекает через катушку с проводом, это вызывает выпадение якоря из-за наличия воздушного зазора в магнитной цепи.

    Магнитные двигатели линейного напряжения — это электромеханические устройства, которые обеспечивают безопасные, экономичные и удобные средства для запуска и остановки двигателей, а также имеют то преимущество, что ими можно управлять дистанционно.

    Основная задача контактора — управлять оборудованием, в котором используются электродвигатели. Он состоит из катушки, которая подключена к звукам напряжения, и довольно часто для однофазных двигателей используются катушки 230 В, а для трехфазных катушек 415 В.

    Реле перегрузки (защита от перегрузки)

    Если говорить о защите от перегрузки, то она предназначена для электродвигателя и помогает предотвратить выгорание и обеспечить максимальный срок службы. Из-за перегрузки двигатель потребляет чрезмерный ток, что приводит к перегреву.

    Как вы, возможно, знаете, поскольку изоляция обмотки двигателя ухудшается из-за перегрева, существуют установленные пределы рабочей температуры двигателя, которые предотвращают подобную ситуацию.

    Реле перегрузки можно разделить на три части:

    1. Тепловое реле: Как следует из названия, тепловые реле перегрузки зависят от повышения температуры, которое вызывается током перегрузки для срабатывания, и его можно разделить на плавящиеся сплавы и биметаллические элементы.
    2. Магнитное реле: они реагируют только на превышение тока и не зависят от температуры.
    3. Электронное реле
    4. : Этот вид электрического реле сочетает в себе высокую скорость отключения, возможность регулировки и простоту установки.Они идеальны для многих точных применений.

    Проблема с пускателем двигателя? Мы можем помочь вам в поиске и устранении неисправностей

    Главная »О нас» Новости »Устранение основных неисправностей пускателя двигателя

    Опубликовано: автором springercontrols

    Проблемы с запуском двигателя могут быть вызваны множеством причин, но мы рассмотрим несколько простых методов определения проблемы со стартером двигателя и простых решений.

    Если двигатель не запускается, необходимо проверить несколько вещей, чтобы определить причину. Если это новая установка, которая никогда не работала, важно проверить схему подключения и убедиться, что все провода подключены правильно. Если это более старая установка, и она работала в прошлом, она все равно должна быть подключена правильно, если только недавно не были внесены некоторые изменения, которые могли привести к изменению проводки. Вот краткое руководство по поиску и устранению неисправностей магнитного пускателя двигателя

    .
      1. Осмотрите кабели и клеммы на предмет признаков возгорания, коррозии, растрескивания изоляции кабеля или любых повреждений.Если есть какие-либо видимые признаки повреждения, ВЫКЛЮЧИТЕ ПИТАНИЕ и попросите опытного электрика проверить компоненты, проводку и установку. Если вы не видите никаких визуальных признаков проблемы, перейдите к шагу 2.

      1. Самым простым (и наиболее частым) случаем является срабатывание двигателя при перегрузке. Перегрузка предназначена для защиты двигателя, если ток превышает ток полной нагрузки. Это немного похоже на проверку / сброс автоматического выключателя в вашей домашней коробке выключателя.Чтобы сбросить перегрузку, просто нажмите красную кнопку на перегрузке, или, если у вас есть внешняя кнопка сброса, нажмите ее. Это также хорошее время, чтобы убедиться, что для сброса установлен режим «Ручной». Проверьте положение красной кнопки, чтобы убедиться, что она установлена ​​на «ручной».

      1. Если сброс перегрузки не работает, мы можем быстро проверить, не произошла ли перегрузка. Убедитесь, что питание отключено, заблокируйте / пометьте цепь, если это необходимо. и с помощью омметра проверьте целостность цепи между двумя нормально замкнутыми (NC) клеммами при перегрузке.Фактическое измерение сопротивления не имеет значения, мы просто проверяем, есть ли непрерывность. Если омметр показывает «ОТКРЫТО», значит, перегрузка серьезная и ее необходимо заменить.

      1. Если перегрузка показывает непрерывность между двумя клеммами NC, нам придется копнуть немного дальше. Сфотографируйте или запишите информацию с паспортной таблички двигателя. Важно знать напряжение, фазы и силу тока полной нагрузки (FLA) двигателя.Имея эту информацию под рукой, вы можете упростить процесс.

      1. Убедитесь, что для параметра перегрузки (желтая шкала) установлено значение тока полной нагрузки, указанное на паспортной табличке двигателя, в зависимости от мощности, подаваемой на двигатель.

      1. Как только вы определите необходимое входное напряжение, используйте цифровой мультиметр, чтобы убедиться, что все 3 фазы электрического потенциала присутствуют. (или, если он однофазный, проверьте наличие однофазного напряжения).Лучше всего проверить это на кабеле, идущем в контактор на клеммах L1, L2 и L3, или, если есть выключатель, проверьте подводящие провода к разъединителю. Измерьте расстояние между ножками L1, L2 и L3, чтобы убедиться, что у вас есть полное напряжение в соответствии с мощностью входной линии, подаваемой на двигатель.

      1. Если у вас отсутствует одна или несколько фаз и в цепи есть предохранители, отключите питание от сети. и используйте мультиметр, чтобы проверить целостность предохранителей.

      1. Если один взорвался, замените его. Иногда держатели предохранителей могут подвергаться коррозии и мешать целостности цепи, поэтому осмотрите держатели предохранителей на предмет коррозии и, если она есть, очистите их с помощью очистителя электрических контактов и старой зубной щетки.

    Если все вышеперечисленное выполнено, а двигатель по-прежнему не запускается, пора вызвать электрика.

    в рубрике: Новости

    Способы пуска двигателя постоянного тока

    Уравнение основного рабочего напряжения двигателя постоянного тока составляет
    E = E b + I a R a и, следовательно, I a = (E — E b ) / R a
    Теперь, когда мотор находится в состоянии покоя, очевидно, что задняя ЭДС E b = 0.Следовательно, ток якоря в момент пуска может быть задан как I a = E / R a . В практических машинах постоянного тока сопротивление якоря в основном очень низкое, обычно около 0,5 Ом. Поэтому при пуске через якорь протекает большой ток. Этот ток достаточно велик, чтобы повредить цепь якоря.
    Из-за чрезмерного пускового тока
    1. предохранители могут перегореть, а обмотка якоря и / или узел щетки коллектора могут быть повреждены.
    2. будет создаваться очень высокий пусковой крутящий момент (поскольку крутящий момент прямо пропорционален току якоря), и этот высокий пусковой крутящий момент может вызвать огромную центробежную силу, которая может отбросить обмотку якоря.
    3. , другие нагрузки, подключенные к тому же источнику, могут испытывать провал напряжения на клеммах.
    Большой двигатель постоянного тока будет набирать скорость довольно медленно из-за большой инерции ротора. Следовательно, нарастание обратной ЭДС медленно приводит к поддержанию уровня высокого пускового тока в течение некоторого времени. Это может привести к серьезным повреждениям. Чтобы избежать этого, необходимо использовать подходящий пускатель двигателя постоянного тока . Однако очень маленькие двигатели постоянного тока можно запустить напрямую, подключив их к источнику питания с помощью контактора или переключателя.Это не причиняет никакого вреда, потому что они быстро набирают скорость из-за небольшой инерции ротора. В этом случае большой пусковой ток быстро спадет из-за быстрого нарастания обратной ЭДС.

    Пускатели двигателей постоянного тока

    Чтобы избежать вышеуказанных опасностей при запуске двигателя постоянного тока , необходимо ограничить пусковой ток. Итак, двигатель постоянного тока запускается с помощью стартера. Существуют различные типы пускателей электродвигателей постоянного тока , такие как 3-х точечный пускатель, 4-х точечный пускатель, пускатель с катушкой отпускания холостого хода, пускатель с тиристорным контроллером и т. Д.
    Основная идея каждого пускателя двигателя постоянного тока заключается в добавлении внешнего сопротивления обмотке якоря во время пуска.
    Из нижеперечисленного, 3-точечные пускатели и 4-х позиционные пускатели используются для пуска двигателей с параллельной обмоткой и двигателей с комбинированной обмоткой.

    3-х точечный стартер

    Внутренняя проводка трехточечного стартера показана на рисунке.
    Когда подключенный двигатель постоянного тока должен быть запущен, рычаг постепенно поворачивается вправо. Когда рычаг касается точки 1, обмотка возбуждения подключается напрямую к источнику питания, а обмотка якоря подключается последовательно с сопротивлениями R1 — R5.Во время пуска полное сопротивление добавляется последовательно с обмоткой якоря. Затем, по мере того, как рычаг перемещается дальше, сопротивление в цепи якоря постепенно снижается. Теперь, когда рычаг достигает положения 6, все сопротивление отключается от цепи якоря, и якорь подключается напрямую через источник питания. Электромагнит «E» (без катушки напряжения) удерживает рычаг в этом положении. Этот электромагнит отпускает рычаг при отсутствии (или низком) питающем напряжении.
    Видно, что когда рычаг перемещается из положения 1 в последнее положение, сопротивление пускателя добавляется последовательно с обмоткой возбуждения.Но поскольку значение сопротивления стартера очень мало по сравнению с сопротивлением шунта, уменьшение тока возбуждения шунта может быть незначительным. Однако для преодоления этого недостатка в трехточечном пускателе можно использовать латунную или медную дугу, которая обеспечивает соединение между подвижным плечом и обмоткой возбуждения, как показано на рисунке 4-точечного пускателя ниже.
    Когда двигатель перегружен сверх заданного значения, активируется «электромагнит расцепителя максимального тока» D, который замыкает электромагнит E и, следовательно, отпускает рычаг, и двигатель выключается.

    4-х точечный стартер

    Основное различие между 3-точечным стартером и 4-точечным стартером заключается в том, что катушка без напряжения (электромагнит E) не подключена последовательно с катушкой возбуждения. Обмотка возбуждения напрямую подключается к источнику питания, когда рычаг перемещается, касаясь латунной дуги (дуга под штифтами сопротивления). Катушка отсутствия напряжения (или удерживающая катушка) соединена с ограничивающим ток сопротивлением Rh. Такое расположение гарантирует, что любое изменение тока в поле шунта вообще не повлияет на ток через удерживающую катушку.Это означает, что электромагнитное усилие удерживающей катушки всегда будет достаточным, чтобы пружина не возвращала рычаг без необходимости в выключенное положение. 4-точечный пускатель используется там, где ток возбуждения должен регулироваться с помощью реостата возбуждения для работы двигателя с частотой вращения выше номинальной за счет уменьшения тока возбуждения.

    Стартер двигателя постоянного тока

    Конструкция пускателей двигателей постоянного тока очень проста, как показано на рисунке. Пусковой рычаг просто перемещается вправо, чтобы запустить двигатель.Таким образом, максимальное сопротивление последовательно подключается к якорю во время пуска, а затем постепенно уменьшается по мере того, как пусковой рычаг движется вправо. Этот стартер иногда также называют двухточечным стартером .
    Катушка отпускания холостого хода удерживает пусковой рычаг в рабочем положении и покидает его при пропадании напряжения.

    Как это работает: стартеры и технология автоматического старт-стопа

    Breadcrumb Trail Links

    1. Технологии и инновации
    2. Как это работает
    3. История характеристик

    Автоматические системы старт-стоп широко распространены в автомобилях сегодня, поэтому вот быстрый посмотрите, как они творят свое волшебство

    Автор статьи:

    Джил МакИнтош В наши дни кнопочное зажигание и автоматические системы старт / стоп стали обычным явлением в автомобилях.Фото Дженнифер Фравика / Вождение

    Содержание статьи

    Когда вы поворачиваете ключ автомобиля или нажимаете кнопку пуска, все запускается стартером. Это электродвигатель с единственной целью — вращать коленчатый вал для запуска двигателя, но на многих новых автомобилях он играет эту роль еще чаще. Некоторые производители автомобилей добавляют технологию старт-стоп, которая выключает двигатель на холостом ходу, а затем запускает его снова, когда вы будете готовы к работе.

    Объявление

    Это объявление еще не загружено, но ваша статья продолжается ниже.

    Содержание статьи

    Сердцем двигателя является его центральный коленчатый вал, который вращается, вызывая движение, которое в конечном итоге приводит к вращению колес. Его вращают поршни, которые двигаются вверх и вниз, вращая его так же, как ваши ноги приводят в движение велосипед. Чтобы двигатель запускался и работал, большинство связанных с ним функций также должны запускаться одновременно. Некоторые запускаются при первых оборотах коленчатого вала; электрическая система также включает топливный насос и систему зажигания для свечей зажигания.

    1. Кнопочные зажигания, приводящие к смертельным последствиям — и пора действовать

    2. Первый привод: 2019 RAM 1500 с eTorque

    К задней части коленчатого вала прикреплен диск, называемый маховиком, который вращается. всякий раз, когда коленчатый вал делает. Одна из его функций — выравнивание движения коленчатого вала для уменьшения вибрации, но также важно для запуска двигателя благодаря зубчатому венцу, зубчатому венцу вокруг его обода.Соленоид на стартере создает контакт, который передает энергию аккумулятора на стартер. Приводной механизм стартера, называемый шестерней Бендикса, зацепляет свою малую ведущую шестерню с зубьями кольцевой шестерни. При вращении ведущей шестерни вращается и коронная шестерня, что приводит к вращению коленчатого вала.

    Объявление

    Это объявление еще не загружено, но ваша статья продолжается ниже.

    Содержание статьи

    Этот прядильный станок заставляет все работать.Коленчатый вал опускает некоторые поршни, создавая в каждом цилиндре вакуум, который всасывает топливо и воздух. Свеча зажигания воспламеняет смесь, создавая сгорание, которое приводит в действие каждый поршень и запускает вращение коленчатого вала. Стартер больше не нужен. Пружина отсоединяет его от зубчатого венца, а контакт соленоида размыкается и отключает питание.

    На обычном автомобиле запуск двигателя — это основная работа аккумулятора. Когда двигатель работает, он запускает генератор / генератор, который обеспечивает электроэнергию автомобиля, от зажигания свечей зажигания до включения света.Он также подает электричество обратно в аккумулятор, где оно сохраняется для следующего запуска двигателя. Единственные другие задачи аккумулятора — это запускать аксессуары при выключенном двигателе — например, когда вы сидите с включенной стереосистемой — или брать на себя управление в случае отказа генератора, и в этом случае автомобиль будет работать до тех пор, пока аккумулятор не разрядится.

    Объявление

    Это объявление еще не загружено, но ваша статья продолжается ниже.

    Содержание статьи

    Единственная задача стартера — вращать коленчатый вал для запуска двигателя.Фото Джил МакИнтош / Driving

    Вы, наверное, видели старинные фотографии автомобилистов, поворачивающих ручку на передней части своих автомобилей. На этих ранних автомобилях вращение коленчатого вала для запуска двигателя производилось исключительно с помощью мускулов. Cadillac представила первый автомобиль с автостартером в 1912 году, и эта базовая конструкция используется до сих пор.

    У гибридных автомобилей также должны запускаться бензиновые двигатели, но в дополнение к двигателю у них есть электродвигатель-генератор. Это работает либо само по себе, когда автомобиль работает только на электричестве, либо в сочетании с газовым двигателем для дополнительного ускорения.Вместо обычного стартера он также вращает коленчатый вал, чтобы запустить двигатель по мере необходимости — не только при первом запуске автомобиля, но и в любое время, когда системе необходимо перейти с электрической системы на газоэлектрическую. Двигатель очень быстро вращает коленчатый вал, и запуск двигателя в целом происходит более плавно. У некоторых гибридов бывает сложно определить, когда срабатывает бензиновый двигатель во время движения.

    Объявление

    Это объявление еще не загружено, но ваша статья продолжается ниже.

    Содержание статьи

    Гибриды выключают бензиновый двигатель на холостом ходу, например, когда вы сидите на стоп-сигнале, и теперь многие негибриды делают то же самое, чтобы сэкономить топливо и уменьшить выбросы. Все остальное продолжает работать, включая климат-контроль, фары и стереосистему, а двигатель перезапускается, как только вы снимаете ногу с тормоза.

    Ram 1500: 5,7-литровый двигатель Hemi V8 с двигателем eTorque. Фото из раздаточного материала / Ram

    Эти негибридные автомобили, конечно, используют стартер, но поскольку двигатель останавливается и запускается очень много раз, стартер и его система оптимизированы для уменьшения износа.Сюда могут входить специальные материалы и подшипники для увеличения срока службы, улучшенное передаточное число ведущей шестерни, чтобы стартер не вращался так быстро, и модули управления, которые останавливают цилиндры двигателя в точке, где легче всего запустить все снова. Система старт-стоп также не срабатывает, если для нее не созданы все условия, включая температуру окружающей среды и если двигатель достаточно прогрелся. Большинство транспортных средств дают водителю возможность временно отключить систему, если старт-стоп нежелателен, а также автоматически отключить ее, если автомобиль переведен в спортивный режим.

    Некоторые автомобили имеют мягкие гибридные системы, такие как система eTorque, доступная на Ram 1500 2019 года. Они соединяют мотор-генератор с 48-вольтовой батареей, и хотя они не управляют автомобилем только на электричестве в качестве полного гибрид может, они заводят бензиновый мотор и сглаживают ускорение. Ожидайте увидеть это еще больше, поскольку автопроизводители работают над соблюдением стандартов эффективности — и вы тоже можете начать работу.

    Поделитесь этой статьей в своей социальной сети

    Зарегистрируйтесь, чтобы получать Driving.Информационный бюллетень Монитора слепых зон CA по средам и субботам

    Нажимая кнопку подписки, вы соглашаетесь на получение вышеуказанного информационного бюллетеня от Postmedia Network Inc. Postmedia Network Inc. | 365 Bloor Street East, Торонто, Онтарио, M4W 3L4 | 416-383-2300

    Спасибо за регистрацию!

    Приветственное письмо уже готово. Если вы его не видите, проверьте папку нежелательной почты.

    Следующий выпуск «Монитора слепых зон» Driving.ca скоро будет в вашем почтовом ящике.

    Комментарии

    Postmedia стремится поддерживать живой, но гражданский форум для обсуждения и поощрять всех читателей делиться своим мнением о наших статьях. На модерацию комментариев может потребоваться до часа, прежде чем они появятся на сайте. Мы просим вас, чтобы ваши комментарии были актуальными и уважительными. Мы включили уведомления по электронной почте — теперь вы получите электронное письмо, если получите ответ на свой комментарий, есть обновление в цепочке комментариев, на которую вы подписаны, или если пользователь, на которого вы подписаны, комментарии.Посетите наши Принципы сообщества для получения дополнительной информации и подробностей о том, как изменить настройки электронной почты.

    Подключен

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *