+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Выпрямительный диод — это… Что такое Выпрямительный диод?

Аналогия между работой обратного клапана и диода Эффект односторонней проводимости показан в зависимости от полярности подключения диода на схеме

Выпрями́тельные дио́ды — диоды, предназначенные для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований.[источник не указан 406 дней]

Электрические параметры

Основные параметры выпрямительных диодов:

  • среднее прямое напряжение Uпр.ср. при указанном токе Iпр.ср.;
  • средний обратный ток Iобр.ср. при заданных значениях обратного напряжения Uобр и температуры;
  • допустимое амплитудное значение обратного напряжения Uобр.макс.;
  • средний прямой ток Iпр.
    ср.;
  • частота без снижения режимов.

Частотный диапазон выпрямительных диодов невелик. При преобразовании промышленного переменного тока рабочая частота составляет 50 Гц, предельная частота выпрямительных диодов не превышает 20 кГц.

По максимально допустимому среднему прямому току диоды делятся на три группы: диоды малой мощности (Iпр.ср. ≤ 0,3 А), диоды средней мощности (0,3 А < Iпр.ср. < 10 А) и мощные (силовые) диоды (Iпр.ср. ≥ 10 А).

В состав параметров диодов входят диапазон температур окружающей среды (для кремниевых диодов обычно от -60 до +125 °С) и максимальная температура корпуса.

Среди выпрямительных диодов следует особо выделить диоды Шотки, создаваемые на базе контакта металл-полупроводник и отличающиеся более высокой рабочей частотой (для 1 МГц и более), низким прямым падением напряжения (менее 0,6 В).

Мостовая схема включения диодов

Для повышения коэффициента полезного действия выпрямительные диоды включают по мостовой (реже полумостовой) схеме, чтобы питание нагрузки осуществлялось на протяжении обоих полупериодов.

См. также

Примечания

Ссылки

Выпрямительные диоды — презентация онлайн

1. Выпрямительные диоды

Выполнили студенты группы 235-3:
Прытков С.В.
Дорохов А.С.
Ержанов Д.С.
Ефимов К.

2. Содержание.

1.
2.
3.
4.
5.
6.
7.
8.
9.
Определение.
Область применения.
Принцип работы.
Разновидности устройств и их обозначение.
Параметры выпрямительных диодов.
ВАХ.
Коэффициент выпрямления.
Мостовые схемы включения диодов.
Диоды Шотки.

3. Определение.

Выпрямительный диод — это
полупроводниковый прибор с
одним p-n переходом и с двумя
электродами, который служит
для преобразования
переменного тока в
постоянный.

4. Область применения.

Выпрямительные диоды применяются в
цепях управления, коммутации, в
ограничительных и развязывающих цепях, в
источниках питания для преобразования
(выпрямления) переменного напряжения в
постоянное, в схемах умножения напряжения и
преобразователях постоянного напряжения,
где не предъявляются высокие требования к
частотным и временным параметрам сигналов.

5. Принцип работы выпрямительного диода

Принцип работы этого устройства основывается на
особенностях p-n перехода. Анод присоединён к p
слою, катод к n слою. Возле переходов двух
полупроводников расположен слой, в котором отсутствуют
носители заряда. Это запирающий слой. Его
сопротивление велико.
При воздействии на слой определенного внешнего
переменного напряжения, толщина его становится
меньше, а впоследствии и вообще исчезнет.
Возрастающий при этом ток называют прямым. Он
проходит от анода к катоду. Если внешнее переменное
напряжение будет иметь другую полярность, то
запирающий слой будет больше, сопротивление возрастет.

6. Разновидности устройств и их обозначение.


По конструкции различают приборы двух видов: точечные и плоскостные.
В промышленности наиболее распространены кремниевые (обозначение —
Si) и германиевые (обозначение — Ge). У первых рабочая температура выше.
Преимущество вторых — малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
— Первый элемент – обозначение материала из которого он выполнен;
— Второй определяет подкласс;
— Третий обозначает рабочие возможности;
— Четвертый является порядковым номером разработки;
— Пятый – обозначение разбраковки по параметрам.

7. Параметры выпрямительных диодов.

• Частотный диапазон выпрямительных диодов
невелик. При преобразовании промышленного
переменного тока рабочая частота составляет 50 Гц,
предельная частота выпрямительных диодов не
превышает 20 кГц.
• По максимально допустимому среднему прямому
току диоды делятся на три группы: диоды малой
мощности (Iпр.ср. ≤ 0,3 А), диоды средней
мощности (0,3 А
(силовые) диоды (Iпр.ср. ≥ 10 А). Диоды средней и
большой мощности требуют отвода тепла, поэтому
они имеют конструктивные элементы для установки
на радиатор.

8. Параметры выпрямительных диодов.

• В состав параметров диодов входят
диапазон температур окружающей среды (для
кремниевых диодов обычно от −60 до +125 °С)
и максимальная температура корпуса.
• Среди выпрямительных диодов следует особо
выделить диоды Шотки, создаваемые на базе
контакта металл-полупроводник и
отличающиеся более высокой рабочей
частотой (для 1 МГц и более), низким прямым
падением напряжения (менее 0,6 В).

9. Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ)
выпрямительного диода можно
представить графически. Из графика
видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной
характеристики ее прямая ветвь
отражает наибольшую проводимость
устройства, когда к нему приложена
прямая разность потенциалов. Обратная
ветвь (третий квадрант) ВАХ отражает
ситуацию низкой проводимости. Это
происходит при обратной разности
потенциалов.
Реальные Вольт-амперные характеристики
подвластны температуре. С
повышением температуры прямая
разность потенциалов уменьшается.

10. Коэффициент выпрямления

• Коэффициент выпрямления можно рассчитать.

Он будет равен отношению прямого тока
прибора к обратному. Такой расчет приемлем
для идеального устройства. Значение
коэффициента выпрямления может достигать
нескольких сотен тысяч.
Чем он больше, тем лучше
выпрямитель делает свою
работу.

11. Мостовые схемы включения диодов.

Дио́дный мо́ст — электрическая схема,
предназначенная для преобразования
(«выпрямления») переменного
тока в пульсирующий. Такое выпрямление
называется двухполупериодным.
Выделим два варианта включения мостовых
схем :
1. Однофазную
2. Трехфазную.

12. Однофазная мостовая схема.

На вход схемы подается переменное напряжение (для простоты будем
рассматривать синусоидальное), в каждый из полупериодов ток
проходит через два диода, два других диода закрыты
Выпрямление положительной полуволны
Выпрямление отрицательной полуволны
результате такого преобразования на выходе мостовой схемы
получается пульсирующее напряжение вдвое большее частоты
напряжения на входе .
В
а) исходное напряжение (напряжение на входе), б)
однополупериодное выпрямление, с) двухполупериодное
выпрямление

14. Трехфазная мостовая схема.

В схеме трехфазного выпрямительного моста в результате
получается напряжение на выходе с меньшими пульсациями, чем
в однофазном выпрямителе .

15. Диоды Шотки

Диоды Шоттки получают, используя переход металл-полупроводник.
При этом применяют подложки из низкоомного n-кремния (или
карбида кремния) с высокоомным тонким эпитаксиальным слоем того
же полупроводника .
УГО и структура диода Шоттки:
1 –низкоомный исходный кристалл кремния
2 – эпитаксиальный слой высокоомного

‖‖‖
Кремния
‖‖‖
3 – область объемного заряд
4 – металлический контакт

Устройство и работа выпрямительного диода

Устройство и работа выпрямительного диода. Диодный мост.

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.

В этой части мы рассмотрим устройство и работу выпрямительных диодов .

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов.

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой. средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые. но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов.

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными .

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n -типа расплавляют алюминий. индий или бор. а на поверхность кристалла с электропроводностью p -типа расплавляют фосфор .

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т. е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Кристаллы кремния или германия (3 ) с p-n переходом (4 ) припаиваются к кристаллодержателю (2 ), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7 ) со стеклянным изолятором (6 ), через который проходит вывод одного из электродов (5 ).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1 ) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1 ) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов.

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота. кГц;
Рабочая температура. С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн ), а функцию выпрямляющего элемента будет выполнять диод (VD ).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн ), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается. и во всей цепи будет протекать незначительный обратный ток диода (Iобр ). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн ), подключенную к сети через диод (VD ), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф ) во время отрицательных полупериодов разряжается через нагрузку (Rн ). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн ) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс ) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным. а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста .

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+ », «— » или «

», указывающие, где у моста вход. а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3. нагрузку Rн. диод VD2 и к нижнему выводу вторичной обмотки (см. график а ). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4. нагрузку Rн. диод VD1 и к верхнему выводу вторичной обмотки (см. график б ). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в ). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными .

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором. то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром .

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В. Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Понравилась статья — поделитесь с друзьями:

Иван
28. Jan. 2014 в 11:53

Прочитал Вашу статью перед зачётом по электронике в Университете и открыл для себя этот материал другими глазами, более просто больше нигде не читал. Спасибо Вам.
Но у меня появился вопрос: в диодном мосту при протекании тока через VD3 к VD2 после Rн, ток не уходит ещё и на VD1 ведь он включен как и VD2 анодом к Rн?
Спасибо.

Сергей
28. Jan. 2014 в 14:49

Добрый день Иван!
Спасибо.
Вы правы. После нагрузки ток попадает и на VD1 и на VD2. Но в данный полупериод (сплошная стрелка) VD1 закрыт, так как и на катоде и на аноде присутствует положительный потенциал, и поэтому прохождения тока через него нет, и это получается уже не диод а резистор с ооогромным сопротивлением.
А так как ток идет по найменьшему сопротивлению, то он идет на VD2 и на нижний вывод вторичной обмотки.
Диод VD4 также представляет резистор с ооогромным сопротивлением — но это только в первый полупериод.
Во втором полупериоде, когда положительный потенциал пойдет снизу-вверх, диоды поменяются местами.
Удачи!

Александр
16. Apr. 2014 в 14:50

Здравствуйте, подскажите еще один момент по диодному мосту.
А как проходит ток по VD2, если -(минус) подключен к аноду диода, а анод положителен.

Сергей
16. Apr. 2014 в 19:27

Добрый вечер Александр!
На анодах диодов VD1 и VD2 отрицательное напряжение образуется, а затем снимается нагрузкой Rн.

Эдик
20. Apr. 2014 в 19:37

добрый вечер!Спасибо Вам за подробное описание основ,незнание которых непозволительное упущение, т.к.рано или поздно это может пригодиться.Я пытаюсь выпрямить 12 вольт для запуска двигателя от шуруповерта.Регулировать обороты буду при помощи ШИМ. Но вот мост,который я собрал из диодов 5408 сильно греется под нагрузкой, до 80 гр. С. Попробовал диод Д213А на 10А,нагрелся до 100.Вопрос:нагрев до такой температуры-это нормально?Или необходимо применить более мощные диоды, напр.MBR1650 и т.д.Неужели и он будет так же нагреваться? Под нагрузкой ток примерно 8-9А. ????

Сергей
20. Apr. 2014 в 20:13

Добрый вечер Эдик!
Нагрев допускается до 120 градусов, но это еще Советские стандарты.
Вы установите диоды на радиатор и проблема с нагревом отпадет.

Найдите дюралевую или алюминиевую полоску толщиной 5-7мм, благо сейчас это не проблема, и нарежьте четыре кусочка размером 80х80мм. На эти кусочки закрепите диоды. Для лучшего контакта диода с пластиной, место, где будет крепиться диод, слегка пройдите наждачной бумагой, и когда будете крепить диод, смажьте обе плоскости вазелином или машинным маслом. Смазка нужна для лучшего контакта между поверхностями.
Удачи!

Эдик
21. Apr. 2014 в 22:25

Сергей,большое спасибо.Честно говоря, я прошерстил все свои книги. Нашел и объяснение причины нагрева. Меня смутило то, что без нагрузки, т.е. на холостом ходу двигателя нагрев был терпимым,около 80.Я не могу на неделе вырваться в Радиолавку,купить сборку диода Шотки,поэтому попробую собрать мост на базе 4-х 213А,что даст в пределах 20А.Их тоже можно прикрепить для охлаждения к алюминиевой пластине с помощью хомутика,я думаю.Простите,для Вас является очевидным то, что для меня представляет китайскую грамоту.Как говорил тов.Козьма Прутков: Многие вещи нам непонятны потому, что они не входят в круг наших понятий.Постараюсь быть прилежным Вашим учеником.

Сергей
21. Apr. 2014 в 23:11

Эдик!
Вы не гонитесь за мощными диодами.
Поймите одно: если через диод или диодную сборку идет ток, больший, чем на который рассчитан холостой ход p-n перехода диода, то диод будет однозначно греться. Вы можете установить диодную сборку с меньшими параметрами, и она справиться, но ей нужно охлаждение. Как правило, выпрямительные диоды всегда устанавливаются на радиаторах.

Дмитрий
10. May. 2014 в 19:29

Сергей, посоветуйте пожалуйста, какие лучше купить диоды для диодного моста. Требуется выпрямить ток блока питания 12В. 3А.
Спасибо за статью! ????

Сергей
10. May. 2014 в 21:15

Добрый вечер Дмитрий!
Спасибо!
Из отечественных:
Д232; Д242-Д248; КД202; КД203; КД206; КД210; КД213 — с любым буквенным индексом.
Диоды в обязательном порядке устанавливайте на радиатор.
Удачи ???? !

АстролонЫч
14. May. 2014 в 10:28

Спасибо за познавательную статью. Буду рад прочесть в таком же простом и понятном изложении про другие дискретные элементы

Сергей
27. May. 2014 в 09:58

Алексей!
Если смотреть по схеме, то одно входное плечо моста подключайте к клемме «М», а второе входное на «О2» клемм бкс. С клеммы «О1» идет на аккумулятор уже выпрямленное напряжение по однополупериодной схеме, а с клеммы «О2» идет чистая переменка с генератора.
Схемы и рекомендации нарисованы правильно, а вот, что касается отсутствие обмотки возбуждения — мне это не о чем не говорит, да и спросить не у кого.
Удачи!

Алексей
27. May. 2014 в 11:11

Это понятно, но как правильно в эту цепь включить реле,у которого три контакта. И на одной из схем, после моста включена реле,но -моста на массе,диод не выгорит из-за этого? И стоит ли запитать -моста -реле -акб между собой ,или можно на массу. Извините за 101 вопрос,электрика не совсем моя стихия

Сергей
27. May. 2014 в 11:45

Алексей!
Если я правильно понял вопрос:

Алексей
27. May. 2014 в 12:09

Как бы да,вот по схеме после бкс можно так сделать?
Единственное,что у всех лампочек минус запитан на корпус. И стандартно абсолютно все приборы на массу(корпус).На одной из схем бкс отключают от корпуса и ведут отдельно провод с генератора(кольцуют якобы переменку),стоит это делать?

Сергей
27. May. 2014 в 17:14

Алексей!
Вы без корпуса (общего или минуса) ничего не сделаете. На одном плюсе работать ничего не будет, сами понимаете. Если хоть один провод откините от бкс, то работать вообще ничего не будет.
Если хотите отдельный корпус (общий или минус), то ставьте еще один генератор и от него ведите еще одну линию.

Алексей
27. May. 2014 в 17:29

Вы меня неправильно поняли.Вот что я имел ввиду http://moto-planeta.ru/forum/topic_4694/1

Сергей
27. May. 2014 в 18:02

Алексей!
Может я что-то не так понял, так как техники у меня такой нет, но схема, которую я нарисовал и которые Вы мне выслали, все соответствуют Вашему желанию. И даже на форуме это подтверждено.
Что Вас не устраивает.
Какие еще вопросы.
P.S. Запомните раз и навсегда: от одного источника питания можно получить несколько разных плюсов, но минус, общий, масса, корпус всегда будет один. Потому что он общий, он опора, от минуса к плюсу бегут электроны.
Удачи!

Алексей
27. May. 2014 в 18:12

Александр
05. Jun. 2014 в 15:14

Добрый День.
Прошу посоветовать на предмет наличия оборудования для решения сл. проблемы:
— Мне надо переменный ток на 12-25 Вольт преобразовать в постоянный на 12-25 Вольт, мощностью от 30Ватт
Спасибо.

Сергей
05. Jun. 2014 в 16:03

Добрый день Александр!
Подойдут диоды из серии 1N4001 — 1N4007. Это самые распространенные кремниевые диоды.

Иван
12. Jun. 2014 в 11:42

Замечательно написано! Хотелось бы точно также понятно о работе конденсаторов на примере работы небольших схем. Спасибо!

Сергей
12. Jun. 2014 в 16:03

Добрый день Иван!
В скором времени планирую.
Спасибо за оставленный комментарий!

Александр
25. Jun. 2014 в 16:37

Задача: переменное 220 вольт — получить постоянное 220 вольт. Вопрос можно ли в мостовой схеме использовать диоды КД-213 а,б,в с обратным напряжением 200 вольт. Ведь в мостовой схеме в одно плечо нагрузки вроде как включается последовательно два диода.

Сергей
25. Jun. 2014 в 18:03

Александр!
Эти диоды не подойдут.
Используйте диоды на обратное напряжение не менее 300 В.
В мостовой схеме ток идет через один диод.

Александр
25. Jun. 2014 в 21:05

Александр
25. Jun. 2014 в 21:29

Сергей, только что при очередном проведённом измерении, падение напряжения на диодах д-231А составило 105 вольт на каждом. Так и диодах КД-213 то же такое. Получается использование диодов на напряжение 200 вольт достаточно! Доказано ПРАПОЩИКОМ ГОЛУБЕНКО ИВАНОМ ВАСИЛЬЕВИЧЕМ В 1973 году. С уважением Александр, бывший комвзвода связи у Иван Васильевича.

Александр
25. Jun. 2014 в 21:35

Да и еще, для экономии электроэнергии и электролампочек на общий выключатель освещения лестничных клеток, я установил в своём ЖСК в 1996 году диоды КД213 (других не было под рукой) и ничего работают до сих пор.
Спасибо.

Сергей
25. Jun. 2014 в 22:18

Бывшему комвзвода Александру от бывшего библиотекаря-кинорадиомеханика Сергея!
Довелось служить в самом начале 90-х — присягал еще Советскому Союзу.
Так вот: над дверью перед входом в клуб висела лампа и с периодичностью раз в месяц перегорала. От старшины Васильева поступил приказ: ликвидировать это безобразие. В разрыв лампы, помню как сейчас, установил диод Д7Б (почти как ДМБ) — других небыло. За время моей службы лампа больше не перегорала.
На гражданке такое не прошло. Рванул так, что помял корпус выключателя.
Скорее всего, Ваши диоды «выкручиваются» за счет лошадиного тока в 10 А.
Точно ответить не могу, а в сказки уже не верю.
Удачи!

Александр
25. Jun. 2014 в 23:10

Спасибо. Смотрите второй закон Кирхгофа, а также закон Ома. Здесь начинает работать уже постоянный ток. Поэтому падение напряжения на нагрузке и диоде делится, поэтому диоды и держат. Но. если будет нагрузка больше допустимой катастрофа неизбежна!

Сергей
26. Jun. 2014 в 00:18

Александр!
В полупроводнике действуют другие законы.
Если p-n переход диода не рассчитан на обратное напряжение свыше 200 В и ток нагрузки более 300 mA, то чтобы ты не делал, а при подаче сверх лимита диод сгорит при любом раскладе. Здесь дело только во времени.
P.S. Я все думаю про армейский диод: мне кажется, что была опечатка в букве.

Александр
26. Jun. 2014 в 04:28

Спасибо за ответ. Опечатки в букве наверное нет. ПП приборы для армии с пометкой ВП или ромбиком делали более качественно. Ну да ладно время покажет.

Алишер
07. Aug. 2014 в 20:21

Пытаюсь запустить шуруповерт без батарей.
Читал что требует большие токи в работе. Наверное до 10А.
Шуруповерт 9.6V DC
Есть диоды Д247 и Д242.
Какое напряжение нужно с транса и какой кондер?
Спасибо!

Сергей
09. Aug. 2014 в 01:19

Здравствуйте Алишер!
Диоды подойдут, а на выходе с транса нужно иметь напряжение 10 Вольт. Поставьте два кондера по 500 мкф х 16 Вольт.

Алишер
10. Aug. 2014 в 09:04

Спасибо Сергей!
Как правильно оценить максимальный ток который может выдать выпрямитель?
Имею ввиду если нагрузка скажем до 25А. Напряжение 10V.
Понимаю что нужен большой транс. Но насколько большой?

Сергей
13. Aug. 2014 в 14:18

Добрый день Алишер!
Подойдет от старого цветного телевизора Советского производства, например «Электрон».
В таких телевизорах использовались трансы мощностью от 180 до 320 Вт (ТС-180, ТС-240).
Вам придется смотать или домотать вторичную обмотку.
Удачи!

Paul
25. Aug. 2014 в 18:04

Доброго времени суток, Сергей! Интересует такой вопрос. Собран мост на Д246. Питание напрямую из сети. Каково будет выходное напряжение? (Около 300В?) нужен ли фильтр и какой? Охлаждение? Нагрузка рассчитывается в пределах 200Вт. Запитываться будет блок питания компьютера на вход (он используется в качестве конвертора)

Сергей
25. Aug. 2014 в 19:03

Добрый вечер Paul!
На нагрузке Вы получите 220В.
На счет фильтра не скажу, а вот конденсатор 20 — 50мкф 400В после моста поставьте.
Диоды устанавливайте на радиаторы и обязательно делайте охлаждение.

Станислав Васильевич.
17. Sep. 2014 в 11:47

Уважаемый Сергей.
Не думал, что в таком возрасте (68 лет) придётся заниматься электротехническим конструированием. Реальная жизнь украинского пенсионера поставила передо мной такую задачу, которую и придётся мне решить. Вопрос вот в чем. Для зарядки двух 12В гелевых аккумуляторов ( 4 и 7 A/h) нужно сконструировать и собрать зарядное устройство. Оригинальным не буду — устройство должно быть, по возможности, не дорогим и соответствовать необходимым параметрам режима зарядки этого типа АКБ. В общих чертах я понимаю, какие технические средства нужны для решения поставленной задачи, но расчитать режимы этого устройства не хватает знаний. Очень надеюсь найти помощь для себя на Вашем сайте, тем более, что этот материал будет полезным и для многих других домашних умельцев в решении подобных задач.
«Надёргал» по друзьям «стартовые» компоненты:
1.Понижающий тр-р достаточной конструктивной мощности: ленточный магнитопровод, обмотки — медь, I-220В Ø-1мм, II-20В Ø-2,5мм.
2.Электролитический конденсатор для фильтра выпрямителя 10000 мкФ х 50В.
3.Две измерительные головки для контроля величины тока и напряжения режимов зарядки: ± 50mA и 50mA.
У друзей надеюсь найти или докупить фольгированный текстолит для печатной платы и остальные недостающие компоненты конструкции.
Сергей, какие нужны выпрямительные диоды для моста, которые обеспечат ток заряда от 0 и до 1,5 — 2,0А (на всякий другой случай)? Подскажите, какая схема обеспечит плавную или ступенчатую независимую регулировку зарядного напряжения и силы тока?
Очень надеюсь на «ликбез» по этой теме.
С уважением Станислав Васильевич.

Сергей
18. Sep. 2014 в 12:37

Добрый день Станислав Васильевич!
Вы еще раз доказали, что радиолюбительством можно и нужно заниматься в любые годы.
Для выпрямления тока до 2А подойдут отечественные мощные диоды, например, КД202В,Г,Д,Е,Ж,К,Л,Н.
Специально для Вас нашел очень простую схему зарядного устройства для гелевых аккумуляторов.
Вместо токозадающих резисторов можно установить проволочный переменный мощностью не менее 25Вт с номиналом до 10 — 50 Ом.
Если возникнут вопросы — задавайте. С удовольствием отвечу.
Вот ссылка:

Станислав Васильевич.
19. Sep. 2014 в 00:28

Сергей, спасибо за помощь. Вы знаете, я уже «перецепался» в И-нете через эту схему, но из-за отсутствия соответствующих знаний, оценить по достоинству её не смог. Теперь, как говорится, положил её на рабочий стол. Теперь по схеме непосредственно. Сегодня принёс от товарища 6 шт. диодов КД213Г — он сказал, что их можно тоже использовать в этой схеме. Я поинтересовался в справочнике и у меня на их счет возникли сомнения. Смутило меня сравнительно большое на них падение напряжения. Ну, в мосте, при подводимом напряжении ≈20В, я думаю, это может быть и не существенный недостаток, а вот в позиции VD5? Сергей, как Вы считаете, этим параметром можно пренебречь или всё же нужно искать КД202В… и нужно ли ставить их на теплоотводы? Вопрос следующий. Какая должна быть площадь теплоотвода для микросхемы L200C, в расчете на максимально возможный ток? Вопросы, на мой взгляд, первостепенные, т.к. нужно компоновать элементы в корпус будущей конструкции и нужно определиться с габаритами её компонентов.
С ув. Ст.Вас.

Сергей
19. Sep. 2014 в 11:53

Станислав Васильевич!
1. Диоды и микросхему обязательно ставим на радиаторы.
2. Про площадь радиаторов сказать не могу, так как всегда делаю на глаз или использую стандартные. Если смотреть фотографии к статье, то радиатор, на котором закреплена микросхема, для тока нагрузки 2 — 3 Ампер подойдет. Но если ток использовать 3,5 — 7 Ампер, то радиатор надо брать больше раза в полтора.
2. Для тока нагрузки 2 — 3 Ампер можно установить по два диода на один такой радиатор (как в статье). Но если ток будет выше, то каждый диод устанавливаем на такой радиатор. Для VD5 придется использовать отдельный радиатор. Все диоды и микросхему устанавливаем через специальные прокладки (изолируем от корпуса).
3. Диоды можно использовать любые выпрямительные (импортные или отечественные) с прямым напряжением Uпр — 50 Вольт и более, и с прямым током Iпр не менее 5 Ампер. КД213 подойдут.

Станислав Васильевич.
19. Sep. 2014 в 21:47

Сергей, спасибо за своевременные и ценные рекомендации. Купил я сегодня комплект КД202В. С L200C, вероятно, будет заминка — пока никто из моего окружения о такой не слышал. Видимо, придётся искать в И-нете и выписывать. Интересно, 100% отечественный аналог этого стабилизатора существует или нет?
Ещё раз спасибо.
С ув. Ст.Вас.

Сергей
20. Sep. 2014 в 09:34

Станислав Васильевич!
Аналогов этой микросхемы я не нашел.
Есть схема простого зарядного устройства, которая работает как часы. По этой схеме я собрал, еще в 90-х, десятка четыре зарядных устройств, и еще не один хозяин не пожаловался.
А если ее дополнить автоматом, который будет отключать заряжаемый аккумулятор? И не надо никаких мудренных микросхем. Для своего экземпляра я так и сделал, вот только его у меня уже нет, и доработку я не сохранил. Если найду источник, то обязательно напишу.
Схему возьмите по этой ссылке в комментарии №27.
Удачи Вам!

Сергей
20. Sep. 2014 в 09:46

Станислав Васильевич!
Схема зарядного устройства: Радио 1992г, №12, стр.11.
Так как у меня уже было зарядное устройство, поэтому из этой схемы я взял только участок, который отвечает за автоматическую работу зарядного устройства.
Вы ее собирайте полностью и не пожалеете. Выйдет дешевле и надежнее.
Удачи!

Станислав Васильевич.
19. Sep. 2014 в 22:09

Для тех, кого заинтересовала тема этого зарядного, ссылка с форума, по практической реализации этой конструкции: http://forum.cxem.net/index.php?showtopic=122153

Станислав Васильевич
23. Sep. 2014 в 10:18

Сергей, спасибо за рекомендации — это важная для меня информация. Решил я прислушаться к своему первому, интуитивному решению и всё-таки собрать зарядное на L200C. Пока с ней сложности, в плане приобретения. Нашел я её в продаже, но, к сожалению, там есть ограничения по минимальной сумме заказа, который превышает в шесть раз стоимость самой микросхемы. Надежды не теряю — найду всё равно.
Сергей, у меня возник вопрос по теме: зачем устанавливать в каждое плечо моста по два диода «в параллель» для тока до 3А, если диоды КД202В пятиамперные?
С ув. Ст.Вас.

Сергей
23. Sep. 2014 в 14:47

Станислав Васильевич!
Чем больший ток проходит через p-n переход выпрямительного диода, тем переход сильнее греется. И если от него не отводить тепло, то переход перегреется и произойдет его пробой.
Для мощного выпрямительного диода ток 200 — 300mA не страшен — диод будет теплый. Но ток свыше 300mA обязательно приведет диод к перегреву и выходу из строя. Вопрос только во времени нагревания. Поэтому при питании мощного потребителя, выпрямительные диоды в источниках питания обязательно устанавливают на радиаторы.

Станислав Васильевич
23. Sep. 2014 в 15:23

Сергей, спасибо за науку. В мосте, диоды я установил на заводские радиаторы, около 60 см2 каждый, а VD5 — около 100 см2. Для микросхемы установил радиатор — около 470 см2. Как считаете, достаточно? Рабочее пространство корпуса будущей конструкции, при моей компоновке (… :grin:), практически всё занято. Осталось небольшое пространство на передней панели для установки головок приборов и органов управления.

Сергей
23. Sep. 2014 в 16:46

Станислав Васильевич!
Все нормально.
В свое время меня учили: лабораторный блок питания должен состоять из мощного трансформатора и радиаторов, а для лучшего охлаждения корпус должен состоять из одних дырочек ????

Анатолий Павлович
20. Jan. 2015 в 16:07

День добрый,Сергей.Спасибо за Вашу огромную работу.Лично у меня есть вопрос такой темы:вышел из строя стабилизированный источник питания 12 в.,советского пр-ва,промышленный.Схемы нет.Есть-ли смысл им заниматься?Спасибо за ответ.

Сергей
20. Jan. 2015 в 16:12

Добрый день Анатолий Павлович!
Советское — значит надежное и отличное. Это не китайское г..но.
Проверьте на исправность полупроводники и замените все электролиты.
Обязательно посмотрите предохранитель и питающий шнур.
Удачи!

антон
30. Jan. 2015 в 21:58

Сергей,добрый день! Прочитал статью, все в принципе доступно и понятно. Еще понятней. что вы то в этом деле вообще ас)) Можно вопросик из рабочей практики? На работе возникла проблема с диодным мостиком на тормоз электродвигателя 15 кВт. Первоначально он стоит там заводского изготовления. по параметрам. входное напряжение как 380, так и 220 можно, выходное 170 постоянки, от 1 до 5 А. Диодный мостик быстро выходит из строя, китайский судя по надписям на нем. схема вся залита каким то материалом. так что разборке не подлежит. Хотим собрать свой мостик. только вот специалистов по подборке диодов нет, вы могли бы поспособствовать в этом вопросе. какие диоды нужно поставить для соблюдения необходимых нам параметров. что еще необходимо включить в схему. Если будет время. или будет интересно помочь. заранее спасибо. буду ждать ответа. любого. не важно. может и сами разберемся, но для ускорения процесса хотелось бы помощи) заранее спасибо!

Сергей
31. Jan. 2015 в 11:24

Добрый день Антон!
Спасибо!
1. В первую надо разобраться почему вылетает диодный мост. Может катушка тормоза имеет короткозамкнутые витки и из-за этого потребляет больше тока, чем может дать диодный мост. А там кроме диодов ничего не стоит?
2. Если этот диодный мост состоит только из одних диодов, то можно использовать следующие (немного перестраховался):
Д233; Д247; КД206Б-В; КД203А-Д; КД210Б, Г. Одним словом, смотрите диоды с обратным напряжением Uобр не менеее 500В и прямым током Iпр не менее 10 Ампер.
Дидоы обязательно устанавливайте на радиаторы для отвода тепла.
Удачи!

Андрей
09. Feb. 2015 в 09:52

Здравствуйте уважаемый Сергей! На самодельном зарядном устройстве для автомобильных аккумуляторов в выпрямительном мосту сгорел Д242А (стоял без радиатора). Т.к. этот диод достать оказалось сложным, то посоветовали поставить BR1010. У него допустимый ток 10А. Нужен ли ему радиатор? Корпус пластиковый без металлической вставки, поэтому возник этот вопрос. Спасибо!

Андрей
09. Feb. 2015 в 09:57

…для 80. а откуда Вы взяли что Вам нужно в этот прибор диодный мост?Или у Вас имеется схема этого прибора?

Григорий
23. Mar. 2015 в 18:18

Здравствуйте Сергей! Как я понимаю с диодами вы общаетесь на ты, подскажите пожалуйста в такой ситуации, есть транс 220/12 более подробно ОСО — 0.25 — 0.1 УХЛ З, хочу его приспособить для своей автомобильной акустики в домашних условиях, никак не могу подобрать диоды, пробовал автомобильные диодные мосты типа бпв56-65-02 диоды греются очень сильно, а что касается проводов так на них просто изоляция плавится, так вот хотелось узнать какие диоды мне нужны что бы выпрямить ток с этого транса? Что касаемо нагрузки имеется 2 усилителя которые будут подключаться к этим 12В первый Calcell bst 1000. 1 в 2Ом режиме на 800Вт и 2 усилитель Calcell bst 100.4 2 канала 2Ом режиме и нагрузкой 100Вт и оставшиесы 2 канала 6Ом и нагрузкой

40Вт.
P.S. Догадываюсь без рассчетов, что на максимум мощности не хватит конечно транса, но увы что есть из того и лепим

Сергей
23. Mar. 2015 в 19:34

Добрый вечер Григорий!
1. Помимо подбора диодов их нужно хорошо охлаждать. Нужны мощные радиаторы, и возможно, придется дополнительно поставить кулер.
2. Для первого усилителя (800 Вт) используйте диоды на напряжение (Uобр) не менее 50 Вольт и ток (Iпр) не менее 30 Ампер. Например, из серии КД2997 А-В.
3. Для усилителя на 100 Вт подойдут диоды на напряжение не менее 50В и ток не менее 15А.
4. Для остальных усилителей подойдут на напряжение не менее 50В и ток не менее 10А. Например, из серии Д245, Д242.
5. Но я бы Вам посоветовал делать блоки питания именно для УНЧ, так как при их конструировании встречается много ньюансов.
6. Почитайте здесь:

1. http://radiostorage. net/?area=news/522
2. http://fcenter.ru/online/hardarticles/tower/28690

Григорий
23. Mar. 2015 в 22:22

Благодарю за информацию, есть еще одно но, имеется акб 95 A\h я собираюсь использовать эту акб как фильтр, и с нее уже черпать полностью все питание на усилители, и усилителя всего 2-а, на втором усилителе просто 4 канала

Григорий
23. Mar. 2015 в 22:42

Вот нашел такой диод КД2991А он будет в самый раз получается ?

Cергей!благодарю за статью!
Подскажите пожалуйста.Читая коменты к вашей статье промелькнуло словосочетание «холостой ход диода».Подскажите пожалуйста что это и чем характеризуется?)
Cпасибо!

Сергей
11. May. 2016 в 20:34

Добрый вечер, Владислав!
По этому вопросу ничего ответить не могу, потому как такого режима и понятия «холостой ход диода» не слышал и не знаю.
Есть, например, холостой ход трансформатора.

Владислав
11. May. 2016 в 21:03

и еще Сергей…
просмотрел ваше в конце статьи
в конце вы рассказываете как подключить диодный мост что б подключать нагрузку не учитывая полярности!Так вот. я не очень понял как получилось сее явление!Попробылал сам покумекать но тестер показывал полярность…(

Владислав
11. May. 2016 в 21:04

Сергей простите я видать не правильно понял

Сергей
11. May. 2016 в 21:20

Владислав!
Выход диодного моста («+» и «-«) к нагрузке и оставляете, а входную часть моста можете подключать без соблюдения полярности.

Владислав
11. May. 2016 в 21:33

Сергей спасибо!
последний вопрос созрел.Если случайно на диодны мост подать переменное напряжение не на те выводы(на «+» и «-«).Что произойдет?
PS:Извените за не грамотность и назойливость.Спасибо за труд!

Сергей
11. May. 2016 в 21:38

Владислав!
Ничего не будет. Диодный мост не будет работать.

Карим
12. May. 2016 в 15:30

Доброго времени. Собрал по схеме блок диодного моста. Подаю переменный ток, а на выходе совершенно не те значения какие хотелось бы видеть. В чём причина. Подскажите. Схема на радиаторах для пуско зарядного устройства.

Сергей
12. May. 2016 в 16:44

Добрый вечер, Карим!
Причин две: или неправильно собрали, или в мосту есть неисправные диоды.

Алексей
23. May. 2016 в 06:03

Доброго дня! Очень надеюсь на Вашу помощь. Нужна марка или хотя бы характеристики диода для моста к двигателю 12 В, 19 А. Заранее благодарен. С уважением Алексей С.

Сергей
23. May. 2016 в 08:52

Здравствуйте, Алексей!
http://www.chipdip.ru/product/mb2505/
http://rekshop.ru/product/3447/2-30/292/index.php

Ник
30. May. 2016 в 14:00

Добрый день, собрал преобразователь на 380 вольт 3 кв. с 6 преобразователей по 63 вольта, соединённых последовательно, для платы китайского синуса, тестирую сам преобразователь, пока без подключения платы синуса.
Не могу решить проблему выхода из строя диодов выходного моста 380 вольт, через разное время, может работать 5 минут или несколько часов.
Хаотично, может с нагрузкой, может на холостом ходу, пробивается один диод и преобразователь уходит в защиту.
Диоды ставил разные и 600 и 1200 вольт, результат один.
В чём может быть проблема, как защитить мост?

Сергей
30. May. 2016 в 19:51

Добрый вечер. Ник!
В этом я Вам не советчик, но думаю, что дело не в мосту, а в преобразователе, с которого напряжение поступает на мост.

Ник
30. May. 2016 в 20:50

Ведь есть-же способы защиты диодов, к примеру шотки, ставят паралельно диоду конденсатор…

http://sesaga.ru

Выпрямительные диоды. Схемы замещения диода для прямого и обратного включения, страница 2

Из-за сложности аналитического представления токов и напряжений в реальных схемах с диодами на практике часто используется графоаналитический метод решения задач.

Пример: определить падение напряжения на открытом диоде VD, ток I, rДИФ в схеме, представленной на рис. 9.3.2, б. Известна ВАХ диода (рис.8.2, в), UП = 2 В, R = 1 кОм.

Рис. 8.3.2 Обозначение диода (а), схема включения диода (б), иллюстрация

графического метода определения тока через диод и напряжения на нем (в)

При решении используется 2-ой закон Кирхгофа для цепи (рис. 8.3.2, б):

 

(8.3.2)

Это уравнение прямой линии (нагрузочная прямая), которая строится по двум точкам ее пересечения с осями координат. Напряжение холостого хода UХХ – это точка пересечения оси абсцисс и нагрузочной прямой: UХХ = UП = 2 В. Ток короткого замыкания IКЗ – точка пересечения прямой с осью ординат: IКЗ = UП/R = 2 мА. Связь между I и UПР диода определяется ВАХ.

Рабочая точка «А» пересечения прямой с ВАХ является графическим решением задачи: I = 1 мА; UПР = 1 В.

Для расчета дифференциального сопротивления диода нужно провести касательную к ВАХ в рабочей точке и определить значения DU и DI как проекции на соответствующие оси: 

Этот метод удобно применять для сложных схем, содержащих много элементов.

В простых задачах используются только аналитические зависимости и схемы замещения диода для прямого включения (рис.9.3.3, а) и обратного включения (рис.9.3.3, б). Характеристики диодов, указанные на рисунке, берутся из справочной литературы.

Рис. 8.3.3 Схемы замещения диода

для прямого включения (а) и обратного включения (б).

Пример: при комнатной температуре прямой ток через германиевый диод составляет        I = 1А. Найти, при каком напряжении ток через диод будет равен 1% от величины I. Значение IОБР = 3 мкА.

Выражение 8.3.1 для комнатной температуры можно записать в следующем виде:

 

(8. 3.3)

где: e – основание показательной функции.

Ответ: U = 0,2 В.

Основная зависимость обратного тока от материала полупроводника определяется шириной запрещенной зоны DW, так как она стоит в экспоненте:

 

(8.3.4)

Поэтому для расчета изменений обратного тока или соотношения этой величины у различных диодов достаточно использовать выражение 8.3.4.

Обозначение полупроводниковых диодов

Обозначение состоит из 6-ти элементов (ГОСТ 10862-72):

1 элемент – это буква, указывающая на основе какого материала выполнен диод (Г или 1 – германий, К или 2 –  кремний, А или 3 – соединения галлия, например, арсенид галлия, И или 4 – соединения индия). Цифрами обозначаются приборы военной приемки, буквами приборы коммерческого назначения.

2 элемент – буква, обозначающая подклассы диода. Выпрямительные, высокочастотные,  импульсные и универсальные – Д.   А – сверхвысокочастотные. Варикапы – В. Туннельные – И. Стабилитроны – С. И – туннельные. Ф – фотодиоды. Л – светодиоды. Ц – выпрямительные столбы и блоки.

3 элемент – цифра, определяющая назначение диода. Для выпрямительных диодов: 1 –  IПР.MAX  ≤ 0,3А;  2 – 0,3А ≤ IПР.MAX  ≤ 10А. У стабилитронов определяет мощность рассеяния.

4 и 5 элементы – цифры, определяющие номер разработки, у стабилитронов напряжение стабилизации.

6 элемент – буква, показывающая деление технологического типа на параметрические группы (модификации диодов), у стабилитронов порядковый номер разработки.

Примеры характеристик выпрямительных диодов

Наименование

UОБР., В

IПР.max, A

IОБР. max, мкА

FD max, кГц

КД102А

  250

     0. 1

          0.1

         10

КД102Б

  300

     0.1

          1

         10

КД103А

    50

     0.1

          0.5

         20

КД105В

  600

     0.3

      100

           1

КД209Г

      1000

           0.2

              50

                 1

КД521Д

          12

           0.05

                1

       100000

КД522Б

 50

           0. 1

                5

       100000

КД2997В

 50

         30

            200

             100

принцип действия и основные параметры

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Выпрямительный диод изменяет ток переменный на постоянный. Помимо этого, выпрямительные диоды повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.


ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Коэффициент выпрямления отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.


Коэффициент выпрямления можно рассчитать. Он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.


Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.


Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Существует множество приборов и устройств, которые преобразовывают электрический ток. Предлагаем рассмотреть, что такое выпрямительные диоды большой мощности и средней, их принцип работы, а также характеристики и применение.

Описание выпрямительных диодов

Выпрямительный электрический диод высокой и средней мощности (СВЧ) – это устройство, которое позволяет электрическому току двигаться только в одном направлении, в основном он используется для работы определенного источника питания. Выпрямительные диоды могут перерабатывать более высокий ток, чем обычные проводники. Как правило, они применяются для преобразования переменного тока в постоянный, частота которого не превышает 20 кгц. Схема их работы имеет следующий вид:

Фото — Принцип работы выпрямительного диода

Многие электрические приборы нуждаются в данных дискретных компонентах из-за того, что они могут выступать в роли интегральных схем. Чаще всего выпрямительные мощные диоды изготавливают из кремния, благодаря чему их поверхность PN-перехода довольно велика. Такой подход обеспечивает отличную передачу тока, при этом гарантируя отсутствие замыканий или перепадов.


Фото — Выпрямительные диодыВыпрямительные диоды

Кремниевые полупроводниковые выпрямители, ламповые термоэлектронные диоды изготавливаются при использовании таких соединений, как оксид меди или селена. С введением полупроводниковой электроники, выпрямители типа вакуумных трубок с металлической основой устарели, но до сих пор их аналоги используются в аудио и теле-аппаратуре. Сейчас для питания аппаратов от очень низкого до очень высокого тока в основном используются полупроводниковые диоды различных типов (быстродействующие блоки, иностранные германиевые приборы, отечественные устройства таблеточного исполнения, диоды Шоттки и т.д.).

Другие устройства, которые оснащены управляющими электродами, где требуется более простой способ ректификации или переменное выходное напряжение (как пример, для сварочных аппаратов) используют более мощные выпрямители. Это могут кремниевые или германиевые приборы. Это тиристоры, стабилитроны или другие контролируемые коммутационные твердотельные переключатели, которые функционируют как диоды, пропуская ток только в одном направлении. Их использует промышленная электроника, также они широко применяются для инженерной электротехники, сварки или контроля работы линий передач тока.


Фото — Выпрямительный диод и катод с анодом

Типы стандартных выпрямителей

Существуют различные силовые выпрямительные полупроводниковые диоды в зависимости от типа монтажа, материала, формы, количества диодов, уровня пропускаемого тока. Самыми распространенными считаются:

  1. Устройства средней силы, которые могут передавать ток силы от 1 до 6 Ампер. При этом технические параметры большинства приборов говорят, что такие диоды могут изменить ток с напряжение до 1,3 килоВольт;
  2. Выпрямительные диоды максимальной серии могут пропускать ток от 10 Ампер до 400, в основном они применяются как сверхбыстрые преобразователи, для контроля промышленной сферы деятельности. Эти устройства называются также высоковольтные;
  3. Низкочастотные диоды или маломощные.

Перед тем, как купить какие либо устройств данного типа, очень важно правильно подобрать основные параметры выпрямительных диодов. К ним относятся: характеристики ВАХ (максимальный обратный ток, максимальный пиковый ток), максимальное обратное напряжение, прямое напряжение, материал корпуса и средняя сила выпрямленного тока

Мы предоставляем таблицу, где Вы сможете в зависимости от своих потребностей, осуществить выбор типа диода. Указанные технические характеристики могут изменяться по требованию производителя, поэтому перед покупкой уточняйте информацию продавца.


Фото — Таблица низкочастотных диодов

Импортные (зарубежные) выпрямительные диоды (типа КВРС, SMD):


Фото — Таблица импортных диодов

Данные про силовые или высокочастотные диоды:


Фото — Силовые диоды

Выпрямительные схемы включения также бывают разные. Они могут быть однофазными (например, автомобильные и лавинные диоды) или многофазными (трехфазные считаются самыми популярными). Большинство выпрямители малой мощности для отечественного оборудования однофазны, но трехфазный очень важен для промышленного оборудования. Для генератора, трансформатора, станочных приспособлений.

Но при этом, для неконтролируемого мостового трехфазного выпрямителя используются шесть диодов. Поэтому его часто называют шестидиодным выпрямительным прибором. Мосты считаются импульсными и способны нормализовать и выпрямить даже нестабильный ток.

Для маломощных аппаратов (зарядного устройства) двойные диоды, соединенные последовательно с анодом первого диода, также соединены с катодом второго, а изготовлены в едином корпусе. Некоторые имеющиеся в продаже двойные диоды имеют в доступе все четыре терминала, которые можно настроить по своим потребностям.

Фото — Выпрямительный диод средней мощности

Для более высокой мощности одним дискретным устройством обычно используется каждый из шести диодов моста. Его можно применять как для поверхностного оборудования, так и для контроля более сложных приспособлений. Нередко шестидиодные мосты используют ограничительные схемы.

Видео: Принцип работы диодов

Маркировка выпрямительных диодов

В зависимости от конструкций и назначения, выпрямительные диоды маркируются следующим образом:

Исходя из таких данных, мы имеем следующие расшифровки:

КД – импульсный или выпрямительный диод кремниевого исполнения;

КЦ – кремниевые блоки выпрямительного типа.

Перед тем, как купить выпрямительные диоды в Харькове, Москве и любых других городах, обязательно уточняйте справочные характеристики у продавцов-консультантов.

Выпрямительный диод — это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой — выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности — от 300 mA до 10 А;
  • большой — более 10 А.

Германий или кремний


По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.


Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые — только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления


Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция


Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.
Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max — прямой ток, который максимально допустим, А.
  • U обрат max — обратное напряжение, которое максимально допустимо, В.
  • I обрат — обратный ток постоянный, мкА.
  • U прям — прямое напряжение постоянное, В.
  • Рабочая частота , кГц.
  • Температура работы , С.
  • Р max — рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока


Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост


Диодный мост — это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «» или «~ », указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

Выпрямление переменного тока

Общие сведения о выпрямителях

Преобразователи, стабилизаторы напряжения и ряд других элементов не являются обязательными для всех источников питания. В зависимости от требований, предъявляемых к источникам питанию, эти узлы могут присутствовать в схеме, а могут и отсутствовать. Однако процесс выпрямления переменного напряжения будет присутствовать всегда, а значит будут присутствовать и связанные с ним проблемы сглаживания пульсаций напряжения. Эти две операции неразрывно связаны друг с другом и в конечном итоге определяют требования, предъявляемые к силовому трансформатору, а поэтому они являются основополагающими для всего дальнейшего процесса проектирования блока питания. Так как в блоке питания требуется выпрямлять синусоидальное напряжение, создаваемое на вторичных обмотках силового трансформатора, необходимо стремиться к максимальной эффективности использования трансформатора, поэтому следует рассматривать вариант только двухполупериодного выпрямления. Однополупериодное выпрямление не только менее эффективно (так как при этом используется только одна полуволна из полного периода синусоидального сигнала), но также возникает постоянная составляющая тока, протекающего в трансформаторе, а даже небольшие величины постоянного тока, протекающего в обмотках трансформатора, могут привести к намагничиванию и даже к насыщению его сердечника. При насыщении материала сердечника возникают дополнительные потери и поток рассеяния, который может индуцировать токи фоновых помех в ближайших к трансформатору цепях схемы. Более того, при насыщении сердечника, на элементах трансформатора может выделяться повышенная тепловая энергия, вплоть до разрушения его конструкции.

Выбор ламповых или полупроводниковых выпрямительных диодов

Существует две основные разновидности схем двухполупериодного выпрямления: выпрямитель, использующий отвод от средней точки обмотки трансформатора, и мостовая схема выпрямления (рис. 6.2).

Мостовая схема (часто называемая схемой Греца) выпрямления представляет стандартную современную топологию, так как она позволяет экономить на обмотке трансформатора (требуется вдвое меньше витков вторичной обмотки). Схема выпрямления, в которой используется обмотка трансформатора с отводом от среднего витка, считается традиционной в схемах ламповых выпрямителей, так как она позволяет экономить на количестве выпрямляющих элементов (которые всегда стоили недешево).

При рассмотрении схемы высоковольтного источника питания, для которого напряжение постоянного тока VDCне превышает 1 кВ, необходимо сделать выбор между использованием кремниевого полупроводникового диода или вакуумного термоэлектронного диода (кенотрона), например, такого, как GZ34. Ламповый выпрямительный диод не отличается высокой эффективностью работы. Дело заключается не только в том, что для него требуется источник питания подогревателей, но и в том, что на ламповых выпрямителях падение высоковольтного напряжения составляет десятки вольт, кроме этого возрастает выходное сопротивление источника питания. Они очень чувствительны в отношении пульсирующей составляющей постоянного тока (которая будет рассмотрена ниже), и, следовательно, с ними требуется применять сглаживающие конденсаторы с максимальной емкостью, которые будут подключаться параллельно их выводам. Более того, полное сопротивление, подключаемое последовательно в цепи каждого анода, должно превосходить минимальное значение, которое определяется следующим выражением:

Рис. 6.2 Схемы двухполупериодного выпрямления

в которой Rsсопротивление вторичной обмотки трансформатора; Rpсопротивление первичной обмотки трансформатора; п — коэффициент трансформации, или отношение количества витков вторичной обмотки к количеству витков в первичной.

Хотя приводимые ниже в табл. 6.1 данные позволяют производить быстрое сравнение характеристик наиболее распространенных двойных выпрямительных ламповых диодов (двухполупериодных кенотронов), за получением более подробной информации необходимо будет обратиться к паспортным данным, представляемых производителями ламп.

Таблица 6.1
Тип лампы Rseries, Ом (Vout = 300 В)C(max), мкФIheater, мА
EZ90/6X470520160,6
EZ80/6V490215500,6
EZ81/6CA4150190501
GZ34/5AR425075601,9
GZ372507560*2,8

Примечание. Компания Маллэрд (Mullard) не указала значение C(max) для лампового диода GZ37, но в силу того, что как для GZ34, так и для GZ37 амплитудные значения токов одинаковы, ia(pk)= 750 мА, то можно будет принять, что для диода GZ37величина C(max) = 60 мкФ.

Ламповые диоды GZ34, входящие в серию NOS и выпускаемые компанией Маллэрд (Mullard), представляют в настоящее время почти музейную редкость и поэтому очень дорогие, хотя некоторые из современных дамповых диодов GZ34, как сообщалось в печати, имеют очень неустойчивые параметры при высоких напряжениях, поэтому достаточно популярной заменой для данного лампового диода является весьма «прожорливая» в отношении потребляемых токов лампа NOS GZ37. Ламповые диоды с косвенным подогревом EZ80 и EZ81 дешевле и значительно доступнее, они являются идеальными для применения в схемах предусилителей или небольших монофонических усилителей мощности. Для не очень популярного лампового диода EZ90 приводимые паспортные характеристики не являются такими подробными, как это сделано для диода EZ80, но вполне возможно предположить, что он окажется даже дешевле.

Выпрямительные диоды с косвенным подогревом разработаны для питания от стандартного блока питания подогревателей катодов, который имеет напряжение 6,3 В и предназначен для приемо-усилительных ламп, однако, их особенностью является то, что напряжение между подогревателем и катодом Vghможет достигать значения примерно 300 В. Это предъявляет повышенные требования к качеству изоляции между катодом и подогревателем, при этом шумовые токи с катода выпрямительного диода поступают в общий заземленный источник питания подогревателей. Если условие низкого уровня шумов является определяющим, то можно как бы переложить возникающие сложности со столь чувствительной изоляцией катод-подогреватель на более выносливый силовой трансформатор, путем использования отдельной обмотки, предназначенной для цепи подогревателей катодов ламповых выпрямительных диодов и гальванически связанной с катодами.

Высоковакуумные ламповые выпрямители обладают одним единственным явным преимуществом перед кремниевыми диодами, но это преимущество может оказаться настолько важным, что позволит стерпеть все их недостатки. Время нарастания выходного напряжения (время, необходимое для изменения напряжения от значения 10% до значения, составляющего 90% номинального) при условии полной нагрузки составляет примерно 5 с, что сильно снижает величину противотока электролитических конденсаторов по сравнению с полупроводниковыми выпрямителями (рис. 6.3).

Ярые приверженцы высоковакуумных ламповых диодов указывают, что лампа включается и выключается более чисто по сравнению с кремниевым диодом, и это в итоге приводит к менее выраженным резонансным явлениям в источнике питания. Однако, по мнению автора, оба типа выпрямителей характеризуется пиками (выбросами) при переключении, и, в силу этого, особое значение приобретает необходимость использования сглаживающих и демпфирующих элементов. Если и наблюдаются некоторые преимущества при использовании ламповых выпрямительных диодов, то они, скорее всего, обязаны своим происхождением уменьшенным пульсирующим составляющим переменного тока (подробнее эта проблема будет рассмотрена ниже).

Рис. 6.3 Плавное нарастание высоковольтного напряжения, питаемого от лампового выпрямителя EZ81 с током нагрузки 120 мА

Какая бы топологическая схема выпрямителя ни была бы выбрана, необходима уверенность, что она будет в состоянии оказывать противодействие возмущениям, оказываемым на нее окружающими цепями. При рассмотрении схемы выпрямителя, питающегося от сети переменного тока промышленной частоты, необходимо точно задавать максимально допустимые значения напряжений и токов. Однако, величина ни того, ни другого параметра не является строго однозначной, как это может показаться на первый взгляд (рис. 6.4).

На рис. 6.4 приведена схема выпрямителя, в которой использованы два кремниевых диода, включенных в плечи вторичной обмотки трансформатора, имеющей отвод от средней точки (обмотки 300-0-300 В). Напряжение холостого хода на накопительном конденсаторе составит 424 В постоянного тока (необходимо обратить внимание, что это напряжение значительно превышает то значение, которое было бы, если бы вместо кремниевых диодов использовались ламповые диоды: прямая замена кремниевых диодов на ламповые недопустима). Предельно допустимое напряжение диода, удовлетворяющее требованиям схемы, представляет максимально допустимое обратное напряжение, которое может быть многократно приложено к нему, VRPM. Иногда оно указывается как рабочее напряжение диода, (или, как сложилось исторически, максимальное или амплитудное обратное напряжение).

В табл. 6.2 сравниваются необходимые рабочие напряжения кремниевых диодов для мостовой схемы выпрямления и схемы с отводом от средней точки вторичной обмотки трансформатора.

Рис. 6.4 Влияние конденсатора на величину выпрямленного напряжения

Таблица 6.2
Схема выпрямленияОтношение допустимого обратного напряжения диода к среднеквадратическому значению напряжения, VRPM/ VRMS Количество диодов, включаемых последовательно в каждом плече схемы
С отводом от центрального витка обмотки трансформатора2√21
Мостовая√22

При выпрямлении высоких напряжений схема с отводом от центрального витка вторичной обмотки трансформатора имеет тот недостаток, что для нее требуется использовать полупроводниковые диоды, рассчитанные на удвоенные значения напряжения VRPM. Поэтому в схеме выпрямителя, в которой используется вторичная обмотка трансформатора с отводом от средней точки и напряжения 300-0-300 В необходимо будет использовать диоды, у которых VRRM> 849 В. Однако в выпрямителе, в котором будет использоваться только одна вторичная обмотка, рассчитанная на напряжение 300 В и мостовая схема выпрямления, может быть обеспечено точно такое же значение выходного напряжения, при этом необходимо использовать диоды, для которых напряжение VRPM > 424 В. Несмотря на это, очень удобными для применения оказываются выпрямители, в которых используются полупроводниковые диоды и трансформаторы с отводом от средней точки вторичной обмотки трансформатора, предназначенные для работы с низкими напряжениями и высокими значениями токов, так как в этой схеме прямое падение напряжения на диодах схемы, V будет в два раза ниже аналогичного параметра, характерного для мостовой схемы выпрямления, поскольку за каждый полупериод выпрямляемого синусоидального напряжения, ток протекает только через один диод, а не через два, как в мостовой схеме.

Такие лаповые диоды, как GZ34, EZ81, EZ80 и т. д. предназначаются для использования в схемах выпрямления с отводом от средней точки, что подразумевает использование трансформатора, вторичная обмотка которого изготовлена с отводом от среднего витка. Однако совместное использование лампового и полупроводникового выпрямительных диодов позволяет обойти данную проблему, а также сохранить преимущество первых, связанное с плавным нарастанием выпрямленного тока (рис. 6.5).

Рис. 6.5 Схема выпрямителя с комбинированным использованием лампового и полупроводниковых выпрямительных диодов

Когда выпрямленное напряжение с диодов поступает на накопительный конденсатор, импульсные токи в несколько раз превышают величину постоянного тока, протекающего в нагрузке. К счастью, современные кремниевые диоды разрабатываются таким образом, чтобы учесть это превышение пиковых значений тока, поэтому для двухполупериодной схемы выпрямления оказывается достаточным выбрать каждый диоде номинальным значением рабочего тока, равным половине постоянного тока, протекающего в нагрузке. (Это становится возможным потому, что через каждый диод в схеме двухполупериодного выпрямления ток протекает только в течение одной половины периода.)

Ртутные выпрямители

Ртутные выпрямители последнее время становятся все более модными, а их мягкий голубоватый разряд, возникающий в парах ртути, внешне выглядит очень привлекательно. Ртутные выпрямители очень хрупкие, а их пары ядовиты, поэтому они требуют к себе очень внимательного отношения, не допускающего как механических повреждений баллона лампы, так и превышения номинальных электрических нагрузок. Так как при работе такого выпрямителя используются пары ртути, то капли жидкого металла достаточно быстро осаждаются на внутренних стенках баллона лампы, поэтому при включении подогреватель должен, прежде всего, испарить некоторое количества металла, что требует в обязательном порядке вертикального положения баллона ртутного выпрямителя. Время, которое необходимо для предварительного прогрева катода перед тем, как будет приложено высоковольтное напряжение, приведено в табл. 6.3.

Таблица 6.3
Необходимое время предварительного прогрева лампы Лампы производства компании EdiswanЛампы производства компании Milliard
После длительного хранения или механических воздействийНе менее 15 минНе менее 30 мин
При ежедневной эксплуатацииНе менее 60 сНе менее 60 с

Для предотвращения обратной вспышки работа ртутных выпрямителей ограничивается диапазоном температур от 20 до 60 °С, хотя для ряда ртутных выпрямителей верхний предел температуры ограничивается значением 50 °С. Поэтому для таких выпрямителей может оказаться необходимым использовать электрический вентилятор, обеспечивающий дополнительный отвод горячего воздуха от близкорасположенных нагретых элементов схемы. В дополнение ко всему, выпрямитель типа 866 требует применения совместно с ним стабилизирующего нагрузочного резистора, подключенного параллельно выходным клеммам выпрямителя и отводящего примерно 10% от общего тока нагрузки.

Ртутные выпрямители характеризуются меньшим падением прямого напряжения (примерно 15 В) и значительно меньшим значением собственного сопротивления по сравнению с высоковакуумными ламповыми диодами и могут применяться при более высоких значениях рабочих напряжений и токов. Однако процесс их включения и выключения происходит значительно более резко по сравнению с другими типами ламповых выпрямительных диодов, поэтому они склонны вызывать дополнительные осцилляции (паразитные колебательные процессы), если их анодный провод не снабжен поглощающими ферритовыми шайбами или ВЧ дросселем, а в ряде случаев может потребоваться заключение дампы в металлический экранирующий кожух. Наиболее простым способом, позволяющим выявить влияние генерации, оказывается использование не осциллографа, а обычного радиоприемника, работающего в диапазоне УКВ-ЧМ, который необходимо перемещать рядом со схемой и прослушивать «жужжание» при его приближении к ламповым диодам. В ртутных выпрямителях как бы соединяются недостатки полупроводниковых и ламповых выпрямляющих диодов, когда объединяются требования, заставляющие использовать источник питания для цепи подогревателей, цепь задержки включения высоковольтного напряжения и демпфирующие устройства, чтобы добиться электрических характеристик ненамного лучших, чем для кремниевых диодов. Однако, следует отметить, что в ртутных выпрямителях отсутствует процесс накопления заряда, который вызывает превышение значения, или бросок, тока.

ВЧ шумы выпрямителей

При работе выпрямителя постоянно происходят переключения выпрямляющих элементов схемы с одного на другой. Следует учесть, что хотя нижеприведенные рассуждения относятся к случаю чисто омической нагрузки выпрямителя, полученные результаты также будут справедливы и для случая нагрузки, представленной накопительным конденсатором.

Как только амплитудное значение переменного входного напряжения при своем увеличении пройдет через нулевое значение, один или несколько выпрямляющих диодов перейдут во включенное состояние и будут оставаться включенными во время действия положительной полуволны, то есть пока амплитуда напряжения не снизится обратно до нулевого значения. После прохождения амплитуды через нулевое значение во время действия отрицательной полуволны напряжения включится второй диод, или несколько диодов, образующие второе плечо схемы выпрямителя. Для каждого диода необходимо минимальное значение прямого напряжения, при котором будет происходить его включение (даже если величина такого напряжения составляет всего 0,7 В, требуемого для включения кремниевого диода). Это означает, что существует своего рода мертвая зона, симметрично расположенная относительно нулевого значения напряжения, когда ни один диод из обоих плечей не будет проводить ток. Трансформатор, обладающей собственной индуктивностью, в такие моменты времени окажется отключенным и будет пытаться поддерживать протекание тока по цепи, однако это приведет к возникновению э.д.с. самоиндукции, величина которой определяется выражением:

К счастью, в самом трансформаторе существует слишком большое количество паразитных емкостей, предотвращающих возрастание напряжения до слишком высоких значений. Однако, бывают и случаи, когда избыточное напряжение, приложенное к системе, может возбудить колебательный процесс, приводящий к появлению последовательности затухающих импульсов. Используя измерительную катушку, автор однажды зафиксировал выброс импульсов с частотой 200 кГц, возникающих в силовом трансформаторе именно по указанной выше причине. К счастью, указанная проблема решается достаточно простым шунтированием каждого отдельного диода пленочным конденсатором с емкостью 10 нФ, рабочее напряжение которого равняется рабочему напряжению VRRMдиода.

 

Шахрам Маривани — ДИОДНЫЙ ХАРАКТЕРИСТИК И ПОЛУВолновой выпрямитель

ДИОДНЫЙ ХАРАКТЕРИСТИК И ПОЛУВолновой выпрямитель

Цель:

Целью этого эксперимента является изучение характеристики постоянного тока кремниевого выпрямительного диода. Также будут изучены и измерены характеристики однополупериодного выпрямителя.

Введение:

Диод на полупроводниковом переходе — очень полезное устройство, которое используется во многих электронных схемах.Диод — это однонаправленное устройство, которое позволяет протекать электрическому току в одном направлении с небольшим сопротивлением, и в то же время обеспечивает относительно более высокое сопротивление, когда ток течет в противоположном направлении. Диод находится во включенном состоянии, когда он показывает низкое сопротивление, и выключен, когда он находится в режиме высокого сопротивления.

Ток будет течь в прямом направлении, когда напряжение прямого смещения достигнет напряжения включения 0,7 В в случае кремниевых диодов и около 0.3 В в случае германиевых диодов. Напряжение включения 0,7 В обусловлено равновесным барьерным потенциалом, также известным как встроенное напряжение. Для определения равновесного барьерного потенциала используются сложные соображения и уравнения энергии электронов. Однако его легко измерить по напряжению прямого включения кремниевого переходного диода. Типичная вольт-амперная характеристика маломощного кремниевого переходного диода показана на рисунке 1. Схема, используемая для получения этой кривой, состоит из переменного напряжения постоянного тока, приложенного к двум клеммам диода.Напряжение увеличивается с отрицательного значения до положительного. Прямой и обратный токи измеряются и отображаются в зависимости от напряжения.

Нелинейная характеристика диода может использоваться для преобразования переменного тока в однонаправленный, но пульсирующий ток в процессе, называемом выпрямлением. В выпрямительных схемах используется один или несколько диодов для обеспечения различной степени эффективности и эффективности выпрямления. При анализе пульсирующих токов на выходе выпрямителя будет очевидно, что этот ток состоит из составляющей постоянного тока в дополнение ко многим гармоникам, которые являются целым числом, кратным основной гармонике входного переменного тока.Эти гармоники уменьшаются за счет использования некоторых реактивных компонентов, которые отфильтровывают гармоники и позволяют компоненту постоянного тока проходить на нагрузку.

На этом лабораторном занятии будет измерена и изучена ВАХ кремниевого диода. Полуволновой выпрямитель будет протестирован, и будет продемонстрировано влияние простого фильтра на выпрямленную форму волны.


Рисунок 1 — Вольт-амперная характеристика кремниевого выпрямительного диода

Подготовительные работы:

Схема однополупериодного выпрямителя показана на рисунке 2.Диод в этой цепи будет обеспечивать низкое сопротивление, когда входная мощность переменного тока проходит через положительную полярность. Сопротивление диода будет значительно выше, когда цикл переменного тока проходит через отрицательную полярность. Следовательно, формы входных и выходных сигналов в этой схеме показаны на рисунке 3.


Рисунок 2 — Принципиальная схема простого однополупериодного выпрямителя

Выпрямленное выходное напряжение может быть связано с входным переменным напряжением как,


Уравнение 1

, где
В, p-out, — пиковое напряжение выпрямленного сигнала.V p-in — пиковое напряжение на входе. Напряжение переменного тока. r d — прямое сопротивление выпрямительного диода, V ton — напряжение включения диода, а R L — сопротивление нагрузки. См. Рисунки 2 и 3.


Рисунок 3 — Форма входного и выходного сигнала однополупериодного выпрямителя.

Средняя составляющая постоянного тока в полуволновом выпрямленном сигнале определяется как,


Уравнение2

Фактически, выпрямительный диод преобразует переменный ток в последовательность напряжения одной полярности, приложенную к импедансу нагрузки, которая на самом деле представляет собой последовательность периодических импульсов, как ясно показано на рисунке 3.Эти однополярные импульсы содержат постоянную составляющую в дополнение к большому количеству нежелательных гармоник. Значительного улучшения сглаживания этих импульсов можно достичь, разместив большой конденсатор поперек импеданса нагрузки, как показано на рисунке 2. Форма выходного сигнала с конденсатором, подключенным к нагрузке, показана на рисунке 4.


Рисунок 4 — Влияние сглаживающего конденсатора на выпрямленную мощность, подаваемую на нагрузку.

Лабораторные работы:

  1. Измерение характеристики постоянного тока переходного диода
    1. Установите постоянное напряжение источника питания на 0 В.
    2. Подключите диодную схему, как показано на рисунке 5.
    3. Измените напряжение питания постоянного тока с шагом 0,3 В или более. Используйте цифровой вольтметр, измерьте V в , V R и V D , как показано на рисунке 5. Сведите данные измерений в таблицу.
    4. Для каждого шага рассчитайте постоянный ток через диод, который равен (В R /10).
    5. НЕ ДОПУСКАЙТЕ Vin ПРЕВЫШАТЬ 9 В постоянного тока.

    6. Рисунок 5 — Схема подключения для измерения характеристики постоянного тока переходного диода
    7. Поменяйте полярность источника питания постоянного тока на рис. 5 и измените сопротивление на 4.7 МОм. Повторите шаги измерения с 1.a до 1.d.
    8. НЕ ДОПУСКАЙТЕ, чтобы Vin ПРЕВЫШАЛ 30 В постоянного тока.
  2. Характеристика однополупериодного выпрямителя
    1. Подключите схему однополупериодного выпрямителя, как показано на рисунке 2, на котором R L = 1 кОм. Не подключайте конденсатор C к нагрузке.
    2. Контролируйте на осциллографе одновременно V s и V o (см. Рисунок 3). Измерьте V на входе и V на выходе .Нарисуйте отображаемые осциллограммы. С помощью цифрового вольтметра измерьте напряжение постоянного тока на R L .
    3. Вычислите значение прямого сопротивления диода rd, зная, что диод, используемый для измерения, представляет собой кремниевый диод, в котором V ton = 0,7 В.
    4. Подключите 47 мкФ к R L . Наблюдайте за V s и Vo на осциллографе и нарисуйте обе формы сигнала как можно точнее. Повторите измерение с конденсатором 10 мкФ.Сравните две формы выпрямленного сигнала, полученные с разными конденсаторами.

Результаты и обсуждения:

  • Постройте ВАХ выпрямительного диода.
  • Какое значение прямого сопротивления диода?
  • Какое значение имеет сопротивление обратного смещения диода? (Подсказка: используйте измеренную кривую V-I для вычисления этого значения).
  • Оцените напряжение включения диода по кривой ВАХ.
  • Заметили ли вы какое-либо изменение выходного постоянного напряжения при подключении конденсатора к сопротивлению нагрузки? Если да, то сколько?
  • Сравните измеренное напряжение постоянного тока на RL с рассчитанным по уравнению. В чем разница между двумя значениями? Почему есть разница (если есть)?

Кремниевые выпрямительные диоды

  • Изучив этот раздел, вы сможете:
  • • Опишите типичные применения выпрямителя.
  • • Обратите внимание на маркировку полярности выпрямителя.
  • • Опишите типовые параметры выпрямителя.
  • • Примыкание р.д.
  • • Средний прямой ток.
  • • Повторяющийся пиковый прямой ток.
  • • Обратный ток утечки.
  • • Повторяющееся пиковое обратное напряжение.
  • • Время обратного восстановления.
  • • Опишите влияние температуры на выпрямители.
  • • Температурный разгон.

Рисунок 2.1.1. Кремниевые выпрямительные диоды

Кремниевые выпрямительные диоды

Выпрямительные диоды, подобные тем, что показаны на рис. 2.1.1 обычно используются в таких приложениях, как источники питания, использующие как высокое напряжение, так и большой ток, где они выпрямляют входящее сетевое (линейное) напряжение и должны пропускать весь ток, необходимый для любой цепи, которую они питают, который может составлять несколько ампер. или десятки ампер.

Как показано на рис. 2.1.2, для прохождения таких токов требуется большая площадь перехода, чтобы прямое сопротивление диода оставалось как можно более низким. Даже в этом случае диод может сильно нагреться. Черный полимерный корпус или даже болт на радиаторе помогают рассеивать тепло.

Сопротивление диода в обратном направлении (когда диод выключен) должно быть высоким, а изоляция, обеспечиваемая обедняющим слоем между слоями P и N, чрезвычайно хороша, чтобы избежать возможности обратного пробоя, когда изоляция обедненного слоя выходит из строя, и диод необратимо выходит из строя из-за высокого обратного напряжения на переходе.

Рисунок 2.1.2. Кремниевый выпрямитель


Construction

Маркировка полярности диодов

На полимерном корпусе диодов катод обычно обозначается линией вокруг одного конца корпуса диода. Однако существуют альтернативные указания: на некоторых выпрямительных диодах, залитых смолой, закругленный конец на корпусе указывает катод, как показано на рис. 2.1.2. На выпрямительных диодах с металлическими стержнями полярность диода может быть обозначена символом диода, напечатанным на корпусе.Штифт диода часто является катодом, но на него нельзя полагаться, как показано на рис. 2.1.1, это может быть анод! На диодах мостового выпрямителя символы + и — (плюс и минус), показанные на корпусе выпрямителя, указывают полярность выхода постоянного тока, а не анода или катода устройства, входные клеммы переменного тока обозначены маленькими синусоидальными символами. Один угол корпуса на некоторых линейных мостовых выпрямителях также часто скошен, но это не следует воспринимать как надежный указатель полярности, поскольку доступны выпрямители, которые используют эту индикацию как выходную клемму + или -.

Кремниевые выпрямительные диоды производятся в самых разных формах с сильно различающимися параметрами. Они различаются по токонесущей способности от миллиампер до десятков ампер, некоторые из них имеют обратное напряжение пробоя в тысячи вольт.

Параметры выпрямителя

Что означают параметры.

Слой истощения (стык) p.d.

Слой истощения или стык p.d. представляет собой разность потенциалов (напряжение), которая естественным образом создается на обедненном слое за счет комбинации дырок и электронов во время изготовления диода.Этот п.д. необходимо преодолеть, прежде чем диод с прямым смещением станет проводящим. Для кремниевого перехода p.d составляет около 0,6 В.

Обратный ток утечки (I

R ).

Когда PN-переход смещен в обратном направлении, будет течь очень небольшой ток утечки (I R ), в основном из-за тепловой активности в полупроводниковом материале, встряхивая свободные свободные электроны. Именно эти свободные электроны образуют небольшой ток утечки. В кремниевых устройствах это всего несколько наноампер (нА).

Максимальный повторяющийся прямой ток (I

FRM ).

Это максимальный ток, который может пропустить диод с прямым смещением без повреждения устройства при выпрямлении повторяющейся синусоидальной волны. I FRM обычно указывается с диодом, выпрямляющим синусоидальную волну с максимальным рабочим циклом 0,5 на низкой частоте (например, от 25 до 60 Гц), чтобы представить условия, возникающие, когда диод выпрямляет сетевое (линейное) напряжение.

Средний прямой ток (I

FAV ).

Это средний выпрямленный прямой ток или выходной ток (I FAV ) диода, обычно это прямой ток при выпрямлении синусоидальной волны 50 Гц или 60 Гц, усредненный между периодами, когда (полуволновой) выпрямительный диод проводимость, и период волны при обратном смещении диода. Обратите внимание, что это среднее значение будет значительно меньше повторяющегося значения, указанного для I FRM . Этот (и другие параметры) также во многом зависят от температуры перехода диода.Взаимосвязь между различными параметрами и температурой перехода обычно указывается в виде серии сносок в технических паспортах производителей.

Повторяющееся пиковое обратное напряжение (В

RRM )

Максимальное пиковое напряжение, которое может повторно подаваться на диод при обратном смещении (анод — катод +) без повреждения устройства. Это важный параметр, обычно относящийся к работе от сети (линии). Например. диод, используемый в качестве полуволнового выпрямителя для выпрямления сетевого напряжения 230 В переменного тока, будет проводить в течение положительного полупериода сигнала сети и отключаться во время отрицательного полупериода.В схеме источника питания катод выпрямительного диода обычно подключается к большому электролитическому накопительному конденсатору, который будет поддерживать катодное напряжение выпрямителя на уровне, близком к пиковым напряжениям формы волны сети. Помните, что волна 230 В переменного тока относится к среднеквадратичному значению волны, поэтому пиковое значение будет примерно 230 В x 1,414 = приблизительно + 325 В. Во время отрицательного полупериода сигнала сети анод диода упадет до максимального отрицательного значения около -325 В.Следовательно, будут повторяющиеся периоды (50 или 60 раз в секунду, когда обратное напряжение на диоде будет 325 В x 2 = 650 В. Следовательно, для этой задачи необходимо использовать выпрямительный диод с параметром V RRM на минимум 650 В, а для обеспечения надежности должен быть запас прочности для такого важного компонента, поэтому было бы разумнее выбрать диод с V RRM 800 или 1000 В.

Максимальное рабочее пиковое обратное напряжение (В

RWM )

Это максимально допустимое обратное напряжение.Обратное напряжение на диоде в любое время, независимо от того, является ли обратное напряжение изолированным переходным всплеском или повторяющимся обратным напряжением.

Рис. 2.1.3 Подавление выбросов

Максимальное обратное напряжение постоянного тока (В

R )

Этот параметр устанавливает допустимый предел для обратного напряжения и обычно имеет то же значение, что и V RRM и V RWM . Теоретически эти максимальные параметры могут быть разными, но поскольку любое напряжение (мгновенное, повторяющееся или постоянное), которое не более чем примерно на 5% превышает любой из этих параметров, может потенциально разрушить диод, всегда рекомендуется проявлять осторожность при установке. диоды и предусмотреть разумный запас на случай неожиданных скачков напряжения.Одной из распространенных мер безопасности для защиты выпрямителей источника питания от внешних всплесков является подключение небольшого емкостного высоковольтного конденсатора, обычно дискового керамического типа, к каждому из четырех диодов в мостовом выпрямителе, как показано на рис. 2.1.3.

Время обратного восстановления (t

rr )

Рис. 2.1.4 Обратное


Время восстановления (t rr )

Время, необходимое для того, чтобы ток упал до заданного низкого уровня обратного тока при переключении с заданного прямого тока (диод включен) на заданный обратный ток (диод выключен, обычно <10% от значения 'вкл. ' Текущий).Типичное значение t rr раз для выпрямительных диодов, хотя и не такое быстрое, как у малосигнальных диодов, и в некоторой степени зависит от задействованных напряжений и токов, можно найти в десятках наносекунд (нс), например 30 нс для выпрямителя BYV28 3.5A I AF 50 В и <60 нс для двойного выпрямителя BYV44 30A I AF 500 В.

Когда выпрямительный диод используется в высокоскоростной операции переключения, например в импульсном источнике питания, в идеале обратный ток должен мгновенно упасть до нуля.Однако, когда диод является проводящим (до выключения), по обе стороны от перехода будет большая концентрация неосновных носителей; это будут дырки, которые только что перешли на слой N-типа, и электроны, которые только что перешли на слой P-типа, но до того, как они были нейтрализованы путем присоединения к основным носителям. Если теперь внезапно применяется обратное напряжение (V R ), как показано на рис. 2.1.4, диод должен быть выключен, но вместо того, чтобы ток через диод мгновенно падал до нуля, обратный ток (I R ) устанавливается, поскольку эти неосновные носители притягиваются обратно через переход (дырки обратно в P-слой и электроны обратно в N-слой).Этот обратный ток будет продолжать течь, пока все эти носители заряда не вернутся на свою естественную сторону перехода.

Максимальная температура

На каждый из этих параметров могут влиять другие факторы, такие как температура окружающей среды, в которой работает диод, или температура перехода самого устройства. Любой полупроводник выделяет тепло, особенно те, которые используются в источниках питания. Поэтому важно, чтобы при проектировании таких цепей учитывались температурные эффекты.Одной из самых больших проблем является предотвращение теплового разгона, когда диод (или любой другой полупроводник) увеличивает свою температуру, что приводит к увеличению тока через устройство, что приводит к дальнейшему повышению температуры и так далее, пока устройство не будет разрушено. . Чтобы предотвратить эту проблему, каждый из параметров диода ссылается на температуру, например, обратный ток утечки кремниевого PN-диода обычно указывается при температуре окружающей среды 25 ° C, но он, вероятно, увеличивается примерно вдвое на каждые 10 ° C выше этого значения.Также повышение температуры вызовет уменьшение потенциала прямого перехода примерно на 2–3 мВ на каждый 1 ° C повышения температуры. Еще большее влияние на выпрямители Шоттки оказывает температура.

Начало страницы

Схема выпрямителя

— JavaLab


Диод

Диоды — это электронные компоненты, пропускающие ток только в одном направлении. Направление, в котором ток может течь через диод, называется «прямым», а направление, в котором ток не может течь через диод, называется «обратным».’
Если сравнить диод с человеческим телом, он похож на клапаны кровеносных сосудов. Клапан предотвращает обратный ток крови. Точно так же диоды также предотвращают протекание тока в нежелательных направлениях.

Если вы подключаетесь, как показано на левой стороне рисунка выше, соединение становится прямым. При прямом подключении ток течет хорошо. С другой стороны, если вы подключитесь к правой стороне рисунка, это станет обратным подключением. При подключении в обратном направлении диод блокирует ток.

Схематический символ диода позволяет легко узнать, в каком направлении диод находится в прямом направлении. Если вы посмотрите на диод, вы увидите стрелку. Направление этой стрелки — «вперед».

Схема выпрямителя и мостовой диод

Электропитание в вашем доме — переменный ток (AC). Кстати, в большинстве бытовых приборов внутри используется питание постоянного тока. Следовательно, бытовая техника должна переключать питание переменного тока на постоянное внутри. В этом случае диод можно использовать для преобразования мощности переменного тока в мощность постоянного тока.

Процесс получения постоянного тока от переменного тока называется выпрямлением, а схема называется выпрямительной схемой. Если вы видите четыре кремниевых диода рядом внутри электронного продукта, это схема выпрямителя.

Некоторые электронные компоненты представляют собой модули, в которых четыре диода объединены вместе, образуя схему выпрямителя. Эти диоды называются «мостовыми диодами».

На диоде моста есть две диаграммы направленности (~). Когда в это место подается питание переменного тока, мощность постоянного тока выводится из мест, отмеченных (+) и (-).Форма волны возникает из формы волны переменного напряжения.

Анализ неисправностей цепи питания

В некоторых случаях после локализации неисправности в конкретной цепи может возникнуть необходимость изолировать проблему в отдельном компоненте в цепи.

В этом случае вы должны применить логическое мышление и свои знания о симптомах, вызванных отказами определенных компонентов.

Теперь обсуждаются некоторые типичные отказы компонентов и симптомы, которые они вызывают.

Эффект открытого диода в полуволновом выпрямителе

Выпрямитель с полуволновым фильтром и открытым диодом показан на рисунке ниже. В результате появляется указанное нулевое выходное напряжение.

Это очевидно, потому что открытый диод прерывает путь тока от вторичной обмотки трансформатора к фильтру и нагрузочному резистору, а ток нагрузки отсутствует.

Рис. Эффект открытого диода в однополупериодном выпрямителе — выход 0 В.

Другие неисправности, которые вызывают такой же симптом в этой цепи, — это обрыв обмотки трансформатора, открытый предохранитель или отсутствие входного напряжения.

Эффект открытого диода в полнополупериодном выпрямителе

Двухполупериодный выпрямитель с фильтром и центральным ответвлением показан на рисунке ниже. Если один из двух диодов открыт, выходное напряжение будет иметь в два раза больше нормального пульсирующего напряжения при 50/60 Гц, а не при 100/120 Гц, как указано.

Рис. Эффект открытого диода в выпрямителе с центральным отводом заключается в полуволновом выпрямлении и удвоении пульсаций напряжения при 50/60 Гц.

Другая неисправность, вызывающая те же симптомы, — обрыв вторичной обмотки трансформатора. Причина повышенной пульсации при 60 Гц, а не при 120 Гц, заключается в следующем.

Если один из диодов на рисунке выше открыт, ток через RL проходит только в течение одного полупериода входного напряжения. Во время другого полупериода входа разомкнутая цепь, вызванная разомкнутым диодом, препятствует прохождению тока через RL.

Результатом является полуволновое выпрямление, как показано на рисунке выше, которое дает большее пульсирующее напряжение с частотой 60 Гц.

Открытый диод в двухполупериодном мостовом выпрямителе будет вызывать те же симптомы, что и в схеме с центральным отводом, как показано на рисунке ниже.

Открытый диод предотвращает прохождение тока через RL в течение половины цикла входного напряжения. Результатом является полуволновое выпрямление, которое дает удвоенное пульсирующее напряжение при 60 Гц.

Рис. Эффект разомкнутого диода в мостовом выпрямителе.

Последствия неисправности конденсатора фильтра

Показаны три типа дефектов конденсатора фильтра

  • Обрыв: Если конденсатор фильтра для двухполупериодного выпрямителя открывается, на выходе будет двухполупериодное выпрямленное напряжение.
  • Короткое замыкание: Если конденсатор фильтра закорочен, на выходе будет 0 В. Короткое замыкание конденсатора должно привести к срабатыванию предохранителя. Если предохранитель не установлен должным образом, закороченный конденсатор может привести к сгоранию некоторых или всех диодов выпрямителя из-за чрезмерного тока. В любом случае на выходе 0 В.
  • Leaky: Конденсатор фильтра утечки эквивалентен конденсатору с параллельным сопротивлением утечке. Эффект сопротивления утечки должен уменьшить постоянную времени и позволить конденсатору разряжаться быстрее, чем обычно.Это приводит к увеличению пульсаций напряжения на выходе. Эта ошибка встречается редко.

Последствия неисправного трансформатора

Открытая первичная или вторичная обмотка трансформатора питания дает выходное напряжение 0 В, как упоминалось ранее.

6 типов схем диодного выпрямителя [электрические схемы и работа]

Теперь мы подошли к самому популярному применению диода: выпрямительный . Проще говоря, выпрямление — это преобразование переменного тока (AC) в постоянный (DC).Это включает в себя устройство, которое допускает только односторонний поток электронов. Как мы видели, именно это и делает полупроводниковый диод.

Схема полуволнового диодного выпрямителя

Самым простым видом выпрямительной схемы является однополупериодный выпрямитель . Он позволяет только половине сигнала переменного тока проходить через нагрузку. (Рисунок ниже)

Схема однополупериодного выпрямителя.

Для большинства силовых приложений однополупериодного выпрямления недостаточно.Гармонический состав выходного сигнала выпрямителя очень велик, и, следовательно, его трудно фильтровать. Кроме того, источник питания переменного тока подает питание на нагрузку только половину за полный цикл, что означает, что половина его мощности не используется. Однако однополупериодное выпрямление — очень простой способ снизить мощность резистивной нагрузки. Некоторые двухпозиционные переключатели яркости лампы подают полную мощность переменного тока на нить накала лампы для «полной» яркости, а затем полуволновое выпрямление для уменьшения светоотдачи. (Рисунок ниже)

Применение однополупериодного выпрямителя: двухуровневый диммер лампы.

В положении переключателя «Dim» лампа накаливания получает примерно половину мощности, которую она обычно получает при работе от двухполупериодного переменного тока. Поскольку полуволновая выпрямленная мощность пульсирует намного быстрее, чем нить накала успевает нагреться и остыть, лампа не мигает. Вместо этого его нить накаливания просто работает при более низкой температуре, чем обычно, обеспечивая меньшую светоотдачу. Этот принцип быстрой «пульсации» мощности на медленно реагирующее нагрузочное устройство для управления поданной на него электрической мощностью является обычным в мире промышленной электроники.Поскольку управляющее устройство (в данном случае диод) является либо полностью проводящим, либо полностью непроводящим в любой момент времени, оно рассеивает мало тепловой энергии при управлении мощностью нагрузки, что делает этот метод управления мощностью очень энергоэффективным. Эта схема, возможно, является самым грубым из возможных методов подачи импульсной мощности на нагрузку, но ее достаточно для проверки правильности концепции.

Выпрямитель диодный с центральным отводом

Если нам нужно выпрямить переменный ток, чтобы полностью использовать и полупериодов синусоидальной волны, необходимо использовать другую конфигурацию схемы выпрямителя.Такая схема называется двухполупериодным выпрямителем . В одном из типов двухполупериодных выпрямителей, называемых конструкцией с центральным отводом , используется трансформатор с вторичной обмоткой с центральным отводом и двумя диодами, как показано на рисунке ниже.

Двухполупериодный выпрямитель, конструкция с центральным отводом.

Функционирование этой схемы легко понять по одному полупериоду за раз. Рассмотрим первый полупериод, когда полярность напряжения источника положительная (+) вверху и отрицательная (-) внизу. В это время проводит только верхний диод; нижний диод блокирует ток, а нагрузка «видит» первую половину синусоидальной волны, положительную вверху и отрицательную внизу.Только верхняя половина вторичной обмотки трансформатора проводит ток в течение этого полупериода, как показано на рисунке ниже.

Двухполупериодный выпрямитель с центральным ответвлением: Верхняя половина вторичной обмотки проводит ток в течение положительного полупериода входного сигнала, обеспечивая положительный полупериод на нагрузку.

В течение следующего полупериода полярность переменного тока меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора пропускают ток, в то время как части схемы, которые ранее пропускали ток в течение последнего полупериода, остаются в режиме ожидания.Нагрузка по-прежнему «видит» половину синусоидальной волны той же полярности, что и раньше: положительная вверху и отрицательная внизу. (Рисунок ниже)

Двухполупериодный выпрямитель с центральным ответвлением: во время отрицательного полупериода на входе нижняя половина вторичной обмотки проводит ток, передавая положительный полупериод на нагрузку.

Одним из недостатков этой конструкции двухполупериодного выпрямителя является необходимость трансформатора с вторичной обмоткой с центральным отводом. Если рассматриваемая схема является схемой большой мощности, размер и стоимость подходящего трансформатора значительны.Следовательно, выпрямитель с центральным отводом встречается только в маломощных приложениях.

Полярность двухполупериодного выпрямителя с центральным отводом на нагрузке может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды можно подключать параллельно к существующему выпрямителю с положительным выходом. Результатом является двухполюсный двухполупериодный выпрямитель с центральным отводом, показанный на рисунке ниже. Обратите внимание, что подключение самих диодов такое же, как у моста.

Двухполюсный двухполупериодный выпрямитель с центральным ответвлением

Двухполупериодный диодный выпрямитель

Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, построенная на основе конфигурации четырехдиодного моста.По понятным причинам эта конструкция называется двухполупериодным мостом . (Рисунок ниже)

Двухполупериодный мостовой выпрямитель.

Направления тока для двухполупериодной схемы мостового выпрямителя показаны на рисунке ниже для положительного полупериода и на рисунке ниже для отрицательных полупериодов сигнала источника переменного тока. Обратите внимание, что независимо от полярности входа ток течет через нагрузку в одном и том же направлении. То есть отрицательный полупериод источника является положительным полупериодом при нагрузке.Ток протекает через два последовательно включенных диода для обеих полярностей. Таким образом, в диодах теряются два диодных падения напряжения источника (0,7 · 2 = 1,4 В для Si). Это недостаток по сравнению с двухполупериодной конструкцией с центральным отводом. Этот недостаток является проблемой только для источников питания с очень низким напряжением.

Двухполупериодный мостовой выпрямитель: поток электронов для положительных полупериодов. Двухполупериодный мостовой выпрямитель: поток электронов для отрицательной половины = циклы

Вспоминание о правильном расположении диодов в схеме двухполупериодного мостового выпрямителя часто может быть неприятным для новичка в области электроники.Я обнаружил, что альтернативное представление этой схемы легче запомнить и понять. Это точно такая же схема, за исключением того, что все диоды нарисованы горизонтально и все «указывают» в одном направлении. (Рисунок ниже)

Альтернативный стиль компоновки двухполупериодного мостового выпрямителя.

Полифазный трехфазный двухполупериодный мостовой выпрямитель

Одним из преимуществ запоминания этой схемы для схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии, показанной на рисунке ниже.

Трехфазная двухполупериодная мостовая схема выпрямителя.

Каждая трехфазная линия подключается между парой диодов: один для направления питания на положительную (+) сторону нагрузки, а другой для подачи питания на отрицательную (-) сторону нагрузки.

Схема шестифазного мостового выпрямителя

Многофазные системы с более чем тремя фазами легко встраиваются в схему мостового выпрямителя. Возьмем, к примеру, схему шестифазного мостового выпрямителя, показанную на рисунке ниже.

Шестифазная двухполупериодная мостовая схема выпрямителя.

Когда выпрямляется многофазный переменный ток, сдвинутые по фазе импульсы накладываются друг на друга, создавая более «плавный» выход постоянного тока (с меньшим содержанием переменного тока), чем полученный при выпрямлении однофазного переменного тока. Это явное преимущество в схемах выпрямителя большой мощности, где чисто физический размер фильтрующих компонентов был бы недопустимым, но при этом необходимо получать мощность постоянного тока с низким уровнем шума. Схема на рисунке ниже показывает двухполупериодное выпрямление трехфазного переменного тока.

Трехфазный переменный ток и трехфазный двухполупериодный выпрямитель.

В любом случае выпрямления — однофазном или многофазном — величина переменного напряжения, смешанного с выходным напряжением постоянного тока выпрямителя, называется пульсирующим напряжением . В большинстве случаев, поскольку желаемой целью является «чистый» постоянный ток, пульсации напряжения нежелательны. Если уровни мощности не слишком велики, можно использовать сети фильтрации для уменьшения пульсаций выходного напряжения.

Иногда метод выпрямления упоминается путем подсчета количества выходных «импульсов» постоянного тока на каждые 360 o электрического «вращения».«Схема однофазного однополупериодного выпрямителя в таком случае будет называться одноимпульсным выпрямителем , потому что она вырабатывает одиночный импульс в течение одного полного цикла (360 o ) формы волны переменного тока. Однофазный двухполупериодный выпрямитель (независимо от конструкции, отводной или мостовой) будет называться двухпульсным выпрямителем , потому что он выдает два импульса постоянного тока в течение одного цикла переменного тока. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным блоком .

Современная электротехническая конвенция дополнительно описывает функцию выпрямительной схемы с использованием трех полей записи: фаз , путей и количество импульсов . Однофазная однополупериодная схема выпрямителя получила несколько загадочное обозначение 1Ph2W1P (1 фаза, 1 способ, 1 импульс), что означает, что напряжение питания переменного тока является однофазным, то есть ток на каждой фазе линий питания переменного тока. движется только в одном направлении (пути), и что на каждые 360 o электрического вращения образуется один импульс постоянного тока.Однофазная двухполупериодная схема выпрямителя с центральным отводом будет обозначена в этой системе обозначений как 1Ph2W2P: 1 фаза, 1 путь или направление тока в каждой половине обмотки и 2 импульса или выходного напряжения за цикл. Однофазный двухполупериодный мостовой выпрямитель будет обозначен как 1Ph3W2P: то же, что и для конструкции с центральным ответвлением, за исключением того, что ток может проходить обоими путями по через линии переменного тока, а не только в одном направлении. Схема трехфазного мостового выпрямителя, показанная ранее, будет называться выпрямителем 3Ф3В6П.

Схема трехфазного двухпозиционного 12-импульсного многофазного выпрямителя

Можно ли получить больше импульсов, чем удвоенное количество фаз в цепи выпрямителя? Ответ на этот вопрос — да: особенно в многофазных цепях. Благодаря творческому использованию трансформаторов, наборы двухполупериодных выпрямителей могут быть объединены таким образом, чтобы генерировать более шести импульсов постоянного тока для трех фаз переменного тока. Фазовый сдвиг 30 o вводится от первичной к вторичной трехфазного трансформатора, когда конфигурации обмоток не одного типа.Другими словами, трансформатор, подключенный по схеме Y-Δ или Δ-Y, будет демонстрировать этот сдвиг фазы на 30 o , в то время как трансформатор, подключенный по схеме Y-Y или Δ-Δ, не будет. Это явление можно использовать, подключив один трансформатор по схеме Y-Y к мостовому выпрямителю, а другой трансформатор по схеме Y-Δ питает второй мостовой выпрямитель, а затем параллельно выходам постоянного тока обоих выпрямителей. (Рисунок ниже) Поскольку формы волны пульсаций напряжения на выходах двух выпрямителей сдвинуты по фазе на 30 o друг от друга, их наложение приводит к меньшей пульсации, чем любой выход выпрямителя, рассматриваемый отдельно: 12 импульсов на 360 90 447 o вместо простого шесть:

Цепь многофазного выпрямителя: 3-фазный, 2-канальный, 12-пульсный (3Ph3W12P)

Сводка

  • Выпрямление — это преобразование переменного тока (AC) в постоянный (DC).
  • Полупериодный выпрямитель — это схема, которая позволяет приложить к нагрузке только один полупериод формы волны переменного напряжения, что приводит к одной не меняющейся полярности на ней. Результирующий постоянный ток, подаваемый на нагрузку, значительно «пульсирует».
  • Двухполупериодный выпрямитель — это схема, которая преобразует оба полупериода формы волны переменного напряжения в непрерывную серию импульсов напряжения одинаковой полярности. Результирующий постоянный ток, подаваемый на нагрузку, не так сильно «пульсирует».
  • Полифазный переменный ток после выпрямления дает гораздо более «гладкую» форму волны постоянного тока (менее пульсаций напряжения ), чем выпрямленный однофазный переменный ток.

Статья извлечена из Урока Тони Купхальда по электрическим схемам, том III, Полупроводники в соответствии с условиями лицензии на научный дизайн.

1N5408 Выпрямительный диод 3 А, 1000 В: Интегральные схемы связи: Amazon.com: Industrial & Scientific


Цена: 5 долларов.28 $ 5,28 + $ 14,03 перевозки
Без залога за импорт и $ 14,03 за доставку в Российскую Федерацию Подробности Доступно по более низкой цене у других продавцов, которые могут не предлагать бесплатную доставку Prime.]]>
Характеристики данного продукта
Фирменное наименование Запчасти Экспресс
Ean 0844632007828
Вес изделия 0.160 унций
Номер детали 1N5408
Код UNSPSC 32111500
UPC 844632007828

об.III — Полупроводники — Диоды и выпрямители

Глава 3: ДИОДЫ И ВЫПРЯМИТЕЛИ

Теперь мы подошли к самому популярному применению диода: выпрямительный . Проще говоря, выпрямление — это преобразование переменного тока. (AC) в постоянный ток (DC). Это касается устройства, которое позволяет только односторонний поток электронов. Как мы видели, именно это полупроводниковый диод. Самый простой вид выпрямительной схемы — это однополупериодный выпрямитель .Он позволяет только половине сигнала переменного тока проходить через нагрузку. (Рисунок ниже)

Схема однополупериодного выпрямителя.

Для большинства силовых приложений однополупериодного выпрямления недостаточно для задание. Гармонический состав выходного сигнала выпрямителя равен очень большие и, следовательно, их трудно фильтровать. Кроме того, AC источник питания подает питание на нагрузку только половину за полный цикл, Это означает, что половина его емкости не используется.Полуволновое выпрямление Однако это очень простой способ уменьшить мощность резистивной нагрузки. Некоторые двухпозиционные переключатели яркости лампы подают на лампу полную мощность переменного тока. нить накала для «полной» яркости, а затем полуволновое выпрямление для меньшая светоотдача. (Рисунок ниже)

Применение однополупериодного выпрямителя: двухуровневый диммер лампы.

В положении переключателя «Dim» лампа накаливания получает примерно половина мощности, которую он обычно получает при работе двухполупериодный переменный ток.Поскольку полуволновая выпрямленная мощность импульсов намного больше быстрее, чем нить накала успевает нагреться и остыть, лампа не мигает. Вместо этого его нить просто работает с меньшей температура выше нормальной, обеспечивая меньшую светоотдачу. Этот принцип «Пульсирующая» мощность быстро к медленно реагирующему нагрузочному устройству для управления отправляемая на него электроэнергия является обычным явлением в мире промышленных электроника. Поскольку управляющее устройство (в данном случае диод) либо полностью проводящий, либо полностью непроводящий в любой момент времени, он рассеивает мало тепловой энергии при управлении мощностью нагрузки, благодаря чему Метод регулирования мощности очень энергоэффективен.Эта схема, возможно, самый грубый из возможных методов подачи импульсной мощности на нагрузку, но этого достаточно как экспериментальное приложение.

Если нам нужно выпрямить мощность переменного тока, чтобы полностью использовать и полупериодов синусоидальной волны, необходимо использовать другую конфигурацию схемы выпрямителя. Такая схема называется двухполупериодным выпрямителем . Один вид двухполупериодного выпрямителя, называемый конструкцией с центральным отводом , использует трансформатор с вторичной обмоткой с центральным отводом и двумя диодами, как показано на рисунке ниже.

Двухполупериодный выпрямитель, исполнение с центральным отводом.

Работа этой схемы легко понять по одному полупериоду за раз. Рассмотрим первый полупериод, когда полярность напряжения источника равна положительный (+) вверху и отрицательный (-) внизу. На данный момент только верхний диод является проводящим; нижний диод блокирует ток, а нижний нагрузка «видит» первую половину синусоиды, положительную сверху и отрицательный снизу. Только верхняя половина вторичной обмотки трансформатора обмотка проводит ток в течение этого полупериода, как показано на рисунке ниже.

Двухполупериодный выпрямитель с центральным отводом: верхняя половина вторичной обмотки проводит в течение положительного полупериода ввода, обеспечивая положительный полупериод до загрузки.

В течение следующего полупериода полярность переменного тока меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора несут ток, в то время как части схемы, ранее несущие ток в течение последнего полупериода сидите без дела. Груз по-прежнему «видит» половину синусоидальная волна той же полярности, что и раньше: положительная сверху и отрицательная внизу.(Рисунок ниже)

Двухполупериодный выпрямитель с центральным отводом: во время отрицательного полупериода входного сигнала, нижняя половина вторичной обмотки проводит, обеспечивая положительный полупериод до нагрузки.

Одним из недостатков этой конструкции двухполупериодного выпрямителя является необходимость трансформатор с центральным отводом вторичной обмотки. Если цепь в вопрос в высокой мощности, размере и расходе подходящего трансформатор имеет значение. Следовательно, выпрямитель с центральным отводом конструкция видна только в приложениях с низким энергопотреблением.

Полярность двухполупериодного выпрямителя с центральным отводом на нагрузке может быть обратное изменение направления диодов. Кроме того, обратные диоды могут быть подключены параллельно с существующим положительным выходом выпрямитель. В результате получается двухполюсный двухполупериодный центральный ответвитель. выпрямитель на рисунке ниже. Обратите внимание, что подключение самих диодов такое же, как у моста.

Двухполюсный двухполупериодный выпрямитель с центральным ответвлением

Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, и она построена вокруг конфигурации четырехдиодного моста.По понятным причинам это конструкция называется двухполупериодным мостом . (Рисунок ниже)

Двухполупериодный мостовой выпрямитель.

Направления тока для двухполупериодной схемы мостового выпрямителя показаны на рисунке ниже для положительного полупериода и На рисунке ниже показаны отрицательные полупериоды Форма волны источника переменного тока. Обратите внимание, что независимо от полярности входа, ток течет в том же направлении через нагрузку. Это отрицательный полупериод источника — положительный полупериод при нагрузке.В ток проходит через два последовательно включенных диода для обеих полярностей. Таким образом, потеряны два диодных падения напряжения источника (0,7 · 2 = 1,4 В для Si) в диоды. Это недостаток по сравнению с двухполупериодным центральным ответвителем. дизайн. Этот недостаток является проблемой только при очень низком напряжении питания. запасы.

Двухполупериодный мостовой выпрямитель: поток электронов для положительных полупериодов.

Двухполупериодный мостовой выпрямитель: поток электронов для отрицательных полупериодов.

Вспомним правильное расположение диодов в двухполупериодном мостовом выпрямителе Схема часто может расстраивать новичка в области электроники. Я обнаружил, что альтернативное представление этой схемы проще и помнить, и понимать. Это точно такая же схема, за исключением все диоды нарисованы горизонтально, все «нацелены» на одно и то же направление. (Рисунок ниже)

Альтернативный стиль компоновки двухполупериодного мостового выпрямителя.

Одно из преимуществ запоминания этой схемы для схемы мостового выпрямителя заключается в том, что он легко расширяется до многофазной версии, показанной на рисунке ниже.

Трехфазная двухполупериодная мостовая схема выпрямителя.

Каждая трехфазная линия подключается между парой диодов: один для разводки питание к положительной (+) стороне нагрузки, а другое — для направления питания к отрицательной (-) стороне нагрузки. Полифазные системы с более чем три фазы легко встраиваются в схему мостового выпрямителя.Возьмем, к примеру, схему шестифазного мостового выпрямителя, показанную на рисунке ниже.

Шестифазная двухполупериодная мостовая схема выпрямителя.

При выпрямлении многофазного переменного тока сдвинутые по фазе импульсы накладываются друг на друга. другой для создания более «плавного» выхода постоянного тока (с меньшим количеством переменного тока содержание), чем то, что получается при выпрямлении однофазного переменного тока. Это явное преимущество в схемах выпрямителя большой мощности, где сам по себе физический размер фильтрующих компонентов был бы недопустимым, но должно быть получено питание постоянного тока с низким уровнем шума.Схема на рисунке ниже показывает двухполупериодное выпрямление трехфазного переменного тока.

Выход трехфазного переменного тока и трехфазного двухполупериодного выпрямителя.

В любом случае ректификации — однофазной или многофазной — количество переменного напряжения, смешанного с выходным напряжением постоянного тока выпрямителя, называется напряжением пульсаций . В большинстве случаев, поскольку желаемой целью является «чистый» постоянный ток, пульсации напряжения равны нежелательно. Если уровни мощности не слишком велики, фильтрация сетей может использоваться для уменьшения пульсаций выходного напряжения.

Иногда метод выпрямления упоминается путем подсчета количества выходных «импульсов» постоянного тока на каждые 360 электрического «вращения». Тогда однофазная полуволновая выпрямительная схема будет называться одноимпульсным выпрямителем , потому что она выдает одиночный импульс в течение одного полного цикла (360 o ) формы волны переменного тока. Однофазный двухполупериодный выпрямитель (независимо от конструкции, отводной или мостовой) будет называться 2-импульсный выпрямитель, потому что он выдает два импульса постоянного тока в течение одного цикла переменного тока. стоит времени.Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным блоком .

Современная электротехническая конвенция дополнительно описывает функцию схемы выпрямителя с использованием трехполевого обозначения фаз , линий и количества импульсов . Однофазная однополупериодная схема выпрямителя имеет несколько загадочное обозначение 1Ph2W1P (1 фаза, 1 путь, 1 импульс), означающее, что напряжение питания переменного тока однофазное, ток на каждой фазе Линии питания переменного тока движутся только в одном направлении (пути), и что есть одиночный импульс постоянного тока, производимый на каждые 360 o электрических вращение.Однофазная двухполупериодная схема выпрямителя с центральным отводом обозначается как 1Ph2W2P в этой системе обозначений: 1 фаза, 1 путь или направление тока в каждой половине обмотки и 2 импульса или выход напряжение за цикл. Однофазный двухполупериодный мостовой выпрямитель будет обозначено как 1Ph3W2P: то же, что и для конструкции с центральным отводом, за исключением ток может пройти обоими путями через линии переменного тока вместо одного способ. Схема трехфазного мостового выпрямителя, показанная ранее, будет выглядеть так: назвал выпрямитель 3Ф3В6П.

Можно ли получить больше импульсов, чем удвоенное количество фаз в схема выпрямителя? Ответ на этот вопрос — да: особенно в многофазные схемы. Благодаря творческому использованию трансформеров, наборы двухполупериодные выпрямители можно подключить таким образом, чтобы более шести импульсы постоянного тока производятся для трех фаз переменного тока. А 30 или фазовый сдвиг вводится от первичной к вторичной трехфазной трансформатор при разной конфигурации обмоток.Другими словами, трансформатор, подключенный по схеме Y-Δ или Δ-Y, будет показывать это 30 o фазовый сдвиг, в то время как трансформатор подключен Y-Y или Δ-Δ не будет. Это явление можно использовать, если трансформатор, подключенный Y-Y, питает мостовой выпрямитель, а другой трансформатор, подключенный по схеме Y-Δ, питает второй мостовой выпрямитель, затем параллельно выходы постоянного тока обоих выпрямителей. (Рисунок ниже) Поскольку формы пульсаций напряжения на выходах двух выпрямителей сдвинуты по фазе 30 o друг от друга, их наложение приводит к меньшей пульсации, чем любой выход выпрямителя рассматривается отдельно: 12 импульсов на 360 o вместо шести:

Схема многофазного выпрямителя: 3-фазная 2-канальная, 12-импульсная (3Ph3W12P)

  • ОБЗОР:
  • Выпрямление — это преобразование переменного тока (AC) в постоянный (DC).
  • Однополупериодный выпрямитель — это схема, допускающая только одно полупериод формы волны переменного напряжения, подаваемого на нагрузку, в результате на нем будет одна не чередующаяся полярность.
Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *