ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ
В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего зарядного устройства для литиевых аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.
Самодельная зарядка литиевых АКБ — схема электрическая
Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (тема на форуме). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.
Рекомендуемое входное напряжение от девяти и до двадцати вольт.
Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.
Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.
Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.
Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3.7V) и после (4.2V), ёмкость 1100 mA*h.
Печатная плата для литиевого зарядного
Печатная плата (PCB) существует в двух форматах для разных программ — архив находится тут. Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.
Как работает зарядка
Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.
Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР.
Форум по Li-Ion
Форум по обсуждению материала ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ
Зарядное устройство для li-ion аккумуляторов своими руками.
Как сделать зарядное устройство для li-ion аккумуляторов своими руками из подручных материалов практически даром.
Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.
Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.
Схема зарядного устройства
Схема зарядного устройства для зарядки li-ion аккумуляторов.
Материалы и инструменты
- шнур USB;
- крокодильчики;
- плата защиты BMS;
- пластиковое яйцо от киндера;
- два светодиода разного цвета;
- транзистор кт361;
- резисторы на 470 и 22 ома;
- двухватный резистор 2. 2 ома;
- один диод IN4148;
- инструменты.
Изготовление зарядного устройства
Шнур USB разбираем и снимаем разъем. У меня это от какого-то аипада.
К крокодилам припаиваем провода.
Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.
Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.
Провода продеваем в отверстие второй, мелкой, половинке пластикового киндера. Припаиваем схему.
Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.
Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.
Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.
Когда заряд окончен, горит зеленый, тот который подключен через диод IN4148.
Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.
Видео по сборке зарядного устройства
Подробности сборки отображены на видео:
Схема литий-ионного зарядного устройства – простейший вариант и гибридная схема
Статья обновлена: 2020-08-24
Сегодня мы рассмотрим схему зарядного устройства для литий-ионных аккумуляторов. На первый взгляд кажется, что простейшую версию такой схемы можно построить на микросхеме lm317. Но тогда питать зарядное устройство придется от напряжения выше 5 В, т.к. разница между напряжениями на входе и выходе этой микросхемы должна составлять минимум 2 В. Напряжение Li-ion элемента с полным зарядом – порядка 4,2 В. Поэтому разница напряжений не достигает даже 1 В, и от варианта с микросхемой lm317 придется отказаться.
Ниже приведена гибридная схема, в которой напряжение стабилизируется, и ограничивается ток заряда.
Принцип работы литий-ионного зарядного устройства
Напряжение стабилизируется при помощи микросхемы стабилитрона tl431. Она используется во многих блоках питания импульсного типа, в т. ч. в компьютерном. Усилителем будет транзистор – произвольный вариант обратной проводимости и достаточно высокой мощности: КТ805, 815, 817, 819 и их аналоги. Ток заряда, задаваемый резистором R1, зависит от особенностей подзаряжаемого элемента питания. Резистор R1 рекомендуется брать мощностью 1 Вт, а оставшиеся – 0,25 или 0,125 Вт. Напряжение «банки» типа Li-ion в заряженном состоянии – порядка 4,2 В. Это значение напряжения и нужно поставить на выходе. К этому и сводится настроечный процесс – достаточно подбирать R2, R3 и фиксировать на выходе напряжение 4,2 В. Рассчитать напряжение стабилизации микросхемы tl431 позволяют многие интернет-программы.
Актуальность схемы и рекомендации по ее проверке
Предложенная схема может применяться для подзарядки одного литиевого аккумулятора (элемента питания, «банки») популярного типоразмера 18650. Подходит она и для Li-ion аккумуляторов других стандартов, но в таком случае следует установить на выходе из зарядного устройства другое значение напряжения. Если собранная вами схема не работает, убедитесь в наличии напряжения более 2,5 В на управляющем выводе микросхемы. Рабочее напряжение 2,5 В – минимум для наружного источника. Иногда минимум рабочего напряжения берется равным 3 В. Для контроля работоспособности схемы перед пайкой стоит создать простой тестовый стенд. После сборки необходимо досконально проконтролировать монтаж. На практике рекомендуется всегда использовать самостоятельно собранные зарядные устройства и схемы на Li-ion аккумуляторах с BMS платой.
Перейти в раздел зарядные устройства для АКБ
Схема зарядного устройства для Li-Ion аккумуляторов
Таймер 555
Как известно, литий-ионный аккумулятор необходимо заряжать в контролируемых условиях, если его заряжать обычным зарядным, то это может привести к повреждению или даже взрыву батареи.
Кроме того литий-ионные аккумуляторы не любят излишек заряда, после того, как напряжение достигает верхнего порога, напряжение заряда должно быть снято.
Рассматриемая здесь схема зарядного устройства отвечает вышеуказанным условиям, и подключенный аккумулятор никогда не будет перезаряжен.
В данной схеме таймер 555 используется в качестве компаратора, при соответствующих настройках его контакты 2 и 6 являются входами для контроля нижнего и верхнего порога напряжения.
Рис.1 Схема зарядного устройства для Li-Ion аккумуляторов
Вход 2 контролирует порог напряжения низкого уровня заряда, а также инициирует высокой уровень сигнала на выводе 3 микросхемы в случае, если уровень напряжения падает ниже установленного предела.
Вход 6 контролирует верхний порог напряжения и устанавливает на выходе 3 низкий уровень сигнала, если уровень контролируемого напряжения станет выше установленного предела .
Рассмотрим работу схемы: предположим, что полностью разряженный литий-ионный аккумулятор (на уровне около 3. 0V) подключен ко входу зарядного устройства. Если предположить, что порог отключения установлен на уровне 3.2 В, то на выводе 3 появится высокий уровень напряжения, транзистор откроется и аккумулятор начнет заряжаться.
Как только батарея достигает полного заряда 4.2 В (на это значение настроен вход 6 микросхемы), на выходе 3 появится напряжение низкого уровня, батарея будет отключена от цепи заряда.
Наличие транзисторного каскада обеспечивает возможность зарядки большим током.
Трансформатор должен быть выбран с напряжением не более 6 В и расчитан на ток не менее 1/5 емкости аккумулятора.
Настройка. Для настройки вместо аккумулятора подключают регулируемый источник постоянного напряжения. Переменный резистор R5 настраиваем отключения зарядного устройства. С помощью него следует установить порог отключения лог.»1″ на выходе DA1 равным 4,2 В. Аналогичным образом регулируют сопротивление переменного резистора R2, в зависимости от которого включается режим зарядки.
Смотрите также: Универсальное мобильное зарядное устройство
РЕМОНТ ЗАРЯДНОГО ДЛЯ ЛИТИЕВЫХ АККУМУЛЯТОРОВ
Сосед обратился с просьбой отремонтировать зарядное устройство для литиевого аккумулятора. После переполюсовки зарядное полностью перестало реагировать на сеть и аккумулятор. Так как тема использования аккумуляторов типоразмера 18650 для меня имеет в последнее время прикладной характер, решил соседу помочь.
Зарядное для аккумуляторов 18650
Со слов соседа, алгоритм работы устройства таков: при подключенном аккумуляторе и поданном сетевом напряжении загорается красный светодиод и горит до тех пор, пока аккумулятор не зарядится, после чего загорается зеленый светодиод. Без установленного аккумулятора и поданном сетевом напряжении, светится зеленый светодиод.
Судя по этикетке, заряд током 450 mA осуществляется в щадящем режиме, но как оказалось после вскрытия это вариант эконом)). Схема зарядки состоит из двух узлов: преобразователя сетевого напряжения на одном транзисторе MJE 13001 и контроллера уровня заряда.
Разборка зарядного от Li-Ion 18650
Схема зарядного для АКБ
Преобразователь на одном MJE 13001 часто встречается в дешевых зарядках для телефонов, а так же в зарядках типа «лягушка». Рисовать ее не стал – просто посмотрел в интернете похожую схему. Плюс, минус один резистор/конденсатор большой роли не играют. Схема типовая.
Тестером прозвонил диоды, стабилитрон и транзистор, убедился в их целостности. Решил проверить резисторы и попал в точку! Оказался оборванным резистор R1 – 510 кОм (на вышеприведенной схеме это резистор R3), подтягивающий напряжение питания к базе транзистора. В наличии такого не нашлось, взамен его был установлен резистор на 560 кОм.
После замены резистора зарядка завелась.
Зарядное заработало — светодиод светится
Ради интереса заглянул в даташит контроллера заряда аккумулятора. Им является микросхема HT3582DA.
Так же часто встречается ее клон СТ3582.
Схема включения HT3582DA
Как выяснилось, допускаются два варианта включения микросхемы: 5-й вывод замыкается либо с 8-м либо с 6-м выводом. В моем случае были замкнуты 5-й и 6-й. Как видим, производитель заявляет максимум 300 мА. Так что, на этикетке зарядки выражен большой оптимизм в 450 мА))). Но самое интересное ждало впереди. Проверка мультиметром напряжения на выходе зарядного показала его обратную полярность.
Напряжение на выходе ЗУ
Как оказалось, сначала нужно вставить аккумулятор для определения контроллером полярности, а потом включать в сеть. В даташите говорится о автоматическом определении полярности батареи. Кроме того, контроллер легко выдерживает короткое замыкание на выходе.
При КЗ заряд отключается
Для проверки результатов ремонта вставил аккумулятор и включил зарядное в сеть. Через какое то время заметил, что красный светодиод не светится, а значит снова что то не работает. Ни какого криминала при вскрытии выявлено не было, все доступные проверке тестером элементы в порядке. Начал подумывать на контроллер, но решил перед началом поисков его в магазинах проверить конденсаторы. В наличии имеется тестер полупроводниковых приборов Т4. С его помощью были проверены электролиты, а затем и керамические конденсаторы. И вот они то меня сильно и удивили. Оба конденсатора на 0,1 мкф показали следующее:
Тестер полупроводниковых приборов Т4 меряет конденсаторы
Конденсатор 472 пФ почему то оказался аж 8199 пФ. Поскольку такого в закромах не нашлось, пришлось слепить из двух близкое значение. Конденсаторы на 0,1 мкф заменил на исправные с предварительной проверкой параметров.
Ремонт закончен
После произведенных манипуляций зарядное заработало должным образом. Сосед счастлив и распространяет информацию о моих магических способностях). Автор материала — Кондратьев Николай, Г. Донецк.
Форум по ремонту техники
ЗАРЯДКА ЛИТИЕВЫХ АККУМУЛЯТОРОВ
Прикупил недавно себе не новый цифровой фотоаппарат. Так как родной АКБ почти полностью сел, к нему был куплен новый литиевый аккумулятор на стандартных 3,7 вольта. Но чем его заряжать? Как вариант, можно было прикупить и универсальное ЗУ для Li-Ion, типа «лягушка». Но интереснее сделать самому, например по такой популярной в сети схеме.
Электрическая схема ЗУ для литиевых АКБ
Схема довольно известная. На двух специальных микросхемах – стабилизаторах LM317 и TL431. Еще обвязка — пару диодов, резисторов и конденсаторов. Устройство легкое в настройке, просто подстроечным резистором R8 устанавливаем напряжение на выходе на уровне 4,2V без аккумулятора. Резисторами R4 и R6 выставляем зарядной ток. Для индикации служит светодиод «заряд», который при подключенном не заряженном аккумуляторе светит. По мере зарядки он гаснет.
Трансформатор взял из кассетного магнитофона. Мощность примерно 10 ватт и на вторичке напряжение 9 В.
Приступил к сборке зарядного. Прежде всего нашел подходящий корпус. Закрепил в нем трансформатор.
Сделал диодный мост из 4-х диодов 1N4007 и электролитического конденсатора. Разработал и вытравил плату, спаял и настроил. Её файл в формате Lay скачайте тут. Осталось придумать как закрепить сам Li-Ion аккумулятор. Возникла идея сделать что-то подобное, как на зарядном «лягушка». Для этого вырезал две латунные полоски и установил их на гнезда. Гайкой можно регулировать расстояние между контактами, которые подключаются к заряжаемому аккумулятору фотоаппарата.
Сделал подобие прищепки. Можно также поставить тумблер, для того чтоб переключать полярность на гнездах зарядного устройства — в некоторых случаях это бывает нужно. Удачной всем сборки. Зарядное собрал Бухарь.
Форум по обслуживанию Li-Ion АКБ
Схема зарядного устройства для литиевых li-ion аккумуляторов
15.05.2014 Электронная техника
В этом видеоуроке, что выложил на своем канале блогер Ака Касьян, вы сможете ознакомиться со схемой зарядного устройства, которая превосходно подойдет для литиевых Li-Ion аккумуляторная батарей. Сперва его создатель желал дать несложный вариант на микросхеме lm317, но в этом случае зарядку необходимо будет питать от более большого напряжения, чем 5 вольт. Обстоятельство в том, что отличие между входным и выходным напряжениями микросхемы lm317 должна быть не меньше 2 Вольт.
Напряжение заряженного литий-ионного аккумулятора образовывает около 4,2 Вольт. Следовательно, отличие напряжений меньше 1 вольта. А это это значит, что возможно придумать второе ответ.
На АлиЭкспресс возможно приобрести специальную плату для зарядки литиевых аккумуляторная батарей, которая стоит около американского доллара. Да, это так, но для чего брать то, что возможно сделать за несколько мин.. Тем более необходимо месяц до тех пор пока заказ будет у вас.
Но в случае если решили купить готовый, дабы сходу пользоваться им, купите в этом китайском магазине. Плагин на Google Хром для экономии в нём: 7% с приобретений возвращается вам. В поиске по магазину впишите: TP4056 1A
Сейчас разглядим варианты UDB-зарядного устройства для литиевых аккумуляторная батарей, которое сможет повторить любой. Схема самая самая несложная, которую возможно лишь придумать.
Ответ
Это гибридная схема, где имеется ограничение тока и стабилизация напряжения заряда аккумулятора. Стабилизация напряжения выстроена на базе достаточно популярной микросхемы регулируемого стабилитрона tl431. Транзистор в качестве усилительного элемента. Ток заряда задается резистором R1 и зависит лишь от параметров заряжаемого аккумулятора. Данный резистор советуется с мощностью 1 ватт.
А все остальные резисторы 0,25 либо 0,125 ватт.
Как мы знаем, напряжение одной банки всецело заряженного литий-ионного аккумулятора образовывает около 4,2 Вольт. Следовательно, на выходе зарядного устройства мы должны установить именно это напряжение, которое задается подбором резисторов R2 и R3. Существует довольно много онлайн программ по расчету напряжения стабилизации микросхемы tl431.
Для самая точной настройки выходного напряжения советуется резистор R2 заменить на многооборотное сопротивление около 10 килоом. Кстати, вероятно и такое ответ. Светодиод у нас в роли индикатора заряда, подойдет фактически любой светодиод, цвет на ваш вкус.
Вся настройка сводится к установке на выходе напряжения 4,2 вольта.
Пара слов о стабилитроне tl431. Это весьма популярная микросхемах,не путайте с транзисторами в подобном корпусе. Эта микросхема видится фактически в любом импульсном блоке питания, к примеру компьютернаом, где микросхема значительно чаще стоит в обвязке.
Силовой транзистор не критичен, подойдет любой транзистор обратной проводимости средней либо высокой мощности, к примеру из советских подойдут КТ819, КТ805. Из менее замечательных КТ815, КТ817 и каждые другие транзисторы с подобными параметрами.
Схема предназначена для зарядки лишь одной банки литиевого аккумулятора. Возможно заряжать акб стандарта 18 650 и иные аккумуляторная батареи, лишь необходимо выставить соответствующее напряжения на выходе из зарядника.
В случае если внезапно не известно почему схема не получит, то удостоверьтесь в надежности наличие напряжения на управляющем выводе микросхемы. Оно должна быть не меньше 2,5 Вольт. Это минимальное рабочее напряжение для внешнего источника опорного напряжения микросхемы.
Не смотря на то, что видятся варианты выполнения, где минимальное рабочее напряжение образовывает 3 Вольта.
Целесообразно кроме этого выстроить маленький тестовый стенд для указанной микросхемы, дабы проверить ее на работоспособность перед пайкой. А по окончании сборки шепетильно контролируем монтаж.
В ещё одной публикации материал об улучшении зарядки для шуруповертов.
Случайные записи:
Зарядка Li-ion аккумуляторов на ТР4056
youtube.com/embed/InCAZsyz4_g» frameborder=»0″ allowfullscreen=»»/>Похожие статьи, которые вам понравятся:
Зарядка литий-ионных аккумуляторовтребует точного измерения напряжения
Литий-ионные (Li-Ion) аккумуляторынабирают популярность в портативных системах из-за их увеличенной емкости при тех же размерах и весе, что и у более старых никель-кадмиевых и никель-металлгидридных аккумуляторов. Например, портативный компьютер с литий-ионным аккумулятором может работать дольше, чем аналогичный компьютер с никель-металлгидридным аккумулятором. Однако разработка системы для литий-ионных аккумуляторов требует особого внимания к схеме зарядки, чтобы обеспечить быструю, безопасную и полную зарядку аккумулятора.
Новая микросхема для зарядки аккумуляторов, ADP3810, разработана специально для управления зарядом литий-ионных аккумуляторов с 1-4 элементами. Доступны четыре высокоточных фиксированных варианта конечного напряжения батареи (4,2 В, 8,4 В, 12,6 В и 16,8 В); они гарантируют конечное напряжение батареи ± 1%, что так важно при зарядке литий-ионных батарей. Сопутствующее устройство, ADP3811, похоже на ADP3810, но его конечное напряжение батареи программируется пользователем для работы с другими типами батарей.Обе микросхемы точно контролируют зарядный ток, чтобы обеспечить быструю зарядку при токах 1 ампер и более. Кроме того, оба они имеют прецизионный источник опорного напряжения 2,0 В и прямой выход привода оптопары для изолированных приложений.
Li-Ion Charging: Li-Ion аккумуляторы обычно требуют алгоритма зарядки с постоянным током и постоянным напряжением (CCCV). Другими словами, литий-ионная батарея должна заряжаться при заданном уровне тока (обычно от 1 до 1,5 ампер) до достижения конечного напряжения.На этом этапе схема зарядного устройства должна переключиться в режим постоянного напряжения и обеспечивать ток, необходимый для удержания батареи при этом конечном напряжении (обычно 4,2 В на элемент). Таким образом, зарядное устройство должно обеспечивать стабильные контуры управления для поддержания постоянное значение тока или напряжения, в зависимости от состояния батареи.
Основная задача при зарядке литий-ионного аккумулятора — реализовать полную емкость аккумулятора без его перезарядки, что может привести к катастрофическому отказу.Возможна небольшая погрешность, всего ± 1%. Избыточная зарядка более чем на + 1% может привести к выходу из строя батареи, а недостаточная зарядка более чем на 1% приводит к снижению емкости. Например, недозаряд литий-ионного аккумулятора всего на 100 мВ (-2,4% для литий-ионного элемента на 4,2 В) приводит к потере емкости примерно на 10%. Поскольку место для ошибки очень мало, требуется высокая точность схемы управления зарядкой. Для достижения этой точности контроллер должен иметь прецизионный источник опорного напряжения, усилитель обратной связи с высоким коэффициентом усиления и малым смещением, а также точно согласованный резистивный делитель. .Суммарные погрешности всех этих компонентов должны приводить к общей погрешности менее ± 1%. ADP3810, объединяющий эти элементы, гарантирует общую точность ± 1%, что делает его отличным выбором для зарядки литий-ионных аккумуляторов.
ADP3810 и ADP3811: На рисунке 1 показана функциональная схема ADP3810 / 3811 в упрощенной схеме зарядного устройства CCCV. Два усилителя « г, м, , » (вход напряжения, выход тока) являются ключевыми для производительности ИС. GM1 определяет и управляет током заряда через шунтирующее сопротивление, R CS , а GM2 определяет и управляет конечным напряжением аккумуляторной батареи .Их выходы соединены в аналоговой конфигурации «ИЛИ», и оба спроектированы таким образом, что их выходы могут подключаться только к общему узлу COMP. Таким образом, либо усилитель тока, либо усилитель напряжения контролирует контур зарядки в любой момент времени. Узел COMP буферизирован выходным каскадом « г м » (GM3), выходной ток которого напрямую управляет входом управления преобразователем постоянного тока (через оптопару в изолированных приложениях).
Рис. 1. Блок-схема ADP3810 / 3811 в упрощенной схеме зарядки аккумулятора.ADP3810 включает прецизионные тонкопленочные резисторы для точного деления напряжения батареи и сравнения его с внутренним опорным напряжением 2,0 В. ADP3811 не включает эти резисторы, поэтому разработчик может запрограммировать любое конечное напряжение батареи с помощью пары внешних резисторов в соответствии с приведенной ниже формулой. Буферный усилитель обеспечивает вход с высоким импедансом для программирования зарядного тока с использованием входа VCTRL, а схема блокировки при пониженном напряжении (UVLO) обеспечивает плавный запуск.
Чтобы понять конфигурацию «ИЛИ», предположим, что полностью разряженный аккумулятор вставлен в зарядное устройство.Напряжение аккумулятора значительно ниже конечного напряжения заряда, поэтому на входе VSENSE GM2 (подключенном к аккумулятору) положительный вход GM2 значительно ниже внутреннего опорного напряжения 2,0 В. В этом случае GM2 хочет вывести узел COMP на низкий уровень, но он может только подтянуть, поэтому он не оказывает никакого влияния на узел COMP. Поскольку батарея разряжена, зарядное устройство начинает увеличивать ток заряда, и токовая петля берет на себя управление. Ток заряда создает отрицательное напряжение на резисторе токового шунта (RCS) с сопротивлением 0,25 Ом.Это напряжение измеряется GM1 через резистор 20 кОм (R3). В состоянии равновесия ( I CHARGE R CS ) / R 3 = -V CTRL /80 кОм. Таким образом, ток заряда поддерживается на уровне
.Если ток заряда имеет тенденцию превышать запрограммированный уровень, вход V CS GM1 принудительно становится отрицательным, что приводит к высокому уровню на выходе GM1. Это, в свою очередь, подтягивает узел COMP, увеличивая ток с выходного каскада, уменьшая привод блока преобразователя постоянного / постоянного тока (который может быть реализован с различными топологиями, такими как возвратный, понижающий или линейный каскад), и, наконец, уменьшение зарядного тока.Эта отрицательная обратная связь завершает контур управления зарядным током.
Когда батарея приближается к своему конечному напряжению, входы GM2 приходят в равновесие. Теперь GM2 подтягивает узел COMP к высокому уровню, и выходной ток увеличивается, в результате чего ток заряда уменьшается, поддерживая равными В SENSE и В REF . Управление зарядным контуром изменено с GM1 на GM2. Поскольку коэффициент усиления двух усилителей очень высок, переходная область от регулирования тока к напряжению очень резкая, как показано на Рисунке 2.Эти данные были измерены на 10-вольтовой версии автономного зарядного устройства, показанного на Рисунке 3.
Рис. 2. Изменение тока / напряжения зарядного устройства ADP3810 CCCVПолное автономное литий-ионное зарядное устройство: На рис. 3 показана полная система зарядки с использованием ADP3810 / 3811. В этом автономном зарядном устройстве используется классическая архитектура с обратным ходом для создания компактной и недорогой конструкции. Три основных участка этой схемы — это контроллер первичной стороны, силовой полевой транзистор и трансформатор обратного хода, а также контроллер вторичной стороны. В этой конструкции используется ADP3810, напрямую подключенный к батарее, для зарядки 2-элементной литий-ионной батареи до 8,4 В при программируемом токе заряда от 0,1 до 1 А. Диапазон входных значений от 70 до 220 В переменного тока — для универсальной работы. .Используемый здесь широтно-импульсный модулятор первичной стороны — это промышленный стандарт 3845, но могут использоваться и другие компоненты ШИМ. Фактические выходные характеристики зарядного устройства контролируются ADP3810 / 3811, что гарантирует конечное напряжение в пределах ± 1%.
Рисунок 3. Полное автономное зарядное устройство для литий-ионных аккумуляторовТоковый привод управляющего выхода ADP3810 / 3811 напрямую подключается к фотодиоду оптопары без дополнительных схем.Его выходной ток 4 мА может управлять различными оптопарами — здесь используется MOC8103. Ток фототранзистора протекает через R F , устанавливая напряжение на выводе COMP 3845 и, таким образом, управляя рабочим циклом ШИМ. Контролируемый импульсный стабилизатор спроектирован таким образом, что повышенный ток светодиода от оптопары снижает рабочий цикл преобразователя.
В то время как сигнал от ADP3810 / 3811 управляет средним током заряда , первичная сторона должна иметь циклическое ограничение тока переключения.Этот предел тока должен быть спроектирован таким образом, чтобы при отказе или неисправности вторичной цепи или оптопары или во время запуска компоненты первичной силовой цепи (полевой транзистор и трансформатор) не подвергались перенапряжению. Когда напряжение вторичной обмотки V CC превышает 2,7 В, ADP3810 / 3811 берет на себя управление средним током. Предел тока первичной стороны устанавливается резистором считывания тока 1,6 Ом, подключенным между силовым транзистором NMOS, IRFBC30 и землей.
ADP3810 / 3811, ядро вторичной стороны, устанавливает общую точность зарядного устройства.Для выпрямления требуется только один диод (MURD320), и никакой катушки индуктивности фильтра не требуется. Диод также предотвращает обратное движение батареи к зарядному устройству при отключении входного питания. Конденсатор емкостью 1000 мкФ (CF1) поддерживает стабильность при отсутствии батареи . RCS определяет средний ток (см. Выше), и ADP3810 подключается напрямую (или ADP3811 через делитель) к батарее для измерения и управления ее напряжением.
С этой схемой реализовано полностью автономное зарядное устройство для литий-ионных аккумуляторов.Топология обратного хода сочетает преобразователь переменного тока в постоянный со схемой зарядного устройства, что дает компактный и недорогой дизайн. Точность этой системы зависит от контроллера вторичной стороны, ADP3810 / 3811. Архитектура устройства также хорошо работает в других схемах зарядки аккумуляторов. Например, стандартное зарядное устройство постоянного тока понижающего типа может быть легко сконструировано путем объединения ADP3810 и ADP1148. Простое линейное зарядное устройство также может быть разработано с использованием только ADP3810 и внешнего транзистора. Во всех случаях присущая ADP3810 точность контролирует зарядное устройство и гарантирует конечное напряжение батареи ± 1%, необходимое для зарядки литий-ионных аккумуляторов.
DIY Зарядное устройство для литий-ионных аккумуляторов: 8 шагов (с изображениями)
Давайте подробно рассмотрим этот модуль. На рынке доступны две версии этой коммутационной платы для литий-ионного зарядного устройства на основе TP4056; со схемой защиты аккумулятора и без нее. Мы будем использовать один со схемой защиты аккумулятора.
Коммутационная плата, содержащая схему защиты батареи, обеспечивает защиту с использованием ИС DW01A ( защита батареи IC ) и FS8205A ( Dual N-Channel Enhancement Mode Power MOSFET ).Следовательно, коммутационная плата с защитой батареи содержит 3 микросхемы (TP4056 + DW01A + FS8205A), тогда как плата без защиты батареи содержит только 1 микросхему (TP4056).
TP4056 — это полный модуль линейного зарядного устройства постоянного тока / постоянного напряжения для одноэлементных литий-ионных батарей. Благодаря корпусу SOP и небольшому количеству внешних компонентов TP4056 идеально подходит для использования в домашних условиях. Он может работать как с USB, так и с настенными адаптерами. Я приложил изображение контактной схемы TP4056 (изображение №2) вместе с изображением цикла зарядки (изображение №3) показывает зарядку постоянным током и постоянным напряжением. Два светодиода на этой коммутационной плате показывают различное рабочее состояние, такое как зарядка, окончание зарядки и т. Д. (Изображение № 4).
Для безопасной зарядки литий-ионных аккумуляторов 3,7 В их следует заряжать постоянным током в 0,2–0,7 раза больше их емкости, пока их напряжение на клеммах не достигнет 4,2 В, затем их следует заряжать в режиме постоянного напряжения до зарядного тока. снижается до 10% от начальной скорости зарядки. Мы не можем прекратить зарядку на 4.2 В, потому что мощность, достигнутая при 4,2 В, составляет всего около 40-70% от полной мощности. Обо всем этом заботится TP4056. Теперь одна важная вещь , зарядный ток определяется резистором, подключенным к выводу PROG, модули, доступные на рынке, обычно поставляются с 1,2 кОм, подключенными к этому выводу, что соответствует току зарядки 1 ампер (Изображение № 5). Вы можете поиграть с этим резистором, чтобы получить желаемый зарядный ток.
Ссылка на техническое описание TP4056
DW01A — это микросхема защиты аккумулятора, на рисунке № 6 показана типичная схема приложения.МОП-транзисторы M1 и M2 подключаются извне через микросхему FS8205A.
Ссылка на техническое описание DW01A
Ссылка на техническое описание FS8205A
Все эти элементы собраны на коммутационной плате зарядного устройства для литий-ионных аккумуляторов TP4056, ссылка на которую указана в шаге №2. Нам нужно сделать только две вещи: подать напряжение в диапазоне от 4,0 до 8,0 В на входные клеммы и подключить батарею к клеммам B + и B- TP4056.
Далее мы соберем остальную часть схемы зарядного устройства.
Как создать модуль зарядного устройства и усилителя для литиевых батарей 18650
В этом руководстве мы собираемся создать модуль зарядного устройства и усилителя литиевых аккумуляторов, объединив микросхему зарядного устройства для литиевых аккумуляторов TP4056 и микросхему повышающего преобразователя FP6291 для одноэлементный литиевый аккумулятор. Такой батарейный модуль будет очень полезен при питании наших электронных проектов литиевыми батареями. Модуль может безопасно заряжать литиевую батарею и повышать ее выходное напряжение до регулируемых 5 В, которые можно использовать для питания большинства наших плат для разработки, таких как Arduino, NodeMcu и т. Д.Зарядный ток нашего модуля установлен на 1 А, а выходной ток также установлен на 1 А при 5 В, однако его также можно легко изменить, чтобы обеспечить до 2,5 А, если это требуется и поддерживается аккумулятором.
На протяжении всего руководства мы обсудим принципиальную схему, как я спроектировал печатную плату, как я ее заказал, и какие проблемы возникли при пайке компонентов и тестировании схемы. Если вы совершенно не знакомы с литиевыми батареями и схемами зарядного устройства, обязательно ознакомьтесь с введением в литиевые батареи и схему зарядного устройства для литиевых батарей, чтобы получить представление, прежде чем приступать к этой схеме.
Здесь мы использовали PCBWay, чтобы предоставить печатные платы для этого проекта. В следующих разделах статьи мы подробно рассмотрели полную процедуру проектирования, заказа и сборки печатных плат для этой схемы зарядного устройства литиевой батареи.
Необходимые компоненты- TP4056 Зарядное устройство для литий-ионных аккумуляторов IC
- FP6291 Повышающий преобразователь IC
- Гнездо USB типа A
- 5-контактный разъем Micro USB 2.0 B типа
- 5 × Резистор (2 × 1 кОм, 1.2к, 12к, 88к)
- 6 × конденсатор (2 × 0,1 мкФ, 2 × 10 мкФ, 2 × 20 мкФ)
- 2 × светодиода
- 1 × индуктор (4,7 мкГн)
- 1 × диод (1N5388BRLG)
- 18650 Литиевый элемент
Принципиальная схема зарядного и бустерного модуля литиевых батарей 18650 приведена выше. Эта схема состоит из двух основных частей: одна — это цепь зарядки батареи , , а вторая — часть повышающего преобразователя постоянного тока в постоянный ток . Бустерная часть используется для повышения напряжения батареи с 3,7 В до 4,5-6 В. В этой схеме мы использовали гнездовой разъем USB типа A на стороне усилителя и 5-контактный разъем Micro USB 2.0 B типа на стороне зарядного устройства. Полную работу схемы также можно увидеть на видео внизу этой страницы.
Схема зарядного устройства разработана на основе специального зарядного устройства для литий-ионных аккумуляторов TP4056 IC. TP4056 — это полное линейное зарядное устройство постоянного тока / постоянного напряжения для одноэлементных литий-ионных батарей.Благодаря корпусу SOP и небольшому количеству внешних компонентов TP4056 идеально подходит для портативных приложений. Эта микросхема выполняет операцию зарядки аккумулятора, обрабатывая входное напряжение 5 В постоянного тока, поступающее через разъем Micro USB. Подключенные к нему светодиоды показывают состояние зарядки.
Схема повышающего преобразователя постоянного тока разработана с использованием микросхемы повышающего преобразователя постоянного тока FP6291. Эта повышающая повышающая ИС DC-DC с частотой 1 МГц может использоваться в приложении, например, для получения стабильного напряжения 5 В от батареи 3 В.Схема повышающего преобразователя получает входное питание через клеммы аккумулятора (+ и -), обрабатывается микросхемой FP6291, чтобы обеспечить стабильное питание 5 В постоянного тока через стандартный разъем USB на выходе.
Изготовление печатной платы 18650 Зарядное устройство и модуль бустера для литиевых батарейТеперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего проекта. Вы можете спроектировать печатную плату с помощью любого программного обеспечения для печатных плат по нашему выбору. Наша печатная плата после завершения выглядит так, как показано ниже.
Макет печатной платы для указанной выше схемы также доступен для загрузки как Gerber по ссылке:
Теперь, когда наш дизайн готов, пришло время изготовить их с помощью файла Gerber. Сделать печатную плату довольно просто, просто выполните следующие действия:
Заказ печатной платы в PCBWayШаг 1: Зайдите на https://www.pcbway.com/, зарегистрируйтесь, если это ваш первый раз. Затем на вкладке PCB Prototype введите размеры вашей печатной платы, количество слоев и количество требуемых печатных плат.
Шаг 2 : Продолжите, нажав кнопку «Цитировать сейчас». Вы попадете на страницу, где при необходимости установите несколько дополнительных параметров, таких как используемый материал, расстояние между дорожками и т. Д. Но в большинстве случаев значения по умолчанию будут работать нормально.
Шаг 3: Последний шаг — загрузить файл Gerber и продолжить оплату. Чтобы убедиться, что процесс проходит гладко, PCBWAY проверяет, действителен ли ваш файл Gerber, прежде чем продолжить оплату.Таким образом, вы можете быть уверены, что ваша печатная плата удобна для изготовления и будет доставлена вам по мере необходимости.
Сборка и проверка зарядных устройств 18650 и бустерного модуляЧерез несколько дней мы получили нашу печатную плату в аккуратной упаковке, качество печатной платы как всегда было хорошим. Верхний и нижний слои платы показаны ниже.
После сборки всех компонентов припаял красный и черный провод к контактам B + и B- для подключения к нашим ячейкам 18650.Поскольку у него не было с собой точечного сварочного аппарата, я использовал магниты для защиты моего соединения с ячейками 18650. Собранный модуль вместе с литиевой батареей показан ниже.
Зеленый и желтый светодиоды на плате показывают состояние зарядки модуля. Зеленый светодиод будет светиться, когда аккумулятор заряжается, а желтый светодиод будет светиться, когда заряд завершен или модуль ожидает зарядки аккумулятора. Порт micro USB можно использовать для зарядки аккумулятора, если зарядное устройство не подключено, при этом ни зеленый, ни желтый светодиоды не светятся. Мы можем использовать любое зарядное устройство на 5 В с этим модулем, просто убедитесь, что выходной ток зарядного устройства составляет 1 А или более. На изображении ниже показан модуль, заряжающий нашу литиевую батарею, обратите внимание, что горит зеленый светодиод.
Выходной USB-порт рассчитан на 5В и 1А. Напряжение батареи 18650 повышено до 5 В для питания электронных проектов. На изображении ниже показано, как модуль можно использовать для питания платы Arduino nano.
Обратите внимание, что максимальный выходной ток модуля может быть настроен как 2.Теоретически 5А, но практически я не смог получить больше 1,5А, даже когда резистор был установлен на 2,5А. Это может быть из-за моей батареи или самой микросхемы наддува. Однако, если ток нагрузки меньше 1 А, этой недорогой схемы повышения будет вполне достаточно.
Надеюсь, вам понравилась статья и вы узнали что-то полезное. Если у вас есть какие-либо вопросы, вы можете оставить их в разделе комментариев ниже или использовать наш форум для других технических вопросов.
батарей — Зарядное устройство для литиевых батарей с использованием LM317
Влияет ли R3 на выходное напряжение LM317, поскольку он включен последовательно с R2?
Если аккумулятор не подключен (или, что то же самое, если ток через аккумулятор пренебрежимо мал), схема работает как источник постоянного напряжения с выходным напряжением \ $ V_ {0} = V_ {ref} \ cdot \ left (1 + \ frac {R_2 + R_3} {R_1} \ right) + I_ {Adj} \ cdot (R_2 + R_3) \ $.Поскольку \ $ R_3 \ $ обычно намного меньше, чем \ $ R_2 \ $, \ $ R_3 \ $ имеет лишь незначительное влияние на \ $ V_0 \ $. С другой стороны, если батарея подключена, пока напряжение батареи ниже, чем \ $ V_0 \ $, схема работает как источник постоянного тока, и ток через батарею будет примерно \ $ \ frac {0,6 В } {R_3} \ $. В этом случае напряжение на батарее будет автоматически отрегулировано таким образом, чтобы ток оставался постоянным. Как только напряжение батареи достигает \ $ V_0 \ $, ток больше не может поддерживаться постоянным. В этом случае напряжение на батарее будет постоянным, а именно \ $ V_0 \ $, независимо от тока, протекающего через батарею.
Как именно BJT и резистор работают в этой установке? Не будет ли батарея изначально пытаться потреблять столько тока, сколько может, то есть 0,6 В разовьется на R3, прежде чем батарея будет достаточно заряжена для перехода в стадию CV?
Да, батарея будет пытаться потреблять столько тока, сколько может, но это не удастся, потому что чем выше ток через батарею, тем выше напряжение на \ $ R_3 \ $.Когда это напряжение достигает 0,6 В, транзистор начинает проводить, и выходное напряжение регулятора уменьшается. Следовательно, ток через батарею автоматически ограничивается примерно до \ $ \ frac {0,6 В} {R_3} \ $.
Разве 0,6 В, развиваемое на R3, не означает, что потенциал, «видимый» батареей, составляет примерно 6,3 В? (6,9 В на выходе LM317 вычесть 0,6 В). Разве этого не будет недостаточно для полной зарядки аккумулятора?
Обратите внимание, что батарея подключена между выходом регулятора напряжения и базой транзистора, поэтому напряжение на \ $ R_3 \ $ не влияет на напряжение батареи. Регулятор напряжения следит за тем, чтобы напряжение на батарее не превышало \ $ V_0 \ $.
Когда BJT включается, выходное напряжение LM317 упадет до 1,25 В, поскольку регулировочный штырь закорочен (в обход резисторов). Конечно, это не подходит для стадии зарядки CV, поскольку потенциал падает ниже напряжения зарядки аккумулятора? Как во время этого падения напряжения влияет выходной ток на батарею?
Транзистор не проводит полностью.Контур управления гарантирует, что ток через транзистор будет достаточно большим, чтобы поддерживать постоянный ток. Во время зарядки постоянным током напряжение аккумулятора будет медленно увеличиваться. Как только он достигнет \ $ V_ {0} \ $, ток больше не может быть постоянным, и напряжение останется на уровне \ $ V_ {0} \ $.
Однако При зарядке литиевых батарей переключение с CC на CV должно происходить при точно определенном напряжении. Следовательно, \ $ R_2 \ $ нужно сделать настраиваемым, чтобы установить \ $ V_0 \ $ на требуемый уровень. Эту схему интересно анализировать, и это может быть дешевое решение, но есть интегральные схемы, которые работают лучше.
Симуляция (с использованием довольно грубой модели батареи) показывает взаимосвязь между напряжением батареи (зеленый) и током через батарею (синий). Источник постоянного тока не показывает идеального поведения.
Аккумуляторы— Зарядка литий-ионных аккумуляторов 3,7 В постоянным током 5 В
Я пробовал использовать дискретный BJT для этого.Но накладные расходы от 5В VDC недостаточно.
Это могло быть, если бы вы использовали соответствующую схему. Вот тот, который регулирует ток до 100 мА при напряжении до 4,4 В при питании 5 В: —
смоделировать эту схему — Схема создана с помощью CircuitLab
Q1, R1 и R2 действуют как «умножитель Vbe», который падает примерно на 1,2 В (точное напряжение можно регулировать, изменяя соотношение R1 / R5). При токе коллектора 100 мА смещение база-эмиттер Q2 составляет ~ 0. 8 В, оставляя ~ 0,4 В на R3. 0,4 В / 3,9 Ом; = 102 мА. Q2 имеет напряжение насыщения <0,2 В при 100 мА. 5 В - 0,4 В (через R3) - 0,2 В (через Q2) = максимальное выходное напряжение 4,4 В при 100 мА.
Одной этой схемы явно недостаточно для зарядки аккумулятора Lipo, так как напряжение не должно превышать 4,20 В. Таким образом, вам понадобится схема, которая снижает ток, когда напряжение батареи достигает 4,2 В.
Следующая схема обеспечивает требуемый профиль заряда CVCC (Constant Voltage Constant Current), используя все дискретные компоненты, кроме TL431 ‘Precision Programmable Reference’ (здесь я мог бы использовать простой стабилитрон, но стабилитроны низкого напряжения плохо регулируются и нам нужно очень точное опорное напряжение): —
смоделировать эту схему
Q3 и Q4 сравнивают напряжение Lipo с опорным напряжением, включая Q5 и уменьшая ток заряда, когда напряжение батареи достигает 4.2В. C2 поддерживает высокую стабильность частоты, если аккумулятор отключен.
Эта схема представляет собой минимум, необходимый для безопасной зарядки Lipo-элемента, но специальные микросхемы зарядного устройства предоставляют больше функций для повышения безопасности и срока службы элемента, включая: —
Полное отключение при падении тока заряда до ~ 10% от установленного тока.
Зарядка с более низкой скоростью, когда напряжение ниже 3,0 В, для предотвращения повреждения глубоко разряженного элемента.
Контроль температуры батареи и отключение, если она станет слишком высокой (батарея Lipo, которая нагревается во время зарядки, может вот-вот взорваться!).
Обнаружение внутренних и внешних неисправностей.
Обеспечение выходов состояния для индикации режима зарядки и т. Д.
Вы можете добавить все эти функции, используя дискретные компоненты, но вам понадобится их много. С современными одночиповыми решениями, доступными по очень низкой цене, вряд ли стоит затраченных усилий, за исключением, возможно, изучения того, как работают такие схемы.
Схема зарядного устройства литиевой батареи— Gadgetronicx
Gadgetronicx> Электроника> Принципиальные и электрические схемы> Схемы зарядного устройства> Схема
зарядного устройства для литиевой батареиКоманда Gadgetronicx 20 ноября 2019
Литиевые батареив наши дни широко используются почти повсеместно. К этим батареям нужно было обращаться по-особенному, так как зарядка и разрядка литиевой батареи — довольно своеобразный процесс.Для этой цели мы разработали схему зарядного устройства для литиевых аккумуляторов 7,4 В, которая способна эффективно удовлетворять их потребности в зарядке.
РАБОТА ЦЕПИ ЗАРЯДНОГО УСТРОЙСТВА ЛИТИЕВОЙ БАТАРЕИ:
Эта схема запускается с питанием 220/110 В переменного тока от обычной розетки. Этот источник переменного тока понижается с помощью понижающего трансформатора, который преобразует этот сигнал 220 В переменного тока в 24 В переменного тока. Этот сигнал переменного тока затем выпрямляется в сигнал постоянного тока. Этот сигнал 24 В переменного тока теперь преобразуется в 24 В постоянного тока.
Этот сигнал 24 В постоянного тока подается на классический регулятор 12 В 7812.Этот источник питания 12 В используется для питания зарядного устройства литиевой батареи IC LM3420. LM3420 — это специальный чип для оптимальной зарядки литиевой батареи. Выход этого чипа достигает 8,4 В при зарядке литиевой батареи 7,4 В, так как напряжение зарядки литиевой батареи 7,4 В должно быть около 8,4 В.
ТРИКЛ ЗАРЯДКА:
Уникальность литиевых аккумуляторов в том, что они требуют разного зарядного тока в зависимости от уровня заряда для длительного и эффективного использования. Использование одного и того же зарядного тока в течение всего времени зарядки приведет к снижению уровня зарядки с течением времени.Именно здесь возникает концепция капельного заряда.
Капельная зарядка использует максимальный зарядный ток, когда батарея была в состоянии низкого заряда, например, 30%. Но как только зарядка начнется, напряжение аккумулятора повысится. Для литий-ионного аккумулятора 7,4 В выходное напряжение приближается к 8,4 В. Это будет напряжение зарядки, когда батарея сантиметров достигнет от 80% до 90%. В этот момент LM3420 снижает выходной ток с максимума до точки, при которой он будет эквивалентен току саморазряда батареи.Это концепция непрерывной зарядки, при которой зарядка их меньшим зарядным током в конце цикла зарядки продлит срок службы аккумулятора и сохранит максимальную зарядную емкость аккумулятора.
LM3420 использует этот метод для зарядки литиевой батареи 7,4 В и продления срока службы батареи, сохраняя при этом зарядную емкость батареи.
СПИСОК ЧАСТЕЙ:
- Диод 1N4004
- Резистор 2кОм, 1кОм
- Регулятор напряжения 7812
- Источник тока
- Зарядное устройство LM3420
ПРИМЕЧАНИЕ:
- Эта схема применима с 7.Литий-ионные аккумуляторы 4в
- Номинальный ток трансформатора должен быть не менее 1 А.
Зарядка литиевых элементов
Зарядка литиевых элементовElliott Sound Products | Зарядка литиевых элементов |
Авторские права © 2016 — Род Эллиотт (ESP)
Страница создана в ноябре 2016 г., опубликована в феврале 2017 г.
Последнее обновление в октябре 2018 г.
Указатель статей
Главный указатель
Содержание
Введение
1 — Система управления батареями (BMS)
2 — Профиль зарядки
3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)
4 — Цепь зарядки одной ячейки IC
5 — Зарядка нескольких элементов
6 — Защита батареи
7 — Мониторинг состояния заряда (SOC)
8 — Проекты с батарейным питанием
Выводы
Ссылки
Введение
Зарядка литиевых батарей или элементов (теоретически) проста, но может быть сопряжена с трудностями, о чем свидетельствуют многочисленные серьезные отказы в коммерческих продуктах.К ним относятся портативные компьютеры, мобильные («сотовые») телефоны, так называемые «ховерборды» (также известные как балансировочные доски) и даже самолеты. Балансировочные щиты вызвали ряд пожаров в домах и разрушили или повредили многие объекты недвижимости по всему миру. Если элементы не заряжены должным образом, существует высокий риск вентиляции (выброса газов под высоким давлением), что часто сопровождается возгоранием.
Литий — самый легкий из всех металлических элементов, он плавает в воде. Он очень мягкий, но быстро окисляется на воздухе.Воздействия водяного пара и кислорода часто бывает достаточно, чтобы вызвать возгорание, особенно если присутствует тепло (например, из-за перезарядки литиевого элемента). Воздействие влажного / влажного воздуха вызывает образование газообразного водорода (из водяного пара), который, конечно, легко воспламеняется. Литий плавится при 180 ° C. Большинство авиакомпаний настаивают на том, чтобы литиевые элементы и батареи заряжались не более чем на 30% при транспортировке из-за вполне реального риска катастрофического пожара. Несмотря на ограничения, литиевые батареи теперь используются почти во всем новом оборудовании из-за очень высокой плотности энергии и небольшого веса.
Аккумуляторы имеют скорость заряда и разряда, обозначенную буквой «C» — емкость аккумулятора или элемента в Ач или мАч (ампер или миллиампер-час). Таким образом, аккумулятор емкостью 1,8 Ач (1800 мАч) имеет рейтинг «C» 1,8 А. Это означает, что (по крайней мере теоретически) аккумулятор может обеспечивать ток 180 мА в течение 10 часов (0,1 ° C), 1,8 A в течение 1 часа или 18 A в течение 6 минут (0,1 час или 10 ° C). В зависимости от конструкции литиевые батареи могут обеспечивать ток до 30 ° C и более, поэтому наша гипотетическая батарея емкостью 1800 мАч теоретически может обеспечивать ток 54A в течение 2 минут.Емкость также может быть указана в Втч (ватт-часах), хотя эта цифра обычно не используется, кроме как в рекламных брошюрах.
В США и некоторых других странах оценка Wh требуется транспортным компаниям, чтобы они могли определить необходимый стандарт упаковки. Один аккумулятор 1,8 Ач имеет накопленную энергию 6,7 Втч [4] . В качестве альтернативы может потребоваться указать содержание лития. В справочнике также показано, как это можно рассчитать, хотя любой сделанный расчет будет только приблизительным, если производитель батарей специально не укажет содержание лития.Причина этого — риск возгорания — перевозчики не любят, когда грузы загораются, а содержание лития может определять способ доставки товаров. Если батареи поставляются отдельно (не встроены в оборудование), они должны быть заряжены не более чем на 30% емкости.
В отличие от некоторых более старых аккумуляторных технологий, литиевые батареи нельзя (и не следует) оставлять на плавающем заряде, хотя может быть , если напряжение поддерживается ниже максимального напряжения заряда. Для большинства используемых ячеек максимальное напряжение ячейки равно 4.2 В, называемое напряжением «заряда насыщения». Напряжение заряда должно поддерживаться на этом уровне только достаточно долго, чтобы ток заряда упал до 10% от начального значения или 1С. Однако это может быть интерпретировано, потому что начальный ток заряда может иметь широкий диапазон, в зависимости от батареи и зарядного устройства.
К сожалению, несмотря на то, что существует бесчисленное количество статей о зарядке литиевых батарей, существует почти столько же различных предложений, рекомендаций и мнений, сколько и статей.Одна из основных вещей, которая важна при зарядке литиевой батареи, — это обеспечить, чтобы напряжение на каждой ячейке никогда не превышало максимально допустимое, а это означает, что необходимо контролировать каждую ячейку в батарее. Существует множество доступных ИС, которые были специально разработаны для балансной зарядки литиевых батарей, при этом некоторые системы довольно сложны, но чрезвычайно универсальны с точки зрения обеспечения оптимальной производительности.
В то время как традиционные литий-ионные (Li-Ion) или литий-полимерные (Li-Po) имеют номинальное напряжение ячейки 3.70 В, Li-железо-фосфат (LiFePO 4 , он же LFP — феррофосфат лития) составляет исключение с номинальным напряжением элемента 3,20 В и зарядкой до 3,65 В. Многие коммерческие батареи LiFePO 4 имеют встроенные схемы балансировки и защиты, и их нужно только подключить к соответствующему зарядному устройству. Относительно новым дополнением является литий-титанат (LTO) с номинальным напряжением ячейки 2,40 В и зарядкой до 2,85 В.
Зарядные устройства для этих альтернативных литиевых ячеек несовместимы с обычными 3.70-вольтовый Li-Ion. Необходимо предусмотреть возможность идентификации систем и обеспечения правильного зарядного напряжения. Литиевая батарея на 3,70 В в зарядном устройстве, разработанном для LiFePO 4 , не получит достаточного заряда; LiFePO 4 в обычном зарядном устройстве может вызвать перезарядку. В отличие от многих других химических элементов, литий-ионные элементы не могут поглощать перезаряд, поэтому необходимо знать конкретный химический состав аккумулятора и адаптировать условия зарядки.
Литий-ионные элементыбезопасно работают в пределах указанных рабочих напряжений, но аккумулятор (или элемент в аккумуляторе) становится нестабильным, если случайно зарядить его до напряжения выше указанного.При длительной зарядке выше 4,30 В литий-ионного элемента, рассчитанного на 4,20 В, на аноде будет металлический литий. Катодный материал становится окислителем, теряет стабильность и выделяет углекислый газ (CO2). Давление в ячейке повышается, и если заряду позволяют продолжить, устройство прерывания тока, отвечающее за безопасность ячейки, отключается при 1000–1380 кПа (145–200 фунтов на квадратный дюйм). При дальнейшем повышении давления защитная мембрана на некоторых литий-ионных элементах разрывается при давлении около 3450 кПа (500 фунтов на квадратный дюйм), и в конечном итоге ячейка может выйти из строя — с пламенем!
Не все ячейки рассчитаны на то, чтобы выдерживать высокое внутреннее давление, и будут иметь видимые выпуклости задолго до того, как давление достигнет значений, близких к указанным.Это верный признак того, что элемент (или аккумулятор) поврежден, и его нельзя использовать снова. К сожалению, во многих статьях, которые вы найдете в Интернете, обсуждая платы баланса (в частности), говорится о качестве элементов (или их отсутствии) и / или качестве зарядного устройства (то же самое), но не упоминается обсуждаемая система управления батареями (BMS). следующий.
Это один из наиболее важных элементов зарядного устройства для литиевых батарей, но редко упоминается в большинстве статей, посвященных возгоранию батарей.В общем, предполагается (или неизвестно автору), что аккумуляторная батарея включает — или , если должен включать — схему защиты, чтобы гарантировать, что каждая ячейка контролируется и защищена от перезаряда. Вероятно, что дешевые (или поддельные) аккумуляторные блоки вообще не включают схему защиты, и любой аккумулятор без этой важной схемы, как правило, следует избегать, если у вас нет надлежащего внешнего балансного зарядного устройства с многополюсным разъемом. Проблема в том, что продавцы редко раскрывают (или даже знают), есть ли у аккумулятора защита или нет.
1 — Система управления батареями (BMS)
Это не особенно полезно, но многие продавцы аккумуляторов и зарядных устройств не делают различий между контролем аккумулятора и защитой аккумулятора . Это две отдельные функции, и, как правило, они представляют собой отдельные элементы схемы. К сожалению, термин «BMS» может означать либо мониторинг, либо защиту, в значительной степени в зависимости от определения, используемого продавцом, и / или понимания того, что на самом деле продается.
Я буду использовать термин «балансировка» применительно к управлению процессом зарядки, а для батарей (в отличие от одиночных ячеек) это процесс балансировки, который гарантирует, что каждая ячейка тщательно контролируется во время зарядки для поддержания правильного максимального значения ячейки. Напряжение. Защита Цепи обычно подключены к батарее постоянно и часто встроены в аккумуляторную батарею. Они описаны ниже. В некоторых случаях защита и балансировка могут быть предоставлены как комплексное решение, и в этом случае оно действительно заслуживает названия «BMS» или «система управления батареями».
Для правильного управления процессом зарядки с более чем одним элементом, система балансировки батареи абсолютно необходима . Цепи баланса отвечают за обеспечение того, чтобы напряжение на любой ячейке никогда не превышало максимально допустимое, и часто интегрируются с зарядным устройством. В некоторых есть дополнительные возможности, например, мониторинг температуры ячейки. В больших установках отдельные контроллеры ячеек взаимодействуют с центральным «главным» контроллером, который обеспечивает передачу сигналов устройству, на которое подается питание, с указанием состояния заряда (поскольку этот параметр может быть определен — это меньше, чем точная наука), наряду с любыми другими. данные, которые можно считать важными.
Для сравнительно простых батарей с количеством ячеек от 2 до 5, дающих номинальное напряжение от 7,4 В до 18,5 В соответственно, баланс ячеек не представляет особой сложности. Это действительно становится проблемой, когда возможно, 110 ячеек соединены последовательно, что дает выход около 400 В (как, например, в электромобиле). Ячейки также могут быть соединены параллельно, чаще всего как последовательно-параллельная сеть. В общепринятой терминологии (особенно для «любительских» батарей для моделей самолетов и т.п.) батарея будет обозначаться как 5S (5 ячеек серии) или 4S2P (4 ячейки серии, каждая из которых состоит из 2 элементов параллельно).
Параллельная работа ячеек не является проблемой, и возможно (хотя обычно не рекомендуется), что они могут иметь разную емкость. Конечно, они должны использовать ту же химию. При последовательном запуске ячейки должны быть как можно ближе к идентичности. Конечно, по мере того, как звонки стареют, они будут делать это с разной скоростью — одни клетки всегда будут портиться быстрее, чем другие. Именно здесь система балансировки становится важной, потому что элемент (-ы) с наименьшей емкостью будет заряжаться (и разряжаться) быстрее, чем другие в упаковке.Большинство балансных зарядных устройств используют регулятор на каждой ячейке, что гарантирует, что напряжение заряда каждой отдельной ячейки никогда не превышает максимально допустимое.
В простейшей форме это можно сделать с помощью цепочки прецизионных стабилитронов, что на самом деле довольно близко к обычно используемым системам. Напряжение должно быть очень точным и в идеале должно находиться в пределах 50 мВ от желаемого максимального напряжения заряда. Хотя напряжение заряда насыщения обычно составляет 4,2 В на элемент, срок службы батареи можно продлить, ограничив напряжение заряда до 4.1 вольт. Естественно, это приводит к немного меньшему накоплению энергии.
Два основных компонента BMS будут рассмотрены отдельно ниже. Их можно дополнить мониторингом производительности (состояние заряда, оставшаяся емкость и т. Д.), Но в этой статье основное внимание уделяется важным моментам — тем, которые максимизируют как безопасность, так и время автономной работы. Так называемые «топливомеры» — это отдельная тема, и здесь они рассматриваются лишь вскользь.
2 — Профиль зарядки
На графике показаны основные элементы процесса зарядки.Первоначально зарядное устройство работает в режиме постоянного тока (ограничение тока) с максимальным током в идеале не более 1С (1,8 А для элемента или аккумулятора 1,8 Ач). Часто будет меньше, а иногда и намного меньше. При зарядке при 0,1C (180 мА) время зарядки составит 30 часов, если применяется заряд полного насыщения. Однако, когда используется сравнительно медленная зарядка (обычно менее 0,2 ° C), можно прекратить зарядку, как только элемент (-ы) достигнет 4,2 В, и заряд насыщения не потребуется.Например, на основе «нового» алгоритма зарядки элементу, показанному на рисунке 1, может потребоваться от 12 до 15 часов для зарядки при 0,1 ° C, и цикл зарядки завершается, как только напряжение достигает 4,2 вольт. Это несколько мягче по сравнению с литий-ионным аккумулятором, и напряжение минимизировано.
Рисунок 1 — Профиль зарядки литий-ионных аккумуляторов (1 элемент)
Как ясно видно на графике, быстрая зарядка означает, что емкость отстает от напряжения заряда, а 1С достаточно быстрая — особенно для аккумуляторов, предназначенных для устройств с низким потреблением энергии.Примерно через 35 минут напряжение (почти) достигло максимума 4,2 В, и ток заряда начинает падать, но элемент заряжен только примерно до 65%. Более низкая скорость заряда означает, что уровень заряда более точно соответствует напряжению. Как и все батареи, вы никогда не получаете столько, сколько вставляете, и обычно вам нужно вложить примерно на 10-20% больше ампер-часов (или миллиампер-часов), чем вы получите обратно во время разряда.
Некоторые зарядные устройства обеспечивают предварительный заряд, если напряжение элемента меньше 2.5 вольт. Обычно это постоянный ток, равный 1/10 от номинального полного заряда постоянного тока. Например, если ток заряда установлен на 180 мА, элемент будет заряжаться до 18 мА, пока напряжение элемента не поднимется примерно до 3 В (это зависит от конструкции зарядного устройства). Однако большинству систем никогда не потребуется предварительное кондиционирование, потому что электроника будет (или должна!) Отключиться до того, как элемент достигнет потенциально опасного уровня разряда.
При использовании литий-ионные батареи следует хранить в прохладном месте.Нормальная комнатная температура (от 20 ° до 25 ° C) является идеальной. Не рекомендуется оставлять заряженные литиевые батареи в автомобилях на солнце, как и в любом другом месте, где температура может быть выше 30 ° C. Это вдвойне важно, когда аккумулятор заряжается. В разряженном состоянии требуются некоторые средства отключения, чтобы гарантировать, что напряжение элемента (любого элемента в батарее) не упадет ниже 2,5 вольт.
Обычно лучше не заряжать литиевые батареи полностью и не допускать их глубокого разряда.Срок службы батареи может быть увеличен за счет зарядки примерно до 80-90%, а не до 100%, так как это почти устраняет «напряжение напряжения», возникающее, когда напряжение элемента достигает полных 4,2 вольт. Если аккумулятор будет храниться, рекомендуется зарядка 30-40%, а не полная. Есть много рекомендаций, и большинство из них игнорируются. Однако это не вина пользователей — производители телефонов, планшетов и фотоаппаратов могут предложить вариант с пониженной оплатой — для этого достаточно вычислительной мощности.Это особенно важно для предметов, которые не имеют заменяемой пользователем батареи, потому что это часто означает, что в остальном совершенно хорошее оборудование выбраковано только потому, что батарея устала. Учитывая распространение вредоносных программ практически для каждой операционной системы, важно убедиться, что параметры заряда аккумулятора никогда не могут быть установлены таким образом, чтобы это могло вызвать повреждение.
3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)
Во время начальной части цикла зарядки источник питания зарядного устройства должен быть постоянным.Текущее регулирование не обязательно должно быть совершенным, но оно должно быть в разумных пределах. Нас не очень волнует, действительно ли источник питания 1 А дает 1,1 А или 0,9 А, или он немного меняется в зависимости от напряжения на регуляторе. Мы, очевидно, должны быть очень обеспокоены, если выяснится, что максимальный ток составляет 10 А, но этого просто не произойдет даже с довольно грубым регулятором.
Для чисто аналоговой конструкции LM317 хорошо подходит для задачи регулирования тока, а также идеально подходит для регулирования основного напряжения.Это сокращает общую BOM (спецификацию материалов), поскольку не требуется несколько различных деталей. Конечно, это оба линейных устройства, поэтому эффективность низкая, и для них требуется напряжение питания, превышающее общее напряжение батареи, по крайней мере, на 5 вольт, а желательно несколько больше.
В качестве альтернативы использованию двух микросхем LM317 вы можете добавить пару транзисторов и резисторов для создания ограничителя тока. Однако это работает не так хорошо, площадь печатной платы будет больше, чем у версии, показанной здесь, и экономия средств минимальна.В приведенной ниже схеме не предусмотрена возможность «предварительного кондиционирования» или «пробуждения» перед подачей полного тока. Это не важно, если аккумулятор никогда не может разряжаться ниже 3 В, и может даже не понадобиться при минимальном напряжении 2,5 В. Если напряжение разряженного элемента меньше 2,5 В, потребуется предварительный заряд C / 10. Если вы когда-либо заряжаете только по тарифу C / 10, более низкий тариф не требуется.
Рисунок 2 — Цепь заряда постоянным током / постоянным напряжением
Показанная схема ограничивает ток до значения, определяемого R1.При 12 Ом ток составляет 100 мА (достаточно близко — на самом деле 104 мА), устанавливается сопротивлением и внутренним опорным напряжением 1,25 В. Для 1 А используйте 1,2 Ом (рекомендуется 5 Вт), и значение можно определить для любого необходимого тока вплоть до максимального 1,5 А, который может обеспечить LM317. При более высоком токе стабилизатору потребуется радиатор, особенно на начальном этапе заряда, когда на U1 будет значительное напряжение. Диоды предотвращают обратную полярность батареи к регулятору (U2), если батарея подключена до включения источника постоянного тока.D1 должен быть рассчитан как минимум на удвоенный максимальный ток и в идеале должен быть устройством Шоттки, чтобы минимизировать рассеяние и потери напряжения.
Это просто базовое зарядное устройство, которое может быть разработано в соответствии с требованиями, описанными выше. Однако это далеко не полная система, поскольку на данном этапе отсутствуют система управления и балансировочные схемы. Каждая система будет отличаться, но базовая схема достаточно гибкая, чтобы вместить большинство батарейных блоков из 2-4 ячеек. Зарядку можно остановить, подключив вывод «Adj» U1 к земле с помощью транзистора, как показано на рисунке.Когда зарядка завершена, на конец R3 подается напряжение (5 В в порядке), и ограничитель тока отключается. Имейте в виду, что батарея будет разряжена комбинацией цепей баланса и тока, проходящего через R4, R5 и VR1 (последний составляет около 5,7 мА).
4 — Цепь зарядки одноэлементной ИС
Зарядное устройство на одну ячейку (или батареи с параллельными элементами) концептуально довольно просто. Однако при рассмотрении всех требований становится очевидным, что простого регулятора с ограничением тока, показанного выше, может быть недостаточно.Многие производители ИС имеют готовые зарядные устройства для литиевых элементов на микросхеме, при этом большинству не требуется ничего, кроме программирующего резистора, пары байпасных конденсаторов и дополнительного светодиодного индикатора. Один (из многих), который включает в себя все необходимое, — это Microchip MCP73831, показанный ниже. Большинство крупных производителей ИС производят специализированные ИС, и ассортимент огромен. TI (Texas Instruments) производит ряд устройств, предназначенных для полных приложений BMS, от одноэлементных до батарей на 400 В, используемых для электромобилей.Еще одна простая ИС — LM3622, которая доступна в нескольких версиях, в зависимости от напряжения конечной точки. Также доступна версия для двухэлементной батареи, но в ней отсутствует схема балансировки, что делает ее довольно бессмысленной (IMO).
Рисунок 3 — Зарядное устройство для одной ячейки с использованием микросхемы MCP73831 IC
Доступны четыре напряжения оконечной нагрузки — 4,20 В, 4,35 В, 4,40 В и 4,50 В, поэтому важно выбрать правильную версию для того типа аккумулятора, который вы будете заряжать. Режим постоянного тока управляется R2, который используется для «программирования» ИС.Оставление разомкнутой цепи контакта 5 («PROG») запрещает зарядку. ИС автоматически прекращает зарядку, когда напряжение достигает максимума, установленного ИС, и обеспечивает дополнительный заряд, когда напряжение элемента падает примерно до 3,95 вольт. Дополнительный светодиодный индикатор может использоваться для индикации заряда или окончания заряда, либо того и другого с помощью трехцветного светодиода или отдельных светодиодов. Выход состояния разомкнут, если ИС отключена (например, из-за перегрева) или если батарея отсутствует. После начала зарядки выходной сигнал состояния становится низким, а после завершения цикла зарядки — высоким.Обратите внимание, что эта ИС доступна только в упаковке SMD, а версии со сквозным отверстием недоступны. То же самое касается большинства устройств других производителей.
Показанное зарядное устройство представляет собой линейный регулятор, поэтому при зарядке элемента рассеивается мощность. Если напряжение разряженной ячейки составляет 3 В, ИС будет рассеивать только 300 мВт при токе заряда 100 мА. Если увеличить до максимума, который может обеспечить ИС (500 мА), ИС будет рассеивать 1,5 Вт, а это означает, что она сильно нагреется (в конце концов, это небольшое SMD-устройство).Если напряжение элемента будет ниже 3 В (глубокий разряд из-за аварии или длительного хранения), рассеяние будет таким, что ИС почти наверняка отключится, так как у нее есть внутреннее измерение перегрева. Он будет циклически включаться и выключаться, пока напряжение на ячейке не поднимется достаточно сильно, чтобы уменьшить рассеивание и обеспечить непрерывную работу. Зарядные устройства Switchmode намного эффективнее, но они больше, сложнее и дороже в сборке.
Некоторые контроллеры оснащены датчиком температуры или термистором для контроля температуры ячейки.Такие микросхемы, как LTC4050, будут заряжаться только при температуре от 0 ° C до 50 ° C при использовании с указанным термистором NTC (отрицательный температурный коэффициент). Другие могут быть сконструированы так, чтобы их можно было установить так, чтобы ИС сама контролировала температуру. Они предназначены для установки, когда ИС находится в прямом тепловом контакте с ячейкой. Последовательный транзистор должен быть внешним по отношению к ИС, чтобы его рассеяние не влияло на температуру кристалла ИС.
Резистор программирования тока установлен на 10 кОм на приведенном выше рисунке, и это устанавливает ток заряда примерно на 100 мА.В таблице данных для IC есть график, который показывает зависимость тока заряда от программируемого резистора, и, похоже, нет формулы, которую можно было бы применить. Резистор 2 кОм дает максимальный номинальный ток зарядки 500 мА. Как обсуждалось ранее, медленная зарядка, вероятно, является лучшим вариантом для максимального срока службы элемента, если только элемент не предназначен для быстрой зарядки. К сожалению, на ИС задано максимальное напряжение, и его нельзя уменьшить, чтобы ограничить напряжение чуть более низким значением, которое продлит срок службы элемента.R1 допускает около 2,5 мА для светодиода, поэтому может потребоваться тип с высокой яркостью. При желании сопротивление R1 можно уменьшить до 470 Ом.
Для слаботочной зарядки, вероятно, нет причин не использовать источник точного 4,2 В и последовательный резистор. Процесс зарядки будет довольно медленным, но при ограничении до 0,1C или 100 мА (в зависимости от того, что меньше) цикл зарядки займет около 15 часов. Резистор должен быть выбран так, чтобы обеспечить требуемый ток 1,2 В на нем (12 Ом для 100 мА).Существует небольшая вероятность того, что слабый ток вызовет какое-либо повреждение элемента, и хотя это довольно грубый способ зарядки, нет причин, по которым он не должен работать идеально. Я пробовала, и никаких «противопоказаний» нет.
5 — Цепи балансировки аккумулятора
Хотя зарядка одной ячейки (или батареи с параллельными ячейками) довольно проста с использованием правильной (-ых) ИС (-ов), становится труднее, когда есть две или более ячейки, соединенные последовательно, для создания батареи более высокого напряжения.Поскольку напряжение на каждой ячейке необходимо контролировать и ограничивать, вы получаете довольно сложную схему. Опять же, есть множество вариантов от большинства основных производителей ИС, и во многих случаях требуется специальный микроконтроллер для управления схемами мониторинга отдельных ячеек.
Несомненно, существуют продукты, не обеспечивающие балансировки заряда в какой-либо форме, и именно они с наибольшей вероятностью могут вызвать проблемы при использовании, в том числе возгорание. Использование литиевых батарей без правильно сбалансированного зарядного устройства вызывает проблемы, и этого не следует делать даже с самыми дешевыми продуктами.Вы можете представить себе, что в пакете из 2-х ячеек необходимо контролировать только одну ячейку, а другая будет сама заботиться о себе. Однако это не так. Если ячейка, которая не отслеживается, имеет меньшую емкость, она будет заряжаться быстрее, чем другая ячейка. Оно может достичь опасного напряжения до того, как контролируемая ячейка достигнет своего максимума.
Принцип многоканального мониторинга достаточно прост по своей концепции. Только когда вы понимаете, что к каждой ячейке нужно применять довольно сложные и точные схемы, это становится пугающим.Поскольку все ячейки находятся под разным напряжением, главному контроллеру требуются схемы сдвига уровня для каждого монитора ячейки. Здесь могут использоваться оптоизоляторы или более «обычные» схемы переключения уровня, но последние обычно не подходят для высоковольтных аккумуляторных блоков.
Рисунок 4 — Упрощенные схемы многоячеечной балансировки
Примечание: Показанные схемы концептуальные и предназначены для демонстрации основных принципов. Они не предназначены для конструирования, и микросхемы, показанные на букве «А», не являются каким-либо конкретным устройством, поскольку «настоящие» используемые ИС часто управляются специальным микроконтроллером.Нет смысла отправлять мне электронное письмо с просьбой указать типы устройств, потому что они не существуют как отдельная ИС. Идея состоит только в том, чтобы показать основы — это не проектная статья, она предназначена в первую очередь для освещения проблем, с которыми вы столкнетесь при работе с ячейками серии LiPo.
Существует два класса схем балансировки ячеек — активные и пассивные (оба показаны пассивными). Пассивные системы сравнительно просты и могут работать очень хорошо, но у них низкая энергоэффективность.Маловероятно, что это будет проблемой для небольших батарей (2-5 ячеек серии), заряжаемых по относительно низким ценам (1С или меньше). Тем не менее, это важно для больших пакетов, используемых в электрических велосипедах или автомобилях, потому что они требуют значительных денег для зарядки, поэтому неэффективность BMS приводит к более высокой стоимости одной зарядки и значительным потерям энергии.
Я не собираюсь даже пытаться показать полную схему для многоячеечной балансировки, потому что большинство из них полагаются на очень специализированные ИС, и конечный результат одинаков независимо от того, кто производит микросхемы.Система, показанная на «A», использует управляющий сигнал для зарядного устройства, чтобы уменьшить его ток, когда первая ячейка в батарее достигает максимального напряжения. Резистор, показанный на рисунке, может пропускать максимальный ток 75 мА при 4,2 В, и зарядное устройство не должно обеспечивать больше этого значения, иначе цепь разряда не сможет предотвратить перезаряд. Каждый резистор будет рассеивать только 315 мВт, но это быстро накапливается для очень большой аккумуляторной батареи, и именно здесь активная балансировка становится важной.
Реализация для устройств разных производителей сильно различается и зависит от принятого подхода.Некоторые из них управляются микропроцессорами и предоставляют микропроцессору информацию о состоянии для регулировки скорости заряда, в то время как другие являются автономными и часто в основном аналоговыми. Схема, показанная выше (‘B’), упрощена, но также вполне пригодна для использования, как показано. Три потенциометра по 20 кОм отрегулированы так, чтобы подавать точно 4,2 В на каждый регулятор. Когда действует балансировка (в конце заряда), доступный ток от зарядного устройства должен быть меньше 50 мА, иначе шунтирующие регуляторы не смогут ограничить напряжение.У этого типа балансировщика есть важное ограничение — если одна ячейка выйдет из строя (низкое напряжение или закорочено), остальные элементы будут серьезно перезаряжены!
Однако (и это важно), как и во многих других решениях, он не может оставаться подключенным, когда аккумулятор не заряжается. На каждой ячейке имеется постоянный сток около 100 мкА, и, если предположить, что ячейки 1,8 Ач, как и раньше, они будут полностью разряжены примерно через 2 года. Хотя это может показаться не проблемой, если оборудование не используется в течение некоторого времени, вполне возможно, что элементы разрядятся ниже точки невозврата.
Довольно много зарядных устройств, которые я тестировал, находятся в таком же положении. Их нельзя оставлять подключенными к батарее, поэтому необходимы дополнительные схемы, чтобы гарантировать отключение балансных цепей при отсутствии питания от зарядного устройства. Один продукт, который я разработал для клиента, нуждался во внутреннем балансировочном зарядном устройстве, поэтому была добавлена релейная цепь для отключения балансных цепей, если зарядное устройство не было включено. См. Раздел 8 для получения более подробной информации об этом подходе.
Для любой системы «активных стабилитронов», как показано выше, жизненно важно, чтобы выходное напряжение зарядного устройства было жестко регулируемым и имело тепловое отслеживание, которое соответствует напряжению эмиттер-база транзисторов (Q1 — Q3).Зарядное устройство могло бы легко продолжать обеспечивать свой максимальный выходной ток, но все это рассеивалось бы в цепях байпаса элемента. Это также делает невозможным определение фактического тока батареи, поэтому он, вероятно, не выключится, когда должен.
6 — Схемы защиты аккумулятора
Защита аккумулятора и / или элемента важна для того, чтобы гарантировать, что ни один элемент не заряжен сверх безопасных пределов, и контролировать аккумулятор при разряде, чтобы отключить аккумулятор в случае неисправности (например, чрезмерный ток или температура) и включить выключить аккумулятор, если его напряжение упадет ниже допустимого минимума.В идеале каждая ячейка в батарее должна контролироваться, чтобы каждая ячейка была защищена от глубокого разряда. Для литий-ионных элементов они не должны разряжаться ниже 2,5 В, и даже лучше, если минимальное напряжение элемента будет ограничено до 3 вольт. Потеря емкости в результате более высокого напряжения отсечки невелика, потому что напряжение литиевого элемента падает очень быстро, когда оно достигает предела разряда.
Поскольку эти цепи обычно встроены в аккумуляторную батарею и постоянно подключены, важно, чтобы они потребляли минимально возможный ток.Все, что потребляет больше нескольких микроампер, разряжает батарею, особенно если ее емкость относительно мала. Элемент (или аккумулятор) на 500 мА / ч будет полностью разряжен за 500 часов (20 дней), если цепь потребляет 1 мА, но это продлится почти до 3 лет, если потребление тока можно уменьшить до 20 мкА.
Цепи защитычасто включают в себя обнаружение перегрузки по току, а некоторые могут отключать навсегда (например, с помощью внутреннего предохранителя), если батарея сильно разряжена.Многие используют плавкие предохранители с самовозвратом (например, устройства Polyswitch), или перегрузка обнаруживается электронным способом, и батарея отключается только на время существования неисправности. Существует много подходов, но важно знать, что некоторые внешние события (например, статический разряд) могут вывести цепь (и) из строя. С литиевыми батареями следует обращаться осторожно — всегда.
Рисунок 5 — Схема приложения SII S-8253D
На рисунке выше показана схема защиты трехэлементной литиевой батареи.Он не уравновешивает ячейки, но обнаруживает, превышает ли какая-либо ячейка в пакете пороговое значение «перезарядки», и прекращает зарядку. Он также остановит разряд, если напряжение на любой ячейке упадет ниже минимального. Переключение контролируется внешними полевыми МОП-транзисторами, и зарядное устройство должно быть настроено на правильное напряжение (12,6 В для показанной трехэлементной схемы при условии литий-ионных элементов).
Эти микросхемы (и другие от различных производителей) довольно распространены в азиатских платах BMS. Таблицы данных обычно не очень дружелюбны, и в некоторых случаях предоставляется огромное количество информации, но мало в виде схем приложений.Это кажется обычным для многих из этих микросхем других производителей — предполагается, что пользователь хорошо знаком со схемами балансировки батарей, что не всегда так. Показанный S-8253 имеет типичный ток потребления 14 мкА во время работы, и его можно уменьшить почти до нуля, если использовать CTL (управляющий) вход для отключения ИС, когда батарея не используется или не заряжается. Полевые МОП-транзисторы отключат вход / выход, если элемент заряжен или разряжен сверх пределов, определенных ИС.
7 — Мониторинг состояния заряда (SOC)
Аккумуляторные датчики уровня топлива часто являются не более чем уловкой, но новые методы сделали науку несколько менее произвольной, чем это было раньше. Самый простой (и наименее полезный) — контролировать напряжение батареи, потому что литиевые батареи имеют довольно пологую кривую разряда. Это означает, что необходимо обнаруживать очень небольшие изменения напряжения, а напряжение является очень ненадежным индикатором состояния заряда. Контроль напряжения может быть приемлемым для легких нагрузок в ограниченном диапазоне температур.Он отслеживает саморазряд, но общая точность оставляет желать лучшего.
Так называемый «кулоновский счет» измеряет и записывает заряд, идущий в батарею , и энергию, потребляемую из батареи , и вычисляет вероятное состояние заряда в любой момент времени. Он не дает точных данных об аккумуляторе, который из-за возраста изнашивается, и не может учитывать саморазряд, кроме как путем моделирования. Системы счета кулонов должны быть инициализированы циклом «обучения», состоящим из полной зарядки и разрядки.Изменения, вызванные температурой, не могут быть надежно определены.
Анализ импеданса — еще один метод, который потенциально является наиболее точным (по крайней мере, согласно Texas Instruments, производящей ИС, выполняющие анализ). Контролируя импеданс элемента (или аккумулятора), можно определить степень заряда независимо от возраста, саморазряда или текущей температуры. TI называет свой метод анализа импеданса «Impedance Track ™» (сокращенно IT) и делает несколько довольно смелых заявлений о его точности.Я не могу комментировать так или иначе, потому что у меня нет батареи, использующей его, и у меня нет средств для запуска тестов, но это кажется многообещающим из информации, которую я видел до сих пор.
Эта статья посвящена надлежащему контролю заряда и разряда, а не контролю состояния заряда. Последнее удобно для конечного пользователя, но не является важной частью процесса зарядки или разрядки. Я не планирую предоставлять дополнительную информацию о «датчиках уровня топлива» в целом, независимо от технологии.
8 — Проекты с батарейным питанием
Ячейка 18650 (диаметр 18 мм и длина 65 мм) стала очень популярной для многих портативных устройств, и теперь они легко доступны по довольно разумным ценам.Конечно, не все они равны, и многие онлайн-продавцы выдвигают довольно диковинные заявления о емкости. Подлинные элементы 18650 имеют типичную емкость от 1500 мА / ч (миллиампер-час) до 3500 мА / ч, но подделки часто сильно преувеличивают оценки. Я видел, как они рекламировались как имеющие мощность до 6000 мА / ч, что просто невозможно. Максимальное значение, которое я видел, составляет 9 900 мА / ч, и это даже на 90 422 больше 90 423 невозможно, но, похоже, никого не волнует, что покупателей вводят в заблуждение.
Ячейка 18650 является опорой для многих аккумуляторных блоков портативных компьютеров, при этом 6-элементная батарея является довольно распространенной.Они могут быть подключены последовательно / параллельно для обеспечения удвоенной емкости (в мА / ч) при 11,1 вольт. Батарейный отсек содержит схемы балансировки и защиты, и элементы не подлежат замене. Это (ИМО) позор, потому что всегда будет дешевле заменить элементы, а не весь герметичный аккумулятор. Тем не менее, элементы в этих пакетах, как правило, относятся к типу «с выступами», с металлическими выступами, приваренными к элементам, поэтому они не зависят от физического контакта для электрического соединения.Это означает, что сделать их «заменяемыми пользователем» невозможно.
Одним из преимуществ использования отдельных ячеек является то, что многих проблем, поднятых в этой статье, можно избежать, по крайней мере, до некоторой степени. Будучи отдельными элементами, они обычно используются в пластиковом «батарейном блоке», обычно соединенном последовательно. Набор из четырех может обеспечить номинальное напряжение ± 7,4 В (каждая ячейка — 3,7 В), и этого достаточно для работы многих схем операционных усилителей, включая микрофонные предусилители, испытательное оборудование и многие другие.Зарядка проста — извлеките элементы из аккумуляторной батареи и заряжайте их параллельно с помощью специального зарядного устройства Li-Ion. При условии, что зарядное устройство использует правильное напряжение на клеммах (не более 4,2 В, предпочтительно немного меньше) и ограничивает пиковый зарядный ток в соответствии с используемыми элементами, зарядка безопасна и балансировка не требуется.
Как и во всем, есть предостережения. Схема, на которую подается питание, требует дополнительных схем для отключения аккумуляторной батареи при достижении минимального напряжения.Обычно это 2,5 В на элемент, поэтому автомат должен достаточно точно определять это и отключать аккумулятор, когда напряжение достигает минимума. Однако, если вы используете «защищенные» элементы, у них есть небольшая печатная плата внутри корпуса элемента, которая отключит питание, если элемент закорочен, он (обычно) предотвращает перезарядку и (обычно) имеет выключатель пониженного напряжения.
Но есть загвоздка! Хотя они по-прежнему используют то же обозначение размера (18650), многие защищенные ячейки немного длиннее. Некоторые из них могут быть до 70 мм в длину и не помещаются в аккумуляторные отсеки, предназначенные для «настоящих» ячеек 18650.Другие имеют правильную длину, но имеют меньшую емкость, потому что сама ячейка немного меньше, поэтому схема защиты подойдет. Эти ячейки также различаются положительным концом окончания — некоторые используют «кнопку» (почти такую же, как у большинства щелочных ячеек), в то время как другие имеют плоскую вершину. Часто они не взаимозаменяемы.
Чтобы запутать ситуацию, есть также литиевые элементы размера AA (диаметр 14500 — 14 мм × длина 50 мм). Поскольку это элементы 3,7 В, это , а не элемента типа AA, даже если они одинакового размера.Вы также можете купить «фиктивные» элементы AA, которые представляют собой не что иное, как оболочку размера AA (с оберткой, как у «настоящих» элементов), которая обеспечивает короткое замыкание. Они используются вместе с литий-ионными элементами в устройствах, предназначенных для использования двух или четырех элементов. Используются один или два Li-Ion и один или два фиктивных элемента, и большинство устройств вполне довольны результатом. Моя «рабочая лошадка» цифровая камера оснащена парой литий-ионных элементов размера AA и парой манекенов, и обычно ее нужно заряжать только каждые несколько недель (или даже до пары месяцев, если она мало используется).Нет абсолютно никакого сравнения между литий-ионными элементами и NiMh-элементами, которые я использовал ранее.
Существует несколько способов безопасного использования более «традиционных» литий-ионных аккумуляторов. В проекте, над которым я работал некоторое время назад, использовался литий-ионный аккумулятор 3S (три последовательных элемента) с номинальным напряжением 11,1 В. Он был установлен в корпусе вместе с электроникой, поэтому извлекать его для зарядки было нецелесообразно. Вместе с аккумулятором было установлено небольшое балансировочное зарядное устройство, балансировочные клеммы которого подключены через реле.Это было необходимо, потому что в противном случае балансировочные схемы разрядили бы аккумулятор. Стоимость зарядного устройства была такой, что было бы неразумно пытаться построить его за такие же деньги. Даже получить необходимые детали может быть непросто!
При добавлении реле и балансировочного зарядного устройства в систему необходимо было только подключить внешний источник питания (12 В) к стандартной розетке постоянного тока на задней панели, и это активировало бы реле и зарядило аккумулятор. Реле отключились, как только отключился внешний источник напряжения.Это сделало потенциально утомительную задачу (подключение зарядного устройства и балансировочного разъема) к тому, с чем «средний» пользователь мог бы легко справиться. Те, кто использует устройство, обычно (решительно) нетехнически, и ожидать, что они возятся с неудобными разъемами, было не вариант. Фотография используемого мною аранжировки показана ниже. Обычно используемый аккумулятор был рассчитан на 1500 мА / ч и мог поддерживать непрерывную работу системы регистрации данных в течение 24 часов. Зарядное устройство можно было подключить или вынуть во время работы системы.
Рисунок 6 — Система зарядки литий-ионных аккумуляторов 3S
Балансировочное зарядное устройство разработано специально для аккумуляторов 2S и 3S и стоит менее 10 долларов США у онлайн-поставщика различных аккумуляторов, зарядных устройств и т. Д. Для хобби. Используется диод, чтобы аккумулятор не удерживал реле включенными при зарядном устройстве. питание отключено. Без используемой схемы отключения реле балансные цепи разрядили бы аккумулятор за пару дней. Схема, питаемая от показанной системы, имела встроенный детектор напряжения, который был разработан, чтобы выключить все, когда общее напряжение питания упало примерно до 8 вольт.Плавкий предохранитель (½A) был включен в линию с выходом постоянного тока в качестве окончательной системы защиты, чтобы избежать катастрофического отказа силовой схемы.
На фото вы видите плату зарядного устройства баланса, установленную над платой реле и разъема. Светодиоды были выдвинуты так, чтобы они выглядывали через заднюю панель, а входной разъем постоянного тока находится в крайнем левом углу. Сильноточные выводы от батареи в этом приложении не используются, потому что потребляемый ток намного ниже максимальной скорости разряда.Два реле видны справа, и только три балансных клеммы отключены при отсутствии внешнего источника постоянного тока. Балансировочное зарядное устройство выглядит очень скудным, но у него есть несколько SMD-микросхем и других деталей на нижней стороне платы.
Рисунок 7 — Схема системы зарядки литий-ионных аккумуляторов 3S
На принципиальной схеме показано, как подключена система. Это легко сделать любому, кто думает об использовании подобного устройства, и небольшой кусок Veroboard легко соединяется с реле и диодами.Диод показан параллельно катушкам реле, и это необходимо для того, чтобы обратная ЭДС не повредила цепь зарядного устройства при отключении входа 12 В. D1 должен выдерживать полный входной ток зарядного устройства, который в данном примере составляет менее 1 А. Вся сложность в зарядном устройстве баланса — все остальное максимально просто. D1 предотвращает обратную передачу напряжения батареи от зарядного устройства, поэтому реле будут активированы только при наличии внешнего источника питания.Предохранитель следует выбирать в соответствии с нагрузкой. Эта схема подходит только для слаботочных нагрузок, поскольку в ней не используются сильноточные выводы батареи.
Это только одно из многих возможных приложений, и, как описано выше, иногда проще использовать стандартное зарядное устройство, чем собрать его с нуля. С другими приложениями у вас может не быть выбора, потому что «лучшие» зарядные устройства могут стать довольно дорогими и могут оказаться непригодными для повторного использования указанным способом. Для единичных или небольших производственных циклов использование того, что вы можете получить, обычно более рентабельно, но это меняется, если должно быть изготовлено большое количество единиц.
Выводы
Литиевые элементы и батареи — это современный «современный уровень техники» в технологиях хранения. За прошедшие годы усовершенствования сделали их намного безопаснее, чем ранние версии, и справедливо сказать, что разработка ИС является одним из основных достижений, поскольку существует ИС (или семейство ИС), предназначенное для мониторинга и контроля процесса зарядки и ограничения напряжения, приложенные к каждой ячейке в батарее. Этот процесс снизил риск повреждения (и / или возгорания), вызванного перезарядкой, и продлил срок службы литиевых батарей.
На самом деле ни один состав батареи не может считаться на 100% безопасным. Ni-Mh и Ni-Cd (никель-металл-гидридные и никель-кадмиевые) элементы не будут гореть, но они могут вызвать сильный ток при коротком замыкании, что вполне способно вызвать воспламенение изоляции на проводах, воспламенение печатных плат и т. Д. токсичен, поэтому утилизация регулируется. Свинцово-кислотные батареи могут (и взрываются) взорваться, заливая все вокруг серной кислотой. Они также способны создавать большой выходной ток и выделять взрывоопасную смесь водорода и кислорода при перезарядке.Когда вам нужна высокая плотность энергии, альтернативы литию нет, и при правильном обращении риск на самом деле очень низок. Хорошо сделанные элементы и батареи будут иметь все необходимые гарантии от катастрофического отказа.
Это не означает, что литиевые батареи всегда будут безопасными, что было доказано многочисленными сбоями и отзывами по всему миру. Однако следует учитывать огромное количество используемых литиевых элементов и батарей. Каждый современный мобильный телефон, ноутбук и планшет использует их, и они распространены во многих моделях товаров для хобби и большинстве новых фотоаппаратов — и это лишь небольшой образец.В модельных самолетах используются литиевые батареи, потому что они обладают такой хорошей плотностью энергии и малым весом, а многие из последних модных моделей (например, дронов / квадрокоптеров) были бы непригодны для использования без литиевых батарей. Попробуйте оторвать его от земли со свинцово-кислотным аккумулятором на борту!
Обычно рекомендуется избегать дешевых азиатских безымянных литиевых элементов и батарей. Хотя некоторые могут быть совершенно нормальными, у вас нет реального возмещения, если кто-то сожжет ваш дом дотла.Есть небольшая надежда, что жалоба на веб-сайт онлайн-аукциона приведет к финансовому урегулированию, хотя это в равной степени может относиться к товарам известных брендов, купленным в обычных магазинах. Поскольку в большинстве инструкций (часто непрочитанных и регулярно игнорируемых) говорится, что литиевые батареи нельзя заряжать без присмотра, это трудный аргумент. Однако, если учесть количество используемых литиевых батарей, отказы на самом деле случаются очень редко. К сожалению, когда происходит сбой и , результаты могут быть плачевными.Вероятно, не помогает то, что СМИ поднимают большой шум каждый раз, когда литиевый аккумулятор демонстрирует потенциальную неисправность — очевидно, это достойно новостей.
Одно можно сказать наверняка — эти батареи должны быть заряжены должным образом, с соблюдением всех необходимых мер предосторожности против перенапряжения (полная балансировка элементов). Убедитесь, что батареи никогда не заряжаются, если температура равна или ниже 0 ° C, а также если она превышает 35-40 ° C. Литий становится нестабильным при 150 ° C, поэтому необходим тщательный контроль температуры элементов, если вы должны заряжать при высоких температурах, и в идеале он должен быть частью зарядного устройства.Избегайте использования литиевых элементов и батарей там, где их корпус может быть поврежден или они могут подвергаться воздействию высоких температур (например, прямых солнечных лучей), так как это повышает внутреннюю температуру и резко снижает надежность, безопасность и срок службы батареи.
Как должно быть очевидно, один литиевый элемент довольно легко зарядить. Вы можете использовать специальную микросхему, но даже более простая комбинация регулятора 4,2 В и последовательного резистора подойдет для базового (медленного) зарядного устройства. Зарядные устройства с одной ячейкой (или несколькими параллельными ячейками) можно приобрести довольно дешево, а те, которые я использовал, работают хорошо и представляют очень небольшой риск.Даже в этом случае я никогда не выйду из дома, пока заряжается литиевая батарея или элемент. У лично у меня никогда не было проблем с литий-ионными батареями или элементами , и я использую довольно много из них для различных целей. Это помимо самых распространенных — телефонов, планшетов и ноутбуков. Литий-ионная химия оказалась гораздо более надежным вариантом по сравнению с Ni-Mh (металлогидридом никеля), где мне недавно пришлось утилизировать (как в переработчике, а не в цикле самих элементов) более половины из тех, что у меня были!
Когда вам нужно много энергии в небольшом, легком корпусе с возможностью перезарядки до 500-1000 раз, нет лучшего материала, чем литий.Если к ним относятся с уважением и не злоупотребляют, вы обычно можете рассчитывать на долгие и счастливые отношения со своими элементами и батареями. Они не идеальны, но они определенно превосходят большинство других химикатов с большим отрывом. О LiFePO 4 (широко известных как просто LFP, LiFePO или LiFe) можно много сказать, потому что они используют более стабильный химический состав и с меньшей вероятностью сделают что-нибудь «неприятное». Однако до тех пор, пока ими не злоупотребляют, литий-ионные элементы и батареи могут прожить безопасную, долгую и счастливую жизнь.
Схема отключения батареи, которая полностью отключает батарею при падении напряжения до заданного предела, см. В проекте 184. Это было разработано специально для предотвращения чрезмерной чрезмерной разрядки, если оборудование с батарейным питанием случайно остается включенным после использования.
Список литературы
- Литий — Википедия
- Почему литиевые батареи загораются
- Зарядка литий-ионных батарей
- Расчет литиевых батарей (FedEx)
- UPS расширяет зоны обслуживания опасных грузов — вам необходимо выполнить поиск по сайту
- SII S8253 Лист данных (Seiko)
- Проблемы безопасности литий-ионных аккумуляторов
Основной индекс
Указатель статей
Уведомление об авторских правах. Схем |