+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Принцип работы герконового датчика — схема подключения герконового датчика, принцип его работы

Герконовый датчик – это прибор, созданный для улучшения технических свойств и срока службы контактов электроаппаратуры. Подключить его можно как своими руками, так и с помощью профессиональных технических служб. Подключение своими руками, в отсутствие соответствующей компетенции, может занять достаточно много времени или вовсе привести к неудачной попытке установки геркона. С помощью сервиса Юду вы в кратчайший срок можете найти и заказать услугу профессиональных служб по подключению герконового реле: достаточно оставить заявку на сайте или выбрать наиболее подходящее предложение из каталога исполнителей.

Что такое магнитный геркон

Магнитный геркон является основным компонентом системы контактного реле в различных электромагнитных схемах. Герконовый датчик содержит два контакта из ферромагнитного сплава, заключенных в стеклянную колбу. Если к контактам поднести магнитный элемент – они замыкаются, образуя непрерывную электромагнитную сеть.

Геркон часто применяется:

  • Для установки датчиков, показывающих открывание дверей в системах охраны, для защиты объекта от нежелательного проникновения
  • Для установки на окна, в качестве датчика, сообщающего об открытии конструкции
  • Для установки на ворота и иную входную группу для защиты от нежелательного проникновения

Разновидности герконовых датчиков

Герконовые датчики по функциональности делятся на:

  • Замыкающие
  • Переключающие
  • Размыкающие

По технологическим особенностям герконы делятся на два типа:

  • Сухие
  • Ртутные: внутри стеклянной конструкции находится капля ртути для уменьшения сопротивления и для недопущения нарушения контактов

Конструктивные особенности герконовых датчиков

По конструкции герконы делятся на:

  • Разомкнутые
  • Замкнутые
  • Переключающие
  • Разомкнутые ртутные

Наиболее распространенным видом герконовых датчиков является разомкнутый геркон. Каждый контакт в стеклянной емкости представляет собой плоскую проволоку. Поверхности контактов покрыты золотом, палладием, радием или серебром, что способствует уменьшению сопротивления и позволяет защитить контакты от коррозии. Пространство стеклянной колбы заполнено водородом, аргоном или азотом, либо просто представляет собой вакуумное пространство, что также способствует повышению антикоррозийных свойств.

Принцип работы герконового датчика

Принцип работы герконового датчика заключен во взаимодействии двух элементов: исполнительной и задающей. Задающая часть схемы работы геркона – это магнит, а исполнительная – сам геркон. Для замыкания контактной цепи геркона необходимо вокруг него создать магнитное поле. Как только магнитное поле исчезает, контакты герконового датчика перестают взаимодействовать.

Размыкающий геркон работает по несколько иной схеме: его магнитные элементы расположены таким образом, что при намагничивании контакты отталкиваются, осуществляя размыкание электрической цепи.

Схема работы переключающего геркона также имеет свои особенности: один из контактов системы сделан из немагнитного металла, а другие – из ферромагнитного. Таким образом,  при магнитном воздействии на геркон, происходит замыкание ферромагнитных контактов, а немагнитные контакты размыкаются.

Схема работы герконового датчика

Для обеспечения замыкания электромагнитной сети герконового датчика и осуществления его работы магнитная часть системы крепится на открываемой конструкции (окно, дверь или ворота), а сам геркон на дверной или оконной коробке. Если дверь закрыта, магнитное поле действует на контактную сеть геркона, замыкая электромагнитную цепь. Датчик охранной системы показывает, что входная группа закрыта. Стоит открыть дверь – магнит перестает действовать, размыкает цепь, заставляя тем самым срабатывать сигнал тревоги.

В документации на датчик есть вся необходимая информация для установки его своими руками.

В зависимости от конструкций, на которые устанавливается геркон, датчики делятся на несколько видов:

  • Датчики скрытого монтажа для стальных конструкций
  • Датчики скрытого монтажа для магнитопассивных конструкций
  • Датчики наружного монтажа для стальных конструкций
  • Датчики наружного монтажа для магнитопассивных конструкций

Тип устанавливаемого геркона определяется в соответствии с массивностью конструкции и материалом, из которого она изготовлена.

Рекомендации для защиты геркона от несанкционированного проникновения

Если вы осуществляете подключение герконового датчика своими руками, то при установке стоит обратить внимание на следующие моменты:

  • Устанавливайте герконовые и магнитные датчики таким образом, чтобы они были направлены друг к другу и установлены на коротком расстоянии. Тогда поднесение постороннего магнита вызовет размыкание электромагнитной цепи, и сработает сигнал тревоги
  • Установите очень тонкую металлическую пластину между герконовым датчиком и магнитом. Она послужит защитным магнитным экраном

Как заказать услугу профессиональных технических служб по подключению герконового датчика

Осуществить подключение геркона своими руками, обладая навыками и знаниями в этой области, не составит труда. Если же компетенции для подключения датчика своими руками не хватает, то лучше обратиться к услугам профессиональных служб, которые осуществят подключение недорого и достаточно быстро. Чтобы заказать такие услуги с помощью сервиса Юду, необходимо:

  • Заполнить заявку на сайте или позвонить по указанным контактным телефонам
  • Установить желаемую цену на услугу
  • Выбрать наиболее подходящее вам предложение
  • Ознакомиться с достоверными отзывами о работе исполнителей
  • Связаться с выбранной службой и договориться о выезде

remont.youdo.com

2 простых, но полезных способа использования реле


2 простых,но полезных,способа использования реле
1. Секретка в авто
2. Управление стеклоподъемниками или любым мотором с постоянным питанием

Сидя дома и страдая от безделья, я решил просмотреть свои старые записи поделок, когда еще работал на СТО. Нашел парочку простых но полезных в применении схем соединения реле. На авторство не претендую, но до этого додумывался сам. Итак начнемс:

1 схема это простая секретка для авто, в ней применяется геркон и реле, геркон располагается в удобном для вас месте но не видном для посторонних.

Схема подключения


Как это работает! На схеме где указан ВХОД, минус питания идет на реле, а плюс это провод идущий например от бензонасоса или реле подающее + на форсунки и т.д. Его разрезаем, один конец подсоединяем к одному контакту замыкания, другой ко второму. Геркон прячем в доступном для вас месте но не для глаз чужих :fellow: . При поднесении магнита к геркону, он замыкается, тем самым давая плюс реле, реле тоже замыкается и контакты соединяются. Теперь уже плюс идет через контактную группу реле а не геркона, убираем магнит и все работает .
Единственное что нужно помнить, что не надо ставить такую секретку на высокую нагрузку, так как контакты геркона могут обгореть!!! А так данную секретку можно использовать везде, главное фантазия!!!

Следующая схема будет полезна например кто хочет поставить стеклоподъемники или просто управлять мотором регулируя направление вращения. Это соединение тоже было придумано за кружкой «кофе» . :winked:
Схема подключения

В данном примере нужно реле пятиконтактное!!! обратите внимание что на мотор подано два плюса!!! При нажатии верхнего контакта(S3) реле замыкается, контактная группа этого реле переключается и на моторе появляется минус в верхней части (если смотреть по рисунку). При нажатии нижнего контакта(S4), контактная группа 2 реле переключается и на моторе появляется минус в нижней части. Таким образом нажимая кнопки, вы можете управлять направлением движения мотора! Такое подключение было использовано на многих стеклоподъемниках которые по сей день работают. Можно конечно поставить и концевики в разрыв питания мотора, когда стекло вверху или внизу.

От себя хочу добавить что 2 схема подключения не раз была мною опробована, в стеклоподъемниках, вакуумных центральных замках (тут нужна небольшая доработка, парочку диодов). Надеюсь эти схемы подключения будут кому то полезны.

Будут вопросы пишите в комментариях если что то будет не понятно.

Спасибо за ваше потраченное время на прочтение данной статьи!!!

Ниже приведу фото реле и герконов которые я использовал!!!

Удачи Вам в творчестве!!!


Реле использовал в стеклоподъемниках

Реле использовал для секретки

Геркон для секретки Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

принцип действия выключателя, описание, сферы применения размыкающего коммутатора

В электронных агрегатах и радиотехнике активно используются устройства коммутации и контакты. Но такие детали считаются ненадёжными, так как частая эксплуатация оборудования изнашивает их. Из-за этого специалисты часто используют герконовое реле, которое представлено в виде магнитоуправляемого герметического контакта. Для более длительной эксплуатации на них установлены качественные выключатели.

Краткое описание

В современном мире герконы практически не используются, так как в массовую продажу поступили более универсальные датчики Холла. Но всё же встречаются ситуации, когда без такого реле просто не обойтись. А всё дело в том, что устройством просто управлять, и его можно устанавливать в схему любого оборудования. Когда же мастеру нужно добиться высокой степени надёжности и долговечности от агрегата, тогда без геркона просто не обойтись.

Сегодня такое реле можно встретить в различных датчиках и аналогичных устройствах. Функциональные возможности принято делить на три основные категории:

  1. Переключение.
  2. Замыкание.
  3. Размыкание.

Среди основных технических признаков можно выделить сухой и ртутный контакт. В последнем случае в стеклянном корпусе содержатся капли металла, которые особенно важны в процессе работы реле, так как улучшается качество контакта.

К тому же ртуть помогает избежать нежелательной вибрации, за счёт чего увеличивается время срабатывания установки. Именно поэтому специалисты всегда рекомендуют использовать этот тип контакта.

Характеристики устройства

Высококачественное герконовое реле состоит из двух контактов, которые изготовлены из специфического ферромагнитного сплава. Установлены они в прочной колбе, благодаря чему пользователь может всегда контролировать их работу. Если же к контактам поступает постоянный магнит, тогда происходит замыкание с формированием непрерывной цепи. Из-за такой специфичности герконовый коммутатор стали называть концевым выключателем.

Промышленные производители маркируют такие агрегаты в строгом соответствии с итоговой сферой применения. К примеру: если на реле нанесена аббревиатура КЭМ, то оно относится к категории коммутационных электрических механизмов. Большая буква «А» означает, что устройство можно эксплуатировать в любых погодных условиях, а вот детали с пометкой «В» предназначены исключительно для помещений. Часто можно увидеть сокращение МКА, которое означает, что этот магнитный коммутатор идеально подходит для любых условий использования.

Для стандартного переключающегося агрегата уровень сопротивления находится в пределах 0.2 Ом. Качественный геркон на размыкание отличается тем, что этот показатель составляет 1 кОм. Такие данные позволяют мастерам существенно ускорить переключение имеющихся цепей. Все магнитные выключатели такого типа применяются для силовых сетей напряжения, так как они обладают более высокими показателями. Магнитный размыкающий геркон активно используется в различных схемах, в компьютерной и охранной отрасли, а также контактных датчиках.

Разновидности моделей

Высококачественные герконовые реле принято делить на несколько категорий, которые отличаются между собой устройством контактной группы. Каждая разновидность обладает многочисленными положительными характеристиками, которые высоко ценятся как специалистами, так и домашними мастерами. В продаже представлено несколько видов герконов:

  • С переключающимся типом контактов.
  • Традиционные разомкнутые установки.
  • Специфические элементы с замкнутыми контактами.

Кроме основных функциональных признаков, специалисты выделяют и технологические параметры, которые разделяют коммутирующие герметичные агрегаты на сухие и ртутные.

Конструктивные отличия

Многофункциональный геркон представлен в виде герметичного баллона из стекла, внутри которого расположены чувствительные контакты. Эти элементы являются магнитными сердечниками, приваренными с торцовых сторон изделия. Все внешние части подключаются к имеющейся электросети.

Самыми востребованными сегодня считаются герконовые реле на замыкание. Контакты изготовлены из качественной ферромагнитной проволоки прямоугольной формы. Сердечники выпускаются из пермаллоя — материала, где основную роль играет мощность, а также размер геркона. В случае надобности покрытие может быть заменено на серебро, золото, родий.

Готовую колбу вакуумируют или же запускают в неё инертный газ, что предотвращает развитие коррозии в выключателе. В процессе изготовления специалисты также учитывают тот факт, что между сердечниками присутствует зазор определённого диаметра.

Принцип работы

Переключающий геркон с контактами замыкания укомплектован двумя сердечниками, которые отличаются повышенной магнитной проницаемостью. Эти два элемента расположены в герметичном стеклянном баллоне, который заполнен инертным газом либо газовой смесью. В самой колбе присутствует давление мощностью 50 кПа. Особая инертная среда не позволяет контактам окисляться.

Баллон геркона помещается во внутренний отсек управляющей обмотки, которая подключена к источнику постоянного тока. В момент включения питания на ответственном реле формируется необходимое магнитное поле, которое проходит по сердечникам контактов, а затем по зазору и замыкается на управляющей катушке. Рабочий поток энергии создаёт тяговую силу, которая соединяет контакты между собой.

Дополнительное покрытие контактов серебром, золотом, палладием или же радием помогает снизить сопротивление контактов. После включения питания в катушке электромагнита исчезает усилие, а сами пружины работают по принципу размыкания. Стоит отметить, что в герконовом реле полностью отсутствуют поверхности, где детали были бы подвержены трению между собой. Сами контакты отличаются разнообразием функций, так как они могут выполнять всю работу проводника, магнитопровода и пружин.

Повышение плотности тока помогает уменьшить габариты катушки магнита в несколько раз. Провод в эмали активно используют для намотки. Все узлы геркона проходят через штамповку, а соединения выполняются сваркой или же пайкой. В этих агрегатах активно используются магнитные экраны, которые помогают снизить зоны состояния включения.

Слаженная работа реле обусловлена тем, что все пружины устанавливаются без дополнительного натяга, за счёт чего устройство готово к работе сразу после запуска. Вместо привычных электромагнитов могут применяться постоянные магниты, из-за чего герконы называют поляризованными. Для нажатия контактов реле требуется некое усилие, которое обусловлено наличием магнитной катушки. Такой эффект нельзя встретить в обычных электромагнитных агрегатах, где вся сила зависит от пружины.

Принцип действия герконового реле на размыкание отличается тем, что система реле под воздействием электромагнита намагничивает сердечники, которые поэтапно отталкиваются между собой и размыкают цепь. Те модели, которые относятся к замкнутому типу, оснащены тремя контактами, один из них покрыт металлом, а остальные — ферромагнитным составом.

Преимущества и недостатки

Каждый агрегат отличается как положительными, так и отрицательными характеристиками. Если пользователь знает все сильные и слабые стороны приобретённого изделия, он может подобрать ему наиболее подходящую сферу применения. Именно поэтому перед покупкой герконового реле нужно изучить его преимущества:

  1. Высокая степень надёжности коммутации. Этот параметр практически в два раза превышает те показатели, которые характерны для открытых контактных групп. Такой эффект достигается за счёт высокого сопротивления между разомкнутыми контактами (может исчисляться десятками Мом).
  2. Удобство применения. Этот параметр обусловлен тем, что все контакты изолированы от внешней среды, благодаря чему у пользователя нет необходимости беспокоиться об их чистоте. К тому же отсутствует механическая привязка к постоянному магниту.
  3. Длительный эксплуатационный срок. Число срабатываний реле исчисляется миллиардами, ни одна контактная группа не может сравниться с таким показателем.
  4. Быстродействие. У многих моделей частота коммутации приближена к 1 кГц.
  5. Управлять оборудованием можно без помощи электроэнергии.
  6. Такой тип коммутаторов совершенно нетребователен к выбору нагрузки.

Когда все положительные стороны изучены, можно ознакомиться и с недостатками. Если мастер обладает необходимым опытом работы, то он сможет устранить мелкие недочёты. Среди основных недостатков герконового коммутатора можно выделить следующие характеристики:

  • Относительно маленькое количество контактов.
  • Большие размеры, которые плохо сочетаются с современной радиотехнической базой.
  • Довольно низкие показатели коммутирующей мощности.
  • Вибрация при срабатывании (этот параметр не касается тех моделей, где в капсулу заправлены ртутные капли).
  • Повышенная чувствительность к воздействию внешних магнитных полей.
  • Стеклянная колба может легко повредиться при ненадлежащем обращении.

Несмотря на значительное преобладание положительных характеристик, герконовое реле постепенно вытесняется другими аналогами полупроводникового типа (к примеру, датчик Холла). Решающую роль сыграла более высокая прочность конструкции, полное отсутствие дребезжания, а также небольшой размер.

Сферы применения

Высококачественные и многофункциональные герконовые выключатели считаются востребованными в системах охраны, где они используются в качестве реле. Такие устройства также монтируются в специальные датчики. Не стоит забывать и о других сферах применения:

  • Мощное оборудование для подводного плавания.
  • Синтезаторы и клавиатуры.
  • Специализированное оснащение для автоматики и безопасности.
  • Узкопрофильная аппаратура в медицинских учреждениях.
  • Коммутационные аппараты.
  • Приспособления для снятия замеров и тестирования.

Правила управления герконом

В связи с тем, что такое оборудование используется не только в быту, но и во многих других отраслях, каждый пользователь должен знать, как с ним обращаться. Только в этом случае можно рассчитывать на качественную работу реле. Тем более что управлять герметичным коммутатором можно двумя основными способами:

  1. Используя магнит постоянного типа.
  2. Воздействуя катушкой, которая подсоединена к постоянному источнику тока.

В первом варианте пользователь может задействовать угловое или же линейное перемещение постоянного магнита. Кроме того, часто встречается способ, когда специальная шторка перекрывает рабочее поле. Такой вариант можно встретить в универсальных датчиках уровня и положения, а также в охранной сигнализации.

Второй способ позволяет специалистам соорудить мощное реле на основе геркона. В отличие от известных традиционных конструкций, такой агрегат будет более надёжным, качественным и долговечным, так как в его схеме будут отсутствовать какие-либо подвижные элементы. А вот что касается небольшого количества контактных групп, то этот небольшой минус можно легко устранить, если использовать сразу несколько герконов.

В качестве примера применения такого способа управления можно смело назвать токовое реле. Этот агрегат представлен в виде мощной катушки, которая обмотана прочным проводом большого сечения. Во внутреннем отсеке обязательно располагается герметичный коммутатор.

Универсальность этого приспособления может использоваться в качестве надёжной защитной системы от перегрузки в цепях постоянного тока. Вдобавок мастер может регулировать чувствительность прибора за счёт линейного перемещения коммутатора внутри катушки.

220v.guru

Герконовые реле, принцип действия, характеристики и область применения

ПРИНЦИП ДЕЙСТВИЯ — ПРИМЕНЕНИЕ

Герконовое реле — устройство, используемое для коммутации электрических цепей.

В отличии от электромеханических реле, в которых коммутация происходит посредством механического воздействия на контактные группы, в герконовых реле исполнительным элементом является — один или несколько герконов.

В зависимости от назначения или класса устройства замыкание или размыкание контактов происходит при помещении контактной группы в магнитное поле.

Основное отличие герконовых реле от электромеханических заключается в большом ресурсе работы, что обусловлено отсутствием движущихся частей подверженных износу и истиранию. Также незначительная напряженность управляющего магнитного поля и высокое быстродействие позволяют использовать данный вид реле для коммутации цепей управления электронных блоков высокочувствительных аппаратов.

Еще одним из преимуществ герконовых реле перед остальными релейными устройствами коммутации является защищённость контактной группы от воздействия влаги, пыли и других неблагоприятных факторов, которые могут привести к преждевременному износу и выходу реле из строя.

ПРИНЦИП ДЕЙСТВИЯ И ХАРАКТЕРИСТИКИ

Принцип действия герконовых реле основан на свойстве некоторых ферромагнитных материалов менять свою ориентацию в пространстве под действием магнитного поля, а именно при возбуждении магнитного поля в катушке, подключенной к цепи управления, происходит намагничивание контактов геркона. В следствие этого происходит замыкание или размыкание контактной группы, находящейся в герметично запаянной колбе.

Большая распространенность и широкий спектр применения обуславливает значительные конструктивные отличия. Герконовые реле можно разделить на несколько групп по типу используемых контактов:

  • устройства с нормально открытой (разомкнутой) контактной группой;
  • с нормально закрытой (замкнутой) контактной группой;
  • реле с комбинированной группой контактов, при чем коммутация может осуществляться как с помощью одного геркона с контактами разных типов, так и группой герконов.

По конструктивному исполнению реле герконовые коммутационные устройства также можно подразделить на:

Сухие — колба геркона заполнена инертным газом, также для увеличения допустимых токов контакты геркона могут помещаться в вакуум.

Смоченные — для предотвращения вибрации контактов на место их соприкосновения помещается некоторое количество ртути.

При проектировании цепей управления, содержащих герконовые реле или замене электромеханических реле на данный тип устройств следует обратить внимание на следующие характеристики:

  1. Напряженность магнитного поля, вырабатываемого катушкой, при котором происходит коммутация контактов геркона.
  2. Напряженность магнитного поля, при котором происходит обратная коммутация цепи.
  3. Напряжение пробоя — значение напряжения при котором происходит пробой нормально открытой контактной группы геркона.
  4. Время реакции — время между подачей сигнала на катушку и замыканием или размыканием контактов.
  5. Период отпускания — время между снятием напряжения с катушки и возвращением контактов геркона в нормальное состояние.
  6. Количество циклов коммутации — число замыкания и размыкания контактов при котором сохраняются заданные рабочие параметры устройства.
  7. Коммутируемая мощность — максимально допустимая мощность, которую выдерживают контакты устройства без потери функционала.
  8. Допустимое напряжение — максимально допустимое напряжение в управляемой цепи.
  9. Допустимый уровень вибрации — при вибрации, превышающей допустимые производителем нормы возможно нарушение герметичности колбы геркона или самопроизвольное замыкание контактов.
Также при использовании герконовых реле в цепях, содержащих полупроводниковые элементы и микросхемы чувствительные к скачкам напряжения, следует учитывать, что в виду особенностей конструкции, между отходящими контактами геркона может образовываться паразитная емкость, приводящая к выходу из строя электронных компонентов. Помимо факта появления паразитной емкости, возможно произвольное замыкание контактов геркона в наведенном магнитном поле, избежать несанкционированного срабатывания поможет дополнительная экранировка корпуса реле.

В начало

ОБЛАСТЬ ПРИМЕНЕНИЯ ГЕРКОНОВЫХ РЕЛЕ

Наиболее широкое применение герконовые реле получили в системах сигнализации и телеметрии. Они обеспечивают возможность коммутации нескольких независимых цепей с помощью одного устройства, что позволяет включать систему звукового или светового оповещения с одновременной подачей сигнала на пульт охраны.

При кажущейся простоте блокировать такую систему довольно сложно. При этом в ней отсутствуют элементы, которые можно вывести из строя направленным электромагнитным импульсом, в отличии от систем, основанных на полупроводниковых элементах.

Также на основе описываемого вида реле возможно построение простейших логических схем, для этой цели могут применяться герконы с эффектом памяти — их особенностью является сохранение положения контактов даже после снятия управляющего импульса, возврат же в нормальное положение производится подачей сигнала обратной полярности на катушку устройства.

Кроме систем сигнализации отдельная разновидность реле — герсиконы используются для запуска электрических двигателей малой и средней мощности, в настоящее время производятся герсиконы с максимальной коммутируемой мощностью до 45 кВт.

Помимо низковольтной аппаратуры герконы применяются в цепях управления с рабочим напряжением несколько тысяч вольт, а отдельные устройства выдерживают напряжение до 100 кВ.

Отдельная разновидность высоковольтных герконов применяется в устройствах релейной защиты высоковольтных линий. В этом случае в конструкции предусматриваются дугогасительные и демпферные устройства, препятствующие появлению вибрации и дребезга контактной группы.

Таким образом использование герконовых реле открыло новую веху в приборостроении и проектировании релейного оборудования.

В начало

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


eltechbook.ru

Электронные предохранители на герконовых реле.

 

Герконовые реле по сравнению с электромагнитными имеют ряд преиму­ществ, таких как более высокое быстродействие и малые размеры. Остано­вимся на реле РЭС-55А и РЭС-43, с применением которых построены рас­сматриваемые ниже электронные предохранители.

Электронные предохранители — это устройства, предназначенные для за­щиты электрической цепи от токовых перегрузок, и включаются в разрыв провода, соединяющего *+* источника питания с нагрузкой. В отличие от обычных предохранителей они имеют более высокое быстродействие и явля­ются восстанавливаемыми, то есть не перегорают, как, например, плавкие вставки.

 

Один из вариантов устройства защиты от коротких замыканий и перегру­зок показан на рис.1.

В номинальном режиме ток от *+* источника питания через резистор R2 по­ступает на базу транзистора VT2, который вместе с транзистором VТ1 обра­зуют составной транзистор с транзисторами различной структуры. Транзи­сторы VT1,VT2 открываются, в результате чего нагрузка оказывается соеди­ненной с источником питания. Пороговым элементом данного устройства является реле К1 (РЭС-55А, паспорт РС4.569.610). Оно имеет напряжение срабатывания 1,46 В. Реле К2 (РЭС-55А, паспорт РС4.569.602) имеет напря­жение срабатывания 7,3 В.

Если в нагрузке возникает короткое замыкание или перегрузка, то увели­чивается падение напряжения на переходе эмиттер-коллектор транзистора VT1, и когда оно достигает порогового значения, реле К1 срабатывает и за­мкнувшимися контактами К1.1 шунтирует переход эмиттер-база транзисто­ра VТ2. Транзистор VT2 закрывается, закрывается и транзистор VТ1, тем са­мым разрывая цепь, соединяющую источник питания с нагрузкой. В резуль­тате этого почти всё напряжение питания оказывается приложенным к пере­ходу эмиттер-коллектор транзистора VT 1, а, значит, срабатывает реле К2 и своими контактами К2.1 обесточивает обмотку реле К1 и шунтирует переход база-эмиттер транзистора УТ2. Реле К2 необходимо для отключения реле К1 (после срабатывания предохранителя), так как к обмотке последнего прикла­дывается напряжение, значительно превышающее номинальное значение на­пряжения для реле К1 (3 В). Конденсатор С1 необходим для того, чтобы ре­ле К1 отключилось не сразу, а только после того, как переключатся контак­ты К2.1 реле К2. После устранения перегрузки или короткого замыкания, не­смотря на то что напряжение источника питания распределится между обмот­кой реле К2 и сопротивлением нагрузки, реле К2, благодаря гистерезису, ос­тается в сработавшем состоянии, и транзисторы VТ1, VТ2 закрыты. Для приведения устройства в рабочее состояние необходимо кратковременно на­жать кнопку SВ1.

Печатная плата устройства показана на рис.2. Следует отметить, что данное устройство годится только для фиксированного значения тока, рав­ного 1,6 А.

Свободное от этого недостатка устройство показано на рис.3. От преды­дущего оно отличается:

1)   наличием резистора R4, выполняющего роль датчика тока;

2)   отсутствием реле К2 и конденсатора С1.

Подбором сопротивления резистора (R4 устанавливают значение тока сра­батывания предохранителя. Работа устройства не отличается от работы ус­тройства на рис.1. Реле К1 типа РЭС-43 (паспорт РС4.569.201), обмотки ко­торого соединены параллельно. При таком соединении обмоток напряжение срабатывания реле равно 2,8 В при номинальном напряжении реле 12 В. Та­ким образом, одно реле сочетает в себе функции порогового и запирающе­го элемента (запирание транзистора VТ2) и может быть подключено к сети +12 В сколь угодно долго в отличие от реле К1 (рис.1).

Печатная плата данного ус­тройства показана на рис.4. В табл.1 показана зависимость тока срабаты­вания от значений резистора R4. Необходимо добавить, что из-за наличия ре­зистора Р4 падение напряжения на данном предохранителе завышено.

Чтобы обеспечить минимальное падение напряжения при протекании но­минального тока, можно применить устройство, схема которого показана на рис.5. От предохранителя, выполненного по схеме (рис.3), оно отличается на­личием дополнительного токового реле К2 и конденсатора С1, отсутствием резистора R4. Реле К2 самодельное. Состоит из геркона КЭМ-1 с нормально разомкнутыми контак­тами и обмотки из провода ПЭЛ-0,7, намотанной по­верх его корпуса. Для тока срабатывания 2 А чис­ло витков этой обмотки составляет 22 и сопротив­лением ее можно пренебречь. При протекании то­ка нагрузки больше 2 А реле К2 срабатывает и за­мкнувшимися контактами К2.1 закрывает транзистор VТ2. Затем закрывается транзистор VТ1 и заряжается конден­сатор С1, начальным током заряда поддерживая сработавшее состояние реле К2. В результате запирания транзистора VТ1 реле К1 (РЭС-55А, паспорт РС4.569.602) срабатывает и контак­тами К1.1 шунтирует переход база-эмиттер транзистора VТ2. Реле К2 отпускает, но транзисторы VТ2 и VТ1 остаются закрыты­ми благодаря включенному реле К1. Чтобы вновь запустить уст­ройство после устранения перегрузки, необходимо кратковре­менно нажать кнопку SВ1. Конденсатор С1 необходим для уст­ранения дребезга в момент, когда реле К1 включается, а реле К2 выключается. Печатная плата устройства показана на рис.6. В табл.2 показана зависимость тока срабатывания от числа вит­ков обмотки реле К2.

Необходимо также добавить, что для всех устройств световая индикация перегрузки осуществляется с помощью светодиода НL1, а напряжение источника питания равно +12 В.

Источник: РАДИОСХЕМА №1, 2007г.

Популярность: 8 708 просм.

www.mastervintik.ru

Как работает геркон — проверка и применение своими руками, принцип действия основных типов герконовых датчиков (переключающий, нормально открытый, разомкнутый и замкнутый контакт)

Приобретались эти датчики по наводке из комментариев к одному из моих прошлых обзоров.
По большому счёту обозревать тут нечего, поскольку принцип их действия простой, но одному моему товарищу стало интересно, что это вообще такое и как оно работает — об этом и решил написать этот небольшой наглядный обзор.

Принцип работы

Геркон (герметизированный контакт) представляет собой стеклянную колбочку, внутри которой находятся две упругие контактные ферромагнитные пластины, которые при погружении в магнитное поле смыкаются и образуется контакт, по которому затем течёт ток.
Колбочка при этом обычно заполнена инертным газом или в ней содержится вакуум. Пример работы схематично отображён на анимации ниже, где подносится обычный магнит.

Почему пластины собственно смыкаются и размыкаются от наличия магнитного поля. Как уже было выше сказано, пластины сами по себе — ферромагнитные, т.е. они активно притягивают к себе магнит и в тоже время сами активно притягиваются магнитом. Аналогичные свойства есть у обычного железа. Магнит имеет две полярности — северную и южную, причём магнитные линии всегда идут от северного полюса к южному. При поднесении магнита к геркону, магнитные линии также будут проходить через эти упругие пластины. В данном случае на рисунке, северный полюс магнита расположен слева, южный — справа. Соответственно край верхней пластины становится южной полярности, а край нижней пластины — северной полярности — в итоге пластины замыкаются. При отдалении магнита — пластины за счёт своей упругости размыкаются. Если магнит по отношению к этим пластинам расположить неправильно, то магнитные линии будут проходить через них неравномерно, и контакты не смогут сомкнуться.

В продаже можно найти три основных типа герконовых датчиков:
1) Нормально открытые (обозреваемые), которые в обычном состоянии разомкнуты, а при погружении в магнитное поле — цепь замыкается.
2) Нормально закрытые, — уже обратный принцип: в обычном состоянии контакты замкнуты, но при погружении в магнитное поле контакты размыкаются.
3) Герконы-переключатели, — в отличии от двух первых, имеют уже 3 вывода и 3 пластины внутри соответственно. В спокойном состоянии замкнута одна пара контактов, при погружении в магнитное поле — уже другая пара.

Герконы также бывают рассчитанными на коммутацию большого тока или ртутными, где места соприкосновения пластин смочены каплей ртути для подавления дребезга контактов. Основное применение герконов — системы безопасности и автоматики, как наиболее простой пример — автоматический запуск какого-либо действия при открывании двери или окна, например посыл сигнала тревоги. На основе герконов делают герконовые реле — в высоковольтных установках такие используются для защиты от перегрузок по току, в этом случае геркон помещается в катушку.

Внешний вид. Размеры
Взял нормально открытые (разомкнутые) в количестве 10 штук.
Стеклянная капсула со слегка зеленоватым оттенком.

Размеры соответствуют 2×14мм

Собрал на макетке простую цепь со светодиодом, в разрыв которой поместил геркон, дабы проверить его работу, поднеся к нему плоский неодимовый магнит, и поскольку магнитные поля имеют разные полюса, то контакты в герконе стабильно замыкаются только если направить магнит на него торцом и поперёк.

В других положениях магнита, контакты в герконе не будут замкнуты:


Пример с магнитами из мотора: повернув одной стороной — контакты замыкаются, другой стороной — никакой реакции. Поэтому этот момент стоит учитывать.

Как происходит изменение состояния пластин — в увеличенном виде под цифровым микроскопом

Вдобавок ко всему неплохо было бы показать простейший наглядный тест работы этого датчика с выполнением какого-нибудь действия при открывании-закрывании двери комнаты, например включении настольной лампы посредством модуля реле.

Сначала надо упаковать сам геркон.

Надевается кусочек термоусадки, обжимается горячим воздухом

Необходимо загнуть один вывод. Но тут меня поджидал первый блин комом — отогнув вывод практически у самого основания колбочки — стекло раскололось и геркон пришёл в негодность:

Чтобы этого не произошло, надо вывод, отступив от основания капсулы на 1-2мм, зажать пинцетом и только потом уже загибать его:

Второй вывод чуть укоротил, вместе с термоусадкой

Припаиваю провод к обоим выводам провод

Теперь всё это дело надо как-то закрепить. Поэтому мелкими ломтиками нашинковал стержень от клеевого пистолета:

Надел на геркон сверху ещё термоусадки, у основания немного набил внутрь обрезков термоклея:

Обдул горячим воздухом

Излишки клея убрал

Дело осталось за малым. Прикрепить магнит на дверь, а геркон на стену, напротив магнита. Для показательного теста здесь сгодился и обыкновенный скотч, благо и обратно можно быстро всё снять.

Магнит и геркон расположены поперёк друг другу

Электронно-программная часть проста: плата Pro Mini настроена на внешнее прерывание, где вывод прерывания через этот самый геркон соединён с питанием платы и пока дверь закрыта и возле геркона есть магнит, цепь замкнута, контроллер спит, а реле, управляющие светильником — выключено. Как только дверь открывается, а магнит отводится в сторону, геркон размыкается, возникает внешнее прерывание, которое подаёт импульс на реле и светильник включается.

Применений в самоделках может найтись много, особенно с простыми и дешёвыми контроллерами Attiny13 или, если проект совсем простой — с транзисторами. Ввиду своего мелкого размера, геркон можно хитро спрятать от посторонних глаз. Я буду использовать их в новой версии энергоэффективной GSM-сигнализации, правда для её полноценной сборки необходимо дождаться ещё нескольких компонентов. Из минусов отмечу хрупкость капсулы и уязвимость перед другими магнитными полями. Касаемо надёжности пишут, что у них довольно большой цикл замыкания-размыкания за счёт герметичности внутри капсулы. В общем, посмотрим.

mysku.ru

Датчики магнитного поля

13 сентября 2017

Геркон – сверхточный быстродействующий герметичный переключатель, управляемый магнитным полем. Количество его срабатываний – до пяти миллиардов раз. На его основе выпускаются датчики магнитного поля и герконовые реле для самых различных применений – от бытовой техники до авиации и космонавтики. В статье описаны особенности выбора герконов и дан табличный обзор широкой линейки этих изделий производства Littelfuse.

Слово «геркон» является сокращением слов «герметичный контакт». Первый геркон был разработан в 1936 году американской компанией Bell Telephone Laboratories. Впоследствии они стали широко применяться в качестве датчиков, и на их основе были созданы герконовые реле.

Рис. 1. Геркон

Геркон (рисунок 1) состоит из двух ферромагнитных проводников, имеющих плоские контакты, герметизированные в стеклянной капсуле. Без внешнего магнитного поля контакты разомкнуты, и между ними есть небольшой диэлектрический зазор. В магнитном поле контакты замыкаются. Контактная область обеих пластин имеет напыленное или гальваническое покрытие, выполненное из очень стойкого к эрозии металла (обычно – родий, иридий или рутений). Структура слоев покрытия контактов приведена на рисунках 2а и 2б для родия и иридия соответственно.

Иридий, рутений и родий – очень стойкие к эрозии металлы платиновой группы. Благодаря напылению из этих металлов количество срабатываний контактов достигает пяти миллиардов раз. В полость капсулы обычно закачивают азот. Некоторые типы герконов вакуумируются для увеличения максимально допустимого коммутируемого напряжения. Контакты геркона в магнитном поле намагничиваются, и между ними возникает магнитодвижущая сила, равная напряженности магнитного поля. Если напряженность магнитного поля достаточно велика, чтобы преодолеть упругие силы в контактах, возникающие при их упругой деформации, то контакты замыкаются. Когда поле ослабевает, контакты снова размыкаются.

Рис. 2. Структура контактных групп NiFe-W-Ru (а) и NiFe-Au-Ro-Ir (б)

Существует два типа герконов: SPST-NO (Single Pole, Single Throw Normally Open, то есть «один полюс, один канал») – обычный выключатель, в котором два контакта нормально разомкнуты; SPDT-CO (Single Pole, Double Through Change Over, то есть «один полюс, два канала – переключение») – переключатель, в котором один контакт всегда нормально замкнут, а второй нормально разомкнут.

Геркон, описанный выше и представленный на рисунке 3, относится к SPST-типу.

Рис. 3. Устройство геркона SPST-типа

На рисунке 4 представлен геркон SPDT-типа.

Рис. 4. Устройство трехвыводного геркона типа SPDT (однополярное двунаправленное)

Общая пластина является единственной подвижной частью такого геркона, в отсутствие магнитного поля она замкнута с нормально замкнутым контактом реле. При возникновении магнитного поля соответствующей силы общая пластина замыкается с нормально разомкнутым контактом. Обе пластины нормально разомкнутого и нормально замкнутого контактов являются неподвижными. Разомкнутые контакты имеют ферромагнитное покрытие, а нормально замкнутый контакт выполнен из немагнитного материала. При помещении в магнитное поле подвижный и нормально-разомкнутый контакт намагничиваются в одинаковом направлении, и при достаточной напряжённости магнитного поля происходит замыкание подвижного контакта с неподвижным ферромагнитным контактом. При исчезновении внешнего магнитного поля намагниченность контактов ослабевает, и они размыкаются. Для того, чтобы остаточная намагниченность была минимальной, при изготовлении герконов применяют высокотемпературную обработку контактов. В качестве источника магнитного поля для геркона чаще всего используют постоянный магнит (рисунок 5) или соленоид.

Рис. 5. Принцип работы магнитоуправляемого контакта – геркона

Рассмотрим несколько наиболее распространённых систем геркон-магнит.

  1. Приближение и удаление магнита перпендикулярно (рисунок 6) или под углом (рисунок 7) к главной геометрической оси геркона:

Рис. 6. Перпендикулярное приближение и удаление магнита

Рис. 7. Приближение и удаление магнита под углом

В данном случае геркон будет замыкаться при приближении и размыкаться при отдалении магнита. Рассмотрим более подробно, обратившись к рисунку 8.

Рис. 8. Зоны активации геркона при поперечном удалении магнита

Концентрация силовых линий магнита уменьшается при удалении магнита от геркона. Наиболее сконцентрированы магнитные линии на полюсах магнита. Наиболее обширная зона взаимодействия магнита с герконом находится в центре геркона. При нахождении постоянного магнита в пределах этой зоны магнитное поле является достаточным для надежного срабатывания контактной группы. Пунктиром показана зона гистерезиса – при вхождении магнита в эту зону магнитное поле еще не обладает достаточной напряженностью для срабатывания контактной группы, но ее достаточно для удержания контактной группы в сработавшем состоянии. В случае иной конфигурации контактной группы геркона, отличной от рассматриваемой SPST, под срабатыванием будет пониматься размыкание нормально-замкнутого контакта и замыкание подвижного контакта с нормально-разомкнутым контактом SPDT геркона. Замыкание контактов геркона может активироваться с помощью параллельного движения кольцевого магнита вдоль оси геркона, как показано на рисунке 9.

Рис. 9. Движение кольцевого магнита относительно геркона

Конфигурация зон взаимодействия будет схожа с предыдущей системой, так как ось геркона и направление магнитных линий магнита будут совпадать с описанной выше ситуацией, как видно на рисунке 10.

Рис.10. Зоны взаимодействия при движении магнита вдоль оси геркона

  1. Геркон может активироваться при помощи плоского магнита или кольцевого магнита с двумя или 2N полюсами (рисунок 11).

Рис. 11. Активация геркона плоским или кольцевым магнитом

Для понимания зон взаимодействия геркона обратимся к рисункам 12 и 13.

Рис. 12. Полюса магнита перпендикулярны главной геометрической оси геркона. Магнит движется вдоль нее

Рис. 13. Полюса магнита перпендикулярны главной геометрической оси геркона. Магнит движется перпендикулярно ей

Как видно, зоны взаимодействия находятся на концах геркона. В центральной части геркона находится «мертвая зона», в которой геркон остается открытым. Таким образом, двигающийся перпендикулярно геркону магнит, чьи полюса расположены подобным образом, активировать геркон не будет (рисунок 14).

Рис. 14. «Мертвая зона» взаимодействия магнита с герконом

  1. Геркон можно экранировать с помощью магнитного материала (например, стального листа). На рисунке 15 изображены неподвижный геркон и неподвижный магнит между которыми движется экранирующий предмет.

Рис. 15. Экранирование геркона магнитным материалом

Основные типы герконов, выпускаемые компанией Littelfuse, приведены в таблице 1.

Таблица 1. Серии герконов Littelfuse

Серия Длина корпуса, мм Нагрузочная способность
(Стандартная: ≤10 Вт, ≤0,5 A, ≤200 В)
Тип контактов Key Features
MITI-3V1 7 Стандартная SPST Супер-компактный (7 мм стеклянный корпус)
MDSR-10 10 Стандартная SPST Очень компактный (10 мм стеклянный корпус)
MDSR-7 13 Стандартная SPST Компактный (12.7 мм стеклянный корпус)
FLEX-14 14 Стандартная SPST Дешевый, более гибкие выводы
MACD-14 14 Стандартная SPST Малый гистерезис
MDCG-4 15 Стандартная SPST Низкая цена
HA15-2 15 ~240 В (20 Вт) SPST ~ 240 В макс. рабочее напряжение
MLRR-4 15 20 Вт SPST Малый гистерезис
MLRR-3 15 20 Вт SPST Длинные выводы, повышенный ресурс
MARR-5 19 1000 В SPST Высоковольтный
MRPR-20 20 ~240 В, 50 Вт SPST Напряжение переключения ~240 В, высокая мощность
DRR-129 50 100 Вт, 3 A, 400 В SPST Большой, высокая мощность
MDRR-DT 15 Стандартная SPDT Малый корпус
DRR-DTH 40 30 Вт, 0.5 A, 500 В SPDT Высокая мощность
DRT-DTH 40 50 Вт, 1.5 A, 500 В SPDT Большой, высокая мощность

Основные параметры герконов

Время срабатывания время между моментом приложения магнитного поля и моментом замыкания контактов геркона.

На рисунке 16 представлен график зависимости величины магнитного поля от времени. Вначале геркон помещают в сильное магнитное поле до момента насыщения (при этом даже при увеличении магнитной индукции намагниченность, достигнув максимума, остается неизменной). После этого магнитное поле ослабляют до 0 и начинают постепенно увеличивать. Рабочая точка на данном графике означает такую величину магнитного поля, при которой контакты геркона замыкаются. Точка рассоединения – соответствует величине магнитного поля, при которой контакты размыкаются. Нужно заметить, что сила поля в точке рассоединения всегда ниже, чем в рабочей точке. Это связано с тем, что у контактов геркона всегда остается небольшая намагниченность.

Рис. 16. Зависимость величины магнитного поля геркона от времени

Временем отпускания называется интервал между рабочей точкой и точкой рассоединения.

Магнитодвижущая сила (МДС) срабатывания (pullin) – это величина силовой характеристики магнитного поля, при которой происходит замыкание контактов геркона. В системе СИ единицами измерения магнитодвижущей силы являются Ампер*витки (AT или Amper*turns). Когда измеряют магнитодвижущую силу с помощью соленоида, рабочая точка (замыкание) обычно дается при температуре 20°С, так как из-за термического расширения медного провода в катушке магнитное поле будет меняться приблизительно на 0,4%/°С.

Отношение между размыканием и замыканием, выраженное, как правило, в процентах, называется гистерезисом. В зависимости от материалов металлических контактов, их жесткости, длины, площади соприкосновения, гистерезис будет сильно меняться (рисунок 17).

Рис. 17. Отношение между МДС в точках замыкания и размыкания

Гистерезис – это отношение магнитодвижущей силы срабатывания к магнитодвижущей силе в точке рассоединения. Обычно этот параметр выражают в процентах. Компания Littelfuse выпускает специальные серии герконов (MACD-14, MASM-14), в которых гистерезис сведен к минимуму. Обычно такие герконы применяются в датчиках уровня жидкостей, в системах позиционирования.

Контактное сопротивление (contact resistance) – максимальное сопротивление геркона в замкнутом состоянии.

Удельное сопротивление контактов геркона или герконового реле очень мало и обычно составляет от 7,8х10-8 до 10х10-8 Ом/м. Это выше удельного сопротивления меди, которое равняется 1,7х10-8 Ом/м. Контактное сопротивление герконов обычно составляет около от 70 до 200 мОм, а сопротивление контактов в герконовом реле – около 150 мОм.

Динамическое сопротивление контактов (Dynamic Contact Resistance (DCR) – это сопротивление контактов геркона в рабочем/динамическом режиме. Статичное контактное сопротивление геркона – достаточно малоинформативный параметр, который не позволяет выявить проблемы, связанные с реальным состоянием контактов. Замыкание и размыкание контактов геркона с частотой от 50 до 200 Гц дает намного больше информации. Подача на геркон напряжения 0,5 В и тока 50 мА может помочь выявить потенциальные проблемы. Эти измерения могут быть выполнены с помощью осциллографа и легко оцифрованы при автоматическом контроле качества (рисунок 18). Не стоит использовать более высокое напряжение, чтобы не изнашивать контакты геркона. Если на производстве контакты геркона не были правильно очищены перед корпусированием, то на них может находиться тончайшая диэлектрическая пленка толщиной в несколько ангстрем. Из-за нее может быть нарушена коммутация слабых сигналов. При использовании более высокого напряжения эта проблема может никак не проявиться.

Рис. 18. Измерение динамического сопротивления контактов геркона

Если на катушку подать сигнал с частотой 50…200 Гц, ток коммутации будет порядка 0,5 мА. Дребезг контактов после замыкания может продолжаться около 100 мс, и за ним последует динамический шум, который будет длиться около 0,5 мс. Природа этого динамического шума состоит в том, что после замыкания контактов происходят гармонические колебания, и в месте контакта изменяется сопротивление из-за меняющегося в зоне контакта давления. При этом размыкания не происходит. На рисунке 19 видно, что после завершения фазы динамического шума начинается «волновая» фаза, длящаяся 1 мс или чуть более. Вибрация контактов геркона в магнитном поле соленоида через 2…2,5 мс прекращается, и сопротивление стабилизируется.

Рис. 19. Динамический шум коммутации геркона

Наблюдая за осциллограммой этого динамического теста, мы можем сделать некоторые выводы о качестве тестируемого геркона. Как только на соленоид подается напряжение, колебательный процесс должен завершиться за время, приблизительно равное 1,5 мс. Если колебания продолжаются более 2,5 мс, это может означать, что контакты плохо намагничиваются. В результате ресурс данного геркона будет небольшим, особенно если он будет работать с большой нагрузкой (рисунок 20).

Рис. 20. Затягивание колебательного процесса из-за плохой намагниченности контактов

Если динамический шум или дребезг контактов длятся значительно дольше 3 мс, это может быть следствием нарушения герметичности геркона, трещины в корпусе, перегрузки по току или напряжению. Также это может быть следствием загрязнения контактов при производстве или попадания влажного воздуха внутрь корпуса геркона. На рисунках 21 и 22 изображены такие случаи.

Рис. 21. Чрезмерный динамический шум контактов геркона

Рис. 22. Чрезмерный дребезг контактов геркона

На рисунке 23 изображен случай, когда после завершения фазы динамического шума продолжаются стохастические колебания контактов, вследствие которого динамическое сопротивление контактов не стабилизируется.

Рис. 23. Стохастические колебания контактов геркона

Напряжение переключения/коммутации (switching voltage) – это обычно максимальное постоянное напряжение, которое может быть приложено к геркону в момент замыкания контактов. Если напряжение на герконе выше 5…6 В, при этом может произойти перенос микроскопического количества металла с одного контакта на другой. Несмотря на это, при работе с напряжениями до 12 В герконы и герконовые реле имеют наработку на отказ в десятки миллионов раз срабатываний. А при напряжении 5 В и меньше количество срабатываний увеличивается до миллиардов раз. Высококачественные герконовые реле Littelfuse могут работать в слабосигнальных цепях с напряжениями всего в несколько нановольт.

Ток переключения или коммутационный ток (switching current) – это максимальный постоянный ток или амплитудное значение переменного тока в момент замыкания контактов геркона. В случае превышения этого значения срок службы геркона значительно сократится.

Несущий ток (carry current) – это максимальное значение тока при замкнутых контактах геркона. Микросекундные импульсы тока могут значительно превосходить это значение без сокращения срока службы геркона. В то же время длительные импульсы тока или постоянный ток, превышающий несущий, приведут к сокращению срока службы геркона или выходу его из строя. Герконы и герконовые реле в отличие от своих электромеханических собратьев могут работать с очень малыми токами, на уровне нескольких фемтоампер (фемто = 10-15).

Паразитная емкость (stray capacitance) – емкость, которая возникает между разомкнутыми контактами геркона. Обычно она составляет единицы пикофарад. Данный параметр очень важен с точки зрения образования дуги, так ток дуги будет напрямую зависеть от емкости заряда.

Эквивалентная емкость (contact capacitance) – емкость геркона в замкнутом состоянии. Для герконов SPST-типа эта величина обычно составляет 0,1…0,2 пФ. Для переключающих герконов SPDT-типа эквивалентная емкость обычно составляет 1…2 пФ.

Этот параметр имеет большое значение при применении геркона в высокочастотных цепях.

Напряжение пробоя (breakdown voltage) – это максимальное напряжение, приложенное к геркону в открытом состоянии. Оно всегда больше, чем напряжение переключения. Для большинства герконов с инертными газами внутри это значение составляет от 175 до 1000 В. При каждом замыкании контактов геркона паразитная емкость будет мгновенно разряжаться. Чем ближе напряжение в цепи к рабочему напряжению геркона, тем ниже будет его ресурс работы в этой цепи. Поэтому желательно всегда выбирать изделие с запасом по данному параметру.

Коммутируемая мощность (switching power) – это максимальная мощность, которая может потребляться нагрузкой, подключенной через геркон. Так как мощность рассчитывается как произведение коммутируемого напряжения и тока переключения, то для 10 Вт геркона не стоит пропускать ток более 500 мА при напряжении 200 В, для такого тока максимальное коммутационное напряжение составит всего 20 В. Превышение данного параметра также неминуемо влечет за собой сокращение срока службы геркона.

Сопротивление изоляции (insulation resistance)сопротивление геркона в открытом состоянии. По этому параметру герконы превосходят большинство существующих на сегодняшний день ключей, так как их сопротивление изоляции измеряется в тераомах. Величина токов утечки геркона в открытом состоянии составляет единицы пикоампер.

Диэлектрическая абсорбция (dielectric absorbtion) – это эффект, связанный с поляризацией диэлектриков в герконе при разряде емкостного заряда контактов. Данный эффект проявляется в виде задержки или уменьшения протекания через замкнутый геркон очень малых токов на уровне наноампер.

Резонансная частота (resonance frequency) – это частота собственных колебаний геркона, при которой начинаются собственные вибрации контактов, которые, в свою очередь, влияют на такие параметры геркона как напряжение пробоя и напряжение коммутации. Герконы с капсулами 20 мм обычно имеют резонансную частоту в диапазоне 1500…2000 Гц. Более компактные 10 мм герконы имеют более высокую резонансную частоту: 7000…8000 Гц. Для того, чтобы избежать проблем в работе геркона, нужно учесть вибрации среды эксплуатации и резонансную частоту геркона.

Защита герконов и герконовых реле

В цепях, где геркон работает с индуктивной нагрузкой, такой как катушка реле, соленоид, трансформатор или миниатюрный мотор, энергия магнитного поля, накопленная в индуктивных компонентах, при коммутации будет испытывать высокие нагрузки по напряжению и току. Это обстоятельство будет негативно сказываться на сроке службы геркона.

Существует несколько способов устранить эту проблему.

  1. Использование шунтирующего диода (в зарубежной литературе он часто встречается под названием flyback или freewheeling diode) возможно в цепях постоянного тока (рисунок 24). Для переменного напряжения придется использовать защитный диод Зенера (он же лавинный диод или TVS-диод), варистор или RC-цепочку (снабберную RC-цепь). Каждый из способов имеет как достоинства, так и недостатки.

Рис. 24. Защита геркона шунтирующим диодом

  1. Использование варисторов или двунаправленных TVS-диодов (рисунок 25). Данные компоненты проводят ток при превышении некоторого порогового значения напряжения. Эти компоненты ставят в параллель с герконом. Рабочие напряжения для TVS-диодов составляют от 2,5 до 600 В, а для варисторов – от 9 до 3500 В. Варисторы обладают значительно большими импульсными мощностями, чем TVS-диоды, но их емкость также значительно выше, и это негативно влияет на контакты геркона при замыкании, поскольку при этом через них протекает больший ток за счет разрядки этой паразитной емкости. Для защиты геркона в цепи переменного напряжения можно использовать только двунаправленный TVS-диод, чтобы он не шунтировал разомкнутый геркон при прямом смещении по напряжению.

Рис. 25. Защита геркона варистором

  1. Использование подавляющих RC-цепей (снабберных цепей).

Существует два варианта подключения снабберной цепи: параллельно геркону (рисунок 26) или параллельно нагрузке (рисунок 27). Первый способ является предпочтительным. Он позволяет снизить напряжение при коммутации и таким образом избежать образования искр. Но в этом случае при коммутации через геркон будет протекать больший ток, обусловленный разрядом конденсатора.

Рис. 26. Защита геркона снабберной цепью, подключенной параллельно геркону

Рис. 27. Защита геркона снабберной цепью, подключенной параллельно нагрузке

Таким образом, мы столкнемся с решением задачи по выбору подходящего по сопротивлению резистора и конденсатора по емкости. Малая емкость будет плохо сглаживать скачки напряжения при переходных процессах , особенно при большой реактивной составляющей нагрузки. А большая повысит стоимость снабберной цепи и при этом увеличит коммутационный ток, что также негативно скажется на долговечности геркона. Для ограничения тока во время замыкания контактов геркона используется резистор. Посчитаем сопротивление:

По закону Ома:

Напряжение на герконе должно лежать в пределах 0,5 от максимального пикового значения Vpk напряжения (1)

(1)

и троекратного его превышения 3*Vpk. Производим расчет по формуле (2):

(2)

где Isw – ток коммутации геркона.

Уменьшение сопротивления резистора в снабберной цепи уменьшит износ контактов геркона от электрических дуг, при этом высокое сопротивление будет положительно влиять на ограничение тока «конденсатор-геркон». Для подбора подходящей емкости рекомендуется начать с 0,1 мкФ. Это очень распространенная емкость и ее цена очень мала. Если этой емкостью не удается избавиться от искр при замыкании контактов геркона, то попробуйте ее постепенно увеличивать до исчезновения искр при коммутации. Параллельно с этим не забывайте про ток коммутации.

Формовка и обрезка выводов герконов

Длина и форма аксиальных выводов герконов не всегда удобны для применения в конкретном приборе. Однако необдуманная модификация может значительно сказаться на работе геркона. При резке и формировании выводов герконов важно использовать правильные опорные и режущие инструменты, чтобы избежать повреждения герметичных уплотнений «стекло-металл». Поврежденный корпус может иметь как незаметные глазу сколы, так и крупные трещины. Такие дефекты могут быть обнаружены визуально с использованием микроскопа с небольшим увеличением. Но бывают случаи, когда нарушается герметизация корпуса, и даже описанная выше методика измерения динамического сопротивления может не выявить заметного ухудшения. С течением времени в геркон будет попадать влага, и его функционирование будет нарушаться.

Для того, чтобы избежать повреждений, рекомендуется оставлять 1 мм длины вывода между точкой формовки либо обрезки – и корпусом геркона. При этом вывод геркона должен быть полностью зафиксирован, чтобы механическое напряжение при формовке или обрезке не передавалось на остальную часть вывода.

Рассмотрим основные способы формовки и обрезки выводов геркона.

  1. Обрезка выводов геркона с помощью бокорезов с двусторонней заточкой (рисунок 28) недопустима, так как при этом сила, деформирующая вывод, будет передаваться в сторону корпуса.

Рис. 28. Недопустимость обрезки выводов геркона бокорезами с двусторонней заточкой

Обрезка выводов бокорезами с односторонней заточкой допустима (рисунок 29), при этом надо помнить, что плоская сторона губок бокорезов должна находится со стороны корпуса геркона. Также следует обратить внимание на качество заточки и наличия люфта у используемого инструмента.

Рис. 29. Обрезка выводов геркона бокорезами с односторонней заточкой

  1. Обрезка выводов с помощью зажима, жестко фиксирующего контакты геркона (рисунки 30 и 31).

Рис. 30. Обрезка выводов геркона с помощью зажима (вариант 1)

Рис. 31. Обрезка выводов геркона с помощью зажима (вариант 2)

Обрезка выводов геркона с частичной фиксацией (рисунок 32) недопустима.

Рис. 32. Недопустимость обрезки выводов геркона с частичной фиксацией

  1. Формовка выводов геркона без фиксации вывода запрещена (рисунок 33), так как в таком случае деформации подвергается и часть вывода, уходящая в корпус геркона.

Рис. 33. Недопустимость формовки выводов геркона без фиксации

Формовка выводов геркона при фиксации вывода в двух точках, как показано на рисунке 34, допустима, так как опора В не дает деформироваться выводу в направлении от нее к корпусу геркона.

Рис. 34. Формовка выводов геркона при фиксации вывода в двух точках

Формовка при полной фиксации вывода геркона, как показано на рисунках 35 и 36, также допустима.

Рис. 35. Формовка вывода геркона при полной фиксации (вариант 1)

Рис. 36. Формовка вывода геркона при полной фиксации (вариант 2)

После правильной формовки и обрезки выводов геркона можно получить распространенные конфигурации, изображенные на рисунке 37.

Рис. 37. Распространенные конфигурации герконов

Выбор магнитов

Для общего применения в основном используются четыре группы магнитов: ферросплавы, альнико AlNiCo, неодимовые NdFeB и самариевые SmCo (таблица 2). Для того чтобы подобрать подходящий магнит, следует учитывать такие факторы как температура среды, размагничивание близкорасположенными источниками магнитных полей, свободное пространство для движения, химический состав окружающей среды.

Неодимовые магниты обладают наибольшей энергией, наибольшей остаточной намагниченностью и коэрцитивной силой. Они имеют сравнительно невысокую цену и более высокую механическую прочность, чем самариевые SmCo. Могут использоваться при температурах среды до 200°C. Не рекомендуется использовать эти магниты в средах с повышенным содержанием кислорода.

Самариевые SmCo имеют высокую энергию и подходят для применений, где требуется высокая стойкость к размагничиванию. Имеют великолепную термическую стабильность и могут использоваться в средах до 300°C, обладают высокой коррозийной стойкостью. При этом их цена – самая высокая среди всех типов магнитов. Их недостатком является очень высокая хрупкость.

Альнико AlNiCo намного дешевле, чем магниты из редкоземельных элементов и подходят для большинства применений. Имея низкую коэрцитивную силу, отличаются великолепной термической стабильностью вплоть до 550°C.

Ферритовые магниты являются самыми дешевыми, но при этом хрупкими. Имеют неплохую термическую стабильность и могут использоваться при температурах до 300 °C. Очень стойки к коррозии. Требуют механической обработки для соответствия жестким габаритным допускам.

Таблица 2. Выбор магнитов для управления герконами

Показатели Увеличение показателей →
Цена Феррит AlNiCo NdFeB SmCo
Энергия Феррит AlNiCo SmCo NdFeB
Диапазон рабочих температур NdFeB Феррит SmCo AlNiCo
Коррозионная стойкость NdFeB SmCo AlNiCo Феррит
Коэрцитивная сила AlNiCo Феррит NdFeB SmCo
Механическая прочность Феррит SmCo NdFeB AlNiCo
Температурный коэффициент AlNiCo SmCo NdFeB Феррит

Заключение

В современном мире с каждым днем становится все больше «умных вещей», которые значительно упрощают наши повседневные задачи. Немалую роль в этом сыграли датчики на основе герконов. Фантастическая надежность, четкость срабатывания, отсутствие потребности в питании, простота применения и великолепные коммутационные свойства для слабосигнальных цепей сделали герконы одними их самых распространенных электронных компонентов, применяющихся всюду, от холодильников до самолетов.

•••

Наши информационные каналы

www.compel.ru

Подключение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *