Простые приборы для радиолюбителей | Мастер Винтик. Всё своими руками!
Радиолюбительские приборы-помощники
В процессе изготовления радиолюбительских схем, при её настройке, а также при регулировке аппаратуры радиолюбителю необходим целый набор измерительных приборов. В первую очередь понадобятся: мультиметр, осциллограф, генераторы высокой и низкой (звуковой) частот, цифровой частотомер, универсальный высокочастотный вольтметр с высокоомным входом…
Сейчас многие приборы можно купить, а некоторых и можно не найти в продаже. Их самостоятельное изготовление не отличается большой трудностью и вполне доступно радиолюбителям.
В число таких приборов-помощников входят:
- индикатор высокочастотного поля,
- индикатор излучения,
- прибор для проверки транзисторов,
- ВЧ и универсальный вольтметр.
Схемы приборов построены на старой советской элементной базе, поэтому многие компоненты можно заменить на современные аналоги.
Принципиальная схема индикатора поля
На рисунке показана схема простого индикатора напряженности поля. Индикатор высокочастотного поля используют для обнаружения излучения-передатчика и грубого измерения частоты колебаний, а также как индикатор напряженности поля при согласовании выхода передатчика с сопротивлением излучения антенны. Индикатор представляет собой детекторный приемник, нагрузкой которого служит микроамперметр на ток полного отклонения стрелки 100 мкА.
Главная особенность этого индикатора — отсутствие питания. Стрелка индикаторной головки отклоняется от наводящего в антенне ВЧ поля.
Прибор собирают на изоляционной плате. Антенна — тонкий металлический штырь длиной 20 — 30 см. Для диапазона 25 — 31 МГц контурную катушку L1 заматывают на каркасе диаметром 12 мм. Она содержит 12 — 14 витков провода ПЭВ-1, Конденсатор С1 — подстроечнный с воздушным диэлектриком. Ось ротора выводят на переднюю панель и снабжают лимбом с нанесенной шкалой, проградуированной в Мегагерцах.
Принципиальная схема индикатора излучения
На рисунке, выше представлена схема индикатора излучения передатчика с визуальным контролем. Для контроля использована небольшая лампочка, рассчитанная на напряжение 1 В или светодиод. В случае использования светодиода, нужно последовательно подключить сопротивление 30-100Ом.
Индикатор представляет собой детекторный приемник с двухкаскадным усилителем постоянного тока на транзисторах МП16Б (или им аналогичных отечественных или зарубежных). В цепь коллектора выходного транзистора VT3 включена индикаторная лампа.
Индикатор смонтирован на изоляционной плате и вместе с батареями питания размещен в пластмассовом футляре подходящих размеров. Каждую батарею питания можно составить из 3-x аккумуляторов по 1,2в.
Приближенно проградуировать шкалу индикатора поля можно по сигналу от измерительного генератора высокой частоты. К его выходу подключают отрезок провода длиной 30 см. Вблизи этого провода располагают штыревую антенну градуируемого индикатора поля.
Схема вольтметра постоянного напряжения
Вольтметр измеряет постоянные напряжения величиной до 100 В. Он выполнен по мостовой схеме на транзисторах — Т1 и Т2. В одну диагональ моста включен измерительный прибор, в другую — источник питания.
Регулировка вольтметра состоит из двух этапов. Сначала, изменяя значения резисторов R4 и R5, добиваются равенства напряжений на коллекторах транзисторов Т1 и Т2. Затем с помощью переменного резистора R6 устанавливают стрелку измерительного прибора на ноль.
Измеряемое напряжение через резисторы R1, R2 и R3 подается на базу транзистора Т1. При этом нарушается равновесие моста, и через миллиамперметр начинает протекать ток, пропорциональный напряжению.
Резисторы R1 — R3 подбирают с точностью ±5%.
Эту схему можно использовать как приставку к авометру с малым входным сопротивлением.
Схема универсального вольтметра
Универсальный вольтметр, схема которого изображена на рисунке прост изготовлении и налаживании.
Входное сопротивление его около 2 МОм на пределе измерения постоянного напряжения 1 В и 4,5 МОм на остальных пределах (10, 100, 1000 В). Напряжение высокой и звуковой частот можно измерять в пределах от 0,1 до 25 В. Транзисторы VT1 и VT2 образуют парафазный истоковый повторитель. Измеряемое напряжение приложено к затворам транзисторов и одновременно к цепи R5, R14. В результате между затвором и истоком каждого транзистора действует половина измеряемого напряжения, но с разной полярностью. Это приводят к тому, что в одном плече ток стока уменьшается, в другом — увеличивается я между точками а и б появляется разность потенциалов, отклоняющая стрелку микроамперметра РА1 пропорционально приложенному напряжению.
Детекторная цепь C1,VD1,R7, C2 предназначена для измерения напряжения ЗЧ. А напряжение ВЧ измеряют с помощью выносной головки, схема которой показана на рисунке слева. Питают прибор от батареи с напряжением 9 В.
Транзисторы для вольтметра должны быть подобраны близкими по параметрам.
Схема проверки маломощных биполярных транзисторов
Одно из условий безотказной работы аппаратуры радиоуправления — применение в ней проверенных радиоэлементов и особенно транзисторов. Известно, что разброс параметров транзисторов одного типа может быть трехкратным и более. Например, у транзистора значение коэффициента передачи по постоянному току h31Э может находиться в пределах 40—160. В ряде случаев при изготовлении аппаратуры устанавливают ограничения на параметры применяемых транзисторов. Обычно это относится к значениям h31Э.
Часто при построении схем необходимо подобрать пары одинаковых по параметрам транзисторов.
На рисунке, ниже приведена схема стенда для проверки маломощных транзисторов как с р-n-р, так и с n-р-n переходами. I кбо измеряется непосредственно микроамперметром ИП-1 с пределом до 100 мкА. У микроамперметра ИП-1 должна быть шкала с нулем посередине. h31э определяется как отношение измеренного тока коллектора Iк к установленному по прибору ИП-1 значению тока Iо в цепи базы транзистора. Ток в цепи базы устанавливается с помощью переменных резисторов R3, («грубо») и R
Схема проверки биполярных транзисторов средней мощности
Транзисторы средней мощности необходимо проверять при рабочем коллекторном токе (0,5 — 1,0 А и более). При подборе пар одинаковых транзисторов, необходимых для качественной работы оконечных каскадов усилителей и других схем. Эти измерения можно сделать с помощью простого стенда (см. схему ниже).
Чтобы не усложнять коммутацию, подключение измерительных приборов осуществляют гибкими проводами с одиночными штыревыми разъемами. На схеме (в скобках) показана полярность подключения батареи и приборов при проверке транзисторов со структурой типа p-n-р.
Подключение к выводам транзистора следует осуществлять с помощью зажимов «крокодил», подпаянных к гибким проводам. Транзисторы проверяют в течение короткого промежутка времени в связи с тем, что при больших токах коллектора происходит нагрев транзистора, а это ведет к изменению его параметров и увеличению погрешности измерений.
Проверяемый транзистор можно крепить на теплоотводящий радиатор, но это усложнит процесс проверки. В качестве источника питания следует применить мощный стабилизированный источник низковольтного напряжения или составить батарею из аккумуляторов.
Схема проверки полевых транзисторов
Проверку полевых транзисторов можно проводить на стенде, схема которого приведена на рисунке ниже. С помощью этого стенда осуществляют подбор пар одинаковых транзисторов.
Полярность подключения батарей Б1, Б2 и измерительных приборов показана для случая проверки полевых транзисторов с р-каналом и п-р переходом (например, КП103). При проверке полевых транзисторов с n-каналом и р-п переходом (например КП303) необходимо указанную полярность изменить на обратную.
С помощью такого стенда можно снять выходные и проходные характеристики полевых транзисторов. На рисунках приведена выходная характеристика полевого транзистора КП303Д и проходные характеристики этого же транзистора. Пунктирной линией изображена динамическая проходная характеристика при включенном в цепь истока резисторе с сопротивлением 560 Ом. Рабочая точка находится в средней части линейного участка этой характеристики.
ВНИМАНИЕ! При проверке полевых транзисторов с МОП-структурой необходимо соблюдать осторожность, поскольку они подвержены влиянию статического электричества! Их следует подключать с предварительно закороченными (гибким неизолированным проводником) выводами, которые подсоединяют к стенду при выключенном питании. Затем с вывода транзистора снимают закорачивающие проводники и включают питание.
После этого проверяют транзистор. Отключение такого транзистора ведут в обратном порядке, а именно, выключают питание, закорачивают выводы и после этого отсоединяют его от стенда.
Конструкции стендов для проверки транзисторов могут быть произвольными. Рекомендуется монтировать их на панелях из стеклотекстолита или другого изоляционного листового материала. На стенде следует поместить его принципиальную схему. Для удобства пользования производят гравировку у выводов гнезд и других элементов стенда или вместо гравировки можно приклеить бумажные полоски с надписями.
Используемая литература: М.Е.Васильченко, А.В.Дьяков «Радиолюбительская телемеханика» и журнал «Моделист конструктор»
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Устройство для определения воздухопроницаемости трикотажных полотен
- Серебритель воды.
- Бабочка из спичек своими руками!
Полезная модель относится к материаловедению изделий текстильной и легкой промышленности, а именно к методам изучения структуры и свойств трикотажных полотен во время их лабораторных и производственных испытаний.
К недостатку прототипов данного устройства можно отнести то, что они ориентированы на решение только узкой измерительной задачи, а именно определения воздухопроницаемости трикотажного полотна, с учетом его фактической плотности.
Подробнее…
Серебритель воды предназначен для получения «серебряной» воды в домашних условиях в профилактических и лечебных концентрациях. Прибор состоит из таймера, стабилизатора тока электродов, стабилизатора напряжения питания и опускаемых в сосуд с водой электродов.
Подробнее…
На дворе середина зимы, а мы сегодня помечтаем о лете!
Давайте сейчас сделаем… бабочку… из спичек!
Поделка не сложная, но в итоге красивая получается бабочка.
Смотрите фото слева.
Подробнее…
Популярность: 11 070 просм.
Радиотехника
начинающим |
Букварь
телемастера |
Основы
спутникового телевидения |
|||
Каталог
схем |
Литература |
Статьи |
|||
Схемы
телевизоров |
Файловое
хранилище |
Доска
объявлений |
|||
Радиодетали
и |
ФОРУМ |
Справочные материалы |
Схемы с пояснениями простых устройств для радиолюбителей.
Как читать электрические схемы. Схемы самодельных измерительных приборовСхемы самодельных измерительных приборов
Схема прибора, разработанная на основе классического мультивибратора, но вместо нагрузочных резисторов в коллекторные цепи мультивибратора включены транзисторы противоположной основным проводимостью.
Хорошо, если в вашей лаборатории есть осциллограф. Ну а если его нет и купить его по тем или иным причинам не представляется возможным, не огорчайтесь. В большинстве случаев его с успехом может заменить логический пробник, позволяющий проконтролировать логические уровни сигналов на входах и выходах цифровых интегральных схем, определить наличие импульсов в контролируемой цепи и отразить полученную информацию в визуальной (свето-цветовой или цифровой) или звуковой (тональными сигналами различной частоты) формах. При налаживании и ремонте конструкций на цифровых интегральных схемах далеко не всегда так уж необходимо знать характеристики импульсов или точные значения уровней напряжения. Поэтому логические пробники облегчают процесс налаживания, даже если есть осциллограф.
Представлена огромная подборка разичных схем генераторов импульсов. Одни из них формируют на выходе одиночный импульс, длительность которого не зависит от длительности запускающего (входного) импульса. Применяются такие генераторы в самых разнообразных целях: имитации входных сигналов цифровых устройств, при проверке работоспособности цифровых интегральных схем, необходимости подачи на какое-то устройство определенного числа импульсов с визуальным контролем процессов и т. д. Другие генерируют пилообразные и прямоугольные импульсы различной частоты, скважности и амплитуды
Ремонт различных узлов и устройств низкочастотной радиоэлектронной аппаратуры и техники можно значительно упростить, если использовать в качестве помощника функциональный генератор, который дает возможность исследовать амплитудно-частотные характеристики любого низкочастотного устройства, переходные процессы и нелинейные характеристики любых аналоговых приборов, а также обладает возможностью генерации импульсов прямоугольной формы и упрощения процесса наладки цифровых схем.
При наладке цифровых устройств обязательно нужен еще один прибор — генератор импульсов. Промышленный генератор — прибор достаточно дорогой и редко бывает в продаже, но его аналог, пусть не такой точный и стабильный, можно собрать из доступных радиоэлементов в домашних условиях
Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний. Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому в диапазоне звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.
Часто, собрав конструкцию, радиолюбитель видит, что устройство не работает. У человека ведь нет органов чувств, позволяющих видеть электрический ток, электромагнитное поле или процессы, происходящие в электронных схемах. Помогают это сделать радиоизмерительные приборы — глаза и уши радиолюбителя.
Поэтому нужно какое-то средство испытания и проверки телефонов и громкоговорителей, усилителей звуковой частоты, различных звукозаписывающих и звуковоспроизводящих устройств. Такое средство — это радиолюбительские схемы генераторов сигналов звуковой частоты, или, говоря проще, звуковой генератор. Традиционно он вырабатывает непрерывный синусоидальный сигнал, частоту и амплитуду которого можно изменять. Это позволяет проверять все каскады УНЧ, находить неисправности, определять коэффициент усиления, снимать амплитудно-частотные характеристики (АЧХ) и много всего другого.
Рассмотрена несложная радиолюбительская самодельная приставка превращающая ваш мультиметр в универсальный прибор проверки стабилитронов и динисторов. Имеются чертежи печатной платы
Радиолюбительская технология. В книге рассказывается о технологии работ радиолюбителя. Даются реко-мендации по обработке материалов, намотке катушек и трансформаторов, монтажу и пайке деталей. Описывается изготовление самодельных деталей элементов конструкций, простейших станков, приспособлений и инструмента.
Цифровая электроника для начинающих. Основы цифровой электроники изложены простым и доступным для начинающих способом — путем создания на макетной плате забавных и познавательных устройств на транзисторах и микросхемах, которые сразу после сборки начинают работать, не требуя пайки, наладки и программирования. Набор необходимых деталей сведен к минимуму как по количеству наименований, так и по стоимости.
По ходу изложения даются вопросы для самопроверки и закрепления материала, а также творческие задания на самостоятельную разработку схем.
Осциллографы. Основные принципы измерений. Осциллографы – незаменимый инструмент для тех, кто проектирует, производит или ремонтирует электронное оборудование. В современном быстро изменяющемся мире специалистам необходимо иметь самое лучшее оборудование для быстрого и точного решения своих насущных, связанных с измерениями задач. Будучи “глазами” инженеров в мир электроники, осциллографы являются ключевым инструментарием при изучении внутренних процессов в электронных схемах.
Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.
Самоделки юного радиолюбителя. В книге описываются имитаторы звуков, искатели скрытой электропроводки, акустические выключатели, автоматы звукового управления моделями, электромузыкальные инструменты, приставки к электрогитарам, цветомузыкальные приставки и другие конструкции, собранные из доступных деталей
Школьная радиостанция ШК-2 — Алексеев С. М. В брошюре описаны два передатчика и два приемника, работающие на диапазонах 28 и 144 М гц, модулятор для анодно-экранной модуляции, блок питания и простые антенны. В ней рассказывается также об организации работы учащихся на коллективной радиостанции, о подготовке операторов, содержании их работы, об исследовательской работе школьников в области распространения КВ и УКВ.
Electronics For Dummies
Build your electronics workbench — and begin creating fun electronics projects right away
Packed with hundreds of colorful diagrams and photographs, this book provides step-by-step instructions for experiments that show you how electronic components work, advice on choosing and using essential tools, and exciting projects you can build in 30 minutes or less. You»ll get charged up as you transform theory into action in chapter after chapter!
Книга состоит из описаний простых конструкций, содержащих электронные компоненты, и экспериментов с ними. Кроме традиционных конструкций, чья логика работы определяется их схемотехникой, добавлены описания изделий, функционально реализующихся с помощью программирования. Тематика изделий — электронные игрушки и сувениры.
Как освоить радиоэлектронику с нуля. Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь этим самоучителем. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы , узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно.
Паять просто — пошаговое руководство для начинающих. Комикс, несмотря на свой формат и объем, в мелких деталях объясняет основные принципы этого процесса, которые совсем не очевидны для людей, ни разу не державших в руках паяльник (как показывает практика, для многих державших тоже). Если вы давно хотели научиться паять сами, или планируете научить этому своих детей, то этот комикс для вас.
Электроника для любознательных. Эта книга написана специально для вас, начинающих увлекательное восхождение к вершинам электроники. Помогает освоению диалог автора книги с новичком. А еще помощниками в овладении знаниями становятся измерительные приборы, макетная плата, книги и ПК.
Энциклопедия юного радиолюбителя. Здесь Вы найдете множество практических схем как отдельных узлов и блоков, так и целых устройств. В разрешении многих вопросов поможет специальный справочник. Пользуясь удобной системой поиска, отыщешь нужный раздел, а к нему как наглядные примеры великолепно выполненные рисунки.
Книга создана специально для начинающих радиолюбителей, или, как еще у нас любят говорить, — «чайников». Она рассказывает об азах электроники и электротехники, необходимых радиолюбителю. Теоретические вопросы рассказываются в очень доступной форме и в объеме, необходимом для практической работы. Книга учит правильно паять, проводить измерения, анализ схем. Но, скорее, это книга о занимательной электронике. Ведь основа книги — радиолюбительские самоделки, доступные начинающему радиолюбителю и полезные в быту.
Это вторая книга из серии изданий, адресованных начинающему радиолюбителю в качестве учебно-практического пособия. В этой книге на более серьезном уровне продолжено знакомство с различными схемами на полупроводниковой и радиовакуумной базе, основами звукотехники, электро и радиоизмерениями. Изложение сопровождается большим количеством иллюстраций и практических схем.
Азбука радиолюбителя. Основное и единственное назначение этой книги — приобщить к радиолюбительскому творчеству ребят, не имеющих об этом ни малейшего представления. Книга построена по принципу `от азов — через знакомство — к пониманию` и может быть рекомендована школьникам средних и старших классов как путеводитель по началам радиотехники.
Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.
Электронная утка
Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.
Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.
Звук подскакивающего металлического шарика
Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.
Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).
Имитатор звука мотора
Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.
Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).
Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.
Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.
Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.
Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.
Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.
Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!
Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.
Фонарь-мигалка
Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.
Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).
Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.
Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.
Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).
Автомат выключения освещения
От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.
Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.
Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот | |
---|---|---|---|---|---|---|---|
Электронная утка | |||||||
VT1, VT2 | Биполярный транзистор | КТ361Б | 2 | МП39-МП42, КТ209, КТ502, КТ814 | В блокнот | ||
HL1, HL2 | Светодиод | АЛ307Б | 2 | В блокнот | |||
C1 | 100мкФ 10В | 1 | В блокнот | ||||
C2 | Конденсатор | 0.1 мкФ | 1 | В блокнот | |||
R1, R2 | Резистор | 100 кОм | 2 | В блокнот | |||
R3 | Резистор | 620 Ом | 1 | В блокнот | |||
BF1 | Акустический излучатель | ТМ2 | 1 | В блокнот | |||
SA1 | Геркон | 1 | В блокнот | ||||
GB1 | Элемент питания | 4.5-9В | 1 | В блокнот | |||
Имитатор звука подскакивающего металлического шарика | |||||||
Биполярный транзистор | КТ361Б | 1 | В блокнот | ||||
Биполярный транзистор | КТ315Б | 1 | В блокнот | ||||
C1 | Электролитический конденсатор | 100мкФ 12В | 1 | В блокнот | |||
C2 | Конденсатор | 0.22 мкФ | 1 | В блокнот | |||
Динамическая головка | ГД 0.5…1Ватт 8 Ом | 1 | В блокнот | ||||
GB1 | Элемент питания | 9 Вольт | 1 | В блокнот | |||
Имитатор звука мотора | |||||||
Биполярный транзистор | КТ315Б | 1 | В блокнот | ||||
Биполярный транзистор | КТ361Б | 1 | В блокнот | ||||
C1 | Электролитический конденсатор | 15мкФ 6В | 1 | В блокнот | |||
R1 | Переменный резистор | 470 кОм | 1 | В блокнот | |||
R2 | Резистор | 24 кОм | 1 | В блокнот | |||
T1 | Трансформатор | 1 | От любого малогабаритного радиоприемника | В блокнот | |||
Универсальный имитатор звуков | |||||||
DD1 | Микросхема | К176ЛА7 | 1 | К561ЛА7, 564ЛА7 | В блокнот | ||
Биполярный транзистор | КТ3107К | 1 | КТ3107Л, КТ361Г | В блокнот | |||
C1 | Конденсатор | 1 мкФ | 1 | В блокнот | |||
C2 | Конденсатор | 1000 пФ | 1 | В блокнот | |||
R1-R3 | Резистор | 330 кОм | 1 | В блокнот | |||
R4 | Резистор | 10 кОм | 1 | В блокнот | |||
Динамическая головка | ГД 0.1…0.5Ватт 8 Ом | 1 | В блокнот | ||||
GB1 | Элемент питания | 4.5-9В | 1 | В блокнот | |||
Фонарь-мигалка | |||||||
VT1, VT2 | Биполярный транзистор |
При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на которое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.
В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.
Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО . К УГО мы вернемся дальше в этой статье.
Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например или критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.
Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.
По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.
Обозначение источников питанияЛюбое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках . К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.
В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.
Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.
Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».
Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G .
Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E , которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.
Иногда вместо изображения источника питания показывают только его клеммы.
Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей . На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB . Вторая буква как раз и обозначает «батарея».
Обозначение проводов и их соединений на схемахЭлектрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.
На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.
Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.
Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.
В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.
Обозначение общего проводаВ сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общи й или масса или шасси или земля .
Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля .
Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p — n — p структуры.
Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.
Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.
Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.
Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.
Условное графическое обозначение радиодеталейОснову любого электронного устройства составляют радиодетали. К ним относятся , светодиоды, транзисторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.
Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 . Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R , после которой ставится его порядковый номер, например R 1 , R 2 , R 5 и т. д.
Поскольку важным параметром резистора помимо сопротивления является , то ее значение также указывается в обозначении.
УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.
Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD , а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».
Как читать электрические схемы реальноДавайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 .
Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I , который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB 1 через резистор R 1 , светодиод VD 1 к отрицательной клемме.
Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.
Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R 1 и светодиод VD 1 .
Если измерить вольтметром напряжение на R 1 и VD 1 , а затем полученные значения сложить, то их сумма будет равна напряжению на GB 1 : V 1 = V 2 + V 3 .
Соберем по данному чертежу реальное устройство.
Добавляем радиодеталиРассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB 1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K 1.1 электромагнитного реле K 1 , резистора R 1 и светодиода VD 1 . Далее по чертежу находится кнопка SB 1 .
Третья параллельная ветвь состоит из электромагнитного реле K 1 , шунтированного в обратном направлении диодом VD 2 .
В четвертой ветви имеются нормально разомкнутые контакты K 1.2 и бузер BA 1 .
Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB 1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.
Следующий элемент– это электромагнитное реле K 1 . Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.
Все контакты, которые соответствуют реле K 1 , обозначаются K 1.1 , K 1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.
БузерСледующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.
Пассивный бузер – для переменного тока.
Активный бузер – для постоянного тока.
Активный бузер имеет полярность, поэтому следует ее придерживаться.
Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.
В исходном состоянии контакты K 1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB 1 через K 1.1 , R 1 , VD 1 и возвращается снова к GB 1 .
При нажатии кнопки SB 1 ее контакты замыкаются, и создается путь для протекания тока через катушку K 1 . Когда реле получило питание ее нормально замкнутые контакты K 1.1 размыкаются, а нормально замкнутые контакты K 1.2 замыкаются. В результате гаснет светодиод VD 1 и раздается звук бузера BA 1 .
Теперь вернемся к параметрам электромагнитного реле K 1 . В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS ‑4078‑ DC 5 V . Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB 1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.
Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.
Диод VD 2 серии 1 N 4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB 1 . Но если ее размыкает транзистор или тиристор, то VD 2 нужно обязательно устанавливать.
Учимся читать схемы с транзисторамиНа данном чертеже мы видим VT 1 и двигатель M 1 . Для определенности будем применять транзистор типа 2 N 2222 , который работает в .
Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n — p — n типа; для p — n — p типа нужно подавать отрицательный потенциал относительно эмиттера.
Кнопка SA 1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M 1 постоянного тока.
В исходном состоянии цепь разомкнута контактами SA 1 . При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB 1 – контакты SA 1 – резистор R 1 – переход база-эмиттер транзистора VT 1 – «-» GB 1 . Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB 1 – SA 1 – катушка реле K 1 – коллектор-эмиттер VT 1 – «-» GB 1 .
Получив питание, реле K 1 замыкает свои разомкнутые контакты K 1.1 в цепи двигателя M 1 . Таким образом, создается третий путь: «+» GB 1 – SA 1 – K 1.1 – M 1 – «-» GB 1 .
Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.
Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс . Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.
Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.
Однокаскадный усилитель ЗЧ
Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик — он не превышает 6, поэтому сфера применения такого устройства ограничена.
Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.
Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В — четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.
Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.
Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.
Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора — он достигнет первоначального значения.
Нагрузка усилительного каскада — головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.
Двухкаскадный УЗЧ на транзисторах разной структуры
Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции
Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.
Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.
Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.
Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.
Двухкаскадный УЗЧ на транзисторах одинаковой структуры
Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.
Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.
Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.
Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.
Чувствительность усилителя весьма высока — коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 — если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.
Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем — около 2 мА.
Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.
Усилитель двухкаскадный первый собран на транзисторе VТ1 второй — на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй — усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ — при отрицательных.
Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.
Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.
Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), — оно позволяет уменьшить искажения усиливаемого сигнала.
Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.
Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада — резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.
Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.
Двухуровневый индикатор напряжения
Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.
Рис. 5. Схема двухуровневого индикатора напряжения.
В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1
Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.
Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем — HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.
Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.
При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.
Он выдает световые сигналы по принципу меньше нормы — норма — больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один — зеленого.
Рис. 6. Трехуровневый индикатор напряжения.
При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.
Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.
Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.
Триггер Шмитта
Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.
Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.
Рис. 7. Простой триггер Шмитта на двух транзисторах.
Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.
Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение — вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.
Ждущий мультивибратор
Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.
Рис. 8. Принципиальная схема ждущего мультивибратора.
В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.
Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.
Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.
Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.
И. Бокомчев. Р-06-2000.
Измерительные приборы радиолюбителя | Радиолюбительские схемы
Каждый начинающий радиолюбитель сталкивается с вопросом выбора измерительного оборудования и приборов. Без приборов не представляется возможным настроить какую нибудь плату либо узел. Часто нужно визуально проконтролировать “что происходит”, в той или иной точке. В этой статье будут рассмотрены эти самые приборы, а также будут даны рекомендации по их выбору.
Итак начнем. Первое что необходимо это естественно мультиметр. На сегодняшний день существует множество различных моделей мультиметров, от простых до профессиональных. Естественно и цена на них варьируется в широких пределах. Если вы начинающий радиолюбитель то вам нужно чтобы мультиметр мог измерять переменное и постоянное напряжение, переменный и постоянный ток, сопротивление, а также необходим режим прозвонки цепей. Для этих целей подходит мультиметр типа DT830 или M830 и им подобные. Стоимость такого прибора в пределах 3-4$. Простой в обращении и легкий прибор, помимо всего еще имеет возможность измерения коэффициента передачи тока биполярных транзисторов – очень полезная функция. В некоторых мультиметрах подороже есть возможность измерения частоты, емкости, индуктивности, но в этих режимах небольшой предел измерения и точность, поэтому лучше в будущем, когда возникнет необходимость в измерении той же емкости, индуктивности или частоты, сделать самодельный LCF измеритель на микроконтроллере и жк дисплее. Схем в интернете полно, сможете выбрать то, что понравится.
Но современному радиолюбителю для полноценной работы одного мультиметра недостаточно. Ему нужен еще и персональный компьютер. Это не обязательно должен быть мощный производительный компьютер. Достаточно компьютера с процессором 1-1,5GHz, видеокартой на 64Мб, оперативной памятью на 256-512Мб ну и винчестером на 40-60Гб. Если рабочее место не позволяет разместить ПК, можно подыскать БУ ноутбук с похожими параметрами. Очень желательно чтобы ноутбук имел COM или LPT порт, это очень пригодится для работы в дальнейшем. Вообще сейчас на базе ПК можно собрать целый измерительный комплекс. Очень актуально использовать компьютер в качестве осциллографа, анализатора спектра, анализатора цифровых сигналов и т.д.
Важнейшим прибором без которого трудно, а иногда и не возможно обойтись является осциллограф. Можно пользоваться отечественным аналоговым осциллографом, но если средства позволяют можно приобрести современный цифровой осциллограф. На что следует обратить внимание при выборе осциллографа: ну в первую очередь нужно определиться будет это отдельный прибор или приставка к компьютеру. В любом случае нужно брать осциллограф с пропускной способностью не ниже 1МГц, и желательно двухканальный, чтобы иметь возможность смотреть сигнал в двух точках одновременно.
Ну и еще одним необходимым прибором является генератор сигналов. Здесь так как и с осциллографом: можно попытаться раздобыть отечественный генератор сигналов или приобрести современный цифровой генератор.
Единственное что современные генераторы довольно таки дорогие, но альтернатива есть. На базе современных микросхем, можно построить генератор сигналов, с довольно неплохими характеристиками.
Это естественно далеко не все приборы которые необходимы, но в любом случае они основные. В зависимости от интересов радиолюбителя список необходимых приборов меняется.
Похожие радиосхемы и статьи:Радиосхемы своими руками для дома. Простые схемы для начинающих Радиофанат схемы для радиолюбителей
В наше время существует огромный выбор инструментов и приборов для занятий радиоэлектроникой: паяльные станции, стабилизированные лабораторные источники питания, гравировальные наборы (для сверления плат и обработки конструкционных материалов), инструмент для зачистки и обработки проводов и кабелей и так далее. И все это оборудование стоит немалых денег. Возникает резонный вопрос — сможет ли начинающий радиолюбитель преобрести весь этот арсенал оборудования? Ответ очевиден, тем более для некоторых людей, увлекающихся электроникой по случаю (для единичного изготовления каких-то полезных приспособлений для бытовых целей), покупка такого количества инструмента не требуется. Выход из создавшегося положения довольно прост — изготовить необходимый инструмент собственными руками. Данные самоделки послужат временной (а для кого-то и постоянной) альтернативой заводскому оборудованию.
Итак, приступим. Основой нашего устройства служит сетевой понижающий трансформатор от любого отслужившего свой срок радиоэлектронного устройства (телевизор, магнитофон, стационарный радиоприемник и т.д.). Так же могут пригодится сетевой шнур, колодка предохранителей и выключатель питания.
Далее необходимо снабдить наш блок питания регулируемым стабилизатором напряжения. Так как конструкция расчитана на повторение начинающими радиолюбителями, самым рациональным, по моему мнению, будет применение интегрального стабилизатора на микросхеме типа LM317T (К142ЕН12А). На основе данной микросхемы мы соберем регулируемый стабилизатор напряжения от 1,2 до 30 вольт с полным током нагрузки до 1,5 ампер и защитой от перегрузки по току и превышению температуры. Принципиальная схема стабилизатора представлена на рисунке.
Собрать схему стабилизатора можно на куске нефольгированного стеклогетинакса (или электрокартона) навесным монтажем или на макетной плате — схема настолько проста, что даже не требует печатной платы.
На выход стабилизатора можно подключить (параллельно выводам) вольтметр, для контроля и регулировки выходного напряжения,и (последовательно с плюсовым выводом) миллиамперметр, для контроля токопотребления подключаемой к стабилизатору радиолюбительской самоделки.
Еще одна необходимая в арсенале начинающего радиолюбителя вещь — микроэлектродрель. Как известно, в арсенале любого (начинающего или умудренного опытом) самодельщика существует »склад» вышедшей из обихода или неисправной аппаратуры. Хорошо, если на таком »складе» найдется детская машинка с электроприводом, микромотор от которой и послужит электродвигателем для нашей микродрели. Необходимо только замерить диаметр вала двигателя и в ближайшем радиомагазине приобрести патрон с набором цанговых зажимов (под сверла разного диаметра) для этого микродвигателя. Полученную микродрель можно подключать к нашему блоку питания. Посредством регулирования напряжения можно регулировать количество оборотов дрели.
Следующая необходимая вещь — низковольтный паяльник с гальванической развязкой от сети (для пайки полевых транзисторов и микросхем, которые боятся статического разряда). В продаже имеются низковольтные паяльники на 6, 12, 24, 48 вольт, а если трансформатор, который мы выбрали для нашего изделия от старого лампового телевизора, то можно считать что нам крупно повезло — мы имеем уже готовую обмотку для питания низковольтного электропаяльника (следует задействовать накальные обмотки (6 вольт) трансформатора для питания паяльника). Применение трансформатора от лампового телевизора дает еще один плюс нашей схеме — мы можем оснастить наше устройство еще и инструментом для зачистки концов провода.
Основа этого приспособления — две контактных колодки, между которыми закреплена нихромовая проволока и кнопка, с нормально разомкнутыми контактами. Техническое оформление этого устройства видно из рисунка. Подключается оно все к той же накальной обмотке трансформатора. При нажатии на кнопку нихром разогревается (все наверное помнят что такое выжигатель) и прожигает изоляцию провода в нужном месте.
Корпус для данного блока питания можно найти готовый или собрать самому. Если сделать его из металла и предусмотреть вентиляционные отверстия только снизу и по бокам, то сверху можно расположить стойки для паяльника и инструмента зачистки провода. Коммутацию всего этого хозяйства можно осуществить применив пакетный переключатель, систему тумблеров или разъемов — здесь для фантазии пределов нет.
Впрочем и модернизировать данный блок можно под свои нужды — дополнить, к примеру, зарядным устройством для аккумуляторов или электроискровым гравером и т.д. Данное устройство служило мне долгие годы и служит до сих пор (правда теперь на даче) для изготовления и проверки различных радиоэлектронных и электротехнических самоделок. Автор — Электродыч.
Итак. Жизнь сложилась так, что у меня есть домик в деревне с газовым отоплением. Жить там постоянно не получается. Домик используется как дача. Пару зим тупо оставлял включенным котел с минимальной температурой теплоносителя.
Но тут два минуса.
1. Счета за газ просто астрономические.
2. Если возникает необходимость приехать в дом среди зимы, температура в доме в районе 12 град.
Поэтому надо было что-то выдумывать.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если заморочиться, можно положить рядом с датчиком подключенный мобильник, и раздавать сигнал с телефона.
Подключение датчика движения 4 контакта своими руками схема
Схема подключение датчика движения своими руками
Бывает что нужно установить на даче,или в доме освещение которое будет срабатывать при движение или человека или еще кого либо.
С этой функцией хорошо справиться датчик движения, который и был заказан мной с Aliexpress. Ссылка на который будет внизу. Подключив свет через датчик движения, при прохождении человека через его поле видения, свет включается, горит 1 минуту. и снова выключается.
В данной статье рассказываю, как же подключить такой датчик, если у него не 3 контакта, а 4 как у этого.
Блок питания из энергосберегающей лампочки своими руками
Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.
Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .
Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.
Монтаж довольно плотный, но это было обусловлено размерами корпуса..
Освещение для растений своими руками
Освещение для растений своими руками
Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .
Регулятор яркости своими руками
Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.
Термостат для холодильника своими руками
Термостат для холодильника своими руками
Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог — холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода — они сигнализируют что агрегат включен или температура выше верхнего порога.
Датчик влажности почвы своими руками
Датчик влажности почвы своими руками
Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.
Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.
Схема питания люминесцентной лампы
Схема питания люминесцентной лампы.
Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .
USB клавиатура для планшета
Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно — чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.
Электрические схемы для начинающих, для любителей и профессионалов
Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.
Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.
Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.
Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.
А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов
Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!
Для облегчения поиска необходимой информации раздел разбит по категориям
Схемы для начинающих В этом разделе собраны простые схемы для начинающих радиолюбителей
. | Свет и музыка устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно материалы в категории | Схемы источников питания Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория материалы в категории |
Электроника в быту В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее… | Антенны и Радиоприемники Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки | Шпионские штучки В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков |
Авто- Мото- Вело электроника Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее | Измерительные приборы Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства материалы в категории | Отечественная техника 20 Века Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР материалы в категории |
Схемы телевизоров LCD (ЖК) Электрические принципиальные схемы телевизоров LCD (ЖК) материалы в категории | Схемы программаторов Схемы различных программаторов материалы в категории | Аудиотехника Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука материалы в категории |
Схемы мониторов Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК материалы в категории | Схемы автомагнитол и прочей авто-аудиотехники Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры |
Новички-радиолюбители, которые интересуются самостоятельной сборкой схем и ремонтом различных электронных устройств, теряются в море многочисленных терминов и деталей. Между тем, можно дать ряд советов, какие знания нужны в первую очередь, какими приборами пользоваться, как ориентироваться при выборе элементов схемы.
Необходимые знания
Для радиолюбителей очень важно:
- знать и понимать основные законы электротехники;
- уметь ориентироваться по схемам;
- четко определять роль каждого элемента в схеме и представлять визуально, как он выглядит.
Важно! Теоретические знания необходимо постоянно подкреплять практикой.
Инструменты и приборы
Для сборки радиолюбительских схем и самодельных конструкций необходимо обладать следующими инструментами:
- Паяльник, мощность которого надо выбирать среднюю – не больше 40 Вт. Более продвинутые мастера задумываются о приобретении паяльной станции;
- Бокорезы. Не слишком массивный инструмент для работы с радиотехническими устройствами;
- Припой оловянно-свинцовый, существует в виде проволоки.
Важно! Среди всех приборов главным, а часто и единственным, является цифровой мультиметр или аналоговый тестер, посредством которого можно измерить все основные параметры схемы.
Перед тем, как приступить к сборке простых и интересных радиосхем, сделанных своими руками, можно потренироваться на демонтаже старой радиотехники. Заодно формируется практический навык при паяльных работах.
- В древних телевизорах на лампах вполне пригодная вещь – питающий трансформатор. Его можно использовать во многих радиосамоделках. Например, собрать устройство заряда для автомобильного аккумулятора или БП для усилителя звука. Главное – знать его технические данные;
- В устаревших устройствах радиоэлектроники: телеаппаратуре, видеомагнитофонах, обычных магнитофонах, встречаются целые микросхемы, готовые для использования. Для примера можно назвать звуковой усилитель, схема которого конструируется простой сборкой компонентов, без выполнения травления на печатных платах и т. д.;
- Регулятор тембра тоже применяется в готовом виде. При этом собираемый звуковой усилитель получит новые опции: возможность контроля низкочастотного и высокочастотного диапазона, изменения баланса в стереоколонках;
- В основном, все устройства, изготовляемые радиолюбителями, функционируют на пяти-, девяти- и двенадцативольтовых БП. Такие питающие блоки из старой аппаратуры будут самыми полезными.
В качестве корпусов для схем можно использовать любые подручные конструкции или купить готовые, разных размеров и форм. Кожухи от неработающих устройств часто применяются для новых радиосамоделок.
Очень ценным является нерабочий БП от компьютера, откуда берется:
- много радиодеталей: транзисторов, конденсаторов, диодов, сопротивлений, которые пригодятся для собираемых устройств;
- охлаждающие радиаторы – важный сопутствующий элемент для транзисторов большой мощности;
- хорошие провода;
- сам корпус – отличное место для размещения новых конструкций.
Методы сборки схемы
- Навесной монтаж. Простое спаивание компонентов в соответствии с разработанной схемой. Спаянные узлы можно устанавливать на поддерживающие площадки. Метод годится для конструирования радиосхем из небольшого числа деталей;
- Монтаж на печатной плате – текстолитовой платформе, на которой выполнены дорожки из фольги в качестве соединительных проводников.
Второй метод подразделяется на несколько вариантов:
- Механический. Прорезывание острым предметом дорожек для исключения контактного соединения в ненужных местах;
- Химический. С помощью лака или краски на фольге надо нарисовать требуемую схему. Затем погрузить в специальный состав – раствор хлорного железа. После обработки получится соответствующая рисунку разводка, а все участки без лака удалятся растворением;
- Лазерно-утюжный.
С каких схем начать
Классическое начало для радиолюбителей – сделай простейший детекторный приемник. Схема содержит небольшое количество компонентов, и ее сборка будет под силу всем. Затем можно дополнить устройство звуковым усилителем с использованием транзисторов. С приходом опыта и понимания начинается работа с микросхемами.
Большое количество интересных и очень простых вариантов радиосамоделок с описанием деталей, предоставлением схем находится на сайте «РадиоКот». Можно, например, собрать цветомузыку, импульсную подсветку часов, стереопередатчик и многое другое. Там же есть полезные форумы, где можно прояснить сложные вопросы, пообщаться с опытными мастерами.
По мере приобретения навыков увеличится интерес к сборке сложных устройств. Радиоэлектронные самоделки – одно из увлекательнейших занятий для людей всех возрастов.
Видео
Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.
Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:
Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.
На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.
Самоделки для автомобилей
Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.
Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:
Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.
На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.
Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.
Простые обогреватели
В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:
- асбестовая труба;
- нихромовая проволока;
- вентилятор;
- выключатель.
Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.
Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.
От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.
Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:
- вредность для организма от асбестовой трубы;
- шум от работающего вентилятора;
- запах от пыли, попадающей на нагретую спираль;
- пожароопасность.
Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.
Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.
Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:
- электролитический конденсатор большой емкости;
- транзистор типа p-n-p;
- электромагнитное реле;
- диод;
- переменный резистор;
- постоянные резисторы;
- источник постоянного тока.
Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.
База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.
Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.
Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.
Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.
Интересные схемы радиолюбителей для дома. Простые схемы для начинающих. Автомат выключения освещения
Итак. Жизнь сложилась так, что у меня есть домик в деревне с газовым отоплением. Жить там постоянно не получается. Домик используется как дача. Пару зим тупо оставлял включенным котел с минимальной температурой теплоносителя.
Но тут два минуса.
1. Счета за газ просто астрономические.
2. Если возникает необходимость приехать в дом среди зимы, температура в доме в районе 12 град.
Поэтому надо было что-то выдумывать.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если заморочиться, можно положить рядом с датчиком подключенный мобильник, и раздавать сигнал с телефона.
Подключение датчика движения 4 контакта своими руками схема
Схема подключение датчика движения своими руками
Бывает что нужно установить на даче,или в доме освещение которое будет срабатывать при движение или человека или еще кого либо.
С этой функцией хорошо справиться датчик движения, который и был заказан мной с Aliexpress. Ссылка на который будет внизу. Подключив свет через датчик движения, при прохождении человека через его поле видения, свет включается, горит 1 минуту. и снова выключается.
В данной статье рассказываю, как же подключить такой датчик, если у него не 3 контакта, а 4 как у этого.
Блок питания из энергосберегающей лампочки своими руками
Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.
Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .
Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.
Монтаж довольно плотный, но это было обусловлено размерами корпуса..
Освещение для растений своими руками
Освещение для растений своими руками
Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .
Регулятор яркости своими руками
Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.
Термостат для холодильника своими руками
Термостат для холодильника своими руками
Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог — холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода — они сигнализируют что агрегат включен или температура выше верхнего порога.
Датчик влажности почвы своими руками
Датчик влажности почвы своими руками
Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.
Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.
Схема питания люминесцентной лампы
Схема питания люминесцентной лампы.
Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .
USB клавиатура для планшета
Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно — чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.
С каждым днем становится все больше и больше, появляется много новых статей, то новым посетителям довольно сложно сразу сориентироваться и пересмотреть за раз все уже написанное и ранее размещенное.
Мне же очень хочется обратить внимание всех посетителей на отдельные статьи, которые были размещены на сайте ранее. Для того что бы не пришлось долго искать нужную информацию я сделаю несколько «входных страниц» со ссылками на наиболее интересные и полезные статьи по отдельным темам.
Первую такую страничку назовем «Полезные электронные самоделки». Здесь рассматриваются простые электронные схемы, которые доступны для реализации людям любого уровня подготовки. Схемы построены с использованием современной электронной базы.
Вся информация в статьях изложена в очень доступной форме и в объеме, необходимом для практической работы. Естественно, что для реализации таких схем нужно разбираться хотя бы в азах электроники.
Итак, подборка наиболее интересных статей сайта по тематике «Полезные электронные самоделки» . Автор статей — Борис Аладышкин.
Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех детелей.
В статье описывается простая и надежная схема управления электронасосом. Несмотря на предельную простоту схемы устройство может работать в двух режимах: водоподъем и дренаж.
В статье приведены несколько схем аппаратов для точечной сварки.
С помощью описываемой конструкции можно определить работает или нет механизм, расположенный в другом помещении или здании. Информацией о работе является вибрация самого механизма.
Рассказ о том, что такое трансформатор безопасности, для чего он нужен и как его можно изготовить самостоятельно.
Описание простого устройства, отключающего нагрузку в случае выхода сетевого напряжения за допустимые пределы.
В статье рассмотрена схема простого терморегулятора с использованием регулируемого стабилитрона TL431.
Статья о том, как сделать устройство плавного включения ламп с помощью микросхемы КР1182ПМ1.
Иногда при пониженном напряжении в сети или пайке массивных деталей пользоваться паяльником становится просто невозможно. Вот тут на помощь и может придти повышающий регулятор мощности для паяльника.
Статья о том, чем можно заменить механический терморегулятор масляного отопительного радиатора.
Описание простой и надежной схемы терморегулятора для системы отопления.
В статье дается описание схемы преобразователя выполненного на современной элементной базе, содержащего минимальное количество деталей и позволяющего получить в нагрузке значительную мощность.
Статья о различных способах подключения нагрузки к блоку управления на микросхемах с помощью реле и тиристоров.
Описание простой схемы управления светодиодными гирляндами.
Конструкция простого таймера, позволяющего включать и выключать нагрузку, через заданные интервалы времени. Время работы и время паузы друг от друга не зависят.
Описание схемы и принципа действия простого аварийного светильника на основе энергосберегающей лампы.
Подробный рассказ о популярной «лазерно-утюжной» технологии изготовления печатных плат, её особенностях и нюансах.
Электрические схемы для начинающих, для любителей и профессионалов
Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.
Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.
Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.
Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.
А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов
Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!
Для облегчения поиска необходимой информации раздел разбит по категориям
Схемы для начинающих В этом разделе собраны простые схемы для начинающих радиолюбителей
. | Свет и музыка устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно материалы в категории | Схемы источников питания Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория материалы в категории |
Электроника в быту В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее… | Антенны и Радиоприемники Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки | Шпионские штучки В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков |
Авто- Мото- Вело электроника Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее | Измерительные приборы Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства материалы в категории | Отечественная техника 20 Века Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР материалы в категории |
Схемы телевизоров LCD (ЖК) Электрические принципиальные схемы телевизоров LCD (ЖК) материалы в категории | Схемы программаторов Схемы различных программаторов материалы в категории | Аудиотехника Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука материалы в категории |
Схемы мониторов Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК материалы в категории | Схемы автомагнитол и прочей авто-аудиотехники Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры |
Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.
Электронная утка
Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.
Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.
Звук подскакивающего металлического шарика
Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.
Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).
Имитатор звука мотора
Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.
Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).
Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.
Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.
Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.
Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.
Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.
Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!
Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.
Фонарь-мигалка
Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.
Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).
Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.
Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.
Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).
Автомат выключения освещения
От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.
Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.
Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот | |
---|---|---|---|---|---|---|---|
Электронная утка | |||||||
VT1, VT2 | Биполярный транзистор | КТ361Б | 2 | МП39-МП42, КТ209, КТ502, КТ814 | В блокнот | ||
HL1, HL2 | Светодиод | АЛ307Б | 2 | В блокнот | |||
C1 | 100мкФ 10В | 1 | В блокнот | ||||
C2 | Конденсатор | 0.1 мкФ | 1 | В блокнот | |||
R1, R2 | Резистор | 100 кОм | 2 | В блокнот | |||
R3 | Резистор | 620 Ом | 1 | В блокнот | |||
BF1 | Акустический излучатель | ТМ2 | 1 | В блокнот | |||
SA1 | Геркон | 1 | В блокнот | ||||
GB1 | Элемент питания | 4.5-9В | 1 | В блокнот | |||
Имитатор звука подскакивающего металлического шарика | |||||||
Биполярный транзистор | КТ361Б | 1 | В блокнот | ||||
Биполярный транзистор | КТ315Б | 1 | В блокнот | ||||
C1 | Электролитический конденсатор | 100мкФ 12В | 1 | В блокнот | |||
C2 | Конденсатор | 0.22 мкФ | 1 | В блокнот | |||
Динамическая головка | ГД 0.5…1Ватт 8 Ом | 1 | В блокнот | ||||
GB1 | Элемент питания | 9 Вольт | 1 | В блокнот | |||
Имитатор звука мотора | |||||||
Биполярный транзистор | КТ315Б | 1 | В блокнот | ||||
Биполярный транзистор | КТ361Б | 1 | В блокнот | ||||
C1 | Электролитический конденсатор | 15мкФ 6В | 1 | В блокнот | |||
R1 | Переменный резистор | 470 кОм | 1 | В блокнот | |||
R2 | Резистор | 24 кОм | 1 | В блокнот | |||
T1 | Трансформатор | 1 | От любого малогабаритного радиоприемника | В блокнот | |||
Универсальный имитатор звуков | |||||||
DD1 | Микросхема | К176ЛА7 | 1 | К561ЛА7, 564ЛА7 | В блокнот | ||
Биполярный транзистор | КТ3107К | 1 | КТ3107Л, КТ361Г | В блокнот | |||
C1 | Конденсатор | 1 мкФ | 1 | В блокнот | |||
C2 | Конденсатор | 1000 пФ | 1 | В блокнот | |||
R1-R3 | Резистор | 330 кОм | 1 | В блокнот | |||
R4 | Резистор | 10 кОм | 1 | В блокнот | |||
Динамическая головка | ГД 0.1…0.5Ватт 8 Ом | 1 | В блокнот | ||||
GB1 | Элемент питания | 4.5-9В | 1 | В блокнот | |||
Фонарь-мигалка | |||||||
VT1, VT2 | Биполярный транзистор |
Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.
Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:
Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.
На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.
Самоделки для автомобилей
Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.
Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:
Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.
На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.
Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.
Простые обогреватели
В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:
- асбестовая труба;
- нихромовая проволока;
- вентилятор;
- выключатель.
Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.
Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.
От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.
Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:
- вредность для организма от асбестовой трубы;
- шум от работающего вентилятора;
- запах от пыли, попадающей на нагретую спираль;
- пожароопасность.
Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.
Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.
Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:
- электролитический конденсатор большой емкости;
- транзистор типа p-n-p;
- электромагнитное реле;
- диод;
- переменный резистор;
- постоянные резисторы;
- источник постоянного тока.
Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.
База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.
Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.
Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.
Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.
Как сделать измерительный прибор своими руками. Простые приборы для радиолюбителей. Бутылочка заполнена растительным маслом
БМК-Миха , самый главный недостаток этого прибора это низкое разрешение — 0,1Ом которое невозможно повысить чисто программным путём. Если бы не этот недостаток, прибор был бы идеальным!Диапазоны оригинальной схемы: ESR=0-100Ом, C=0pF-5000µF.
Хочу обратить особое внимание на то что прибор до сих пор находится в процессе доработки как программной так и аппаратной, однако продолжает активно эксплуатироваться.
Мои доработки относительно :
Аппаратные
0. Убрал R4,R5. Сопротивление резисторов R2,R3 уменьшил до 1,13К, и подобрал пару с точностью до одного ома (0,1%). Таким образом увеличил тестовый ток с 1мА до 2мА, при этом уменьшилась нелинейность источника тока (за счёт удаления R4,R5), повысилось падение напряжение на конденсаторе что способствует увеличению точности измерения ESR.
Ну и конечно подкорректировал Кусил. U5b.
1. Ввёл фильтры питания на входе и выходе преобразователя +5V/-5V (на фото платка стоящая вертикально и есть преобразователь с фильтрами)
2. поставил разъём ICSP
3. ввёл кнопку переключения режимов R/C (в «оригинале» режимы переключались аналоговым сигналом поступающим на RA2 , происхождение которого в статье описывается крайне туманно…)
4. Ввёл кнопку принудительной калибровки
5. Ввёл зуммер подтверждающий нажатие кнопок и подающий сигнал включённости каждые 2 минуты.
6. Умощнил инверторы их параллельным попарным включением (при тестовом токе в 1-2мА не обязательно, просто мечтал повысить ток измерения до 10мА, что до сих пор не удалось)
7. Последовательно с Р2 поставил резистор 51ом (во избежании КЗ).
8.Выв. регулировки контрастности зашунтировал конденсатором 100нф(напаял на индикатор). Без него при касании отвёрткой движка Р7 индикатор начинал потреблять 300мА! Чуть LM2930 не спалил вместе с индикатором!
9.на питание каждой МС поставил блокировочный конденсатор.
10. скорректировал печатную плату.
Программные
1. убрал режим DC (скорее всего верну его обратно)
2. Ввёл табличную коррекцию нелинейности (при R>10Ом).
3. ограничил диапазон ESR до 50Ом (с оригинальной прошивкой прибор «зашкаливал» при 75,6 Ом )
4. дописал подпрограмму калибровки
5. написал поддержку кнопок и зуммера
6. ввёл индикацию заряда батареи — цифры от 0 до 5 в последнем разряде дисплея.
В блок измерения ёмкости не вмешивался ни программно ни аппаратно, за исключением добавления резистора последовательно с Р2.
Принципиальную схему отражающую все доработки пока не начертил.
прибор был очень чувствителен к влажности! как дыхнёшь на него так показания начинают «плыть» .Всему виной большое сопротивление R19, R18,R25,R22. Кстати может мне кто нибудь объяснить, нах*ена каскаду на U5a такое большое входное сопротивление???
Короче говоря, аналоговую часть залил лаком — после чего чувствительность полностью пропала.
Журнал ELEKTOR насколько я знаю, немецкий, авторы статей немцы и печатают его в Германии, по крайней мере немецкую версию.
m.ix , давайте шутить во флейме
В нашей жизни используется множество измерительных приборов, которые позволяют контролировать микроклимат помещений. Один из них – гигрометр, устройство, которое можно изготовить в домашних условиях.
Зачем нужен гигрометр?
Гигрометр позволяет выявить относительную влажность окружающей среды, которая является одним из важнейших составляющих микроклимата помещения. Содержание влаги в воздухе влияет на самочувствие людей. Этот показатель обязательно должен находиться в пределах среднего диапазона. Пониженная влажность воздуха может приводить к затрудненному дыханию и пересыханию слизистых оболочек, а повышенная – к ухудшению физического состояния. Особенно строго следить за этим значением нужно людям, имеющим заболевания дыхательных путей.
Для контроля влажности в помещении можно приобрести специальную метеостанцию. Однако из подручных средств также можно собрать прибор, который сможет заменить собой гигрометр.
Аналог психрометрического прибора
Чтобы получать точные сведения, нужно знать, как сделать гигрометр в домашних условиях. Для создания аналога психрометрического устройства понадобятся:
- два ртутных термометра, предназначенных для измерения температуры воздуха;
- дистиллированная вода;
- доска;
- нить;
- хлопчатобумажная ткань.
Также понадобятся любые подручные средства, с помощью которых можно произвести закрепление термометра.
На доске нужно установить в вертикальном положении два термометра так, чтобы они находились параллельно по отношению друг к другу. Под одним из измерительных приборов необходимо установить небольшую емкость с дистиллированной водой. В качестве емкости можно использовать небольшую колбу или обыкновенный пузырек. Наконечник термометра (ртутный шарик), под которым установлен «резервуар», следует обернуть обыкновенной хлопчатобумажной тканью, после чего не очень туго перевязать нитью. Края ткани приблизительно на 5 миллиметров опускаем в емкость, которая предварительно была заполнена дистиллированной водой.
Принцип действия такого устройства, собранного своими руками, абсолютно схож с принципом действия психрометрического гигрометра. Для вычисления относительной влажности воздуха понадобится специальная таблица. По разнице показаний «сухого» и «влажного» термометра вычисляют влажность окружающей среды.
«Природный» измеритель
Для изготовления измерителя в домашних условиях можно использовать свойство шишки расправлять или наоборот – сжимать – свои чешуйки в зависимости от изменения влажности окружающей среды. Все, что понадобится для создания устройства – сама шишка и кусок фанеры.
В самый центр фанеры с помощью гвоздя или скотча крепится шишка. Для определения влажности следует проследить за скоростью раскрытия чешуек. Если они быстро раскрываются — влажность воздуха несколько ниже нормы. Если положение чешуек достаточно долго не изменяется – микроклимат помещения соответствует средним показателям. В том случае, если их кончики начнут подниматься вверх, влажность помещения имеет высокие показатели.
Аналог волосяного устройства
Каждый задающийся вопросом «как сделать гигрометр своими руками» очень редко приступает к созданию волосяного устройства. Однако сделать его довольно просто. Для этого потребуются:
- волос;
- бензин;
- клей;
- гвозди;
- чертежные принадлежности;
- бумага высокой плотности;
- лист фанеры;
- стержень от ручки;
- проволока из стали;
- ролик.
Человеческий волос можно заменить хлопчатобумажной нитью высокого качества, которая также остро реагирует на изменение влажности воздуха.
Волос или нить должны иметь длину не меньше 40 сантиметров. Если речь идет о волосе, его нужно обезжирить (применяется смачивание в бензине). На конец волоса необходимо закрепить груз, имеющий вес, достаточный для того, чтобы расправить его. В качестве такого отвеса может подойти небольшая часть стержня ручки, предварительно промытая от чернил. Для закрепления груза нужно использовать клей. На небольшой гвоздь одевается пластмассовая трубка длиной около пяти миллиметров. В ее качестве также можно использовать стержень авторучки. Важно, чтобы трубка свободно вращалась вокруг гвоздя, не соскакивая с него. Для сборки гигрометра подготовьте горизонтальное основание, на котором будет закреплена вертикальная часть устройства – доска или фанера. В ее центр вбивается заранее подготовленный гвоздь. Разместить его нужно так, чтобы перекинутый через пластиковую трубку волос (одна треть от всей длины) мог быть прикреплен к горизонтальной части своим свободным концом. Крепление производится также с помощью клея. Заключительный этап работы – крепление шкалы, которую можно создать из полосы бумаги, нанеся на нее деления.
Для градуирования прибора занесите его в ванную комнату, в которой был включен горячий душ. Точку, в которой будет находиться острите отвеса, отметьте как 100%. Для нахождения нулевой отметки нужно поставить устройство в нагретую духовку (не очень горячую, чтобы не сжечь устройство). После этого ровно между двух точек нужно поставить отметку в 50 градусов. Можно рассчитать подобным способом десятичные или даже единичные отметки.
Отметка, на которой будет находиться отвес на конце волоса, и будет являться показанием относительной влажности окружающей среды.
Гигрометр из салфетки
Комнатный гигрометр из салфетки сделать достаточно просто. Для его создания необходимо иметь под рукой обыкновенную салфетку, фанеру, гвозди, клей и проволоку. В фанеру вбивается два гвоздя на расстоянии, аналогичном длине салфетки. После этого между ранее закрепленными гвоздями посредством клея крепится сама бумажная салфетка. Два куска проволоки (достаточно длины 2-4 сантиметра) крепятся к салфетке. Одна из частей должна быть частично прикреплена к салфетке, частично – к гвоздю так, чтобы образовывалась своеобразная стрелка.
Принцип действия такого устройства основан на свойстве салфетки впитывать в себя влагу из воздуха. Если вы хотите сделать точную шкалу показаний, можно провести сверку самостоятельно изготовленного прибора по устройству, купленному в магазине. Движение проволоки будет свидетельствовать об изменении микроклимата помещения.
Стоит понимать, что приборы, изготовленные в домашних условиях, не могут похвастаться высокой точностью. Они пригодны лишь для измерения приблизительных показателей. Если вам необходимо знать точную влажность окружающей среды, необходимо приобрести любой из видов комнатных гигрометров.
Авометром, схема которого показана па рис. 21, можно измерять: постоянные токи от 10 до 600 ма; постоянные напряжения от 15 до 600 в; переменные напряжения от 15 до 600 в; сопротивления от 10 ом до 2 Мом; напряжения высоких частот 100 кгц—100 Мгц в пределах от 0,1 до 40 в. коэффициент усиления транзисторов по току В до 200.
Для измерения напряжений высокой частоты используется выносной пробник (ВЧ головка).
Внешний вид авометра и ВЧ головки показан на рис. 22.
Прибор монтируют в корпусе из алюминия или в пластмассовой коробочке размерами примерно 200X115X50 мм. Лицевая панель из листового текстолита или гетинакса толщиной 2 мм. Корпус и переднюю панель можно также сделать из фанеры толщиной 3 мм, пропитанной бакелитовым лаком.
Рис. 21. Схема авометра.
Детали. Микроамперметр типа М-84 на ток 100 мка с внутренним сопротивлением 1 500 ом. Переменный резистор типа ТК с выключателем Вк1. Выключатель надо снять с корпуса резистора, повернуть на 180° и поставить на прежнее место. Такое изменение делают для того, чтобы контакты включателя замыкались, когда резистор полностью выведен. Если этого не сделать, то универсальный шунт будет всегда подключен к прибору, уменьшая его чувствительность.
Все постоянные резисторы, кроме R4—R7, должны быть с допуском номиналов сопротивлений не более ±5%. Резисторы R4—R7 шунтирующие прибор при измерении токов, — проволочные.
Выносной пробник для измерения напряжений высокой частоты размещают в алюминиевом корпусе от электролитического конденсатора Его детали монтируют на пластинке из оргстекла. На ней же крепят два контакта от штепсельной вилки, которые являются входом пробника. Проводники входной цепи надо располагать возможно дальше от проводников выходной цепи пробника.
Полярность диода пробника должна быть только такой, как на схеме. Иначе стрелка прибора будет отклоняться в обратную сторону. То же касается и диодов авометра.
Универсальный шунт изготовляют из проволоки с большим удельным сопротивлением и монтируют непосредственно на гнездах. Для R5—R7 подойдет константановая проволока диаметром 0,3 мм, а для R4 можно использовать резистор типа ВС-1 сопротивлением 1400 ом, намотав на его корпус константановую проволоку диаметром 0,01 мм, чтобы их общее сопротивление было 1 468 ом.
Рис 22. Внешний вид авометра.
Градуировка. Шкала авометра показана на рис. 23. Градуировку шкалы вольтметра производят по эталонному контрольному вольтметру постоянного напряжения по схеме, показанной на рис. 24, а. Источником постоянного напряжения (не менее 20 в) может быть низковольтный выпрямитель или батарея, составленная из четырех КБС-Л-0,50. Поворачивая движок переменного резистора, наносят на шкалу самодельного прибора отметки 5, 10 и 15 б, а между ними — по четыре деления. По этой же шкале измеряют и напряжения до 150 в, умножая показания прибора на 10, и напряжения до 600 в, умножая на 40 показания прибора.
Шкала измерений тока до 15 ма должна точно соответствовать шкале вольтметра постоянных напряжений, что проверяют по эталонному миллиамперметру (рис. 24,6). Если показания авометра отличаются от показаний контрольного прибора, то изменяя длину провода на резисторах R5—R7, подгоняют сопротивления универсального шунта.
Точно так же градуируют шкалу вольтметра переменных напряжений.
Для градуировки шкалы омметра надо использовать магазин сопротивлений или использовать в качестве эталонных постоянные резисторы с допуском ±5%. Прежде чем начать градуировку, резистором R11 авометра устанавливают стрелку прибора в крайнее правое положение — против цифры 15 шкалы постоянных токов и напряжений. Это будет «0» омметра.
Диапазон сопротивлений, измеряемых авометром, большой — от 10 ом до 2 Мом, шкала получается плотной, поэтому на шкалу наносят только цифры сопротивлений 1 ком, 5 ком, 100 ком, 500 ком и 2 Мом.
Авометром можно измерять статический коэффициент усиления транзисторов по току Вст до 200. Шкала этих измерений равномерная, поэтому Делят ее на равные промежутки заранее и проверяют по транзисторам с известными значениями Вст Если показания прибора несколько отличаются от фактических значений, то изменяют сопротивление резистора R14 до действительных значений этих параметров транзисторов.
Рис. 23. Шкала авометра.
Рис. 24. Схемы градуировки шкал вольтметра и миллиамперметра авометра.
Для проверки выносного пробника при измерении высокочастотного напряжения нужны вольтметры ВКС-7Б и любой высокочастотный генератор, параллельно которому подключают пробник. Провода от пробника включают в гнездо «Общий» и «+15 в» авометра. Высокую частоту подают на вход лампового вольтметра через переменный резистор, как при градуировке шкалы постоянных напряжений. Показания лампового волтьметра должны соответствовать шкале постоянного напряжения на 15 в авометра.
Если показания при проверке прибора по ламповому вольтметру не совпадают, то несколько изменяют сопротивление резистора R13 пробника.
С помощью пробника измеряют напряжения высокой частоты только до 50 в. При большем напряжении может произойти пробой диода. При измерении напряжений частот выше 100—140 Мгц прибор вносит значительные погрешности измерений ввиду шунтирующего действия диода.
Все градуировочные отметки на шкале омметра делают мягким карандашом и только после проверки точности измерений обводят их тушью.
В.В. Вознюк. В помощь школьному радиокружку
Ключевые теги: измерения, Вознюк
В процессе изготовления радиолюбительских схем, при её настройке, а также при регулировке аппаратуры радиолюбителю необходим целый набор измерительных приборов. В первую очередь понадобятся: мультиметр, осциллограф, генераторы высокой и низкой (звуковой) частот , цифровой частотомер , универсальный высокочастотный вольтметр с высокоомным входом…
Сейчас многие приборы можно купить, а некоторых и можно не найти в продаже. Их самостоятельное изготовление не отличается большой трудностью и вполне доступно радиолюбителям.
В число таких приборов-помощников входят:
- индикатор высокочастотного поля,
- индикатор излучения,
- прибор для проверки транзисторов,
- ВЧ и универсальный вольтметр.
Схемы приборов построены на старой советской элементной базе, поэтому многие компоненты можно заменить на современные аналоги.
Принципиальная схема индикатора поля
На рисунке показана схема простого индикатора напряженности поля. Индикатор высокочастотного поля используют для обнаружения излучения-передатчика и грубого измерения частоты колебаний, а также как индикатор напряженности поля при согласовании выхода передатчика с сопротивлением излучения антенны. Индикатор представляет собой детекторный приемник, нагрузкой которого служит микроамперметр на ток полного отклонения стрелки 100 мкА.
Главная особенность этого индикатора — отсутствие питания. Стрелка индикаторной головки отклоняется от наводящего в антенне ВЧ поля.
Прибор собирают на изоляционной плате. Антенна — тонкий металлический штырь длиной 20 — 30 см. Для диапазона 25 — 31 МГц контурную катушку L1 заматывают на каркасе диаметром 12 мм. Она содержит 12 — 14 витков провода ПЭВ-1, Конденсатор С1 — подстроечнный с воздушным диэлектриком. Ось ротора выводят на переднюю панель и снабжают лимбом с нанесенной шкалой, проградуированной в Мегагерцах.
Принципиальная схема индикатора излучения
На рисунке, выше представлена схема индикатора излучения передатчика с визуальным контролем. Для контроля использована небольшая лампочка, рассчитанная на напряжение 1 В или светодиод. В случае использования светодиода, нужно последовательно подключить сопротивление 30-100Ом.
Индикатор представляет собой детекторный приемник с двухкаскадным усилителем постоянного тока на транзисторах МП16Б (или им аналогичных отечественных или зарубежных). В цепь коллектора выходного транзистора VT3 включена индикаторная лампа.
Индикатор смонтирован на изоляционной плате и вместе с батареями питания размещен в пластмассовом футляре подходящих размеров. Каждую батарею питания можно составить из 3-x аккумуляторов по 1,2в.
Приближенно проградуировать шкалу индикатора поля можно по сигналу от измерительного генератора высокой частоты. К его выходу подключают отрезок провода длиной 30 см. Вблизи этого провода располагают штыревую антенну градуируемого индикатора поля.
Схема вольтметра постоянного напряжения
Вольтметр измеряет постоянные напряжения величиной до 100 В. Он выполнен по мостовой схеме на транзисторах — Т1 и Т2. В одну диагональ моста включен измерительный прибор, в другую — источник питания.
Регулировка вольтметра состоит из двух этапов. Сначала, изменяя значения резисторов R4 и R5, добиваются равенства напряжений на коллекторах транзисторов Т1 и Т2. Затем с помощью переменного резистора R6 устанавливают стрелку измерительного прибора на ноль.
Измеряемое напряжение через резисторы R1, R2 и R3 подается на базу транзистора Т1. При этом нарушается равновесие моста, и через миллиамперметр начинает протекать ток, пропорциональный напряжению.
Резисторы R1 — R3 подбирают с точностью ±5%.
Эту схему можно использовать как приставку к авометру с малым входным сопротивлением.
Схема универсального вольтметра
Универсальный вольтметр, схема которого изображена на рисунке прост изготовлении и налаживании.
Входное сопротивление его около 2 МОм на пределе измерения постоянного напряжения 1 В и 4,5 МОм на остальных пределах (10, 100, 1000 В). Напряжение высокой и звуковой частот можно измерять в пределах от 0,1 до 25 В. Транзисторы VT1 и VT2 образуют парафазный истоковый повторитель. Измеряемое напряжение приложено к затворам транзисторов и одновременно к цепи R5, R14. В результате между затвором и истоком каждого транзистора действует половина измеряемого напряжения, но с разной полярностью. Это приводят к тому, что в одном плече ток стока уменьшается, в другом — увеличивается я между точками а и б появляется разность потенциалов, отклоняющая стрелку микроамперметра РА1 пропорционально приложенному напряжению.
Детекторная цепь C1,VD1,R7, C2 предназначена для измерения напряжения ЗЧ. А напряжение ВЧ измеряют с помощью выносной головки, схема которой показана на рисунке слева. Питают прибор от батареи с напряжением 9 В.
Транзисторы для вольтметра должны быть подобраны близкими по параметрам. Для подборки транзисторов можно воспользоваться устройством, схема которого изображена на рисунках, ниже.
Схема проверки маломощных биполярных транзисторов
Одно из условий безотказной работы аппаратуры радиоуправления — применение в ней проверенных радиоэлементов и особенно транзисторов. Известно, что разброс параметров транзисторов одного типа может быть трехкратным и более. Например, у транзистора значение коэффициента передачи по постоянному току h31Э может находиться в пределах 40-160. В ряде случаев при изготовлении аппаратуры устанавливают ограничения на параметры применяемых транзисторов. Обычно это относится к значениям h31Э.
Часто при построении схем необходимо подобрать пары одинаковых по параметрам транзисторов.
У маломощных транзисторов обычно проверяют обратный или так называемый неуправляемый ток коллектора Iкбо при отключенном эмиттерном выводе, а также h31э в схеме с заземленным эмиттером.
На рисунке, ниже приведена схема стенда для проверки маломощных транзисторов как с р-n-р, так и с n-р-n переходами. I кбо измеряется непосредственно микроамперметром ИП-1 с пределом до 100 мкА. У микроамперметра ИП-1 должна быть шкала с нулем посередине. h31э определяется как отношение измеренного тока коллектора Iк к установленному по прибору ИП-1 значению тока Iо в цепи базы транзистора. Ток в цепи базы устанавливается с помощью переменных резисторов R3, («грубо») и R 2 («точно»). При точном измерении шунт прибора отключают кнопкой Kн1.
Схема проверки биполярных транзисторов средней мощности
Транзисторы средней мощности необходимо проверять при рабочем коллекторном токе (0,5 — 1,0 А и более). При подборе пар одинаковых транзисторов, необходимых для качественной работы оконечных каскадов усилителей и других схем. Эти измерения можно сделать с помощью простого стенда (см. схему ниже).
Чтобы не усложнять коммутацию, подключение измерительных приборов осуществляют гибкими проводами с одиночными штыревыми разъемами. На схеме (в скобках) показана полярность подключения батареи и приборов при проверке транзисторов со структурой типа p-n-р.
Подключение к выводам транзистора следует осуществлять с помощью зажимов «крокодил», подпаянных к гибким проводам. Транзисторы проверяют в течение короткого промежутка времени в связи с тем, что при больших токах коллектора происходит нагрев транзистора, а это ведет к изменению его параметров и увеличению погрешности измерений.
Проверяемый транзистор можно крепить на теплоотводящий радиатор, но это усложнит процесс проверки. В качестве источника питания следует применить мощный стабилизированный источник низковольтного напряжения или составить батарею из аккумуляторов.
Схема проверки полевых транзисторов
Проверку полевых транзисторов можно проводить на стенде, схема которого приведена на рисунке ниже. С помощью этого стенда осуществляют подбор пар одинаковых транзисторов.
Полярность подключения батарей Б1, Б2 и измерительных приборов показана для случая проверки полевых транзисторов с р-каналом и п-р переходом (например, КП103). При проверке полевых транзисторов с n-каналом и р-п переходом (например КП303) необходимо указанную полярность изменить на обратную.
С помощью такого стенда можно снять выходные и проходные характеристики полевых транзисторов. На рисунках приведена выходная характеристика полевого транзистора КП303Д и проходные характеристики этого же транзистора. Пунктирной линией изображена динамическая проходная характеристика при включенном в цепь истока резисторе с сопротивлением 560 Ом. Рабочая точка находится в средней части линейного участка этой характеристики.
ВНИМАНИЕ! При проверке полевых транзисторов с МОП-структурой необходимо соблюдать осторожность, поскольку они подвержены влиянию статического электричества! Их следует подключать с предварительно закороченными (гибким неизолированным проводником) выводами, которые подсоединяют к стенду при выключенном питании. Затем с вывода транзистора снимают закорачивающие проводники и включают питание.
После этого проверяют транзистор. Отключение такого транзистора ведут в обратном порядке, а именно, выключают питание, закорачивают выводы и после этого отсоединяют его от стенда.
Конструкции стендов для проверки транзисторов могут быть произвольными. Рекомендуется монтировать их на панелях из стеклотекстолита или другого изоляционного листового материала. На стенде следует поместить его принципиальную схему. Для удобства пользования производят гравировку у выводов гнезд и других элементов стенда или вместо гравировки можно приклеить бумажные полоски с надписями.
Здесь рассматриваются вопросы самостоятельного изготовления и эксплуатации измерительных приборов, используемых в радиолюбительской практике.
Самодельные радиолюбительские измерительные приборы.
Самодельные и промышленные измерительные приборы на базе компьютера.
Измерительные приборы промышленного производства.
Обновляемый файловый архив по теме «Измерительные приборы» находится , со временем, я надеюсь подготовить обзор с комментариями.
Функциональный генератор качающейся частоты и тональных посылок.
Настоящая статья — отчёт о проделанной работе, выполненной в начале нулевых годов, в те времена, самостоятельное изготовление измерительных приборов и оснастки своих лабораторий для радиолюбителей считалось обычным делом. Надеюсь, таковые увлечённые и заинтересованные умельцы встречаются и теперь.
Прототипами для рассматриваемого ФГКЧ стали «Генератор тональных посылок» Николая Сухова (Радио №10 1981 стр. 37 – 40)
и «Приставка к осциллографу для наблюдения АЧХ» О. Сучкова (Радио № 1985 стр 24)
Схема приставки О. Сучкова:
Разработанный на основе указанных источников и другой литературы (см. Заметки на полях схемы) ФГКЧ формирует напряжения синусоидальной, треугольной и прямоугольной (меандр) формы, амплитудой 0 – 5В со ступенчатым ослаблением –20, -40, -60 дБ в диапазоне частот 70Гц – 80КГц. Регуляторами ФГКЧ можно задать любой участок качания или значения перескока частоты, при формировании пачек, внутри рабочего диапазона частот.
Управление и синхронизация перестройки частот, осуществляется нарастающим пилообразным напряжением развёртки осциллографа.
ФГКЧ позволяет оперативно оценить АЧХ, линейность, динамический диапазон, реакцию на импульсные сигналы и быстродействие аналоговых радиоэлектронных устройств звукового диапазона.
Схема ФГКЧ представлена на Рисунке .
Схема в высоком разрешении находится или загружается по клику на рисунок.
В режиме качающейся частоты, на вход ОУ А4 подаётся пилообразное напряжение из блока развёртки осциллографа (как и в схеме ГКЧ О. Сучкова). Если на вход управления частотой А4 подавать не пилу, а меандр, частота будет меняться скачком с низкой на высокую. Формирование меандра из пилы, производится обычным триггером Шмитта, на транзисторах Т1 и Т2, разной проводимости. C выхода ТШ меандр поступает на электронный ключ А1 К1014КТ1, предназначенный для согласования уровня напряжения управляющего перестройкой ФГКЧ по частоте. На вход ключа подаётся напряжение +15В, с выхода ключа, прямоугольный сигнал подаётся на вход ОУ А4. Переключение частоты происходит в средней части горизонтальной развёртки, синхронно. После ОУ А4 стоят два ЭП на транзисторах Т7 — ПНП и Т8 — НПН (для термокомпенсации и выравнивания сдвига уровня) В эмиттере Т7 стоит переменный резистор RR1, задающий нижнюю границу качания или формирования пачек импульсов в диапазоне 70Гц — 16КГц. Резистор R8 (по Сучкову) заменён на два RR2 — 200КОм и RR3 — 68 КОм. RR2 задаёт верхнюю границу диапазона качания 6,5 — 16,5 КГц, а RR3 — 16,5 — 80 КГц. Интегратор на ОУ А7, тришшег Шмитта на ОУ А7 и коммутатор фазы коэффициента передачи усилителя А5 – Т11, работают как описано в О. Сучкова.
После буферного усилителя на ОУ А7 стоит переключатель формы сигнала с подстроечными резисторами PR6 – подстройка уровня треугольного сигнала и PR7 – подстройка уровня меандра. нормирующими уровень выходных сигналов. Формирователь синусоидального сигнала состоит из ОУ А8 – не инвертирующему усилителя с подстройкой усиления в диапазоне 1 — 3 раза (подстроечным резистором PR3) и классического преобразователя пилообразного напряжения в синусоидальное на полевом транзисторе Т12 — КП303Е. С истока Т12, синусоидальный сигнал подаётся на селектор формы импульса S2 напрямую, так как уровень синусоидального сигнала определяется нормирующим усилителем на ОУ А8 и величиной PR3. С выхода регулятора уровня RR4, сигнал подаётся на буферный усилитель на умощнённом А9. Коэффициент усиления буферного усилителя около 6, задаётся резистором в цепи обратной связи ОУ. На транзисторах Т9б Т10 и переключателях S3, S5, собран узел синхронизации, используемый для проверки тракта записи — воспроизведения магнитофона, в настоящее время совершенно не актуальный. Все ОУ — с ПТ на входе (К140 УД8 и К544УД2). Стабилизатор напряжения питания двухполярный +/- 15В, собран на ОУ А2 и А3 — К140УД6 и транзисторах Т3 — КТ973, Т4 — КТ972. Источники тока стабилитронов опорного напряжения на ПТ Т5, Т6 — КП302В.
Работа с рассматриваемым функциональным ГКЧ, производится следующим образом.
Переключатель S1 «Режим», устанавливается в положение «Fниз» и переменным резистором RR1 «Fниз» устанавливается нижняя частота диапазона качания, или меньшая частота пачек импульсов, в диапазоне 70Гц – 16КГц. После этого, переключатель S1 «Режим», устанавливается в положение «Fверх» и переменными резисторами RR2 «6-16КГц» и RR3 «16 – 80КГц» задаётся верхняя частота диапазона качания, или бОльшая частота пачек импульсов, в диапазоне 16 – 80 КГц. Далее переключатель S1 переводится в положение «Кач» или «Пачки» для формирования выходного напряжения качающейся частоты или двух пачек импульсов меньшей и бОльшей частоты, сменяющихся синхронно с развёрткой, при прохождении луча через середину экрана (для пачек импульсов). Форма выходного сигнала выбирается переключателем S2. Уровень сигнала регулируется плавно переменным резистором RR4 и ступенчато – переключателем S4.
Осциллограммы испытательных сигналов в режимах «Качание частоты» и «Пачки» представлены на следующих рисунках.
Фото генератора в сборе, представлено на рисунке.
В том же корпусе широкополосный генератор синусоидального напряжения и меандра (Важно: R6 в схеме этого генератора – 560КОм, а не 560Ом, как на рисунке, и если вместо R9 поставить пару из постоянного резистора 510Ком и подстроечного 100Ком, можно, регулировкой подстроечника, установить минимально возможный Кг.)
и частотомера, прототип которого описан в .
Важно отметить, что в дополнение к проверкам аналоговых трактов звуковоспроизводящей аппаратуры, в режимах качания частоты и формирования пачек частотных посылок, рассматриваемый функциональный ГКЧ можно использовать и просто как функциональный генератор. Сигналы треугольной формы помогают очень чётко отследить возникновение ограничения в усилительных каскадах, выставить ограничения сигнала симметричным (борьба с чётными гармониками – более заметными на слух), проконтролировать наличие искажений типа «ступенька» и оценить линейность каскада по мере искривления фронта и спада треугольного сигнала.
Ещё более интересна проверка УМЗЧ и других звуковых узлов, сигналом прямоугольной формы, со скважностью 2 – меандром. Считается, что для корректного воспроизведения меандра определённой частоты, требуется, чтобы рабочая (без ослабления) полоса тестируемого такта, была, по меньшей мере, в десять раз больше, чем частота испытательного меандра. В свою очередь, ширина полосы частот, воспроизводимых, например, УМЗЧ определяет такой важный качественный показатель, как коэффициент интермодуляционных искажений, столь значительный для, ламповых УМЗЧ, что его благоразумно не измеряют и не публикуют, чтобы не разочаровывать общественность.
На следующем рисунке – фрагмент статьи Ю. Солнцева «Функциональный» генератор» из Радиоежегодника .
На рисунке – типовые искажения меандра, возникающие в звуковом тракте, и их толкования.
Ещё более наглядными, измерения при помощи функционального генератора, можно производить, подавая сигнал с его выхода на вход X осциллографа, напрямую, и на вход Y через исследуемое устройство. В этом случае на экране будет отображаться амплитудная характеристика проверяемой схемы. Примеры таких измерений приведены на рисунке.
Вы можете повторить мой вариант функционального ГКЧ, как он есть или принять его за альфа – версию Вашей собственной разработки, выполненной на современной элементной базе, с применением схемотехнических решений, которые Вы считаете более прогрессивными или доступными в реализации. В любом случае, применение такого многофункционального измерительного устройства, позволит Вам существенно упростить настройку звуковоспроизводящих трактов и контролируемо повысить их качественные характеристики в процессе разработки. Это конечно справедливо только в том случае, если вы считаете, что настраивать схемы «на слух» — весьма сомнительный приём радиолюбительской практики.
Автомат включения ждущего режима для осциллографа С1-73 и других осциллографов с регулятором «Стабильность».
Пользователи советских и импортных осциллографов, оснащённых регулятором режима развёртки «Стабильность», сталкивались в работе со следующим неудобством. При получении на экране устойчивой синхронизации сложного сигнала, стабильное изображение сохраняется до тех пор, пока на вход подаётся сигнал или его уровень остаётся достаточно стабильным. При исчезновении входного сигнала, развёртка может оставаться в ждущем режиме сколь угодно долго, при этом луч на экране отсутствует. Для переключения развёртки в автоколебательный режим, иногда достаточно лишь чуть повернуть ручку «Стабильность», и луч появляется на экране, что требуется при привязке горизонтальной развёртки к масштабной сетке на экране. При возобновлении измерений, изображение на экране может «плыть» до тех пор, пока регулятором «Стабильность» не будет восстановлен ждущий режим развёртки.
Таким образом, в процессе измерений, приходится постоянно крутить ручки «Стабильность» и «Уровень синхронизации», что замедляет процесс измерений и отвлекает оператора.
Предлагаемая доработка осциллографа C1-73 и других, подобных ему приборов (С1-49, С1-68 и др) оснащённых регулятором «Стабильность», предусматривает автоматическое изменение выходного напряжения переменного резистора регулятора «Стабильность», переводящее блок развёртки осциллографа в автоколебательный режим при отсутствии входного синхросигнала.
Схема автоматического переключателя «Ждущий – Авто» для осциллографа С1-73, приведена на рисунке 1.
Рисунок 1 . Схема автоматического переключателя «Ждущий – Авто» для осциллографа С1-73 (кликни для увеличения).
На транзисторах Т1 и Т2 собран одновибратор, запускаемый, через конденсатор С1 и диод D1 импульсами положительной полярности с выхода формирователя импульсов запуска развёртки осциллографа С1-73 (контрольная точка 2Гн-3 блока У2-4 на рисунке 2)
Рисунок 2
(полностью, схема осциллографа С1-73 находится здесь: (Fig5) и (Gif 6)
В исходном состоянии, при отсутствии запускающих развёртку импульсов, все транзисторы автомата «Ждущий – Авто» закрыты (см. Рис. 1). Диод D7 открыт и на правый по схеме (см Рис. 2) вывод переменного резистора R8 «Стабильность», по цепи R11 D7, подаётся постоянное напряжение, переводящее генератор развёртки в автоколебательный режим, при любом положении движка переменного резистора R8 «Стаьильность».
По приходу очередного импульса, запуска развёртки, последовательно открываются транзисторы T2, T1, T3, T4, а диод D7 закрывается. С этого момента схема синхронизации развёртки осциллографа С1-73, работает в типовом режиме, заданном напряжением на выходе переменного резистора R8 (см. Рис. 2). В частном случае, может быть задан ждущий режим развёртки, обеспечивающий стабильное положение изображения исследуемого сигнала на экране осциллографа.
Как было отмечен выше, при поступлении очередного синхроимпульса, все транзисторы автомата управления развёрткой открываются, что приводит к быстрой разрядке электролитического конденсатора C4 через диод D4, открытый транзистор Т2 и резистор R5. Конденсатор C4 находится в разряженном состоянии всё то время, пока на вход одновибратора поступают запускающие импульсы. По окончании поступления импульсов запуска, транзистор T2 закрывается, и конденсатор C4 начинает заряжаться базовым током транзистора T3 через резистор R7 и диод D5. Ток зарядки конденсатора C4, поддерживает открытыми транзисторы T3 и T4, сохраняя ждущий режим развёртки, заданный напряжением на выходе переменного резистора R8 «Стабильность» в течение нескольких сотен миллисекунд, в ожидании следующего сихроимпульса. Если таковой не поступает, транзистор T3 закрывается полностью, светодиод D6, индицирующий включение ждущего режима, гаснет, закрывается транзистор T4, открывается диод D7 и развёртка осциллографа переходит в автоколебательный режим. Для обеспечения ускоренного перехода в ждущий режим, при поступлении первого синхроимпульса в серии, применён элемент «Логическое ИЛИ» на диодах D3 и D5. При срабатывании одновибратора, приводящем к открыванию транзистора T2, транзистор T3 открывается без задержки, по цепи R7,D3,R5 ещё до окончания разряда конденсатора C4. Это может быть важно, если требуется наблюдать одиночные импульсы в ждущем режиме синхронизации.
Сборка автомата ждущего режима выполнена объёмным монтажом.
Рисунок 3. Объёмный монтаж автомата ждущего режима осциллографа.
Рисунок 4. Изоляция элементов автомата ждущего режима осциллографа бумажными вставками и расплавленным парафином.
Перед монтажом, модуль завёрнут в полоску бумаги, проклеенную прозрачным скотчем, как минимум с одной стороны, так же для уменьшения утечек. Сторона бумаги, поклеенная скотчем, обращена к собранному модулю. Объёмный монтаж автомата позволил сократить время сборки и отказаться от разработки и изготовления печатной платы. Кроме того, модули получились достаточно компактными, что важно при их установке в малоразмерный корпус осциллографа С1-73. В отличие от заливки устройства, собранного объёмным монтажом, эпоксидным компаундом и тп твердеющими смолами, использование парафина позволяет сохранить ремонтопригодность устройства и возможность его доработки, при необходимости. В радиолюбительской практике, при штучном производстве, это может быть важным фактором выбора конструктивного исполнения устройства.
Вид автомата ждущего режима, смонтированного на плате У2-4, осциллографа С1-73, показан на рисунке 5.
Рисунок 5. Размещение модуля автомата ждущего режима на плате синхронизации осциллографа С1-73.
Светодиод, индицирующий включение ждущего режима, размешён на 15 мм правее регулятора УРОВЕНЬ, как показано на рисунке 6.
Рисунок 6. Размещение индикатора включения ждущего режима на лицевой панели осциллографа C1-73.
Опыт эксплуатации осциллографа С1-73, оснащённого автоматом включения ждущего режима развёртки, показал значительное увеличение оперативности измерений, связанное с отсутствием необходимости вращать ручку СТАБИЛЬНОСТЬ, при установке линии развёртки на желаемое деление градуировочной сетки экрана и после этого, для достижения устойчивого положения изображения на экране. Теперь, в начале измерений, достаточно установить регуляторы УРОВЕНЬ и СТАБИЛЬНОСТЬ, в положение, обеспечивающее неподвижное изображение сигнала на экране, и при снятии сигнала со входа осциллографа, горизонтальная линия развёртки появляется автоматически, а при очередной подаче сигнала возвращается стабильная картинка.
Вы можете приобрести подобный автомат ждущего режима осциллографа, сэкономив время на сборку. Используйте кнопку обратной связи. 🙂
Блок защиты и автоотключения мультиметра M830 и ему подобных «Цифровых китайских мультиметров».
Цифровые мультиметры, построенные на АЦП семейства (отечественный аналог ), благодаря своей простоте, достаточно высокой точности и низкой стоимости, очень широко используются в радиолюбительской практике.
Некоторое неудобство использования прибора связано с:
- Отсутствием автоотключения мультиметра
- относительной дороговизной девятивольтовых батарей большой ёмкости
- отсутствием защиты от перенапряжения (за исключением плавкого предохранителя на 0,25А)
Различные способы решения вышеупомянутых проблем предлагались радиолюбителями раньше. Некоторые из них (схемы защиты АЦП мультиметра, автоотключения, и его питания от низковольтных источников питания, через повышающий преобразователь, приведены доработок и измерительных приставок к мультиметрам семейства M830.
Предлагаю Вашему вниманию ещё один вариант доработки «цифрового китайского мультиметра» на АЦП 7106, сочетающей четыре важных, для таких приборов, потребительских функции:Автоотключение по таймеру через несколько минут после включения.
- Защита от перенапряжения с гальваническим отключением входного гнезда UIR от схемы мультметра.
- Автоотключение при срабатывании защиты.
- Полуавтоматическая отсрочка автоотключения при длительных измерениях.
Для пояснения принципов работы и взаимодействия узлов китайского мультиметра на IC7106 используем две схемы.
Рис.1 — один из вариантов схемы мультиметра M830B (кликни, чтобы увеличить).
Схема Вашего мультиметра может быть другой или её может не быть вообще – важно лишь определить точки подачи питания на ИС АЦП и точки подключения контактов реле, отключающих питание и вход UIR прибора. Для этого, обычно, достаточно внимательно рассмотреть печатную плату мультиметра, справляясь по даташиту на IC7106 или КР572ПВ5. Точки подключения и врезки в схему / печатный монтаж мультиметра показаны синим цветом.
Рис.2 Собственно схема блоказащиты и автоотключения мультиметра (кликни, чтобы увеличить).
Схема включает датчики перегрузки мультиметра на транзисторных оптронах U1 и U2 – АОТ128, Компаратор на ОУ с низким током потребления – U3 КР140УД1208, ключевой МОП-транзистор U4 таймера автоотключения – КР1014КТ1. Коммутация входа UIR и напряжения питания мультиметра, выполняется контактными группами двухобмоточного поляризованного реле PR1 – РПС-46.
Работа блока защиты и автоотключения мультиметра.
Включение мультиметра и автоотключение по стабатыванию таймера.
В исходном состоянии все элементы мультиметра и блока защиты обесточены. Перекидные контакты поляризованного реле PR1 замкнуты в положениях 1-4 и 6-9 (см рис. 2 ). Вход UIR мультиметра, отключён, входной делитель замкнут на общий провод – разъём «COM». «Плюсовой» вывод батареи питания отключён от всех потребителей так как кнопка Кн1 «Вкл» и контакты 5-9 реле PR1 разомкнуты. Электролитический конденсатор C2, ёмкость которого определяет время работы мультиметра до автоотключения, разряжен через замкнутые контакты 6-9 реле PR1 и схему мультиметра.
При нажатии на кнопку Кн1 «Вкл», ток от батареи питания, проходя через обмотку 2-8 реле PR1, заряжает конденсатор С2. При этом контакты 6-9 и 1-4 размыкаются, а контакты 5-9 и 10-4 замыкаются. Вход UIR мультиметра, подключается к схеме замкнутыми контактами 10 – 4, реле PR1, а питание от батареи, подаётся через замкнутые контакты 5 – 9, соответственно. В штатных режимах работы мультиметра, напряжение с вывода 37 ЦАП IC7106, подаваемое на инвертирующий вход (вывод 2), ОУ U3, оказывается больше напряжения заданного на прямом входе (вывод 3), на выходе ОУ, вывод 6, устанавливается напряжение низкого уровня, недостаточное, для открывания транзистора Т1. Электролитический конденсатор, заряженный при нажатии кнопки Кн1 «Вкл», через обмотку 2 – 8 реле PR1 до напряжения питания (9В), после отпускания кнопки Кн1, начинает медленно разряжаться через делитель R11,R12. До тех пор, напряжение на затворе МОП-транзистора U4 не снизится до уровня, примерно, 2В, транзистор U4 остаётся в открытом состоянии, поддерживая диод D6 в закрытом состоянии.
Мультиметр работает в обычном режиме.
При падении напряжения на делителе R11,R12 ниже уровня 2В, транзистор U4 закрывается, положительное напряжение через резистор R13 и диод D6 поступает на вывод 3 ОУ4, что приводит к появлению положительного потенциала на выходе ОУ (вывод 6) и открыванию транзистора Т1, коллектор которого подключён к выводу 7 реле PR1. Через обмотку 3 – 7 реле PR1, вызывает обратное переключение контактных групп реле PR1. При этом оказываются разомкнутыми контакты 10 – 4 (вход UIR мультиметра отключается) и 5 – 9 (батарея питания отключается от схемы). Происходит автоотключение мультиметра с размыканием входной цепи.
Полуавтоматическая отсрочка срабатывания таймера автоотключения.
Если во время работы мультиметра повторно нажать кнопку Кн1 «Вкл», ток, проходя через обмотку 2 – 8 реле PR1, произведёт подзарядку конденсатора C2, продлевая временной промежуток включённого состояния мультиметра. Состояние контактных групп поляризованного реле PR1, при этом, не изменяется.
Принудительное отключение мультиметра.
Принудительное отключение мультиметра можно выполнить двумя способами.
- Как обычно, переведя переключатель выбора пределов/ режимов измерения в положение OFF – «Выключено». При этом состояние контактных групп поляризованного реле PR1, при этом, не изменяется и вход UIR останентся подключённым к резистивному делителю мультиметра.
- При нажатии на кнопку Кн2 «Выкл», положительное напряжение, через резистор R5, подаётся на вход 3 ОУ U3, повышая его потенциал, по сравнению с опорным напряжением (-1В) на инвертирующем входе ОУ U3 — выводе 2. Это приводит к открыванию транзистора Т1 и появлению тока в «отключающей» обмотке 3 – 7, поляризованного реле PR1. При этом оказываются разомкнутыми контакты 10 – 4 (вход UIR мультиметра отключается) и 5 – 9 (батарея питания отключается от схемы). Происходит автоотключение мультиметра с размыканием входной цепи.
Автоотключение мультиметра при возникновении перегрузки.
Наиболее вероятной причиной выхода из строя, мультиметра на основе АЦП семейства 7106, является подача на его измерительный вход (вывод 31), напряжения, превышающего напряжение питания приложенное к выводу 1, относительно общего провода (вывод 32). В общем случае, при питании мультиметра от батареи напряжением 9В, не рекомендуется подавать на вход ЦАП, вывод 31, напряжение, более 3В, в любой полярности. В описанных ранее схемах защиты цифрового мультиметра типа M830, предлагалось включит пару встречно – параллельно включённых стабилитронов между входом ЦАП и общим проводом. При этом, высокоомный резистор входного RC ФНЧ ЦАП (R17C104 в схеме на Рис. 1 ), ограничивал ток через стабилитроны на безопасном уровне, однако резистивный делитель мультиметра и токоведущие дорожки печатной платы оставались незащищёнными, играя роль дополнительных предохранителей и сгорая при перегрузке.
В предлагаемом блоке защиты и автоотключения мультиметра, повышенное, сверх допустимого, напряжение на входе ФНЧ R17C104 (См. Рис. 1), используется для формирования сигнала отключения входного гнезда, с шунтированием сигнального входа мультиметра на корпус. Сигнал о наличии перенапряжения, формируется двумя встречно-параллельно включёнными цепями D1, D2, U1.1 и D3, D4, U2.1, состоящими из последовательно соединённых: кремниевого диода, светодиода зелёного свечения и светодиода диодно-транзисторного оптрона. Подобные цепи, выполняющие, так же, функцию пассивной защиты, широко используются во входных каскадах осциллографов (например, ). При достижении, в точке А, напряжения, превышающего 3В, в любой полярности, диоды (D1, D2, U1.1 или D3, D4, U2.1), в соответствующей цепочке начинают открываться, шунтируя вход мультиметра на общий провод. При этом светодиод U1.1 или U2.1 одной из оптопар, начинает светиться, вызывая открывание соответствующего оптотранзистора U1.2 или U2.2. Ток, с плюсовой шины питания, через открывшийся оптотранзистор, подаётся на неинвертирующий вход ОУ U3, вызывая повышение потенциала на выходе ОУ (вывод 6) и открывание транзистора Т1. Ток через транзистор Т1 и подключённую к нему обмотку 3 – 7, поляризованного реле PR1, приводит к размыканию контактов 10 – 4 (вход UIR мультиметра отключается) и 5 – 9 (батарея питания отключается от схемы). Происходит автоотключение мультиметра с размыканием входной цепи.
Мультиметр переходит в выключенное состояние с размыканием входа UIR.
Конструктивно, модуль защиты и автоотключения напряжения, выполнен навесным монтажом и размещён в корпусе мультимера, с обратной стороны переключателя диапазонов измерения. (см. рис. 3 )
В доработанных мультиметрах марки DT830-C (0 ), отсутствует режим измерения коэффициента усиления транзисторов, что позволило разместить кнопки включения и выключения прибора на месте, где обычно устанавливается клеммная колодка подключения транзисторов. Кнопка выключения взята с более высоким толкателем, чтобы при переноске и хранении, при случайных нажатиях, она срабатывала с большей вероятностью.
Практика использования устройства защиты и автоотключения, реализованного в двух китайских цифровых
При работе, можно действовать двумя способами, предварительно выбрав проводимость и тип транзистора (биполярный/ полевой (про полевой – далее)).
1) Подключаем транзистор, и крутим ручку базового резистора до появления генерации. Так понимаем, что транзистор исправен и имеет определённый коэффициент передачи.
2) Выставляем заранее требуемый коэффициент передачи и, подключая, по порядку, имеющиеся транзисторы, отбираем соответствующие установленному требованию.
Я сделал этому измерителю две доработки.
1) Отдельная фиксируемая кнопка включает в «базу» проверяемого транзистора резистор, сопротивлением 100 КОм, заземленный с другой стороны. Так измеритель может проверять полевые транзисторы с p-n переходом и p или n каналом (КП103 КП303 и им подобные). Также, без переделки, в этом режиме можно проверять МОП транзисторы с изолированным затвором n- и p- типа (IRF540 IRF9540 итп)
2) В коллектор второго транзистора измерительного мультивибратора (выход НЧ сигнала) я включил детектор с удвоением, по обычной схеме нагруженный на базу КТ 315го. Таким образом, К- Э переход этого ключевого транзистора замыкается, когда в измерительном мультивибраторе возникает генерация (определён коэффициент передачи). Ключевой транзистор, открываясь, заземляет эмиттер ещё одного транзистора, на котором собран простейший генератор с резонатором на трёхвыводном пьезоэлементе – типовая схема генератора вызывного сигнала «китайского» телефона. Фрагмент схемы мультиметра – узел проверки транзисторов – приведён на Рис. 3.
Такое схемное награмаждение было вызвано желанием использовать тот же вызывной генератор в узле сигнализации перегрузки по току лабораторного блока питания (первый, собранный мной, по упомянутой схеме, испытатель параметров транзисторов, был встроен в ЛБП Рис.4).
Второй измеритель был встроен самодельный в многофункциональный стрелочный мультиметр, где один трёхвыводной пьезоизлучатель использовался как сигнализатор в режиме «пробник» (звуковая проверка короткого замыкания) и испытатель транзисторов Рис. 5.
Теоретически (я не пробовал), этот испытатель можно переделать для проверки мощных транзисторов, уменьшив, например, на порядок сопротивления резисторов в обвязке проверяемого транзистора.
Так же, возможно зафиксировать резистор в базовой цепи (1КОм или 10 КОм) и изменять сопротивление в коллекторной цепи (для мощных транзисторов).
Как собрать радиолюбитель с нуля
Если вы плохо разбираетесь в электронных схемах и электрических компонентах, вас может напугать необходимость создать радиолюбитель с нуля. Но с наборами, доступными в Интернете и на кораблях с электроникой, вы будете удивлены, насколько легко даже ребенок может построить такой. Фактически, в наши дни наборы для любительского радио даже появляются в коробках для подписки STEM для детей.
В некоторых случаях вы можете даже получить портативную радиолюбительскую радиостанцию и сразу же начать работу с радиолюбителями.Хорошие портативные радиостанции, которые можно использовать в качестве приемопередатчика, включают несколько устройств Baofeng и Yaesu, которые вы можете найти в Интернете
Однако сначала вам понадобится лицензия.
Но здесь мы покажем вам, как собрать радиолюбитель с нуля, а не наладонники. Это могло бы сойти за полноценную радиорубку для новичка.
Как собрать радиолюбитель с нуляЕсть пять жизненно важных компонентов, которые вам понадобятся для создания работающей любительской радиостанции.Это:
- Передатчик
- Приемник
- Антенна
- Антенный тюнер
- Оператор
Отправка сигналов начинается с передатчика. Это оборудование, которое радиолюбители используют для вещания на внешний мир.
Приемник противоположен передатчику. он помогает преобразовать радиосигнал вещания в аудиоформат, чтобы вы могли слышать, что говорится.
В то время как вы всегда можете получить передатчик и приемник по отдельности, теперь принято использовать два в одном устройстве. Это называется трансивером. Таким образом, приемопередатчик состоит из передатчика и приемника.
Yaesu FT-8900R и Icom 2300H 05 — два мобильных трансивера, которые вы можете приобрести для этой цели.
АнтеннаНужна хорошая антенна. Покупаете ли вы направленную антенну, которая отправляет сигналы по прямому пути, или всенаправленную антенну, которая отправляет сигналы во всех направлениях, будет зависеть от вашего бюджета.
Естественно, если вы можете себе это позволить, нет смысла покупать всенаправленную антенну.
Если ваша радиолюбительская радиолюбительская радиостанция устанавливается в автомобиле, есть очень хорошие мобильные антенны, которые вы можете установить для усиления сигнала в дороге.
К сожалению, когда дело доходит до антенн, люди слишком много внимания уделяют неправильным вещам. Многие антенны не работают, как обещали, из-за незнания того, как работают антенны.
Например, передатчик с хорошим КСВ (который является мерой того, насколько хорошо передаваемый сигнал проходит через антенную систему во внешний мир), все еще может плохо излучать сигналы, если к нему подключена некачественная антенна.
Так что в центре внимания всегда должна быть высококачественная антенна, прежде всего. И первый шаг к этому — понять, как работают антенны.
Антенный тюнерМногие опытные радиолюбители не считают антенный тюнер важным компонентом. Возможно, и многие операторы часто это делают, иметь работающее радиолюбительство без антенного тюнера.
Тем не менее, это важное оборудование, которое вам необходимо иметь, если вы хотите улучшить прием и передачу сигналов в радиолюбительской будке.
Антенный тюнер бывает разных форм и размеров. Конечно, есть очень сложные, за большие деньги. Но вы можете получить довольно приличный, например, автоматический антенный тюнер LDG Electronics Z-817, подержанный или новый, по скромной цене.
В основном антенный тюнер позволяет оператору передавать более чем на одной частоте, для которой предназначена антенна. Например, если у вас есть дипольная антенна, предназначенная для передачи на 80-метровом диапазоне, антенный тюнер поможет вам передавать на других диапазонах, например на 40 или 17 метров и так далее.
Если вы считаете, что антенны плохо работают в диапазонах, отличных от тех, для которых они были разработаны, вы оцените полезность антенного тюнера для обеспечения возможности многодиапазонной передачи.
Итак. Если вы хотите расширить возможности своей простой антенны с точки зрения эффективных диапазонов и частот, вам следует приобрести это оборудование.
ОператорПрежде чем вы сможете управлять радиолюбителем, у вас должна быть лицензия. Есть три класса лицензий, а это
.Лицензия начального уровня или технический специалист — это базовый класс, не имеющий всех привилегий двух других классов.С этой лицензией вы ограничены только несколькими диапазонами HF и не можете участвовать в междугородной связи.
General Class — это самая популярная категория лицензирования. Чтобы перейти на этот уровень, вам необходимо сначала сдать экзамен на технического специалиста. С этой лицензией вы получаете больше прав на использование диапазона HF. Многие радиолюбители не видят необходимости выходить за рамки этого.
Продвинутый уровень (Любительский Extra) — Это дает вам доступ ко всем HF-диапазонам, и весь радиочастотный спектр открыт для вас. Чтобы получить этот курс, вы должны сдать лицензионный экзамен генерала и иметь несколько лет опыта работы с радиолюбителями.
Создание вашей схемыНовичкам рекомендуется использовать комплекты для сборки радиолюбителя. Позже, когда вы освоитесь с работой различного оборудования и узнаете больше о технических требованиях, вы можете решить спроектировать и построить радиолюбитель самостоятельно.
В этом случае вам необходимо знать, как читать и понимать принципиальные схемы, чтобы вы могли самостоятельно собрать различные части. Схемы различных электронных компонентов радиолюбителя можно легко найти в Интернете.
Даже схемы построения различных типов антенн можно легко найти в Интернете. Но, как указывалось ранее, если у вас нет предварительных технических знаний, это может занять некоторое время.
Так что лучше всего просто купить различные комплекты, чтобы можно было приступить к работе практически сразу.
Дополнительная справкаЕсли вы знаете кого-то, кто имеет опыт работы с радиолюбителями, подойдите к нему поближе и узнайте как можно больше.Вам, вероятно, понадобится их помощь, когда придет время собирать комплекты и на начальном этапе получить максимум от вашего радиолюбителя.
ЗаключениеВам не нужно ждать, пока вы накопите приличный запас денег, чтобы начать работу с радиолюбителями. Вы можете легко собрать радиолюбитель с нуля, купив необходимые комплекты и оборудование. Если вы терпеливы и знаете, что делаете, вы можете получить базовый комплект менее чем за 200 долларов.
Это включает в себя трансивер (комбинацию приемника и передатчика), антенну, антенный тюнер (который не является абсолютно необходимым) и, конечно же, вашу лицензию, которую вам необходимо получить, прежде чем легально использовать любительскую радиостанцию.
Похожие сообщения:
Что означает радиолюбители?
Как работает радиолюбители? [Краткое объяснение для начинающих]
Комплекты радиолюбителей для начинающих [обязательно]
Лучшие радиолюбители для начинающих [личный опыт на протяжении многих лет]
радиосхем своими руками для радиолюбителей. Схемы для дома, электроника в дом своими руками. Самодельные схемы измерительных приборов
Одним из распространенных увлечений любителей и профессионалов в области электроники является разработка и производство различных самодельных товаров для дома.Электронные самоделки не требуют больших материальных и финансовых затрат и могут выполняться в домашних условиях, так как работа с электроникой в большинстве своем «чистая». Единственное исключение — изготовление различных кузовных деталей и других механических узлов.
Полезные электронные самоделки можно использовать во всех сферах повседневной жизни, от кухни до гаража, где многие занимаются усовершенствованием и ремонтом электронных устройств в автомобиле.
Самоделки на кухне
Электронные самодельные кухни могут быть добавлены к уже имеющимся аксессуарам и принадлежностям.Большой популярностью у квартирных жителей пользуются промышленные и самодельные электрические мангалы.
Еще один распространенный пример самодельных кухонь, сделанных домашним электриком, — это таймеры и автоматическое освещение рабочих поверхностей, электророзжиг газовых конфорок.
Важно! Изменения в конструкции некоторых бытовых приборов, особенно газовых, могут вызвать «недопонимание и неприятие» регулирующими организациями. К тому же он требует большой осторожности и внимания.
Электроника в машине
Самодельные устройства для автомобиля наиболее распространены среди владельцев отечественных марок транспорта, которые отличаются минимальным количеством дополнительных функций. Широким спросом пользуются такие схемы:
- Звуковые индикаторы поворотов и ручного тормоза;
- Индикатор режимов работы аккумуляторной батареи и генератора.
Более опытные радиолюбители занимаются оснащением своего автомобиля парктроником, электронными приводами стеклоподъемников, автоматическими датчиками света для управления ближним светом фар.
Самоделки для начинающих
Большинство начинающих радиолюбителей занимаются изготовлением конструкций, не требующих высокой квалификации. Простые проверенные конструкции могут служить долго и не только ради пользы, но и напоминанием о техническом «взрослении» от начинающего радиолюбителя до профессионала.
Для неопытных любителей многие производители выпускают готовые дизайнерские комплекты, которые содержат печатную плату и набор элементов. Такие комплекты позволяют отработать следующие навыки:
- Считывание электрических схем и схем подключения;
- Правильная пайка;
- Наладка и регулировка по готовой методике.
Среди комплектов очень распространены электронные часы различной конструкции и степени сложности.
Радиолюбители могут создавать электронные игрушки, используя более простые схемы или переделывая промышленные конструкции в соответствии со своими желаниями и возможностями.
Интересные идеи для поделок можно увидеть на примерах изготовления радиоэлектронных поделок из изношенных деталей компьютерной техники.
Домашняя мастерская
Для самостоятельного проектирования радиоэлектронных устройств требуется определенный минимум инструментов, приспособлений и измерительных приборов:
- Паяльник;
- Бокорезы;
- Пинцет;
- Набор отверток;
- Плоскогубцы;
- Многофункциональный тестер (авометр).
На заметку. Планируя сделать электронику своими руками, не стоит сразу браться за сложные конструкции и приобретать дорогой инструмент.
Большинство радиолюбителей начинали свой путь с простейшего паяльника 220В 25-40Вт, а из средств измерений в домашней лаборатории использовали самый массовый советский тестер Ц-20. Всего этого достаточно, чтобы потренироваться с электричеством, приобрести необходимые навыки и опыт.
Начинающему радиолюбителю нет смысла покупать дорогую паяльную станцию, если нет необходимого опыта работы с обычным паяльником. Причем возможность использования станции появится не скоро, а лишь иногда через довольно долгое время.
Также нет необходимости в профессиональном измерительном оборудовании. Единственное серьезное устройство, которое может понадобиться даже начинающему любителю, — это осциллограф. Для тех, кто уже разбирается в электронике, осциллограф — один из самых востребованных измерительных инструментов.
Недорогие цифровые приборы китайского производства можно успешно использовать в качестве авометра. Обладая богатым функционалом, они обладают высокой точностью измерения, простотой использования и, что немаловажно, имеют встроенный модуль измерения параметров транзисторов.
Говоря о самодельной мастерской на самодельном изделии, нельзя не упомянуть о материалах, используемых для пайки. Это припой и флюс. Наиболее распространенным припоем является сплав ПОС-60, который имеет низкую температуру плавления и обеспечивает высокую надежность пайки.Большинство припоев, используемых для пайки всевозможных устройств, являются аналогами указанного сплава и могут быть с успехом заменены им.
В качестве флюса для пайки используется обычная канифоль, но для удобства использования лучше использовать ее раствор в этиловом спирте. Флюсы на основе канифоли не нужно снимать с установки после работы, поскольку они химически нейтральны в большинстве рабочих условий, а тонкая пленка канифоли, образующаяся после испарения растворителя (спирта), проявляет хорошие защитные свойства.
Важно! При пайке электронных компонентов ни в коем случае нельзя использовать активные флюсы. Особенно это касается кислоты для пайки (раствора хлорида цинка), так как даже в нормальных условиях такой флюс оказывает разрушающее действие на тонкие медные печатные проводники.
Для ухода за сильно окисленными выводами лучше использовать активный бескислотный флюс ЛТИ-120, не требующий промывки.
Очень удобно работать припоем, в состав которого входит флюс.Припой выполнен в виде тонкой трубки с канифолью внутри.
Макеты из двухстороннего фольгированного стеклопластика, выпускаемого в широком ассортименте, хорошо подходят для монтажа элементов.
Меры безопасности
Электричество связано с риском для здоровья и даже жизни, особенно если электроника, сделанная своими руками, рассчитана на питание от сети. Самодельные электрические устройства не должны использовать бестрансформаторную сеть переменного тока.В крайнем случае наладку таких устройств следует производить путем подключения их к сети через изолирующий трансформатор с коэффициентом трансформации, равным единице. Напряжение на его выходе будет соответствовать сетевому, но при этом будет обеспечена надежная гальваническая развязка.
Итак. Жизнь сложилась так, что у меня в деревне есть дом с газовым отоплением. Постоянно жить там невозможно. Дом используется как дача. На пару зим тупо оставил котел включенным с минимальной температурой теплоносителя.
Но есть два недостатка.
1. Счета за газ астрономические.
2. Если нужно приехать в дом посреди зимы, температура в доме около 12 градусов.
Следовательно, надо было что-то изобрести.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если запутались, можно поставить рядом с датчиком подключенный мобильный телефон и раздавать сигнал с телефона.
Подключение датчика движения 4 пина своими руками схема
Схема подключения датчика движения своими руками
Бывает, что нужно установить на даче или в доме освещение, которое будет срабатывать при перемещении или человека или еще кого-то.
Датчик движения, который я заказал с Алиэкспресс, для этой функции хорош. Ссылка на которую будет ниже. При подключении света через датчик движения, когда человек проходит через его поле зрения, свет включается, горит 1 минуту. и снова выключается.
В этой статье я расскажу, как подключить такой датчик, если у него не 3 контакта, а 4 как у этого.
Блок питания своими руками от энергосберегающей лампочки
Когда получить 12 Вольт на светодиодную ленту , или для какого-то другого назначения, есть вариант сделать такой блок питания своими руками.
Этот регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .
Схема регулятора оборотов напольного вентилятора оказалась самой простой. Чтобы влезть в корпус от старого зарядного устройства для телефона Nokia. Туда же подходят клеммы от обычной розетки.
Установка довольно тугая, но это было из-за размеров корпуса ..
Освещение для растений своими руками
Освещение для растений своими руками
Есть проблема с нехваткой освещения , растения, , цветы или саженцы, и для них нужен искусственный свет , и это тот вид света, который мы можем обеспечить на светодиодах, сделайте это сами .
Регулировка яркости своими руками
Все началось с того, что после я установил галогенные лампы для освещения дома. При включении часто перегорал. Иногда даже 1 лампочка в день. Поэтому решил своими руками сделать плавное включение освещения на основе диммера, и подключаю схему диммера.
DIY термостат для холодильника
DIY термостат для холодильника
Все началось с того, что, вернувшись с работы и открыв холодильник, он обнаружил, что там тепло.Поворот ручки термостата не помог — холода не появлялось. Поэтому решил не покупать новый блок, что тоже редкость, а сделать электронный термостат на ATtiny85 самому. С оригинальным терморегулятором разница в том, что датчик температуры находится на полке, а не спрятан в стене. Вдобавок появилось 2 светодиода — сигнализируют о том, что агрегат включен или температура выше верхнего порога.
DIY датчик влажности почвы
DIY датчик влажности почвы
Устройство может использоваться для автоматического полива теплиц, цветочных оранжерей, цветников и комнатных растений.Ниже представлена схема, по которой можно своими руками изготовить простейший датчик (детектор) влажности (или сухости) почвы. Когда грунт подсыхает, подается напряжение силой тока до 90мА, чего вполне достаточно, включаем реле.
Также подходит для автоматического включения капельного орошения во избежание избыточной влажности.
Цепь питания люминесцентной лампы
Цепь питания люминесцентной лампы.
Часто при выходе из строя энергосберегающих ламп в ней перегорает цепь питания, а не сама лампа.Как известно, LDS с перегоревшими нитями накала необходимо запитать выпрямленным сетевым током с помощью беззвездного пускового устройства. В этом случае нити лампы шунтируются перемычкой, на которую подается высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резкое повышение напряжения на ней при пуске без предварительного нагрева электродов. В этой статье мы рассмотрим светильник лдс пусковой своими руками.
USB-клавиатура для планшета
Как-то внезапно я что-то взял и решил купить новую клавиатуру для своего ПК.Стремление к новизне невозможно преодолеть. Изменен цвет фона с белого на черный и цвет букв с красно-черного на белый. Через неделю тяга к новизне естественным образом ушла как вода в песок (старый друг лучше, чем два новых) и обновку отправили в кладовку на хранение — до лучших времен. И вот они пришли за ней, даже не предполагали, что это произойдет так быстро. А поэтому название бы даже лучше подошло не то, что есть, а как подключить usb клавиатуру к планшету.
Ниже представлены простые световые и звуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах используется простейшая элементная база, не требуется сложной настройки, допускается замена элементов на аналогичные в широком диапазоне.
Электронная утка
Игрушечная уточка может быть оснащена простой схемой-имитатором «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого подключена акустическая капсула, а нагрузка другого — два светодиода, которые можно вставить в глазки игрушки.Обе эти нагрузки работают поочередно — то слышен звук, то светодиоды мигают — глаза утки. В качестве выключателя питания SA1 можно использовать геркон (можно взять с датчиков СМК-1, СМК-3 и др., Используемых в системах охранной сигнализации в качестве датчиков открытия дверей). Когда магнит подводится к геркону, его контакты замыкаются и цепь начинает работать. Это может произойти, когда игрушку наклоняют к скрытому магниту или предъявляют своеобразную «волшебную палочку» с магнитом.
Транзисторы в схеме могут быть любого типа pnp, малой или средней мощности, например МП39 — МП42 (старый тип), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50.Также можно использовать транзисторы структуры npn, например КТ315, КТ 342, КТ503, но тогда нужно поменять полярность блока питания, включить светодиоды и полярный конденсатор С1. В качестве акустического излучателя BF1 можно использовать капсульный тип ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного крякающего звука.
Звук прыгающего металлического шара
Схема достаточно точно имитирует такой звук, как конденсатор С1 разряжается, громкость «ударов» уменьшается, а паузы между ними уменьшаются.В конце будет слышен характерный металлический дребезг, после которого звук прекратится.
Транзисторы можно заменить на аналогичные, как в предыдущей схеме.
Общая продолжительность звука зависит от емкости C1, а C2 определяет продолжительность пауз между «ударами». Иногда для более правдоподобного звучания бывает полезно выбрать транзистор VT1, так как работа симулятора зависит от его начального тока коллектора и коэффициента усиления (h31e).
Имитатор звука двигателя
Они могут, например, озвучить радиоуправляемую или другую модель мобильного устройства.
Варианты замены транзисторов и динамика — как в предыдущих схемах. Трансформатор Т1 — вывод от любого малогабаритного радиоприемника (через него к приёмникам тоже подключается динамик).
Существует множество схем имитации звуков пения птиц, голосов животных, свиста локомотива и т. Д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме K176LA7 (K561 LA7, 564LA7) и позволяет имитировать множество различных звуков в зависимости от значение сопротивления, подключенного к входным контактам X1.
Следует отметить, что микросхема здесь работает «без питания», то есть на ее положительный вывод (ножка 14) не подается напряжение. Хотя на самом деле микросхема все еще запитана, это происходит только тогда, когда датчик сопротивления подключен к контактам X1. Каждый из восьми входов микросхемы подключен к внутренней шине питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды микросхема питается за счет наличия положительной обратной связи по питанию через входной резистор-датчик.
Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает формировать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается при логическом уровне получен на выводе 8 от первого мультивибратора. 1 «. Генерирует тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы поступают на усилитель мощности (транзистор VT1) и из динамической головки слышен модулированный звук.
Если теперь к входным гнездам X1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию, которая преобразует монотонный прерывистый звук. Перемещая ползунок этого резистора и изменяя сопротивление, можно добиться звука, напоминающего трель соловья, чириканье воробья, кряканье утки, кваканье лягушки и т. Д.
Детали
Транзистор можно заменить на КТ3107Л, КТ361Г, но в этом случае нужно поставить R4 с сопротивлением 3.3 кОм, иначе громкость звука уменьшится. Конденсаторы и резисторы — любого типа с номиналами, близкими к указанным на схеме. При этом следует учитывать, что в микросхемах серии К176 ранних выпусков указанные защитные диоды отсутствуют и такие экземпляры в этой схеме работать не будут! Проверить наличие внутренних диодов несложно — достаточно измерить сопротивление между выводом 14 микросхемы («+» питания) и ее входными контактами (или хотя бы одним из входов) с помощью тестера.Как и при тестировании диодов, сопротивление должно быть низким в одном направлении и высоким в другом.
Выключатель питания в этой схеме можно не использовать, так как в режиме покоя устройство потребляет ток менее 1 мкА, что намного меньше даже тока саморазряда любого аккумулятора!
Регулировка
Правильно собранный тренажер не требует настройки. Для изменения тональности звука можно выбрать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.
Фонарик
Частоту мигания лампы можно регулировать выбором элементов R1, R2, C1. Лампа может быть от фонарика или автомобильного 12В. В зависимости от этого нужно выбрать напряжение питания схемы (от 6 до 12 В) и мощность переключающего транзистора VT3.
Транзисторы VT1, VT2 — любая соответствующая структура малой мощности (КТ312, КТ315, КТ342, КТ 503 (н-п-н) и КТ361, КТ645, КТ502 (п-н-п), а VT3 — средней или большой мощности (КТ814, КТ816, КТ818).
Простое устройство для прослушивания саундтрека телепрограмм в наушниках. Не требует электропитания и позволяет свободно перемещаться по комнате.
Катушка L1 представляет собой «петлю» из 5… 6 витков провода ПЭВ (ПЭЛ) -0,3… 0,5 мм, проложенную по периметру помещения. Он подключается параллельно динамику телевизора через переключатель SA1, как показано на рисунке. Для нормальной работы устройства выходная мощность аудиоканала телевизора должна быть в пределах 2… 4 Вт, а сопротивление шлейфа — 4… 8 Ом.Провод можно проложить под плинтусом или в кабельном канале, при этом по возможности не ближе 50 см от сетевых проводов 220 В для уменьшения наводок переменного напряжения.
Катушка L2 намотана на каркас из плотного картона или пластика в виде кольца диаметром 15 … 18 см, которое служит оголовьем. Он содержит 500 … 800 витков провода ПЭВ (ПЭЛ) 0,1 … 0,15 мм, закрепленных клеем или изолентой. Миниатюрный регулятор громкости R и наушник (высокоомный, например TON-2) подключены последовательно к клеммам катушки.
Выключатель света
От многих схем аналогичных автоматов отличается крайней простотой и надежностью и не требует подробного описания. Он позволяет включить освещение или любой электроприбор на определенное короткое время, а затем автоматически выключить его.
Для включения нагрузки достаточно кратковременно без фиксации нажать переключатель SA1. В этом случае конденсатор успевает зарядиться и открывает транзистор, управляющий включением реле.Время включения определяется емкостью конденсатора C и с номиналом, указанным на диаграмме (4700 мФ), составляет около 4 минут. Увеличение времени работы достигается подключением дополнительных конденсаторов параллельно с C.
Транзистор может быть любого типа n-p-n средней мощности или даже малой мощности, например КТ315. Это зависит от рабочего тока используемого реле, которое также может быть любым другим для напряжения срабатывания 6-12 В и способно переключать нагрузку необходимой вам мощности.Также можно использовать транзисторы типа pnp, но потребуется изменить полярность напряжения питания и включение конденсатора C. Резистор R также влияет на время отклика в небольших пределах и может составлять 15 … 47 кОм в зависимости от по типу транзистора.
Перечень радиоэлементов
Обозначение | Тип | Номинал | Кол. Акций | Note | Shop | My notebook | |
---|---|---|---|---|---|---|---|
Электронная утка | |||||||
VT1, VT2 | Транзистор биполярный | KT361B | 2 | МП39-МП42, КТ209, КТ502, КТ814 | В блокнот | ||
HL1, HL2 | Светодиод | AL307B | 2 | В блокнот | |||
C1 | 100 мкФ 10 В | 1 | В блокнот | ||||
C2 | Конденсатор | 0.1 мкФ | 1 | В блокнот | |||
R1, R2 | Резистор | 100 кОм | 2 | В блокнот | |||
R3 | Резистор | 620 Ом | 1 | В блокнот | |||
BF1 | Излучатель акустический | TM2 | 1 | В блокнот | |||
SA1 | Геркон | 1 | В блокнот | ||||
ГБ1 | Аккумулятор | 4.5-9В | 1 | В блокнот | |||
Симулятор звука прыгающего металлического шара | |||||||
Транзистор биполярный | KT361B | 1 | В блокнот | ||||
Транзистор биполярный | КТ315Б | 1 | В блокнот | ||||
C1 | Конденсатор электролитический | 100 мкФ 12В | 1 | В блокнот | |||
C2 | Конденсатор | 0.22 мкФ | 1 | В блокнот | |||
Динамическая головка | DG 0,5 … 1 Вт 8 Ом | 1 | В блокнот | ||||
ГБ1 | Аккумулятор | 9 В | 1 | В блокнот | |||
Имитатор звука двигателя | |||||||
Транзистор биполярный | КТ315Б | 1 | В блокнот | ||||
Транзистор биполярный | KT361B | 1 | В блокнот | ||||
C1 | Электролитический конденсатор | 15 мкФ 6 В | 1 | В блокнот | |||
R1 | Переменный резистор | 470 кОм | 1 | В блокнот | |||
R2 | Резистор | 24 кОм | 1 | В блокнот | |||
Т1 | Трансформатор | 1 | С любой малогабаритной магнитолы | В блокнот | |||
Универсальный симулятор звука | |||||||
DD1 | Микросхема | K176LA7 | 1 | K561LA7, 564LA7 | В блокнот | ||
Транзистор биполярный | КТ3107К | 1 | КТ3107Л, КТ361Г | В блокнот | |||
C1 | Конденсатор | 1 мкФ | 1 | В блокнот | |||
C2 | Конденсатор | 1000 пФ | 1 | В блокнот | |||
R1-R3 | Резистор | 330 кОм | 1 | В блокнот | |||
R4 | Резистор | 10 кОм | 1 | В блокнот | |||
Динамическая головка | DG 0.1 … 0,5 Вт 8 Ом | 1 | В блокнот | ||||
ГБ1 | Аккумулятор | 4,5-9 В | 1 | В блокнот | |||
Фонарик | |||||||
VT1, VT2 | Транзистор биполярный |
Те, кто занимается радиоэлектроникой дома, обычно очень любопытны. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве.Возможно, кто-то найдет оригинальное решение той или иной проблемы. В некоторых самоделках используют готовые устройства, соединяя их различными способами. Для других вам нужно полностью создать схему самостоятельно и внести необходимые корректировки.
Одна из самых простых самоделок. Больше подходит для тех, кто только начинает возиться. Если у вас есть старый, но исправный сотовый кнопочный телефон с кнопкой включения плеера, вы можете сделать, например, с него звонок в свою комнату. Преимущества такого звонка:
Сначала необходимо убедиться, что выбранный телефон способен издавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся шурупами или скобами, которые аккуратно загибаются назад. При разборке нужно будет помнить, что к чему идет, чтобы потом можно было все собрать.
Кнопка включения плеера распаяна на плате, а вместо нее припаяны два коротких провода.Затем эти провода приклеиваются к плате, чтобы припой не оторвался. Телефон собирается. Осталось подключить телефон к кнопке вызова через двухжильный провод.
Самоделки для автомобилей
Современные автомобили оснащены всем необходимым. Однако бывают случаи, когда самодельные устройства просто необходимы. Например, что-то сломалось, подарили другу и тому подобное. Тогда очень кстати будет умение создавать электронику своими руками в домашних условиях.
Первое, чему можно помешать, не опасаясь повредить машину, — это аккумулятор. Если в нужный момент зарядки для АКБ не оказалось под рукой, вы можете быстро собрать ее самостоятельно. Для этого потребуется:
Трансформатор от лампового телевизора подойдет. Поэтому пристрастившиеся к самодельной электронике никогда не выбрасывают электроприборы в надежде, что они когда-нибудь понадобятся. К сожалению, используются трансформаторы двух типов: с одной и двумя катушками.Заряжать батарею на 6 вольт пойдет любой, а на 12 вольт только две.
На оберточной бумаге такого трансформатора показаны выводы обмотки, напряжение каждой обмотки и рабочий ток. Для питания нитей электронных ламп используется напряжение 6,3 В при большом токе. Трансформатор можно переделать, удалив ненужные вторичные обмотки, или оставить как есть. В этом случае первичная и вторичная обмотки подключаются последовательно. Каждая первичная обмотка рассчитана на напряжение 127 В, поэтому, сложив их, они получают 220 В.Вторичные соединены последовательно, чтобы получить на выходе 12,6 В.
Диоды должны выдерживать ток не менее 10 А. Для каждого диода требуется радиатор площадью не менее 25 квадратных сантиметров. Они подключены к диодному мосту. Для крепления подойдет любая электроизоляционная плита. В первичную цепь включен предохранитель на 0,5 А, а во вторичной цепи — предохранитель на 10 А. Устройство плохо переносит короткое замыкание, поэтому при подключении АКБ полярность перепутать не стоит.
Обогреватели простые
В холодное время года может потребоваться прогрев двигателя. Если автомобиль припаркован там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для его изготовления вам понадобится:
- труба асбестовая; Проволока нихромовая
- ;
- вентилятор; Переключатель
- .
Диаметр асбестовой трубы выбирается в соответствии с размером используемого вентилятора. Производительность ТЭНа будет зависеть от его мощности.Длина трубы — предпочтение каждого. В нем можно собрать ТЭН и вентилятор, можно только ТЭН. Выбирая последний вариант, придется подумать, как запустить подачу воздуха к ТЭНу. Это можно сделать, например, поместив все компоненты в герметичный корпус.
Нихромовая проволока тоже подхватывается вентилятором. Чем мощнее последний, тем больший диаметр можно использовать. Проволока скручивается в спираль и помещается внутрь трубы.Для крепления используются болты, которые вставляются в предварительно просверленные отверстия в трубе. Длина спирали и их количество подбираются опытным путем. Желательно, чтобы спираль не раскалилась докрасна при работающем вентиляторе.
Выбор вентилятора определяет, какое напряжение необходимо подать на нагреватель. При использовании электровентилятора 220 В вам не потребуется дополнительный источник питания.
Весь нагреватель подключается к сети шнуром с вилкой, но сам должен иметь свой выключатель.Это может быть как просто тумблер, так и автомат. Второй вариант предпочтительнее, он позволяет защитить общую сеть. Для этого ток отключения машины должен быть меньше рабочего тока комнатной машины. Выключатель также нужен для быстрого отключения ТЭНа при неисправностях, например, если не работает вентилятор. У этого обогревателя есть свои недостатки:
- вред для организма от асбестовых труб;
- шум вентилятора;
- запах из-за попадания пыли на нагретый змеевик;
- пожарная опасность.
Некоторые проблемы можно решить, используя другое самодельное изделие. Вместо асбестовой трубки можно использовать банку из-под кофе. Чтобы спираль не закрылась на банке, ее прикрепляют к текстолитовой рамке, которая фиксируется клеем. В качестве вентилятора используется кулер. Для его питания потребуется собрать еще одно электронное устройство — небольшой выпрямитель.
Самоделки приносят не только удовлетворение, но и пользу тем, кто ими занимается. С их помощью можно сэкономить электроэнергию, например, отключив электроприборы, которые вы забыли выключить.Для этого можно использовать реле времени.
Самый простой способ создать элемент синхронизации — использовать время для зарядки или разрядки конденсатора через резистор. Такая цепочка включена в базу транзистора. Для построения схемы требуются следующие данные:
- конденсатор электролитический большой емкости; Транзистор типа
- pnp; Электромагнитное реле
- ; Диод
- ; Резистор переменный
- ; Постоянные резисторы
- ;
- источник постоянного тока.
Для начала нужно определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения потребуется магнитный пускатель. Катушку стартера можно подключить через реле. Важно, чтобы контакты реле могли работать свободно, не залипая. Транзистор подбирается в соответствии с выбранным реле, определяется, с каким током и напряжением оно может работать. Можно остановиться на КТ973А.
База транзистора подключена через ограничительный резистор к конденсатору, который, в свою очередь, подключен через биполярный переключатель.Свободный контакт переключателя подключен через резистор с минусовым питанием. Это необходимо для разрядки конденсатора. Резистор действует как ограничитель тока.
Сам конденсатор подключен к положительной шине источника питания через переменный резистор с высоким сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, вы можете изменить интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении.В этой схеме используется КД 105 В. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.
Схема работает следующим образом. В исходном состоянии база транзистора отключена от конденсатора и транзистор закрыт. При включении переключателя база подключается к разряженному конденсатору, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.
Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания.По мере зарядки конденсатора базовое напряжение начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключить переключатель.
Электросхемы для начинающих, любителей и профессионалов
Добро пожаловать в раздел Радиосхемы! Это отдельный раздел сайта Радиолюбителей, созданный специально для тех, кто дружит с паяльником, привык все делать своими руками, и посвящен он исключительно схемам электрооборудования.
Здесь вы найдете схемы разной тематики, например для самостоятельной сборки начинающими радиолюбителями , а также для более опытных радиолюбителей, для тех, для кого слово РАДИО давно стало не просто хобби, а профессией.
Помимо схем для самостоятельной сборки у нас также имеется довольно большая (и постоянно обновляемая!) База электрических схем различной промышленной электроники и бытовой техники — схем для телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральные машины, микроволновые печи и тд.
Специально для работников сферы ремонта на нашем сайте есть раздел «Даташиты», где вы можете найти справочную информацию по различным радиоэлементам.
А если нужна какая-то схема и есть желание скачать, то у нас тут все бесплатно, без регистрации, без смс, без файлообменника и прочих сюрпризов
Если возникли вопросы или вы не нашли то, что искали, приходите к нам на ФОРУМ, вместе подумаем !!
Для облегчения поиска необходимой информации раздел разделен на категории.
Схемы для начинающих В этом разделе собраны простые схемы для начинающих радиолюбителей. | Свет и музыка Световые приборы x эффекты : мигалки, цветомузыка, стробоскопы, переключатели гирлянд и так далее. Конечно, все схемы можно собрать самостоятельно. материалов в категории | Схемы электропитания Любое электронное оборудование требует питания. Эта категория посвящена именно источникам питания. материалов в категории |
Бытовая электроника В данной категории представлены схемы устройств бытового назначения: отпугиватели грызунов, различные сигнализаторы, ионизаторы и так далее… | Антенны и радио Антенны (в том числе самодельные), антенные элементы и схемы радиоприемников для самостоятельной сборки | Шпионские штуки В этом разделе собраны схемы различных «шпионских» устройств — радиожучков, глушилок и слушателей для телефонов, детекторов радиожучков |
Электроника Авто-Мото-Вело Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворота, управление фарами и т. Д. | Измерительные приборы Принципиальные электрические схемы средств измерений: самодельных и промышленных материалов в категории | Отечественная техника ХХ века Подборка принципиальных электрических схем бытовой радиоаппаратуры СССР материалов в категории |
схемы ЖК-телевизоров Электрические схемы ЖК телевизоров материалов в категории | Программатор схем Схемы различных программаторов материалов в категории | Аудиотехника Схемы устройств, относящихся к звуку: транзисторные и микросхемные усилители, предварительные и ламповые усилители, устройства преобразования звука. материалов в категории |
Цепи контроля Основные электрические схемы различных мониторов: как старых ЭЛТ, так и современных ЖК-дисплеев материалов в категории | Схемы автомагнитол и другой автозвук Подборка автомобильных аудиосистем: автомагнитолы, усилители и автомобильные телевизоры |
Электронные самоделки из старой техники.Радиолюбители и самоделки своими руками
Для тех, кто только начинает делать первые шаги в электронике, важно с чего-то начать. Что ж, мы предлагаем вам ознакомиться с идеями, которые могут пригодиться в будущем, и в то же время дать представление о том, как что-то нужно делать. Что выбрать, если хотите сделать простые своими руками? Вот варианты, которые можно использовать в повседневной жизни.
Простой регулятор мощности для плавного включения ламп
Этот тип устройств получил широкое распространение.Самый простой — это обычный диод, который включен последовательно с нагрузкой. Такое регулирование можно использовать для продления срока службы лампы накаливания, а также для предотвращения перегрева паяльника. Их также можно использовать для изменения мощности в широком диапазоне значений. Во-первых, это будут простейшие электронные самоделки своими руками. Вы можете увидеть схемы здесь.
Как защитить от колебаний сетевого напряжения
Это устройство отключает нагрузку, если сетевое напряжение выходит за пределы допустимого диапазона.Как правило, в пределах нормы считается отклонение до 10% от нормы. Но в силу особенностей системы энергоснабжения в нашей стране такие рамки не всегда соблюдаются. Значит, напряжение может быть в 1,5 раза выше или намного ниже необходимого. Результат часто бывает неприятным — оборудование выходит из строя. Следовательно, существует потребность в устройстве, которое отключит нагрузку до того, как что-то успеет перегореть. Но создавая такое самодельное изделие, нужно быть осторожным, так как работа будет проводиться со значительным стрессом.
Как сделать трансформатор безопасности
В различных электронных конструкциях часто используются бестрансформаторные источники питания. Обычно такие устройства имеют небольшую мощность и во избежание поражения электрическим током помещаются в изолирующий пластиковый корпус. Но иногда их нужно настроить, и тогда защита открывается. Защитный изолирующий трансформатор используется во избежание возможных травм. Также он будет полезен при ремонте таких устройств. Конструктивно они состоят из двух одинаковых обмоток, каждая из которых предназначена для сети.Как правило, мощность трансформаторов этого типа колеблется в пределах 60-100 Вт, это оптимальные параметры для настройки различной электроники.
Простой источник аварийного освещения
Что делать, если необходимо, чтобы в случае отключения электроэнергии оставалось освещение определенной зоны? Ответом на такие призывы может служить аварийный светильник на базе штатной энергосберегающей лампы, мощность которой не превышает 11 Вт. Так что если вам нужен свет где-то в коридоре, подсобном помещении или на рабочем месте, этот самодельный товар обязательно должен быть на месте.Обычно при наличии напряжения они работают напрямую от сети. Когда он гаснет, лампа начинает работать от батареи. Когда сетевое напряжение восстановится, лампа заработает и аккумулятор автоматически зарядится. Лучшие электронные самоделки своими руками остались в конце статьи.
Паяльник Boost Power Regulator
В случаях, когда необходимо паять массивные детали или часто падает сетевое напряжение, использование паяльника становится проблематичным.И в этой ситуации может помочь повышающий регулятор мощности. В этих случаях на нагрузку (например, паяльник) подается выпрямленное сетевое напряжение. Замена осуществляется с помощью электролитического конденсатора, емкость которого дает возможность получить напряжение сети выше 1,41. Так, при стандартном значении напряжения 220 В даст 310 В. А если произойдет падение, скажем, до 160 В, то получается 160 * 1,41 = 225,6 В, что позволит работать оптимально. Но это всего лишь пример.У вас есть возможность составить схему, подходящую для ваших конкретных условий.
Самый простой сумеречный выключатель (фотореле)
По мере создания новых деталей все меньше и меньше компонентов требуется для изготовления единицы оборудования. Итак, для обычного сумеречного выключателя их нужно всего 3 штуки. Более того, благодаря универсальности конструкции возможно и многоцелевое использование: в многоквартирном доме; для освещения веранды или двора частного дома, а то и отдельной комнаты.Указывая на особенности такой конструкции, как сумеречный выключатель, его еще называют «фотореле». Вы можете найти множество схем реализации, разработанных любителями или промышленниками. У них есть свой набор положительных и отрицательных свойств. Отрицательными свойствами обычно называют либо потребность в источнике постоянного напряжения, либо сложность самой схемы. Также при покупке дешевых и простых деталей или целых комплектов часто жалуются, что они просто сгорают. Функциональность схемы основана на трех компонентах:
- Фотоэлемент.Обычно это фоторезисторы, фототранзисторы и фотодиоды.
- Компаратор.
- Симистор или реле.
При дневном свете сопротивление фотоэлемента низкое и не превышает порога срабатывания. Но как только он потемнеет, конструкция одновременно включится.
Заключение
Вот несколько интересных самоделок из электроники своими руками. Главное в случаях, когда что-то не получается — продолжать попытки, и тогда все получится.А набравшись опыта, можно будет переходить к более сложным схемам.
Те, кто занимается радиоэлектроникой дома, обычно очень любопытны. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет оригинальное решение той или иной проблемы. В некоторых самоделках используют готовые устройства, соединяя их различными способами. Для других вам нужно полностью создать схему самостоятельно и внести необходимые корректировки.
Одна из самых простых самоделок. Больше подходит для тех, кто только начинает возиться. Если у вас есть старый, но исправный сотовый кнопочный телефон с кнопкой включения плеера, вы можете сделать, например, с него звонок в свою комнату. Преимущества такого звонка:
Сначала необходимо убедиться, что выбранный телефон способен издавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся шурупами или скобами, которые аккуратно загибаются назад.При разборке нужно будет помнить, что к чему происходит, чтобы потом можно было все собрать.
Кнопка включения плеера распаяна на плате, а вместо нее припаяны два коротких провода. Затем эти провода приклеиваются к плате, чтобы припой не оторвался. Телефон собирается. Осталось подключить телефон к кнопке вызова через двухжильный провод.
Самоделки для автомобилей
Современные автомобили оснащены всем необходимым.Однако бывают случаи, когда самодельные устройства просто необходимы. Например, что-то сломалось, подарили другу и тому подобное. Тогда очень кстати будет умение создавать электронику своими руками в домашних условиях.
Первое, чему можно помешать, не опасаясь повредить машину, — это аккумулятор. Если в нужный момент зарядки для АКБ не оказалось под рукой, вы можете быстро собрать ее самостоятельно. Для этого потребуется:
Трансформатор от лампового телевизора подойдет.Поэтому пристрастившиеся к самодельной электронике никогда не выбрасывают электроприборы, надеясь, что они когда-нибудь понадобятся. К сожалению, используются трансформаторы двух типов: с одной и двумя катушками. Заряжать батарею на 6 вольт пойдет кто угодно, а на 12 — только две.
На оберточной бумаге такого трансформатора показаны выводы обмотки, напряжение каждой обмотки и рабочий ток. Для питания нитей электронных ламп используется напряжение 6,3 В при большом токе.Трансформатор можно переделать, удалив ненужные вторичные обмотки, или оставить как есть. В этом случае первичная и вторичная обмотки подключаются последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, они получают 220 В. Вторичные соединяются последовательно, чтобы получить 12,6 В.
Диоды должны выдерживать ток не менее 10 А. Для каждого диода требуется радиатор площадью не менее 25 квадратных сантиметров. Они подключены к диодному мосту.Для крепления подойдет любая электроизоляционная плита. В первичную цепь включен предохранитель на 0,5 А, а во вторичной цепи — предохранитель на 10 А. Устройство плохо переносит короткое замыкание, поэтому при подключении АКБ полярность перепутать не стоит.
Обогреватели простые
В холодное время года может потребоваться прогрев двигателя. Если автомобиль припаркован там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для его изготовления вам понадобится:
- труба асбестовая; Проволока нихромовая
- ;
- вентилятор; Переключатель
- .
Диаметр асбестовой трубы выбирается в соответствии с размером используемого вентилятора. Производительность ТЭНа будет зависеть от его мощности. Длина трубы — предпочтение каждого. В нем можно собрать ТЭН и вентилятор, можно только ТЭН. Выбирая последний вариант, придется подумать, как запустить подачу воздуха к ТЭНу. Это можно сделать, например, поместив все компоненты в герметичный корпус.
Нихромовая проволока тоже подхватывается вентилятором. Чем мощнее последний, тем больший диаметр можно использовать. Проволока скручивается в спираль и помещается внутрь трубы. Для крепления используются болты, которые вставляются в предварительно просверленные отверстия в трубе. Длина спирали и их количество подбираются опытным путем. Желательно, чтобы спираль не раскалилась докрасна при работающем вентиляторе.
Выбор вентилятора определяет, какое напряжение необходимо подать на нагреватель.При использовании электровентилятора 220 В вам не потребуется дополнительный источник питания.
Весь нагреватель подключается к сети шнуром с вилкой, но сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант предпочтительнее, он позволяет защитить общую сеть. Для этого ток отключения машины должен быть меньше рабочего тока комнатной машины. Выключатель также нужен для быстрого отключения ТЭНа при неисправностях, например, если не работает вентилятор. У этого обогревателя есть свои недостатки:
- вред для организма от асбестовых труб;
- шум вентилятора;
- запах из-за попадания пыли на нагретый змеевик;
- пожарная опасность.
Некоторые проблемы можно решить, используя другое самодельное изделие. Вместо асбестовой трубки можно использовать банку из-под кофе. Чтобы спираль не закрылась на банке, ее прикрепляют к текстолитовой рамке, которая фиксируется клеем. В качестве вентилятора используется кулер. Для его питания потребуется собрать еще одно электронное устройство — небольшой выпрямитель.
Самоделки приносят не только удовольствие тем, кто ими занимается, но и приносят пользу. С их помощью можно сэкономить электроэнергию, например, отключив электроприборы, которые вы забыли выключить. Для этого можно использовать реле времени.
Самый простой способ создать элемент синхронизации — использовать время для зарядки или разрядки конденсатора через резистор. Такая цепочка включена в базу транзистора. Для построения схемы требуются следующие данные:
- конденсатор электролитический большой емкости; Транзистор типа
- pnp; Электромагнитное реле
- ; Диод
- ; Резистор переменный
- ; Постоянные резисторы
- ;
- источник постоянного тока.
Для начала нужно определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения потребуется магнитный пускатель. Катушку стартера можно подключить через реле. Важно, чтобы контакты реле могли работать свободно, не залипая. Транзистор подбирается в соответствии с выбранным реле, определяется, с каким током и напряжением оно может работать. Можно остановиться на КТ973А.
База транзистора подключена через ограничительный резистор к конденсатору, который, в свою очередь, подключен через биполярный переключатель.Свободный контакт переключателя подключен через резистор с минусовым питанием. Это необходимо для разрядки конденсатора. Резистор действует как ограничитель тока.
Сам конденсатор подключен к положительной шине источника питания через переменный резистор с высоким сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, вы можете изменить интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении.В этой схеме используется КД 105 В. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.
Схема работает следующим образом. В исходном состоянии база транзистора отключена от конденсатора и транзистор закрыт. При включении переключателя база подключается к разряженному конденсатору, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.
Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания.По мере зарядки конденсатора базовое напряжение начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключить переключатель.
Итак. Жизнь сложилась так, что у меня в деревне есть дом с газовым отоплением. Постоянно жить там невозможно. Дом используется как дача. На пару зим тупо оставил котел включенным с минимальной температурой теплоносителя.
Но есть два недостатка.
1. Счета за газ астрономические.
2. Если нужно приехать в дом посреди зимы, температура в доме около 12 градусов.
Следовательно, надо было что-то изобрести.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если запутались, можно поставить рядом с датчиком подключенный мобильный телефон и раздавать сигнал с телефона.
Схема подключения датчика движения 4 пина своими руками
Схема подключения датчика движения своими руками
Бывает, что нужно установить на даче, или в доме, освещение, которое будет срабатывать при переезде или человека или еще кого-то.
Датчик движения, который я заказал с Алиэкспресс, неплохо справляется с этой функцией. Ссылка на которую будет ниже. При подключении света через датчик движения, когда человек проходит через его поле зрения, свет включается, горит 1 минуту. и снова выключается.
В этой статье я расскажу, как подключить такой датчик, если у него не 3 контакта, а 4 как у этого.
Блок питания своими руками от энергосберегающей лампочки
Когда получить 12 Вольт на светодиодную ленту , или для какого-то другого назначения, есть вариант сделать такой блок питания своими руками.
Этот регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .
Схема регулятора оборотов напольного вентилятора оказалась самой простой. Чтобы влезть в корпус от старого зарядного устройства для телефона Nokia. Туда же подходят клеммы от обычной розетки.
Установка довольно тугая, но это было из-за размеров корпуса ..
Освещение для растений своими руками
Освещение для растений своими руками
Есть проблема с нехваткой освещения , растения, , цветы или саженцы, и для них нужен искусственный свет , и это тот вид света, который мы можем обеспечить на светодиодах, сделайте это сами .
Регулировка яркости своими руками
Все началось с того, что после я установил галогенные лампы для освещения дома. При включении часто перегорал. Иногда даже 1 лампочка в день. Поэтому решил своими руками сделать плавное включение освещения на основе диммера, и подключаю схему диммера.
DIY термостат для холодильника
DIY термостат для холодильника
Все началось с того, что, вернувшись с работы и открыв холодильник, он обнаружил, что там тепло.Поворот ручки термостата не помог — холода не появлялось. Поэтому решил не покупать новый блок, что тоже редкость, а сделать электронный термостат на ATtiny85 самостоятельно. С оригинальным терморегулятором разница в том, что датчик температуры находится на полке, а не спрятан в стене. Вдобавок появилось 2 светодиода — сигнализируют о том, что агрегат включен или температура выше верхнего порога.
DIY датчик влажности почвы
DIY датчик влажности почвы
Устройство может использоваться для автоматического полива теплиц, цветочных оранжерей, цветников и комнатных растений.Ниже представлена схема, по которой можно своими руками изготовить простейший датчик (детектор) влажности (или сухости) почвы. Когда грунт подсыхает, подается напряжение силой тока до 90мА, чего вполне достаточно, включаем реле.
Также подходит для автоматического включения капельного орошения во избежание избыточной влажности.
Цепь питания люминесцентной лампы
Цепь питания люминесцентной лампы.
Часто при выходе из строя энергосберегающих ламп в ней перегорает цепь питания, а не сама лампа.Как известно, LDS с перегоревшими нитями накала необходимо запитать выпрямленным сетевым током с помощью беззвездного пускового устройства. В этом случае нити лампы шунтируются перемычкой, на которую подается высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резкое повышение напряжения на ней при пуске без предварительного нагрева электродов. В этой статье мы рассмотрим светильник лдс пусковой своими руками.
USB-клавиатура для планшета
Как-то внезапно я что-то взял и решил купить новую клавиатуру для своего ПК.Стремление к новизне невозможно преодолеть. Изменен цвет фона с белого на черный и цвет букв с красно-черного на белый. Через неделю тяга к новизне естественным образом ушла как вода в песок (старый друг лучше, чем два новых) и обновку отправили в кладовку на хранение — до лучших времен. И вот они пришли за ней, даже не предполагали, что это произойдет так быстро. А поэтому название бы даже лучше подошло не то, что есть, а как подключить usb клавиатуру к планшету.
Так как вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени вам захочется сделать своими руками какой-нибудь полезный электроприбор для дома, машины или дачи. При этом самоделки могут пригодиться не только в повседневной жизни, но и сделанные, например, для продажи. На самом деле процесс сборки простых устройств в домашних условиях не составляет труда. Просто нужно уметь читать схемы и пользоваться инструментом для радиолюбителей.
Что касается первого пункта, прежде чем приступить к изготовлению электронных самоделок своими руками, необходимо научиться читать электрические схемы. В этом случае наш будет хорошим помощником.
Из инструментов для начинающих электриков пригодится паяльник, набор отверток, плоскогубцы и мультиметр. Для сборки некоторых популярных электроприборов может потребоваться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы даже рассказали об одном и том же сварочном аппарате.
Отдельного внимания заслуживают подручные материалы, из которых каждый начинающий электрик сможет своими руками изготовить элементарные электронные самоделки. Чаще всего старые бытовые детали используются при изготовлении простых и полезных электроприборов: трансформаторов, усилителей, проводов и т. Д. В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все необходимые инструменты в гараже или сарай на даче.
Когда все готово — инструменты собраны, запчасти найдены и минимум знаний получен, можно переходить к сборке любительских электронных самоделок в домашних условиях.Здесь вам поможет наш небольшой путеводитель. Каждая предоставленная инструкция включает не только подробное описание каждого из этапов создания электроприборов, но и сопровождается фото примерами, схемами и видеоуроками, наглядно демонстрирующими весь процесс изготовления. Если вы чего-то не поняли, то можете уточнить это под записью в комментариях. Наши специалисты постараются вас своевременно проконсультировать!
Новички-радиолюбители, интересующиеся самостоятельной сборкой схем и ремонтом различных электронных устройств, теряются в море множества терминов и деталей.Между тем, вы можете дать ряд советов, какие знания нужны в первую очередь, какие устройства использовать, как ориентироваться при выборе элементов схемы.
Необходимые знания
Радиолюбителям очень важно:
- знать и понимать основные законы электротехники;
- уметь ориентироваться по схемам;
- четко определяют роль каждого элемента в схеме и визуализируют, как он выглядит.
Важно! Теоретические знания необходимо постоянно подкреплять практикой.
Приборы и устройства
Для сборки радиолюбительских схем и самодельных конструкций необходимо иметь следующие инструменты:
- Паяльник, мощность которого необходимо выбрать среднюю — не более 40 Вт. Более продвинутые мастера задумываются о приобретении паяльной станции;
- Бокорезы. Не слишком массивный инструмент для работы с радиоустройствами;
- оловянно-свинцовый припой, существует в виде проволоки.
Важно! Среди всех устройств основным, а зачастую и единственным, является цифровой мультиметр или аналоговый тестер, с помощью которого можно измерить все основные параметры схемы.
Перед тем, как приступить к сборке простых и интересных радиосхем своими руками, можно потренироваться в демонтаже старого радиооборудования. При этом во время паяльных работ формируются практические навыки.
- В старинных телевизорах на лампах довольно полезная вещь — силовой трансформатор. Его можно использовать во многих радио DIY. Например, собрать зарядное устройство для автомобильного аккумулятора или блок питания для усилителя звука. Главное знать его технические данные;
- В устаревших устройствах радиоэлектроники: телеаппаратура, видеомагнитофоны, обычные магнитофоны, есть целые микросхемы, готовые к использованию.Примером может служить звуковой усилитель, электрическая схема которого построена путем простой сборки компонентов без выполнения травления на печатных платах и т. Д .;
- Регулятор тембра также используется в готовом виде. При этом собранный усилитель звука получит новые возможности: возможность управлять низкочастотным и высокочастотным диапазоном, изменять баланс в стереодинамиках;
- В основном все приборы, выпускаемые радиолюбителями, работают от пяти, девяти и двенадцати вольтных источников питания.Эти старые блоки питания будут самыми полезными.
В качестве корпусов для схем можно использовать любые доступные конструкции или купить готовые, различных размеров и форм. Корпуса от неработающих устройств часто используются для новинок самоделок радиоприемников.
Нерабочий блок питания от компьютера очень ценен, откуда берется:
- много радиодеталей: транзисторы, конденсаторы, диоды, сопротивления, которые пригодятся для собранных устройств;
- радиаторы охлаждения — важный сопутствующий элемент для транзисторов большой мощности;
- провода хорошие;
- Сам корпус — отличное место для размещения новых дизайнов.
Схема способов сборки
- Подвесной монтаж. Простая пайка компонентов по разработанной схеме. Паяные узлы можно устанавливать на опорные площадки. Метод подходит для построения радиосхем из небольшого количества деталей;
- Монтаж на печатной плате — текстолитовой площадке, на которой в качестве соединительных проводов выполнены фольговые дорожки.
Второй способ подразделяется на несколько вариантов:
- Механический.Обрезание дорожек острым предметом, чтобы исключить контактное соединение в ненужных местах;
- Химическая промышленность. С помощью лака или краски по фольге нужно нарисовать необходимую схему. Затем погружают в специальный состав — раствор хлорного железа. После обработки получится проводка, соответствующая чертежу, а все участки без лака удаляются растворением;
- Лазерное глажение.
С каких схем начать
Классический старт для радиолюбителей — собрать базовый детекторный приемник.Схема содержит небольшое количество компонентов, и ее сборку может выполнить каждый. Тогда можно дополнить устройство усилителем звука на транзисторах. С появлением опыта и понимания работа начинается с микросхем.
Большое количество интересных и очень простых вариантов самостайлинга магнитолы с описанием деталей, предоставление схем есть на сайте РадиоКот. Вы можете, например, собрать цветовую музыку, подсветку тактовых импульсов, стереопередатчик и многое другое.Также есть полезные форумы, где можно уточнить сложные вопросы, пообщаться с опытными мастерами.
По мере приобретения навыков будет возрастать интерес к сборке сложных устройств. Электронные самоделки — одно из самых увлекательных занятий для людей любого возраста.
Видео
Сочинения Дэвида Ньюкирка: Слушание радио: Изображения самодельного оборудования 1
Сочинения Дэвида Ньюкирка: Слушание радио: Изображения самодельного оборудования 1Самодельное оборудование Фотографии 1
Регенеродинный приемник BGCD 80, 40 и 30 метров
Рисунок 1 — Блок аудиоусилителя / фильтра и ресивер BGCD Regenerodyne (справа) на полке рабочего места любительского радио W9BRD.Линия AF усилитель / фильтр: 7060 триодный катодный повторитель; переключаемые фильтры нижних частот AF; Пентодный усилитель напряжения 7060; и 12A6 или 7701 лучевой ламповый усилитель мощности. Линейка приемников BGCD: лучевая силовая трубка 12A6 или гибридный смеситель на силовом пентоде 6G6G / 2N7000 MOSFET; Генератор кварцевого преобразования 2N3904; Буфер ПЧ с заземленной сеткой на триоде 12J5; Регенеративный детектор 12A6 с центральной частотой 3,023 МГц; и усилитель звукового напряжения 12J5. Да, это карандаш, конфеты и чайные банки. |
Приемник BGCD Regenerodyne
Рис. 2 — Вид спереди регенеративного приемника BGCD (Байрон Гудман-Клинтон ДеСото) на 80, 40 и 30 метров.Поворотные регуляторы на передней панели: снизу слева направо вверх: TUNING , RF PEAK , RF ATTENUATION и REGENERATION . Тумблер переключает дополнительную емкость регулятора TUNING , обеспечивая общий диапазон настройки ПЧ около & PlusMinus; 4 кГц около 3,023 МГц. BGCD — это эволюционный результат моих экспериментов с супергетеродинным приемником 6A8–6K7–6A8–6F6, описанный Гудманом и ДеСото в «Портативной станции единичного типа», август 01937 г. QST .(Поскольку эти снимки были сделаны, тумблер был удален и заменен — немного правее тумблера — вторым конденсатором настройки, что дает возможность FAST TUNING и SLOW TUNING & PlusMinus; 10 кГц от центра ПЧ .) |
Рис. 3 — Приемник BGCD Regenerodyne сзади. Показаны аудиоусилитель 12J5 (слева) и детекторные лампы 12A6. Как и другие ламповые самодельные приемники W9BRD, BGCD подключается к блоку служебного аудиоусилителя / фильтра для питания и дальнейшего усиления звука до уровня наушников и динамиков.Замыкание на шасси центрального проводника гнезда MUTE почти, но не полностью, приводит к отключению звука приемника во время периодов передачи, чтобы обеспечить высококачественный мониторинг передаваемого сигнала. |
Рис. 4 — План приемника BGCD Regenerodyne, показывающий содержимое смесителя / генератора (слева), ПЧ и контуров настройки детектора. |
Рисунок 5 —Проводка BGCD под шасси.Заземлить форму для конфет просто: просто соскребите желтое покрытие до оголенного металла и припаяйте. Коаксиальный кабель (белый) соединяет регулятор TUNING на передней панели со схемой настройки детектора (третья банка для чая на передней панели!), А также соединяет перемычку схемы настройки микшера с гнездом ANTENNA . |
Рисунок 6 — Смеситель BGCD, 12A6 на этой фотографии, и лампы буферного усилителя 12J5 IF на месте.Вал с прорезями регулирует настройку пластины смесителя. Отверстия в гильзах позволяли подсоединять двухсторонние трубки еще на ранних этапах разработки ствольной коробки. 12A6 объединен с переключателем MOSFET 2N7000, управляемым кварцевым генератором 2N3904 BJT для выполнения функции изменения частоты. Типы 6G6G (восьмеричный 6AK6) и 12A5 также были опробованы в качестве смесительных трубок в BGCD с хорошими результатами; триодный 12SK7 в настоящее время служит буфером ПЧ. |
Схема 2-метрового радиопередатчика для любительских радиолюбителей
В этом посте мы изучаем полную процедуру построения 2-метровой схемы любительского радиопередатчика для любительских радиолюбителей с использованием обычных электронных компонентов и обычного испытательного оборудования.
Что такое 2-метровая радиостанция VHF
2-метровая радиолюбительская полоса частот — это часть радиочастотного диапазона VHF, который включает частоты в диапазоне от 144 МГц до 148 МГц в регионах 2 (север и север) региона Международного союза электросвязи (ITU). Южная Америка плюс Гавайи) и 3 (Азия и Океания) и от 144 МГц до 146 МГц в Регионе 1 МСЭ (Европа, Африка и Россия).
Права авторизации пользователей радиолюбителей включают использование частот в этой конкретной полосе для электросвязи на местном уровне, обычно в пределах около 100 миль (160 км).
Основные характеристики
Этот 2-метровый передатчик выдает около 1,5 Вт в антенну, работает от батареи 12 В, имеет частотную модуляцию и может управляться через кристалл или VFO.
Особое внимание было уделено большей чистоте спектра сигнала, который точно изменяется для обеспечения значительного снижения гармоник ниже 45 дБ.
Входной аудиосигнал может подаваться с кварцевого или динамического микрофона, а выход может использоваться с правильно подобранной антенной от 50 до 75 футов.
Кроме того, он может мгновенно переключаться на неограниченную нагрузку КСВ, которая имеет короткое замыкание или обрыв, без какого-либо повреждения выходного транзистора. Кроме того, поскольку фазовая модуляция заменена частотной модуляцией, вероятность чрезмерного отклонения практически ничтожна.
FM может быть выполнено с помощью пары методов. Самый простой из них — использование варикап-диода на кристалле или VFO. Этот метод требует крошечной дополнительной схемы, но включает в себя отрицательный аспект вероятности чрезмерного отклонения, который может быть более ± 2.5 кГц.
Следующий метод заключается в создании постоянной несущей частоты, которая затем модулируется по фазе и преобразуется в ЧМ путем подстройки АЧ-характеристики.
Фазовая модуляция приводит к увеличению девиации не только за счет амплитуды, но и за счет увеличения AF, в результате чего усилитель звука приобретает падающую характеристику.
Преимущества в том, что о чрезмерном отклонении практически не может быть и речи, отклонение равномерное и даже, разрешение при простом обнаружении наклона довольно легко по сравнению с абсолютной ЧМ.Поэтому для этой 2-метровой схемы передатчика была реализована фазовая модуляция.
Фазовая модуляция требует более низкой основной частоты, когда требуется значительное отклонение от 144 МГц до 146 МГц, и именно поэтому было выбрано от 8,0 до 8,1 МГц, которые могут работать с цепочкой умножителя 18x для достижения предполагаемой рабочей частоты.
Стандартные 2-метровые передатчики любительского диапазона используют BJT, работающие в классе C на ступенях умножения, однако они имеют существенные недостатки.Входной импеданс невероятно мал и зависит от тока, а не от напряжения.
Это приводит к более высокому потреблению через предыдущий каскад, что требует точного согласования предыдущего каскада, если требуется поддерживать добротность каскада, и устранения усиления нежелательных гармоник.
Хотя полевые транзисторы намного менее эффективны, они могут решить эти проблемы, поскольку они комфортно работают в классе C, вызывая генерацию гармоник при более низких токах и благодаря тому, что устройства с высоким входным импедансом работают в зависимости от напряжения.
В результате добротность устранена, нежелательные гармоники скрыты, но при этом обеспечивается ограниченное усиление в желаемых частотных диапазонах. Выход умножителя — это дополнительный полевой транзистор, который работает с током от 10 до 20 мА, обслуживающий стандартный драйвер и усилитель мощности.
Схема модулятора
Более высокий входной импеданс на самом деле обеспечивается Tr1 и C1, как показано на рис. 1, хотя и не критично, но помогает изолировать микрофон, в то время как R1 и C2 действуют как RF-фильтр, с затвором TR1, заземленным через R2.
Этот резистор не имеет значения, и будет достаточно любого значения выше 50 кОм. Tr1 работает как модификатор импеданса, обеспечивая только усиление тока, которое может включать около 30% потерь напряжения.
VR1, подключенный к источнику Tr1, регулирует аудиовыход и, следовательно, отклонение, следуя за источником TR1 в направлении базы Tr2 через C3.
Tr2 обеспечивает усиление по напряжению, и за счет интеграции верхней цепи смещения с ее коллектором достигается некоторый уровень обратной связи, который ограничивает усиление примерно до 100 раз.
R8 и C5 функционируют как развязывающая сеть для модулятора со стороны источника питания и R7, в то время как C6 удерживает ВЧ от выхода модулятора. R6 и C4 обеспечивают некоторую дополнительную подстройку схемы для достижения необходимой характеристики падения звуковых результатов. Текущее требование для модулятора составляет примерно 500 мкА.
Кристаллический осциллятор, усилитель VFO, фазовый модулятор
Мощность, подаваемая на все эти каскады, стабилизируется через D1 и R13 Рис.2. Каскад генератора представляет собой схему генератора Пирса, где можно увидеть кристалл, подключенный между выводами затвора и стока TR3, чтобы гарантировать, что удаление кристалла позволяет открывать затвор для подключения VFO всякий раз, когда Tr3 требуется для работать как усилитель.
VC1 предназначен для перетаскивания кристалла на определенную частоту и не оказывает никакого влияния на VFO. RFC1 препятствует прохождению сигнала к Tr3, позволяя ему пройти через C7 к затвору TR4, который является фазовым модулятором, имеющим R12 в качестве нагрузки.
Выходной сигнал проходит через C10 к цепи умножителя, а обратная связь проходит через C8, генерируя фазовую модуляцию. Аудиосигнал подается на затвор TR3, при этом минимальное требование фазового модулятора — 1 В (размах).
Цепочка умножителя
Транзисторы Tr5, Tr6 и Tr7 на рис. 3 имеют конфигурацию ступеней тройника и удвоителя соответственно.
Эти каскады разработаны с аналогичной компоновкой и используются для резонанса на частотах гармоник. Все эти идентичные ступени работают с токами покоя около 500 мкА.
Если это значение увеличено до 1,5 мА при подключенном РЧ-сигнале, они начинают работать в режиме класса AB. Поскольку полевые транзисторы обеспечивают высокий входной импеданс, выход может быть извлечен из стока, что помогает избежать использования отводов на катушках.
Поскольку предполагается, что нагрузкой можно пренебречь, это позволяет цепи Q оставаться на высоком уровне и гарантирует, что настройка катушек не будет очень сложной.
Настройка выхода усилителя мощности находится в резком диапазоне. Следовательно, VC2 необходимо очень тщательно отрегулировать, чтобы получить наилучшие результаты.
Крошечный металлический экран вокруг L4 необходим, чтобы обратная связь не доходила до L3, что в противном случае может привести к индуцированным колебаниям, отрицательно влияющим на эффективность каскада.
R24 работает как ограничитель тока и генератор обратной связи по напряжению для Tr8.
Драйвер и усилитель мощности
Все эти каскады предназначены для работы в режиме класса C.
Вход Tr9, как показано на рис. 4, настраивается через L4, VC2 и C26. VC2 и C26 позволяют согласовать импеданс для базы TR9 Tr9.RFC2 предоставляет обратный путь постоянного тока.
Общее рассеивание на транзисторе Tr9 с использованием правильно настроенной цепи умножителя и присоединенного динамического кристалла может достигать 300 мВт, что означает, что может потребоваться установка небольшого радиатора с этим транзистором.
Tr10 должен устанавливаться на дорожке со стороны печатной платы. Его входное сопротивление действительно низкое и емкостное.
C28 и VC3 используются для настройки L5 и создания согласования импеданса в базе TR10.RFC4 помогает компенсировать входную емкость, а RFC5 действует как обратный путь постоянного тока.
Учитывая, что Tr10 может рассеивать до 2,5 Вт мощности, может потребоваться большой радиатор для охлаждения этого силового транзистора.
RFC6 предназначен для подавления RF, чтобы гарантировать, что конфигурация выходной цепи, использующая VC4, C30, L6, C31, L7 и VC5, становится исключительно нагрузкой коллектора для TR10. Экранирующий экран, установленный вокруг L7 и VC5, помогает значительно подавить содержание выходных гармоник, и нужно убедиться, что он включен любой ценой.
Как собрать
Схема лучше всего строить на двухсторонней печатной плате, плакированной медью, рис. 5. Желательно, чтобы все инструкции по сборке выполнялись с особой тщательностью. Убедитесь, что каждая точка заземления подключена к верхней части печатной платы.
Все выводы компонентов вставляются до шейки и сохраняются как можно меньшего размера, в то время как удлиненные ножки катушек и резисторов должны быть надлежащим образом заземлены. Катушки должны быть построены с помощью рекомендуемых буровых валов,
После того, как намотка сверла завершена, катушка должна быть натянута на жесткий каркас, затем расстояние между витками должно быть отрегулировано, растягиваясь точно до рекомендованного общая длина бухты.,
Наконец, змеевики должны быть закреплены на месте над формирователями, нанеся очень мягкий слой клея на основе эпоксидной смолы.
Катушки, которые рекомендуется иметь регулируемые железные заглушки, должны быть закреплены в установленном положении с помощью капли расплавленного воска.
Все верхние торцевые отверстия этих катушек должны быть утоплены с помощью подходящего сверла.
Строительство начинается сначала с фиксации печатной платы внутри литого под давлением контейнера и просверливания отверстий для болтов в плате и основании.
Затем начните сборку компонентов путем пайки, как показано на рис. 6, от длинной оси наружу.
Сначала припаяйте экраны на место перед всем, чтобы упростить установку. Кроме того, может быть хорошей идеей перевернуть печатную плату, прикрутить ее к крышке коробки, а затем просверлить отверстия в центре переменных конденсаторов и катушек сверлом №60.
Эти отверстия необходимо увеличить до 6 мм, чтобы обеспечить легкий доступ к соответствующим подстроечным резисторам в процессе окончательной настройки после установки печатной платы внутри коробки.
Радиатор для Tr10 может быть любого стандартного типа, доступного на рынке, но для Tr9 его можно построить вручную, повернув 12-миллиметровый квадрат из меди или белой жести с помощью 5-миллиметрового сверлильного шпинделя, а затем протолкнув его вокруг транзистора.
Как установить
Очистите узел пайки этиловым спиртом, а затем осторожно осмотрите пайку печатной платы и посмотрите, нет ли на ней сухого припоя или закороченных перемычек.
Далее, перед тем, как закрепить его в корпусе, временно подсоедините провода и вставьте кристалл в разъем.Используйте амперметр или любой измеритель тока и подключите его последовательно к плюсу линии питания вместе с последовательным резистором 470 Ом. После этого подключите к выходу экранированную фиктивную нагрузку от 50 до 75 Ом с помощью хорошего измерителя мощности.
Как тестировать
Не присоединяя кристалл, подключите источник питания 12 В и убедитесь, что потребляемый ток не превышает 15 мА, к звуковому каскаду, генератору, фазовому модулятору, стабилитрону и каскаду умножителя покоя.
Если измеритель показывает более 15 мА, это может означать некоторую неисправность в схеме или, возможно, Tr8 нестабилен и колеблется.Лучше всего это можно определить с помощью радиочастотного «сниффера», расположенного рядом с L4, и устранить проблему, соответствующим образом отрегулировав VC2.
После проверки вышеуказанного условия обратите внимание на модулятор и, используя измеритель высокого сопротивления, убедитесь, что напряжение коллектора Tr2 считывает половину напряжения питания по отношению к концу питания R19.
Если вы обнаружите, что это значение превышает 50%, попробуйте увеличить значение R4, пока не будет достигнуто рекомендованное значение, или, наоборот, если показание ниже 1/2 запаса, уменьшите значение R4.
Чтобы добиться еще большей оптимизации, можно использовать осциллограф для настройки значения C6 до тех пор, пока не будет получено напряжение 3 дБ с частотой 3 кГц, по сравнению с откликом 1 кГц. Это можно рассматривать как эквивалент наиболее эффективного спада и хорошей частотной модуляции. Этот тест должен проводиться на базе / эмиттере TR4.
После этого подключите кристалл и проверьте текущую реакцию, вы должны увидеть некоторое увеличение потребления тока. Однако, чтобы защитить выходной транзистор от сильного рассеивания, это потребление тока необходимо отрегулировать, настроив VC4 и VC5 соответствующим образом.
На следующем этапе, чтобы гарантировать, что наш 2-метровый передатчик работает с правильными гармониками, каскад умножителя должен быть оптимизирован путем регулировки стержней сердечников всех переменных индуктивностей, чтобы получить максимальный выходной сигнал на «сниффере». В качестве альтернативы то же самое может быть реализовано путем оптимизации максимального тока, что соответствует правильной оптимизации гармоник для каскада схемы.
Триммер VC2 можно отрегулировать с помощью острого пластикового заостренного предмета, чтобы зафиксировать цепь с оптимальным потреблением тока.
После этого выполните точную настройку триммера VC3, который может незначительно повлиять на настройку VC2, и, следовательно, может потребоваться повторная настройка VC2. Затем регулируйте VC4 и VC5, пока не увидите наилучший возможный выход RF с минимально возможным общим потреблением тока.
После этого может потребоваться повторить этот процесс выравнивания и точной настройки для всех переменных конденсаторов, влияя друг на друга, до тех пор, пока не будет достигнута оптимальная регулировка подстроечных резисторов с максимальной выходной мощностью ВЧ.
Окончательная настройка должна привести к средней выходной мощности 0.75 и 1 Вт в фиктивную нагрузку с общим потребляемым током около 300 мА.
Если у вас есть доступ к КСВ-метру, вы можете подключить схему к антенне с входным кристаллом на мертвой частоте, а затем уточнить настройку с помощью VC4 и VC5 до тех пор, пока не будет измерен оптимальный выход RF, соответствующий минимуму. Считывание КСВ.
После завершения всех этих настроек тестирование с входной аудиомодуляцией не должно вызывать каких-либо изменений в выходном уровне RF. После еще нескольких подтверждений, когда будет достигнута полностью удовлетворительная работа схемы 2-метрового передатчика, плату можно установить в выбранный корпус или литой под давлением корпус и провести дальнейшие испытания, чтобы убедиться, что все в порядке с работой устройства. блок, как было подтверждено ранее.
Список запчастей
Простые самодельные супергерои для 80-метрового любительского радиодиапазона
Что касается ламповых устройств, то когда-то было обычным делом создавать любительские радиоприемники из старых вышедших из употребления радиодеталей. Хотел перенести эту процедуру на транзисторный прибор. Основная идея показанного здесь устройства, разработанная мной, заключалась в том, чтобы построить полезный супергетеродинный приемник с использованием карманного FM / MW или радиочасов. При этом детали должны сниматься преимущественно с таких устройств.
Результирующий коротковолновый приемник имеет на входе каскад автоколебательного микширования, как показано напротив. Он имеет аналогичную структуру, которая долгое время использовалась в транзисторных радиоприемниках среднего диапазона. Напротив, для колебаний используется емкостное деление напряжения вместо индуктивного. В результате, большие емкости включены параллельно, так что емкостные влияния транзистора, которые меняются с температурой окружающей среды, уменьшаются. |
При подходящей конструкции и тщательном выборе размеров, несмотря на простую конструкцию, можно было достичь хорошей стабильности частоты и чувствительности, полностью достаточной для 80-метрового диапазона даже с более короткими антеннами. Но адекватная стабильность SSB могла быть достигнута только с показанной двухконтурной входной фильтрацией и слабой связью между резонансными контурами. С одним резонансным контуром на входе антенна недостаточно развязана с генератором, так что приближение к антенне приводит к изменениям частоты.За смесителем следует двухкаскадный усилитель ПЧ на 455 кГц. Демодулятор служит схеме, как иначе он иногда использовался сам по себе как регенеративный приемник. Аналогичное, но несколько более сложное устройство демодулятора также обнаружено в ранее описанном Göttinger Baby II . Таким образом, с помощью только одного транзистора можно демодулировать либо AM, либо SSB и CW сигналы. Для AM фиксированная обратная связь отключена для устройства, которое я разработал. С более сильной обратной связью транзистор действует как своего рода автоколебательный детектор продукта.При выборе этого устройства детектор ПЧ практически не участвует. Это достигается в первую очередь тремя одноконтурными фильтрами ПЧ. Бестрансформаторный двухтактный усилитель мощности, аудиоусилитель, следующий за детектором, практически не имеет особых особенностей.
Правильное подключение автоколебательного детектора продукта к выходу ПЧ очень важно, так как он не только перегружается, если сигнал слишком сильный, но и имеет тенденцию к синхронизации. Этот эффект становится меньше, когда частота BFO, необходимая для односимвольного приема USB или LSB и CW, регулируется в соответствии с наклоном кривой пропускания ПЧ.Значение 1 пФ, указанное на диаграмме, следует рассматривать как ориентировочное. Он состоит из двухпроводной ленты компьютерного ленточного кабеля, которую я сокращал по частям, пока не был найден самый дешевый компромисс между приемом с низким уровнем искажений и достаточной громкостью.
Для этого приемника в намотке катушек не было необходимости: входные цепи состояли из фильтров ПЧ 10,7 МГц для приема ЧМ-радиовещания, фильтры 455 кГц и схему демодулятора можно было получить от части АМ старых радиочасов.Для схемы генератора я нашел подходящую катушку в своем ящике для рукоделия. Однако здесь также следует использовать фильтр ПЧ 10,7 МГц, если внутренний конденсатор на нижней стороне пробит. Устройство было установлено в корпусе из припаянных, покрытых медью эпоксидных плат, которые в других случаях используются в качестве основного материала для производства печатных плат. Изготовленный таким образом корпус был окончательно окрашен эмалевой краской и промаркирован переводными буквами. Приемник, несмотря на его простоту и отсутствие необходимости в каких-либо специальных радиокомпонентах, имеет удивительно хорошие характеристики приема.Например, они не только намного лучше, чем у простого приемника обратной связи. Несмотря на очень простую схему демодулятора, возможен очень полезный прием SBB. Таким образом, качество приема составляет, например, также намного лучше, как с простыми суперхетами с BFO, у которых нет детектора продукта. По качеству превосходит даже Heathkit GR-64 , настроенный на 80-метровые частоты, а также Koyo KTR-1770 .
Удлинитель для диапазонов 40 м и 20 м
С помощью простой схемы небольшого аксессуара, показанного ниже, я также смог принимать с помощью устройства любительские радиостанции, которые передают в диапазоне 40 м и 20 м.Это преобразователь с двухзатворным MOSFET, который работает как автоколебательный смеситель. Я использовал кристалл 10,595 МГц от старого радио CB. Последовательный триммер можно использовать с последовательным триммером в указанной цепи, чтобы легко поднять его до частоты колебаний 10,6 МГц. Диапазон 40 м, который в то время был разрешен только до 7,1 МГц, мог полностью приниматься в Германии. Однако в диапазоне 20 м диапазон, который можно было принимать таким образом, начинался с 14,1 МГц, поэтому диапазон телеграфа не был покрыт.Чтобы иметь возможность охватывать весь диапазон 40 м и 20 м (6,8 … 7,2 МГц и 14,0 … 14,4 МГц), мне пришлось спроектировать приемник для диапазона от 3,4 до 3,8 МГц.
Таким образом, любительский радиоприемник на 80 м, 40 м и 20 м может быть настроен с соответствующими переключателями. При включенном преобразователе выбор диапазона 20 м / 40 м производился только соответствующей настройкой переменного конденсатора 2×200 пФ. Входная чувствительность неплохая благодаря использованию двухзатворного полевого МОП-транзистора.Если используется хорошая антенна, прием DX в этих частотных диапазонах вообще не проблема. Выход преобразователя подключен к верхней точке входной цепи 80-метрового приемника. |
Модернизированный самодельный супергет длиной 80 м
Измеренная на серьезных радиоприемниках и любительских радиоприемниках скромная избирательность моего 80-метрового мини-супер может быть значительно улучшена с помощью керамического фильтра вместо исключительного использования LC-кругов в части ПЧ.Типы LF-B4 или CFW455IT с полосой пропускания прибл. Для этого подходят 4 кГц. Мне удалось добиться идеальной полосы пропускания SSB и отличной кривой передачи с двумя последовательно включенными керамическими фильтрами на 6 кГц, один для 455 кГц и один для 450 кГц. Вопреки тому, что я подозревал (453 кГц — 542 кГц = 1 кГц), полоса пропускания составляет 2 кГц с центральной частотой 452,5 кГц. Я еще не исследовал, связано ли это с допусками используемых фильтров. С слишком большим седлом и симметричной переходной кривой достигается хороший наклон.Эта комбинация фильтров также должна хорошо работать для передатчиков SSB. Часть IF, показанная ниже, находится в моем новом 80-метровом мини-супергетике, в котором я использовал опыт первого устройства.
Здесь я также улучшил поведение регулировки усиления в секции IF. За счет дополнительного каскада управляющего усилителя и, кроме того, за счет изменения напряжения коллектора первого транзистора промежуточной частоты достигается большой диапазон регулирования АРУ. При подключении электролитического конденсатора емкостью 1000 мкФ АРУ можно переключить на медленную, что намного приятнее при прослушивании SSB-кругов с частично очень сильными сигналами, это дает лучшее звуковое впечатление.
Хотя характеристики автоколебательных смесителей, как правило, недооцениваются, они определенно не являются оптимальными. Поэтому в моем новом 80-метровом приемнике я использую входную часть с двухзатворным MOSFET в микшере и отдельный генератор с переходным полевым транзистором. Даже в этом случае сложность схемы без использования интегральных схем остается довольно низкой. Расположение чрезвычайно чувствительно: уже с тестовым шнуром длиной примерно 30 см в качестве антенны можно принимать в зависимости от условий распространения в Германии или более сильных любительских радиостанциях в Европе.В сочетании с настоящей антенной он показывает чувствительность входа, сравнимую с доступными на рынке трансиверами. Как известно, в диапазоне 80 м предусилитель RF не нужен. Это в первую очередь ухудшило бы характеристики овердрайва микшера. |
Как показано на схеме, я снова использую готовые фильтры ПЧ и избавляю меня от работы обмотки катушки. Два входных резонансных контура связаны сильнее, чем в первом контуре. Ступенчатая регулировка приводит к примерно одинаковой чувствительности во всем диапазоне, так что синхронная настройка предварительного выбора исключается.
Новое устройство также имеет улучшенный детектор продукта, который, в свою очередь, работает с двухзатворным полевым МОП-транзистором. BFO работает как отдельный генератор с переходным полевым транзистором, как и во входной цепи.
Новый приемник, состоящий из показанной входной части, усилителя ПЧ, детектора продукта и аудиоусилителя, я установил в корпусе старого мобильного устройства CB. Он обеспечивает очень четкий прием даже в сложных условиях приема, например, при приеме сигнала. случай конкурсов.Качество сопоставимо с рядом серийно выпускаемых устройств или даже может превосходить некоторые из них. На мой взгляд звук намного лучше, как с лестничным кварцевым фильтром. Несмотря на превосходную селективность, он менее резкий, как у многих устройств, и вполне сопоставим с Drake R4-B в настройке полосы пропускания 2,4 кГц. |
Выходные для радиолюбителей, посвященные разговору с луной
Один из них расположен на холме с видом на кампус Стэнфордского университета и будет служить командным центром для мероприятий на выходных.Антенна шириной 150 футов, принадлежащая федеральному правительству, известная просто как Блюдо, будет оснащена специальным оборудованием и компьютеризированной системой слежения, чтобы поддерживать мощный сфокусированный сигнал на Луне.
Радиотарелка в Стэнфорде достаточно мощная, чтобы отражать сигналы от Луны, что непросто. Кредит … Джим Уилсон / The New York TimesНесколько радиолюбителей работали над этой структурой в течение последних нескольких недель, собираясь в кучу. внутри центрального командного центра под возвышающейся ржавой паутиной металла.Они собрались вокруг крутящейся аппаратуры связи, как у костра, и удовлетворенно фыркнули, когда через 2,5 секунды их «привет» отскочило от Луны.
Есть еще один момент, выходящий за рамки задачи «потому что это есть».
Радиолюбители также надеются вдохновить молодых любителей высоких технологий. «Люди думают о радиолюбительстве как о чем-то, что дедушка делал в подвале, пока курил и разговаривал с людьми по всему миру», — сказал Пэт Бартелоу, организовавший всемирный лунный скачок под названием Echoes of Apollo.«Я думаю, что лунный отскок сохраняет экзотичность и сложность, которые могут зацепить некоторых людей и привнести радиолюбители в современную эпоху».
Для создания самодельного радиоприемника, способного поразить Луну, могут потребоваться годы настройки пользовательских компонентов. Установка стоит от 200 до 2000 долларов.
Военные США начали отражать радиосигналы от Луны в 1950-х годах для связи на большие расстояния, когда другие методы передачи были затруднены из-за атмосферных нарушений. К середине 1960-х операторы больших тарелок начали создавать любительские системы, способные перемещаться по Луне.В 1964 году Майкл Стаал совершил подвиг, соединив одну организацию в Стэнфорде с другой в Австралии.
«Я очень быстро прославился», — сказал г-н Стаал, который продает антенны радиолюбителям.
Лунные вышибалы часто проводят соревнования, в которых они должны охотиться на разных частотах и одновременно отправлять и получать сигнал с другой станцией, регистрируя свои действия для просмотра.