+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Обозначение транзисторов на принципиальных схемах. Маркировка транзисторов. Классификация транзисторов.

Различают транзисторы биполярные и полевые. Биполярный транзистор — трёхэлектродный полупроводниковый прибор. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы, n (negative) — электронный тип примесной проводимости, p (positive) — дырочный. В биполярном транзисторе основными носителями являются и электроны, и дырки. Схематическое устройство транзистора показано на рисунке 6.
Электрод, подключённый к центральному слою, называют базой, элек-троды, подключённые к внешним слоям, называют коллектором и эмитте-ром. На простейшей схеме различия между коллектором и эмиттером не видны. Главное отличие коллектора — большая площадь p-n перехода. Для работы транзистора абсолютно необходима малая толщина базы.

Рис. 6


Рис. 7
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).

Полевые транзисторы имеют большое входное сопротивление. Подразделяются на полевые транзисторы 1) с управляющим p-n переходом (рис. 7а) и 2) с изолированным затвором (рис. 7б).
Полевые транзисторы с изолированным затвором в свою очередь подразделяются на транзисторы 1) со встроенным каналом и 2) с индуцированным каналом.
Транзисторы, как правило, имеют три вывода. Вывод, от которого в канал приходят основные носители заряда, называется истоком. Вывод, к которому носители заряда приходят из канала, называется стоком. Вывод, на который подается управляющее напряжение относительно истока или стока, называется затвором. Полевыми транзисторы называют потому, что управление током в выходной цепи транзистора осуществляется электрическим полем во входной цепи.
Канальными транзисторы называют потому, что ток в выходной цепи транзистора протекает через его канал. Униполярными транзисторы называют потому, что в работе транзистора принимают носители одной полярности. В условных обозначениях полевых транзисторов на принципиальных схемах стрелка направлена к каналу n-типа, или от канала p-типа. Индуцированный (наведенный электрическим полем) канал, обозначается пунктиром (рис. 7в).


Рис. 8 Цветовая маркировка транзисторов

Рис. 9. Условное графическое обозначение биполярного транзистора струк-туры n-p-n

Рис. 10.Условное графическое обозначение биполярного транзистора структуры p-n-p

Рис. 11. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом n-типа

Рис.12. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом p-типа

Рис.13. Условное графическое обозначение полевого транзистора со встро-енным p-каналом обедненного типа.

Рис. 14. Условное графическое обозначение полевого транзистора со встро-енным n-каналом обогащенного типа.

Рис. 15. Условное графическое обозначение полевого транзистора с индуцированным p-каналом обогащенного типа.

Рис. 16 — Условное графическое обозначение полевого транзистора с индуцированным n-каналом обогащенного типа.

Рис. 17. Обозначение транзистора с барьером Шотки (транзистор Шотки).

Рис. 18. Обозначение многоэмиттерного транзистора.
Транзистор с барьером Шотки и многоэмиттерный транзистор встречаются лишь в микроэлектронике.

Рис. 19. Условное графическое обозначение фототранзистора

Как выглядит транзистор фото

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу.

Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер

), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – «сборщик» (глагол Collect – «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base – «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых.

Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – «сборщик» (глагол Collect – «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base – «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности




На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Полевые транзисторы


Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком



Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


Схематическое изображение однопереходных транзисторов

Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

Обсудить статью ТРАНЗИСТОРЫ

Простое акустическое реле на пьезоэлементе.

СХЕМА ЖУЧКА ДЛЯ ПРОСЛУШКИ

Простейшая схема радиожучка на одном транзисторе, для работы в паре с ФМ приёмником.

Графическое обозначение радиодеталей на схемах

AM амплитудная модуляция
АПЧ автоматическая подстройка частоты
АПЧГ автоматическая подстройка частоты гетеродина
АПЧФ автоматическая подстройка частоты и фазы
АРУ автоматическая регулировка усиления
АРЯ автоматическая регулировка яркости
АС акустическая система
АФУ антенно-фидерное устройство
АЦП аналого-цифровой преобразователь
АЧХ амплитудно-частотная характеристика
БГИМС большая гибридная интегральная микросхема
БДУ беспроводное дистанционное управление
БИС большая интегральная схема
БОС блок обработки сигналов
БП блок питания
БР блок развертки
БРК блок радиоканала
БС блок сведения
БТК блокинг-трансформатор кадровый
БТС блокинг-трансформатор строчный
БУ блок управления
БЦ блок цветности
БЦИ блок цветности интегральный (с применением микросхем)
ВД видеодетектор
ВИМ время-импульсная модуляция
ВУ видеоусилитель; входное (выходное) устройство
ВЧ высокая частота
Г гетеродин
ГВ головка воспроизводящая
ГВЧ генератор высокой частоты
ГВЧ гипервысокая частота
ГЗ генератор запуска; головка записывающая
ГИР гетеродинный индикатор резонанса
ГИС гибридная интегральная схема
ГКР генератор кадровой развертки
ГКЧ генератор качающейся частоты
ГМВ генератор метровых волн
ГПД генератор плавного диапазона
ГО генератор огибающей
ГС генератор сигналов
ГСР генератор строчной развертки
гсс генератор стандартных сигналов
гг генератор тактовой частоты
ГУ головка универсальная
ГУН генератор, управляемый напряжением
Д детектор
дв длинные волны
дд дробный детектор
дн делитель напряжения
дм делитель мощности
дмв дециметровые волны
ДУ дистанционное управление
ДШПФ динамический шумопонижающий фильтр
ЕАСС единая автоматизированная сеть связи
ЕСКД единая система конструкторской документации
зг генератор звуковой частоты; задающий генератор
зс замедляющая система; звуковой сигнал; звукосниматель
ЗЧ звуковая частота
И интегратор
икм импульсно-кодовая модуляция
ИКУ измеритель квазипикового уровня
имс интегральная микросхема
ини измеритель линейных искажений
инч инфранизкая частота
ион источник образцового напряжения
ип источник питания
ичх измеритель частотных характеристик
к коммутатор
КБВ коэффициент бегущей волны
КВ короткие волны
квч крайне высокая частота
кзв канал записи-воспроизведения
КИМ кодо-импульсная модуляции
кк катушки кадровые отклоняющей системы
км кодирующая матрица
кнч крайне низкая частота
кпд коэффициент полезного действия
КС катушки строчные отклоняющей системы
ксв коэффициент стоячей волны
ксвн коэффициент стоячей волны напряжения
КТ контрольная точка
КФ катушка фокусирующая
ЛБВ лампа бегущей волны
лз линия задержки
лов лампа обратной волны
лпд лавинно-пролетный диод
лппт лампово-полупроводниковый телевизор
м модулятор
MA магнитная антенна
MB метровые волны
мдп структура металл-диэлектрик-полупроводник
МОП структура металл-окисел-полупроводник
мс микросхема
МУ микрофонный усилитель
ни нелинейные искажения
нч низкая частота
ОБ общая база (включение транзистора по схеме с общей базой)
овч очень высокая частота
ои общий исток (включение транзистора *по схеме с общим истоком)
ок общий коллектор (включение транзистора по схеме с обшим коллектором)
онч очень низкая частота
оос отрицательная обратная связь
ОС отклоняющая система
ОУ операционный усилитель
ОЭ обший эмиттер (включение транзистора по схеме с общим эмиттером)
ПАВ поверхностные акустические волны
пдс приставка двухречевого сопровождения
ПДУ пульт дистанционного управления
пкн преобразователь код-напряжение
пнк преобразователь напряжение-код
пнч преобразователь напряжение частота
пос положительная обратная связь
ППУ помехоподавляющее устройство
пч промежуточная частота; преобразователь частоты
птк переключатель телевизионных каналов
птс полный телевизионный сигнал
ПТУ промышленная телевизионная установка
ПУ предварительный усили^егіь
ПУВ предварительный усилитель воспроизведения
ПУЗ предварительный усилитель записи
ПФ полосовой фильтр; пьезофильтр
пх передаточная характеристика
пцтс полный цветовой телевизионный сигнал
РЛС регулятор линейности строк; радиолокационная станция
РП регистр памяти
РПЧГ ручная подстройка частоты гетеродина
РРС регулятор размера строк
PC регистр сдвиговый; регулятор сведения
РФ режекторный или заграждающий фильтр
РЭА радиоэлектронная аппаратура
СБДУ система беспроводного дистанционного управления
СБИС сверхбольшая интегральная схема
СВ средние волны
свп сенсорный выбор программ
СВЧ сверхвысокая частота
сг сигнал-генератор
сдв сверхдлинные волны
СДУ светодинамическая установка; система дистанционного управления
СК селектор каналов
СКВ селектор каналов всеволновый
ск-д селектор каналов дециметровых волн
СК-М селектор каналов метровых волн
СМ смеситель
енч сверхнизкая частота
СП сигнал сетчатого поля
сс синхросигнал
сси строчный синхронизирующий импульс
СУ селектор-усилитель
сч средняя частота
ТВ тропосферные радиоволны; телевидение
твс трансформатор выходной строчный
твз трансформатор выходной канала звука
твк трансформатор выходной кадровый
ТИТ телевизионная испытательная таблица
ТКЕ температурный коэффициент емкости
тки температурный коэффициент индуктивности
ткмп температурный коэффициент начальной магнитной проницаемости
ткнс температурный коэффициент напряжения стабилизации
ткс температурный коэффициент сопротивления
тс трансформатор сетевой
тц телевизионный центр
тцп таблица цветных полос
ТУ технические условия
У усилитель
УВ усилитель воспроизведения
УВС усилитель видеосигнала
УВХ устройство выборки-хранения
УВЧ усилитель сигналов высокой частоты
УВЧ ультравысокая частота
УЗ усилитель записи
УЗЧ усилитель сигналов звуковой частоты
УКВ ультракороткие волны
УЛПТ унифицированный ламповополупроводниковый телевизор
УЛЛЦТ унифицированный лампово полупроводниковый цветной телевизор
УЛТ унифицированный ламповый телевизор
УМЗЧ усилитель мощности сигналов звуковой частоты
УНТ унифицированный телевизор
УНЧ усилитель сигналов низкой частоты
УНУ управляемый напряжением усилитель.
УПТ усилитель постоянного тока; унифицированный полупроводниковый телевизор
УПЧ усилитель сигналов промежуточной частоты
УПЧЗ усилитель сигналов промежуточной частоты звук?
УПЧИ усилитель сигналов промежуточной частоты изображения
УРЧ усилитель сигналов радиочастоты
УС устройство сопряжения; устройство сравнения
УСВЧ усилитель сигналов сверхвысокой частоты
УСС усилитель строчных синхроимпульсов
УСУ универсальное сенсорное устройство
УУ устройство (узел) управления
УЭ ускоряющий (управляющий) электрод
УЭИТ универсальная электронная испытательная таблица
ФАПЧ фазовая автоматическая подстройка частоты
ФВЧ фильтр верхних частот
ФД фазовый детектор; фотодиод
ФИМ фазо-импульсная модуляция
ФМ фазовая модуляция
ФНЧ фильтр низких частот
ФПЧ фильтр промежуточной частоты
ФПЧЗ фильтр промежуточной частоты звука
ФПЧИ фильтр промежуточной частоты изображения
ФСИ фильтр сосредоточенной избирательности
ФСС фильтр сосредоточенной селекции
ФТ фототранзистор
ФЧХ фазо-частотная характеристика
ЦАП цифро-аналоговый преобразователь
ЦВМ цифровая вычислительная машина
ЦМУ цветомузыкальная установка
ЦТ центральное телевидение
ЧД частотный детектор
ЧИМ частотно-импульсная модуляция
чм частотная модуляция
шим широтно-импульсная модуляция
шс шумовой сигнал
эв электрон-вольт (е • В)
ЭВМ. электронная вычислительная машина
эдс электродвижущая сила
эк электронный коммутатор
ЭЛТ электронно-лучевая трубка
ЭМИ электронный музыкальный инструмент
эмос электромеханическая обратная связь
ЭМФ электромеханический фильтр
ЭПУ электропроигрывающее устройство
ЭЦВМ электронная цифровая вычислительная машина

Условное графическое обозначение транзистора. Секреты зарубежных радиосхем

Первый транзистор

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs ).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте .

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Н ет»! «Н ет» – значит p-n -p (П-Н -П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База ), Э (Эмиттер ), К (Коллектор ). На зарубежных схемах вывод коллектора помечают буквой C , это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B , от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E , от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q . В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T . Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Теперь давайте узнаем о том, какие бывают полевые транзисторы. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной. Сейчас в большей степени используются приборы с изолированным затвором, о типах полевых транзисторов и их особенностях сегодня мы и поговорим. В статье я буду проводить сравнение с биполярными транзисторами, в отдельных местах.

Определение

Полевой транзистор — это полупроводниковый полностью управляемый ключ, управляемый электрическим полем. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током. Электрическое поле создается напряжением, приложенным к затвору относительно истока. Полярность управляющего напряжения зависит от типа канала транзистора. Здесь прослеживается хорошая аналогия с электронными вакуумными лампами.

Другое название полевых транзисторов — униполярные. «УНО» — значит один. В полевых транзисторах в зависимости от типа канала ток осуществляется только одним типом носителей дырками или электронами. В биполярных транзисторах ток формировался из двух типов носителей зарядов — электронов и дырок, независимо от типа приборов. Полевые транзисторы в общем случае можно разделить на:

    транзисторы с управляющим p-n-переходом;

    транзисторы с изолированным затвором.

И те и другие могут быть n-канальными и p-канальными, к затвору первых нужно прикладывать положительное управляющее напряжение для открытия ключа, а для вторых — отрицательное относительно истока.

У всех типов полевых транзисторов есть три вывода (иногда 4, но редко, я встречал только на советских и он был соединен с корпусом).

1. Исток (источник носителей заряда, аналог эмиттера на биполярном).

2. Сток (приемник носителей заряда от истока, аналог коллектора биполярного транзистора).

3. Затвор (управляющий электрод, аналог сетки на лампах и базы на биполярных транзисторах).

Транзистор с управляющим pn-переходом

Транзистор состоит из таких областей:

4. Затвор.

На изображении вы видите схематическую структуру такого транзистора, выводы соединены с металлизированными участками затвора, истока и стока. На конкретной схеме (это p-канальный прибор) затвор — это n-слой, имеет меньше удельное сопротивление, чем область канала (p-слой), а область p-n-перехода в большей степени расположена в p-области по этой причине.

а — полевой транзистор n-типа, б — полевой транзистор p-типа

Чтобы легче было запомнить, вспомните обозначение диода, где стрелка указывает от p-области в n-область. Здесь также.

Первое состояние — приложим внешнее напряжение.

Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Можно провести аналогию с нормально-замкнутым ключом. Этот ток называется Iснач или начальный ток стока при Uзи=0.

Полевой транзистор с управляющим p-n-переходом, без приложенного управляющего напряжения к затвору является максимально открытым.

Напряжение к стоку и истоку прикладывается таким образом:

Через исток вводятся основные носители зарядов!

Это значит, что если транзистор p-канальный, то к истоку подключают положительный вывод источника питания, т.к. основными носителями являются дырки (положительные носители зарядов) — это так называемая дырочная проводимость. Если транзистор n-канальный к истоку подключают отрицательный вывод источника питания, т.к. в нем основными носителями заряда являются электроны (отрицательные носители зарядов).

Исток — источник основных носителей заряда.

Вот результаты моделирования такой ситуации. Слева расположен p-канальный, а справа n-канальный транзистор.

Второе состояние — подаём напряжение на затвор

При подаче положительного напряжения на затвор относительно истока (Uзи) для p-канального и отрицательное для n-канального, он смещается в обратном направлении, область p-n-перехода расширяется в сторону канала. В резльтате чего ширина канала уменьшается, ток снижается. Напряжение затвора, при котором ток через ключ перестает протекать называется, напряжением отсечки.

Достигнуто напряжение отсечки, и ключ полностью закрыт. На картинке с результатами моделирования отображено такое состояние для p-канального (слева) и n-канального (справа) ключа. Кстати на английском языке такой транзистор называется JFET.

Рабочий режим транзистора при напряжение Uзи либо нулевое, либо обратное. За счет обратного напряжения можно «прикрывать транзистор», используется в усилителях класса А и прочих схемах где нужно плавное регулирование.

Режим отсечки наступает, когда Uзи=Uотсечки для каждого транзистора оно своё, но в любом случае прикладывается в обратном направлении.

Характеристики, ВАХ

Выходной характеристикой называют график, на котором изображена зависимость тока стока от Uси (приложенного к выводам стока и истока), при различных напряжениях затвора.

Можно разбить на три области. Вначале (в левой части графика) мы видим омическую область — в этом промежутке транзистор ведет себя как резистор, ток возрастает почти линейно, доходя до определенного уровня, переходит в область насыщения (в центре графика).

В правой части график мы видим, что ток опять начинает расти, это область пробоя, здесь транзистор находиться не должен. Самая верхняя ветвь изображенная на рисунке — это ток при нулевом Uзи, мы видим, что ток здесь самый большой.

Чем больше напряжение Uзи, тем меньше ток стока. Каждая из ветвей отличается на 0.5 вольта на затворе. Что мы подтвердили моделированием.

Здесь изображена стоко-затворная характеристика, т.е. зависимость тока стока от напряжения на затворе при одинаковом напряжении стока-исток (в данном примере 10В), здесь шаг сетки также 0.5В, мы опять видим что чем ближе напряжение Uзи к 0, тем больший ток стока.

В биполярных транзисторах был такой параметр как коэффициент передачи тока или коэффициент усиления, он обозначался как B или h31э или Hfe. В полевых же для отображения способности усиливать напряжение используется крутизна обозначается буквой S

То есть крутизна показывает, насколько миллиАмпер (или Ампер) растёт ток стока при увеличении напряжения затвор-исток на количество Вольт при неизменяемом напряжении сток-исток. Её можно вычислить исходя из стоко-затворной характеристики, на приведенном выше примере крутизна равняется порядка 8 мА/В.

Схемы включения

Как и у биполярных транзисторов есть три типовых схемы включения:

1. С общим истоком (а). Используется чаще всех, даёт усиление по току и мощности.

2. С общим затвором (б). Редко используется, низкое входное сопротивления, усиления нет.

3. С общим стоком (в). Усиление по напряжению близко к 1, большое входное сопротивление, а выходное низкое. Другое название — истоковый повторитель.

Особенности, преимущества, недостатки

    Главное преимущество полевого транзистора высокое входное сопротивление . Входное сопротивление это отношения тока к напряжению затвор-исток. Принцип действия лежит в управлении с помощью электрического поля, а оно образуется при приложении напряжения. То есть полевые транзисторы управляются напряжением .

  • практически не потребляет тока управления, это снижает потери управления, искажения сигнала, перегрузку по току источника сигнала…
  • В среднем частотные характеристики полевых транзисторов лучше, чем у биполярных , это связано с тем, что нужно меньше времени на «рассасывание» носителей заряда в областях биполярного транзистора. Некоторые современные биполярные транзисторы могут и превосходить полевые, это связано с использованием более совершенных технологий, уменьшения ширины базы и прочего.

    Низкий уровень шумов у полевых транзисторов обусловлен отсутствием процесса инжекции зарядов, как у биполярных.

    Стабильность при изменении температуры.

    Малое потребление мощности в проводящем состоянии — больший КПД ваших устройств.

Простейший пример использования высокого входного сопротивление — это приборы согласователи для подключения электроакустических гитар с пьезозвукоснимателями и электрогитар с электромагнитными звукоснимателями к линейным входам с низким входным сопротивлением.

Низкое входное сопротивление может вызвать просадки входного сигнала, исказив его форму в разной степени в зависимости от частоты сигнала. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Вот простейшая схема такого устройства. Подойдет для подключения электрогитар в линейный вход аудио-карты компьютера. С ней звук станет ярче, а тембр богаче.

Главным недостатком является то, что такие транзисторы боятся статики. Вы можете взять наэлектризованными руками элемент, и он тут же выйдет из строя, это и есть следствие управления ключом с помощью поля. С ними рекомендуют работать в диэлектрических перчатках, подключенным через специальный браслет к заземлению, низковольтным паяльником с изолированным жалом, а выводы транзистора можно обвязать проволокой, чтобы закоротить их на время монтажа.

Современные приборы практически не боятся этого, поскольку по входу в них могут быть встроены защитные устройства типа стабилитронов, которые срабатывают при превышении напряжения.

Иногда у начинающих радиолюбителей опасения доходят до абсурда, типа надевания на голову шапочек из фольги. Всё описанное выше хоть и является обязательным к исполнению, но не соблюдение каких либо условий не гарантирует выход из строя прибора.

Полевые транзисторы с изолированным затвором

Этот вид транзисторов активно используется в качестве полупроводниковых управляемых ключей. Причем работают они чаще всего именно в ключевом режиме (два положения «вкл» и «выкл»). У них есть несколько названий:

1. МДП-транзистор (метал-диэлектрик-полупроводник).

2. МОП-транзистор (метал-окисел-полупроводник).

3. MOSFET-транзистор (metal-oxide-semiconductor).

Запомните — это лишь вариации одного названия. Диэлектрик, или как его еще называют окисел, играет роль изолятора для затвора. На схеме ниже изолятор изображен между n-областью около затвора и затвором в виде белой зоны с точками. Он выполнен из диоксида кремния.

Диэлектрик исключает электрический контакт между электродом затвора и подложкой. В отличие от управляющего p-n-перехода он работает не на принципе расширения перехода и перекрытия канала, а на принципе изменения концентрации носителей заряда в полупроводнике под действием внешнего электрического поля. МОП-транзисторы бывают двух типов:

1. Со встроенным каналом.

2. С индуцированным каналом

На схеме вы видите транзистор с встроенным каналом. Из неё уже можно догадаться, что принцип его работы напоминает полевой транзистор с управляющим p-n-переходом, т.е. когда напряжение затвора равно нулю — ток протекает через ключ.

Около истока и стока созданы две области с повышенным содержанием примесных носителей заряда (n+) с повышенной проводимостью. Подложкой называется основание P-типа (в данном случае).

Обратите внимание, что кристалл (подложка) соединена с истоком, на многих условных графических обозначениях он так и рисуется. При повышении напряжения на затворе в канале возникает поперечное электрическое поле, оно отталкивает носители зарядов (электроны) и канал закрывается при достижении порогового Uзи.

При подаче отрицательного напряжения затвор-исток ток стока падает, транзистор начинает закрывать — это называется режим обеднения.

При подаче положительного напряжения на затвор-исток происходит обратный процесс — электроны притягиваются, ток возрастает. Это режим обогащения.

Всё вышесказанное справедливо для МОП-транзисторов со встроенным каналом N-типа. Если канал p-типа все слова «электроны» заменяются на «дырки», полярности напряжения изменяются на противоположные.

Согласно datasheet на этот транзистор пороговое напряжение затвор-исток у нас в районе одного вольта, а типовое его значение — 1.2 В, проверим это.

Ток стал в микроамперах. Если еще немного повысить напряжение, он исчезнет полностью.

Я выбрал транзистор наугад, и мне попался достаточно чувствительный прибор. Попробую изменить полярность напряжения, чтобы на затворе был положительный потенциал, проверим режим обогащения.

При напряжении на затворе 1В ток увеличился в четыре раза, по сравнению с тем, что был при 0В (первая картинка в этом разделе). Отсюда следует, что в отличие от предыдущего типа транзисторов и биполярных транзисторов он без дополнительной обвязки может работать как на повышение тока, так и на понижение. Это заявление весьма грубо, но в первом приближении имеет право на существование.

Здесь всё практически так же как и в транзисторе с управляющим переходом, за исключением наличия режима обогащения в выходной характеристике.

На стоко-затворной характеристике четко видно, что отрицательное напряжение вызывает режим обеднение и закрытие ключа, а положительное напряжение на затворе — обогащение и большее открытие ключа.

МОП-транзисторы с индуцированным каналом не проводят ток при отсутствии напряжения на затворе, вернее ток есть, но он крайне мал, т.к. это обратный ток между подложкой и высоколегированными участками стока и истока.

Полевой транзистор с изолированным затвором и индуцированным каналом аналог нормально-разомкнутого ключа, ток не протекает.

При наличии напряжения затвор-исток, т.к. мы рассматриваем n-тип индуцируемого канала то напряжение положительное, под действием поля притягиваются отрицательные носители зарядов в область затвора.

Так появляется «коридор» для электронов от истока к стоку, таким образом, появляется канал, транзистор открывается, и ток через него начинает протекать. Подложка у нас p-типа, в ней основными являются положительные носители зарядов (дырки), отрицательных носителей крайне мало, но под действием поля они отрываются от своих атомов, и начинается их движение. Отсюда отсутствие проводимости при отсутствии напряжения.

Выходная характеристика в точности повторяет такую же у предыдущих разница заключается лишь в том, что напряжения Uзи становятся положительными.

Стоко-затворная характеристика показывает то же самое, отличия опять-таки в напряжениях на затворе.

При рассмотрении вольтамперных характеристик крайне важно внимательно смотреть на величины, прописанные по осям.

На ключ подали напряжение 12 В, а на затворе у нас 0. Ток через транзистор не протекает.

Это значит, что транзистор полностью открыт, если бы его не было, ток в этой цепи составил бы 12/10=1.2 А. В дальнейшем я изучал как работает этот транзистор, и выяснил, что на 4-х вольтах он начинает открываться.

Добавляя по 0.1В, я заметил, что с каждой десятой вольта ток растёт всё больше и больше, и уже к 4.6 Вольта транзистор практически полностью открыт, разница с напряжением на затворе в 20В в токе стока всего лишь 41 мА, при 1.1 А — это чепуха.

Этот эксперимент отражает то, что транзистор с индуцированным каналом открывается только при достижении порогового напряжения, что позволяет ему отлично работать в качестве ключа в импульсных схемах. Собственно, IRF740 — один из наиболее распространенных .

Результаты измерений тока затвора показали, что действительно полевые транзисторы почти не потребляют управляющего тока. При напряжении в 4.6 вольта ток был, всего лишь, 888 нА (нано!!!).

При напряжении в 20В он составлял 3.55 мкА (микро). У биполярного транзистора он был бы порядка 10 мА, в зависимости от коэффициента усиления, что в десятки тысяч раз больше чем у полевого.

Не все ключи открываются такими напряжениями, это связано с конструкцией и особенностями схемотехники устройств где они применяются.

Разряженная ёмкость в первый момент времени требует большого зарядного тока, да и редкие управляющие устройства (шим-контроллеры и микроконтроллеры) имеют сильные выходы, поэтому используют драйверы для полевых затворов, как в полевых транзисторах, так и в (биполярный с изолированным затвором). Это такой усилитель, который преобразует входной сигнал в выходной такой величины и силы тока, достаточный для включения и выключения транзистора. Ток заряда также ограничивается последовательно соединенным с затвором резистором.

При этом некоторые затворы могут управляться и с порта микроконтроллера через резистор (тот же IRF740). Эту тему мы затрагивали .

Они напоминают полевые транзисторы с управляющим затвором, но отличаются тем, что на УГО, как и в самом транзисторе, затвор отделен от подложки, а стрелка в центре указывает на тип канала, но направлена от подложки к каналу, если это n-канальный mosfet — в сторону затвора и наоборот.

Для ключей с индуцированным каналом:

Может выглядеть так:

Обратите внимание на англоязычные названия выводов, в datasheet’ах и на схемах часто указываются они.

Для ключей со встроенным каналом:

Транзистор (от английских слов tran(sfer) — переносить и (re)sistor — сопротивление) — полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы . Электропроводность эмиттера и коллектора всегда одинаковая (р или n), базы — противоположная (n или р). Иными словами, биполярный транзистор содержит два р-n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

Буквенный код транзисторов — латинские буквы VT. На схемах эти полупроводниковые приборы обозначают, как показано на рис. 8.1 . Здесь короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (см. рис. 8.1 , VT1), то это означает, что эмиттер имеет электропроводность типа р, а база— типа n; если же стрелка направлена в противоположную сторону (VT2), электропроводность эмиттера и базы обратная.

Знать электропроводность эмиттера базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет электропроводимость типа n, обозначают формулой р-п-р, а транзистор с базой, имеющей электропроводность типа р, обозначают формулой n-р-n. В первом случае на базу и коллектор следует подавать отрицательное по отношению к эмиттеру напряжение, во втором — положительное.

Для наглядности условное графическое обозначение дискретного транзистора обычно помещают в кружок, символизирующий его корпус. Иногда металлический корпус соединяют с одним из выводов транзистора. На схемах это показывается точкой в месте пересечения соответствующего вывода с символом корпуса. Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (VT3 на рис. 8.1 ). В целях повышения информативности схем рядом с позиционным обозначением транзистора допускается указывать его тип.

Линии электрической связи, идущие от эмиттера и коллектора проводят в одном из двух направлений: перпендикулярно или параллельно выводу базы (VT3—VT5). Излом вывода базы допускается лишь на некотором расстоянии от символа корпуса (VT4).

Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а окружность обозначения корпуса заменяют овалом (рис. 8.1 , VT6).

Стандарт допускает изображать транзисторы и без символа корпуса, например, при изображении бескорпусных транзисторов или когда на схеме необходимо показать транзисторы, входящие в состав сборки транзисторов или интегральной схемы.

Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельного прибора, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (В этом случае на поле схемы помещают такую, например, запись: VT1-VT4 К159НТ1), либо используют код аналоговых микросхем (DA) и указывают принадлежность транзисторов в сборке в позиционном обозначении (рис. 8.2 , DA1.1, DA1.2). У выводов таких транзисторов, как правило, приводят условную нумерацию, присвоенную выводам корпуса, в котором выполнена матрица.

Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 8.2 показаны транзисторы структуры п-р-п с тремя и четырьмя эмиттерами).

Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (см. рис. 8.3 , VT1, VT2). При повороте УГО положение этого знака должно оставаться неизменным.

Иначе построено УГО однопереходного транзистора: у него один р-п-переход, но два вывода базы. Символ эмиттера в УГО этого транзистора проводят к середине символа базы (рис. 8.3 , VT3, VT4). Об электропроводности последней судят по символу эмиттера (направлению стрелки).

На символ однопереходного транзистора похоже УГО большой группы транзисторов с p-n-переходом, получивших название полевых . Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью п или р-типа. Сопротивлением канала управляет третий электрод — затвор. Канал изображают так же, как и базу биполярного транзистора, но помещает в середине кружка-корпуса (рис. 8.4 , VT1), символы истока и стока присоединяют к нему с одной стороны, затвора — с другой стороны на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора (на рис. 8.4 условное графическое обозначение VT1 символизирует транзистор с каналом п-типа, VT1 — с каналом p-типа).

В условном графическом обозначении полевых транзисторов с изолированным затвором (его изображают черточкой, параллельной символу канала с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока. Если стрелка направлена к каналу, то это значит, что изображен транзистор с каналом n-типа, а если в противоположную сторону (см. рис. 8.4 , VT3) — с каналом p-типа. Аналогично поступают при наличии вывода от подложки (VT4), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три коротких штриха (см. рис. 8.4 , VT5, VT6). Если подложка соединена с одним из электродов (обычно с истоком), это показывают внутри УГО без точки (VT1, VT8).

В полевом транзисторе может быть несколько затворов. Изображают их более короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (VT9).

Линии-выводы полевого транзистора допускается изг[цензура] лишь на некотором расстоянии от символа корпуса (см. рис. 8.4 , VT2). В некоторых типах полевых транзисторов корпус может быть соединен с одним из электродов или иметь самостоятельный вывод (например, транзисторы типа КПЗ03).

Из транзисторов, управляемых внешними факторами, широкое применение находят фототранзисторы . В качестве примера на рис. 8.5 показаны условные графические обозначения фототранзисторов с выводом базы (FT1, VT2) и без него (К73). Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. УГО фототранзистора в этом случае вместе с УГО излучателя (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.

Для примера на рис. 8.5 изображена одна из оптопар сдвоенного оптрона (об этом говорит позиционное обозначение U1.1), Аналогично строится У ГО оптрона с составным транзистором (U2).

Если вы только начали разбираться в радиотехнике, я расскажу о том в этой статье, как же обозначаются радиодетали на схеме, как называются на ней, и какой имеют внешний вид .

Тут узнаете как обозначается транзистор,диод,конденсатор,микросхема,реле и т.д

Прошу жмать на подробнее.

Как обозначается биполярный транзистор

Все транзисторы имеют три вывода, и если он биполярный, то и бывет двух типов, как видно из изображения пнп-переход и нпн-переход. А три вывода имеют названия э-эмиттер, к-коллектор и б-база. Где какой вывод на самом транзисторе ищется по справочнику, или же введите в поиск название транзистор+выводы.

Внешний вид имеет транзистор следующий,и это лишь малая часть их внешнего вида,существующих номиналов полно.

Как обозначается полярный транзистор

Тут уже три вывода имеют следующие название,это з-затвор, и-исток, с-сток

Но а внешний вид визуально мало отличается,а точнее может иметь такой же цоколь.Вопрос как же узнать какой он, а это уже из справочников или интернета по обозначению написанном на цоколе.

Как обозначается конденсатор

Конденсаторы бывают как полярные так и неполярные.

Отличие их обозначение в том,что на полярном указывается один из выводов значком «+».И емкость измеряется в микрофарадах»мкф».

И имеют такой внешний вид,стоит учитывать,что если конденсатор полярный,то на цоколе с одной из сторон ножек обозначается вывод,только уже в основном знаком «-«.

Как обозначается диод и светодиод

Обозначение светодиода и диода на схеме отличается тем,что светодиод заключенчек и выходящими двух стрелок. Но роль у них разная-диод служит для выпрямления тока,и светодиод уже для испускания света.

И имеют такой внешний вид светодиоды.

И такой вид обычные выпрямительные и импульсные диоды например:

Как обозначается микросхема.

Микросхемы представляют собой уменьшенную схему,выполняющую ту или иную функцию,при этом могут иметь большое число транзисторов.

И такой внешний вид имеют они.

Обозначение реле

О них думаю впервую очередь слышали автомобилисты, особенно водители жигулей.

Так как когда не было инжекторов и транзисторы не получили широкое распространение, в автомобиле фары,прикуриватель,стартер, да все в ней почти включалось и управлялось через реле.

Такая самая простая схема реле.

Тут все просто,на электромагнитную катушку подается ток определенного напряжения,и та в свою очередь замыкает или размыкает участок цепи.

На этом статья заканчивается.

Если есть желание какие хотите увидеть радиодетали в следующей статье,пишите в комментарии.

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео

ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСТ 2.730-73

ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В СХЕМАХ.
ПРИБОРЫ
ПОЛУПРОВОДНИКОВЫЕ

Unified system for design documentation.
Graphical symbols in diagrams.
Semiconductor devices

ГОСТ
2.730-73

Дата введения 1974-07-01

1. Настоящий стандарт устанавливает правила построения условных графических обозначений полупроводниковых приборов на схемах, выполняемых вручную или автоматическим способом во всех отраслях промышленности.

(Измененная редакция, Изм. № 3).

2. Обозначения элементов полупроводниковых приборов приведены в табл. 1.

Таблица 1

Наименование

Обозначение

1. (Исключен, Изм. № 2).

2. Электроды:

база с одним выводом

база с двумя выводами

Р -эмиттер с N -областью

N -эмиттер с Р-областью

несколько Р-эмиттеров с N -областью

несколько N -эмиттеров с Р-областью

коллектор с базой

несколько коллекторов, например, четыре коллектора на базе

3. Области: область между проводниковыми слоями с различной электропроводностью. Переход от Р-области к N -области и наоборот

область собственной электропроводности ( I -область):

l) между областями с электропроводностью разного типа  PIN или NIP

2) между областями с электропроводностью одного типа  PIP или NIN

3) между коллектором и областью с противоположной электропроводностью  PIN или NIP

4) между коллектором и областью с электропроводностью того же типа  PIP или NIN

4. Канал проводимости для полевых транзисторов: обогащенного типа

обедненного типа

5. Переход PN

6. Переход NP

7. Р-канал на подложке N -типа, обогащенный тип

8. N -канал на подложке Р-типа, обедненный тип

9. Затвор изолированный

10. Исток и сток

Примечание . Линия истока должна быть изображена на продолжении линии затвора, например:

11. Выводы полупроводниковых приборов:

электрически, не соединенные с корпусом

электрически соединенные с корпусом

12. Вывод корпуса внешний. Допускается в месте присоединения к корпусу помещать точку

(Измененная редакция, Изм. № 2, 3).

3, 4. (Исключены, Изм. № 1).

5. Знаки, характеризующие физические свойства полупроводниковых приборов, приведены в табл.4.

Таблица 4

Наименование

Обозначение

1. Эффект туннельный

а) прямой

б) обращенный

2. Эффект лавинного пробоя:

а) односторонний

б) двухсторонний 3-8. (Исключены, Изм. № 2).

9. Эффект Шоттки

6. Примеры построения обозначений полупроводниковых диодов приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Диод

Общее обозначение

2. Диод туннельный

3. Диод обращенный

4. Стабилитрон (диод лавинный выпрямительный)

а) односторонний

б) двухсторонний

5. Диод теплоэлектрический

6. Варикап (диод емкостный)

7. Диод двунаправленный

8. Модуль с несколькими (например, тремя) одинаковыми диодами с общим анодным и самостоятельными катодными выводами

8a. Модуль с несколькими одинаковыми диодами с общим катодным и самостоятельными анодными выводами

9. Диод Шотки

10. Диод светоизлучающий

7. Обозначения тиристоров приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Тиристор диодный, запираемый в обратном направлении

2. Тиристор диодный, проводящий в обратном направлении

3. Тиристор диодный симметричный

4. Тиристор триодный. Общее обозначение

5. Тиристор триодный, запираемый в обратном направлении с управлением: по аноду

по катоду

6. Тиристор триодный выключаемый: общее обозначение

запираемый в обратном направлении, с управлением по аноду

запираемый в обратном направлении, с управлением по катоду

7. Тиристор триодный, проводящий в обратном направлении:

общее обозначение

с управлением по аноду

с управлением по катоду

8. Тиристор триодный симметричный (двунаправленный) — триак

9. Тиристор тетроидный, запираемый в обратном направлении

Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника.

8. Примеры построения обозначений транзисторов с Р- N -переходами приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Транзистор

а) типа PNP

б) типа NPN с выводом от внутреннего экрана

2. Транзистор типа NPN, коллектор соединен с корпусом

3. Транзистор лавинный типа NPN

4. Транзистор однопереходный с N-базой

5. Транзистор однопереходный с Р-базой

6. Транзистор двухбазовый типа NPN

7. Транзистор двухбазовый типа PNIP с выводом от i-области

8. Транзистор двухразовый типа P NIN с выводом от I -области

9. Транзистор многоэмиттерный типа NPN

Примечание. При выполнении схем допускается:

а) выполнять обозначения транзисторов в зеркальном изображении, например,

б) изображать корпус транзистора.

Таблица 8

Наименование

Обозначение

1. Транзистор полевой с каналом типа N

2. Транзистор полевой с каналом типа Р

3. Транзистор полевой с изолированным затвором баз вывода от подложки:

а) обогащенного типа с Р-каналом

б) обогащенного типа с N-каналом

в) обедненного типа с Р-каналом

г) обедненного типа с N-каналом

4. Транзистор полевой с изолированным затвором обогащенного типа с N-каналом, с внутренним соединением истока и подложки

5. Транзистор полевой с изолированным затвором с выводом от подложки обогащенного типа с Р-каналом

6. Транзистор полевой с двумя изолированными затворами обедненного типа с Р-каналом с выводом от подложки

7. Транзистор полевой с затвором Шоттки

8. Транзистор полевой с двумя затворами Шоттки

Примечание . Допускается изображать корпус транзисторов.

10. Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов приведены в табл. 9.

Таблица 9

Наименование

Обозначение

1. Фоторезистор:

а) общее обозначение

б) дифференциальный

2. Фотодиод

З. Фототиристор

4. Фототранзистор:

а) типа PNP

б) типа NPN

5. Фотоэлемент

6. Фотобатарея

Таблица 10

Наименование

Обозначение

1. Оптрон диодный

2. Оптрон тиристорный

3. Оптрон резисторный

4. Прибор оптоэлектронный с фотодиодом и усилителем:

а) совмещенно

б) разнесенно

5. Прибор оптоэлектронный с фототранзистором:

а) с выводом от базы

б) без вывода от базы

Примечания:

1. Допускается изображать оптоэлектронные приборы разнесенным способом. При этом знак оптического взаимодействия должен быть заменен знаками оптического излучения и поглощения по ГОСТ 2.721-74,

например:

2. Взаимная ориентация обозначений источника и приемника не устанавливается, а определяется удобством вычерчивания схемы, например:

12. Примеры построения обозначений прочих полупроводниковых приборов приведены в табл. 11.

Таблица 11

Наименование

Обозначение

1. Датчик Холла

Токовые выводы датчика изображены линиями, отходящими от коротких сторон прямоугольника

2. Резистор магниточувствительный

3. Магнитный разветвитель

13. Примеры изображения типовых схем на полупроводниковых диодах приведены в табл. 12.

Таблица 12

Наименование

Обозначение

1. Однофазная мостовая выпрямительная схема:

а) развернутое изображение

б) упрощенное изображение (условное графическое обозначение)

Примечание. К выводам 1-2 подключается напряжение переменного тока; выводы 3-4 — выпрямленное напряжение; вывод 3 имеет положительную полярность. Цифры 1, 2, 3 и 4 указаны для пояснения.

Пример применения условного графического обозначения на схеме

2. Трехфазная мостовая выпрямительная схема

3. Диодная матрица (фрагмент)

Примечание. Если все диоды в узлах матрицы включены идентично, то допускается применять упрощенный способ изображения. При этом на схеме должны быть приведены пояснения о способе включения диодов

14. Условные графические обозначения полупроводниковых приборов для схем, выполнение которых при помощи печатающих устройств ЭВМ предусмотрено стандартами Единой системы конструкторской документации, приведены в табл. 13.

Таблица 13

Наименование

Обозначение

Отпечатанное обозначение

1. Диод

2. Транзистор типа PNР

3. Транзистор типа NPN

4. Транзистор типа PNIP с выводом от I -области

5. Многоэмиттерный транзистор типа NPN

Примечание к пп. 2-5. Звездочкой отмечают вывод базы, знаком «больше» или «меньше» — вывод эмиттера.

15. Размеры (в модульной сетке) основных условных графических обозначений даны в приложении 2.

(Измененная редакция, Изм. № 4).

Приложение 1. (Исключено, Изм. № 4).

Наименование

Обозначение

1. Диод

2.. Тиристор диодный

3. Тиристор триодный

4. Транзистор

5. Транзистор полевой

6. Транзистор полевой с изолированным затвором

(Введено дополнительно, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1 РАЗРАБОТАН И ВНЕСЕН Государственным комитетом стандартов Совета Министров СССР

РАЗРАБОТЧИКИ

В. Р. Верченко, Ю. И. Степанов, Э. Я. Акопян, Ю. П. Широкий, В. П. Пармешин, И. К. Виноградова

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 16.08.73 № 2002

3 Соответствует СТ СЭВ 661-88

4 ВЗАМЕН ГОСТ 2.730-68, ГОСТ 2.747-68 в части пп. 33 и 34 таблицы

5 ПЕРЕИЗДАНИЕ (январь 1995 г.) с Изменениями № 1, 2, 3, 4, утвержденными в июле 1980 г., апреле 1987 г., марте 1989 г., июле 1991 г. (ИУС 10-80, 7-87, 6-89, 10-91)

ТРАНЗИСТОРЫ

   В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42. 

Транзистор в разрезе

   На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность: 

Внешний вид советских транзисторов

   Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

   Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

   Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

   Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности


Средней мощности


Большой мощности


В металлическом корпусе

   На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

 

Фото SMD транзистор

   Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема с общим эмиттером

   Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

   И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

   Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм. 

Пример усилителя по схеме с общим эмиттером

   Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

   Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

   А так выглядит один из фототранзисторов:

Фототранзистор — фотография

Полевые транзисторы


   Как ясно из названия, такие транзисторы управляются не током, а полем. Электрическим полем. В следствии чего они имеют высокое входное сопротивление и не нагружают предидущий каскад. На этом рисунке изображено строение полевого транзистора:

Строение полевого транзистора

   Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

   На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа. 

Изображение на схемах полевых транзисторов с изолированным затвором

   Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) — это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

   Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

   Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком


С общим стоком


С общим затвором 

   Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


   Существуют так называемые Однопереходные транзисторы, второе, менее распространённое название — Двухбазовый диод. Ниже приведены схематическое изображение и фото однопереходных транзисторов.

Схематическое изображение однопереходных транзисторов

   Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи — AKV.

   Форум по радиоэлементам

   Форум по обсуждению материала ТРАНЗИСТОРЫ

Условное обозначение — транзистор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Условное обозначение — транзистор

Cтраница 1


Условные обозначения транзисторов в их маркировке установлены в следующем виде: первый знак-буква: Г — германиевый; К — кремниевый; второй знак буква Т — транзистор: остальные четыре знака — трехзначное число и буква — шифр, указывающий назначение и модификацию ( разновидность) данного прибора.  [2]

Условное обозначение транзисторов по ГОСТ 5461 — 59 состоит из трех элементов.  [3]

Условное обозначение транзистора показано на рис. 6 — 7 а. На рис. 6 — 7 6 показаны вольт-амперные характеристики участка коллектор-база транзистора типа П-102. Каждая характеристика соответствует определенному значению тока, протекающего по участку эмиттер — база. Из рассмотрения этих характеристик мы еще раз убеждаемся, что величина тока / к, протекающего по участку коллектор-база, практически не зависит от величины напряжения UK, падающего на этом участке, целиком определяется величиной тока эмиттера. Когда ток эмиттера / э равен нулю, по коллекторной цепи протекает небольшой остаточный ток / ко.  [4]

Условное обозначение транзистора показано на рис. 8.44, а, где к — коллектор, э — эмиттер, б — база.  [5]

Условные обозначения транзисторов обоих типов в электрических схемах приведены на рис. 4 — 1, а. Буквы у выводов транзисторов означают: Э — эмиттер, Б — база, К — коллектор. Кружок у транзистора ( на рисунке показан только у транзистора р-п — р) означает, что кристалл помещен в корпус. По ГОСТ допустимы оба обозначения для транзисторов, имеющих корпус.  [6]

Условное обозначение транзистора IGBT, приведенное на рис. 6.2, указывает, что в его составе есть полевая и биполярная части.  [7]

В условных обозначениях транзисторов стрелкой указывается направление тока эмиттера.  [9]

На условном обозначении транзистора стрелка показывает условное направление тока в эмиттере от плюса к минусу.  [10]

Принятые в нашей стране условные обозначения транзисторов содержат сведения об их назначении, физических и конструктивно-технологических свойствах, основных электрических параметрах, применяемом исходном материале.  [11]

На рис. 7.16 иг даны условные обозначения транзисторов. Принцип работы транзисторов обоих типов аналогичен.  [12]

На рис. 4.1 5 показаны условные обозначения транзисторов. Эмиттер изображается в виде стрелки, которая указывает направление тока эмиттерного перехода.  [14]

На рис. 4.1, б показаны условные обозначения транзисторов. Эмиттер изображается в виде стрелки, которая указывает прямое направление тока эмиттерного перехода.  [15]

Страницы:      1    2    3

Как читать схему

Добавлено в избранное Любимый 98

Обзор

Схемы

— это наша карта для проектирования, создания и устранения неисправностей схем. Понимание того, как читать схемы и следовать им, — важный навык для любого инженера-электронщика.

Это руководство должно превратить вас в грамотного читателя схем! Мы рассмотрим все основные символы схемы:

Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи.Мы также рассмотрим несколько советов и приемов, на которые следует обратить внимание.

Рекомендуемая литература

Понимание схем — это довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство. Посмотрите эти уроки, если они звучат как пробелы в вашем растущем мозгу:

Условные обозначения (часть 1)

Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.

Резисторы

Самый фундаментальный из схемных компонентов и символов! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями с двумя выводами , выходящими наружу. В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.

Потенциометры и переменные резисторы

Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине.Потенциометр — это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).

Конденсаторы

Обычно используются два символа конденсатора. Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой — неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.

Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод.Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.

Катушки индуктивности

Катушки индуктивности

обычно представлены серией изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.

Коммутаторы

Коммутаторы

существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей привод (часть, которая соединяет клеммы вместе).

Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.

Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.

Источники энергии

Так же, как существует множество вариантов питания вашего проекта, существует большое количество символов схем источника питания, которые помогают указать источник питания.

Источники постоянного или переменного напряжения

В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения.Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):

Батареи

Батарейки, будь то цилиндрические, щелочные AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:

Чем больше пар линий, тем больше ячеек в батарее. Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.

Узлы напряжения

Иногда — особенно на очень загруженных схемах — вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одним контактом , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).

Условные обозначения (часть 2)

Диоды

Базовые диоды обычно представляют собой треугольник, прижатый к линии.Диоды также поляризованы, поэтому для каждого из двух выводов требуются отличительные идентификаторы. Положительный анод — это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за линию символа (воспринимайте его как знак -).

Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.

Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.

Транзисторы

Транзисторы

, будь то BJT или MOSFET, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные. Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.

Биполярные переходные транзисторы (БЮТ)

БЮТ — трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B).Существует два типа BJT — NPN и PNP, и каждый имеет свой уникальный символ.

Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN. Мнемоника для запоминания: «NPN: n ot p ointing i n ».

Металлооксидные полевые транзисторы (МОП-транзисторы)

Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы истоком (S), стоком (D) и затвором (G).И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с n-каналом или p-каналом. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:

Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным. Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).

Цифровые логические ворота

Наши стандартные логические функции — И, ИЛИ, НЕ и ИСКЛЮЧИТЕЛЬНОЕ ИЛИ — имеют уникальные условные обозначения:

Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:

У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.

Интегральные схемы

Интегральные схемы

решают такие уникальные задачи, и их так много, что они действительно не получают уникального символа схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен быть помечен как номером, так и функцией.

Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.

Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно определяющее название микросхемы.

Уникальные ИС: операционные усилители, регуляторы напряжения

Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.

Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.

Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и снизу (заземление / регулировка).

Разное

Кристаллы и резонаторы

Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.

Заголовки и разъемы

Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот образец:

Двигатели, трансформаторы, динамики и реле

Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно состоят из двух катушек, соединенных друг с другом, с парой линий, разделяющих их:

Реле обычно соединяют катушку с переключателем:

Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:

Двигатели

и обычно имеют обведенную буквой «М», иногда с небольшим количеством украшений вокруг клемм:

Предохранители и PTC

Предохранители и PTC — устройства, которые обычно используются для ограничения больших скачков тока — каждое имеет свой уникальный символ:

Символ PTC на самом деле является общим обозначением термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).


Несомненно, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.

Обозначения и значения имен

Один из важнейших ключей к схемотехнической грамотности — это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.

Имена и значения

Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .

Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента — R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.

Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс — это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже прошел I [но он начинается с C … электроника — глупое место]). Вот краткая таблица общих компонентов и их префиксов:

902 902 902 902 902 902 D 902
Имя Идентификатор Компонент
R Резисторы
C Конденсаторы
L Индукторы
Q Транзисторы
U Интегральные схемы
Y Кристаллы и генераторы

Хотя эти термины являются «стандартизированными» названиями для обозначений компонентов, они не всегда используются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы с маркировкой XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.

Схема чтения

Понимание того, какие компоненты есть на схеме, — это более чем полдела на пути к ее пониманию. Теперь все, что осталось, — это определить, как все символы связаны друг с другом.

Сети, узлы и метки

Схематические цепи показывают, как компоненты соединяются в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:

Соединения и узлы

Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькие точки размещены на пересечении проводов.

Узлы

дают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).

Сетевые имена

Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если между ними нет видимого провода. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.

Каждая цепь с таким же именем подключена, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают сохранить схемы от слишком хаотичного (представьте, если бы все эти цепи были действительно соединены проводами). Цепям

обычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи — «RX» или «TX».

Советы по чтению схем

Идентифицировать блоки

Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы — справа.

Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.
Распознать узлы напряжения

Узлы напряжения — это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.

Узлы напряжения с одинаковыми названиями — например, GND, 5 В и 3,3 В — все подключены к своим аналогам, даже если между ними нет проводов.

Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.

Справочные листы данных компонентов

Если на схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, — это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.

Ресурсы и дальнейшее развитие

Вот и все, что нужно для чтения схем! Зная символы компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:

  • Делители напряжения — это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
  • Как использовать макетную плату — Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы — отличный способ создавать временные функциональные прототипы схем.
  • Работа с проводом — Или пропустите макет и сразу начните с проводки. Умение разрезать, зачищать и подключать провода — важный навык электроники.
  • Последовательные и параллельные схемы
  • — Построение последовательных или параллельных цепей требует хорошего понимания схем.
  • Шитье проводящей нитью — Если вы не хотите работать с проволокой, как насчет создания схемы электронного текстиля с проводящей нитью? В этом прелесть схематических схем, одна и та же схематическая схема может быть построена множеством различных способов с использованием различных носителей.

Что такое транзистор? Определение, символ, клеммы и условия эксплуатации

Определение: Транзистор — это полупроводниковое устройство, которое передает слабый сигнал от цепи с низким сопротивлением к цепи с высоким сопротивлением.Слова trans означают свойство передачи и istor означают свойство сопротивления , предлагаемое соединениям. Другими словами, это переключающее устройство, которое регулирует и усиливает электрический сигнал, например напряжение или ток.

Транзистор состоит из двух PN диодов, соединенных спина к спине. Он имеет три вывода: эмиттер, базу и коллектор. Основа — это средняя часть, состоящая из тонких слоев. Правая часть диода называется эмиттерным диодом, а левая часть — коллекторно-базовым диодом.Эти имена даны по общему выводу транзистора. Эмиттерный переход транзистора подключен к прямому смещению, а переход коллектор-база подключен к обратному смещению, что обеспечивает высокое сопротивление.

Обозначения транзисторов

Существует два типа транзисторов, а именно транзистор NPN и транзистор PNP. Транзистор, который имеет два блока из полупроводникового материала n-типа и один блок из полупроводникового материала P-типа, известен как транзистор NPN.Точно так же, если материал имеет один слой материала N-типа и два слоя материала P-типа, то он называется транзистором PNP. Символ NPN и PNP показан на рисунке ниже.

Стрелка в символе указывает направление протекания обычного тока в эмиттере с прямым смещением, приложенным к переходу эмиттер-база. Единственная разница между транзисторами NPN и PNP заключается в направлении тока.

Клеммы транзистора

Транзистор имеет три вывода: эмиттер, коллектор и базу.Клеммы диода подробно описаны ниже.

Эмиттер — Секция, которая снабжает большую часть основного носителя заряда, называется эмиттером. Эмиттер всегда подключен с прямым смещением относительно базы, так что он подает основной носитель заряда на базу. Переход эмиттер-база вводит большое количество основных носителей заряда в базу, потому что она сильно легирована и имеет умеренный размер.

Коллектор — Секция, которая собирает большую часть основного носителя заряда, подаваемого эмиттером, называется коллектором.Коллектор-база всегда имеет обратное смещение. Его основная функция заключается в удалении большинства зарядов из соединения с базой. Коллекторная часть транзистора умеренно легирована, но больше по размеру, так что она может собирать большую часть носителей заряда, подаваемых эмиттером.

База — Средняя часть транзистора известна как база. База образует две цепи: входную цепь с эмиттером и выходную цепь с коллектором. Цепь эмиттер-база смещена в прямом направлении и обеспечивает низкое сопротивление цепи.Коллектор-база имеет обратное смещение и обеспечивает более высокое сопротивление цепи. База транзистора слегка легирована и очень тонкая, из-за чего основной носитель заряда подается на базу.

Работа транзистора

Обычно для изготовления транзисторов используется кремний из-за их высокого напряжения, большего тока и меньшей температурной чувствительности. Часть эмиттер-база, смещенная в прямом направлении, составляет базовый ток, протекающий через базовую область.Величина базового тока очень мала. Ток базы заставляет электроны перемещаться в область коллектора или создавать дыру в области базы.

База транзистора очень тонкая и слегка легированная, из-за чего в ней меньше электронов по сравнению с эмиттером. Несколько электронов эмиттера объединяются с отверстием в базовой области, а оставшиеся электроны перемещаются к области коллектора и составляют ток коллектора.Таким образом, можно сказать, что большой ток коллектора достигается за счет изменения базовой области.

Условия эксплуатации транзистора

Когда эмиттерный переход находится в прямом смещении, а коллекторный переход находится в обратном смещении, то говорят, что он находится в активной области. Транзистор имеет два перехода, которые могут быть смещены по-разному. Различная рабочая проводимость транзистора показана в таблице ниже.

Состояние Эмиттерный переход (EB) Коллекторный переход (CB) Область действия
FR Прямое смещение Обратное смещение Активное
FF Прямое смещение Прямое смещение Насыщенность
RR Обратное смещение Обратное смещение Отсечка
RF с обратным смещением с прямым смещением с обратным смещением

FR — В этом случае переход эмиттер-база подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением.Транзистор находится в активной области, и ток коллектора зависит от тока эмиттера. Транзистор, который работает в этой области, используется для усиления.

FF — В этом состоянии оба перехода смещены в прямом направлении. Транзистор находится в состоянии насыщения, и ток коллектора перестает зависеть от тока базы. Транзисторы действуют как замкнутый переключатель.

RR Оба тока имеют обратное смещение. Эмиттер не подает основной носитель заряда на базу, и ток носителей не собирается коллектором.Таким образом, транзисторы действуют как замкнутый переключатель.

RF — Переход эмиттер-база находится в обратном смещении, а переход коллектор-база остается в прямом смещении. Поскольку коллектор слабо легирован по сравнению с эмиттерным переходом, он не подает основной носитель заряда на базу. Таким образом достигается плохая работа транзистора.

Списки электронных компонентов и условные обозначения

При создании новой электроники дизайнеры и инженеры должны иметь общий язык для описания компонентов, которые входят в их новый проект.Этот язык представлен в виде схематических символов электронных компонентов, которые однозначно описывают положение, тип и функцию компонента в проекте.

Опытным конструкторам могут даже не понадобиться текстовые описания компонентов, если у них есть надежная память для схематических символов электронных компонентов. Схематические символы могут незначительно отличаться в зависимости от области мира, в которой они находятся, поэтому дизайнерам иногда необходимо знать, что несколько символов могут означать одно и то же.Существует широкий спектр условных обозначений электронных компонентов, и в этой статье рассматриваются только 50 наиболее распространенных символов.

Что такое схематический символ электронного компонента?

Схематический символ электронного компонента — это графическое изображение электронного компонента, обычно стандартизованное международным органом электронной промышленности. К таким организациям по стандартизации относятся:

Исторически сложилось так, что библиотекарям САПР приходилось запоминать многие из этих символов или обращаться к отраслевой справочной литературе при создании или каталогизации компонентов.Сегодня они широко доступны на многих авторитетных веб-сайтах вместе с чертежами и схемами дизайна.

Схематические символы включают в себя широкий спектр типов компонентов и схем. Большинство людей, которые видели простые электрические схемы, знакомы с символами резисторов, переключателей, предохранителей и других пассивных элементов. Однако символы электронных компонентов могут включать в себя более сложные элементы схемы, такие как батареи с одним или несколькими элементами, катушки индуктивности, конденсаторы и трансформаторы.

Есть даже схематические символы для некоторых простых машин, которые могут быть интегрированы в цепь, например, зуммеров, громкоговорителей, реле и двигателей. На чрезвычайно сложных машинах может оказаться ненужным, отнимать слишком много времени или слишком сложно изобразить все компоненты, которые они содержат, в схеме. Таким образом, условные обозначения могут упростить проект за счет использования одного символа для сложных машин.

Таблица условных обозначений

Разработчикам важно знать многие из этих старых схематических символов, если они обновляют или анализируют старую технологию.Если дизайнер или инженер создает только совершенно новые проекты электроники, знание старых символов не так важно (но может быть полезно время от времени). Поскольку использование технологий быстро растет, новый стандарт IPC, который регулирует создание новых схематических символов, может быть особенно полезным для дизайнеров.

Если для данного компонента присутствуют два символа, первый символ является международным вариантом, а второй — вариантом США. Показанные ниже символы соответствуют спецификациям IEEE / ANSI, поскольку они чаще всего используются в схемных редакторах в программном обеспечении ECAD.Однако многие разработчики и некоторые программы ECAD с открытым исходным кодом используют символы IEC или смесь символов IEEE / ANSI. Из-за популярности символов IEEE / ANSI на основных платформах ECAD они перечислены ниже для справки.

Разработчикам печатных плат нужны полные библиотеки со схематическими обозначениями

Современные инструменты ECAD обычно включают большинство или все символы, показанные выше, в свои встроенные библиотеки. Кроме того, большинство дизайнеров не ссылаются ни на один из перечисленных выше стандартов при добавлении обозначений схемы в библиотеку компонентов.Вместо этого наиболее распространенные компоненты обозначаются специальным префиксом обозначения (R = резистор, C = конденсатор, L = катушка индуктивности, U = интегральная схема). Часто схематический символ будет сопровождаться примечанием, описывающим номер детали или тип компонента. Пока схематический символ содержит соответствующий префикс позиционного обозначения или не требует пояснений, многие дизайнеры не будут беспокоиться о том, какому стандарту следует этот символ.

Для интегральных схем и разъемов схематический символ должен соответствовать распиновке, показанной в спецификации компонентов.Затем его нужно добавить в библиотеку компонентов с посадочными местами печатной платы и 3D-моделями. Вместо того, чтобы создавать каждый компонент с нуля, разработчики печатных плат могут использовать поисковую систему электронных компонентов, чтобы найти необходимые им данные о компонентах, включая данные о поставщиках, спецификации и таблицы данных для компонентов.

Если вам нужно найти схематические символы электронных компонентов, посадочные места на печатной плате, данные о поставщиках и таблицы данных, вам следует использовать функции поисковой системы, предоставляемые Ultra Librarian .Работа с Ultra Librarian избавит вас от лишних догадок при подготовке к следующему отличному устройству и направит ваши идеи на путь успеха. Зарегистрируйтесь сегодня бесплатно.

Как определить диод и его характеристики, код номера транзистора

Руководство по идентификации транзисторов и диодов

Каждое полупроводниковое устройство имеет специальную кодовую нумерацию в соответствии со спецификацией этих компонентов. Все компоненты имеют особую символьную нумерацию с буквенно-цифровым кодированием, обозначающим характеристики материала и другие параметры.Для всех полупроводниковых приборов и компонентов существует международная система нумерации.

Система кодирования транзисторов

  • Коды электронной нумерации Pro (европейские)
  • Система нумерации JEDC — [ Joint Electron Engineering Council ] (США)
  • Система нумерации полупроводников JIS (Япония)
  • Производственная система нумерации

  • Буква 1 st символа указывает на природу полупроводникового материала.A для германия, B для кремния, C для арсенида галлия и R для соединения (например, сульфата кадмия). Если номер любого транзистора — AC125, то это германиевый транзистор, а если BC148 — кремниевый транзистор.
  • 2 nd Буква любого символа указывает тип устройства и его функцию в цепи, например, C означает слабый сигнал, а D означает мощность.
  • Обычно используются две буквы и три цифры, три буквы и две цифры. Две буквы и три числа (например, BF 194) используются для бытового оборудования или в развлекательных целях.В то время как в устройствах три буквы и две цифры (например, BFX 63) компоненты используются для промышленных или профессиональных.
Первая буква = полупроводниковый материал

A — Германий
B — Кремний
C — Арсенид галлия
D — Фотодиоды

Вторая буква = Заявка

A — Диод — Диод общего назначения

B — Диод — Диод переменной емкости (варактор)

C — Транзистор — Транзистор малой мощности для звуковой частоты (AF)

D — Транзистор — силовой транзистор AF

E — туннельный диод

F — Диодный высокочастотный (ВЧ) Транзистор малой мощности

G — несколько устройств

H — Магниточувствительные устройства

K — Модулятор на эффекте Холла

N — оптрон

P — Фотодиод / Радиочувствительный / Световой диод

Q — светоизлучающий диод / диод, генерирующий излучение

R — Коммутационное устройство — тиристор (тиристор или симистор)

S –Транзистор– Коммутационный транзистор малой мощности

T — Транзистор большой мощности

U — Транзистор силовой коммутационный

X — диод, умножитель

Y — выпрямитель мощности

Z — стабилитрон

Третье письмо

Третья буква не имеет особого значения.Буква используется для обозначения специализированного применения диода.

Вторая буква — «N», а затем первая цифра — 1 для диодов, 2 для транзисторов, 3 для четырехпроводных устройств и т. Д. Но 4N и 5N используются только для оптронов . Порядковые номера от 100 до 9999 указывают приблизительное время изготовления устройства. разные вещи. Например, 2N2222A — это улучшенная версия 2N2222. Он имеет более высокие номиналы усиления, частоты и напряжения. Всегда проверяйте техническое описание.

Примеры: 1N4007, 1N914 (диод) и 2N2222, 2N3904 (транзисторы).

Японский промышленный стандарт (JIS)

Эти номера деталей имеют форму: цифра, две буквы, порядковый номер, [необязательный суффикс] Цифры: 1 для диодов, 2 для транзисторов и т. Д. Буквы указывают тип и предполагаемое применение устройства в соответствии со следующим кодом.

SA — PNP HF (высокочастотный) транзистор

SB — PNP AF (звуковая частота) Транзистор

SC — NPN HF (высокочастотный) транзистор

SD — NPN AF Транзистор

SE — Диоды

SF — Тиристоры

SG — P-канальный полевой транзистор

SH — UJT

SK — N-канальный полевой транзистор

SM — симистор

SQ — светодиодный

SR — Выпрямитель

SS — Сигнальный диод

ST — Лавинный диод

SV — Варикап

SZ — стабилитрон

Если есть какой-либо суффикс, то для этого суффикса всегда проверяйте таблицу, потому что она представляет различные вещи.Например, 2N2222A — это улучшенная версия 2N2222. Он имеет более высокие номиналы усиления, частоты и напряжения.

После цифр появится дополнительная буква для стабилитронов. Эта буква обозначает допустимое отклонение напряжения стабилитрона. Следующие буквы используются для обозначения допусков стабилитронов.
A ± 1%
B ± 2%
C ± 5%
D ± 10%

Стабилитроны имеют дополнительные символы, которые указывают напряжение стабилитрона.
Пример: 5V1 указать 5,1 В

Вместо 2N и пр. Некоторые производители используют собственную систему обозначений. Некоторые общие префиксы:

MJ: Motorola power, металлический корпус

MJE: Motorola power, пластиковый корпус

MPS: Motorola малой мощности, пластиковый корпус

MRF: Транзистор Motorola ВЧ, УКВ и СВЧ

RCA: устройство RCA

СОВЕТ: Силовой транзистор Texas Instruments (TI), пластиковый корпус

TIPL: планарный силовой транзистор TI TIS: малосигнальный транзистор TI (пластиковый корпус)

ZT: Ферранти

ZTX: Ферранти

Примеры: ZTX302, TIP31A, MJE3055.

Читайте также

AMZ Многоцелевой бустер и буфер

БАЗОВАЯ ПЛАТА ПК

Это полная схема цепи, которая содержится на универсальной печатной плате AMZ. Ни в одной из приведенных в качестве примеров схем не будет использоваться каждая деталь, размещенная на плате. Дополнительные детали были включены, чтобы сделать платы гибкими и разнообразными. Основная идея состоит в том, чтобы создать единую печатную плату, которую можно использовать для создания нескольких проектов, включая ускорители, буферы и многое другое.

Если деталь не показана на схеме или в списке деталей для одной из схем, то она не требуется для этого проекта и может быть оставлена ​​пустой на плате.

Он разработан для использования с кремниевыми или германиевыми транзисторами и с полярностью NPN или PNP. Эта доска — максимальная универсальность!

Размер печатной платы составляет 1,5 x 1,3 дюйма. На схеме слева показаны основные подключения к многоцелевой плате.

Круглый объект непосредственно над обозначением «Gr» — это расположение транзистора (Q1).Он достаточно большой, чтобы вместить даже пакет ТО-5. Маленькая метка в нижнем левом углу — это индикатор вывода эмиттера.

При использовании биполярного транзистора TO-92 (E-B-C) он должен быть ориентирован плоской стороной вправо. Это поместит эмиттер внизу, а коллектор вверху. Основание необходимо слегка согнуть, чтобы он вошел в среднее отверстие.

Обратите внимание на , что транзистор типа BC108 является C-B-E и должен иметь плоскую сторону, обращенную влево.Всегда проверяйте техническое описание транзистора, чтобы найти правильные обозначения контактов.

На печатной плате есть еще несколько особых элементов, на которые следует обратить внимание. Во-первых, есть небольшая круглая площадка прямо над печатным обозначением R3 на плате. Эта площадка используется только для пары контуров и в остальное время игнорируется.

Во-вторых, позиция R5 имеет три контактных площадки посередине между контактными площадками резистора. Они предназначены для дополнительного подстроечного резистора, который используется в качестве резистора R5 для некоторых вариантов схемы.Если подстроечный резистор не указан, контактные площадки игнорируются, а резистор припаивается к контактным площадкам выше и ниже блока R5.

Также добавлены знаки полярности для C2, C3 и C4; их нет на плате. Положительная сторона электротехники должна быть сориентирована на положительные знаки по мере необходимости. Эти обозначения верны для версий NPN и схем n-fet или n-mos.


КРЕМНИЙНЫЙ ТРАНЗИСТОРНЫЙ БУСТЕР

Показанная здесь схема представляет собой базовый усилитель на биполярных транзисторах, точно такой же, как древний LPB-1.Это простой дизайн с большим выигрышем. Потенциометр R10 установлен на печатной плате.

Список деталей

R3 — 470k
R4 — 47k
R5 — 10k
R6 — 390 Ом
R9 — перемычка
R10 — аудио конусность 100k
C1 — 0,22 мкФ
C2 — 1 мкФ
Q1 — кремниевый транзистор NPN (2N5088, 2N3904 или аналогичный)

Все резисторы — 1/4 Вт, конденсаторы — мкФ.


Многие другие схемы подробно описаны в ссылке, которая отправляется, когда вы заказываете многоцелевую печатную плату AMZ, и вы можете построить любой из усилителей или буферов для получения отличного звука.


ЦЕПИ ДЛЯ ДАННОЙ ПЕЧАТНОЙ ПЛАТЫ ВКЛЮЧАЮТ:

  • Усилитель кремниевых транзисторов
  • Глушитель АМЗ
  • AMZ Muffmaster
  • Грязный буст
  • AC128 Усилитель германиевых транзисторов
  • Высокочастотный усилитель PNP Rangemaster
  • Германиевый транзисторный буфер
  • Jfet транзисторный усилитель
  • Jfet транзисторный буфер / линейный драйвер
  • Mosfet Transistor Booster (не AMZ Mosfet Booster)
  • Буфер Mosfet
  • Фильтр блока питания
  • ,
  • и БОЛЬШЕ!

Примечание. Одновременно на каждой печатной плате может быть построена только одна схема, т.е.е. для усилителя и буфера потребуется две платы.

Разместите заказ на одну из этих универсальных плат для ПК.

5.4: Работа в активном режиме (JFET) — Workforce LibreTexts

JFET, как и биполярные транзисторы, могут «дросселировать» ток в режиме между отсечкой и насыщением, который называется активным режимом . Чтобы лучше понять работу JFET, давайте настроим SPICE-симуляцию, аналогичную той, которая использовалась для изучения основной функции биполярного транзистора:

Обратите внимание, что транзистор, обозначенный на схеме «Q 1 », представлен в списке соединений SPICE как j1.Хотя все типы транзисторов обычно упоминаются в схемах как «Q» -устройства — точно так же, как резисторы обозначаются буквой «R», а конденсаторы — буквой «C», SPICE необходимо сообщить, какой это тип транзистора с помощью другое буквенное обозначение: q для биполярных переходных транзисторов и j для переходных полевых транзисторов.

Здесь управляющий сигнал представляет собой постоянное напряжение в 1 вольт, приложенное с отрицательной полярностью к затвору полевого транзистора и положительным полюсом к истоку полевого транзистора для обратного смещения PN перехода.В первом моделировании BJT главы 4 для управляющего сигнала использовался источник постоянного тока 20 мкА, но помните, что JFET — это устройство с управляемым напряжением , а не устройство с регулируемым током, такое как биполярный переходной транзистор.

Как и BJT, JFET имеет тенденцию регулировать контролируемый ток на фиксированном уровне выше определенного напряжения источника питания, независимо от того, насколько высоко это напряжение может подняться. Конечно, это регулирование тока имеет ограничения в реальной жизни — ни один транзистор не может выдерживать бесконечное напряжение от источника питания — и при достаточном напряжении сток-исток транзистор «сломается», и ток стока будет увеличиваться.Но в нормальных рабочих пределах JFET поддерживает постоянный ток стока независимо от напряжения источника питания. Чтобы проверить это, мы запустим еще одно компьютерное моделирование, на этот раз увеличив напряжение источника питания (V 1 ) до 50 вольт:

Разумеется, ток стока остается стабильным на уровне 100 мкА (1.000E-04 ампер) независимо от того, насколько высоким было настроено напряжение источника питания.

Поскольку входное напряжение контролирует сужение канала JFET, имеет смысл, что изменение этого напряжения должно быть единственным действием, способным изменить точку регулирования тока для JFET, точно так же, как изменение базового тока на BJT является единственным действие, способное изменить регулирование тока коллектора.Давайте уменьшим входное напряжение с 1 до 0,5 вольт и посмотрим, что произойдет:

Как и ожидалось, ток стока теперь больше, чем был в предыдущем моделировании. При меньшем напряжении обратного смещения, приложенном к переходу затвор-исток, область обеднения не такая широкая, как была раньше, тем самым «открывая» канал для носителей заряда и увеличивая ток стока.

Обратите внимание, однако, на фактическое значение этого нового значения тока: 225 мкА (2.250Е-04 ампер). Последнее моделирование показало ток стока 100 мкА, и это было при напряжении затвор-исток 1 вольт. Теперь, когда мы уменьшили управляющее напряжение в 2 раза (с 1 В до 0,5 В), ток стока увеличился, но не в той же пропорции 2: 1! Давайте еще раз уменьшим напряжение затвор-исток еще в два раза (до 0,25 В) и посмотрим, что произойдет:

При напряжении затвор-исток, установленном на 0,25 В, вдвое меньшем, чем было раньше, ток стока равен 306 В.3 мкА. Хотя это все еще увеличение по сравнению с 225 мкА по сравнению с предыдущим моделированием, оно не пропорционально изменению управляющего напряжения.

Чтобы лучше понять, что здесь происходит, мы должны запустить другой тип моделирования: тот, который поддерживает постоянным напряжение источника питания и вместо этого изменяет управляющий сигнал (напряжение). Когда такое моделирование выполнялось на BJT, результатом был прямолинейный график, показывающий, насколько линейна зависимость входного тока / выходного тока BJT.Давайте посмотрим, какие отношения демонстрирует JFET:

Это моделирование непосредственно выявляет важную характеристику полевого транзистора с переходным эффектом: влияние управления напряжением затвора над током стока является нелинейным . Обратите внимание, как ток стока не уменьшается линейно при увеличении напряжения затвор-исток. В случае биполярного переходного транзистора ток коллектора был прямо пропорционален базовому току: выходной сигнал был пропорционален входному сигналу.Но не так с JFET! Управляющий сигнал (напряжение затвор-исток) все меньше и меньше влияет на ток стока по мере приближения к отсечке. В этом моделировании большая часть управляющего воздействия (75 процентов уменьшения тока стока — с 400 мкА до 100 мкА) происходит в пределах первого вольта напряжения затвор-исток (от 0 до 1 вольт), а оставшиеся 25 процентов стока Для уменьшения тока требуется еще один входной сигнал на целый вольт. Отсечка происходит при входном напряжении 2 В.

Линейность обычно важна для транзистора, потому что она позволяет ему точно усиливать форму волны, не искажая ее.Если транзистор имеет нелинейное усиление на входе / выходе, форма входного сигнала каким-либо образом будет искажена, что приведет к возникновению гармоник в выходном сигнале. Единственная временная линейность , а не важна в схеме транзистора — это когда она работает в крайних пределах отсечки и насыщения (выключено и включено, соответственно, как переключатель).

Характеристические кривые полевого транзистора JFET демонстрируют то же поведение регулирования тока, что и BJT, а нелинейность между напряжением затвор-исток и током стока очевидна в непропорциональных вертикальных расстояниях между кривыми:

Чтобы лучше понять поведение JFET при регулировании тока, может быть полезно нарисовать модель, состоящую из более простых и распространенных компонентов, как мы это сделали для BJT:

В случае JFET напряжение на диоде затвор-исток с обратным смещением задает точку регулирования тока для пары диодов постоянного тока.В модель включена пара противоположных диодов постоянного тока для обеспечения протекания тока в любом направлении между истоком и стоком, что стало возможным благодаря униполярной природе канала. При отсутствии PN-переходов для прохождения тока исток-сток отсутствует чувствительность к полярности в регулируемом токе. По этой причине JFET часто называют двусторонними устройствами .

Сравнение характеристических кривых полевого транзистора с кривыми для биполярного транзистора показывает заметное различие: линейная (прямая) часть негоризонтальной области каждой кривой удивительно длинна по сравнению с соответствующими частями характеристических кривых биполярного транзистора:

JFET-транзистор, работающий в области триода , имеет тенденцию действовать очень похоже на простой резистор при измерении от стока к истоку.Как и у всех простых сопротивлений, его график тока / напряжения представляет собой прямую линию. По этой причине участок триода (негоризонтальный) характеристической кривой полевого транзистора иногда называют омической областью . В этом режиме работы, когда нет достаточного напряжения сток-исток, чтобы довести ток стока до регулируемой точки, ток стока прямо пропорционален напряжению сток-исток. В тщательно спроектированной схеме это явление можно использовать с пользой.Управляемый в этой области кривой JFET действует как управляемый напряжением резистор , а не как регулируемый напряжением регулятор тока , и подходящая модель для транзистора отличается:

Вот и только здесь модель транзистора с реостатом (переменным резистором) точна. Однако следует помнить, что эта модель транзистора верна только для узкого диапазона его работы: когда он чрезвычайно насыщен (гораздо меньшее напряжение, приложенное между стоком и истоком, чем то, что необходимо для достижения полного регулируемого тока через сток. ).Величина сопротивления (измеряется в Ом) между стоком и истоком в этом режиме контролируется тем, сколько напряжения обратного смещения приложено между затвором и истоком. Чем меньше напряжение затвор-исток, тем меньше сопротивление (более крутая линия на графике).

Поскольку полевые транзисторы JFET являются регуляторами тока, управляемыми напряжением и (по крайней мере, когда им разрешено работать в активном состоянии), их собственный коэффициент усиления не может быть выражен в виде безразмерного отношения, как в случае BJT. Другими словами, для JFET нет коэффициента β.Это верно для всех активных устройств, управляемых напряжением, включая другие типы полевых транзисторов и даже электронные лампы. Однако существует выражение от контролируемого тока (стока) до управляющего напряжения (затвор-исток), и оно называется крутизной . Его единица измерения — Siemens, такая же единица измерения проводимости (ранее известная как mho ).

Почему такой выбор единиц? Поскольку уравнение принимает общую форму тока (выходной сигнал), деленного на напряжение (входной сигнал).

К сожалению, значение крутизны для любого полевого транзистора JFET не является стабильной величиной: оно значительно зависит от величины управляющего напряжения затвор-исток, приложенного к транзистору. Как мы видели в моделировании SPICE, ток стока не изменяется пропорционально изменениям напряжения затвор-исток. Чтобы рассчитать ток стока для любого заданного напряжения затвор-исток, можно использовать другое уравнение. При осмотре очевидно, что он нелинейный (обратите внимание на степень двойки), отражая нелинейное поведение, которое мы уже испытали при моделировании:

Обзор

  • В своих активных режимах полевые транзисторы регулируют ток стока в соответствии с величиной напряжения обратного смещения, приложенного между затвором и истоком, подобно тому, как BJT регулирует ток коллектора в соответствии с током базы.Математическое соотношение между током стока (выход) и напряжением затвор-исток (вход) называется крутизной и измеряется в единицах Сименс.
  • Связь между напряжением затвор-исток (управление) и током стока (управляемым) является нелинейным: по мере уменьшения напряжения затвор-исток ток стока увеличивается экспоненциально. Другими словами, крутизна JFET не является постоянной во всем рабочем диапазоне.
  • В своей триодной области полевые транзисторы JFET регулируют сопротивление сток-исток в соответствии с величиной напряжения обратного смещения, приложенного между затвором и истоком.Другими словами, они действуют как резисторы, управляемые напряжением.

Обозначения компонентов | mbedded.ninja

Обзор

Обозначения компонентов и условные обозначения используются для быстрой идентификации компонентов как на схемах, так и на печатных платах. Обычно они состоят из короткой аббревиатуры, обозначающей тип компонента, за которой следует уникальный номер, чтобы отличить его от других компонентов того же типа (например, R3 , R4 , C3 ).

За прошедшие годы было выпущено множество стандартов, определяющих конкретные префиксы обозначений для типов компонентов. К ним относятся:

  • Австралийский стандарт AS1102: 1995 (Графические символы для электротехники)
  • IEC 60617
  • IEEE 315-1975.

Однако многие схемы и печатные платы шелкографии не строго следуют никаким стандартам (хотя сходство обычно довольно велико). В следующем списке показаны нестандартные, часто используемые сокращения и тип компонента, который они представляют.

Список общих обозначений и символов компонентов

Сортировка по алфавиту.

Некоторые символы ниже созданы с помощью InkScape и сохранены в файл SVG, который можно посмотреть / скачать здесь.

Антенны (ANT)

Существует ряд различных схематических символов антенны, но все они выглядят одинаково и должны быть легко узнаваемы. Также используется обозначение E , но я предпочитаю ANT .

Рекомендуемые обозначения:

Рекомендуемые условные обозначения:

Схематическое обозначение антенны.

Еще один схематический символ антенны.

Сборки (A)

Отдельная сборка или подсборка (например, дочерняя плата). Я не вижу, чтобы это обозначение часто использовалось на практике (и я сам никогда не использовал его, для таких вещей, как модули GPS с посадочным местом LGA, я всегда использовал обозначение U).

Рекомендуемые обозначения:

Батареи (BT)

Обозначение BT обычно используется для обозначения батарей. Показанный ниже схематический символ является типичным для батареи, хотя иногда делается различие между одноклеточными и многоклеточными батареями.Если батарея одноклеточная, это может быть представлено символом только с одной парой длинных / коротких линий (представляющих два электрода ячейки). Если батарея многоклеточная, можно использовать две пары длинных / коротких линий с соединяющей их пунктирной линией (представляющей множество пластин). Я предпочитаю использовать приведенный ниже символ для любого типа батареи.

Рекомендованные обозначения:

Рекомендуемые условные обозначения:

Схематические обозначения батареи.

Конденсаторы (C)

C — рекомендованное обозначение для конденсаторов (как поляризованных, так и неполяризованных).Иногда вы можете увидеть VC , используемый для переменного конденсатора (они не распространены). Я рекомендую использовать два разных схематических символа: плоские пластины для неполяризованного конденсатора и одну изогнутую пластину для поляризованного конденсатора.

Рекомендуемые обозначения:

Рекомендуемые схематические обозначения:

Схематические обозначения неполяризованного конденсатора.

Схематическое изображение поляризованного конденсатора.

Диоды (D)

Обозначение D можно использовать для большинства диодов.Иногда для стабилитрона используется Z , а для светодиода LED , однако TVS, диоды Шоттки и диоды общего назначения по-прежнему стоят всего D .

Рекомендуемые обозначения:

Рекомендуемые символы:

Рекомендуемый схематический символ для диодов общего назначения.

Рекомендуемый схематический символ для светодиода.

Рекомендуемый схематический символ стабилитрона.

Предохранители / держатели предохранителей (F, XF)

F — это обозначение, используемое для предохранителей (проводных, электрических и т.т.к). XF обычно используется для держателя предохранителя.

Рекомендуемые обозначения:

Рекомендуемые обозначения:

Ферритовые шарики (FB, FEB)

FB — обозначение, используемое для ферритовых шариков. Иногда вместо него используется обозначение FEB . Чтобы узнать больше, см. Страницу «Ферритовые шарики».

Рекомендуемые обозначения:

Рекомендуемые схематические обозначения:

Схематические обозначения для ферритовой бусины.

Контрольные точки (FID)

Рекомендуемые обозначения:

Рекомендуемый схематический символ (символы):

Схематический символ контрольных точек.

Земля (GND, AGND, DGND)

Иногда GND используется для всех точек заземления, а иногда земли разделяются на основе границ шума, таких как AGND и DGND (это часто встречается в высокочастотных цепях ).

Рекомендуемые обозначения:

  • GND : Для общего использования.
  • AGND : Специализированное аналоговое заземление.
  • DGND : Специализированное цифровое заземление.

Рекомендуемый схематический символ (символы):

Схематический символ общего заземления.

Схематический символ аналоговой земли (AGND).

Условное обозначение цифрового заземления (DGND).

Интегральные схемы (U)

U — обозначение интегральных схем. ИС включают микроконтроллеры, линейные стабилизаторы напряжения, операционные усилители и т. Д.

Почему U ? Одна из теорий состоит в том, что U было обозначением чего-либо «Не указано». Логично предположить, что когда микросхемы впервые вошли в употребление, они были обозначены как таковые.Название прижилось, и теперь U используется для микросхем (а не для чего-либо «неопределенного»). Другая теория гласит, что U обозначает «Не подлежит ремонту» .

На старых схемах вы также можете увидеть IC или Z , используемые для интегральных схем.

Рекомендуемые обозначения:

Рекомендуемый схематический символ (и):

Рекомендуемый схематический символ для интегральной схемы (IC).

Гнездо (J)

Гнездо / гнездо / гнездо.Также определяется в IEEE 315 как наименее подвижная часть набора разъемов (который также включает вилку, P ).

Рекомендуемые обозначения:

Перемычка (JP)

Перемычка или перемычка (L для индуктора, а не перемычки). Это может быть простой кусок провода, физическая перемычка или резистор \ (0 \ Omega \) ).

Рекомендуемые обозначения:

Индуктор (L)

L используется как обозначение для индукторов. Вероятно, это в честь физика Генриха Ленца, который был пионером в открытии электромагнетизма (и потому, что I обычно используется для обозначения тока).

Рекомендуемые обозначения:

Двигатель (M)

Рекомендуемые обозначения:

Механическая часть (MP)

Механическая часть. Это общий термин для множества разных вещей, таких как винты, стойки, кронштейны и т. Д.

Рекомендуемые обозначения:

Штекер (P)

Штекер / штекер. Также определяется в IEEE 315 как наиболее подвижная часть набора разъемов (который также включает разъем J ).

Рекомендуемые обозначения:

Фотоэлектрические / солнечные панели (PV)

PV — обозначение фотоэлектрических элементов (также называемых солнечными панелями).

Рекомендуемые обозначения:

Резисторы (R, VR)

Иногда вы увидите LDR для светозависимых резисторов. Для получения дополнительной информации см. Страницу Резисторы

Рекомендуемые обозначения:

  • R : Стандартные 2-контактные резисторы
  • RN : Сети резисторов (более одного резистора в одном корпусе, иногда с общим подключением ).
  • VR : переменные резисторы (также известные как потенциометры или реостаты).Я видел обратное, RV использовался раньше вместе с POT .

Рекомендуемый схематический символ (ы):

Схематический символ для стандартного резистора.

Условное обозначение переменного резистора (потенциометра).

Переключатели (S, SW)

S — это обозначение переключателя. SW также широко используется. Иногда вы увидите переключатели, помеченные в соответствии с их типом (например, PB для кнопочных переключателей, DPDT для двухполюсных двухпозиционных переключателей), , но это не рекомендуется .

Рекомендуемые обозначения:

Искровой разрядник (SG)

Рекомендуемые обозначения:

Рекомендуемые условные обозначения:

Схематические обозначения разрядников. Этот искровой разрядник образован двумя медными треугольниками на печатной плате с зазором 200 мкм между ними. Поскольку это сделано исключительно из печатной платы, компонент спецификации не требуется.

Трансформатор (T)

T — это обозначение трансформаторов.

Рекомендуемые обозначения:

Транзисторы (Q)

Q — обозначение, используемое для транзисторов (BJT, MOSFETs, JFETs, e.т.к). Иногда Q также используется для интегральной схемы, но я предпочитаю использовать U .

Рекомендованные обозначения:

Рекомендуемые условные обозначения:

Условные обозначения для N-канального полевого МОП-транзистора.

Условное обозначение P-канального MOSFET.

Контрольная точка (TP)

Контрольная точка. Это могут быть физические компоненты на печатной плате или просто открытые участки меди (например, контактные площадки, отверстия или переходные отверстия).

Рекомендуемые обозначения:

Провод / кабель (Вт)

Провод / кабель.

Рекомендуемые обозначения:

Кристаллы / генераторы (XC, XTAL, Y)

Кристаллы синхронизации.

Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *