+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Простая схема защиты от перенапряжения и переполюсовки

Допустим, у вас есть некое устройство, питаемое от внешнего аккумулятора. Для определенности скажем, от это LiIon или LiPo, часто используемые в квадракоптерах. При питании от внешнего источника всегда есть неплохие шансы сжечь устройство. Самый простой способ это сделать — перепутать полярность. Еще можно запитать устройство от блока питания и, случайно крутанув ручку, превысить допустимое напряжение. Давайте рассмотрим классическую схему, защищающую от таких ошибок при помощи компонентов общей стоимостью менее 5$.

Вот эти компоненты:

Компоненты были выбраны в предположении, что устройство может потреблять до 25 А тока. Если ваше устройство потребляет меньше, можно обойтись аналогичными компонентами, рассчитанными на меньший ток. Они обойдутся вам дешевле.

Схема защиты:

При нормальном питании устройства положенными 12-ю вольтами стабилитрон D1 имеет высокое сопротивление. Управляющий электрод тиристора D2 притянут к земле через резистор R1. Тиристор находится в закрытом состоянии. Диод D3 также закрыт, поскольку к нему приложено обратное напряжение. В итоге нагрузка получает питание.

Если напряжение питания превышает напряжение пробоя стабилитрона, ток через стабилитрон резко возрастает. Тиристор переходит в открытое состояние. Фактически, происходит короткое замыкание. В результате предохранитель перегорает и цепь размыкается. При нарушении полярности питания к диоду D3 прикладывается прямое напряжение и диод становится открыт. Опять-таки, происходит КЗ и сгорает предохранитель. Таким образом, цепь защищается как от перенапряжения, так и от переполюсовки.

Примечание: Как вариант, для защиты от переполюсовки вместо диода можно использовать МОП-транзистор. Этот способ ранее был описан в посте Шпаргалка в картинках по использованию MOSFET’ов.

Интересно, что устройство, собранное по приведенной схеме, можно сделать очень компактным. Вид спереди (без предохранителя):

Вид сзади:

Такую конструкцию можно упаковать в термоусадку и поместить прямо в корпус устройства, если в нем имеется немного свободного места. Предохранитель имеет смысл поместить не в корпус, а снаружи, на кабеле питания. Так будет легче заменять сгоревший предохранитель. Само собой разумеется, можно разместить все компоненты защиты и на кабеле. Если не вскрывать корпус, вы сохраните гарантию на устройство.

Схема была протестирована на стабилизаторе LM7805, светодиоде и резисторе в роли нагрузки, а также лабораторном блоке питания и LiPo аккумуляторе 3S в роли источников питания. Защита продемонстрировала безотказную работу во всех сценариях. В моем случае защита от перенапряжения срабатывала при 15.8 В. При необходимости, защиту можно настроить на любое напряжение, подобрав подходящий стабилитрон.

Такая вот простенькая, но надежная схема. Само собой разумеется, никакого срыва покровов здесь нет, поскольку приведенную схему можно найти в каждой второй книжке по электронике.

Метки: Электроника.

Стабилитрон защита от перенапряжения

Простая схема защиты от перенапряжения и переполюсовки

19 декабря 2018

Допустим, у вас есть некое устройство, питаемое от внешнего аккумулятора. Для определенности скажем, от это LiIon или LiPo, часто используемые в квадракоптерах. При питании от внешнего источника всегда есть неплохие шансы сжечь устройство. Самый простой способ это сделать — перепутать полярность. Еще можно запитать устройство от блока питания и, случайно крутанув ручку, превысить допустимое напряжение. Давайте рассмотрим классическую схему, защищающую от таких ошибок при помощи компонентов общей стоимостью менее 5$.

Вот эти компоненты:

Компоненты были выбраны в предположении, что устройство может потреблять до 25 А тока. Если ваше устройство потребляет меньше, можно обойтись аналогичными компонентами, рассчитанными на меньший ток. Они обойдутся вам дешевле.

При нормальном питании устройства положенными 12-ю вольтами стабилитрон D1 имеет высокое сопротивление. Управляющий электрод тиристора D2 притянут к земле через резистор R1. Тиристор находится в закрытом состоянии. Диод D3 также закрыт, поскольку к нему приложено обратное напряжение. В итоге нагрузка получает питание.

Если напряжение питания превышает напряжение пробоя стабилитрона, ток через стабилитрон резко возрастает. Тиристор переходит в открытое состояние. Фактически, происходит короткое замыкание. В результате предохранитель перегорает и цепь размыкается. При нарушении полярности питания к диоду D3 прикладывается прямое напряжение и диод становится открыт. Опять-таки, происходит КЗ и сгорает предохранитель. Таким образом, цепь защищается как от перенапряжения, так и от переполюсовки.

Примечание: Как вариант, для защиты от переполюсовки вместо диода можно использовать МОП-транзистор. Этот способ ранее был описан в посте Шпаргалка в картинках по использованию MOSFET’ов.

Интересно, что устройство, собранное по приведенной схеме, можно сделать очень компактным. Вид спереди (без предохранителя):

Такую конструкцию можно упаковать в термоусадку и поместить прямо в корпус устройства, если в нем имеется немного свободного места. Предохранитель имеет смысл поместить не в корпус, а снаружи, на кабеле питания. Так будет легче заменять сгоревший предохранитель. Само собой разумеется, можно разместить все компоненты защиты и на кабеле. Если не вскрывать корпус, вы сохраните гарантию на устройство.

Схема была протестирована на стабилизаторе LM7805, светодиоде и резисторе в роли нагрузки, а также лабораторном блоке питания и LiPo аккумуляторе 3S в роли источников питания. Защита продемонстрировала безотказную работу во всех сценариях. В моем случае защита от перенапряжения срабатывала при 15.8 В. При необходимости, защиту можно настроить на любое напряжение, подобрав подходящий стабилитрон.

Такая вот простенькая, но надежная схема. Само собой разумеется, никакого срыва покровов здесь нет, поскольку приведенную схему можно найти в каждой второй книжке по электронике.

Простая схема защиты от перенапряжения и переполюсовки

19 декабря 2018

Допустим, у вас есть некое устройство, питаемое от внешнего аккумулятора. Для определенности скажем, от это LiIon или LiPo, часто используемые в квадракоптерах. При питании от внешнего источника всегда есть неплохие шансы сжечь устройство. Самый простой способ это сделать — перепутать полярность. Еще можно запитать устройство от блока питания и, случайно крутанув ручку, превысить допустимое напряжение. Давайте рассмотрим классическую схему, защищающую от таких ошибок при помощи компонентов общей стоимостью менее 5$.

Вот эти компоненты:

Компоненты были выбраны в предположении, что устройство может потреблять до 25 А тока. Если ваше устройство потребляет меньше, можно обойтись аналогичными компонентами, рассчитанными на меньший ток. Они обойдутся вам дешевле.

При нормальном питании устройства положенными 12-ю вольтами стабилитрон D1 имеет высокое сопротивление. Управляющий электрод тиристора D2 притянут к земле через резистор R1. Тиристор находится в закрытом состоянии. Диод D3 также закрыт, поскольку к нему приложено обратное напряжение.

В итоге нагрузка получает питание.

Если напряжение питания превышает напряжение пробоя стабилитрона, ток через стабилитрон резко возрастает. Тиристор переходит в открытое состояние. Фактически, происходит короткое замыкание. В результате предохранитель перегорает и цепь размыкается. При нарушении полярности питания к диоду D3 прикладывается прямое напряжение и диод становится открыт. Опять-таки, происходит КЗ и сгорает предохранитель. Таким образом, цепь защищается как от перенапряжения, так и от переполюсовки.

Примечание: Как вариант, для защиты от переполюсовки вместо диода можно использовать МОП-транзистор. Этот способ ранее был описан в посте Шпаргалка в картинках по использованию MOSFET’ов.

Интересно, что устройство, собранное по приведенной схеме, можно сделать очень компактным. Вид спереди (без предохранителя):

Такую конструкцию можно упаковать в термоусадку и поместить прямо в корпус устройства, если в нем имеется немного свободного места. Предохранитель имеет смысл поместить не в корпус, а снаружи, на кабеле питания. Так будет легче заменять сгоревший предохранитель. Само собой разумеется, можно разместить все компоненты защиты и на кабеле. Если не вскрывать корпус, вы сохраните гарантию на устройство.

Схема была протестирована на стабилизаторе LM7805, светодиоде и резисторе в роли нагрузки, а также лабораторном блоке питания и LiPo аккумуляторе 3S в роли источников питания. Защита продемонстрировала безотказную работу во всех сценариях. В моем случае защита от перенапряжения срабатывала при 15.8 В. При необходимости, защиту можно настроить на любое напряжение, подобрав подходящий стабилитрон.

Такая вот простенькая, но надежная схема. Само собой разумеется, никакого срыва покровов здесь нет, поскольку приведенную схему можно найти в каждой второй книжке по электронике.

При выходе из строя как линейных, так и импульсных стабилизаторов постоянного напряжения, выполненных на транзисторах или микросхемах, выходное напряжение может стать практически равным входному (выпрямленному) напряжению, обычно снимаемому с конденсатора фильтра питания, установленного на выходе диодного моста.

Например, при «прогорании» КР142ЕН5А, которая обычно используется в цепях питания цифровых устройств, на шины питания может поступить напряжение 7. 15 В вместо положенных 5 В. Это уже опасно для абсолютного большинства устройств.

Иногда для защиты чувствительных к перенапряжению узлов радиоаппаратуры используют мощный стабилитрон с напряжением стабилизации, чуть большим номинального напряжения питания. Недостаток такого способа защиты в том, что многие стабилитроны обладают достаточно большим дифференциальным сопротивлением, и защищаемое устройство может продолжать работать некоторое время, получая напряжение, на 0,5. 1,5 В больше номинального. Сильно разогревающийся в это время стабилитрон может «уйти на обрыв», и защиты как таковой не получится.

Для предохранения отдельных узлов и блоков радиоаппаратуры от повышенного напряжения при повреждении стабилизатора или неправильного подключения к источнику питания, можно собрать несложный регулируемый блок защиты (рис.1). Он включается в разрыв цепи между выходом источника питания и нагрузкой.


Рис.1. Приципиальная схема простого блока защиты

Работает этот блок следующим образом. При повышении входного напряжения ток через стабилитрон VD1 резко возрастает, соответственно, увеличивается и ток в цепи управляющего электрода тиристора VS1, тиристор открывается и шунтирует питание нагрузки до момента срабатывания предохранителя FU1. Мощный проволочный резистор R3 предотвращает пробой тиристора из-за сильного броска тока, который возникает в случае, если в цепи питания установлены оксидные конденсаторы большой емкости. Стабилитрон VD1 выбирается на напряжение, примерно на 0,3. 1,5 В меньшее, чем номинальное напряжение питания. Выбор его типа зависит от ряда факторов, поэтому оптимальный вариант для каждого конкретного случая лучше определить экспериментально. Регулировкой резистора R1 можно точно установить то напряжение, при котором будет открываться тиристор. Конденсатор С1 предотвращает ложное срабатывание блока защиты при коротких импульсных помехах, которые могут появляться в цепи питания.

Резистор R2 защищает стабилитрон и тиристор в случае, когда движок подстроечного резистора находится в верхнем положении. На время настройки этого блока предохранитель желательно заменить лампой накаливания, по зажиганию которой можно судить о моменте включения тиристора.

Более совершенный блок защиты можно собрать по схеме, приведенной на рис.2.


Рис.2. Приципиальная схема блока защиты с реле

При повышении входного напряжения питание нагрузки прекращается из-за размыкания контактов реле К1. Цепь R3-VD2 предназначена для уменьшения кратковременного всплеска напряжения на выходе блока, который может появиться из-за инерционности переключения контактов реле.

Для защиты установленных в автомобиле радиоэлектронных устройств, например, автомагнитолы или сигнализации от превышения напряжения в бортовой сети, можно собрать блок защиты по схеме, приведенной на рис.3.


Рис.3. Приципиальная схема блока защиты автомобильных радиоэлектронных устройств

Здесь движок резистора R1 установлен в положение, при котором срабатывание защиты происходит при входном напряжении 15. 16 В. При открывании тиристора размыкаются контакты реле, питание нагрузки прекращается, начинает вспыхивать мигающий светодиод HL1. Конденсаторы С1. СЗ повышают помехоустойчивость. Нажатием кнопки SB1 (без фиксации) можно возвратить блок защиты в режим ожидания.

Подстроечные резисторы можно взять сопротивлением 150. 470 Ом типов СПЗ-38, РП1-63М, СП5-16ВА, СП4-1 или, что лучше, многооборотные – типа СПЗ-39. Проволочные резисторы – типа С5-16МВ или самодельные из короткого отрезка толстого высокоомного провода.Конденсаторы – типов К10-17, КМ-5. Тиристоры подойдут любые из серий КУ228, КУ201, КУ202, Т122. Диод КД213А заменяется мощным диодом из серий КД202, Д242, КД2999. Мигающий светодиод использован красного цвета. Его можно заменить любым из серий L56, L36, L799, L816 и другими аналогичными. Электромагнитное реле типа РМУ (паспорт ЧП4.523.332) можно заменить на любое, надежно срабатывающее при номинальном входном напряжении и имеющее достаточно мощные нормальнозамкнутые контакты.

В узлах по схемам на рис.2 и 3 можно устанавливать реле типа РЭК29 от систем ДУ старых отечественных телевизоров, отмотав с его катушки нужное количество витков. Можно приспособить и подходящие по конструкции автомобильные реле.

Для защиты автомобильного оборудования в цепи датчика напряжения можно использовать стабилитроны КС297В, Д814Д, КС213Ж, КС508А, 1N6003B. Для конструкций на низковольтных цифровых микросхемах подойдут стабилитроны типов КС126Г, КС126Д, КС139А, КС147А, КС407Б, КС439А, 1 N5991 В. Для устройств на ИМС серий К561, 564, КР1561 нужный стабилитрон можно выбрать из ряда КС215Ж, КС216Ж, КС508Б, КС518А, 1N6005B, 1N6006B, 1N4745A.

Источник: П.Хоровиц, У.Хилл. Искусство схемотехники. — М.: Мир, 2001, С.335.

Защита цепей питания схема

Для защиты радиоэлектронного оборудования традиционно применяют плавкие предохранители. Обычно в них используют тонкие неизолированные проводники калиброванного сечения, рассчитанные на заданный ток перегорания. Наиболее надежно эти приспособления работают в цепях переменного тока повышенного напряжения. С понижением рабочего напряжения эффективность их применения снижается. Обусловлено это тем, что при перегорании тонкой проволоки в цепи переменного тока возникает дуга, распыляющая проводник. Предельным напряжением, при котором может возникнуть такая дуга, считается напряжение 30. 35 6. При низковольтном питании происходит просто плавление проводника. Процесс этот занимает более продолжительное время, что в ряде случаев не спасает современные полупроводниковые приборы от повреждения.
Тем не менее, плавкие предохранители и поныне широко используют в низковольтных цепях постоянного тока, там, где от них не требуется повышенное быстродействие.
Там, где плавкие предохранители не могут эффективно решить задачу защиты радиоэлектронного оборудования и приборов от токовых перегрузок, их можно с успехом использовать в схемах защиты электронных устройств от перенапряжения.
Принцип действия этой защиты прост: при превышении уровня питающего напряжения срабатывает пороговое устройство, устраивающее короткое замыкание в цепи нагрузки, в результате которого проводник предохранителя плавится и разрывает цепь нагрузки.
Метод защиты аппаратуры от перенапряжения за счет принудительного пережигания предохранителя, конечно, не является идеальным, но получил достаточно широкое распространение благодаря своей простоте и надежности. При использовании этого метода и выбора оптимального варианта защиты стоит учитывать, насколько быстродействующим должен быть автомат защиты, стоит ли пережигать предохранитель при кратковременных бросках напряжения или ввести элемент задержки срабатывания. Желательно также ввести в схему индикацию факта перегорания предохранителя.
Простейшее защитное устройство [4.1], позволяющее спасти защищаемую радиоэлектронную схему, показано на рис. 4.1. При пробое стабилитрона включается тиристор и шунтирует нагрузку, после чего перегорает предохранитель. Тиристор должен быть рассчитан на значительный, хотя и кратковременный ток. В схеме совершенно не допустимо использование суррогатных предохранителей, поскольку в противном случае могут одновременно выйти из строя как защищаемая схема, так и источник питания, и само защитное устройство.


Рис. 4.1. Простейшая защита от перенапряжения

Рис. 4.2. Помехозащищенная схема защиты нагрузки от превышения напряжения

Усовершенствованная схема защиты нагрузки от превышения напряжения, дополненная резистором и конденсатором [4.2], показана на рис. 4.2. Резистор ограничивает предельный ток через стабилитрон и управляющий переход тиристора, конденсатор снижает вероятность срабатывания защиты при кратковременных бросках питающего напряжения.
Следующее устройство (рис. 4.3) защитит радиоаппаратуру от выхода из строя при случайной переполюсовке или превышении
напряжения питания, что нередко бывает при неисправности генератора в автомобиле [4.3].
При правильной полярности и номинальном напряжении питания диод VD1 и тиристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства.


Рис. 4.3. Схема защиты радиоаппаратуры с индикацией аварии

Если полярность обратная, то диод VD1 открывается, и сгорает предохранитель FU1. Лампа EL1 загорается, сигнализируя об аварийном подключении.
При правильной полярности, но входном напряжении, превышающем установленный уровень, задаваемый стабилитронами VD2 и VD3 (в данном случае — 16 Б), тиристор VS1 открывается и замыкает цепь накоротко, что вызывает перегорание предохранителя и зажигание аварийной лампы EL1.
Предохранитель FU1 должен быть рассчитан на максимальный ток, потребляемый радиоаппаратурой.
Элементы ГТЛ-логики обычно работоспособны в узком диапазоне питающих напряжений (4,5. 5,5 Б). Если аварийное снижение питающего напряжения не столь опасно для «здоровья» микросхем, то повышение этого напряжения совершенно недопустимо, поскольку может привести к повреждению всех микросхем устройства.
На рис. 4.4 приведена простая и довольно эффективная схема защиты 7777-устройств от перенапряжения, опубликованная в болгарском журнале [4.4]. Способ защиты предельно прост: как только питающее напряжение превысит рекомендуемый уровень всего на 5% (т.е. достигнет величины 5,25 Б) сработает пороговое устройство и включится тиристор. Через него начинает протекать ток короткого замыкания, который пережигает плавкий предохранитель FU1. Разумеется, в качестве предохранителя нельзя использовать суррогатные предохранители, поскольку в таком случае может выйти из строя блок питания, защищающий схему тиристор, а затем и защищаемые микросхемы.
Недостатком устройства является отсутствие индикации перегорания предохранителя. Эту функцию в устройство несложно ввести самостоятельно. Примеры организации индикации разрыва питающей цепи приведены также в главе 36 книги [1.5].


Рис. 4.4. Схема защиты микросхем ТТЛ от перенапряжения


Рис. 4.5. Схема устройства защиты от перенапряжения, работающего на переменном и постоянном токе

Схема устройства, которое в случае аварии в электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения, приведена на рис. 4.5 [4.5].
Напряжение срабатывания защиты определяется падением напряжения на составном стабилитроне VD5+VD6 и составляет 270 Б.
Конденсаторы С1 и С2 образуют совместно с резистором R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети.
Схема работает следующим образом. При напряжении в сети до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры VS1, VS2. При действующем напряжении более 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров VS1, VS2 поступает открывающее напряжение. В зависимости от полярности полупериода сетевого напряжения ток проходит либо через тиристор VS1, либо через VS2. Когда ток превышает 10 А, срабатывают автоматические выключатели (пробки, плавкие предохранители), отключая электроприборы от электросети. Нагрузка (на рисунке не показана) подключается параллельно тиристорам. Проверить работоспособность устройства можно с помощью ЛАТРа.
Устройство работоспособно и на постоянном токе.


Рис. 4.6. Схема релейного устройства защиты от перенапряжения с самоблокировкой

Устройство защиты от перенапряжения (рис. 4.6) выгодно отличается от предыдущих тем, что в нем не происходит необратимого повреждения элемента защиты [4.6]. Вместо этого при напряжении свыше 14,1 В пробивается цепочка стабилитронов VD1 — VD3, включается и самоблокируется тиристор VS1, срабатывает реле К1 и своими контактами отключает цепь нагрузки.
Восстановить исходное состояние устройства защиты можно только после вмешательства оператора — для этого следует нажать на кнопку SB1. Устройство также переходит в рабочий ждущий режим после кратковременного отключения источника питания. К числу недостатков данного устройства защиты относится его высокая чувствительность к кратковременным перенапряжениям.
Устройство (патент DL-WR 82992) [4.7], принципиальная схема которого приведена на рис. 4.7, может применяться для защиты нагрузки от недопустимо высокого выходного напряжения. В нормальных условиях транзистор VT1 работает в режиме, когда напряжение между его коллектором и эмиттером небольшое, и на транзисторе рассеивается небольшая мощность (ток базы определяется резистором R1). Сопротивление стабилитрона VD2 в этом случае большое и тиристор VS1 закрыт.


Рис. 4.7. Схема полупроводникового реле защиты нагрузки от перенапряжения

При возрастании напряжения на выходе устройства выше определенной величины через стабилитрон начинает протекать ток, который приводит к открыванию тиристора. Транзистор VT1 при этом закрывается, и напряжение на выходе устройства становится близко к нулю. Отключить защиту можно только отключением источника питания.
Описанное устройство должно включаться в выходную цепь стабилизаторов так, чтобы сигнал обратной связи подавался из цепи, расположенной за системой защиты. При номинальном выходном напряжении 12 В и токе 1 А в устройстве можно применить транзистор КТ802А, тиристор КУ201А — КУ201К, стабилитрон — Д814Б. Сопротивление резистора R1 должно быть 39 Ом (мощность рассеивания при отсутствии системы автоматики, отключающей стабилизатор от сети, составляет 10 Вт), R2 — 200 Ом, R3 — 1 кОм.

При выходе из строя как линейных, так и импульсных стабилизаторов постоянного напряжения, выполненных на транзисторах или микросхемах, выходное напряжение может стать практически равным входному (выпрямленному) напряжению, обычно снимаемому с конденсатора фильтра питания, установленного на выходе диодного моста. Например, при «прогорании» КР142ЕН5А, которая обычно используется в цепях питания цифровых устройств, на шины питания может поступить напряжение 7. 15 В вместо положенных 5 В. Это уже опасно для абсолютного большинства устройств.

Иногда для защиты чувствительных к перенапряжению узлов радиоаппаратуры используют мощный стабилитрон с напряжением стабилизации, чуть большим номинального напряжения питания. Недостаток такого способа защиты в том, что многие стабилитроны обладают достаточно большим дифференциальным сопротивлением, и защищаемое устройство может продолжать работать некоторое время, получая напряжение, на 0,5. 1,5 В больше номинального. Сильно разогревающийся в это время стабилитрон может «уйти на обрыв», и защиты как таковой не получится.

Для предохранения отдельных узлов и блоков радиоаппаратуры от повышенного напряжения при повреждении стабилизатора или неправильного подключения к источнику питания, можно собрать несложный регулируемый блок защиты (рис.1). Он включается в разрыв цепи между выходом источника питания и нагрузкой.


Рис.1. Приципиальная схема простого блока защиты

Работает этот блок следующим образом. При повышении входного напряжения ток через стабилитрон VD1 резко возрастает, соответственно, увеличивается и ток в цепи управляющего электрода тиристора VS1, тиристор открывается и шунтирует питание нагрузки до момента срабатывания предохранителя FU1. Мощный проволочный резистор R3 предотвращает пробой тиристора из-за сильного броска тока, который возникает в случае, если в цепи питания установлены оксидные конденсаторы большой емкости. Стабилитрон VD1 выбирается на напряжение, примерно на 0,3. 1,5 В меньшее, чем номинальное напряжение питания. Выбор его типа зависит от ряда факторов, поэтому оптимальный вариант для каждого конкретного случая лучше определить экспериментально. Регулировкой резистора R1 можно точно установить то напряжение, при котором будет открываться тиристор. Конденсатор С1 предотвращает ложное срабатывание блока защиты при коротких импульсных помехах, которые могут появляться в цепи питания. Резистор R2 защищает стабилитрон и тиристор в случае, когда движок подстроечного резистора находится в верхнем положении. На время настройки этого блока предохранитель желательно заменить лампой накаливания, по зажиганию которой можно судить о моменте включения тиристора.

Более совершенный блок защиты можно собрать по схеме, приведенной на рис.2.


Рис.2. Приципиальная схема блока защиты с реле

При повышении входного напряжения питание нагрузки прекращается из-за размыкания контактов реле К1. Цепь R3-VD2 предназначена для уменьшения кратковременного всплеска напряжения на выходе блока, который может появиться из-за инерционности переключения контактов реле.

Для защиты установленных в автомобиле радиоэлектронных устройств, например, автомагнитолы или сигнализации от превышения напряжения в бортовой сети, можно собрать блок защиты по схеме, приведенной на рис.3.


Рис.3. Приципиальная схема блока защиты автомобильных радиоэлектронных устройств

Здесь движок резистора R1 установлен в положение, при котором срабатывание защиты происходит при входном напряжении 15. 16 В. При открывании тиристора размыкаются контакты реле, питание нагрузки прекращается, начинает вспыхивать мигающий светодиод HL1. Конденсаторы С1. СЗ повышают помехоустойчивость. Нажатием кнопки SB1 (без фиксации) можно возвратить блок защиты в режим ожидания.

Подстроечные резисторы можно взять сопротивлением 150. 470 Ом типов СПЗ-38, РП1-63М, СП5-16ВА, СП4-1 или, что лучше, многооборотные — типа СПЗ-39. Проволочные резисторы — типа С5-16МВ или самодельные из короткого отрезка толстого высокоомного провода.Конденсаторы — типов К10-17, КМ-5. Тиристоры подойдут любые из серий КУ228, КУ201, КУ202, Т122. Диод КД213А заменяется мощным диодом из серий КД202, Д242, КД2999. Мигающий светодиод использован красного цвета. Его можно заменить любым из серий L56, L36, L799, L816 и другими аналогичными. Электромагнитное реле типа РМУ (паспорт ЧП4.523.332) можно заменить на любое, надежно срабатывающее при номинальном входном напряжении и имеющее достаточно мощные нормальнозамкнутые контакты.

В узлах по схемам на рис.2 и 3 можно устанавливать реле типа РЭК29 от систем ДУ старых отечественных телевизоров, отмотав с его катушки нужное количество витков. Можно приспособить и подходящие по конструкции автомобильные реле.

Для защиты автомобильного оборудования в цепи датчика напряжения можно использовать стабилитроны КС297В, Д814Д, КС213Ж, КС508А, 1N6003B. Для конструкций на низковольтных цифровых микросхемах подойдут стабилитроны типов КС126Г, КС126Д, КС139А, КС147А, КС407Б, КС439А, 1 N5991 В. Для устройств на ИМС серий К561, 564, КР1561 нужный стабилитрон можно выбрать из ряда КС215Ж, КС216Ж, КС508Б, КС518А, 1N6005B, 1N6006B, 1N4745A.

Источник: П.Хоровиц, У.Хилл. Искусство схемотехники. — М.: Мир, 2001, С.335.

Страницы

Ярлыки

понедельник, 5 января 2015 г.

Схема защиты блока питания и зарядных устройств

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания — сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Схема защиты блока питания

Силовая часть — мощный полевой транзистор — в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока

При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным

Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные — IRF3205, IRL3705, IRL2505 и им подобные.

Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

Комментарии
Защита от короткого замыкания, переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.

Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.

Комментарий
Схема своего рода «НОУ-ХАУ», по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка. При срабатывании светится светодиод «ошибка подключения». Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.

собирал сегодня сие) Родная защита Дашенга даже не успевает сработать)

Принцип работы прост — при резком скачке напряжения, на шунте появляется падение напряжения, которое отпирает vt2 полевик закрывается (т.к. затвор садится на землю). При этом загорается св. диод (т.к. получает минус на затворе).

В нормальном состоянии затвор открывает положительным напряжением с цепочки св.диод-R9 Тот же принцип и при переплюсовке — от скачка тока.

Работает быстро, но криво — при выключенном блоке и подключенном аккумуляторе, на блок валит напряжение, т.к. полевик открывает акк. Я думаю, нужно делать какую-нить защиту, чтоб при пропадании напряжения зарядки, акк отключался от схемы.

Вот та же схема, только перевернутая по правильному. Использовал в зарядке, результатом доволен. Единственный недостаток (а может — фича!) — защелкивается, то есть после сработки требует полного отключения нагрузки. В принципе, это схема защиты от тока перегрузки, но при переполюсовке именно это и случается. Кстати, при нагрузке не на аккумулятор, а на резистор у меня почему-то сразу защелкивалась на защиту. С акком — нормально. Расчет максимального тока — напряжение на шунте и канале исток-сток должно быть 0.6в для срабатывания биполярника.

>>Единственный недостаток (а может — фича!) — защелкивается, то есть после сработки требует полного отключения нагрузки. достаточно кнопку сброса сделать с базы биполярника на землю

Схема защиты от перенапряжения | Radio-любитель

Всем здравствуйте. Сейчас много разнообразных защит в блоках питания, вот представляю наверно самую распространенную. Если регулятора источника питания выйдет из строя, например, транзистор пробивается, — на выходных клеммах появляется напряжение питания. Это может привести к выходу из строя оборудования, подключенном к источнику питания.

Принципиальная схема защиты от перенапряжения

Принципиальная схема защиты от перенапряжения

Показанная здесь схема защиты от перенапряжения, показала свою отличную эффективность в качестве защиты от перенапряжения источника питания. Когда появляется перенапряжение, открывается мощный тиристор, создавая короткое замыкание и стоящий в цепи предохранитель просто перегорает и обеспечивает защиту потребителя.

Использование микросхемы защиты от перенапряжения MC3423 обеспечивает более быструю работу и надежное открытие тиристора, чем схемы на основе стабилитрона. Разработчики источников питания могут включать защиту от перенапряжения в любой источник питания постоянного тока с необходимыми корректировками значений компонентов.

Можно использовать и другой вариант, который заключается в подключении входного и общего источника питания к конденсатору фильтра выпрямителя и входа защиты к выходу источника питания. В любом случае входной и общий провод питания должны иметь соответствующее сечение для пропускания полного тока короткого замыкания. Схема защиты работает следующим образом резистор 4,7 кОм и стабилитрон D1 создают напряжение питания для микросхемы MC3423. Микросхема будет работать должным образом при напряжении питания от 4,5 до 30В.

Рекомендуется использовать стабилитрон с номинальным напряжением на несколько вольт ниже значения входного напряжения цепи защиты. Например, если защита подключена к выходу питания 12В, стабилитрон D1, следует выбрать на напряжение от 6 до 9В. Точного значения не критично. Когда напряжение на выводе 2 достигает 2,5В, выходное напряжение (вывод 8) изменяется с отрицательного напряжения на положительное входное напряжение. Это приводит к открыванию тиристора через резистор 47Ом. Напряжение отключения устанавливается резистивным делителем на входах + и -.

Некоторые рекомендации по применению микросхемы MC3423, это чтобы сопротивление от входа к общему проводу было меньше 10 кОм для минимального дрейфа, предлагая это значение 2,7 кОм. Значение 10 кОм для фиксированного регулируемого сопротивления выбирается для отключения U = 15В в среднем положении потенциометра 5 кОм. Для других напряжений значение фиксированного резистора должно быть ближайшим стандартным, если предположить, что значение потенциометра остается на уровне 5 кОм.

Когда тиристор включается, он замыкает входы, вызывая перегорания защитных предохранителей или автоматических выключателей. Тиристор будет оставаться открытым до тех пор, пока ток, проходящий через него, не уменьшится ниже порога, после чего он закроется. Тиристор останется открытым, даже если входное напряжение микросхемы упадет ниже 4,5В.

Если цепь защиты срабатывает из-за радиопомех, дополнительный конденсатор емкостью 0,01 мкФ должен быть подключен с контакта 2 микросхемы к общему, а другой — к стабилитрону D1. Вот на этом и все. Уже есть предвидение что какая сложная схема. Многие напишут, что стабилитрон и тиристор решают все просто и доступно да возможно и так, но все же эта схема имеет превосходство и быстродействие. Всем спасибо за внимание.

Схема защиты от перенапряжения

Схема защиты от перенапряжения, схема возбуждения светодиодной подсветки и жк-дисплей

1. Область техники

Настоящее изобретение относится к схеме защиты от перенапряжения, схеме возбуждения светодиодной подсветки, включающей схему защиты от перенапряжения и к жидкокристаллическому дисплею (ЖК-дисплею) со схемой возбуждения светодиодной подсветки.

2. Описание известного уровня техники

С развитием техники развивается технология подсветки жидкокристаллического дисплея. В качестве источника подсветки в известном жидкокристаллическом дисплее используется лампа с холодным катодом (CCFL). Технология источников светодиодной подсветки была изобретена для преодоления недостатков источников подсветки на лампах с холодным катодом, таких как плохое восстановление цвета, низкая эффективности яркости, высокое напряжение разряда, недостаточный разряд при низкой температуре, длительное время прогрева для получения стабильной шкалы серого и т.д. В жидкокристаллическом дисплее источник светодиодной подсветки и панель жидкокристаллического дисплея расположены друг напротив друга, чтобы источник светодиодной подсветки подавал свет на панель жидкокристаллического дисплея. Источник светодиодной подсветки включает по меньшей мере одну цепочку светодиодов, соединенных последовательно. В процессе изготовления или сборки источников светодиодной подсветки напряжение, подаваемое на цепочку светодиодов, из-за технических различий может превышать заданное значение или быть ниже его.

На Фиг. 1 показана схема возбуждения источника светодиодной подсветки для известного ЖК-дисплея. Как показано на Фиг. 1, схема возбуждения источника светодиодной подсветки включает вольтодобавочную схему 1, цепочку светодиодов 21, модуль опорного напряжения 41 и модуль регулировки напряжения 3. Модуль регулировки напряжения 3 соединен с опорным напряжением VFB, подаваемым модулем опорного напряжения 41, и модуль регулировки напряжения 3 осуществляет управление вольтодобавочной схемой 1, чтобы повышать входное напряжение до необходимого выходного напряжения и подавать необходимое выходное напряжение на цепочку светодиодов 21. Модуль опорного напряжения 41 включает резистор R1 и резистор R2, соединенные последовательно. Резистор R1 подсоединен между вольтодобавочной схемой 1 и резистором R2. Резистор R2 заземлен. Опорное напряжение VFB соединено с резистором R1 и резистором R2. В этой схеме постоянное напряжение, подаваемое на положительный вывод цепочки светодиодов 21 посредством модуля опорного напряжения 41, составляет .To есть схема имеет функцию защиты от перенапряжения (OVP) с значением напряжения OVP . Поэтому, если из-за неисправности схема подает на положительный вывод цепочки светодиодов 21 напряжение, превышающее необходимое значение, схема отключается, поскольку напряжение, подаваемое на положительный вывод цепочки светодиодов 21, составляет . Однако напряжение OVP неспособно регулировать фактическое рабочее напряжение цепочки светодиодов 21 при необходимости, когда номинальное напряжение цепочки светодиодов 21 значительно изменяется.

Например, требуемое рабочее напряжение цепочки светодиодов вероятно выше чем напряжение OVP, если фактическое рабочее напряжение цепочки светодиодов 21 превышает заданное значение, что означает, что цепочка светодиодов требует большего напряжения для нормальной работы. В некоторых случаях цепочку светодиодов не загорается. Наоборот, требуемое рабочее напряжение цепочки светодиодов вероятно меньше чем напряжение О VP, если фактическое рабочее напряжение цепочки светодиодов 21 ниже заданного значения, что означает, что цепочке светодиодов необходимо меньшее напряжение для нормальной работы. В случае нештатной ситуации требуется длительное время для повышения напряжения, подаваемого на положительный вывод цепочки светодиодов, до напряжения OVP, так что детали схемы могут быть повреждены.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Из-за недостатков уровня техники настоящее изобретение предлагает схему защиты от перенапряжения и схему возбуждения светодиодной подсветки, включающую схему защиты от перенапряжения, для автоматической регулировки напряжения OVP до напряжения, необходимого для цепочки светодиодов, чтобы предотвратить повреждение деталей из-за позднего срабатывания защиты или нештатной работы в связи с чрезмерным изменением напряжения цепочки светодиодов.

Согласно настоящему изобретению, схема защиты от перенапряжения включает вольтодобавочную схему для повышения входного напряжения до требуемого выходного напряжения и подачи выходного напряжения на нагрузку, модуль регулировки напряжения для управления вольтодобавочной схемой, чтобы повышать входное напряжение до требуемого выходного напряжения, подавать выходное напряжение на нагрузку и возбуждать нагрузку постоянным током; модуль защиты от перенапряжения для контроля напряжения на положительном выводе нагрузки и генерации управляющего сигнала на основании напряжения на положительном выводе нагрузки и заданного перенапряжения, при этом управляющий сигнал используется для управления включением или отключением модуля регулировки напряжения; и модуль регулировки перенапряжения для контроля рабочего напряжения нагрузки, чтобы генерировать сигнал регулировки по рабочему напряжению, при этом сигнал регулировки используется для регулировки перенапряжения в модуле защиты от перенапряжения.

В одном аспекте настоящего изобретения модуль защиты от перенапряжения генерирует первый управляющий сигнал, чтобы включить модуль регулировки напряжения, если модуль защиты от перенапряжения определит, что напряжение на положительном выводе нагрузки ниже перенапряжения модуля защиты от перенапряжения, и модуль защиты от перенапряжения генерирует второй управляющий сигнал, чтобы отключить модуль регулировки напряжения, если модуль защиты от перенапряжения определит, что напряжение на положительном выводе нагрузки выше перенапряжения модуля защиты от перенапряжения, при этом, если модуль регулировки перенапряжения определит, что напряжение на нагрузке ниже нормального значения, модуль регулировки перенапряжения генерирует первый сигнал регулировки, и модуль защиты от перенапряжения снижает перенапряжение согласно первому сигналу регулировки, и если модуль регулировки перенапряжения определит, что рабочее напряжение цепочки светодиодов выше нормального значения, модуль регулировки перенапряжения генерирует второй сигнал регулировки, и модуль защиты от перенапряжения увеличивает перенапряжение согласно второму сигналу регулировки.

Согласно настоящему изобретению, схема возбуждения светодиодной подсветки включает вольтодобавочную схему для повышения входного напряжения до требуемого выходного напряжения и подачи выходного напряжения на цепочку светодиодов; модуль регулировки напряжения для управления вольтодобавочной схемой, чтобы повышать входное напряжение до требуемого выходного напряжения, подавать выходное напряжение на цепочку светодиодов и возбуждать цепочку светодиодов постоянным током; модуль защиты от перенапряжения для контроля напряжения на положительном выводе цепочки светодиодов и для генерации управляющего сигнала на основании напряжения на положительном выводе цепочки светодиодов и заданного перенапряжения, при этом управляющий сигнал используется для управления включением или отключением модуля регулировки напряжения; и модуль регулировки перенапряжения, для контроля рабочего напряжения цепочки светодиодов чтобы генерировать сигнал регулировки по рабочему напряжению, при этом сигнал регулировки используется для регулировки перенапряжения в модуле защиты от перенапряжения.

В одном аспекте настоящего изобретения модуль защиты от перенапряжения генерирует первый управляющий сигнал, чтобы включить модуль регулировки напряжения, если модуль защиты от перенапряжения определит, что напряжение на положительном выводе цепочки светодиодов ниже перенапряжения модуля защиты от перенапряжения, и модуль защиты от перенапряжения генерирует второй управляющий сигнал, чтобы отключить модуль регулировки напряжения, если модуль защиты от перенапряжения определит, что напряжение на положительном выводе цепочки светодиодов выше перенапряжения модуля защиты от перенапряжения.

В еще одном аспекте настоящего изобретения, если модуль регулировки перенапряжения определит, что рабочее напряжение цепочки светодиодов ниже нормального значения, то модуль регулировки перенапряжения генерирует первый сигнал регулировки, и модуль защиты от перенапряжения снижает перенапряжение согласно первому сигналу регулировки, и если модуль регулировки перенапряжения определит, что рабочее напряжение цепочки светодиодов выше нормального значения, модуль регулировки перенапряжения генерирует второй сигнал регулировки, и модуль защиты от перенапряжения увеличивает перенапряжение согласно второму сигналу регулировки.

В еще одном аспекте настоящего изобретения модуль защиты от перенапряжения включает регулировочную схему для регулировки перенапряжения согласно сигналу регулировки от модуля регулировки перенапряжения и схему защиты для контроля и сравнения напряжения на положительном выводе цепочки светодиодов с перенапряжением, чтобы генерировать управляющий сигнал для модуля регулировки напряжения.

В еще одном аспекте настоящего изобретения регулировочная схема включает первый регулятор напряжения, второй регулятор напряжения, третий регулятор напряжения, первый полевой транзистор, второй полевой транзистор, третий полевой транзистор и третий резистор;

при этом первый регулятор напряжения, второй регулятор напряжения и третий регулятор напряжения электрически соединены последовательно, катод первого регулятора напряжения соединен со схемой защиты, анод третьего регулятора напряжения заземлен;

затворы первого и второго полевых транзисторов соответственно соединены с модулем регулировки перенапряжения, сигнал регулировки от модуля регулировки перенапряжения осуществляет включение или отключение первого полевого транзистора и второго полевого транзистора, сток первого полевого транзистора соединен с катодом первого регулятора напряжения, сток второго полевого транзистора соединен с затвором третьего полевого транзистора и затем соединен с третьим опорным напряжением через третий резистор, сток третьего полевого транзистора соединен с анодом второго регулятора напряжения, истоки первого, второго и третьего полевых транзисторов заземлены; и

схема защиты включает четвертый резистор и четвертый полевой транзистор, один вывод четвертого резистора соединен с положительным выводом цепочки светодиодов, другой вывод четвертого резистора соединен с затвором четвертого полевого транзистора и затем соединен с катодом первого регулятора напряжения, сток четвертого полевого транзистора выводит управляющий сигнал на модуль регулировки напряжения, и исток четвертого полевого транзистора заземлен.

В еще одном аспекте настоящего изобретения модуль регулировки перенапряжения включает схему делителя для контроля рабочего напряжения цепочки светодиодов и генерации напряжения деления и схему сравнения для генерации сигнала регулировки и подачи его на модуль защиты от перенапряжения на основании напряжения деления.

В еще одном аспекте настоящего изобретения схема сравнения включает первый компаратор и второй компаратор, и

при этом на вывод синфазного входа первого компаратора поступает первое опорное напряжение, на вывод синфазного входа второго компаратора поступает второе опорное напряжение, на вывод синфазного входа первого компаратора и на вывод синфазного входа второго компаратора соответственно поступает напряжение деления со схемы делителя, и выходные выводы первого и второго компараторов соответственно подают сигналы регулировки на модуль защиты от перенапряжения, при этом первое опорное напряжение больше чем второе опорное напряжение.

В еще одном аспекте настоящего изобретения схема делителя включает первый резистор и второй резистор, при этом один вывод первого резистора соединен с положительным выводом цепочки светодиодов, другой вывод первого резистора соединен с одним выводом второго резистора и затем соединен со схемой сравнения, и другой вывод второго резистора заземлен.

В еще одном аспекте настоящего изобретения схема делителя включает первый резистор и второй резистор, при этом один вывод первого резистора соединен с положительным выводом цепочки светодиодов, другой вывод первого резистора соединен с одним выводом второго резистора и затем соединен со схемой сравнения, и другой вывод второго резистора заземлен.

Согласно настоящему изобретению, предложен жидкокристаллический дисплей, включающий источник светодиодной подсветки, возбуждаемый схемой возбуждения светодиодной подсветки. Схема возбуждения светодиодной подсветки включает вольтодобавочную схему для повышения входного напряжения до требуемого выходного напряжения и подачи выходного напряжения на цепочку светодиодов; модуль регулировки напряжения для управления вольтодобавочной схемой, чтобы повышать входное напряжение до требуемого выходного напряжения, подавать выходное напряжение на цепочку светодиодов и возбуждать цепочку светодиодов постоянным током; модуль защиты от перенапряжения для контроля напряжения на положительном выводе цепочки светодиодов и для генерации управляющего сигнала на основании напряжения на положительном выводе цепочки светодиодов и заданного перенапряжения, при этом управляющий сигнал используется для управления включением или отключением модуля регулировки напряжения; и модуль регулировки перенапряжения для контроля рабочего напряжения цепочки светодиодов, чтобы генерировать сигнал регулировки по рабочему напряжению, при этом сигнал регулировки используется для регулировки перенапряжения в модуле защиты от перенапряжения.

В одном аспекте настоящего изобретения модуль защиты от перенапряжения генерирует первый управляющий сигнал, чтобы включить модуль регулировки напряжения, если модуль защиты от перенапряжения определит, что напряжение на положительном выводе цепочки светодиодов ниже перенапряжения модуля защиты от перенапряжения, и модуль защиты от перенапряжения генерирует второй управляющий сигнал, чтобы отключить модуль регулировки напряжения, если модуль защиты от перенапряжения определит, что напряжение на положительном выводе цепочки светодиодов выше перенапряжения модуля защиты от перенапряжения.

В еще одном аспекте настоящего изобретения, если модуль регулировки перенапряжения определит, что рабочее напряжение цепочки светодиодов ниже нормального значения, модуль регулировки перенапряжения генерирует первый сигнал регулировки, и модуль защиты от перенапряжения снижает перенапряжение согласно первому сигналу регулировки, и если модуль регулировки перенапряжения определит, что рабочее напряжение цепочки светодиодов выше нормального значения, модуль регулировки перенапряжения генерирует второй сигнал регулировки, и модуль защиты от перенапряжения увеличивает перенапряжение согласно второму сигналу регулировки.

В еще одном аспекте настоящего изобретения модуль защиты от перенапряжения включает регулировочную схему для регулировки перенапряжения по сигналу регулировки от модуля регулировки перенапряжения и схему защиты для контроля и сравнения напряжения на положительном выводе цепочки светодиодов с перенапряжением, чтобы генерировать управляющий сигнал и подавать его на модуль регулировки напряжения.

В еще одном аспекте настоящего изобретения регулировочная схема включает первый регулятор напряжения, второй регулятор напряжения, третий регулятор напряжения, первый полевой транзистор, второй полевой транзистор, третий полевой транзистор и третий резистор;

при этом первый регулятор напряжения, второй регулятор напряжения и третий регулятор напряжения электрически соединены последовательно, катод первого регулятора напряжения соединен со схемой защиты, анод третьего регулятора напряжения заземлен;

затворы первого и второго полевых транзисторов соответственно соединены с модулем регулировки перенапряжения, сигнал регулировки от модуля регулировки перенапряжения осуществляет включение или отключение первого полевого транзистора и второго полевого транзистора, сток первого полевого транзистора соединен с катодом первого регулятора напряжения, сток второго полевого транзистора соединен с затвором третьего полевого транзистора и затем соединен с третьим опорным напряжением через третий резистор, сток третьего полевого транзистора соединен с анодом второго регулятора напряжения, истоки первого, второго и третьего полевых транзисторов заземлены; и

схема защиты включает четвертый резистор и четвертый полевой транзистор, один вывод четвертого резистора соединен с положительным выводом цепочки светодиодов, другой вывод четвертого резистора соединен с затвором четвертого полевого транзистора и затем соединен с катодом первого регулятора напряжения, сток четвертого полевого транзистора выводит управляющий сигнал на модуль регулировки напряжения, и исток четвертого полевого транзистора заземлен.

В еще одном аспекте настоящего изобретения модуль регулировки перенапряжения включает схему делителя для контроля рабочего напряжения цепочки светодиодов и генерации напряжения деления и схему сравнения для генерации сигнала регулировки и подачи его на модуль защиты от перенапряжения на основании напряжения деления.

В еще одном аспекте настоящего изобретения схема сравнения включает первый компаратор и второй компаратор, и

при этом на вывод синфазного входа первого компаратора поступает первое опорное напряжение, на вывод синфазного входа второго компаратора поступает второе опорное напряжение, на вывод синфазного входа первого компаратора и вывод синфазного входа второго компаратора соответственно поступает напряжение деления со схемы делителя, и выходные выводы первого и второго компараторов соответственно подают сигналы регулировки на модуль защиты от перенапряжения, при этом первое опорное напряжение больше, чем второе опорное напряжение.

В еще одном аспекте настоящего изобретения схема делителя включает первый резистор и второй резистор, при этом один вывод первого резистора соединен с положительным выводом цепочки светодиодов, другой вывод первого резистора соединен с одним выводом второго резистора и затем соединен со схемой сравнения, и другой вывод второго резистора заземлен.

В еще одном аспекте настоящего изобретения схема делителя включает первый резистор и второй резистор, при этом один вывод первого резистора соединен с положительным выводом цепочки светодиодов, другой вывод первого резистора соединен с одним выводом второго резистора и затем соединен со схемой сравнения, и другой вывод второго резистора заземлен.

Преимущество настоящего изобретения заключается в том, что схема защиты от перенапряжения способна автоматически регулировать перенапряжение по рабочему напряжению нагрузки, поэтому она предотвращает повреждение компонентов из-за запаздывающей защиты в случае чрезмерного изменения напряжения на нагрузке. Более конкретно, схема возбуждения светодиодной подсветки, включающая схему защиты от перенапряжения, способна контролировать рабочее напряжение цепочки светодиодов и регулировать значение напряжения OVP на основании рабочего напряжения. Модуль защиты от перенапряжения уменьшает напряжение OVP посредством первого сигнала регулировки от модуля регулировки перенапряжения, если рабочее напряжение цепочки светодиодов ниже нормального значения. Модуль защиты от перенапряжения повышает напряжение OVP посредством второго сигнала регулировки от модуля регулировки перенапряжения, если рабочее напряжение цепочки светодиодов выше нормального значения. Таким образом, она автоматически регулирует напряжение OVP на основании фактического рабочего напряжения цепочки светодиодов, если происходит чрезмерное изменение напряжения на цепочке светодиодов. Она эффективно предотвращает возникновение ошибки, при которой цепочка светодиодов не включается из-за повышенного фактического рабочего напряжения цепочки светодиодов при пониженном напряжении OVP и препятствует повреждению деталей в случае, если требуется длительное время для повышения напряжения, подаваемого на положительный вывод цепочки светодиодов, до напряжения OVP из-за пониженного фактического рабочего напряжения цепочки светодиодов при повышенном напряжении OVP.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 — принципиальная схема схемы возбуждения источника светодиодной подсветки в известном ЖК-дисплее.

Фиг. 2 — блок-схема схемы защиты от перенапряжения согласно одному варианту осуществления настоящего изобретения.

Фиг. 3 — блок-схема схемы возбуждения светодиодной подсветки согласно еще одному варианту осуществления настоящего изобретения.

Фиг. 4 — принципиальная схема схемы возбуждения светодиодной подсветки согласно одному варианту осуществления настоящего изобретения.

Фиг. 5 — блок-схема схемы возбуждения светодиодной подсветки согласно одному варианту осуществления настоящего изобретения.

Фиг. 6 — принципиальная схема модуля защиты от перенапряжения согласно одному варианту осуществления настоящего изобретения.

Фиг. 7 — принципиальная схема модуля регулировки перенапряжения согласно одному варианту осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ

Настоящее изобретение будет подробно описано со ссылками на прилагаемые чертежи и варианты осуществления.

На Фиг. 2 показана блок-схема схемы защиты от перенапряжения согласно одному варианту осуществления настоящего изобретения.

Со ссылкой на Фиг. 2, схема защиты от перенапряжения в этом варианте осуществления включает вольтодобавочную схему 1 для повышения входного напряжения Vin до требуемого выходного напряжения Vout и подачи выходного напряжения Vout на нагрузку 2, модуль регулировки напряжения 3 для управления вольтодобавочной схемой 1 для повышения входного напряжения Vin до требуемого выходного напряжения Vout и подачи выходного напряжения Vout на нагрузку 2, чтобы возбуждать нагрузку 2 постоянным током, модуль защиты от перенапряжения 4 для контроля напряжения, подаваемого на положительный вывод нагрузки 2, и генерации управляющего сигнала, который используется для включения или отключения модуля регулировки напряжения 3 на основании напряжения, подаваемого на положительный вывод, и заданного перенапряжения, и модуль регулировки перенапряжения 5 для контроля рабочего напряжения нагрузки 2 и генерации сигнала регулировки, который используется для ограничения перенапряжения в модуле защиты от перенапряжения 4 по рабочему напряжению, чтобы регулировать перенапряжение.

Модуль защиты от перенапряжения 4 генерирует первый управляющий сигнал, чтобы включить модуль регулировки напряжения 3, если модуль защиты от перенапряжения 4 определит, что напряжение на положительном выводе нагрузки 2 ниже перенапряжения модуля защиты от перенапряжения 4. С другой стороны, модуль защиты от перенапряжения 4 генерирует второй управляющий сигнал, чтобы отключить модуль регулировки напряжения 3, если модуль защиты от перенапряжения 4 определит, что напряжение на положительном выводе нагрузки 2 выше перенапряжения модуля защиты от перенапряжения 4, т.е. он осуществляет защиту от перенапряжения.

Если модуль регулировки перенапряжения 5 определит, что рабочее напряжение нагрузки 2 ниже нормального значения, то модуль регулировки перенапряжения 5 генерирует первый сигнал регулировки, подаваемый на модуль защиты от перенапряжения 4, и модуль защиты от перенапряжения 4 снижает перенапряжение согласно первому сигналу регулировки. С другой стороны, если модуль регулировки перенапряжения 5 определит, что рабочее напряжение нагрузки 2 выше нормального значения, модуль регулировки перенапряжения 5 генерирует второй сигнал регулировки, подаваемый на модуль защиты от перенапряжения 4, и модуль защиты от перенапряжения 4 увеличивает перенапряжение согласно второму сигналу регулировки.

Схема защиты от перенапряжения в этом варианте осуществления способна автоматически регулировать перенапряжение по рабочему напряжению нагрузки, так что она предотвращает повреждение деталей из-за запаздывающей защиты или нештатной работы в случае чрезмерного изменения напряжения на нагрузке.

Эта схема защиты от перенапряжения применяется в схеме возбуждения светодиодной подсветки, показанной на Фиг. 3. Нагрузкой в схеме защиты от перенапряжения является цепочка светодиодов 21.

На Фиг. 4 и Фиг. 5 показаны соответственно принципиальная схема и блок-схема схемы возбуждения светодиодной подсветки согласно одному варианту осуществления настоящего изобретения.

Со ссылкой на Фиг. 4 — Фиг. 7. Более конкретно, схема возбуждения светодиодной подсветки в этом варианте осуществления включает вольтодобавочную схему 1, цепочку светодиодов 21, модуль регулировки напряжения 3, модуль защиты от перенапряжения 4 и модуль регулировки перенапряжения 5.

Вольтодобавочная схема 1 включает индуктор 111, выпрямительный диод 112, пятый полевой транзистор 113, пятый резистор 114 и конденсатор 115. На один вывод индуктора 111 поступает входное напряжение Vin постоянного тока, и другой вывод соединен с анодом выпрямительного диода 112 и стоком пятого полевого транзистора 113. Затвор пятого полевого транзистора 113 соединен с модулем регулировки напряжения 3, и сигнал от модуля регулировки напряжения 3 включает или отключает пятый полевой транзистор 113. Исток пятого полевого транзистора 113 заземлен через пятый резистор 114. Отрицательный вывод выпрямительного диода 112 заземлен через конденсатор 115 и служит в качестве выходного вывода вольтодобавочной схемы 1, соединенного с цепочкой светодиодов 21.

Модуль регулировки напряжения 3 включает управляющую схему Ш, шестой полевой транзистор 311, шестой резистор 312, седьмой резистор 313 и восьмой резистор 314. Сток шестого полевого транзистора 311 соединен с отрицательным выводом цепочки светодиодов 21, и исток шестого полевого транзистора 311 электрически заземлен через шестой резистор 312. Управляющая схема U1, соединенная с истоком шестого полевого транзистора 311 через контакт S1, используется для контроля напряжения, подаваемого на шестой резистор 312. Управляющая схема U1, соединенная с затвором шестого полевого транзистора 311 через контакт G1, используется для включения и отключения шестого полевого транзистора 311. Контакт ISEN управляющей схемы U1, соединенный с истоком пятого полевого транзистора 113 в вольтодобавочной схеме 1 через седьмой резистор 313, используется для детектирования тока, проходящего через исток пятого полевого транзистора 113. Контакт GATE управляющей схемы U1, соединенный с затвором пятого полевого транзистора 113 через восьмой резистор 314, генерирует управляющие сигналы для включения или отключения пятого полевого транзистора 113. Контакт EN для разрешающего сигнала управляющей схемы U1 соединен с модулем защиты от перенапряжения 4 и принимает управляющий сигнал EN от модуля защиты от перенапряжения 4. Управляющая схема U1 включается или отключается по управляющему сигналу, связанному с модулем защиты от перенапряжения 4. В то же время управляющая схема U1 включает или отключает полевой транзистор 113, чтобы управлять вольтодобавочной схемой 1 через контакт GATE путем контроля изменений в напряжении шестого резистора 312 и тока на истоке пятого полевого транзистора 113, когда управляющая схема U1 работает в нормальном режиме. Поэтому вольтодобавочная схема 1 повышает входное напряжение Vin до требуемого выходного напряжения Vout для цепочки светодиодов 21, чтобы возбуждать цепочку светодиодов 21 постоянным током.

Как сказано выше, модуль защиты от перенапряжения 4 контролирует напряжение на положительном выводе цепочки светодиодов 21 и генерирует управляющий сигнал EN для включения или отключения модуля регулировки напряжения 3 согласно напряжению на положительном выводе и заданному перенапряжению. Принципиальная схема модуля защиты от перенапряжения 4 показана на Фиг. 6. Модуль защиты от перенапряжения 4 включает схему защиты 41 и регулировочную схему 42. Схема защиты 41 включает четвертый резистор 41 и четвертый полевой транзистор 412. Регулировочная схема 42 включает первый регулятор напряжения 421, второй регулятор напряжения 422, третий регулятор напряжения 423, первый полевой транзистор 424, второй полевой транзистор 425, третий полевой транзистор 426 и третий резистор 427. Первый регулятор напряжения 421, второй регулятор напряжения 422 и третий регулятор напряжения 423 электрически соединены последовательно. Катод первого регулятора напряжения 421 соединен не только с положительным выводом цепочки светодиодов 21 (т.е. выходом вольтодобавочной схемы 1) через четвертый резистор 411 в схеме защиты 41, но и с затвором четвертого полевого транзистора 412 в схеме защиты 41 для включения или отключения четвертого полевого транзистора 412, так что сток четвертого полевого транзистора 412 выводит управляющий сигнал EN для включения или отключения модуля регулировки напряжения 3. Управляющий сигнал EN имеет низкий уровень, когда исток четвертого полевого транзистора 412 включен, и, напротив, управляющий сигнал EN имеет высокий уровень, когда исток четвертого полевого транзистора 412 отключен. Затвор первого полевого транзистора 424 и затвор второго полевого транзистора 425 соответственно соединены с модулем регулировки перенапряжения 5. Сигнал регулировки от модуля регулировки перенапряжения 5 включает или отключает первый полевой транзистор 424 и второй полевой транзистор 425. Сток первого полевого транзистора 424 соединен с первым регулятором напряжения 421. Сток второго полевого транзистора 425 и затвор третьего полевого транзистора 426 соединены друг с другом и с третьим опорным напряжением через третий резистор 427 и включают или отключают третий полевой транзистор 426. Сток третьего полевого транзистора 426 соединен с анодом второго регулятора напряжения 422. Истоки первого полевого транзистора 424, второго полевого транзистора 425 и третьего полевого транзистора 426 электрически соединены с анодом третьего регулятора напряжения 423. В этом варианте осуществления модуль защиты от перенапряжения 4 регулирует напряжение О VP по значениям регулирующих напряжений первого регулятора напряжения 421, второго регулятора напряжения 422 и третьего регулятора напряжения 423.

Как сказано выше, модуль регулировки перенапряжения 5 контролирует рабочее напряжение цепочки светодиодов 21 и генерирует сигнал регулировки для регулировки перенапряжения модуля защиты от перенапряжения 4 по рабочему напряжению. Принципиальная схема модуля регулировки перенапряжения 5 показана на Фиг. 7. Модуль регулировки перенапряжения 5 включает схему сравнения 51 и схему делителя 52. Схема сравнения 51 включает первый компаратор 511 и второй компаратор 512. Схема делителя 52 включает первый резистор 521 и второй резистор 522. Первый резистор 521 и второй резистор 522 соединены последовательно и заземлены, и другой вывод первого резистора 521 соединен с положительным выводом. Напряжение деления Vfb между первым резистором 521 и вторым резистором 522 выводится и соединяется с выводом синфазного входа первого компаратора 511 и выводом синфазного входа второго компаратора 512 в схеме сравнения 51. На вывод синфазного входа первого компаратора 511 поступает первое опорное напряжение Vref1, и на синфазный вывод второго компаратора 512 поступает второе опорное напряжение Vref2. Выходной вывод первого компаратора 511 соединен с затвором второго полевого транзистора 425 в модуле защиты от перенапряжения 4. Сигнал регулировки Sn1 от первого компаратора 511 определяет включение или отключение второго полевого транзистора 425. Выходной вывод второго компаратора 512 соединен с затвором первого полевого транзистора 424 в модуле защиты от перенапряжения 4. Сигнал регулировки Sn2 от второго компаратора 512 определяет включение или отключение первого полевого транзистора 424. Vref1>Vref2.

В этом варианте осуществления цепочка светодиодов 21 включает по меньшей мере один светодиод 211.

Ниже приведено подробное описание процесса работы схемы возбуждения светодиодной подсветки, показанной на Фиг. 4. Регулирующее напряжение первого регулятора напряжения 421 — V1, второго регулятора напряжения — V2, третьего регулятора напряжения 423 — V3, исходное заданное напряжение OVP равно V1+V2+V3, и напряжение OVP изменяется по фактическому рабочему напряжению цепочки светодиодов 21 после того, как цепочка светодиодов 21 заработает стабильно.

(а) Когда рабочее напряжение цепочки светодиодов 21 находится в нормальном диапазоне, что означает нормальное напряжение на положительном выводе цепочки светодиодов 21, отношение между напряжением деления Vfb схемы делителя 52 и опорными напряжениями Vref1 и Vref2 будет Vref2<Vfb<Vref1. В это время сигнал регулировки Sn1 от первого компаратора 511 и сигнал регулировки Sn2 от второго компаратора 512 имеют низкий уровень, и напряжение OVP, заданное модулем защиты от перенапряжения 4, равно V1+V2, когда первый полевой транзистор 424 и второй полевой транзистор 425 отключены, и третий полевой транзистор 426 включен.

(b) Когда рабочее напряжение цепочки светодиодов 21 отличается от нормального значения, что означает повышенное напряжение на положительном выводе цепочки светодиодов 21, отношение между напряжением деления Vfb схемы делителя 52, опорными напряжениями Vref1 и Vref2 будет Vfb>Vref1>Vref2. В это время сигнал регулировки Snl от первого компаратора 511 имеет высокий уровень, сигнал регулировки Sn2 от второго компаратора 512 имеет низкий уровень, и напряжение OVP, заданное модулем защиты от перенапряжения 4, равно V1+V2+V3, чтобы соответственно повысить напряжение OVP, когда первый полевой транзистор 424 и третий полевой транзистор 426 отключены, и второй полевой транзистор 425 включен. Поскольку напряжение OVP повышается, можно избежать ситуации, в которой цепочка светодиодов не загорается из-за повышенного рабочего напряжения цепочки светодиодов и пониженного напряжения OVP.

(c) Когда рабочее напряжение цепочки светодиодов 21 ниже нормального значения, что означает пониженное напряжение на положительном выводе цепочки светодиодов 21, отношение между напряжением деления Vfb схемы делителя 52 и опорными напряжениями Vref1 и Vref2 составляет Vfb>Vref1>Vref2. В это время сигнал регулировки Sn1 от первого компаратора 511 имеет низкий уровень, сигнал регулировки Sn2 от второго компаратора 512 имеет высокий уровень, и напряжение OVP, заданное модулем защиты от перенапряжения 4, составляет V1, чтобы соответственно снизить напряжение OVP, когда первый полевой транзистор 424 и третий полевой транзистор 426 включены, и второй полевой транзистор 425 отключен. Это предотвращает повреждение деталей при длительном времени повышения напряжения на положительном выводе цепочки светодиодов до напряжения OVP из-за пониженного фактического рабочего напряжения цепочки светодиодов при повышенном напряжении OVP.

Ток через четвертый резистор 412 не протекает, если напряжение на положительном выводе цепочки светодиодов меньше напряжения OVP. Тогда четвертый полевой транзистор 412 отключается, управляющий сигнал EN имеет высокий уровень, и управляющая схема U1 работает в нормальном режиме. Напротив, ток через четвертый резистор 412 протекает, если напряжение на положительном выводе цепочки светодиодов выше напряжения OVP. Тогда четвертый полевой транзистор 412 включается, управляющий сигнал EN имеет низкий уровень, управляющая схема U1 прекращает работать в нормальном режиме, и осуществляется защита от перенапряжения.

Суммируя все вышесказанное, настоящее изобретение предлагает схему защиты от перенапряжения, способную автоматически регулировать перенапряжение по рабочему напряжению нагрузки, этим предотвращая повреждение деталей из-за ошибок или запаздывающей защиты в случае чрезмерного изменения напряжения на нагрузке. Более конкретно, схема возбуждения светодиодной подсветки, включающая схему защиты от перенапряжения, способна контролировать рабочее напряжение цепочки светодиодов и регулировать значение напряжения OVP на основании рабочего напряжения. Модуль защиты от перенапряжения снижает напряжение OVP посредством первого сигнала регулировки от модуля регулировки перенапряжения, если рабочее напряжение цепочки светодиодов ниже нормального значения. Модуль защиты от перенапряжения повышает напряжение OVP посредством второго сигнала регулировки от модуля регулировки перенапряжения, если рабочее напряжение цепочки светодиодов превышает нормальное значение. Таким образом, автоматически регулируется напряжение OVP по фактическому рабочему напряжению цепочки светодиодов в случае чрезмерного изменения напряжения цепочки светодиодов. Эффективно предотвращается возникновение ошибки, при которой цепочка светодиодов не включается при повышенном фактическом рабочем напряжении цепочки светодиодов и пониженном напряжении OVP, или повреждение деталей из-за длительного времени повышения напряжения на положительном выводе цепочки светодиодов до напряжения OVP из-за пониженного фактического рабочего напряжения цепочки светодиодов при повышенном напряжении OVP.

В заключение, такие термины как первый, второй, А, В, (а), (b) и т.д. могут использоваться в настоящем документе для описания компонентов настоящего изобретения. Каждый из этих терминов не используется для определения сущности, порядка или последовательности соответствующего компонента, а используется просто для того, чтобы отличать соответствующий компонент от другого компонента (или других компонентов). Следует сказать, что если в описании изобретения указано, что один компонент «соединен» с другим компонентом, то третий компонент может быть «подсоединен» между первым и вторым компонентами, хотя первый компонент может быть соединен непосредственно со вторым компонентом.

Специалисты в данной области техники легко поймут, что в устройство и способ могут быть внесены многочисленные модификации и изменения при сохранении сущности изобретения. Соответственно, приведенное выше раскрытие должно истолковываться как ограниченное только пределами прилагаемой формулы изобретения.






СХЕМА УСТРОЙСТВА ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЯ — Защита — Схемы разных устройств — Схемы

Предлагаю очередную испытанную схему защитного устройства. Простота данной конструкции обусловленна тем, что отключение нагрузки происходит только в случае превышения сетевого напряжения выше заданного значения. Для того, чтобы автомат отключал приборы и при понижении напряжения сети, есть более сложные схемы. Но считаю, что низкое сетевое напряжение не приносит столько проблем, сколько высокое, поэтому можно не усложнять конструкцию и реализовать её на одном транзисторе и симмисторе. Схема из журнала радиолюбитель.

    В данной схеме выключение сети производится симистором. Отпирание симистора производится транзистором, подающим на управляющий электрод отрицательное относительно катода напряжение. Резистор R5 ограничивает ток управления, облегчая режим работы транзистора. В качестве источника опорного и управляющего напряжений используется параметрический стабилизатор, образованный элементами VD1, R1,C1, дополненный однополупериодным выпрямителем на диоде VD2. С этого выпрямителя снимается нестабилизированное однополярное напряжение, используемое для управления транзистором при изменениях напряжения сети. При нормальном напряжении сети, напряжение на делителе R2-R4-C2 и, соответственно, на базе транзистора ниже, чем стабилизированное напряжение на эмиттере. Соответственно, транзистор открыт, и симистор пропускает напряжение фазы к потребителю.

    

По мере увеличения напряжения сети, напряжение на резистивном делителе возрастает, и в какой-то момент времени становится равным напряжению на эмиттере. Эмиттерный ток транзистора уменьшается до нуля, транзистор и симистор запираются, а напряжение перестаёт поступать к нагрузке. Для более резкого переключения, в схеме присутствует цепь положительной обратной связи R3, VD3, R6. Ток, протекающий через нее при запирании симистора, суммируется с током резистора R2, дополнительно повышая напряжение на делителе R2-R4-C2, обеспечивая тем самым более надежное выключение транзистора. 

    

Устройство защиты собирал навесным монтажом. Резистор R2 определяет напряжение отключения нагрузки: чем больше номинал — тем выше напряжение. Резистор R3 определяет напряжение гистерезиса: чем меньше номинал — тем шире разброс между напряжениями включения и выключения. Номинал резистора R5 необходимо уменьшать в случае неустойчивого включения симистора. Симистор устанавливается на теплоотвод площадью100 см2. В качестве него можно использовать симистор с рабочим напряжением более 400 В и током порядка 10 А (ТС106-10-5, ТС112-10-5, ТС125-10-5). В качестве транзистора подойдет любой n-p-n транзистор с током коллектора более 0.1А. Диоды VD2, VD3 — низкочастотные выпрямительные диоды с обратным напряжением 400 В.

    

В устройстве можно использовать и более мощные симисторы с рабочими токами до 50 А. При этом следует вдвое уменьшить сопротивления резисторов R1 и R5, соответственно увеличив мощность R1 до 20 Вт, и заменить транзистор на мощнее, с током коллектора более 0.3А. Настройку устройства защиты аппаратуры можно проводить с помощью аналога автотрансформатора.

Быстродействующее устройство защиты от перенапряжения

Для надёжной защиты ценной бытовой аппаратуры от повышенного напряжения в сети требуется быстродействующее устройство, которое можно подключить к любой сетевой розетке. Если напряжение в сети относительно стабильно, а перенапряжения случаются редко, и только в аварийных ситуациях, то задача стабилизации напряжения перед таким устройством не ставится. Его можно выполнить по простейшей схеме с минимальным собственным потреблением тока от электросети. Органов управления у него не должно быть много. Они не должны быть доступными детям и неквалифицированным пользователям, которые могут по неосторожности или неопытности нарушить регулировку.

Современные дома всё более насыщаются электронной аппаратурой, в большинстве случаев требующей больших расходов на восстановление после отказа. Чаще всего её повреждение — следствие чрезмерного повышения напряжения в электросети. Оно бывает вызвано различными авариями, неравномерной нагрузкой фаз и грозовыми явлениями. Применять стабилизатор напряжения сети для питания аппаратуры, имеющей свои стабилизированные блоки питания (что характерно для всей современной электронной аппаратуры), совершенно нецелесообразно. К тому же для всех дешёвых стабилизаторов сетевого напряжения характерно время реакции на его изменение не менее трёх-четырёх полупериодов синусоиды. За это время чувствительные к перенапряжению полупроводниковые компоненты электронных приборов вполне могут быть повреждены. Широко известные и массово производимые реле напряжения предназначены, главным образом, для установки в щиток электропитания и, имея ещё большее время реакции, плохо защищают электронную аппаратуру. К тому же при срабатывании они обесточивают всю квартиру или иное помещение.

Основа предлагаемого устройства — автоматический предохранитель ST101E или BK-1-10. Такие обычно устанавливают в сетевых удлинителях, разветвителях, источниках бесперебойного питания и другой аппаратуре. Этот предохранитель содержит биметаллическую пластину, изгибающуюся при нагреве текущим через неё током и нажимающую на контактную пружину, разрывающую электрическую цепь. Для возврата сработавшего предохранителя в замкнутое состояние нужно нажать на имеющуюся на нём кнопку.

К этому предохранителю я добавил самодельный электромагнит, срабатывающий при превышении мгновенным напряжением в сети максимального допустимого значения и нажимающий на контактную пружину автоматического выключателя. Чтобы вернуть его в исходное состояние, нужно нажать на кнопку. Нужно сказать, что способность автоматического выключателя разрывать цепь при превышении номинального для него тока полностью сохранена. В результате получен расцепитель с внешним управлением, отличающийся наличием токовой защиты и высоким быстродействием.

Рис. 1. Схема управления электромагнитом

 

Схема управления электромагнитом изображена на рис. 1. На подстроечном резисторе R1 выделяются вершины выпрямленной диодным мостом VD1 сетевой синусоиды, превышающие сумму напряжений стабилизации стабилитронов VD2-VD5 и прямых падений напряжения на светодиоде HL1 и диодах выпрямительного моста. Как только напряжение, снимаемое с движка подстроечного резистора, превысит пороговое напряжение симметричного динистора VS1, последний открывается и формирует импульс, открывающий мощный симистор VS2. Обмотка электромагнита оказывается напрямую подключена к сети, в результате чего он срабатывает. Его якорь через толкатель нажимает на контактную пружину автоматического предохранителя QS1. Обмотка электромагнита YA1 и розетка XS1 с подключённым к ней потребителем электроэнергии оказываются обесточенными.

Тип подстроечного резистора R1 — CA9V. Перемещая его движок, регулируют напряжение срабатывания устройства. Конденсатор C1 сглаживает кратковременные случайные выбросы напряжения, предотвращая ложные срабатывания, в том числе в момент подключения устройства к сети.

Эскиз сборки автоматического выключателя QS1 с электромагнитом YA1 показан на рис. 2.

Рис. 2. Эскиз сборки автоматического выключателя QS1 с электромагнитом YA1

 

Здесь обозначено:

1 — заклёпка;

2 — статор электромагнита;

3 — щёчки каркаса обмотки;

4 — якорь электромагнита;

5 — толкатель;

6 — стержни-магнитопроводы;

7 — обмотка электромагнита;

8 — диэлектрическая прокладка;

9 — кнопка возврата;

10 — втулка с резьбой;

11 — корпус предохранителя;

12 — крышка корпуса;

13 — подвижный контакт;

14 — неподвижный контакт;

15 — стеклотекстолитовая шторка;

16 — вывод.

Его изготовление начинайте с разборки автоматического выключателя. Для этого высверлите расклёпанные части трёх обычно пластмассовых, но иногда алюминиевых заклёпок, стягивающих корпус 11 с крышкой 12. Одна из заклёпок находится между выводами 16, а две другие — по углам правой (по рис. 3) части корпуса 11. Ещё две алюминиевые заклёпки 1, фиксирующие выводы 16 предохранителя, трогать не следует. Затем с помощью ножа раздвиньте корпус 11 и его крышку 12 и аккуратно снимите её.

Найдите на биметаллической пружине подвижного контакта 13 точку, показанную крестом на рис. 3, и строго под ней просверлите в корпусе 11 отверстие. В него должен легко входить толкатель 5, сделанный из отрезка толстой капроновой рыболовной лески или струны для теннисной ракетки. При срабатывании электромагнита толкатель раздвигает подвижный и неподвижный контакты, размыкая цепь. В образовавшуюся щель не показанная на эскизе пружина вводит шторку 15, предотвращющую замыкание контактов после обесточивания обмотки 7 электромагнита. Одновременно кнопка 9 выдвигается наружу — это сигнализирует о срабатывании.

Рис. 3. Автоматический выключатель

 

Завершив доработку, крышку 12 автоматического выключателя можно установить на место, вставив остатки пластмассовых заклёпок в оставшиеся от них отверстия корпуса 11. Если заклёпки были алюминиевыми, нужно вставить в отверстия аналогичные заклёпки подходящей длины и диаметра и расклепать их. Если желательно оставить предохранитель разборным, вместо заклёпок можно применить винты М2,5 с гайками.

Якорь 4 и статор 2 электромагнита изготовлены из отожжённой стальной тарной ленты 20×1 мм. При их сочленении зазоры между боковыми плоскостями должны быть минимальными. Стержни-магнитопроводы 6 — отрезки мягкой стальной проволоки диаметром 5 мм. Они вставлены на клею в отверстия стеклотекстолитовых щёчек 3 и расчеканены в них. Для изоляции от обмотки 7 стержни 6 покрыты двумя слоями лака. Обмотка намотана проводом ПЭВ-2 диаметром 0,1 мм до заполнения каркаса. Её сопротивление постоянному току — около 50 Ом.

Внешний вид статора электромагнита с обмоткой показан на рис. 4. Электромагнит в сборе с автоматическим выключателем изображён на рис. 5. Лента из лакоткани, наклеенная на наружные поверхности якоря и статора, предотвращает выпадение якоря.

Рис. 4. Внешний вид статора электромагнита с обмоткой

 

Рис. 5. Электромагнит в сборе с автоматическим выключателем

 

Рис. 6. Устройство собрано в корпусе розетки с выключателем

 

Устройство собрано в корпусе розетки с выключателем (рис. 6), включаемой в обычную сетевую розетку. Выключатель удалён, а оставшееся от него окно закрыто пластиковой пластиной. Рядом с ней просверлено отверстие для светодиода HL1. Слева видна фирменная наклейка, под которой имеется отверстие для доступа к подстроечному резистору R1. Внутри корпуса удалены все мешающие перегородки и выступы. Кнопка 9 (см. рис. 2) выведена в нижней части корпуса. Помещённая внутри него плата электронного узла имеет размеры 50×30 мм. Размещение элементов на ней показано на рис. 7. Их монтаж — проводной. Конденсатор C1 припаян непосредственно к контактам розетки XS1.

Рис. 7. Размещение элементов на плате электронного узла

 

Для налаживания устройства нужен лабораторный автотрансформатор (ЛАТР). Однако можно обойтись и без него, используя силовой трансформатор мощностью около 300 Вт от лампового телевизора. Соединяя одну или несколько его вторичных обмоток последовательно синфазно с первичной, можно получить переменное напряжение до 250…255 В, что соответствует максимальному по ГОСТ напряжению в сети. Большее пороговое напряжение устанавливать не рекомендуется.

Перед началом налаживания движок подстроечного резистора R1 установите в нижнее по схеме положение. Затем подайте на вход устройства (вилку XP1) заранее установленное напряжение, равное желаемому пороговому. Медленно вращайте движок подстроечного резистора до момента срабатывания электромагнита YA1 и автоматического предохранителя QS1. На этом налаживание можно считать законченным.

Рис. 8. Стенд для проверки быстродействия изготовленного устройства

 

Для проверки быстродействия изготовленного устройства я собрал стенд по изображённой на рис. 8 схеме. Конденсаторы C1-C3 в нём полиэтилентерефталатные К73-11 (CL20) или аналогичные. Вольтметр PV1 должен быть цифровым с входным сопротивлением не менее 5 МОм. В качестве батареи GB1 использовались два или три литиевых аккумулятора.

Вилка XP1 устройства защиты была вставлена в розетку XS1 стенда, а розетка XS1 устройства оставлена свободной. Прежде чем включить вилку XP1 стенда в сеть, движок подстроечного резистора R1 устройства был установлен в нижнее по схеме положение, а конденсаторы С1-С3 стенда разряжены с помощью временно наложенной на их выводы перемычки.

Замкнув выключатель SA1 и вставив вилку XP1 стенда в сетевую розетку, я медленно вращал движок подстроечно-го резистора до срабатывания устройства и замечал первое после срабатывания показание вольтметра PV1. Оно равно напряжению, до которого зарядились через резистор R4 конденсаторы С1-С3 за время протекания тока через резистор R1, т. е. с момента открывания симистоpаVS1 до момента размыкания контактов автоматического выключателя QS1. Предположив, что напряжение на конденсаторах UC нарастает линейно, я подсчитал время срабатывания защиты tср в секундах по формуле

tср = R4·C·UC/Uбат

где C — суммарная ёмкость конденсаторов C1-C3, Ф; UC — напряжение на конденсаторах сразу после срабатывания защиты, В; Uбат — напряжение батареи GB1, В. Сопротивление резистора R4 подставляют в формулу в омах. Получено усреднённое за несколько измерений значение времени срабатывания 3 мс.

Такое высокое быстродействие объясняется отсутствием холостого хода и малым (1…2 мм) рабочим ходом якоря электромагнита. Кроме того, его воздействие на размыкающиеся контакты — ударное благодаря многократной перегрузке обмотки электромагнита, на которую поступает напряжение, близкое к амплитудному значению сетевого. Она выдерживает этот режим лишь по причине его кратковременности.

Примечание.При длительном отсутствии срабатываний разделённые минимальным зазором поверхности статора и якоря электромагнита могут загрязниться или покрыться ржавчиной. По этой причине в аварийной ситуации якорь может заклинить и отключения не произойдёт. В результате оставшаяся надолго под током обмотка электромагнита перегреется и сгорит. Поэтому последовательно с ней нужно включить термопредохранитель, прижатый к обмотке.

Автор: А. Васильев, г. Санкт-Петербург

Повышенное напряжение источника питания »Примечания по электронике

Защита от перенапряжения блока питания действительно полезна — некоторые отказы блока питания могут привести к повреждению оборудования большим напряжением. Защита от перенапряжения предотвращает это как на линейных регуляторах, так и на импульсных источниках питания.


Пособие по схемам источника питания и руководство Включает:
Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Хотя современные блоки питания сейчас очень надежны, всегда есть небольшая, но реальная вероятность того, что они могут выйти из строя.

Они могут выйти из строя по-разному, и одна особенно тревожная возможность заключается в том, что элемент последовательного прохода, то есть транзистор главного прохода или полевой транзистор, может выйти из строя таким образом, что произойдет короткое замыкание. Если это произойдет, в цепи, на которую подается питание, может появиться очень большое напряжение, часто называемое перенапряжением, что приведет к катастрофическому повреждению всего оборудования.

Добавив небольшую дополнительную схему защиты в виде защиты от перенапряжения, можно защититься от этой маловероятной, но катастрофической возможности.

В большинстве источников питания, предназначенных для очень надежной работы дорогостоящего оборудования, предусмотрена защита от перенапряжения в той или иной форме, чтобы гарантировать, что любой отказ источника питания не приведет к повреждению оборудования, на которое подается питание. Это относится как к линейным источникам питания, так и к импульсным источникам питания.

Некоторые источники питания могут не иметь защиты от перенапряжения, и их не следует использовать для питания дорогостоящего оборудования — можно немного спроектировать электронную схему и разработать небольшую схему защиты от перенапряжения и добавить ее в качестве дополнительного элемента. .

Основы защиты от перенапряжения

Есть много причин, по которым блок питания может выйти из строя. Однако, чтобы понять немного больше о защите от перенапряжения и проблемах схемы, легко взять простой пример линейного регулятора напряжения, использующего очень простой стабилитрон и транзистор с последовательным проходом.

Базовый последовательный стабилизатор с использованием стабилитрона и эмиттерного повторителя

Хотя более сложные источники питания обеспечивают лучшую производительность, они также используют последовательный транзистор для передачи выходного тока.Основное отличие заключается в способе подачи напряжения регулятора на базу транзистора.

Обычно входное напряжение такое, что на элемент последовательного регулятора напряжения падает несколько вольт. Это позволяет последовательному транзистору адекватно регулировать выходное напряжение. Часто падение напряжения на последовательном транзисторе является относительно высоким — для источника питания 12 вольт входное напряжение может составлять 18 вольт и даже больше, чтобы обеспечить необходимое регулирование и подавление пульсаций и т. Д.

Это означает, что в элементе регулятора напряжения может рассеиваться значительное количество тепла и в сочетании с любыми переходными выбросами, которые могут появиться на входе, это означает, что всегда существует вероятность отказа.

Устройство последовательного прохода транзисторов обычно выходит из строя в условиях разомкнутой цепи, но при некоторых обстоятельствах в транзисторе может возникнуть короткое замыкание между коллектором и эмиттером. Если это произойдет, то на выходе регулятора напряжения появится полное нерегулируемое входное напряжение.

Если на выходе появится полное напряжение, это может привести к повреждению многих микросхем в цепи питания. В этом случае ремонт схемы вполне может оказаться невозможным.

Принцип работы импульсных регуляторов сильно отличается, но есть обстоятельства, при которых полный выходной сигнал может появиться на выходе источника питания.

Как для источников питания с линейным стабилизатором, так и для импульсных источников питания всегда рекомендуется какая-либо защита от перенапряжения.

Виды защиты от перенапряжения

Как и во многих электронных технологиях, существует несколько способов реализации той или иной возможности. Это верно для защиты от перенапряжения.

Можно использовать несколько различных техник, каждая со своими характеристиками. При определении того, какой метод использовать на этапе проектирования электронных схем, необходимо взвесить производительность, стоимость, сложность и режим работы.

  • Лом SCR: Как следует из названия, цепь лома вызывает короткое замыкание на выходе источника питания, если возникает состояние перенапряжения.Обычно для этого используются тиристоры, то есть тиристоры, поскольку они могут переключать большие токи и оставаться включенными до тех пор, пока не рассеется какой-либо заряд. Тиристор может быть снова подключен к предохранителю, который перегорает и изолирует регулятор от дальнейшего воздействия на него напряжения.

    Схема защиты от перенапряжения тиристорного лома

    В этой схеме стабилитрон выбран так, чтобы его напряжение было выше нормального рабочего напряжения на выходе, но ниже напряжения, при котором может произойти повреждение. В этой проводимости ток через стабилитрон не протекает, потому что его напряжение пробоя не было достигнуто, и ток не течет на затвор тиристора, и он остается выключенным.Блок питания будет работать нормально.

    Если последовательный транзистор в блоке питания выходит из строя, напряжение начинает расти — развязка в блоке гарантирует, что оно не поднимется мгновенно. Когда он поднимается, он поднимается выше точки, в которой стабилитрон начинает проводить, и ток будет течь в затвор тиристора, вызывая его срабатывание.

    Когда тиристор срабатывает, он замыкает выход источника питания на землю, предотвращая повреждение схемы, которую он питает.Это короткое замыкание также может быть использовано для перегорания предохранителя или другого элемента, отключая питание регулятора напряжения и изолируя устройство от дальнейшего повреждения.

    Часто развязка в виде небольшого конденсатора помещается между затвором тиристора и землей, чтобы предотвратить резкие переходные процессы или высокочастотные помехи от источника питания, которые поступают на соединение затвора и вызывают ложный запуск. Однако его не следует делать слишком большим, так как это может замедлить срабатывание цепи в реальном случае отказа, а защита может сработать слишком медленно.

    Примечание по защите от перенапряжения тиристорного лома:

    Тиристор или SCR, выпрямитель с кремниевым управлением, может использоваться для защиты от перенапряжения в цепи источника питания. Обнаружив высокое напряжение, схема может запустить тиристор, чтобы поместить короткое замыкание или лом на шину напряжения, чтобы гарантировать, что оно не поднимется до высокого напряжения.

    Подробнее о Схема защиты тиристорного лома от перенапряжения.

  • Фиксация напряжения: Другая очень простая форма защиты от перенапряжения использует подход, называемый фиксацией напряжения. В простейшей форме это может быть обеспечено с помощью стабилитрона, установленного на выходе регулируемого источника питания. Если напряжение на стабилитроне выбрано немного выше максимального напряжения шины, в нормальных условиях он не будет проводить. Если напряжение поднимается слишком высоко, оно начинает проводить, ограничивая напряжение на значении, немного превышающем напряжение шины.

    Если для регулируемого источника питания требуется более высокий ток, можно использовать стабилитрон с транзисторным буфером. Это увеличит пропускную способность по току по сравнению с простой схемой на стабилитроне в раз, равный коэффициенту усиления по току транзистора. Поскольку для этой схемы требуется силовой транзистор, вероятные уровни усиления по току будут низкими — возможно, 20-50.

    Фиксатор перенапряжения на стабилитроне
    (а) — простой стабилитрон, (б) — повышенный ток с транзисторным буфером
  • Ограничение напряжения: Когда для импульсных источников питания требуется защита от перенапряжения, методы SMPS с зажимом и ломом используются менее широко из-за требований к рассеиваемой мощности, а также из-за возможных размеров и стоимости компонентов.

    К счастью, большинство импульсных регуляторов выходят из строя из-за низкого напряжения. Однако часто бывает целесообразно использовать возможности ограничения напряжения в случае возникновения перенапряжения.

    Часто этого можно достичь, определив состояние перенапряжения и отключив преобразователь. Это особенно применимо в случае преобразователей постоянного тока в постоянный. При реализации этого необходимо включить измерительную петлю, которая находится за пределами основного регулятора IC — многие импульсные регуляторы и преобразователи постоянного тока используют микросхему для создания большей части схемы.Очень важно использовать внешний контур считывания, потому что, если микросхема регулятора режима переключения повреждена, вызывая состояние перенапряжения, механизм считывания также может быть поврежден.

    Очевидно, что для этой формы защиты от перенапряжения требуются схемы, специфичные для конкретной схемы, и используемые микросхемы импульсного источника питания.

Используются все три метода, которые могут обеспечить эффективную защиту источника питания от перенапряжения. У каждого есть свои преимущества и недостатки, и выбор техники должен зависеть от конкретной ситуации.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Возврат в меню проектирования схем. . .

Проектирование простой схемы защиты от перенапряжения с использованием стабилитронов

Каждая конструкция схемы работает на разных уровнях напряжения, наиболее распространенными уровнями напряжения для цифровой схемы являются 3.3В, 5В и 12В. Но каждая конструкция уникальна, и для схемы также характерно иметь более одного рабочего напряжения. Типичная компьютерная система SMPS, например, может работать на шести различных уровнях напряжения, а именно: ± 3,3 В, ± 5 В и ± 12 В. Для питания различных типов компонентов будут использоваться разные уровни напряжения, в этих случаях, если компонент с низким энергопотреблением запитан высоким напряжением, компонент будет безвозвратно поврежден. Следовательно, разработчик всегда должен концентрироваться на реализации схемы защиты от перенапряжения в своих конструкциях, чтобы предотвратить повреждение от перенапряжения.

Любой компонент или цепь будет иметь три различных номинальных напряжения, а именно минимальное рабочее напряжение, рекомендуемое или стандартное рабочее напряжение и максимальное рабочее напряжение. Любое значение выше максимального рабочего напряжения может быть фатальным для любых цепей или компонентов. Очень распространенным и экономичным решением является использование схемы защиты от перенапряжения на стабилитроне .

Стабилитроны — основы Стабилитроны

в большинстве случаев являются первым выбором для защиты схемы от перенапряжения .Стабилитрон работает по тому же принципу, что и диод, который блокирует ток в обратном направлении. Но существует ограничение, заключающееся в том, что стабилитрон блокирует ток в обратном направлении только для ограниченного напряжения, указанного в номинальном напряжении стабилитрона . Чтобы быть конкретным, стабилитрон на 5,1 В блокирует протекание тока в обратном направлении до 5,1 В. Если напряжение на стабилитроне больше 5,1 В, он позволяет току проходить через него. Эта особенность стабилитрона делает его отличным компонентом для защиты от перенапряжения .

Как защитить схемы от перенапряжения?

Рассмотрим изображение ниже, где нам нужна защита от перенапряжения для микроконтроллера . Микроконтроллер может быть любым, что имеет максимальное напряжение 5 В на выводах ввода-вывода. Следовательно, напряжение более 5 В может повредить микроконтроллер.

Стабилитрон, используемый в приведенной выше схеме, представляет собой стабилитрон с напряжением 5,1 В. Он будет работать нормально при перенапряжении. Если напряжение больше 5.1 В, стабилитрон будет пропускать ток и регулировать напряжение до 5,1 В. Но менее 5,1 В стабилитрон будет действовать как обычный диод и блокировать

Изображение ниже представляет собой моделирование цепи стабилитрона Protection на Spice. Вы можете посмотреть видео внизу этой страницы для полного объяснения симуляции.

На приведенной выше схеме имеется входное напряжение V1. R1 и D2 — это два компонента, защищающие выход от защиты от перенапряжения.В данном случае D2, 1N4099 представляет собой стабилитрон на 6,8 В. Выход будет защищен, если напряжение V1 превысит 6,8 В. Из-за опорного напряжения 6,8 В на 1N4099 выходное напряжение останется максимальным 6,8 В.

Давайте посмотрим, как приведенная выше схема действует как схема защиты входа стабилитрона и защищает выход от напряжения более 6,8 В.

Вышеупомянутая схема моделируется с использованием каденции pspice . Во время входного напряжения 6 В на V1 выходное напряжение остается постоянным на уровне 5.999 В (что составляет 6,0 В).

В приведенном выше моделировании входное напряжение составляет 6,8 В. Таким образом, выходное напряжение составляет 6,785 В, что близко к 6,8 В. Давайте дальше увеличим входное напряжение и создадим ситуацию перенапряжения.

Теперь входное напряжение составляет 7,5 В, что больше, чем 6,8 В. Теперь на выходе все еще 6,883 В. Таким образом, стабилитрон эффективен для спасения подключенной цепи от ситуации перенапряжения, даже когда напряжение возвращается ниже 6.8 В, схема снова будет работать нормально, как показано на предыдущем шаге. Это означает, что, в отличие от предохранителя, стабилитрон не повреждается даже при перенапряжении.

Любые другие стабилитроны с другими значениями, такими как 3,3 В, 5,1 В, 9,1 В, 10,2 В, могут использоваться для выбора различных пределов перенапряжения в приведенной выше схеме.

Как выбрать стабилитрон для защиты от перенапряжения?

Следующей важной частью является выбор номинала стабилитрона.Приведенные ниже пункты помогут вам выбрать правильное значение и номер детали для стабилитрона.

1. Сначала выберите напряжение стабилитрона . Это значение напряжения, при котором стабилитрон будет действовать как замыкающая цепь и защищать нагрузку от перенапряжения. Для приведенного выше примера в Pspice напряжение стабилитрона составляет 6,8 В.

В некоторых случаях заданное напряжение на стабилитроне может быть недоступно. В таких случаях можно выбрать близкое значение стабилитрона.Например, для защиты от перенапряжения до 7 В стабилитрон 6,8 В является близким значением.

2. Рассчитайте ток нагрузки , подключенный к цепи защиты от перенапряжения. Для нашего примера, описанного выше, это 50 мА. Помимо тока нагрузки, стабилитроны нуждаются в токе смещения . Следовательно, полный ток должен быть равен току нагрузки плюс ток смещения стабилитрона. В рассмотренном выше примере это может быть

.
Общий ток = 50 мА + 10 мА = 60 мА 

3.Стабилитроны имеют номинальную мощность . Таким образом, для надлежащего отвода тепла требуется стабилитрон правильной номинальной мощности. Номинальная мощность может быть рассчитана на основе расчетного полного тока на шаге 2, который составляет 60 мА. Следовательно, номинальная мощность стабилитрона будет равна напряжению стабилитрона, что связывает общий ток, который будет протекать через диод.

В нашем примере

номинальная мощность = 6,8 В x 0,060 = 0,408 Вт. 

Следовательно, стабилитрона мощностью 500 мВт будет достаточно.

4. Рассчитайте номинал резистора , дифференцируя напряжение источника и общее напряжение. Напряжение источника будет максимальным, которое можно приложить к цепи. Например, максимальное перенапряжение, которое может произойти или может быть применено в качестве напряжения питания, может составлять 13 В.

Таким образом, падение напряжения на резисторе будет = 13В-6,8В = 6,2В. По закону Ома номинал резистора будет = 6,2 В / 0,060 А = 103R Можно выбрать резистор стандартного номинала 100R.

Популярные стабилитроны

Напряжение стабилитрона

Стабилитрон Номер детали

3,3 В

1N5226

5,1 В

1N5231

6,8 В

1N5235

9.1В

1N5239

11,0 В

1N5241

13,0 В

1N5243

15,0 В

1N5245

Схема защиты стабилитрона от перенапряжения — плюсы и минусы Защита

OVP с использованием стабилитронов — самый простой и легкий способ защиты устройств от перенапряжения.В этом методе напряжение остается регулируемым, а стоимость этой схемы намного ниже по сравнению с другими методами.

Но, конечно, у этой схемы есть недостатки. Основным недостатком схемы этого типа является рассеиваемая мощность . Благодаря подключенному последовательно резистору он всегда рассеивает тепло и приводит к потере энергии.

Как стабилитрон выполняет защиту от перенапряжения в цепи?

Защита от перенапряжения необходима для предотвращения повреждений в результате электрических переходных процессов.Это функция источника питания, которая отключает источник питания или ограничивает выход, когда напряжение превышает заданный уровень. В большинстве источников питания используется схема защиты от перенапряжения для предотвращения повреждения электронных компонентов. Они предлагают некоторую форму схемы защиты от перенапряжения (OVP) для обнаружения и быстрого снижения перенапряжения. Здесь представлена ​​наиболее распространенная защита стабилитроном.

1. Фон перенапряжения

Каждая схема работает на разных уровнях напряжения, с 3.3 В, 5 В и 12 В являются наиболее распространенными уровнями напряжения для цифровой схемы. Но каждая конструкция уникальна, и наличие более одного рабочего напряжения также является нормальным для схемы. Например, стандартная компьютерная система SMPS будет работать на шести различных уровнях напряжения, а именно ± 3,3 В, ± 5 В и ± 12 В. В этих случаях, если устройство с низким энергопотреблением работает от высокого напряжения, компонент будет постоянно поврежден, если для питания различных типов компонентов используются различные уровни напряжения. Поэтому, чтобы избежать вреда от перенапряжения, разработчик всегда должен концентрироваться на реализации схемы защиты от перенапряжения в своих проектах.
Для любой части или цепи будет три различных номинальных напряжения, а именно минимальное рабочее напряжение, рекомендуемое или нормальное рабочее напряжение и максимальное рабочее напряжение. Для любых цепей или деталей любое значение, превышающее максимальное рабочее напряжение, может быть фатальным. Использование схемы защиты от перенапряжения на стабилитронах — очень распространенное и экономичное решение.

2. Основы защиты входа стабилитрона

Для защиты схемы от условий перенапряжения стабилитроны часто являются первым вариантом.Стабилитрон следует той же теории диодов, которая блокирует ток в обратном направлении. Однако есть недостаток, заключающийся в том, что стабилитрон блокирует прохождение тока в обратном направлении только для ограниченного напряжения, определяемого номинальным напряжением стабилитрона. Стабилитрон с напряжением 5,1 В блокирует прохождение тока в обратном направлении вплоть до 5,1 В. Если напряжение через стабилитрон больше 5,1 В, он позволяет току проходить через него. Эта функция стабилитрона делает его отличным компонентом защиты от перенапряжения.

3. Простая схема защиты от перенапряжения с использованием стабилитрона

Рассмотрим схему, в которой требуется защита микроконтроллера от перенапряжения. Все, что имеет максимальное напряжение 5 В на выводах ввода-вывода микроконтроллера. Таким образом, напряжение более 5В приведет к повреждению микроконтроллера.

Рисунок 1. Защита от перенапряжения для микроконтроллера

В приведенной выше схеме используется стабилитрон с напряжением 5,1 В. В случае перенапряжения он будет работать отлично.Он может передавать ток и регулировать напряжение до 5,1 В, если напряжение превышает 5,1 В. На практике, однако, он будет вести себя как обычный диод и блокировать менее 5,1 В
На изображении ниже представлена ​​имитация специальной схемы защиты стабилитрона. Полное описание симуляции вы можете сделать исходя из ваших потребностей.

Рисунок 2. Моделирование схемы защиты от перенапряжения

На приведенной выше схеме присутствует входное напряжение, которое является источником постоянного тока.R1 и D1 — это два компонента, которые защищают выход от защиты от перенапряжения. D1, 1N4099, в данном случае — стабилитрон. Когда V1 достигает 6,8 В, выход будет защищен. Максимальное выходное напряжение — 6,8 В в качестве опорного напряжения 1N4099.
Давайте посмотрим, как вышеуказанная схема работает как схема защиты входа стабилитрона и защищает выход от напряжения более 6,8 В.

С помощью каденции PSpice смоделирована вышеуказанная схема.Выходной сигнал остается постоянным на уровне 5,999 В при входном напряжении 6 В на V1 (что составляет 6,0 В).

Входное напряжение в приведенном выше моделировании составляет 6,8 В. Таким образом, производительность составляет 6,785 В, что аналогично 6,8 В. Давайте дальше поднимем входное напряжение и создадим ситуацию перенапряжения.

Теперь входное напряжение составляет 7,5 В, что больше 6,8 В. Производительность теперь составляет 6,883 В. Таким образом стабилитрон спасает подключенную цепь от перенапряжения, даже когда напряжение возвращается ниже 6.8V, как показано на предыдущем этапе, схема снова будет работать нормально. Другими словами, стабилитрон не перегорает даже при перенапряжении, в отличие от предохранителя.
Для выбора различных пределов перенапряжения в приведенной выше схеме можно использовать любые другие стабилитроны с другими значениями, например 3,3 В, 5,1 В, 9,1 В, 10,2 В.

4. Как выбрать стабилитрон для защиты цепи?

Следующей важной частью является выбор значения стабилитрона. Приведенные ниже пункты помогут вам выбрать правильное значение стабилитрона и номер детали.
1) Сначала выберите напряжение стабилитрона. Это значение напряжения, которое будет служить замкнутой цепью для стабилитрона и защитит нагрузку от перенапряжения. Напряжение стабилитрона в Pspice для вышеприведенного примера составляет 6,8 В.
В некоторых случаях целевое напряжение стабилитрона отсутствует. В таких случаях можно выбрать значение, близкое к значению стабилитрона. Например, для защиты от перенапряжения до 7 В ближайшим значением является стабилитрон 6,8 В.
2) Рассчитайте ток нагрузки, подключенный к цепи защиты от перенапряжения.Для нашего примера, описанного выше, это 50 мА. Помимо тока нагрузки, стабилитроны требуют тока смещения. Следовательно, полный ток плюс ток смещения стабилитрона должен быть равен току нагрузки. Для вышеупомянутого примера это может быть общий ток = 50 мА + 10 мА = 60 мА.
3) Для стабилитронов существует рейтинг мощности. Следовательно, для надлежащего отвода тепла требуется правильная номинальная мощность стабилитрона. На основании измеренного полного тока в фазе — 2, который составляет 60 мА, можно рассчитать номинальную мощность.Следовательно, номинальная мощность стабилитрона будет равна напряжению стабилитрона, который соединяет полный ток, протекающий через диод.
4) Рассчитайте номинал резистора, дифференцируя напряжение источника и общее напряжение. Предел, который может быть применен к схеме, будет исходным напряжением. Например, оно может составлять 13 В для максимального перенапряжения, которое может возникнуть, или может быть добавлено в качестве напряжения питания.
Падение напряжения на резисторе будет = 13V-6.8V = 6.2V По закону сопротивления номинал резистора будет = 6.2V / 0.060 A = 103R. Можно выбрать резистор 100R стандартного номинала.
5) Типичные значения стабилитрона: 5,1 В, 5,6 В, 6,2 В, 12 В и 15 В — самые общие значения; у них также есть 3В, 5В, 12В, 18В, 24В.

5. Обзор защиты от перенапряжения на стабилитронах

Самым простым и простым способом защиты устройств от перенапряжения является схема защиты от перенапряжения с использованием стабилитронов. В этом методе напряжение остается регулируемым, а стоимость этой схемы намного ниже по сравнению с другими методами.
Хотя недостатки у такой схемы, конечно, есть. Рассеивание мощности — главный недостаток схемы такого типа. Он по-прежнему рассеивает тепло из-за подключенного последовательного резистора и приводит к потерям энергии.

NCP346 — IC защиты от перенапряжения

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > ручей Acrobat Distiller 7.0 (Windows) BroadVision, Inc.2020-09-21T10: 13: 25 + 02: 002006-09-13T09: 01: 40-07: 002020-09-21T10: 13: 25 + 02: 00application / pdf

  • NCP346 — IC защиты от перенапряжения
  • ON Semiconductor
  • uuid: 773d444e-a5c9-4e18-adc6-cee9aadac775uuid: 17f2c5e8-7e39-4463-b149-b3dd7ee7d464 конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > ручей HWr6QwHvl

    Простая схема защиты от перенапряжения с использованием стабилитрона

    Как сделать схему защиты от перенапряжения с использованием стабилитрона?

    Электрические цепи и компоненты, которые используются в наши дни, отдают много времени и предпочтений, чтобы сделать их максимально безопасными.Современные блоки питания в наши дни очень надежны, но всегда есть шанс выйти из строя. Источник питания может выйти из строя по-разному, но одна особенно тревожная возможность заключается в том, что элемент последовательного регулятора, то есть транзистор или полевой транзистор, может выйти из строя, что приведет к короткому замыканию. Это короткое замыкание элементов вызывает очень большое напряжение в цепи, на которую подается питание, что приводит к ужасным повреждениям всего оборудования. Повреждение компонента и схемы в целом можно свести к минимуму или полностью исключить, обеспечив схему защиты в виде защиты от перенапряжения .

    Защита от короткого замыкания, защита от обратной полярности и защита от повышенного / пониженного напряжения — это некоторые из схем защиты, которые используются для защиты любого электронного устройства или схемы от любых внезапных сбоев. Как правило, для защиты от перенапряжения используется предохранитель или автоматический выключатель, однако в этом проекте наша цель — создать схему, которая будет работать лучше, чем предохранитель или автоматический выключатель, и преодолеть ограничения большинства основных устройств безопасности, упомянутых выше.

    Защита от перенапряжения — это характеристика системы электропитания, которая каким-то образом работает с напряжением на стороне нагрузки, когда входное напряжение превышает предварительно установленное значение.В некоторых ситуациях, когда входное напряжение выше ожидаемого, мы всегда используем защиту от перенапряжения или схему защиты от лома. Схема защиты ломом — одна из наиболее часто используемых схем защиты от перенапряжения.

    Блок питания может выйти из строя по разным причинам; Точно так же может быть много способов защитить цепь от перенапряжения. Самый простой способ — подключить предохранитель со стороны входа питания. Но недостатком использования предохранителя является то, что он является одноразовой защитой, потому что, когда напряжение превышает предварительно установленное значение, плавкий провод сгорает, вызывая размыкание цепи.Тогда единственный способ заставить цепь снова начать работать — это заменить предохранитель на новый и переделать всю цепь, относящуюся к предохранителю.

    Случаи отказа источника питания обычно наблюдаются, когда источник питания перестает работать и нет выхода. Однако бывают редкие случаи выхода из строя, когда происходит короткое замыкание и на выходе может появиться очень высокое напряжение. В качестве линейного регулятора мы можем взять пример очень простого стабилизатора на основе стабилитрона.Мы можем создать более сложную схему для достижения лучших результатов, в этих схемах используется та же идея прохождения тока через транзистор.

    Основное отличие заключается в способе подачи напряжения регулятора на базу транзистора. Обычно напряжение на входе таково, что на последовательном регулирующем элементе падает несколько вольт. Следовательно, это позволяет последовательно проходному транзистору регулировать выходное напряжение соответствующим образом. Обычно такой транзистор попадает в состояние разомкнутой цепи, но при некоторых обстоятельствах в транзисторе может возникнуть короткое замыкание между коллектором и эмиттером.Если это произойдет, то на выходе появится полное нерегулируемое входное напряжение.

    Если на выходе появится полное напряжение, это может привести к повреждению многих микросхем, которые находятся в цепи и на которые подается питание. В этом случае ремонт схемы может оказаться нецелесообразным. Принцип работы импульсных регуляторов сильно различается, но бывают ситуации, когда полный выходной сигнал может появиться на выходе блока питания.

    Мы можем сделать схему защиты от перенапряжения с помощью стабилитрона и биполярного транзистора двумя способами.

    Цепь стабилитрона :

    В этой схеме используется стабилитрон для обеспечения регулируемого выхода на стороне нагрузки, защищая цепь. Но соединения таковы, что поток мощности на сторону нагрузки не прерывается, даже когда напряжение превышает пределы безопасности. На выходе всегда будет напряжение, зависящее от номинала стабилитрона.

    Схема защиты от перенапряжения с использованием стабилитрона:

    Этот метод является более простым, в котором схема предназначена для отключения питания на стороне нагрузки, когда напряжение превышает заданные значения.

    Необходимые материалы
    • 1N4740A Стабилитрон
    • FMMT718 PNP-транзистор
    • Резисторы — 1 кОм, 2,2 кОм и 6 кОм
    • 2N2222 NPN транзистор

    Связанная публикация: Автоматический дверной звонок с обнаружением объектов от Arduino

    0009

    Стабилитрон — это тип диода, который позволяет току течь через него в обоих направлениях, в отличие от обычного диода, который позволяет току течь только в одном направлении, а именно от анода к катоду.Этот поток тока в обратном направлении происходит только тогда, когда напряжение на клеммах превышает пороговое напряжение, называемое напряжением Зенера. Это напряжение стабилитрона является характеристикой устройства, которое управляет эффектом стабилитрона, который, в свою очередь, определяет работу диода.

    Принципиальная схема стабилитрона, обычно используемого в схемах, приведена ниже.

    Стабилитроны имеют высоколегированный p-n переход, что позволяет устройству нормально функционировать даже при подаче через него обратного напряжения.Однако многие стабилитроны вместо этого полагаются на лавинный пробой. Оба типа пробоя происходят в устройстве, с той лишь разницей, что эффект Зенера преобладает при более низких напряжениях, тогда как лавинный пробой происходит при более высоких напряжениях. Они используются для создания маломощных стабилизированных источников питания. Они также используются для защиты цепей от перенапряжения и электростатического разряда.

    2N2222 NPN-транзистор

    2N2222 — очень распространенный биполярный NPN-транзистор, который в основном используется для усиления или переключения малой мощности общего назначения.2Н222 предназначен для умеренной работы на высоких оборотах. Это очень распространенный транзистор, который используется как образец транзистора NPN.

    Принципиальная схема транзистора приведена ниже.

    Распиновка транзистора 2N2222 NPN приведена ниже.

    , низкая стоимость это наиболее часто используемый транзистор.Одна из его ключевых особенностей — способность выдерживать большие токи по сравнению с другими подобными небольшими транзисторами. Он состоит из кремния или германия и легирован положительно или отрицательно заряженным материалом. При выполнении приложений усиления он получает аналоговый сигнал через коллекторы, а другой сигнал подается на его базу. Аналоговым сигналом может быть голосовой сигнал с аналоговой частотой почти 4 кГц (человеческий голос).

    FMMT718 PNP-транзистор

    FMMT718 является PNP-транзистором, поэтому коллектор и эмиттер будут закрыты (смещены в прямом направлении), когда базовый вывод удерживается на земле, и будут открыты (с обратным смещением), когда на базовый вывод будет подан сигнал .Этим транзистор PNP отличается от транзистора NPN; логический вентиль используется для переключения между напряжениями сигналов заземления.

    Принципиальная схема транзистора PNP приведена ниже.

    Распиновка FMMT718 представлена ​​в табличной форме ниже.

    2N2222
    1 Излучатель
    2 База
    3 Коллектор, подключенный к корпусу 9
    сток выход через эмиттер
    FMMT718
    1 Коллектор Ток через коллектор
    2 База Управляет смещением транзистора

    Цепь стабилитрона

    Это одна из двух конфигураций схем защиты от перенапряжения, использующих стабилитрон.Эта схема не только защищает цепь на стороне нагрузки, но также регулирует входное напряжение питания для поддержания постоянного напряжения. Принципиальная схема защиты от перенапряжения с использованием цепи стабилитрона приведена ниже.

    Пороговое напряжение, выше которого схема отключает питание со стороны нагрузки, называется предварительно установленным значением напряжения схемы. Конструкция схемы такова, что предварительно установленное значение схемы является номиналом стабилитрона. Таким образом, пороговое значение, при превышении которого схема не проводит ток, составляет примерно 5.1В.

    Проводимость транзистора Q1 зависит от напряжения база-эмиттер транзистора. Когда выходное напряжение схемы начинает расти, это увеличивает Vbe транзистора, и он проводит меньше. Это, в свою очередь, снижает выходное напряжение, сохраняя выходное напряжение почти постоянным.

    Принципиальная схема защиты от перенапряжения с использованием стабилитрона

    Принципиальная схема цепи защиты от перенапряжения приведена ниже.

    Сначала рассмотрим работу схемы при исправной работе блока питания.В правильном рабочем состоянии на клемме базы транзистора Q2 находится высокий уровень, что приводит к выключению этого транзистора. Когда Q2 выключен, на клемме базы транзистора Q1 низкий уровень, и он начинает проводить. Таким образом, нагрузка подключается к источнику питания, когда напряжение питания ниже установленного порогового напряжения.

    Теперь, когда напряжение питания выше порогового значения, происходит пробой стабилитрона и стабилитрон D2 начинает проводить. Это делает базовую клемму Q2, которая раньше была заземлена.Теперь, когда базовый вывод Q2 подключен к земле, он начинает проводить. База транзистора Q1, который подключен к выходу Q2, теперь имеет высокий уровень и перестает проводить. Это изолирует нагрузку от источника питания, сохраняя ее от любого потенциального повреждения, которое могло быть вызвано скачком напряжения.

    Работа приведенных выше схем также зависит от падения напряжения на каждом транзисторе. В идеале он должен быть низким, чтобы схема соответствовала теоретическому аналогу.Чтобы свести к минимуму падение напряжения на транзисторе, мы использовали PNP-транзистор FMMT718, который имеет очень низкое значение насыщения коллектор-эмиттер. Такое низкое значение Vce позволяет снизить падение напряжения на транзисторах.

    Похожие сообщения:

    Понимание плюсов и минусов защиты от перенапряжения

    При тестировании ваших устройств может стать очевидным, что устройство нуждается в защите от перенапряжения. В большинстве источников питания предусмотрены схемы защиты от перенапряжения (OVP) в той или иной форме.Целью схемы OVP является обнаружение, а затем быстрое отключение состояния перенапряжения, чтобы предотвратить повреждение вашего тестируемого устройства (DUT). Однако важно понимать, как работает OVP вашего источника питания, чтобы получить от него максимальную пользу.

    % {[data-embed-type = «image» data-embed-id = «5df275e5f6d5f267ee20be1a» data-embed-element = «aside» data-embed-alt = «Insidepenton Com Электронный дизайн Adobe Pdf Logo Tiny» data-embed- src = «https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2013/01/insidepenton_com_electronic_design_adobe_pdf_logo_tiny.png? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}% Скачать эту статью в формате .PDF
    Этот тип файла включает графику и схемы с высоким разрешением, если это применимо.

    Что вызывает перенапряжение?

    Источником перенапряжения может быть сам источник питания. Сбой внутри источника питания может вызвать неожиданное и неконтролируемое высокое напряжение на ИУ. Также возможно, что перенапряжение возникает не из-за сбоя источника питания, а из-за какой-то ошибки пользователя, когда пользователь программирует источник питания с более высокой мощностью, чем может выдержать тестируемое устройство.

    Состояние перенапряжения может исходить извне от источника питания. ИУ может быть подвержено перенапряжению из-за короткого замыкания проводов внутри разъема или жгута проводов, создавая высокое напряжение на ИУ. Или матрица переключения может выйти из строя или быть неправильно запрограммирована, что приведет к подаче высокого напряжения на тестируемое устройство. В этих случаях на помощь придет схема OVP блока питания. Если датчик обнаруживает напряжение выше установленного порога OVP, срабатывает OVP, и источник питания пытается снять перенапряжение с DUT.

    Как работает OVP?

    Цепи

    OVP могут быть фиксированными или отслеживающими, локальными или удаленными. Фиксированный OVP позволяет установить фиксированный порог напряжения вручную или дистанционно. Это фиксированное значение, так что, когда выходное напряжение источника питания превышает это значение, цепь OVP отключается, и источник питания пытается снизить перенапряжение на своем выходе. Выходное напряжение источника питания может быть изменено, а порог OVP остается прежним.

    Отслеживающий OVP позволяет вам установить пороговое значение, которое зависит от выходного напряжения.Например, отслеживающий OVP может быть установлен на 0,5 В или 10% от запрограммированного выходного напряжения. Таким образом, OVP всегда выше и отслеживает настройку вывода. Хотя это звучит хорошо, возникает проблема: если вы запрограммируете неправильное значение для источника питания, OVP также будет запрограммирован неправильно. Если вы хотели запрограммировать 2,5 В и случайно запрограммировали 25 В, то OVP будет установлено выше 25 В, и это не защитит от этого вызванного пользователем состояния перенапряжения.

    Локальный OVP контролирует состояние перенапряжения на выходных клеммах источника питания.Удаленный OVP контролирует состояние перенапряжения в удаленной точке источника питания. (Для получения дополнительной информации о дистанционном зондировании см. «Дистанционное зондирование улучшает подачу напряжения при сильном токе».)

    Ложные срабатывания и необнаруженные условия реального перенапряжения

    Желательно иметь защиту от перенапряжения, но если OVP может ошибочно сработать, это быстро станет помехой. С другой стороны, если OVP может пропустить реальное состояние перенапряжения, это становится опасным.Давайте посмотрим, как каждый тип OVP относится к ложным срабатываниям или необнаруженным событиям перенапряжения.

    % {[data-embed-type = «image» data-embed-id = «5df275ebf6d5f267ee20f0c4» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Электронный дизайн Com Sites Electronicdesign com Загрузка файлов 2014 12 Zollo Рисунок 1 «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2014/12/electronicdesign_com_sites_electronicdesign.com_files_uploads_2014_12_Zollo_Figure_1.png? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}% 1. Фиксированное локальное OVP может ложно сработать, когда в выводах возникают большие падения напряжения.

    Фиксированный локальный OVP (рис. 1): Это наиболее распространенная реализация OVP. Представьте, что у вас есть длинные провода, идущие к DUT, что означает большое падение напряжения в проводах. Если вы хотите, чтобы на тестируемом устройстве было напряжение 5 В, но падение напряжения на проводах составляло 1 В, блок питания должен вырабатывать 6 В для подачи напряжения 5 В на тестируемое устройство. Так что вы устанавливаете пороговый уровень OVP? Если вам нужна защита от перенапряжения на 5.5 В, OVP сработает по ложному срабатыванию, потому что локальный OVP будет видеть 6 В, когда DUT находится на 5 В. Решением может быть установка OVP на более высокий уровень, чтобы предотвратить ложное срабатывание, но это обеспечивает меньшую защиту. Другим решением было бы обнаружение перенапряжения удаленно на ИУ (т. Е. В удаленной точке считывания), а не локальное обнаружение на выходе источника питания.

    % {[data-embed-type = «image» data-embed-id = «5df275ebf6d5f267ee20f0c6» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Электронный дизайн Сообщество сайтов Электронный дизайн com Загрузка файлов 2014 12 Zollo Рисунок 2 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2014/12/electronicdesign_com_sites_electronicdesign.com_files_uploads_2014_12_Zollo_Figure_2.png?auto=format&fit=max&w=1440 «data-embed-tracking-caption =» может произойти ложное срабатывание, когда конденсатор в ИУ остается заряженным на мгновение до того, как источник питания сможет снизить напряжение на конденсаторе ИУ.

    OVP для локального слежения (рис. 2): Представьте, что в DUT имеется большой конденсатор, а для OVP с локальным слежением установлено значение 0.На 5 В выше запрограммированного напряжения. Вы получаете 5 В на DUT, поэтому локальный OVP слежения установлен на 5,5 В. Теперь вы хотите перепрограммировать вниз до 1 В, поэтому вы устанавливаете источник питания на 1 В, а локальный OVP слежения переходит на 1,5 В. Но на большом конденсаторе в ИУ все еще есть 5 В, поскольку требуется время, чтобы напряжение на конденсаторе упало. Однако схема OVP обнаруживает более 1,5 В и ложно срабатывает из-за кратковременного (и ожидаемого) перенапряжения. Решением в этом случае может быть установка некоторой задержки, позволяющей конденсатору разрядиться, но эта задержка означает, что есть промежуток времени, когда ИУ не защищено.

    % {[data-embed-type = «image» data-embed-id = «5df275ebf6d5f267ee20f0c8» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Электронный дизайн Сообщество сайтов Электронный дизайн com Файлы Загрузки 2014 12 Zollo Рисунок 3 «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2014/12/electronicdesign_com_sites_electronicdesign.com_files_uploads_2014_12_Zollo_figure_format max & w = 1440 «data-embed-caption =» «]}% 3. OVP с удаленным отслеживанием полагается на удаленные сенсорные линии; однако обрыв линии дистанционного считывания может вызвать состояние OVP и неспособность обнаружить перенапряжение, в результате чего ИУ остается незащищенным.

    Отслеживающий удаленный OVP (рис. 3): Итак, отслеживающий OVP (с задержкой) заботится о ваших изменениях напряжения во время теста, а пульт дистанционного управления заботится о потерях свинца. Таким образом, OVP с дистанционным отслеживанием (с задержкой) звучит как лучшее из обоих миров. Однако теперь вы полагаетесь на то, что сенсорные линии работают должным образом и защищают ИУ. Это хорошая идея?

    Дистанционные сенсорные линии часто ломаются в тестовой системе. Без измерительных проводов выходное напряжение обычно возрастает на источнике питания (нет обратной связи через измерительные линии, потому что измерительные линии разорваны).Повышение напряжения вызывает состояние повышенного напряжения . Но поскольку сенсорные линии разорваны, схема OVP не обнаруживает состояние перенапряжения и, следовательно, не отключает OVP. Хотя дистанционное отслеживание OVP кажется решением для ложных срабатываний, оно создает возможность необнаруженного состояния реального перенапряжения, когда происходит обрыв в линиях дистанционного считывания.

    % {[data-embed-type = «image» data-embed-id = «5df275e5f6d5f267ee20be1a» data-embed-element = «aside» data-embed-alt = «Insidepenton Com Электронный дизайн Adobe Pdf Logo Tiny» data-embed- src = «https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2013/01/insidepenton_com_electronic_design_adobe_pdf_logo_tiny.png?auto=format&fit=max&w=1440 «data-embed-caption =» «]}% Скачать эту статью в формате .PDF
    Этот тип файла включает графику и схемы с высоким разрешением, если это применимо.

    Сводка

    Защита DUT всегда предполагает компромисс между наивысшим уровнем защиты и ложными срабатываниями цепи OVP.Понимание того, как работает OVP и когда он может ложно сработать или пропустить перенапряжение, помогает точно определить правильный метод OVP для защиты вашего DUT на основе того, что может произойти в тестовой среде.

    Цепь лома для защиты от перенапряжения

    Ниже показана очень простая схема защиты от перенапряжения постоянного тока. Транзистор настроен на мониторинг входного напряжения, приложенного к нему слева, в случае, если напряжение поднимается выше указанного предела, транзистор проводит ток, обеспечивая требуемый ток в тиристоре, который мгновенно срабатывает, замыкая выход и тем самым защищая нагрузку. от опасности.Это также называется схемой лома.

    Как это работает

    Схема, показанная ниже, очень проста для понимания и не требует пояснений. Работу можно понять по следующим пунктам:

    Входное напряжение постоянного тока подается с правой стороны цепи через SCR.

    Пока входное напряжение остается ниже определенного заранее определенного значения, транзистор не может проводить ток, и поэтому SCr также остается закрытым.

    Пороговое напряжение эффективно устанавливается напряжением стабилитрона.

    Пока входное напряжение остается ниже этого порога, все идет нормально.

    Однако, если входной сигнал пересекает вышеуказанный пороговый уровень, стабилитрон начинает проводить ток, так что база транзистора начинает смещаться.

    В какой-то момент транзистор становится полностью смещенным и подает положительное напряжение на свой вывод коллектора.

    Напряжение на коллекторе мгновенно проходит через затвор тринистора.

    SCR немедленно замыкает вход на землю и замыкает его на землю.

    Это может выглядеть немного опасно, потому что ситуация указывает на то, что SCR может быть поврежден, поскольку он закорачивает напряжение прямо через него.

    Но SCR остается абсолютно безопасным, потому что в тот момент, когда входное напряжение падает ниже установленного порога, транзистор перестает проводить и препятствует переходу SCR в опасную зону.

    Ситуация поддерживается и удерживает напряжение под контролем и предотвращает его превышение порогового значения, таким образом, схема может выполнять функцию защиты от превышения постоянного тока.

    Лом с использованием симистора и SSB

    Следующая схема, которая может защитить ваш ценный гаджет от ситуаций перенапряжения, показана на следующем изображении, в которой используется SSB или кремниевый двусторонний переключатель в качестве драйвера затвора для симистора.

    Предустановка R2 используется для установки точки срабатывания SSB, при которой устройство может срабатывать и запускать симистор. Эта настройка выполняется в соответствии с желаемым уровнем высокого напряжения, при котором лом должен срабатывать и защищать подключенную цепь от возможного возгорания.

    Как только достигается ситуация высокого напряжения, согласно настройке R2, SSB обнаруживает это перенапряжение и включается. Как только он включается, запускается симистор. Симистор мгновенно замыкает линейное напряжение и замыкает его, что, в свою очередь, вызывает перегорание предохранителя. Как только предохранитель перегорает, напряжение на нагрузке отключается, и опасность перенапряжения предотвращается.

    Кремниевый двусторонний переключатель ( SBS ) — это синхронизируемый диак, который может использоваться для диммеров низкого напряжения.Как только напряжение на основных клеммах питания MT1 и MT2 поднимается выше триггерного напряжения (обычно 8,0 В, что значительно ниже, чем у diac), SBS отключается и продолжает проводить до тех пор, пока ток через него превышает ток удержания. Удерживающее напряжение составляет около 1,4 В при 200 мА. Если ток станет меньше, чем ток удержания, SBS снова выключится. Эта операция применяется в обоих направлениях, поэтому компонент подходит для приложений переменного тока. Импульс на затворе G может проводить SBS даже без достижения триггерного напряжения.Работу можно сравнить с работой двух встречно-параллельных тиристоров с общим затвором и между узлами анода и катода, а на этом затворе — двух стабилитронов с напряжением около 15 В (которые начинают проводить при 7,5 В).

    Схема лома с использованием симистора и стабилитрона

    Если у вас нет SSB, то такое же применение лома, как указано выше, можно разработать с использованием симистора и стабилитрона, как показано на следующей схеме.

    Здесь напряжение стабилитрона определяет предел отключения цепи лома.На рисунке это показано как 270 В, поэтому, как только будет достигнута отметка 270 В, стабилитрон начнет проводить. Как только стабилитрон прорывается и начинает давать ток, симистор включается.

    Симистор включает и замыкает линейное напряжение, тем самым сгибая предохранитель, предотвращая дальнейшие опасности, которые могут возникнуть из-за высокого напряжения.

    Еще одна простая схема лома на SCR, предохранитель

    Это еще одна простая схема с ломом на транзисторе SCR, которая обеспечивает защиту от перенапряжения в случае неисправности регулятора напряжения или высокого уровня от внешнего источника.Предполагается, что он будет использоваться с источником питания, который включает в себя какой-либо тип защиты от короткого замыкания, возможно, обратное ограничение тока или основной предохранитель. Наилучшим вариантом применения может быть логический источник питания 5 В, потому что TTL может быстро выйти из строя из-за слишком высокого напряжения. Значения для частей, выбранных на рисунке 1, относятся к источнику питания 5 В, даже несмотря на то, что любой источник питания напряжением примерно до 25 В можно защитить с помощью этой ломовой сети, просто выбрав правильный стабилитрон.

    Каждый раз, когда напряжение питания превышает напряжение стабилитрона на +0.7V транзистор активирует и запускает SCR. Когда это происходит, происходит короткое замыкание источника питания, предотвращая дальнейшее повышение напряжения. Если он используется в источнике питания, который имеет только защиту плавким предохранителем, рекомендуется прикрепить SCR прямо вокруг нерегулируемого источника питания, как показано на рисунке 2, чтобы защитить от повреждения цепь регулятора, как только лом срабатывает. .

    Технические характеристики тиристора

    Тиристор или тиристор должен быть рассчитан на ток, который может примерно в два раза превышать ожидаемое значение тока короткого замыкания, и рассчитан на оптимальное напряжение, которое должно быть выше входного напряжения питания.

    Схем

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *