Элементарный выпрямитель на одном диоде
Благодаря свойству диода однонаправленной проводимости, всего одной детали достаточно, чтобы собрать схему выпрямителя. Такая схема предельно проста, а характеристики её не ахти какие, но тем не менее, она вполне работоспособна и пригодна для некоторого применения, например, для подзарядки батареи свинцово-кислотных аккумуляторов и т.п.
Речь пойдёт об однополупериодном однофазном выпрямителе на одном диоде. Сразу представим его схему — рисунок 1.
Рисунок 1. Однофазный однополупериодный выпрямитель.
Состав схемы.Ключевым элементом схемы является диод VD1. Схема проста до безобразия: диод просто включен последовательно с цепью нагрузки, роль которой выполняет лампа HL1. Трансформатор T1 здесь не имеет принципиального значения, он играет роль источника переменного напряжения.
Принцип работы. Через трансформатор T1 производится преобразование переменного напряжения питающей сети до необходимой величины, а так же осуществляется гальваническая развязка, что обычно необходимо для электробезопасности.
К одному из выводов вторичной обмотки трансформатора подключается диод VD1. Свободные выводы диода и трансформатора можно использовать в качестве выходных контактов. Таким образом к ним подключена нагрузка в виде лампы HL1.
При переменном напряжении вторичной обмотки, в положительный полупериод, рисунок 1 а), когда к диоду и нагрузке приложено напряжение е. происходит отсечка отрицательного полупериода.
И так,
К достоинству данной схемы можно отнести только её безобразную простоту. В остальном она не всегда пригодна для широкого применения из-за своих значительных недостатков.
Недостатки схемы.— Значительные пульсации на выходе устройства. При подключении лампы накаливания, даже учитывая значительную инерционность её нагрева, её свечение заметно мерцает.
— Низкая эффективность. Вследствие отсечки отрицательного полупериода, КПД этой схемы не может быть больше 50%.

Несмотря на все свои недостатки, эта схема нашла своё применение в качестве десульфатирующего зарядного устройства для свинцово-кислотных аккумуляторных батарей.
Схема двухполупериодного (полноволнового) выпрямителя напряжения
Обычное питание от распределительной сети предполагает переменное напряжение. Это напряжение можно легко настроить на желаемый уровень, пользуясь встроенными или внешними трансформаторами. Однако многие электронные компоненты, например, электролитические конденсаторы, светодиоды, диодные элементы и транзисторы не предназначены для работы на переменном токе. Для управления цепями с такими компонентами переменное напряжение необходимо преобразовывать в соответствующее постоянное. Для этого служат выпрямители.
Выпрямитель тока
Полуволновой выпрямитель
Для создания выпрямителей требуются элементы, пропускающие ток в одном направлении и блокирующие в другом. Раньше для этой цели использовались электронные лампы. Сейчас повсеместно применяются полупроводниковые диоды.
Простейший однофазный однополупериодный выпрямитель представляет собой обычный диод, подключенный последовательно с нагрузкой. Когда положительная полуволна синусоидального сигнала проходит через диод, он ее пропускает. Однако при перемене направления тока в другой полупериод диод запирается. В результате отрицательный полупериод токового сигнала блокируется, и остается пульсирующий ток, состоящий из положительных полуволн. Часть энергии будет потеряна. Кроме того, высокая пульсация сигнала часто становится неприемлемой для работы электронных схем.
Однофазный полуволновой выпрямитель
Можно использовать усовершенствованную схему однополупериодного выпрямителя, включив параллельно нагрузке конденсатор. Схема работает следующим образом:
- Если на полюсе источника присутствует положительное напряжение, диод проводит ток. Конденсатор заряжается полностью, а ток проходит через сопротивление нагрузки;
- Когда на полюсе источника появляется отрицательное напряжение, диод блокирует протекание тока.
В этот момент конденсатор разряжается, поддерживая на короткий временной промежуток ток через сопротивление нагрузки.
Важно! Если резистор обладает большим сопротивлением, то ток будет маленький. Конденсатор разряжается медленно и поддерживает напряжение в основном до следующей смены полярности.
Полуволновое выпрямление с конденсатором
Такой однофазный однополупериодный выпрямитель с конденсатором имеет меньший уровень пульсации, однако его эффективность все равно оставляет желать лучшего.
Полноволновой выпрямитель
Преимущества двухполупериодного выпрямителя:
- Полуволновой выпрямитель обеспечивает только половину доступной энергии в волне переменного тока. Во время отрицательной части цикла напряжение может падать до нуля. Двухполупериодный выпрямитель сохраняет до 90% энергии;
- Диод работает как односторонний переключатель, позволяя току протекать только в одном направлении. Однако высокое обратное напряжение может разрушить диод.
Из-за этого диоды откалиброваны на обратное напряжение. Полноволновой выпрямитель снижает требования по обратному пробою наполовину. Диоды с более низкой калибровкой дешевле, снижается стоимость всей схемы. Это относится к мостовым схемам;
- При применении двухполупериодного выпрямителя сигнал более плавный из-за лучшего сглаживания пульсаций.
Полноволновой выпрямитель с нулевым выводом
Двухполупериодная схема выпрямителя преобразует оба полуцикла переменного сигнала в импульсный сигнал однонаправленного тока.
Для выпрямления сигнала используется трансформатор, вторичная обмотка которого поделена пополам. От средней точки сделан вывод и заземлен, то есть потенциал ее равен нулю. Промежуточный отвод является одним из выходов мощности, а другой выход образуется соединением каждого конца обмотки через соответствующие диоды.
Полноволновой выпрямитель с нулевой точкой
- Во время положительного полупериода входного переменного сигнала на одном конце обмотки появляется «плюс», а на другом – «минус».
Диод, подключенный анодным выводом к «плюсу», пропускает токовый сигнал. А другой диод, на анодном выводе которого «минус», оказывается запертым. Ток, протекая по нагрузке, возвращается к центральной точке;
- Когда появляется отрицательная полуволна, полярность концов обмоток меняется. Соответственно, первый диод запирается, а второй – пропускает сигнал.
В результате по нагрузке проходит ток и в положительные полуциклы, и в отрицательные, но результирующий сигнал будет протекать в одном направлении. Величина постоянного напряжения будет составлять 0,9 от входного среднеквадратичного показателя и 0,637 – от максимального. Частота выходного сигнала увеличивается в два раза.
Можно получать другие значения выходного напряжения, если изменять коэффициент трансформации.
Важно! Двухполупериодный выпрямитель со средней точкой позволяет получить выпрямленный ток с низкими потерями мощности и с невысокой пульсацией, но применяемые трансформаторы дороги и имеют большие габариты по сравнению с диодными мостами.
Диодный мост
Схема двухполупериодного выпрямителя, называемая диодный мост, использует четыре диода, соединенных с образованием замкнутого контура, к одной стороне которого подсоединяется источник питания переменного тока, к другой – нагрузка.
Применяемая конфигурация позволяет работать поочередно на пропуск сигнала парам диодов, находящимся в противоположных плечах моста. В каждом случае создается положительная полуволна, а ток через нагрузку остается однонаправленным.
Диодный мост
Коэффициент пульсаций мостового выпрямителя составляет 0,48, аналогично другой схеме, с применением трансформатора.
Мостовая схема выпрямления проста и эффективна. Недостатком ее является падение напряжения на диодных элементах. Один из них обеспечивает падение напряжения в 0,7 В, второй – в 1,4 В. Этот дефект может существенно сказаться только на работе низковольтных схем.
Сглаживание пульсаций
Возможно улучшить сигнал двухполупериодного выпрямителя, применяя конденсаторы, которые повышают средний уровень выходного напряжения и делают его более плавным.
Во время первой полуволны конденсатор заряжается до максимума, а при снижении сигнала напряжение на нем не может быстро упасть. Разряд конденсатора происходит до определенного уровня, на котором поддерживается напряжение до зарядного импульса второй полуволны. При большей емкости конденсатора уровень поддерживаемого напряжения растет.
Трехфазный выпрямитель
Если вместо однофазного трансформатора использовать трехфазный, коэффициент пульсаций может быть уменьшен в значительной степени.
Важно! Существенным преимуществом трехфазной схемы является то, что выпрямленное напряжение не падает до нуля, даже если не используется сглаживающее устройство.
Мостовая схема однофазного двухполупериодного выпрямителя легко преобразуется в трехфазную. Схема выпрямления использует шесть диодов. Каждая фаза включается между парами диодов. Ток, протекающий через один диод, равен 1/3 нагрузочного тока. Выпрямленное напряжение превышает аналогичный показатель для трехфазного полуволнового выпрямителя, использующего три диодных элемента.
Трехфазная выпрямительная схема
Трехфазный тип расположения мостов является предпочтительным в различных применениях, хотя существуют схемы и с использованием разделенных вторичных обмоток трансформатора.
Использование двухполупериодного выпрямителя
Полноволновой выпрямитель широко используется в электронных схемах: радиоприемниках, телевизорах, компьютерах, видеооборудовании и других, где необходим источник питания с минимальным уровнем пульсаций.
Независимо от существования других форм выпрямителей, самый простой и часто применяемый – мостовой выпрямитель с четырьмя диодами и конденсатором. Два из них пропускают положительные половины циклов, другие два – отрицательные, а конденсатор отвечает за поддержание результирующего напряжения до момента изменения полярности ИП.
В схемах выпрямителей диоды могут быть полностью или частично заменены тиристорами, так что можно получить управляемую или полууправляемую систему выпрямления. Эти системы позволяют регулировать среднее значение напряжения на нагрузке. Замена диода на тиристор позволяет задержать открытие элемента, который пропускает ток, при подаче импульса на его управляющий электрод.
Выпрямительные схемы на мощных элементах применяют для установок электролиза, сварочных аппаратов, питания электротранспорта, прокатных станов, систем передачи электрической энергии на постоянном токе.
Видео
Оцените статью:Общие сведения о выпрямителях Преобразователи, стабилизаторы напряжения и ряд других элементов не являются обязательными для всех источников питания.
В зависимости от требований, предъявляемых к источникам питанию, эти узлы могут присутствовать в схеме, а могут и отсутствовать.
Однако процесс выпрямления переменного напряжения будет присутствовать всегда, а значит будут присутствовать и связанные
с ним проблемы сглаживания пульсаций напряжения. ![]() Выбор ламповых или полупроводниковых выпрямительных диодов Существует две основные разновидности схем двухполупериодного выпрямления: выпрямитель, использующий отвод от средней точки обмотки трансформатора, и мостовая схема выпрямления (рис. 6.2). Мостовая схема (часто называемая схемой Греца) выпрямления представляет стандартную современную топологию, так как она позволяет экономить на обмотке трансформатора (требуется вдвое меньше витков вторичной обмотки). Схема выпрямления, в которой используется обмотка трансформатора с отводом от среднего витка, считается традиционной в схемах ламповых выпрямителей, так как она позволяет экономить на количестве выпрямляющих элементов (которые всегда стоили недешево). При рассмотрении схемы высоковольтного источника питания, для которого напряжение постоянного тока VDCне превышает 1 кВ, необходимо сделать выбор между использованием кремниевого полупроводникового диода или вакуумного
термоэлектронного диода (кенотрона), например, такого, как GZ34. Рис. 6.2 Схемы двухполупериодного выпрямления в которой Rs — сопротивление вторичной обмотки трансформатора; Rp — сопротивление первичной обмотки трансформатора; п — коэффициент трансформации, или отношение количества
витков вторичной обмотки к количеству витков в первичной. Хотя приводимые ниже в табл. 6.1 данные позволяют производить быстрое сравнение характеристик наиболее распространенных двойных выпрямительных ламповых диодов (двухполупериодных кенотронов), за получением более подробной информации необходимо будет обратиться к паспортным данным, представляемых производителями ламп.
Примечание. Компания Маллэрд (Mullard) не указала значение C(max) для лампового диода
GZ37, но в силу того, что как для GZ34, так и для GZ37 амплитудные значения токов одинаковы, ia(pk)= 750 мА, то можно будет принять, что для диода GZ37величина C(max) = 60 мкФ. Ламповые диоды GZ34, входящие в серию NOS и выпускаемые компанией Маллэрд (Mullard), представляют в настоящее время почти музейную редкость и поэтому очень дорогие, хотя некоторые из современных дамповых диодов GZ34, как сообщалось в печати, имеют очень неустойчивые параметры при высоких напряжениях, поэтому достаточно популярной заменой для данного лампового диода является весьма «прожорливая» в отношении потребляемых токов лампа NOS GZ37. Ламповые диоды с косвенным подогревом EZ80 и EZ81 дешевле и значительно доступнее, они являются идеальными для применения в схемах предусилителей или небольших монофонических усилителей мощности. Для не очень популярного лампового диода EZ90 приводимые паспортные характеристики не являются такими подробными, как это сделано для диода EZ80, но вполне возможно предположить, что он окажется даже дешевле. Выпрямительные диоды с косвенным подогревом разработаны для питания от стандартного блока питания подогревателей катодов,
который имеет напряжение 6,3 В и предназначен для приемо-усилительных ламп, однако, их особенностью является то, что напряжение
между подогревателем и катодом Vghможет достигать значения примерно 300 В. Высоковакуумные ламповые выпрямители обладают одним единственным явным преимуществом перед кремниевыми диодами, но это
преимущество может оказаться настолько важным, что позволит стерпеть все их недостатки. Время нарастания выходного напряжения
(время, необходимое для изменения напряжения от значения 10% до значения, составляющего 90% номинального) при условии полной
нагрузки составляет примерно 5 с, что сильно снижает величину противотока электролитических конденсаторов по сравнению
с полупроводниковыми выпрямителями (рис. Ярые приверженцы высоковакуумных ламповых диодов указывают, что лампа включается и выключается более чисто по сравнению с кремниевым диодом, и это в итоге приводит к менее выраженным резонансным явлениям в источнике питания. Однако, по мнению автора, оба типа выпрямителей характеризуется пиками (выбросами) при переключении, и, в силу этого, особое значение приобретает необходимость использования сглаживающих и демпфирующих элементов. Если и наблюдаются некоторые преимущества при использовании ламповых выпрямительных диодов, то они, скорее всего, обязаны своим происхождением уменьшенным пульсирующим составляющим переменного тока (подробнее эта проблема будет рассмотрена ниже). Рис. 6.3 Плавное нарастание высоковольтного напряжения, питаемого от лампового выпрямителя EZ81 с током нагрузки 120 мА Какая бы топологическая схема выпрямителя ни была бы выбрана, необходима уверенность, что она будет в состоянии оказывать
противодействие возмущениям, оказываемым на нее окружающими цепями. На рис. 6.4 приведена схема выпрямителя, в которой использованы два кремниевых диода, включенных в плечи вторичной обмотки
трансформатора, имеющей отвод от средней точки (обмотки 300-0-300 В). Напряжение холостого хода на накопительном конденсаторе
составит 424 В постоянного тока (необходимо обратить внимание, что это напряжение значительно превышает то значение, которое
было бы, если бы вместо кремниевых диодов использовались ламповые диоды: прямая замена кремниевых диодов на ламповые недопустима).
Предельно допустимое напряжение диода, удовлетворяющее требованиям схемы, представляет максимально допустимое обратное напряжение,
которое может быть многократно приложено к нему, VRPM. В табл. 6.2 сравниваются необходимые рабочие напряжения кремниевых диодов для мостовой схемы выпрямления и схемы с отводом от средней точки вторичной обмотки трансформатора. Рис. 6.4 Влияние конденсатора на величину выпрямленного напряжения
При выпрямлении высоких напряжений схема с отводом от центрального витка вторичной обмотки трансформатора имеет тот недостаток, что для нее требуется использовать полупроводниковые диоды, рассчитанные на удвоенные значения напряжения VRPM. Поэтому в схеме выпрямителя, в которой используется вторичная обмотка трансформатора с отводом от средней точки и напряжения 300-0-300 В необходимо будет использовать диоды, у которых VRRM> 849 В. Однако в выпрямителе, в котором будет использоваться только одна вторичная обмотка, рассчитанная на напряжение 300 В и мостовая схема выпрямления, может быть обеспечено точно такое же значение выходного напряжения, при этом необходимо использовать диоды, для которых напряжение VRPM > 424 В. Несмотря на это, очень удобными для применения оказываются выпрямители, в которых используются полупроводниковые диоды и трансформаторы с отводом от средней точки вторичной обмотки трансформатора, предназначенные для работы с низкими напряжениями и высокими значениями токов, так как в этой схеме прямое падение напряжения на диодах схемы, V будет в два раза ниже аналогичного параметра, характерного для мостовой схемы выпрямления, поскольку за каждый полупериод выпрямляемого синусоидального напряжения, ток протекает только через один диод, а не через два, как в мостовой схеме. Такие лаповые диоды, как GZ34, EZ81, EZ80 и т. д. предназначаются для использования в схемах выпрямления с отводом от средней точки, что подразумевает использование трансформатора, вторичная обмотка которого изготовлена с отводом от среднего витка. Однако совместное использование лампового и полупроводникового выпрямительных диодов позволяет обойти данную проблему, а также сохранить преимущество первых, связанное с плавным нарастанием выпрямленного тока (рис. 6.5). Рис. 6.5 Схема выпрямителя с комбинированным использованием лампового и полупроводниковых выпрямительных диодов Когда выпрямленное напряжение с диодов поступает на накопительный конденсатор, импульсные токи в несколько раз превышают величину постоянного тока, протекающего в нагрузке. К счастью, современные кремниевые диоды разрабатываются таким образом, чтобы учесть это превышение пиковых значений тока, поэтому для двухполупериодной схемы выпрямления оказывается достаточным выбрать каждый диоде номинальным значением рабочего тока, равным половине постоянного тока, протекающего в нагрузке. (Это становится возможным потому, что через каждый диод в схеме двухполупериодного выпрямления ток протекает только в течение одной половины периода.) Ртутные выпрямители Ртутные выпрямители последнее время становятся все более модными, а их мягкий голубоватый разряд, возникающий в парах ртути, внешне выглядит очень привлекательно. Ртутные выпрямители очень хрупкие, а их пары ядовиты, поэтому они требуют к себе очень внимательного отношения, не допускающего как механических повреждений баллона лампы, так и превышения номинальных электрических нагрузок. Так как при работе такого выпрямителя используются пары ртути, то капли жидкого металла достаточно быстро осаждаются на внутренних стенках баллона лампы, поэтому при включении подогреватель должен, прежде всего, испарить некоторое количества металла, что требует в обязательном порядке вертикального положения баллона ртутного выпрямителя. Время, которое необходимо для предварительного прогрева катода перед тем, как будет приложено высоковольтное напряжение, приведено в табл. 6.3.
Для предотвращения обратной вспышки работа ртутных выпрямителей ограничивается диапазоном температур от 20 до 60 °С, хотя для ряда ртутных выпрямителей верхний предел температуры ограничивается значением 50 °С. Поэтому для таких выпрямителей может оказаться необходимым использовать электрический вентилятор, обеспечивающий дополнительный отвод горячего воздуха от близкорасположенных нагретых элементов схемы. В дополнение ко всему, выпрямитель типа 866 требует применения совместно с ним стабилизирующего нагрузочного резистора, подключенного параллельно выходным клеммам выпрямителя и отводящего примерно 10% от общего тока нагрузки. Ртутные выпрямители характеризуются меньшим падением прямого напряжения (примерно 15 В) и значительно меньшим значением собственного сопротивления по сравнению с высоковакуумными ламповыми диодами и могут применяться при более высоких значениях рабочих напряжений и токов. Однако процесс их включения и выключения происходит значительно более резко по сравнению с другими типами ламповых выпрямительных диодов, поэтому они склонны вызывать дополнительные осцилляции (паразитные колебательные процессы), если их анодный провод не снабжен поглощающими ферритовыми шайбами или ВЧ дросселем, а в ряде случаев может потребоваться заключение дампы в металлический экранирующий кожух. Наиболее простым способом, позволяющим выявить влияние генерации, оказывается использование не осциллографа, а обычного радиоприемника, работающего в диапазоне УКВ-ЧМ, который необходимо перемещать рядом со схемой и прослушивать «жужжание» при его приближении к ламповым диодам. В ртутных выпрямителях как бы соединяются недостатки полупроводниковых и ламповых выпрямляющих диодов, когда объединяются требования, заставляющие использовать источник питания для цепи подогревателей, цепь задержки включения высоковольтного напряжения и демпфирующие устройства, чтобы добиться электрических характеристик ненамного лучших, чем для кремниевых диодов. Однако, следует отметить, что в ртутных выпрямителях отсутствует процесс накопления заряда, который вызывает превышение значения, или бросок, тока. ВЧ шумы выпрямителей При работе выпрямителя постоянно происходят переключения выпрямляющих элементов схемы с одного на другой. Следует учесть, что хотя нижеприведенные рассуждения относятся к случаю чисто омической нагрузки выпрямителя, полученные результаты также будут справедливы и для случая нагрузки, представленной накопительным конденсатором. Как только амплитудное значение переменного входного напряжения при своем увеличении пройдет через нулевое значение, один или несколько выпрямляющих диодов перейдут во включенное состояние и будут оставаться включенными во время действия положительной полуволны, то есть пока амплитуда напряжения не снизится обратно до нулевого значения. После прохождения амплитуды через нулевое значение во время действия отрицательной полуволны напряжения включится второй диод, или несколько диодов, образующие второе плечо схемы выпрямителя. Для каждого диода необходимо минимальное значение прямого напряжения, при котором будет происходить его включение (даже если величина такого напряжения составляет всего 0,7 В, требуемого для включения кремниевого диода). Это означает, что существует своего рода мертвая зона, симметрично расположенная относительно нулевого значения напряжения, когда ни один диод из обоих плечей не будет проводить ток. Трансформатор, обладающей собственной индуктивностью, в такие моменты времени окажется отключенным и будет пытаться поддерживать протекание тока по цепи, однако это приведет к возникновению э.д.с. самоиндукции, величина которой определяется выражением: К счастью, в самом трансформаторе существует слишком большое количество паразитных емкостей, предотвращающих возрастание напряжения до слишком высоких значений. Однако, бывают и случаи, когда избыточное напряжение, приложенное к системе, может возбудить колебательный процесс, приводящий к появлению последовательности затухающих импульсов. Используя измерительную катушку, автор однажды зафиксировал выброс импульсов с частотой 200 кГц, возникающих в силовом трансформаторе именно по указанной выше причине. К счастью, указанная проблема решается достаточно простым шунтированием каждого отдельного диода пленочным конденсатором с емкостью 10 нФ, рабочее напряжение которого равняется рабочему напряжению VRRMдиода. |
Принцип работы выпрямителя
Маломощные выпрямители
Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт) и выпрямители большой мощности (киловатты и больше).
Принцип работы выпрямителя
Структурная схема выпрямителя:
Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя).
Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.
Собственно выпрямителем является та его часть, которая обведена на рисунке пунктиром и состоит из трансформатора и выпрямительного устройства.
Нулевая схема выпрямления
Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на нулевой схеме.
Нулевая схема выглядит так:
Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.
Как возникает пульсирующее напряжение на нагрузке? Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток.
Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.
Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.
Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:
И выпрямленное напряжение Ud будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m-2). Если нагрузка активное сопротивление Rн, то и ток в нем id , будет повторять кривую напряжения.
Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны.
Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.
Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:
Выпрямительный мост или схема Гретца
Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):
В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:
Мостовая схема имеет менее сложный, более легкий и дешевый трансформатор.
Эта схема появилась исторически раньше нулевой, однако распространения не получила, потому что имела четыре диода вместо двух. А при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение.
Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую.
Основные соотношения для выпрямителя
Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.
Среднее значение выпрямленного напряжения
Запомним это выражение на дальнейшее. В нашем случае m=2 и
. Поскольку Ud считаем заданным, то
Амплитудное значение вторичного напряжения
Из предыдущего выражения имеем:
Коэффициент трансформации трансформатора
Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:
Действующее значение тока вторичной обмотки
Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть
Действующее значение тока первичной обмотки
Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :
Мощность трансформатора
Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:
Пульсация выпрямленного напряжения
Пульсирующее напряжение состоит из среднего значения Ud и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:
Где: l – полупериод π/m;
Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:
Заменив
получим:
Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:
Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.
Средний ток диодов
Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток Iв = Id/2
Наибольшее обратное напряжение на диоде
В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:
Что такое однофазный выпрямитель, принцип работы, типы и схемы
Выпрямитель преобразует колеблющийся синусоидальный источник переменного напряжения в источник постоянного напряжения постоянного тока с помощью диодов, тиристоров, транзисторов или преобразователей. Этот процесс выпрямления может принимать различные формы с полуволновыми, двухполупериодными, неконтролируемыми и полностью управляемыми выпрямителями, преобразующими однофазный или трехфазный источник питания в постоянный уровень постоянного тока.
Описание
Выпрямители являются одним из основных строительных блоков преобразования мощности переменного тока с полуволновым или двухволновым выпрямлением, обычно выполняемым полупроводниковыми диодами. Диоды позволяют переменным токам течь через них в прямом направлении, в то же время блокируя протекание тока в обратном направлении, создавая постоянный уровень напряжения постоянного тока, что делает их идеальными для выпрямления.
Однако постоянный ток, который выпрямляется диодами, не такой чистый, как ток, получаемый, скажем, от источника батареи, но имеет изменения напряжения в виде пульсаций, наложенных на него в результате переменного питания.
Но для однофазного выпрямления нам нужна синусоидальная форма переменного тока с фиксированным напряжением и частотой, как показано на рисунке.
Сигналы переменного тока обычно имеют два числа, связанных с ними. Первое число выражает степень вращения осциллограммы вдоль оси x, на которую генератор вращался от 0 до 360 o .
Это значение известно как период (T), который определяется как интервал, взятый для завершения одного полного цикла сигнала. Периоды измеряются в градусах, времени или радианах. Соотношение между периодами синусоидальных волн и частотой определяется как: T = 1 / ƒ .
Второе число указывает амплитуду значения, тока или напряжения, вдоль оси y. Это число дает мгновенное значение от нуля до некоторого пикового или максимального значения (A MAX , V MAX или I MAX ), указывающее наибольшую амплитуду синусоидальных волн, прежде чем снова вернуться к нулю. Для синусоидальной формы волны есть два максимальных или пиковых значения, одно для положительных и одно для отрицательных полупериодов.
Но помимо этих двух ценностей есть еще две, которые представляют интерес для нас в целях исправления. Один — это Среднее значение сигналов, а другой — его среднеквадратичное значение. Среднее значение формы сигнала получается путем добавления мгновенных значений напряжения (или тока) в течение одного полупериода и обнаруживаются как: 0,6365 * V P . Обратите внимание, что среднее значение за один полный цикл симметричной синусоидальной волны равно нулю.
Среднеквадратическое значение или эффективное значение синусоиды (синусоида — это другое название синусоидальной волны) обеспечивает такое же количество энергии для сопротивления, что и источник постоянного тока того же значения. Среднеквадратическое значение (RMS) синусоидального напряжения (или тока) определяется следующим образом: 0,7071 * V P.
Принцип работы
Все однофазные выпрямители используют полупроводниковые устройства в качестве основного устройства преобразования переменного тока в постоянный. Однофазные неконтролируемые полуволновые выпрямители являются наиболее простой и, возможно, наиболее широко используемой схемой выпрямления для малых уровней мощности, поскольку на их выход сильно влияет реактивное сопротивление подключенной нагрузки.
Для неконтролируемых выпрямительных цепей полупроводниковые диоды являются наиболее часто используемым устройством и расположены таким образом, чтобы создавать либо полуволновую, либо двухполупериодную схему выпрямителя. Преимущество использования диодов в качестве устройства выпрямления состоит в том, что по своей конструкции они являются однонаправленными устройствами, имеющими встроенный однонаправленный pn-переход.
Этот pn-переход преобразует двунаправленный переменный источник питания в однонаправленный ток, устраняя половину источника питания. В зависимости от подключения диода, он может, например, пропустить положительную половину сигнала переменного тока при прямом смещении, исключая при этом отрицательный полупериод, когда диод становится обратным смещением.
Обратное также верно, устраняя положительную половину или форму волны и передавая отрицательную половину. В любом случае, выход из одного диодного выпрямителя состоит только из одной половины формы сигнала 360 o, как показано на рисунке.
Полуволновое выпрямление
Приведенная выше конфигурация однофазного полуволнового выпрямителя пропускает положительную половину формы сигнала переменного тока, причем отрицательная половина исключается. Меняя направление диода, мы можем пропустить отрицательные половины и устранить положительные половины формы сигнала переменного тока. Поэтому на выходе будет серия положительных или отрицательных импульсов.
Таким образом, на подключенную нагрузку не подается напряжение или ток, R L в течение половины каждого цикла. Другими словами, напряжение на сопротивлении нагрузки R L состоит только из половины сигналов, либо положительных, либо отрицательных, поскольку оно работает только в течение половины входного цикла, отсюда и название полуволнового выпрямителя.
Надеемся, что мы видим, что диод позволяет току течь в одном направлении, создавая только выход, который состоит из полупериодов. Эта пульсирующая форма выходного сигнала не только изменяется ВКЛ и ВЫКЛ каждый цикл, но присутствует только в 50% случаев, и при чисто резистивной нагрузке это содержание пульсации высокого напряжения и тока является максимальным.
Этот пульсирующий постоянный ток означает, что эквивалентное значение постоянного тока падает на нагрузочном резисторе, поэтому R L составляет только половину среднего значения синусоидальных сигналов. Поскольку максимальное значение синусоидальной формы сигнала равно 1 (sin (90 o )), среднее значение постоянного тока, полученное для половины синусоиды, определяется как: 0,637 x максимальное значение амплитуды.
Таким образом, во время положительного полупериода A AVE составляет 0,637 * A MAX . Однако, поскольку отрицательные полупериоды удалены из-за выпрямления диодом, среднее значение в течение этого периода будет нулевым.
Среднее значение синусоиды
Таким образом, для полуволнового выпрямителя в 50% случаев среднее значение составляет 0,637 * A MAX, а в 50% случаев — ноль. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:
Таким образом, соответствующие выражения для среднего значения напряжения или тока для полуволнового выпрямителя задаются как:
V AVE = 0,318 * V MAX
I AVE = 0,318 * I MAX
Обратите внимание, что максимальное значение A MAX — это значение входного сигнала, но мы также могли бы использовать его среднеквадратичное значение или среднеквадратичное значение, чтобы найти эквивалентное выходное значение постоянного тока однофазного полуволнового выпрямителя. Чтобы определить среднее напряжение для полуволнового выпрямителя, мы умножаем среднеквадратичное значение на 0,9 (форм-фактор) и делим произведение на 2, то есть умножаем его на 0,45, получая:
V AVE = 0,45 * V RMS
I AVE = 0,45 * I RMS
Затем мы можем видеть, что схема полуволнового выпрямителя преобразует либо положительные, либо отрицательные половины формы сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,318 * A MAX или 0,45 * A RMS, как показано.
Полноволновое выпрямление
Двухполупериодный выпрямитель использует обе половины входной синусоидальной формы волны для обеспечения однонаправленного выход, т.к. он состоит из двух полуволновых выпрямителей, соединенных вместе для питания нагрузки.
Однофазный двухполупериодный выпрямитель делает это с помощью четырех диодов, расположенных в виде моста, пропускающих положительную половину формы волны, как и раньше, но инвертирующих отрицательную половину синусоидальной волны для создания пульсирующего выхода постоянного тока.
Несмотря на то, что напряжение и ток на выходе выпрямителя пульсируют, оно не меняет направление, используя полные 100% формы входного сигнала и, таким образом, обеспечивает двухполупериодное выпрямление.
Однофазный двухполупериодный мостовой выпрямитель
Эта мостовая конфигурация диодов обеспечивает двухполупериодное выпрямление, потому что в любое время два из четырех диодов смещены в прямом направлении, а два других — в обратном. Таким образом, в проводящем тракте два диода вместо одного для полуволнового выпрямителя. Следовательно, будет разница в амплитуде напряжения между V IN и V OUT из-за двух прямых падений напряжения на последовательно соединенных диодах. Здесь, как и прежде, для простоты математики мы примем идеальные диоды.
Так как же работает однофазный двухполупериодный выпрямитель? Во время положительного полупериода V IN диоды D 1 и D 4 смещены в прямом направлении, а диоды D 2 и D 3 — в обратном. Затем для положительного полупериода входного сигнала ток течет по пути: D 1 — A — R L — B — D 4 и возвращается к источнику питания.
Во время отрицательного полупериода V IN диоды D 3 и D 2 смещены в прямом направлении, а диоды D 4 и D 1 — в обратном. Затем для отрицательного полупериода входного сигнала ток течет по пути: D 3 — A — R L — B — D 2 и возвращается к источнику питания.
В обоих случаях положительные и отрицательные полупериоды входного сигнала создают положительные выходные пики независимо от полярности входного сигнала и, как таковой, ток нагрузки I всегда течет в том же направлении через нагрузку, R L между точками или узлами A и B. Таким образом, отрицательный полупериод источника становится положительным полупериодом при нагрузке.
Таким образом, в зависимости от того множества проводящих диодов, узел А всегда более положительный, чем узел B. Поэтому ток и напряжение нагрузки являются однонаправленными или постоянными, что дает нам следующую форму выходного сигнала.
Форма волны на выходе выпрямителя
Хотя этот пульсирующий выходной сигнал использует 100% входного сигнала, его среднее напряжение постоянного тока не совпадает с этим значением.
Однако двухполупериодные выпрямители имеют два положительных полупериода на входной сигнал, что дает нам другое среднее значение.
Среднее значение двухполупериодного выпрямителя
Для двухполупериодного выпрямителя для каждого положительного пика имеется среднее значение 0,637 * A MAX, и, поскольку на входной сигнал имеется два пика, это означает, что есть две серии средних значений, суммируемых вместе. Таким образом, выходное напряжение постоянного тока двухполупериодного выпрямителя в два раза выше, чем у предыдущего полуволнового выпрямителя. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:
Таким образом, соответствующие выражения для среднего значения напряжения или тока для двухполупериодного выпрямителя задаются как:
V AVE = 0,637 * V MAX
I AVE = 0,637 * I MAX
Чтобы определить среднее напряжение для двухполупериодного выпрямителя, мы умножаем среднеквадратичное значение на 0,9:
V AVE = 0,9 * V RMS
I AVE = 0,9 * I RMS
Двухполупериодная схема выпрямителя преобразует ОБЕ положительную или отрицательную половинки сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,637 * A MAX или 0,9 * A RMS.
Полноволновой полууправляемый мостовой выпрямитель
Двухполупериодное выпрямление имеет много преимуществ по сравнению с более простым полуволновым выпрямителем, например, выходное напряжение более согласовано, имеет более высокое среднее выходное напряжение, входная частота удваивается в процессе выпрямления и требует меньшего значения емкости сглаживающего конденсатора, если таковой требуется. Но мы можем улучшить конструкцию мостового выпрямителя, используя тиристоры вместо диодов в его конструкции.
Заменив диоды внутри однофазного мостового выпрямителя тиристорами, мы можем создать фазо-управляемый выпрямитель переменного тока в постоянный для преобразования постоянного напряжения питания переменного тока в контролируемое выходное напряжение постоянного тока. Фазоуправляемые выпрямители, полууправляемые или полностью управляемые, имеют множество применений в источниках питания переменного тока и в управлении двигателями.
Однофазный мостовой выпрямитель — это то, что называется «неуправляемым выпрямителем» в том смысле, что приложенное входное напряжение передается непосредственно на выходные клеммы, обеспечивая фиксированное среднее значение эквивалентного значения постоянного тока. Чтобы преобразовать неуправляемый мостовой выпрямитель в однофазную полууправляемую выпрямительную цепь, нам просто нужно заменить два диода тиристорами (SCR), как показано на рисунке.
В конфигурации с полууправляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров и двух диодов. Как мы узнали из нашего урока о тиристорах, тиристор будет проводить (состояние «ВКЛ») только тогда, когда его анод (A) более положительный, чем его катод (K) и импульс запуска подается на его затвор (G). В противном случае он остается неактивным.
Таким образом, задерживая импульс запуска, подаваемый на клемму затвора тиристоров, на контролируемый период времени или угол ( α ) после того, как напряжение питания переменного тока прошло пересечение нулевого напряжения между анодным и катодным напряжением, мы можем контролировать, когда тиристор начинает проводить ток и, следовательно, контролировать среднее выходное напряжение.
Во время положительного полупериода входного сигнала ток течет по пути: SCR 1 и D 2 и обратно к источнику питания. Во время отрицательного полупериода V INпроводимость проходит через SCR 2 и D 1 и возвращается к источнику питания.
Понятно, что один тиристор из верхней группы ( SCR 1 или SCR 2 ) и соответствующий ему диод из нижней группы ( D 2 или D 1 ) должны проводить вместе, чтобы протекать ток любой нагрузки.
Таким образом, среднее выходное напряжение V AVE зависит от угла включения α для двух тиристоров, включенных в полууправляемый выпрямитель, поскольку два диода неуправляются и пропускают ток всякий раз, когда смещено вперед. Таким образом, для любого угла срабатывания затвора α среднее выходное напряжение определяется как:
Обратите внимание, что максимальное среднее выходное напряжение возникает, когда α = 1, но все еще равно 0,637 * V MAX, как для однофазного неуправляемого мостового выпрямителя.
Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя .
Полностью управляемый мостовой выпрямитель
Однофазные мостовые выпрямители с полным управлением известны чаще как преобразователи переменного тока в постоянный. Полностью управляемые мостовые преобразователи широко используются в управлении скоростью машин постоянного тока и легко достигаются путем замены всех четырех диодов мостового выпрямителя тиристорами, как показано на рисунке.
В конфигурации с полностью управляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров на полупериод. Тиристоры SCR 1 и SCR 4 запускаются вместе как пара во время положительного полупериода, в то время как тиристоры SCR 3 и SCR 4 также запускаются вместе как пара во время отрицательного полупериода. Это 180 oпосле SCR 1 и SCR 4 .
Затем в режиме работы с непрерывной проводимостью четыре тиристора постоянно переключаются в виде чередующихся пар для поддержания среднего или эквивалентного выходного напряжения постоянного тока. Как и в случае полууправляемого выпрямителя, выходное напряжение можно полностью контролировать, изменяя угол задержки включения тиристоров ( α ).
Таким образом, выражение для среднего напряжения постоянного тока однофазного полностью управляемого выпрямителя в режиме непрерывной проводимости дается как:
со средним выходным напряжением, изменяющимся от V MAX / π до -V MAX / π путем изменения угла зажигания, α от π до 0 соответственно. Поэтому, когда α <90 o,среднее напряжение постоянного тока является положительным, а когда α> 90 oсреднее напряжение постоянного тока является отрицательным. То есть мощность течет от нагрузки постоянного тока к источнику переменного тока.
Резюме однофазного выпрямления
Однофазные выпрямители могут принимать различные формы для преобразования переменного напряжения в постоянное напряжение из неконтролируемых однофазных выпрямителей на полуволнах в полностью управляемые двухполупериодные мостовые выпрямители с использованием четырех тиристоров.
Преимуществами полуволнового выпрямителя являются его простота и низкая стоимость, так как для него требуется только один диод. Однако это не очень эффективно, так как используется только половина входного сигнала, дающего низкое среднее выходное напряжение.
Двухполупериодный выпрямитель более эффективен, чем полуволновой выпрямитель, поскольку он использует оба полупериода входной синусоидальной волны, создавая более высокое среднее или эквивалентное выходное напряжение постоянного тока. Недостатком двухполупериодной мостовой схемы является то, что она требует четырех диодов.
Фазоуправляемое выпрямление использует комбинации диодов и тиристоров (SCR) для преобразования входного напряжения переменного тока в контролируемое выходное напряжение постоянного тока. Полностью контролируемые выпрямители используют четыре тиристора в своей конфигурации, тогда как наполовину управляемые выпрямители используют комбинацию как тиристоров, так и диодов.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.
Однофазные и трехфазные выпрямители | Electric-Blogger.ru
2018-01-23 Теория
Сегодня немножко углубимся в теорию и поговорим о схемах выпрямителей. Рассмотрим сам принцип выпрямления переменного тока, наиболее часто встречающиеся схемы выпрямителей, полупроводниковые элементы, которые применяются в этих схемах.
Выпрямителями называются устройства, предназначенные для преобразования переменного тока в постоянный. Общая схема стандартного однофазного выпрямителя состоит из трансформатора, выпрямительного блока на основе полупроводниковых диодов и сглаживающего фильтра в виде конденсатора.
Трансформатор служит для преобразования переменного напряжения сети 220 V в необходимое выходное напряжение нагрузки. Выпрямительный блок (диодный мост) преобразовывает переменный ток в постоянный пульсирующий, а сглаживающий фильтр преобразовывает его в ток, близкий по форме к постоянному току.
В качестве диодных выпрямителей могут использоваться как четыре отдельных диода, так и диодная сборка в едином корпусе. На схемах диодный мост обычно изображается таким образом:
Современные выпрямители различают по типу используемых выпрямителей, схеме их включения и числу фаз. Также выпрямители могут быть управляемые и неуправляемые.
Однофазные выпрямители
Основными схемами однофазных выпрямителей являются однополупериодная и двухполупериодная (мостовая или со средней точкой).
Однофазная однополупериодная схема является самой простейшей схемой выпрямителя.
Трансформатор преобразовывает сетевое напряжение первичной обмотки Uc в напряжение вторичной обмотки U2. Так как диод Д имеет одностороннюю проводимость, ток I2 будет протекать только при положительной полуволне вторичного напряжения, при отрицательной полуволне диод будет закрыт. Так как ток в нагрузке Rн протекает только в один полупериод, отсюда и название выпрямителя — однополупериодный.
К недостаткам однополупериодных выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД, высокий уровень пульсаций и большое обратное напряжение на диоде.
Двухполупериодные схемы выпрямления уже значительно интересней. Из них наибольшую популярность приобрела мостовая схема включения диодов.
Схема состоит из трансформатора и четырех диодов,собранных мостом. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ с нагрузкой. При положительном потенциале в точке a вторичной обмотки трансформатора ток пойдет по цепи точка a вторичной обмотки — A — диод Д1 — B — нагрузка Rн — D — диод Д3. К диодам Д2 и Д4 при этом приложено обратное напряжение, они заперты. При изменении направления Э.Д.С и тока во вторичной обмотке положительный потенциал появится уже в точке b вторичной обмотки трансформатора. Ток при этом пойдет по цепи b — C — диод Д2 — B — нагрузка Rн — D — диод Д4.
Таким образом ток в нагрузке не меняет своего направления. Кривые напряжения и тока на нагрузке повторяют (при прямом напряжении на диодах U np ≈ 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения.
Кроме мостовой схемы выпрямления может применяться двунаправленная схема.
Схема состоит из трансформатора со средней отпайкой на вторичной обмотке и двух диодов. Когда в точке a имеется положительный потенциал ток протекает по цепи a — диод Д1 — нагрузка Rн — отпайка 0 вторичной обмотки. При положительном потенциале в точке b вторичной обмотки ток потечет по цепи b — диод Д2 — с — нагрузка Rн — отпайка 0 вторичной обмотки.
На левом рисунке показана зависимость напряжения вторичной обмотки трансформатора от времени, на правом изменение тока нагрузки. Как следует из работы выпрямителя, направление тока в нагрузке неизменно. Вторичная обмотка трансформатора двухфазная и каждая фаза работает половину периода. Напряжение на нагрузке в любой момент равно мгновенному значению ЭДС фазы, работающей в данный момент.
К основным минусам данной схемы можно отнести необходимость делать отпайку вторичной обмотки трансформатора и большое обратное напряжение диода Uобр = 2U2м = 3,14U0, поэтому она не получила столь широкого распространения как мостовая схема.
Трехфазные выпрямители
Среди трехфазных схем наибольшее распространение получили однонаправленная схема выпрямления или схема Миткевича и мостовая схема, известная также как схема Ларионова.
Рассмотрим сначала однонаправленную схему выпрямителя.
В однонаправленной схеме вторичные обмотки трехфазного трансформатора соединены звездой. К фазам а, b и с подключены диоды Д1, Д2 и Д3, катоды которых соединены в точке 0. Нагрузка Rн подключена между общим выводом трех вторичных обмоток трансформатора и общей точкой присоединения катодов.
Ток на каждом диоде будет протекать только тогда, когда потенциал на аноде будет выше потенциала на катоде. Это возможно в течении 1/3 периода, когда напряжение в данной фазе выше напряжений в двух других фазах. То есть когда U2а>U2b и U2a>U2c, диод Д1 будет открыт, в то время как Д2 и Д3 будут заперты. Под действием напряжения U2а ток замыкается через обмотку фазы а, диод Д1 и нагрузку Rн. В следующую треть периода открывается диод Д2, затем Д3 и т.д.
Напряжение нагрузки будет равно напряжению фазы с открытым диодом и следовательно ток нагрузки изменяется по тому же закону. При этом ток в нагрузке всегда будет больше 0.
Пульсация тока в такой схеме будет относительно невелика, что понижает требования к сглаживающему фильтру. Недостатком данной схемы, также как однофазной однополупериодной является намагничивание сердечника трансформатора.
Большее распространение в трехфазных выпрямителях получила мостовая схема Ларионова, так как она лишена недостатков однотактной схемы.
В такой схеме одновременно пропускают ток два диода — один с наибольшим положительным потенциалом анода относительно нулевой точки трансформатора из катодной группы диодов, другой — с наибольшим отрицательным потенциалом катода. Нагрузка подключается между анодной и катодной группой диодов.
В интервал времени t1-t2 пропускать ток будут диоды Д1 и Д4, так как наибольший положительный потенциал имеет анод фазы а, а наибольшим отрицательным потенциалом обладает катод фазы b. В интервале t2-t3 пропускать ток будут диоды Д1-Д6, в интервале t3-t4 — Д3-Д6, в интервале t4-t5 — Д3-Д2, в интервале t5-t6 — Д5-Д2 и в последнем интервале — Д5-Д4.
Таким образом напряжение на нагрузке будет иметь вид шести пульсаций за период, а интервал проводимости каждого диода — 2π/3. При этом интервал совместной работы двух диодов — π/6. Среднее значение напряжения на нагрузке будет:
где U2 — действующее значение напряжения на вторичных обмотках трансформатора.
Среднее значение выпрямленного напряжения практически равно максимальному линейному напряжению питающей сети:
где Uab.m — максимальное линейное напряжение вторичной обмотки.
Из достоинств схемы нужно отметить то, что в такой схеме отсутствует вынужденное подмагничивание сердечника трансформатора. Кроме того коэффициент пульсаций значительно ниже, чем у однофазной двухполупериодной схемы и составляет 0,057.
На основе этой схемы можно создать двенадцати, восемьнадцати, двадцатичетырехфазные выпрямители. Для этого используются различные сочетания последовательного и параллельного соединения схем. Чем больше будет фаз и соответственно пар диодов, тем меньше будут выходные пульсации.
Кроме этих схем, могут применяться и управляемые схемы выпрямления, которые наряду с выпрямлением переменного тока обеспечивают и регулировку выходного напряжения (тока). Но об этом мы поговорим в следующий раз.
РадиоКот :: Выпрямители. Как и почему.
РадиоКот >Обучалка >Аналоговая техника >Основы — слишком просто? Вам сюда. Продолжаем. >Выпрямители. Как и почему.
Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.
Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,
Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.
а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).
Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:
Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.
Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.
Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.
Ну а теперь к делу.
1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.
2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.
3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.
4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.
5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.
6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.
7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.
Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание.
Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:
Для однополупериодного выпрямителя формула несколько отличается:
Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.
Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В
Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.
Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.
Как вам эта статья? | Заработало ли это устройство у вас? |
Методические указания к решению задачи 1 — FINDOUT.SU
Задача относится к расчету выпрямителей переменного тока, собранных на полупроводниковых диодах. При решении задачи следует помнить, что основными параметрами полупроводниковых диодов являются допустимый ток I доп , на который рассчитан данный диод, и обратное напряжение U обр, которое выдерживает диод без пробоя в непроводящий полупериод.
Обычно при составлении реальной схемы выпрямителя задаются значения мощности потребителя Pd (Вт), получающего питание от данного выпрямителя, и выпрямленное напряжение Ud (В), при котором работает потребитель постоянного тока.
Сравнивая ток потребителя с допустимым током диода I доп, выбирают диоды для схем выпрямителя.
Напряжение, действующее на диод в непроводящий полупериод Ub, также зависит от схемы выпрямления.
Таким образом, условия выбора диодов для конкретных схем выпрямления имеют вид:
1. Для однофазной однополупериодной схемы
2. Для двухфазной двухполупериодной схемы трансформатора
3. Для однофазной мостовой схемы
4. Для трехфазной однотактной схемы
5. Для трехфазной мостовой схемы
Пример 1. Для питания постоянным током потребителя мощностью Pd = 250 Вт при напряжении Ud = 100 В необходимо собрать схему двухфазного двухполупериодного выпрямителя, использовав стандартные диода типа Д243Б.
Решение
1. Выписываем из 3 таблицы параметры диода Д243Б:
2. Определяем ток потребителя:
Таблица 3. Технические данные полупроводниковых диодов
3. Определяем напряжение, действующее на диод в непроводящий полупериод:
4. Проверяем диод по параметрам I доп и U обр. Для данной схемы диод должен удовлетворять условиям
В данном случае первое условие не выполняется, т.к. 200 < 314 U обр < U в. Второе условие выполняется, т.к. 0,5Id = 0,5 * 2,5 = 1,25A. 1,25A < 2A
5. Составляем схему выпрямителя чтобы выполнялось условие U обр < U в , необходимо два диода соединить последовательно, тогда U обр = 200•2 = 400 В. 400 > 314 В.
Полная схема выпрямителя представлена на рас. 8.
Пример 2. Составить схему однофазного мостового выпрямителя, использовав один из трех диодов Д222, КД202Н, Д215Б. Мощность потребителя Pd = 300 Вт, напряжение потребителя Ud= 200 В.
Решение
1. Выписываем из 3 таблицы параметры указанных диодов:
2. Определяем ток потребителя:
3. Определяем напряжение, действующее на диод в непроводящий полупериод для мостовой схемы выпрямителя:
4. Выбираем диод из условий
Этим условиям удовлетворяет диод КД202Н:
Диод Д222 подходит по напряжению (600 В > 314 В), но не подходит по току (0,4 А< 0,75 А).
Диод Д215Б подходит по току (2 А > 0,75 А), но не подходит по напряжению (200 В < 314 В).
5. Составляем схему мостового выпрямителя (рис.9). В этой схеме каждый из диодов имеет параметры диодов КД202Н:
Пример 3. Для питания постоянным током потребителя мощностью Pd = 40 Вт при напряжении Ud = 80 В собрать схему трехфазного однотактного выпрямителя на диодах Д207.
Решение
1. Выписываем из табл. 3 параметры диода Д207:
2. Определяем ток потребителя:
3. Определяем напряжение, действующее на диод в непроводящую часть периода:
Проверяем диод по параметрам I доп и U обр. Для данной схемы диоды должны удовлетворять условиям:
В данном случае условие по допустимому току не выполняется, т.к. 0,1<0,5/3; 0,1< 0,16, чтобы выполнить это условие следует в каждую фазу включить 2 диода параллельно, тогда 2 • 0,1>0,16;
условие по обратному напряжению выполняется. Схема трехфазного выпрямителя на диодах Д207 представлена на рис. 10
Пример 4. Начертить схему трехфазного мостового выпрямителя для питания постоянным током потребителя мощностью Р d = 40 Вт при напряжении Ud = 14 В, выбран стандартные диоды из таблицы №3 Методуказаний. Пояснить принцип действия выпрямителя, используя временные графики напряжений.
Решение
1. Определяем ток потребителя:
2. Определяем напряжение, действующее на диод в непроводящую часть периода:
3. Для трехфазной мостовой схемы диоды должны удовлетворять по параметрам условию по допустимому прямому току I доп и обратному напряжению U обр.:
Из табл.3 выбираем диод Д224Б, удовлетворяющий этим условиям. Его параметры: I доп. = 2 А, U обр. = 50 В.
2 А > 0,97 А; 50 В > 15 В.
Схема трехфазного мостового выпрямителя приведена на рис.11.
В этой схеме три диода VD 2, VD 4, VD 6 объединены в катодную группу, а три диода VD 1, VD 3, VD 5 — в анодную группу. При работе схемы ток всегда проводят два диода: один в катодной группе, а другой в анодной. В любой момент времени в катодной группе открыт тот диод, потенциал анода которого выше потенциалов анодов других диодов в группе, а в анодной группе открыт диод, потенциал катода которого ниже потенциалов катодов других диодов группы.
На рис. 11-а построены кривые фазных напряжений. Как видно из этого рисунка, диоды схемы проводят ток в течении 1/З периода. Например: в моменты времени t=t1/t2 ток проходит по цепи ma – VD 2 — RH — VD З – mb. В результате потенциал общих катодов схемы (положительного полюса выпрямителя) изменяется по верхней огибающей кривых фазных напряжений, а потенциал общих анодов (отрицательного полюса выпрямителя) — по нижней огибающей.
На рис. 11-в построена кривая выпрямленного напряжения Ud. Кратность пульсаций выпрямленного напряжения по отношению к частоте сети равна шести.
Схема усилителя низкой частоты
Диодный выпрямитель с индуктивной нагрузкой
Принцип работы
Однофазный диодный выпрямитель преобразует напряжение переменного тока на входе в напряжение постоянного тока на выходе. Поток мощности в цепи является однонаправленным, то есть только от входа переменного тока к выходу постоянного тока. Это полный мостовой выпрямитель, поскольку в нем две пары диодов. Работа схемы зависит от состояния источника напряжения (L s , R s и L d для простоты не учитываются):
- Положительный полупериод: Диоды D 1 и D 2 проводят, а диоды D 3 и D 4 блокируются.Положительное напряжение сети индуцирует положительное напряжение на сопротивлении нагрузки.
- Отрицательный полупериод: Теперь диоды D 3 и D 4 проводят, а диоды D 1 и D 2 блокируются. Поскольку через диоды D 3 и D 4 протекает положительный ток, напряжение на резисторе снова положительное.
Комбинация четырех диодов обеспечивает двухполупериодное выпрямление входного переменного напряжения со средним постоянным напряжением:
Влияние индукторов
Во время положительного полупериода сетевого напряжения пара диодов D 1 / D 2 проводит.Когда напряжение постоянного тока пересекает ноль, обе пары диодов D 1 / D 2 и D 3 / D 4 проводят ток, поскольку индукторы L s и L d пытаются поддерживать ток. Время, в течение которого обе пары диодов проводят в проводе, называется интервалом коммутации тока . Все четыре диода имеют нулевое прямое напряжение, поэтому во время коммутации тока между двумя парами диодов постоянное напряжение остается нулевым.
Последовательная комбинация L d и R d действует как фильтр нижних частот первого порядка, который уменьшает пульсации напряжения на выходе.
Эксперименты
- Измените индуктивность источника со 100 мкГн на 500 мкГн и наблюдайте за увеличением интервала коммутации тока.
- Измените индуктивность нагрузки с 20 мГн на 100 мГн и наблюдайте за уменьшением пульсаций выходного напряжения.
Работа диодных выпрямителей (неуправляемых выпрямителей)
Введение
Цепи, которые используются для преобразования входной мощности переменного тока (AC) в выходную мощность Direct Current (DC), известны как схемы выпрямителя.Выпрямители используются практически во всем оборудовании, от зарядного устройства низкого напряжения до систем передачи постоянного тока высокого напряжения. В основном выпрямители подразделяются на управляемые выпрямители и неуправляемые выпрямители. В управляемых выпрямителях используются полупроводниковые переключатели, такие как тиристоры, BJT, MOSFET, IGBT и т. Д. Выходными параметрами управляемого выпрямителя можно легко управлять с помощью полупроводниковых переключателей. В этой статье обсуждаются только неуправляемые выпрямители. Как видно из названия, этими выпрямителями нельзя управлять извне.Управляемые выпрямители состоят из нескольких диодов и элементов кондиционирования, таких как конденсаторы.
Классификация неуправляемых выпрямителей
Неуправляемые выпрямители можно классифицировать следующим образом:
- Однополупериодный выпрямитель
- Двухполупериодный выпрямитель
- Мостовой выпрямитель.
Из этих трех типов неуправляемых выпрямителей наиболее часто используется мостовой выпрямитель. Мостовой выпрямитель — самый эффективный из трех.Итак, давайте сначала обсудим мостовой выпрямитель.
1. Полноволновой мостовой выпрямитель
На схеме показан двухполупериодный мостовой выпрямитель. Однофазный двухполупериодный мостовой выпрямитель состоит из четырех диодов, соединенных в замкнутый контур, называемый «мостом». Выходной сигнал двухполупериодного мостового выпрямителя такой же, как и у обычного двухполупериодного выпрямителя, но преимущество состоит в том, что он не требует трансформатора с отводом по центру. Следовательно, стоимость и размер схемы уменьшаются.
Двухполупериодный мостовой выпрямительПоложительный полупериод
В двухполупериодном мостовом выпрямителе два диода будут проводить каждый полупериод. Остальные диоды будут иметь обратное смещение. Во время положительного полупериода питания диоды D1 и D2 смещены в прямом направлении и будут проводить. Диоды D3 и D4 имеют обратное смещение и не проводят ток.
Двухполупериодный мостовой выпрямительОтрицательный полупериод
Во время отрицательного полупериода диодов питания D3 и D4 смещены в прямом направлении и будут проводить.Диоды D1 и D2 имеют обратное смещение и не проводят ток.Во время обоих полупериодов ток, протекающий через нагрузку, является однонаправленным. Следовательно, напряжение, развиваемое на нагрузке, также является однонаправленным. Выходное напряжение содержит пульсации напряжения, которыми можно управлять, подключив конденсатор параллельно нагрузке. Двухполупериодный мостовой выпрямитель
2. Полуволновое выпрямление
Полупериодный выпрямитель состоит из одного диода, включенного последовательно с нагрузкой.При полуволновом выпрямлении, когда однофазный источник переменного тока подключен к полуволновому выпрямителю, диод проходит только положительный полупериод питания и блокирует отрицательный полупериод. Поскольку выпрямитель пропускает только половину мощности, он называется полуволновым выпрямителем.
Схема полуволнового выпрямителя
Полуволновой выпрямительВо время каждого положительного полупериода синусоидальной волны переменного тока анод является положительным по отношению к катоду. Следовательно, диод смещен в прямом направлении. При состоянии прямого смещения диод действует как замкнутый переключатель, что приводит к протеканию тока через диод. Во время каждого «отрицательного» полупериода синусоидальной волны переменного тока анод является отрицательным по отношению к катоду. Следовательно, диод смещен в обратном направлении и действует как разомкнутый переключатель. Через диод или цепь не течет ток.
двухполупериодный выпрямитель Полупериодные выпрямители создают слишком много пульсаций, и выходной ток не является непрерывным.Эти недостатки делают его непригодным для многих приложений, особенно в цепях, требующих «стабильного и плавного» напряжения питания постоянного тока. Пульсации и эффективность можно улучшить с помощью двухполупериодных выпрямителей.
В двухполупериодных выпрямителях мы можем получать выходное напряжение в течение положительного и отрицательного полупериодов. Поэтому он обеспечивает более высокий КПД, чем однополупериодные выпрямители. Он производит чисто постоянное выходное напряжение. Для двухполупериодных выпрямителей среднее выходное напряжение постоянного тока выше, чем у полуволнового, выход двухполупериодного выпрямителя имеет гораздо меньшую пульсацию, чем у полуволнового выпрямителя, обеспечивая более плавную форму выходного сигнала.
В однофазной схеме Full Wave неуправляемого выпрямителя теперь используются два диода. Только один диод будет смещен в прямом направлении и будет проводить в течение каждого полупериода. В двухполупериодном выпрямителе используется трансформатор с центральным ответвлением, как показано на рисунке.
Уменьшение пульсаций в мостовых выпрямителях с помощью сглаживающего конденсатора
Мостовой выпрямитель с фильтромКак упоминалось ранее, пульсации напряжения можно контролировать, подключив сглаживающий конденсатор параллельно нагрузке.Он преобразует полноволновую рябь на выходе выпрямителя в плавное выходное напряжение постоянного тока. Но использование конденсатора в схеме ограничено факторами стоимости и размером схемы. Сглаживающий конденсатор регулирует пульсации следующим образом:
Обычно используются сглаживающие конденсаторы емкостью 100 мкФ или выше из алюминия электролитического типа. При выборе подходящего значения емкости учитываются следующие параметры: рабочее напряжение и значение емкости, определяющее количество пульсаций на выходе.
Уменьшение пульсаций в полуволновом выпрямителе с помощью сглаживающего конденсатора
Постоянное напряжение, полученное после выпрямления, содержит определенное количество пульсаций напряжения, которые можно уменьшить, используя большое значение емкости. Для однополупериодных выпрямителей в этом нет необходимости. Это связано с тем, что в полуволновом выпрямителе пульсации будут увеличиваться, а не уменьшаться. Однополупериодные выпрямители практически не используются в схеме из-за их пониженного КПД и больших потерь.
Двухполупериодный выпрямитель с фильтромПрименение выпрямителей.
Выпрямителишироко используются во всем электронном оборудовании для обеспечения питания постоянным током от имеющегося источника переменного тока. Управляемые выпрямители используются в системе передачи постоянного тока высокого напряжения для преобразования генерируемой мощности переменного тока в мощность постоянного тока для передачи. Также он используется для зарядки аккумуляторов, бытовых инверторов и т. Д.
Подробнее о диодах
- Типы диодов (Click)
Диод — это двухконтактный электронный компонент, который обеспечивает нулевое сопротивление при прямом смещении и бесконечное сопротивление при обратном смещении.В этой статье рассказывается о различных типах диодов.
Что такое выпрямитель? Типы выпрямителей, работа и применение
Различные типы выпрямителей — работа и применениеВ электронике схема выпрямителя является наиболее часто используемой схемой, потому что почти каждое электронное устройство работает от постоянного тока (постоянного тока) , но доступность из источников постоянного тока ограничены, например, электрические розетки в наших домах обеспечивают переменного тока (переменного тока) .Выпрямитель — идеальный кандидат для этой работы в промышленности и дома для преобразования переменного тока в постоянный ток . Даже в наших зарядных устройствах для сотовых телефонов используются выпрямители для преобразования AC из наших домашних розеток в DC . Различные типы выпрямителей используются для определенных приложений.
В основном у нас есть два типа напряжения, которые широко используются в наши дни. Они бывают переменного и постоянного напряжения. Эти типы напряжения могут быть преобразованы из одного типа в другой с помощью специальных схем, разработанных для этого конкретного преобразования.Эти преобразования происходят повсюду.
Наши основные источники питания, которые мы получаем от электросетей, имеют переменный характер, и бытовые приборы, которые мы используем в наших домах, обычно требуют небольшого постоянного напряжения. Этот процесс преобразования переменного тока в постоянный получил название выпрямления. Преобразованию переменного тока в постоянный предшествует дальнейший процесс, который может включать в себя фильтрацию, преобразование постоянного тока в постоянный и так далее. Одна из самых распространенных частей электронного блока питания — мостовой выпрямитель.
Для многих электронных схем требуется выпрямленный источник питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока.Простой мостовой выпрямитель используется во множестве электронных силовых устройств переменного тока.
Другой способ взглянуть на схему выпрямителя состоит в том, что можно сказать, что она преобразует токи, а не напряжения. Это имеет более интуитивный смысл, потому что мы более привыкли использовать ток для определения природы компонента. Вкратце, выпрямитель принимает ток, который имеет как отрицательную, так и положительную составляющие, и выпрямляет его так, чтобы осталась только положительная составляющая тока.
Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронного компонента или устройств.Наиболее эффективными коммутационными аппаратами, характеристики которых известны полностью, являются диоды. Теоретически вместо диодов можно использовать любой твердотельный переключатель, которым можно управлять или которым нельзя управлять.
Обычно выпрямители типа классифицируются в зависимости от их мощности. В этой статье мы обсудим многие типы выпрямителей, такие как:
- Однофазные выпрямители
- Трехфазные выпрямители
- Управляемые выпрямители
- Неуправляемые выпрямители
- Полуволновые выпрямители
- Полноволновые выпрямители
- Мостовые выпрямители
- Center -Tapped Rectifiers
Выпрямитель — это электрическое устройство, состоящее из одного или более чем одного диода, которое преобразует переменный ток ( AC ) в постоянный ток ( DC ).Он используется для выпрямления, где процесс ниже показывает, как он преобразует переменный ток в постоянный.
Что такое выпрямление?Выпрямление — это процесс преобразования переменного тока (который периодически меняет направление) в постоянный ток (поток в одном направлении).
Типы выпрямителейВ основном есть два типа выпрямителей:
- Неконтролируемый выпрямитель
- Управляемый выпрямитель
Мостовые выпрямители бывают многих типов, и оснований для классификации может быть много, чтобы назвать несколько, тип питания, конфигурации мостовой схемы, возможности управления и т. д.Мостовые выпрямители можно в целом разделить на одно- и трехфазные выпрямители в зависимости от типа входа, на котором они работают. Оба этих типа включают следующие дополнительные классификации, которые можно разделить как на однофазные, так и на трехфазные выпрямители.
Дальнейшая классификация основана на коммутационных устройствах, используемых выпрямителем, а также на типах неуправляемых, полууправляемых и полностью управляемых выпрямителей. Некоторые типы выпрямителей обсуждаются ниже.
В зависимости от типа выпрямительной схемы выпрямители подразделяются на две категории.
- Полупериодный выпрямитель
- Двухполупериодный выпрямитель
Полупериодный выпрямитель преобразует только половину волны переменного тока в сигнал постоянного тока, тогда как двухполупериодный выпрямитель преобразует полный сигнал переменного тока в постоянный.
Мостовой выпрямитель — это наиболее часто используемый выпрямитель в электронике, и в этом отчете будет рассказано о его работе и изготовлении. Схема простого мостового выпрямителя — самый популярный метод двухполупериодного выпрямления.
Мы обсудим как управляемые, так и неуправляемые (полуволновые и полнополупериодные мостовые) выпрямители более подробно со схемами и принципами работы, как показано ниже.
Неуправляемый выпрямитель:Тип выпрямителя, выходное напряжение которого не может контролироваться , называется неуправляемым выпрямителем .
Выпрямитель работает с переключателями. Переключатели могут быть различных типов, в широком смысле, управляемые переключатели и неуправляемые переключатели. Диод — это однонаправленное устройство, которое позволяет току течь только в одном направлении. Работа диода не контролируется, поскольку он будет работать до тех пор, пока он смещен в прямом направлении.
При конфигурации диодов в любом конкретном выпрямителе выпрямитель не полностью находится под контролем оператора, поэтому выпрямители такого типа называются неуправляемыми выпрямителями. Это не позволяет изменять мощность в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя обычно используется в постоянных или фиксированных источниках питания.
Неуправляемый выпрямитель использует только диоды, и они дают фиксированное выходное напряжение, зависящее только от входа AC .
Типы неуправляемых выпрямителей:
Неконтролируемые выпрямители далее делятся на два типа:
- Полуволновый выпрямитель
- Полноволновый выпрямитель
Тип выпрямителя, который преобразует только полупериод переменного тока (AC) в постоянный (DC) известен как полуволновой выпрямитель.
- Выпрямитель положительной полуволны:
Выпрямитель полуволны, который преобразует только положительный полупериод и блокирует отрицательный полупериод.
- Выпрямитель отрицательной полуволны:
Выпрямитель отрицательной полуволны преобразует только отрицательный полупериод переменного тока в постоянный ток.
Во всех типах выпрямителей однополупериодный выпрямитель — это самый простой из них , поскольку он состоит только из одного диода .
Диод пропускает ток только в одном направлении, известном как вперед смещение . Нагрузочный резистор RL включен последовательно с диодом.
Положительный полупериод:
Во время положительного полупериода вывод диода , анод станет положительным, а катод станет отрицательным, известным как , прямое смещение . И это позволит протекать положительному циклу.
Отрицательный полупериод:
Во время отрицательного полупериода анод станет отрицательным, а катод станет положительным, что известно как обратное смещение .Таким образом, диод заблокирует отрицательный цикл.
Таким образом, когда источник переменного тока подключен к однополупериодному выпрямителю, через него будет проходить только полупериод , как показано на рисунке ниже.
Выход этого выпрямителя снимается с нагрузочного резистора RL . Если мы посмотрим на график вход-выход , он показывает пульсирующий положительный полупериод входа .
На выходе полуволнового выпрямителя слишком много пульсаций и использовать этот выход в качестве источника постоянного тока не очень практично.Чтобы сгладил этот пульсирующий выходной сигнал, через резистор вводится конденсатор . Конденсатор будет заряжаться во время положительного цикла и разряжаться во время отрицательного цикла, чтобы выдать плавный выходной сигнал.
Выпрямители такого типа тратят впустую мощность входного полупериода переменного тока.
Полнопериодный выпрямитель:Двухполупериодный выпрямитель преобразует как положительные, так и отрицательные полупериодов переменного (переменного тока) в постоянный (постоянный ток).Он обеспечивает двойное выходное напряжение по сравнению с полуволновым выпрямителем
Двухполупериодный выпрямитель состоит из более чем одного диода.
Существует два типа двухполупериодных выпрямителей.
- Мостовой выпрямитель
- Выпрямитель с центральным отводом
Мостовой выпрямитель использует четыре диода для преобразования обоих полупериодов входного переменного тока в постоянный выходной.
В этом типе выпрямителя диоды подключаются в особой форме, как указано ниже.
Положительный полупериод:
Во время положительного полупериода входа диод D1 и D2 становится прямым смещением, а D3 и D4 становится обратным смещением. Диод D1 и D2 образуют замкнутый контур, который обеспечивает положительное выходное напряжение на нагрузочном резисторе RL .
Отрицательный полупериод:
Во время отрицательного полупериода диод D3 и D4 становится прямым смещением, а D1 и D2 становится обратным смещением.Но полярность нагрузочного резистора RL остается прежней и обеспечивает положительный выходной сигнал на нагрузке.
Выход двухполупериодного выпрямителя имеет низкие пульсации по сравнению с полуволновым выпрямителем, но, тем не менее, он не является плавным и стабильным.
Чтобы сделать выходное напряжение плавным и стабильным, на выходе помещается конденсатор , как показано на рисунке ниже.
Заряд и разряд конденсатора, обеспечивающий плавные переходы между полупериодами.
Работа схемы мостового выпрямителя
Из принципиальной схемы видно, что диоды подключены определенным образом. Это уникальное расположение и дало название конвертеру. В мостовом выпрямителе напряжение на входе может быть от любого источника. Это может быть трансформатор, который используется для повышения или понижения напряжения, или сеть нашего домашнего источника питания. В этой статье мы используем трансформатор с ответвлениями 6-0-6 для обеспечения переменного напряжения.
В первой фазе работы выпрямителя, в течение положительного полупериода, диоды D3-D2 смещаются в прямом направлении и проводят ток. Диоды D1-D4 имеют обратное смещение и не проводят в этом полупериоде, действуя как разомкнутые переключатели. Таким образом, мы получаем на выходе положительный полупериод. И наоборот, в отрицательном полупериоде диоды D1-D4 смещаются в прямом направлении и начинают проводить, тогда как диоды D3-D2 имеют обратное смещение и не проводят в этом полупериоде.
Опять получаем на выходе положительный полупериод.В конце процесса выпрямления отрицательная часть переменного тока преобразуется в положительный цикл. Выходной сигнал выпрямителя — это два полуположительных импульса с той же частотой и величиной, что и входной.
В отличие от работы полуволнового выпрямителя, полный мостовой выпрямитель имеет другую ветвь, которая позволяет ему проводить отрицательную половину формы волны напряжения, которую полумостовой выпрямитель не имел возможности сделать. Таким образом, среднее напряжение на выходе полного мостового выпрямителя вдвое больше, чем у полумостового выпрямителя.
Хотя мы используем четыре отдельных силовых диода для изготовления двухполупериодного мостового выпрямителя, готовые компоненты мостового выпрямителя доступны «в готовом виде» в диапазоне различных значений напряжения и тока, которые могут использоваться непосредственно для обеспечения работоспособности. схема.
Форма волны выходного напряжения после выпрямления не соответствует правильному постоянному току, поэтому мы можем попытаться преобразовать ее в форму волны постоянного тока, используя конденсатор для фильтрации. Сглаживающие или накопительные конденсаторы, подключенные параллельно нагрузке на выходе схемы двухполупериодного мостового выпрямителя, увеличивают средний выходной уровень постоянного тока до требуемого среднего напряжения постоянного тока на выходе, поскольку конденсатор действует не только как фильтрующий компонент, но и также периодически заряжается и разряжается, эффективно увеличивая выходное напряжение.
Конденсатор заряжается до тех пор, пока форма сигнала не достигнет своего пика, и равномерно разряжается в цепи нагрузки, когда форма сигнала начинает снижаться. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает правильную подачу напряжения в цепи нагрузки, тем самым создавая постоянный ток.
Преимущества мостового выпрямителя:
- Низкие пульсации в выходном сигнале постоянного тока
- Высокий КПД выпрямителя
- Низкие потери мощности
Недостатки мостового выпрямителя:
- Мостовой выпрямитель сложнее, чем однополупериодный выпрямитель
- Больше потерь мощности по сравнению с двухполупериодным выпрямителем с центральным ответвлением.
Этот тип двухполупериодного выпрямителя использует трансформатор с центральным отводом и два диода.
Трансформатор с центральным ответвлением — это трансформатор с двойным напряжением, который имеет два входа ( I1 и I2 ) и три выходных клеммы ( T1, T2, T3 ). Клемма T2 подключена к центру выходной катушки, которая действует как опорное заземление (опорное напряжение o вольт ).Клемма T1 выдает положительное напряжение , а клемма T3 создает отрицательное напряжение по сравнению с T2 .
Конструкция выпрямителя с центральным отводом приведена ниже:
Положительный полупериод:
Во время входного положительного полупериода T1 будет вырабатывать положительное, а T2 — отрицательное напряжение. Диод D1 станет прямым смещением, а диод D2 станет обратным смещением.Это создает закрытый путь от T1 к T2 через нагрузочный резистор RL , как показано ниже.
Отрицательный полупериод:
Теперь во время входного отрицательного полупериода T1 сгенерирует отрицательный цикл, а T2 сгенерирует положительный цикл. Это переведет диод D1 в обратное смещение, а диод D2 в прямое смещение. Но полярность на нагрузочном резисторе RL все еще такая же, поскольку ток проходит от T3 к T1 , как показано на рисунке ниже.
Выход DC выпрямителя с центральным отводом также имеет пульсации, и он не является плавным и устойчивым DC . Конденсатор на выходе устранит пульсации и обеспечит стабильный выход DC .
Управляемый выпрямитель:Тип выпрямителя, выходное напряжение которого может быть изменено или изменено , называется управляемый выпрямитель .
Потребность в управляемом выпрямителе становится очевидной, если мы рассмотрим недостатки неуправляемого мостового выпрямителя.Чтобы превратить неуправляемый выпрямитель в управляемый, мы используем твердотельные устройства с управляемым током, такие как SCR, MOSFET и IGBT. У нас есть полный контроль, когда тиристоры включаются или выключаются в зависимости от импульсов затвора, которые мы применяем к ним. Они обычно более предпочтительны, чем их неконтролируемые аналоги.
Он состоит из одного или нескольких SCR ( кремниевый управляемый выпрямитель ).
SCR , также известный как тиристор , представляет собой трехконтактный диод.Эти клеммы — это анод , катод и управляющий вход, известный как Gate .
Точно так же, как простой диод, SCR проводит при прямом смещении и блокирует ток при обратном смещении, но он запускает прямую проводимость только тогда, когда на входе затвора присутствует импульс . Таким образом, выходным напряжением можно управлять с помощью входа затвора.
Типы управляемого выпрямителя
Есть два типа управляемого выпрямителя.
Полупериодный управляемый выпрямительПолуволновой управляемый выпрямитель состоит из одного SCR (кремниевого выпрямителя).
Полупериодный управляемый выпрямитель имеет ту же конструкцию, что и полуволновой неуправляемый выпрямитель, за исключением того, что мы заменили диод на SCR , как показано на рисунке ниже.
SCR не проводит обратное смещение, поэтому он блокирует отрицательный полупериод.
Во время положительного полупериода SCR будет проводить ток при одном условии, когда на вход затвора подается импульс.Вход затвора, конечно, представляет собой периодический импульсный сигнал, который предназначен для активации SCR в каждом положительном полупериоде.
Таким образом, мы можем контролировать выходное напряжение этого выпрямителя.
Выходной сигнал SCR также является пульсирующим напряжением / током DC . Эти импульсы удаляются с помощью конденсатора , параллельного нагрузочному резистору RL .
Полнопериодный управляемый выпрямительТип выпрямителя, который преобразует как положительный, так и отрицательный полупериод переменного тока в постоянный, а также регулирует выходную амплитуду известен как двухполупериодный управляемый выпрямитель.
Управляемый двухполупериодный выпрямитель, как и неуправляемый выпрямитель, бывает двух типов.
Управляемый мостовой выпрямительВ этом выпрямителе диодный мост заменен мостом SCR ( Thyristor ) с такой же конфигурацией, как показано на рисунке ниже.
Положительный полупериод:
Во время положительного цикла SCR (тиристор) T1 и T2 будет проводить при подаче импульса затвора. T3 и T4 будут иметь обратное смещение, поэтому они будут блокировать ток. Выходное напряжение будет установлено на нагрузочном резисторе RL , как показано ниже.
Отрицательный полупериод:
Во время отрицательного полупериода тиристоры T3 и T4 будут иметь прямое смещение с учетом входного импульса затвора, а T1 и T2 станут обратным смещением. Выходное напряжение появится на нагрузочном резисторе RL .
В конце вывода конденсатор используется для удаления пульсаций и делает вывод стабильным и плавным.
Управляемый Выпрямитель с центральным отводом:Как и неуправляемый выпрямитель с центральным отводом, в этой конструкции используются два SCR вместо двух диодов.
Оба этих переключения SCR будут синхронизированы по-разному в зависимости от входной частоты AC .
Его работа такая же, как и у неуправляемого выпрямителя, и его схематическая конструкция приведена ниже.
Однофазные и трехфазные выпрямителиЭта классификация основана на типе входа, на котором работает выпрямитель. Именование довольно простое. Когда вход однофазный, выпрямитель называется однофазным выпрямителем, а когда вход трехфазный, он называется трехфазным выпрямителем.
Однофазный мостовой выпрямитель состоит из четырех диодов, тогда как трехфазный выпрямитель использует шесть диодов, расположенных определенным образом для получения желаемого выхода.Это могут быть управляемые или неуправляемые выпрямители, в зависимости от компонентов переключения, используемых в каждом выпрямителе, таких как диоды, тиристоры и т. Д.
Сравнение выпрямителей
В следующей таблице показано соответствие между различными типами выпрямителей, такими как однополупериодный выпрямитель, двухполупериодный выпрямитель и выпрямитель с центральным ответвлением.
Применение выпрямителейПрактически все электронные схемы работают от постоянного напряжения.Основная цель использования выпрямителя — выпрямление, то есть преобразование переменного напряжения в постоянное. То есть выпрямители используются почти во всех выпрямительных и электронных устройствах.
Ниже приведен список общих областей применения и использования различных выпрямителей.
- Выпрямление, т.е. преобразование постоянного напряжения в переменное.
- Выпрямители используются в электросварке для обеспечения поляризованного напряжения.
- Применяется также в тяговых двигателях, подвижном составе и трехфазных тяговых двигателях, используемых для движения поездов.
- Полуволновые выпрямители используются в средствах от комаров и паяльниках.
- Полуволновой выпрямитель также используется в AM Radio в качестве детектора и детектора пикового сигнала.
- Выпрямители также используются в умножителях модуляции, демодуляции и напряжения.
Связанные сообщения:
Схема работы, тестирование и ее применение
Диоды — широко используемые полупроводниковые устройства. Выпрямительный диод — это двухпроводной полупроводник, который позволяет току проходить только в одном направлении.Обычно диод с P-N переходом формируется путем соединения полупроводниковых материалов n-типа и p-типа. Сторона P-типа называется анодом, а сторона n-типа называется катодом. Многие типы диодов используются в широком спектре приложений. Выпрямительные диоды — жизненно важный компонент в источниках питания, где они используются для преобразования переменного напряжения в постоянное. Стабилитроны используются для регулирования напряжения, предотвращая нежелательные изменения в источниках постоянного тока в цепи.
Что такое выпрямительный диод?
Выпрямительный диод — это полупроводниковый диод, используемый для преобразования переменного (переменного тока) в постоянный (постоянный) с помощью выпрямительного моста.Альтернатива выпрямительного диода через барьер Шоттки в основном ценится в цифровой электронике. Этот диод способен проводить значения тока, который изменяется от мА до нескольких кА и напряжения до нескольких кВ.
Конструкция выпрямительных диодов может быть выполнена из кремниевого материала, и они способны проводить высокие значения электрического тока. Эти диоды малоизвестны, но до сих пор используются полупроводниковые диоды на основе Ge или арсенида галлия. Ge-диоды имеют менее допустимое обратное напряжение, а также меньшую допустимую температуру перехода.Ge-диод имеет преимущество по сравнению с Si-диодом, заключающееся в низком пороговом напряжении при работе в прямом смещении.
Выпрямительный диод имеет две группы технических параметров: допустимые предельные параметры и характеристические параметры. Символ выпрямительного диода показан ниже, стрелка указывает в направлении обычного тока.
Выпрямительный диод ОбозначениеСхема работы выпрямительного диода
Материалы n-типа и p-типа химически объединены с помощью специальной технологии изготовления, которая приводит к образованию p-n перехода.Этот переход P-N имеет два вывода, которые можно назвать электродами, и по этой причине он называется «DIODE» (диод).
Если на какое-либо электронное устройство через его клеммы подается внешнее напряжение постоянного тока, это называется смещением.
Несмещенный выпрямительный диод
- Когда на выпрямительный диод не подается напряжение, он называется несмещенным диодом, на N-стороне будет большинство электронов и очень мало дырок (из-за теплового возбуждения), тогда как P — сторона будет иметь большинство дырок носителей заряда и очень небольшое количество электронов.
- В этом процессе свободные электроны со стороны N будут диффундировать (распространяться) в сторону P и рекомбинировать в дырках, присутствующих там, оставляя + ve неподвижных (неподвижных) ионов на стороне N и создавая неподвижные ионы -ve. на стороне P диода.
- Неподвижный в стороне n-типа у края стыка. Точно так же неподвижные ионы на стороне p-типа около края перехода. Из-за этого на стыке будет накапливаться некоторое количество положительных и отрицательных ионов. Образованная таким образом область называется областью истощения.
- В этой области на PN-переходе диода создается статическое электрическое поле, называемое барьерным потенциалом.
- Противодействует дальнейшей миграции дырок и электронов через переход.
Диод с прямым смещением
- Смещение в прямом направлении: в диоде с PN-переходом положительный вывод источника напряжения подключен к стороне p-типа, а отрицательный вывод подключен к n- сторона типа, говорят, что диод находится в состоянии прямого смещения.
- Электроны отталкиваются отрицательной клеммой источника постоянного напряжения и дрейфуют к положительной клемме.
- Итак, под действием приложенного напряжения этот дрейф электронов вызывает протекание тока в полупроводнике. Этот ток называется «дрейфовым током». Поскольку основными носителями являются электроны, ток n-типа — это ток электронов.
- Поскольку отверстия являются основными носителями в p-типе, они отталкиваются от положительной клеммы источника постоянного тока и перемещаются через переход к отрицательной клемме.Итак, ток в p-типе — это ток дырки.
- Итак, общий ток основных носителей создает прямой ток.
- Направление обычного тока, протекающего от положительного к отрицательному полюсу батареи, в направлении обычного тока противоположно потоку электронов.
с обратным смещением диода
- с обратным смещением Состояние: если диод является положительной клеммой источника, напряжение подключено к концу n-типа, а отрицательная клемма источника подключена к концу p-типа диода, через диод не будет тока, кроме обратного тока насыщения.
- Это связано с тем, что в состоянии обратного смещения обедненный слой перехода становится шире с увеличением напряжения обратного смещения.
- Хотя есть небольшой ток, протекающий от конца n-типа к концу p-типа в диоде из-за неосновных носителей. Этот ток называется током обратного насыщения.
- Неосновные носители — это, в основном, термически генерируемые электроны / дырки в полупроводниках p-типа и полупроводниках n-типа соответственно.
- Теперь, если обратное приложенное напряжение на диоде постоянно увеличивается, то после определенного напряжения слой обеднения разрушится, что вызовет протекание огромного обратного тока через диод.
- Если этот ток не ограничен извне и выходит за пределы безопасного значения, диод может быть безвозвратно поврежден.
- Эти быстро движущиеся электроны сталкиваются с другими атомами в устройстве, чтобы отбить от них еще несколько электронов. Освободившиеся таким образом электроны высвобождают гораздо больше электронов из атомов, разрывая ковалентные связи.
- Этот процесс называется умножением несущих и приводит к значительному увеличению тока через p-n переход.Связанное с этим явление называется лавинным прорывом.
Полупериодный выпрямитель
Одним из наиболее распространенных применений диода является выпрямление переменного напряжения в источник постоянного тока. Поскольку диод может проводить ток только в одном направлении, когда входной сигнал становится отрицательным, тока не будет. Это называется однополупериодным выпрямителем. На рисунке ниже показана схема однополупериодного выпрямительного диода.
Полупериодный выпрямительПолноволновой выпрямитель
- Схема двухполупериодного выпрямительного диода состоит из четырех диодов, с помощью этой структуры мы можем сделать обе половины волны положительными.Как для положительных, так и для отрицательных циклов входа существует прямой путь через диодный мост.
- В то время как два диода смещены в прямом направлении, два других смещены в обратном направлении и эффективно исключены из схемы. Оба пути проводимости заставляют ток течь в одном и том же направлении через нагрузочный резистор, обеспечивая двухполупериодное выпрямление.
- Двухполупериодные выпрямители используются в источниках питания для преобразования переменного напряжения в постоянное. Большой конденсатор, подключенный параллельно к выходному нагрузочному резистору, снижает пульсации в процессе выпрямления.На рисунке ниже показана схема двухполупериодного выпрямительного диода.
Параметры
Выпрямительный диод характеризуется следующими ограничивающими параметрами.
- VF — Прямое напряжение через определенный прямой промежуточный ток IF
- IR — Обратный ток при пиковом обратном напряжении VRWM.
- IFN — Максимальный средний ток или номинальный ток диодов в прямом смещении
- IFRM — Пиковый, повторяющийся ток проводимости диода
- IFSM — Пиковый, неповторяемый ток проводимости
- VRWM — Работа при пиковом, обратном напряжении
- VRRM — Пиковое, повторяющееся обратное напряжение
- VRSM — Пиковое, неповторяющееся обратное напряжение
- PTOT — Полное значение рассеиваемой мощности на электронном компоненте
- Tj — Самая высокая температура перехода в диоде
- Rth — Термическое сопротивление ниже рабочих условий
Максимальная температура
На различные параметры, перечисленные выше, могут влиять различные факторы, например, температура окружающей среды, в которой работает выпрямительный диод.Все полупроводниковые устройства выделяют тепло, особенно те, которые используются в источниках питания. Одной из наиболее серьезных проблем является предотвращение теплового разгона там, где диод увеличивает свою температуру, что приводит к усилению тока в устройстве до тех пор, пока оно не будет разрушено.
Чтобы избежать этой проблемы, каждая из эталонных температур параметров диода, например, обратный ток утечки кремниевых диодов обычно извлекается при 25 ° C от температуры окружающей среды, но примерно в два раза на каждые 10 ° C.После повышения температуры потенциал прямого перехода будет уменьшаться до 2–3 мВ на каждый 1 ° C температуры.
High Current
Выпрямительный диод с двойным сильным током — лучший пример высокопроизводительного диода, включающего ток 2x 30A.
Компания STMicroelectronics реализовала выпрямительный диод с двойным высоковольтным напряжением, а именно STPS60SM200C. Этот диод подходит для сварочных аппаратов, базовых станций, источников питания постоянного и переменного тока, а также для промышленного применения.
Значение напряжения пробоя VRRM составляет 200 В, напряжение проводимости составляет 640 мВ, а его текущая память будет 2×30 А. Дополнительная защита может быть от электростатического разряда до 2 кВ. Диапазон рабочих температур этого диода составляет от -40 ° C до 175 ° C. Эти значения позволяют использовать диоды в базовых станциях при любых обстоятельствах.
Как проверить выпрямительный диод?
Выпрямительный диод можно проверить следующими методами.
Простой мультиметр в основном используется для определения полярности выпрямительного диода, например анода или катода. Для этого есть как минимум три метода, но вот два простых метода, которые используют омметр и функцию измерения напряжения постоянного тока.
Использование омметра
При прямом смещении омметр определит расчетное значение прямого напряжения диода, которое составляет около 0,7. При обратном смещении омметр укажет «1», что означает чрезвычайно высокое сопротивление.
Функция проверки диодов даст такой же результат, как и использованный выше метод.
Функция измерения В постоянного тока
- При прямом смещении мультиметр покажет падение напряжения для кремниевого диода 0,7 В
- При обратном смещении мультиметр определяет расчетное значение полного напряжения питания.
Выпрямительные диоды в основном используются для выпрямления, что означает преобразование переменного тока в постоянный. Они используются в цепях, где через диод должен протекать большой ток.
Выпрямительные диоды имеют прямое падение напряжения 0,7 В и выполнены из Si.Итак, в следующей таблице перечислены максимальное и минимальное обратное напряжение для некоторых выпрямительных диодов. Диод 1N4001 подходит для цепей с низким напряжением и током менее 1 А.
Характеристика диодов заключается в том, что в противном случае ток не подается в зависимости от направления приложенного напряжения. Это позволяет изменить напряжение переменного тока на постоянное. Два электродных вывода этого диода являются анодом, катодом и источниками тока, когда анодный электрод находится на положительном выводе.
Диод | Максимальный ток | Максимальное обратное напряжение | ||||||||||||||
1N4001 | 1A | 50V62 4009 | ||||||||||||||
1N4007 | 1A | 1000V | ||||||||||||||
1N4001 | 3A | 100V | ||||||||||||||
100V | ||||||||||||||||
1N4008 | 59 3A 9011 9909 962 962959 3A много приложений.Вот несколько типичных применений диодов:
Параметр | 1N4001 | 1N4002 | 1N4003 | 1N4004 | 1N4005 | 1N4006 | 1N4007 |
VR | 50 В | 100 В | 200 В | 400 В | 600 В | 800 В | 1000 В |
3. Максимальный обратный ток IR : обратный ток, протекающий через диод при самом высоком обратном рабочем напряжении. Этот параметр отражает однонаправленную проводимость диода. Следовательно, чем меньше значение тока, тем лучше качество диода.
4. Напряжение пробоя VB : значение выпрямителя напряжения в точке резкого изгиба обратной вольт-амперной характеристики диода. Когда обратная характеристика является мягкой, она относится к значению напряжения при заданном обратном токе утечки.
5. Максимальная рабочая частота fm : максимальная рабочая частота диода при нормальных условиях. Это в основном определяется емкостью перехода и диффузионной емкостью PN перехода. Если рабочая частота превышает fm, однонаправленная проводимость диода не будет хорошо отражена.
Например, fm диода серии 1N4000 составляет 3 кГц. Кроме того, диоды с быстрым восстановлением используются для выпрямления высокочастотных переменных токов, например, в импульсных источниках питания.
6. Время обратного восстановления trr : относится к времени обратного восстановления при указанной нагрузке, прямом токе и максимальном обратном переходном напряжении.
7. Емкость нулевого смещения ance CO : сумма диффузионной емкости и емкости перехода, когда напряжение на диоде равно нулю.
Из-за ограничений производственного процесса даже у однотипных диодов их параметры имеют большой разброс.Параметры, приведенные в руководстве, часто находятся в пределах допустимого диапазона. При изменении условий испытаний изменятся и соответствующие параметры.
Например, ИК-излучение выпрямительного диода с силиконовым уплотнением серии 1N5200 при 25 ° C составляет менее 10 мкА, а при 100 ° C становится менее 500 мкА.
III Причина повреждения1. Недостаточная защита от молний и перенапряжения . Даже при наличии молниезащиты и устройств защиты от перенапряжения при ненадежной работе выпрямительный диод выходит из строя из-за ударов молнии или перенапряжения.
2. Плохие условия эксплуатации. В генераторной установке непрямого действия, поскольку расчет передаточного числа неверен или соотношение диаметров двух ременных шкивов не соответствует требованиям передаточного отношения, генератор работает на высокой скорости в течение длительного времени. Также выпрямитель долгое время работает при более высоком напряжении, ускоряя старение и вызывая пробой.
3. Плохое оперативное управление . Операторы безответственны и не понимают изменений внешней нагрузки (особенно между полуночью и 6 часами утра следующего дня).Или на улице сбой нагрузки, и оператор вовремя не принял меры. Это вызовет перенапряжение, а выпрямительный диод выйдет из строя и повредится.
4. Неправильная установка или изготовление . Поскольку генераторная установка долгое время работала в условиях сильной вибрации, выпрямительный диод также находится под воздействием этих помех. Кроме того, генераторная установка не работает в равномерном темпе, поэтому рабочее напряжение выпрямительного диода также колеблется.Это значительно ускоряет старение и повреждение выпрямительного диода.
5. Неправильные характеристики диодов и модели . Если параметры замененного выпрямительного диода не соответствуют требованиям, либо выполнена неправильная проводка, выпрямительный диод выйдет из строя и выйдет из строя.
6. Слишком мал запас прочности выпрямительного диода . Запас безопасности выпрямительного диода по перенапряжению и перегрузке по току слишком мал, поэтому он не может выдерживать пиковую атаку в цепи возбуждения.
IV Что делает выпрямитель?Выпрямительный диод имеет очевидную однонаправленную проводимость. Он может быть изготовлен из таких материалов, как полупроводниковый германий или кремний. Функция выпрямительного диода заключается в использовании однонаправленной проводимости PN-перехода для преобразования переменного тока в пульсирующий постоянный ток. Итак, каковы основные функции выпрямительного диода? Ниже приводится подробное введение:
1. Передняя характеристикаСамая заметная особенность выпрямительного диода — его передняя часть.Когда прямое напряжение подается на выпрямительный диод, начальная часть прямого напряжения очень мала, и она не может эффективно преодолеть блокирующий эффект электрического поля в PN-переходе.
Когда прямой ток почти равен нулю, прямое напряжение не может проводить диод, что называется напряжением мертвой зоны .
Когда прямое напряжение больше, чем напряжение мертвой зоны, электрическое поле эффективно преодолевается, выпрямительный диод включается, и ток быстро растет по мере увеличения напряжения.В нормальном диапазоне токов напряжение на выводах выпрямительного диода практически не меняется при его включении.
Рисунок 2. Прямые и обратные характеристики выпрямителя
2. Обратная характеристикаКогда обратное напряжение, приложенное к выпрямительному диоду, не превышает определенного диапазона, обратный ток формируется дрейфом неосновных носителей. Поскольку обратный ток очень мал, выпрямительный диод выключен.
На ток обратного насыщения выпрямительного диода влияет температура. Как правило, обратный ток кремниевых выпрямительных диодов намного меньше, чем обратный ток германиевых выпрямительных диодов. Ток обратного насыщения маломощных кремниевых выпрямительных диодов составляет порядка нА, а маломощных германиевых выпрямительных диодов — порядка мкА.
Когда температура выпрямительного диода увеличивается, полупроводник возбуждается, и количество неосновных носителей увеличивается.
3. Разбивка обратнаяОбратный пробой выпрямительного диода делится на два типа: Зенера и лавинный пробой .
При высокой концентрации легирования из-за малой ширины барьерной области обратное напряжение разрушит структуру ковалентной связи, поэтому электроны оторвутся от ковалентной связи и будут генерироваться электронные дырки. Это называется пробоем Зенера.
Другой вид поломки — лавинный.По мере увеличения обратного напряжения выпрямительного диода внешнее электрическое поле будет увеличивать скорость дрейфа электронов, поэтому валентные электроны будут сталкиваться друг с другом из ковалентной связи, создавая новые электронно-дырочные пары.
Рис. 3. Пробой стабилитрона и пробой лавин
В Что такое схема выпрямителя?Схема выпрямителя относится к преобразованию переменного тока в постоянный.Как правило, он состоит из трансформатора, схемы главного выпрямителя и схемы фильтра. Если вы хотите получить постоянное значение напряжения, вам нужно добавить схему регулятора напряжения. Здесь мы поговорим только об основной схеме выпрямителя.
1. Схема однополупериодного выпрямителяСтруктура этой схемы однополупериодного выпрямителя очень проста. Основным компонентом является диод, как показано на схеме ниже.
Рисунок 4.Принципиальная схема однополупериодного выпрямителя
Вход 220 В — это синусоидальный переменный ток. Он проходит через трансформатор и уменьшается после трансформатора, но в конечном итоге это все еще синусоидальный сигнал переменного тока.
Типичная особенность диодов однонаправленная проводимость . Если напряжение на аноде диода больше напряжения на катоде диода, диод будет включен. В противном случае диод погаснет.
На следующем рисунке показан этот процесс.На рисунке а показан выход переменного тока трансформатора. Когда выходное напряжение находится в положительном полупериоде, напряжение в точке a выше, чем напряжение в точке b, и диод включается. А напряжение на нагрузке RL примерно равно выходному напряжению трансформатора.
Когда выходное напряжение находится в отрицательном полупериоде, напряжение в точке b выше, чем напряжение в точке a, тогда диод будет отключен. Соответствующий ток не может течь к нагрузке, поэтому половина цикла отсутствует на рисунке b.
Рисунок 5. Схема однополупериодного выпрямителя Форма волны до и после фильтрации
2. Схема двухполупериодного выпрямителяПоскольку полупериод теряется при полуволновом выпрямлении, эффективность ограничена. Двухполупериодный мостовой выпрямитель может решить эту проблему.
По сравнению с полуволновым выпрямлением, в двухполупериодном выпрямлении используется еще один диод. Однако трансформатор здесь имеет центральную ось , которая использует однонаправленную проводимость диода.
Рисунок 6. Принципиальная схема двухполупериодного выпрямителя
Давайте проанализируем этот принцип. Если переменный ток находится в положительном полупериоде, напряжение в точке a выше, чем напряжение в точке b, тогда диод D1 будет включен, а диод D2 будет отключен. Таким образом, ток будет течь только из точки a через диод D1 и резистор RL и, наконец, к центральной оси трансформатора.
Если переменный ток находится в отрицательном полупериоде, напряжение в точке b выше, чем напряжение в точке a, диод D2 будет включен, а диод D1 будет отключен.Таким образом, ток будет течь только из точки b и через диод D2 и резистор RL, наконец, к центральной оси трансформатора.
Повторение этих циклов приводит к фильтрации. На следующем рисунке показан сигнал до и после фильтрации.
Рис. 7. Форма сигнала двухполупериодной схемы выпрямителя до и после фильтрации
3. Схема мостового выпрямителяСхема мостового выпрямителя сложнее двух предыдущих.Принципиальная схема выглядит следующим образом. Схема простого мостового выпрямителя состоит из трансформатора и главного выпрямительного моста и нагрузки .
Рисунок 8 . Мост Схема выпрямителя -1
Если выходной сигнал переменного тока находится в положительном полупериоде, в нормальных условиях ток течет в точку A, обращенную к диоду 2 и диоду 1.
Рисунок 9. Принципиальная схема мостового выпрямителя-2
Однако из-за высокого напряжения в точке A диод 1 находится в выключенном состоянии, а диод 2 во включенном состоянии. Таким образом, ток будет проходить через диод 2, затем течь из точки B и затем достигать точки D через нагрузку.
Рисунок 10 . Электрическая схема выпрямителя моста — 3
На первый взгляд, и диод 1, и диод 4 могут быть включены, но ток течет из точки А в выпрямительный мост, а затем через нагрузку.Напряжение будет уменьшаться после прохождения тока через нагрузку, поэтому напряжение в точке D намного ниже, чем напряжение в точке A, и диод 4 включен, а диод 1 выключен. Наконец, ток течет в нижний конец трансформатора.
Рисунок 11. Принципиальная схема мостового выпрямителя-4
Когда напряжение на нижнем конце выше, чем напряжение на верхнем конце, ток достигает точки C.
Рисунок 1 2 .Принципиальная схема мостового выпрямителя — 5
Кроме того, поскольку напряжение в точке C высокое, диод 4 находится в выключенном состоянии, а диод 3 во включенном состоянии. Ток будет течь через диод 3 из точки B, а затем достигнет точки D через нагрузку.
Рисунок 13. Принципиальная схема мостового выпрямителя-6
Подобно положительному полупериоду, на первый взгляд, диод 1 и диод 4 могут быть включены. Но поскольку ток течет из точки C в выпрямительный мост, а затем через нагрузку, напряжение в точке D намного ниже, чем в точке C, поэтому диод 1 включен, а диод 4 выключен.Наконец, ток течет в верхнюю часть трансформатора.
Рисунок 14. Принципиальная схема мостового выпрямителя-7
Преимущества ректификации моста
По сравнению с двухполупериодным выпрямлением мостовое выпрямление имеет много преимуществ.
Для двухполупериодного выпрямления требуется трансформатор с центральной осью, а для мостового выпрямления этого требования нет.
Когда диод находится в выключенном состоянии, напряжение на двух концах диода мостового выпрямителя меньше половины напряжения двухполупериодного выпрямления.Таким образом, требования к характеристикам мостового выпрямительного диода не так высоки.
VI Замена выпрямительного диода и Проверка 1. ЗаменаПосле выхода из строя выпрямительного диода его можно заменить на выпрямительный диод той же или другой модели с такими же параметрами.
Как правило, выпрямительные диоды с высоким выдерживаемым напряжением и (обратное напряжение) могут заменить выпрямительные диоды с выдерживаемым напряжением и низким выдерживаемым напряжением .А выпрямительные диоды с низким выдерживаемым напряжением не могут заменить диоды с высоким выдерживаемым напряжением.
Диод с большим током выпрямления может заменить диод с низким значением тока выпрямления, тогда как диод с низким значением тока выпрямления не может заменить диод с высоким значением тока выпрямления.
2. Как проверить мостовой выпрямитель(1) Снимите с выпрямителя все выпрямительные диоды.
(2) Используйте диапазон мультиметра 100 × R или 1000 × R Ом для измерения двух выводных проводов выпрямительного диода.Затем поменяйте местами голову и хвост и попробуйте снова.
(3) Если значение сопротивления, измеренное дважды, имеет большую разницу, это означает, что диод исправен (за исключением диодов с мягким пробоем).
Схем