+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Устройство и схема простого блока питания — Интернет-журнал «Электрон» Выпуск №5

Для питания различных электронных устройств нам в большинстве случаев необходимо постоянное напряжение определенной величины. Для этого кроме батареек и аккумулятором мы можем использовать вторичные источники напряжения, так называемые блоки питания, функция которых заключается в том, что бы преобразовать сетевое переменное напряжение в постоянное напряжение необходимой величины.

Если рассмотреть схему простейшего блока питания, то увидим, что она состоит из трансформатора Т1, диодного моста D1 и сглаживающего конденсатора С1.

Трансформатор Т1 необходим для преобразования переменного (в данном случае сетевого) напряжения в более низкое переменное напряжение. Кроме того трансформатор осуществляет гальваническую развязку между напряжением сети и выходным напряжением блока питания.

Одним из параметров трансформатора является коэффициент трансформации, который показывает во сколько раз трансформатор увеличит или уменьшит выходное напряжение, то есть напряжение на вторичной обмотке.

В простейшем случае коэффициент трансформации — это отношение напряжения на первичной обмотке к напряжению на вторичной обмотке в режиме холостого хода, то есть без нагрузки.

Например, если мы подключаем первичную обмотку в сеть 220 вольт, а на вторичной имеем 12 вольт, то коэффициент трансформации равен 220/12

Далее неотъемлемой частью простого блока питания является диодный мост, который выпрямляет переменное напряжение, поступающее на его вход, то есть преобразует его в постоянное. Параметры диодного моста зависят от тока нагрузки, который вы хотите получить на выходе блока питания. Поэтому для моста подбирают диоды, чтобы такой параметр как обратное напряжение диода Uобр было больше напряжения, поступающего на мост, а прямой ток диода Iпр был больше тока нагрузки самого блока питания.

И третьим элементом нашего блока питания является сглаживающий конденсатор, который предназначен для уменьшения пульсаций постоянного напряжения на выходе блока питания. Его емкость влияет на величину пульсаций выходного постоянного напряжения.

Рассмотрим работу простейшего блока питания.

На вход трансформатора, то есть на первичную обмотку, поступает сетевое напряжение 220 вольт. Трансформатор преобразует сетевое напряжение в необходимое нам переменное напряжение. Для простоты объяснения возьмет напряжение на вторичной обмотки равное 12 вольт.

Далее переменное напряжение со вторичной обмотки поступает на выпрямительный диодный мост, собранный из четырех диодов по схеме двухполупериодного выпрямителя.

Диодный мост преобразует (выпрямляет) переменное синусоидальное напряжение в постоянное напряжение. Диоды работают попарно для положительной и отрицательной полуволны переменного напряжения.

По сути, напряжение с диодного моста имеет большие пульсации с частотой 100 герц (для сети частотой 50 герц) и будет отрицательно влиять на работу питаемого этим блоком устройства.

Поэтому для уменьшения пульсаций параллельно положительному и отрицательному выводам блока питания устанавливают сглаживающий конденсатор. Конденсатор накапливает заряд во время нарастания напряжения на выходе диодного моста и отдает этот заряд в нагрузку во время спада полуволны напряжения, тем самым поддерживая выходное напряжение близко к номинальному значению.

Здесь стоит сказать, что для того, что бы конденсатор не вышел из строя его рабочее напряжение должно в как минимум в два раза превышать напряжения в цепи, то есть на выходе блока питания.

Ниже вы можете посмотреть результаы моделирования простейшего блока питания на основе мостового выпрямительного моста в програме Multisim.

Целью данной статьи является познакомить вас с принципом работы простейшего блока питания. Как рассчитать и собрать свой блок питания мы рассмотрим в следующих выпусках журнала ЭЛЕКТРОН.

Более подробно о устройстве и работе простейшего блока питание вы можете узнать посмотрев следующее видео:

Простая схема регулируемого трансформаторного блока питания на транзисторах с защитой от перегрузки и КЗ.

В этой статье предлагаю рассмотреть достаточно простую схему, классический вариант, блока питания с регулировкой выходного напряжения и тока срабатывания защиты от токовой перегрузки и короткого замыкания. Новичкам, которые первый раз видят данную схему наверняка будет не совсем понятен сам принцип действия и работа этого устройства. А что касается надежности этой схемы, то она уже проверена многими годами и многими радиолюбителями, электронщиками, которые в свое время обязательно должны были собирать этот регулируемый блок питания для своих различных электронных устройств. Так что схема проста, работоспособна и вполне надежна.

Давайте разберем эту схему. Вначале стоит обычный трансформаторный блок питания подходящей мощности. Поскольку в самой схеме регулятора напряжения стоит силовой транзистор КТ817, который может через свой переход коллектор-эмиттер пропустить до 3х ампер, то этим током пока и ограничимся. Итак, наш регулируемый блок питания будет выдавать на своем выходе постоянное напряжение от 0 до 12 вольт, с максимальной силой тока до 3 А. Следовательно максимальная рабочая мощность блока питания будет около 36 Вт (мы 12 В умножаем на 3 А). Поскольку трансформаторы такой мощности имеют КПД примерно равный 80%, то этот трансформатор у нас должен быть мощностью где-то 50 Вт.

Чтобы мы на выходе данного блока питания получили свои максимальные 12 вольт, то нужно чтобы наш трансформатор на вторичной обмотке выдавал переменное напряжение не менее 13,5 вольт. Почему так. Просто небольшая часть напряжения, а именно где-то 1,2 вольта потеряется на схеме стабилизатора напряжения. Ну об этом чуть позже. В итоге, нужно найти трансформатор мощностью около 45-60 Вт, вторичная обмотка которого может обеспечить ток до 3 ампер и напряжение 13,5-15 вольт. Ну, и желательно чтобы размеры этого трансформатора были подходящими, компактными, а это значит что лучше приобретать тор (круглая форма магнитного сердечника). В таких трансформаторах и размеры меньше и КПД выше. На входе первичной обмотке желательно предусмотреть плавкий предохранитель (на схеме обозначен как Z1), который в случае чего обезопасит схему блока питания от выгорания трансформатора.

Далее пониженное переменное напряжение, что выходит со вторичной обмотки трансформатора, поступает на диодный выпрямительный мост. Задача моста проста, сделать из переменного тока постоянный, то есть его выпрямить. На схеме я указал, что эти диоды в мосте D1 должны быть типа 1n4007, но изначально схема была нарисована на выходной тока до 1ого ампера. Именно этот ток (до 1 А) могут обеспечить данный тип диода. Поскольку мы уже делаем блок питания на 3 ампера, то либо нужен соответствующий диодный мост типа BR310 (можно и даже нужно делать запас по току и брать мосты ампер так на 5 или 6) либо же соединить параллельно 3 или 4 моста с диодами 1n4007. Обратное напряжение диодов моста должно быть, естественно, больше, чем напряжение, что на них подается.

Но как известно после диодного моста выходит пульсирующее напряжение, хотя оно уже и не меняет свою полярность. Чтобы эти пульсации убрать, или по крайней мере их свести к минимуму, то обычно для этого ставиться обычный фильтрующий конденсатор электролит. В схеме он обозначен как C1 и его емкость 500 микрофарад, хотя можно поставить и побольше, микрофарад так на 5000, будет только лучше. Учтите, что напряжение конденсаторов должно быть чуть больше того, которое на них подается в схеме при работе. Поскольку в противном случае возникает опасность выхода из строя данного конденсатора. Даже может бабахнуть.

Далее в регулируемом блоке питания, с защитой по току от КЗ и перегрузок, стоит сама схема, которая выполняет функцию регулируемого стабилизатора напряжения, и токовой защиты. В начале этой схемы стоит обычный параметрический стабилизатор напряжения, состоящий из стабилитрона VD1 и резистора R1.

На стабилитроне оседает опорное напряжение, то на какое рассчитан сам стабилитрон. В этой схеме нужен стабилитрон с напряжением стабилизации 13,5 вольт (14 В). Причем стоит заметить, выходное напряжение будет равно напряжению стабилитрона плюс 1,2 вольта, что потеряются на составном транзисторе, состоящем из VT1 и VT2 (на их база-эмиттерном переходе).

Напряжение питание должно быть больше хотя бы на 0,5-2 вольта, чем напряжение стабилитрона. Именно эта добавленное напряжение и нужно для нормальной, стабильной работы стабилитрона (параметрического стабилизатора). Сам стабилитрон можно поставить например Д814Д, либо поставить несколько параллельно соединенных стабилитронов и диодов, общее напряжение стабилизации чтобы было равно 14 вольтам.

Параллельно стабилитрону подключен переменный резистор R2. Именно им осуществляется регулировка величины выходного напряжения. Со среднего вывода этого резистора, относительно минуса, напряжение снимается и подается на базу первого транзистора VT1 (составного). Этот составной транзистор состоит из VT1 и VT2 и включен по схеме с общим коллектором (эмиттерный повторитель). А как известно, при таком подключении транзисторов усиление происходит только по току, напряжение же остается практически неизменным, и даже чуть меньше. И получается, что какое напряжение будет выставлено на переменном резисторе, то такое напряжение (с вычетом 1,2 В) и будет на выходе регулируемого блока питания. Но при этом через составной транзистор будет проходит максимально возможный ток, ограничивается только величиной нагрузки и максимально допустимым током самих силовых транзисторов (напомню, что КТ817 может выдерживать до 3 ампера). Этот транзистор следует установить на радиатор для лучшего охлаждения.

Ну и теперь что касается функции защиты по току от короткого замыкания и чрезмерной перегрузки. Как видно на схеме коллектор-эмиттерный переход транзистора VT3 подключен параллельно выводам переменного резистора, с которых снимается регулируемое напряжение. Следовательно, если этот транзистор защиты по току будет открываться, то тем самым он будет способствовать снижению выходного напряжения. А это, естественно, приведет и к снижению величины силы тока в нагрузке. Ну, а чтобы транзистор защиты начал открываться, нужно появление напряжения на его база-эмиттерном переходе, который подключен к еще одному переменному резистору R3. Именно этим резистором можно регулировать силу тока перегрузки и КЗ. Этот переменный резистор подключен к еще одному резистору R4, который и выполняет роль датчика величины тока в цепи нагрузки.

Работа этого датчика тока проста. На рисунке под схемой (в нижнем, правом углу) можно увидеть три последовательно соединенных резистора, что соответствует сопротивлениям силового транзистора (коллектор-эмиттерный переход), сопротивления самой нагрузки и сопротивления резистора R4. Если мы увеличим нагрузку, уменьшив ее сопротивления, то напряжение будет перераспределяется между другими сопротивлениями в этой цепи. Следовательно на резисторе R4 при перегрузке или коротком замыкании увеличится напряжение, что и приведет к открытию защитный транзистор VT3. Сопротивления датчика тока R4 можно подбирать под нужный диапазон тока перегрузки и его величина может быть от 0,1 до 10 Ом. При этом мощность этого сопротивления должна быть не менее 1 Ватта.

Ну и на выходе нашего блока питания стоит еще один конденсатор электролит, который еще лучше фильтрует возможные пульсации, делая выходное постоянное напряжении более стабильным и ровным. Его емкость может быть от 500 мкф до 2200 мкф и напряжением 16 или 25 вольт.

Видео по этой теме:

P.S. Эта схема проверена десятилетиями, и она собиралась и успешно использовалась многими электронщиками и радиолюбителями. Так что если Вы начинающий электронщик, обязательно попробуйте собрать эту схему. При чем она начинает работать сразу после сборки, ну а если что-то не получается, сначала попытайтесь понять сам принцип действия этой схемы, который я описал в данной статье. Ну, а на этом пожалуй и все, удачи и благополучия в делах.

Простой блок питания

Чаще всего самый главный прибор в радиолюбительской мастерской это лабораторный блок питания. Для того чтобы проверить и отладить собранную радиосхему требуется как правило простой регулируемый блок питания. В данной статье на нашем сайте мы будем рассматривать одну из самых простых, но универсальных схем блока, в которой не требуется дорогостоящих и редких радиодеталей.

Рассматриваемый регулируемый блок питания может обеспечить напряжение на выходе от 0 до 12 вольт с током в нагрузке до 1,5 ампер. Но применяя детали с другими параметрами можно увеличить или уменьшить данные характеристики не изменяя схемы.

Рассмотрим принцип работы схемы.

На вход блока питания подается переменное напряжение сети 220 вольт. Далее оно понижается трансформатором Тр.1 до 15-18 вольт и подается на диодный мост, собранный на диодах VD1-VD4 и выпрямляется. После диодного моста получается постоянное пульсирующее напряжение, которое сглаживает конденсатор С1.

Дальше напряжение подается на стабилизатор, собранный на основе стабилитрона VD1, резистора R1 и транзисторах VT1, VT2. Транзисторы в свою очередь образуют составной эмиттерный повторитель.

Опорное стабилизированное напряжение, сформированное на стабилитроне, через регулируемый резистор R2 подается на базу составного транзистора, определяя тем самым угол его открытия и выходное напряжение.

Используемые радиодетали:

Входной трансформатор можно использовать любой марки (кроме ферритовых высокочастотных конечно). Напряжение на выходе трансформатора (во вторичной обмотке) должно составлять примерно 15…18 вольт. Можно и больше, но тогда транзисторы будут греться сильнее при максимальном токе и минимальном напряжении. Кроме того, вторичная обмотка должна обеспечивать ток 2…3 ампера. Соответственно мощность трансформатора будет примерно 40 Ватт. При более слабом трансформаторе ток, отдаваемый в нагрузку, тоже уменьшится.

Для обеспечения регулирования напряжения на выходе блока питания от 0 до 12 вольт стабилитрон необходимо использовать с маркировкой Д814Г или любой другой импортный, с такими же параметрами. Можно и с другим буквенным индексом, тогда изменится диапазон регулировки в зависимости от напряжения стабилитрона.

VT1 можно подобрать любой из серии КТ315 или с похожими характеристиками.

VT2 из серии КТ815 или КТ817. При этом он должен быть расположен на радиаторе не меньше 15 квадратных сантиметров. Чем больше, тем лучше. Как говорится, кашу маслом не испортишь.

Диодный мост можно собрать из любых выпрямительных диодов или использовать готовую сборку, рассчитанные на выходной ток, например Д226. Расчет диодов моста можно посмотреть в интернете, информации предостаточно, ничего сложного в этом нет, все очень просто.

С1 обычный электролит от 1000 микрофарад и выше, с рабочим напряжением не менее 25 вольт.

Настройки данная схема ни требует, и работать начинает сразу. Кроме того её можно дополнить схемами защиты от короткого замыкания и переполюсовки, коих в интернете превеликое множество.

 


Анекдот:

Коктейль «Спящий засранец» : 50 грамм снотворного 50 грамм слабительного…

Простой блок питания 5 В 1 А

Очень часто для питания различных устройств, например, детские электронные игрушки, новогодние гирлянды, возникает необходимость в маломощном блоке питания 5 В, это довольно распространенный тип источника и, если для наладки собранного устройства подойдет лабораторный блок питания, то питать готовую конструкцию конечно же нужно собственным БП 5В.

В данной статье я постараюсь пошагово расписать построение трансформаторного блока питания на 5 вольт специально для начинающих радиолюбителей. Вообще написать статью о БП меня побудили предыдущие публикации:

Простая мигалка на светодиодах
Простейшая мигалка на светодиоде
Программируемый переключатель гирлянд
Светодиодная гирлянда на микроконтроллере
Переключатель ёлочной гирлянды на ШИМ

Во всех перечисленных схемах требуется блок питания 5 В как основной или дополнительный источник. Наш БП 5 В будет трансформаторным, а не импульсным. По моему скромному мнению трансформаторный блок питания собрать и настроить легче, возможно по стоимости и габаритам импульсный предпочтительней, но если у вас завалялся старенький и к тому, же тороидальный «транс» на 7 — 10 В, то как говорится сам бог велел.

Структурная схема блока питания на 5 В:

Каждый блок пронумерован А1-А6. На принципиальной схеме каждый блок будет выделен, так сказать для наглядности. Рассмотрим, что представляет из себя каждый блок.

Сетевой фильтр (А1).

Предназначен для подавления высоковольтных и высокочастотных сетевых помех. С высоковольтными помехами успешно справляется варистор. А высокочастотными помехами займется RC фильтр.

Варистор – это полупроводниковый элемент, характеризующийся сопротивлением. Работает следующим образом: в рабочем режиме сопротивление варистора достаточно велико, напряжение не превышает пороговое значение варистора, и ток через него не течет. Как только напряжение достигает «порога» — сопротивление варистора понижается практически до нескольких десятков Ом и ток начинает протекать через него. Кратковременные высоковольтные импульсы гасятся варистором, а более длительное перенапряжение, как правило, выводит его из строя, иногда даже с громким хлопком.

В нашей схеме блока питания 5 В будем использовать RC фильтр, он уступает по эффективности LC фильтру, но зато дешевле и для нашего маломощного БП вполне подойдет.

Раньше никто не «заморачивался» сетевым фильтром, а теперь, какую бы вы бытовую технику не разобрали, обязательно увидите варистор, RC или LC фильтры тоже встречаются, но реже. Вызвано это массовым использованием импульсных блоков питания, которые передают в сеть такую «кашу» помех, что не всякий потребитель выдержит, поэтому производители электротехники пытаются хоть как-то обезопасить свою продукцию. Одним словом не рекомендую убирать из схемы блока питания сетевой фильтр.

Трансформатор (А2).

В нашем БП 5 В трансформатор играет ключевую роль, именно он понижает (преобразует) сетевое питание 220 В в низковольтное. Трансформатор должен быть силовым, рассчитан на сетевую частоту 50 Гц, с первичной обмоткой на 220 В и одной вторичной обмоткой на 7 — 10 В. Номинальная мощность трансформатора 4 — 8 Вт. Конструкция (тороидальный, броневой) в принципе особой роли не играет, какой найдете.

Еще такой момент, на трансформаторе указывают действующее значение напряжения (Uд), которое можно проверить, измерив вольтметром. А на выходе после фильтра (блок А4), по сути после диодного моста и сглаживающего конденсатора, мы получим амплитудное значение (Uа). Зависимость между амплитудным и действующим напряжениями такая:

Uа = 1,41xUд

Т.е. если в блоке питания вторичная обмотка трансформатора выдает 7 — 10 В, то на фильтре-конденсаторе (А4) мы приблизительно получим 10 — 14 В. Забегая наперед скажу, что для нас это не опасно, т.к. стабилизатор напряжения (А5) работает до 40 В на входе. Теоретически, да и практически, мы можем взять трансформатор с большим напряжением и на выходе стабилизатора получить необходимые 5 В. Куда денется разница? Правильно – в тепло! А нам это не надо, мы строим рациональный блок питания 5 В.

Выпрямитель (А3).

Превращает переменное напряжение на входе в постоянное на выходе. Будем использовать двухполупериодный выпрямитель – диодный мост.

Фильтр (А4).

Предназначен для сглаживания напряжения после выпрямителя. Используется обычный электролитический конденсатор достаточно большой емкости. Чем больше емкость конденсатора, тем меньше пульсации. У конденсатора кроме емкости есть еще такой параметр как напряжение, будьте внимательны и берите конденсаторы с запасом. Мы условились, что в блоке питания на 5 В вторичная обмотка трансформатора (А2) будет на 7 — 10 В и с учетом повышения напряжения в 1,41 раз возьмем конденсатор не менее 25 В. В момент, когда конденсатор заряжается, протекающий через диодный мост ток увеличивается т.к. необходимо обеспечить и заряд и нагрузку. Обратное напряжение диода тоже велико – происходит суммирование входного и выходного напряжений. Поэтому диоды для выпрямителя нужно подбирать с запасом по параметрам.

Стабилизатор напряжения (А5).

Это микросхема, служит для стабилизации диапазона напряжений на входе в четко установленное значение на выходе. Логично, что входное напряжение должно быть больше выходного, как правило, не менее чем на 3 В. Максимальный порог обычно ограничен 30 — 40 В. Стабилизатор лучше брать в корпусе TO220 и установить на радиатор, по крайней мере, в нашем блоке питания на 5 В я рекомендую это сделать.

Индикатор (А6).

В повседневной жизни мы уже настолько привыкли, что любая техника нам весело подмигивает светодиодом, когда мы ее включаем, то я решил, что индикатор рабочего режима не помешает в БП 5 В. Он состоит из светодиода и токоограничивающего резистора. Светодиод красного или зеленого цвета свечения на напряжение 1,5 В или 3 В, только посчитайте правильно сопротивление резистора. Сопротивление токоограничивающего резистора рассчитывается по формуле:

R = (Uпит — Uсвет)/Iсвет, где

Uпит – напряжение источника питания;

Uсвет – прямое напряжение светодиода;

Iсвет – прямой ток светодиода.

Рекомендую воспользоваться отличным калькулятором для расчета токоограничивающего резистора.

Пора переходить от теории к практике. Вашему вниманию предлагается принципиальная схема блока питания 5 В:

Для наглядности на схеме БП выделены блоки согласно структурной схемы. Пройдемся по схеме.

Первым идет предохранитель FU1, не забывайте про него в своих конструкциях, это очень важный элемент. Нередко, жертвуя собой, он спасает всю схему. Предохранитель должен быть рассчитан на ток 0,15 А, можно взять и мощней, но до 0,5 А, это на тот крайний случай когда 0,15 А сгорает. Все зависит от качества трансформатора. Больше 0,5 А не ставьте ни в коем случае!

 

Выключатель SA1 любой подходящий, лучше конечно если у него будет две группы контактов как показано на схеме. Отлично подойдет на 250 В, 6 А. Ставить с подсветкой в блок питания не советую, у нас в качестве индикатора будет светодиод который стоит на выходе БП и в отличии от неонки в кнопке сигнализирует о работе всех предстоящих компонентов.

 

Далее по схеме блока питания 5 В идет варистор RU1. Можно любой, я поставил JVR-07N471K. Главное чтобы так называемое классификационное напряжение было 470 В, не меньше – будет греться, и не больше – будет пропускать перенапряжение.

 

Сопротивление резисторов R1 и R2 5 — 20 Ом, мощность до 2 Вт. Если при сборке блока питания эти резисторы у вас окажутся рядом – оденьте на них термоусадку или кембрик, таким образом, их нужно изолировать друг от друга, потому что собственная изоляция резисторов штука ненадежная. На предлагаемой ниже печатной плате эти резисторы разнесены, тем не менее, лишняя изоляция не повредит.

Конденсатор C1 неэлектролитический пленочный серии К73-17 номинальное напряжение 630 В, емкость 0,1 — 0,47 мкФ.

 

Про трансформатор Т1 для блока питания 5 В уже говорили, вкратце напомню – первичная обмотка 220 В, вторичная 7 — 10 В, мощность 4 — 8 Вт.

 

Диодный мост VD1 рекомендую брать готовый, конечно если есть желание можно спаять из диодов. При подключении смотрите маркировку на корпусе. Если все же решили собрать из диодов, напомню, что на корпусе диода полоской маркируется катод, как определить катод на схеме смотрите рисунок, красным отмечена буква «К» это он и есть. Что касается параметров, для нашего БП 5 В берем мост с запасом, я выбрал KBL01.

Фильтр блока питания, он же конденсатор электролитический C2 типа К50-35. Электролитические конденсаторы имеют полярность, на корпусе маркируется минус, в схеме указывается плюс, будьте внимательны, если перепутаете ба-бах обеспечен. Тоже произойдет, если напряжение питания превысит номинальное конденсатора. Емкость 2200 — 4700 мкФ, меньше нельзя из-за роста пульсаций, больше — нет смысла. Напряжение 25 В и выше. Не забывайте мы условились, что в собираемом БП вторичная обмотка на 10 В, не больше, учитывая повышение в 1,41 раз, получаем с запасом 25 В. Вообще, при подборе трансформатора умножайте примерно на 1,5 подаваемое на конденсатор напряжение (т.е. с учетом 1,41) – это будет запас на прочность.

Стабилизатор напряжения также важный компонент схемы блока питания на 5 В. Есть отечественные, есть импортные аналоги выбирать вам. Я остановился на L7805A, максимальное входное напряжение – 35 В, выходное – 5 В, выходной ток до 1 А, корпус TO220. Конденсатор C3 рекомендуется для предотвращения самовозбуждения стабилизаторов. Подойдет обычный керамический многослойный серии К10-17Б, емкость 0,1 — 4,7 мкФ.

Последний элемент блока питания 5 В – индикатор работы. Светодиод HL1 и токоограничивающий резистор R3. Светодиод АЛ307БМ, сопротивление резистора согласно расчетам 300 Ом, мощность 0,125 Вт. У светодиода, как и у диода, есть катод, и анод не перепутайте при подключении. Определить полярность поможет мультиметр в режиме омметра или в режиме проверки диодов, при правильном подключении светодиод загорится.

5 В блок питания собран на одностороннем фольгированном стеклотекстолите размерами 60х26 мм. Предохранитель FU1, выключатель SA1 и трансформатор Т1 располагаются отдельно. Светодиод HL1 по желанию, его можно вынести на корпус.

Печатная плата блока питания 5 В со стороны элементов выглядит так:

А со стороны выводов элементов выглядит следующим образом:

Предлагаю вам скачать печатную плату блока питания 5 В в формате .lay в конце этой статьи.

В наладке правильно собранный блок питания 5 В не нуждается.

Список файлов

bp_5v.lay

Печатная плата блока питания 5 В

  • Загрузок: 1659
  • Размер: 23 Kb

Источник питания 15 вольт схема. Простой блок питания. Окончательная сборка импульсного преобразователя напряжения

В этом обзоре канала “Обзоры посылок и самоделки от jakson” о простой схеме двухполярного блока питания с выходным напряжением на выходе 15 вольт. Cхема, которую будем собирать, не требует много деталей. Главное – найти то 2 регулятора 7815 и 7915. Их можно заказать в Китае.

Радиодетали, платы можно купить с бесплатной доставкой в этом китайском магазине .

В итоге на выходе должно получиться плюс 15 и минус 15 вольт двухполярного питания. Для этого нам понадобится специальный трансформатор, на выходе из которого сможем получить двухполярное питание со средней точкой.

Этого может добиться двумя методами. Например, если трансформатор построен так, что между двумя его контактами (в нашем случае +15 и -15) есть средняя точка, которая является контактом середины вторичной обмотки. Напряжение между средним и первым контактом будет 15 вольт, а между средним и последним тоже по 15. Между первым и последним – 30 вольт.

Если в конструкции трансформатора не предусмотрена нужная нам точка, можно взять две вторичные обмотки с одинаковым напряжением. Серединная точка между ними будет средней точкой нашего 2-полярного питания. Так и сделаем. Будут не 2 обмотки, а 4, поскольку много вторичных обмоток в этом трансформаторе, соединим несколько, чтобы получить необходимое напряжение.

Будет использован старый советский военный трансформатор, которому уже более 30 лет. Несмотря на это, он отлично работает и по сути тут нечему ломаться, так как полностью залитый, он герметичный. Возможно его качество будет даже лучше, чем у современных китайских трансформаторов. Но его мощность всего лишь 60 ватт.

Сборка блока будет реализована на макетной печатной плате хорошего качества. В диодном мосту диоды IN 5408. Их хватит с запасом. Также нам понадобится четыре электролитических конденсатора. Два из них на 2200 микрофарад, 25 вольт и другие на 100 микрофарад, 35 вольт. Два конденсатора на 0,1 мкф. Также регуляторы, о которых речь шла выше. При пайке регуляторов будьте внимательны, так как распиновка у них разная.

В схеме два светодида – индикаторы, в которых нет особой нужды, их можно не ставить.

Обсуждение

  1. Зачем эти стабилизаторы и вся эта лишняя дичь. Трансформатор ведь с средней точкой два плеча по 18 вольт, то что нужно. Просто выпрямить две фазы пропустить через ёмкости и на усилок. Зачем эти стабилизаторы на 1 ампер, чтобы задушить микросхему и в придачу греться? С таким успехом можно просто автомагнитолу поставить от 12 вольт больше выдаст. По характеристике tda 7294 +/-27 вольт на 4 Ом динамик.
  2. Мощность маловата для питания усилителя. Стабилизаторы выдают около 1,5 Ампер тока, при этом адски нагреваясь! Радиаторов, что на видео, ну никак не хватит для охлаждения. Такую схему можно использовать только для питания небольших нагрузок.
  3. Вопрос от незнайки.)) Зачем нужно двухполярное питание? а чем хуже соединить в параллель две по 15 вольт (усилить силу тока) и собрать два независимых друг от друга одинаковых усилителей и запитать одним плюсом и одним минусом? Вот у меня есть две микросхемы тда 7296, хочу два усилителя из них сделать, на левый и правый канал и на саб из али моно усилок на 60 ватт класс д. И всё это запитать одним выходом из трансформатора

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Схема регулируемого блока питания, приведённого в этой статье, обладает отличными характеристиками и выдерживает максимальный ток нагрузки до 10 Ампер. Для поддержания стабильности на высоком уровне, хорошей фильтрации помех и максимального упрощения схемы, в блоке применён интегрированный стабилизатор напряжения на 15 Вольт и добавлены два транзистора, для усиления тока после регулировочного резистора. Отсутствие защиты от короткого замыкания на выходе, компенсируется применением выходного транзистора с двойным запасом мощности и установкой предохранителя на 10 Ампер.
Для компенсации падения напряжения на выходных транзисторах, в пределах 1 Вольта, средняя ножка стабилизатора подключена к минусовому проводу через диоды, которые поднимают напряжение на выходе микросхемы, обеспечивая этим максимальное выходное напряжение блока питания до 15 Вольт, при установке переменного резистора в верхнее по схеме положение, без применения VD1 и VD2, граничное напряжение регулировки равно примерно 14 вольтам. Для стабилизации выходного напряжения при сильном нагреве транзисторов, рекомендуем установить эти диоды на одном радиаторе охлаждения вместе с VT2.
В этой схеме блока питания, применяются очень распространённые радиодетали, но они легко заменяются на элементы с похожими параметрами. Трансформатор можно устанавливать любой, но достаточной мощности, с напряжением на вторичной обмотке от 15 до 20 Вольт и током не менее 10 Ампер. Конденсаторы подойдут с минимальным граничным напряжением не менее 50 Вольт, резисторы любые, мощностью 0,25 Ватт, переменный резистор R1 в схеме, желательно применять с линейной характеристикой регулировки, для того, чтобы на корпусе блока питания можно было нанести равномерную шкалу напряжений. Диодный мост можно заменить четырьмя диодами, на ток не менее 10 Ампер, микросхема стабилизатора имеет много аналогов, главным параметром при её выборе будет выходное напряжение 15 Вольт. Мощные транзисторы можно заменить импортными аналогами, с достаточным коэффициентом передачи h31э, для обеспечения максимального тока на выходе схемы.

Налаживания блок питания не требует, хорошо работает сразу после сборки схемы, при включении, напряжение на выходе должно плавно регулироваться переменным резистором R1 от 0 до 15 Вольт. Для обеспечения надёжной работы на большую нагрузку, установите выходной транзистор VT2 и диодный мост VDS-1 на радиатор охлаждения достаточной площади, остальные радиоэлементы практически не нагреваются, и могут эксплуатироваться без охлаждения.

Каждый радиолюбитель и конструктор найдёт применение для данного устройства, блок питания построенный по такой схеме очень пригодиться при наладке различных радио схем, испытании низковольтной аппаратуры, которая меняет свои параметры при регулировке напряжения питания, и так далее… Если подключить к выходу устройства амперметр, то его с успехом можно использовать для зарядки автомобильных аккумуляторов, контролируя при этом ток зарядки.

Пролог.

У меня есть два мультиметра, и оба имеют один и тот же недостаток – питание от батареи напряжением 9-ть Вольт типа «Крона».

Всегда старался иметь в запасе свежую 9-тивольтовую батарею, но, почему-то, когда требовалось что-то измерить с точностью выше, чем у стрелочного прибора, «Крона» оказывалась либо неработоспособной, либо её хватало всего на несколько часов работы.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца. Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.


Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.

Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.

Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.


Настройка преобразователя.

Настройка может потребоваться для установки необходимого уровня выходного напряжения.

Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.

Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.

Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.

Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения. Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя.


Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.

Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например , все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.


Окончательная сборка импульсного преобразователя напряжения.

Перед окончательной сборкой, все элементы схемы были соединены многожильным проводом, и была проверена способность схемы принимать и отдавать энергию.

Для предотвращения замыкания, импульсный преобразователь напряжения был со стороны контактов заизолирован силиконовым герметиком.


Затем все элементы конструкции были размещены в корпусе от «Кроны». Для того, чтобы передняя крышка с разъёмом не утапливалась внутрь, между передней и задней стенками была вставлена пластинка из целлулоида. После чего, задняя крышка была закреплена клеем «88Н».


Для зарядки модернизированной «Кроны» пришлось изготовить дополнительный кабель со штекером типа Джек 3,5мм на одном из концов. На другом конце кабеля, для снижения вероятности короткого замыкания, были установлены стандартные приборные гнёзда, вместо аналогичных штекеров.

Доработка мультиметра.

Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.

Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.


Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.

Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.

В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.

К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).


Мелкие подробности.

Сложно было приобрести всего один аккумулятор. Их в основном продают, либо парами, либо по четыре штуки. Однако некоторые комплекты, например, «Varta», поставляются по пять аккумуляторов в блистере. Если Вам повезёт так же, как и мне, то Вы сможете разделить с кем-нибудь такой комплект. Аккумулятор я купил всего за 3,3$, тогда как одна «Крона» стоит от 1$ до 3,75$. Есть, правда, ещё «Кроны» и по 0,5$, но те и вовсе мёртворождённые.

ПРОСТОЙ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

ПРОСТОЙ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

      В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
      Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. Можно изготовить и более мощные электронные трансформаторы, например на IR2153, а можно КУПИТЬ ГОТОВЫЙ и переделать под свои напряжения.

      В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

      В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

      Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП), причем довольно компактный. Единственное, чем схема электронного балласта отличается от настоящего импульсного блока питания, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

      В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных энергосберегающих ламп, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы балласта энергосберегающей лампы от импульсного блока питания

      Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.


Схема энергосберегающей лампы

      А это уже законченная схема импульсного блока питания, собранная на основе балласта люминисцентной лампы с использованием дополнительного импульсного трансформатора.

      Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

      Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.


Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

      Мощность импульсного блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

      Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.


БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

      В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.


БП с дополнительным импульсным трансформатором

      Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

      В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

      Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

      Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

      Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

      Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

      Чтобы снизить уровень пульсаций напряжения на выходе блока питания, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

      Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт


Блок питания мощностью 20 Ватт

      Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

      На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

      Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

      Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

      Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

      Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

      Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

      Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60°C, а транзисторов – 42°C. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.


На картинке действующая модель БП

            Мощность, подводимая к нагрузке – 20 Ватт.
            Частота автоколебаний без нагрузки – 26 кГц.
            Частота автоколебаний при максимальной нагрузке – 32 кГц
            Температура трансформатора – 60?С
            Температура транзисторов – 42?С

Блок питания мощностью 100 Ватт

      Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.


Блок питания мощностью 100 Ватт

      Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

      Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

      Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз большие предельно-допустимые токи. Купить отдельно MJE13007 можно ЗДЕСЬ.

      Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

      Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

      Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

      Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!


Действующий стоваттный импульсный блок питания

      Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
      Мощность, выделяемая на нагрузке – 100 Ватт.
      Частота автоколебаний при максимальной нагрузке – 90 кГц.
      Частота автоколебаний без нагрузки – 28,5 кГц.
      Температура транзисторов – 75?C.
      Площадь радиаторов каждого транзистора – 27см?.
      Температура дросселя TV1 – 45?C.
      TV2 – 2000НМ (O28 х O16 х 9мм)

Выпрямитель

      Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

      Существуют две широко распространённые схемы двухполупериодных выпрямителей.

      1. Мостовая схема.
      2. Схема с нулевой точкой.

      Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

      Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

      Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

            Пример.
      Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

      100 / 5 * 0,4 = 8(Ватт)

      Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

      100 / 5 * 0,8 * 2 = 32(Ватт).

      Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

      В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

      Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

      При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

      На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

      Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

      Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

      Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

      Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

      Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

      Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

      Если сильно греются транзисторы, то нужно установить их на радиаторы.

      Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65?С, то нужно уменьшить мощность нагрузки.

      Не рекомендуется доводить температуру трансформатора выше 60… 65?С, а транзисторов выше 80… 85?С.

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП маломощный импульсный блок питания из подручных материалов своими руками

Каково назначение элементов схемы импульсного блока питания?


Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

      Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

По материалам сайта http://www.ruqrz.com/

     

      Для большей наглядности приведено несколько принципиальных схем ламп популярных производителей:

 

РЕМОНТ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

 

ОПИСАНИЕ И СХЕМА БОЛЕЕ МОЩНЫХ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

 


Адрес администрации сайта: [email protected]
   

 

Назад в СССР – Блок питания своими руками

Приветствую Вас, господа МозгоЧины!

Вот решил показать вам свой блок питания, который я собрал своими руками, когда мне было как многим из вас 13 лет. Это были счастливые Восьмидесятые, мы после школы бегали на радио кружки, а вечерами, кое- как, сделав уроки, хватались за паяльник и собирали очередную самоделку, увиденную в каком-нибудь радиожурнале. Вот про одну из таких самоделок, я и хочу рассказать.

Сейчас конечно смешно говорить, что у меня в мои 13 лет не было фотоаппарата, и я не мог фотографировать процесс работы, но это так и было, поэтому я сейчас просто взял, и разобрал своё детище, и постарался, как можно детально всё сфотографировать, и заодно окунуться в воспоминания.

Вот так выглядит компоновка внутренностей

Это транзистор П213Б на радиаторе, кстати, один из популярных и ходовых транзисторов в то время

Это понижающий трансформатор, с 220 вольт до 15 вольт, ТВК-110-Л-2, применялся в выходном каскаде кадровой развёртке черно-белых ламповых телевизорах

Ещё вид сверху, где под электролитическим конденсатором видна монтажная плата

А вот и сама монтажная плата с разных сторон, монтаж навесной, снизу все радиодетали соединены проводами при помощи пайки

Это стрелочный прибор с построечным сопротивлением

В то время у меня не было компьютера и принтера, поэтому шкалу я рисовал сам, карандашом, хотя у меня до сих пор осталась эта привычка, вы наверно помните это по моей самоделке Перевоплощение стрелочного индикатора

Передняя панель изнутри: стрелочный прибор – индикатор напряжения, потенциометр — регулятор выходного напряжения, неоновая лампочка — индикатор включения, тумблер – выключатель и гнездо СГ-3 используется как выходной разъём

Общей вид в разборке

Нижняя панель  с ножками

Ножки сделаны из пробочек от зубных паст, я часто их использовал, удобно и симпатично

Задняя панель с предохранителем

Это штекер СГ-3 для подключения к блоку питания

Корпус сделан из фанеры и обожжен над газовой плитой.

Ну, вот на этом и всё.

Ах да, чуть не забыл, принципиальная схема этого блока питания

 

Ну, вот теперь точно всё. Надеюсь, я не утомил вас своим рассказом о такой старой и примитивной самоделке, надеюсь что кто-нибудь, что-нибудь для себя подчеркнёт из неё.

С уважением Mr. Ed

Самая простая схема источника питания

Эта схема источника питания проста в изготовлении и недорого. А для этого требуется всего 5 компонентов.

За свою жизнь я построил много схем, но на самом деле это первый раз, когда я построил схему источника питания с нуля.

Последним проектом, который я хотел создать, был сетевой адаптер с USB-разъемом для зарядки моего iPhone. Но сначала я хотел начать с создания простой схемы, которая преобразует напряжение сети 220 В или 110 В в 5 В.

Поскольку я нахожусь в Австралии, когда пишу это, а напряжение здесь 220 В, я построил его с расчетом на 220 В. Но вместо этого очень легко преобразовать его в 110 В, переключив одно соединение (или один компонент).

Осторожно: НЕ подключайте к электросети все, что вы делаете самостоятельно, если вы не на 100% уверены в том, что делаете. Неправильное действие может привести к серьезным повреждениям, даже к смерти. Используйте предоставленную здесь информацию на свой страх и риск.

Если вам нужна совершенно безопасная и чрезвычайно полезная схема источника питания, вам следует проверить это портативное зарядное устройство USB, которое я построил.Он даже включает в себя загружаемое пошаговое руководство о том, как его собрать самостоятельно.

Проектирование источника питания

Я хочу построить схему источника питания на базе регулятора напряжения LM7805, потому что это легко найти и просто использовать. Этот компонент даст стабильное выходное напряжение от 5 В до 1,5 А.

Я могу легко понять, как использовать LM7805, посмотрев на его техническое описание.

Из таблицы я нашел эту маленькую схему:

Выбор номиналов конденсатора

На изображении выше показан регулятор напряжения с цифрой 0.Конденсатор 33 мкФ на входе и 0,1 мкФ на выходе. Трудно найти хороший источник информации об этих значениях конденсаторов, но, согласно этим вопросам и ответам, в этих значениях нет ничего волшебного.

В сети есть много мнений по поводу этих конденсаторов. Некоторые предлагают конденсаторы 0,1 мкФ, другие — конденсаторы 100 мкФ. Некоторые предлагают использовать одновременно 0,1 мкФ и 100 мкФ.

Значения, которые вы должны использовать, зависят от множества факторов. Например, какой длины будут провода.Но эта статья о том, как построить простую схему питания, поэтому не будем усложнять. Наверное, подойдет практически любая емкость конденсатора. Возможно, он будет работать даже без конденсаторов.

Чтобы сделать выходное напряжение «немного стабильным», я собираюсь использовать на выходе конденсатор емкостью 1 мкФ. Я пропущу входной конденсатор, потому что конденсатор все равно будет в этом положении — просто продолжайте читать.

Преобразование из 220 В

В таблице данных также указано, что для правильной работы требуется от 7 до 25 В.Итак, мне нужно только добавить несколько компонентов, которые преобразуют 220 В (или 110 В) переменного тока в постоянное напряжение, которое остается между 7 и 25 В.

Это относительно просто. Я просто добавлю трансформатор, который преобразует напряжение, например, примерно до 12 В. Затем я подам это переменное напряжение в мостовой выпрямитель, чтобы его выпрямить.

И я использую большой конденсатор на выходе, чтобы постоянно поддерживать напряжение выше необходимых 7В. Это значение конденсатора не критично. Я видел много схем блоков питания, в которых используется 470 или 1000 мкФ, поэтому сейчас я попробую с 470 мкФ.

Схема блока питания

Итак, итоговая схема выглядит так:

Список запчастей

Часть Значение Описание
Т1 220 В (или 110 В) до 12 В Трансформатор
DB1 Выпрямитель с диодным мостом
C1 470 мкФ (20 В и выше) Конденсатор
C2 1 мкФ (10 В и выше) Конденсатор
U1 7805 Регулятор напряжения

Общая стоимость комплектующих около 12-15 долларов.Самый дорогой компонент — трансформатор (около 10 долларов).

Поиск компонентов для цепи

Когда я не уверен, как выбрать компоненты для схемы, я обычно хожу в интернет-магазины электроники для любителей и смотрю на их варианты. В этих магазинах обычно есть компоненты, которые должны работать от стандартного блока питания без каких-либо особых требований.

В Австралии Jaycar — хороший вариант.

Быстрый поиск «трансформатора» на Jaycar дает мне несколько вариантов.Входное напряжение должно быть около 220 В, а выходное — около 12 В. После быстрого просмотра их вариантов и цен я остановился на этом:
https://www.jaycar.com.au/12-6v-ct-7va-500ma-centre-tapped-type-2853-transformer/p / MM2013

Трансформатор имеет центральный отвод на выходной стороне, который я могу игнорировать.

Это на 220В. Если вы живете в стране с напряжением 110 В, в магазинах вашей страны, вероятно, найдется подходящая версия. Щелкните здесь, чтобы просмотреть мой список интернет-магазинов.

Тогда мне нужен выпрямитель. Мы можем использовать 4 силовых диода (например, 1N4007) или мостовой выпрямитель (который состоит из четырех диодов, встроенных в один компонент). Самый дешевый вариант, который появляется при поиске мостового выпрямителя на Jaycar, — это:
https://www.jaycar.com.au/w04-1-5a-400v-bridge-rectifier/p/ZR1304

Готовая схема

Это простая схема для пайки на макетной плате. Вот прототип, который я построил:

.

Напоминание: не подключайте к электросети все, что вы построили самостоятельно, если вы не уверены на 100% в том, что делаете.Используйте предоставленную здесь информацию на свой страх и риск.

Вы его построили?

Вы построили эту схему? Какой у вас опыт? С чем вы боролись? Расскажите в комментариях ниже, как все прошло.

Замечания по проектированию источника питания

— MCI Transformer Corporation

Базовое руководство по применению источника питания

Используются четыре основных типа блоков питания:

  • Нерегулируемый линейный
  • Регулируемый линейный
  • Феррорезонанс
  • Режим переключения

Различия между четырьмя типами включают постоянное выходное напряжение, экономическую эффективность, размер, вес и пульсации.В этом руководстве объясняется каждый тип источника питания, описывается принцип работы и выделяются преимущества и недостатки каждого из них.

1. Нерегулируемый линейный источник питания

Нерегулируемые источники питания содержат четыре основных компонента: трансформатор, выпрямитель, конденсатор фильтра и резистор утечки.

Блок питания этого типа из-за своей простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Недостатком является непостоянство выходного напряжения.Оно будет варьироваться в зависимости от входного напряжения и тока нагрузки, и пульсации не подходят для электронных приложений. Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр IC (индуктор-конденсатор), но затраты на это изменение сделают использование регулируемого линейного источника питания более экономичным выбором.

2. Регулируемый линейный источник питания

Регулируемый линейный источник питания идентичен нерегулируемому линейному источнику питания, за исключением того, что вместо спускного резистора используется трехконтактный стабилизатор.

Регулируемый линейный источник питания решает все проблемы нерегулируемого источника питания, но не так эффективен, потому что трехконтактный регулятор будет рассеивать избыточную мощность в виде тепла, которое должно быть учтено в конструкции источника питания. Выходное напряжение имеет незначительные пульсации, очень маленькую регулировку нагрузки и высокую надежность, что делает его идеальным выбором для использования в электронных устройствах с низким энергопотреблением.

3. Источники питания феррорезонансные

Феррорезонансный источник питания очень похож на нерегулируемый источник питания, за исключением характеристик феррорезонансного трансформатора.

Феррорезонансный трансформатор будет обеспечивать постоянное выходное напряжение в широком диапазоне входного напряжения трансформатора. Проблемы с использованием феррорезонансного источника питания заключаются в том, что он очень чувствителен к незначительным изменениям в частоте сети и не может быть переключен с 50 Гц на 60 Гц, и что трансформаторы рассеивают больше тепла, чем обычные трансформаторы. Эти источники питания тяжелее и будут иметь более слышимый шум от резонанса трансформатора, чем регулируемые линейные источники питания.

4. Импульсные источники питания

Импульсный источник питания имеет выпрямитель, конденсатор фильтра, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали. Схема ниже представляет собой простую блок-схему и не отображает все компоненты источника питания.

Переменное напряжение выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет значительно уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера.Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением.


Выпрямительные цепи для регулируемых линейных источников питания

Исходя из нашего предыдущего описания, регулируемый линейный источник питания является наиболее экономичной конструкцией с низким энергопотреблением, низким уровнем пульсаций и низким уровнем регулирования, который подходит для электронных приложений.В этом разделе мы объясним четыре основных используемых схемы выпрямления:

      • Полуволна
      • Полноволновой с отводом по центру
      • Полноволновой мост
      • Двойной дополнительный

1. Полуволновые схемы

Поскольку конденсаторный входной фильтр потребляет ток из схемы выпрямления только короткими импульсами, частота импульсов вдвое меньше, чем у двухполупериодной схемы, поэтому пиковый ток этих импульсов настолько велик, что эту схему не рекомендуется использовать для Мощность постоянного тока более 1/2 Вт.

2. Полноволновые схемы с центральным ответвлением

Двухполупериодный выпрямитель одновременно использует только половину обмотки трансформатора. Номинальный вторичный ток трансформатора должен в 1,2 раза превышать постоянный ток источника питания. Напряжение вторичной обмотки трансформатора должно быть примерно в 0,8 раза больше напряжения постоянного тока нерегулируемого источника питания на каждую сторону центрального ответвления, или трансформатор должно быть в 1,6 раза больше напряжения постоянного тока с центральным ответвлением.

3.Полноволновой мост

Двухполупериодная мостовая схема выпрямления является наиболее рентабельной, поскольку для нее требуется трансформатор с более низким номиналом в ВА, чем двухполупериодный выпрямитель. В двухполупериодном мосте вся вторичная обмотка трансформатора используется в каждом полупериоде, в отличие от двухполупериодного центрального отвода, который использует только половину вторичной обмотки в каждом полупериоде. Номинальный вторичный ток трансформатора должен в 1,8 раза превышать постоянный ток источника питания. Вторичное напряжение трансформатора должно быть приблизительно.В 8 раз больше постоянного напряжения нерегулируемого источника питания.

4. Двойной дополнительный выпрямитель

Двойной дополнительный выпрямитель используется для подачи положительного и отрицательного выходного постоянного тока с одинаковым напряжением. В большинстве случаев отрицательный ток значительно меньше, чем требуемый положительный ток, поэтому отношение напряжения и тока переменного тока к напряжению и току постоянного тока должно быть таким же, как и для двухполупериодного центрального отвода, описанного ранее.


Как выбрать трансформатор

Регулируемый линейный источник питания используется для обеспечения постоянного выходного напряжения при различных нагрузках, а также для изменения входного напряжения. Все наши расчеты для определения правильного трансформатора предполагают, что входное напряжение может варьироваться от 95 до 130 В, и не изменяет выходную мощность нашего источника питания.

Формула, используемая для определения напряжения переменного тока, требуемого от трансформатора, выглядит следующим образом:

      • В = Выходное напряжение
      • Vreg = Падение напряжения регулятора = 3v
      • Vrec = Падение напряжения на диодах = 1.25В
      • Врип = пульсация напряжения = 10% от постоянного тока
      • Вном = 115 В
      • Vlowline = 95V
      • .9 = КПД выпрямителя

Мы суммировали все расчеты для трех основных схем выпрямления в таблице ниже:

Цепь выпрямления RMS НАПРЯЖЕНИЕ (ВОЛЬТ) RMS ТОК (AMPS)
Полноволновой центральный метчик В переменного тока C.T. = 2,092 x Vdc ​​+ 8,08 IAC = IDC x 1,2
Полноволновой мост В переменного тока = 1,046 x В постоянного тока +4,04 IAC = IDC x 1,8
Двойной дополнительный В переменного тока CT = 2,092 X В постоянного тока = 8,08 IAC = IDC x 1,8

Существуют регуляторы с малыми потерями, которые имеют падение 0,5 В вместо 3 В, но в настоящее время они не рассматриваются из-за доступности.

ПРИМЕРЫ:

Пример # 1:

Регулируемый линейный источник питания необходим для 5 В постоянного тока на 1 АЦП с первичной обмоткой 115 В или 230 В, и вы не знаете, должен ли он быть двухполупериодным с центральным ответвлением или двухполупериодным мостом.

Полноволновый центральный метчик
В перем. Тока Т.Т. = 2,092 x В пост. Тока + 8,08 Iac = Idc x 1,2
В перем. Тока Т.Т. = 2,092 x 5 + 8,08 Iac + 1 х 1,2
Vac C.T. = 18,54 C.T. Iac = 1,2
ВА = 18,54 x 1,2 = 22,5

Возможные варианты трансформаторов:
4-02-6020 UL Крепление для ПК
4-05-4020 Низкопрофильный
4-07-6020 UL Крепление на шасси
4-42-3020 Крепление для ПК VDE
4-44-6020 Крепление для ПК VDE
4-47-3020 Крепление на шасси VDE
4-49-4020 Крепление на шасси VDE

Полноволновой мост
В перем. Тока = 1.046 x Vdc ​​+ 5,23 Iac = Idc x 1,8
В перем. Тока = 1,046 x В пост. Тока + 5,23 Iac = 1 x 1,8
В перем. Тока = 10,46 Iac = 1,8
VA = 10,46x 1,8 = 18,83

Возможные варианты трансформатора:
4-02-6010 UL Крепление для ПК
4-05-4010 Низкопрофильный
4-07-6010 UL Крепление на шасси
4-42-3010 Крепление для ПК VDE
4-47-6010 Крепление для ПК VDE
4-47-3010 Крепление на шасси VDE
4-49-4010 Крепление на шасси VDE

Пример № 2:

Регулируемый линейный источник питания необходим для 12 В постоянного тока при 250 мА постоянного тока с одним первичным напряжением 115 В, а двухполупериодный мост — это схемы выпрямления, которые вы будете использовать.

Полноволновой мост
В перем. Тока = 1,046 x В пост. Тока + 4,04 Iac = Idc x 1,8
В перем. Тока = 1,046 x 12 + 4,04 Iac = 0,25 x 1,8
В пер. Тока = 16,59 Iac = .45
VA = 16,59 x 0,45 = 7,47

Возможные варианты трансформатора:
4-01-5020 UL Крепление для ПК
4-03-4020 UL Крепление для ПК
4-05-3020 UL низкопрофильный кронштейн для ПК
4-06-5020 UL Крепление на шасси
4-41-2020 Крепление для ПК VDE
4-44-5020 Крепление для ПК VDE
4-46-2020 Крепление на шасси VDE

При использовании источников питания убедитесь, что выбранный регулятор имеет достаточный теплоотвод для рассеивания мощности при высокой полной нагрузке линии.

Пример № 3:

Регулируемый линейный источник питания необходим для напряжения ± 15 В постоянного тока при 50 мА с первичной обмоткой 115 В.

Двойной дополнительный:
Vac CT = 2,092 x Vdc ​​x 8,08 Iac = Idc x 1,8
В перем. Тока CT = 2,092 x 15 + 8,08 Iac = 0,050 x 1,8
В перем. Тока CT = 39,46 Iac = 0,090
ВА = 39.46 х 0,090 = 3,55

Возможные варианты трансформатора:
4-01-4036 UL Крепление для ПК
4-03-3040 UL Крепление для ПК
4-05-2040 UL низкопрофильный кронштейн для ПК
4-06-4036 UL Крепление на шасси
4-44-4036 Крепление для ПК VDE

Давайте теперь посмотрим, как регулятор будет рассеивать тепло в худшем случае при высоком напряжении линии (= 130 В) и полной нагрузке.Регулятор отводит избыточную мощность в виде тепла. Регулятор имеет только максимальное количество мощности, которое он может рассеять, прежде чем внутренняя тепловая защита отключит его. Если источник питания 5 В постоянного тока, 1 А может работать при 95 В RMS, регулятор должен будет рассеивать 5,95 Вт при полной нагрузке на линии высокого напряжения (см. Расчет ниже).

Обычное рассеиваемое тепло:

Основы питания

Детали блока питания

В идеале, блок питания постоянного тока (обычно называемый блоком питания), получающий питание от сети переменного тока, выполняет ряд задач:

  • 1.Он изменяет (в большинстве случаев снижает) уровень подачи до значения, подходящего для управления цепью нагрузки.
  • 2. Он вырабатывает постоянный ток от сети (или сети) синусоидального переменного тока.
  • 3. Предотвращает появление переменного тока на выходе источника питания.
  • 4. Это гарантирует, что выходное напряжение поддерживается на постоянном уровне, независимо от изменений:
  • а. Напряжение питания переменного тока на входе питания.
  • г. Ток нагрузки, потребляемый с выхода источника питания.
  • г. Температура.

Для этого базовый блок питания имеет четыре основных этапа, показанных на рис. 1.0.1.

Рис. 1.0.1 Блок-схема источника питания

Источники питания

за последнее время значительно повысили надежность, но, поскольку они должны выдерживать значительно более высокие напряжения и токи, чем любая или большая часть питаемых ими схем, они часто наиболее подвержены отказу любой части электронной системы.

Современные источники питания также значительно усложнились и могут обеспечивать очень стабильные выходные напряжения, контролируемые системами обратной связи.Многие цепи питания также содержат автоматические цепи безопасности для предотвращения опасного перенапряжения или перегрузки по току.

Силовые модули на Learnabout-electronics поэтому знакомят с многими методами, используемыми в современных источниках питания, изучение которых важно для понимания электронных систем.

Предупреждение

Если вы планируете построить или отремонтировать источник питания, особенно тот, который питается от сети (линейного) напряжения, модули источника питания на этом сайте помогут вам понять, сколько часто встречающихся схем работает.Однако вы должны понимать, что напряжения и токи, присутствующие во многих источниках питания, в лучшем случае опасны и могут присутствовать даже при выключенном источнике питания! В худшем случае высокое напряжение, присутствующее в источниках питания, может, и время от времени, УБИТЬ.

Информация, представленная на этом сайте, не только даст вам квалификацию для безопасной работы с источниками питания. Вы также должны обладать навыками и оборудованием для безопасной работы и полностью осознавать местные проблемы здоровья и безопасности.

Пожалуйста, действуйте ответственно, автор этой информации и владельцы этого сайта не несут никакой ответственности или обязательств за любой ущерб или травмы, причиненные людям или любым третьим лицам, имуществу или оборудованию в результате использования или неправильного использования информации, представленной на веб-сайты learnabout-electronics.

Конструкция блока питания постоянного и переменного тока

за 7 этапов

С тех пор, как Никола Тесла выиграл текущую войну и установил переменный ток (AC) в качестве системы передачи и распределения, блоки питания с преобразованием высокого напряжения переменного тока в постоянный ток (DC) низкого напряжения, предназначенные для электронных компоненты были в наличии.До настоящего времени источники питания сначала развивались от громоздких линейных трансформаторов до различных импульсных источников питания с различной топологией. Помимо уменьшенных размеров, они стали более эффективными и надежными.

Выходная мощность обычного источника питания с линейным трансформатором пропорциональна его объему и весу. Линейный трансформатор мощностью около 10 Вт весит около 300 г, но если выходная мощность увеличится до 100 Вт, его вес увеличится в несколько раз до примерно 3-5 кг.Даже перемещение его дома похоже на силовую тренировку, не говоря уже о том, чтобы брать его с собой во время путешествий. Не только это, если требуется базовая функция обратной связи по напряжению, но также необходимо установить линейный регулятор. Этот регулятор потребляет напряжение, превышающее спецификацию, из-за потери тепла. Следовательно, для разумного контроля над повышением температуры необходимо установить большой радиатор, который увеличивает габариты всего блока питания и, следовательно, его вес вдвое. Тем не менее, за исключением некоторых аудиофилов, которые придерживаются чрезвычайно высоких стандартов шума пульсаций, линейные источники питания практически не востребованы.

В настоящее время существует множество сценариев применения и категорий источников питания. Помимо привычных нам домов и офисов, существуют определенные потребности в определенных сферах применения, таких как медицинское обслуживание, тяжелая промышленность, автомобили, лабораторное оборудование, центры обработки данных, приложения 5G, железные дороги, навигация и т. Д. В то же время, в ответ на различные применения были разработаны источники питания, электрические свойства, внешний вид, атмосферостойкость и резервирование которых отвечают конкретным задачам.

Обзоры

Источник питания переменного / постоянного тока

: что мне спроектировать и изготовить, или просто купить?

Что нужно для разработки хорошего источника питания в различных сценариях применения? Используя адаптер питания, наиболее часто используемый в портативных компьютерах (ноутбуках) в качестве примера ниже, давайте посмотрим, как адаптер для ноутбуков предназначен для решения поставленных задач. Давайте также сравним, покупать ли готовый продукт или пытаться спроектировать его и сделать продукт самостоятельно.

Ниже приведен процесс проектирования источников питания переменного / постоянного тока:

  • Планирование и определение основных характеристик электрических свойств
  • Завершите компоновку печатной платы
  • Отбор проб
  • Приварите компоненты из списка BOM к плате
  • Электронная проверка и корректировка свойств
  • Опытное производство и повторная проверка
  • Получите сертификат безопасности для продажи на месте

Возьмем, например, адаптер 120 Вт для ноутбуков, чтобы шаг за шагом объяснить, как проектировать блоки питания переменного / постоянного тока.

Процесс проектирования источников питания переменного / постоянного тока

Шаг 1: Планирование и определение основных характеристик электрических свойств

Вообще говоря, на ранней стадии проектирования источника питания необходимо сначала определить основные электрические характеристики. Ниже адаптер 120 Вт для ноутбуков используется в качестве примера для просмотра элементов, которые необходимо определить, и общих параметров. Они включают в себя входное напряжение и частоту, внешний вид и размеры, рабочую температуру и влажность, входную розетку переменного тока, общую эффективность, энергопотребление в режиме ожидания, выходное напряжение, выходной ток, пиковую нагрузку, защиту (включая OCP / OVP / OTP), различные потребности в ЭМС, и т.п.

Вышеупомянутое сведено в таблицу, чтобы сделать их ясными и легкими для понимания.

Арт. Технические характеристики
Входное напряжение и частота 90 ~ 264 В переменного тока (50/60 Гц)
Внешний вид и размеры 123 * 45 * 67 мм
Рабочая температура и влажность -10 ℃ ~ 40 ℃
Входная розетка переменного тока C14
Выходное напряжение 19 В ± 5%
Выходной ток 6.3A
Общий КПД Следуйте DoE уровня VI и CoC Ver. 5 уровень2
Энергопотребление в режиме ожидания 0,15 Вт
Пиковая нагрузка x 2 (50 мс при периоде 1 с)

Защита (включая OCP / OVP / OTP)

Защелка / икота
Различные требования к ЭМС IEC62368-1

После приблизительного определения электрических характеристик пришло время выбрать подходящую топологию.Для адаптера мощностью 120 Вт , доступные для выбора топологии, как правило, включают обратный ход, ACF (обратный ход с активным зажимом) и HB-LLC. При этом, ввиду ужесточения нормативных требований, Flyback, характеризующийся чрезмерно низкой эффективностью, может не подходить. Хотя остальные (ACF и HB-LLC) достижимы, учитывая, что регулировать эффективность легкой нагрузки ACF сложнее, на этот раз в качестве топологии была выбрана HB-LLC.

После выбора топологии, чтобы обеспечить плавный процесс проектирования, обычно выбирают блок-схему.Сначала примерно различаются схемные структуры различных блоков и названия основных выбранных ИС или компонентов. Более того, учитывая входную мощность> 75 Вт, в соответствии с требованиями ЕС по общему коэффициенту гармонических искажений, следует добавить схему PFC для соответствия требованиям ЕС.

Схема ниже представляет собой блок-схему, построенную в соответствии с вышеупомянутыми электрическими характеристиками и в соответствии с соответствующими компонентами на основе структуры HB-LLC.

Пока еще продолжается фаза планирования, и проектировщики, знакомые со структурой источника питания, могут не показать очевидных различий в выборе между покупкой готового продукта или созданием его самостоятельно. Однако разница между ними постепенно становится очевидной при последующем переходе к фазе реализации.

Шаг 2: Завершите компоновку печатной платы

Как правило, этап компоновки печатной платы следует после подтверждения структуры схемы и выбора компонентов.Что касается того, как разместить все компоненты в соответствии со спецификациями, указанными клиентами, с учетом электрических характеристик и безопасного расстояния, уменьшения трудностей производства и сборки, автоматизации производства, тепловой конвекции и других условий, потребуется профессиональный инженер-компоновщик и подходящее программное обеспечение для работы. Возьмем, к примеру, этот адаптер мощностью 120 Вт. Опытному инженеру-компоновщику потребуется около недели, чтобы завершить первую редакцию печатной платы с нуля.

Шаг 3: Отбор проб

Готовый файл печатной платы затем будет отправлен поставщику печатных плат, специализирующемуся на отборе образцов, для планирования производства образца. Обычно для получения 10-15 образцов печатных плат требуется около 3–5 рабочих дней при затратах на отбор образцов в размере 200 долларов США. Чтобы сократить расходы, игроки, занимающиеся самостоятельным проектированием, могут, конечно, попытаться выполнить травление и промывку, используя плату PCB без покрытия с медной фольгой, которую они приобрели. Тем не менее, учитывая низкую точность, медная проволока легко ломается, и готовый продукт имеет только слой медной фольги (см. Рисунок 1 ниже) без шелкографии верхнего / нижнего слоя (см. Рисунки 2 и 3) в качестве справочного материала для сборки, не говоря уже о необходимость покупать кучу жидкостей для химического травления и задача точно просверливать отверстия в печатной плате одно за другим.В условиях, когда экономится не так много денег и высокая частота отказов, самостоятельное производство печатных плат не рекомендуется.

Рисунок 1: слой медной фольги

Рисунок 2: шелкография верхнего слоя

Рисунок 3: шелкография нижнего слоя

Шаг 4: Приварите компоненты из списка BOM к печатной плате

После того, как печатная плата завершена, все компоненты в списке спецификаций, подготовленном на ранней стадии, вручную привариваются к печатной плате.Обычно последовательность сборки — сначала SMD, а затем DIP. Сначала соберите небольшие компоненты, а затем — большие. Таким образом, вероятность столкновения сборки и отсутствия компонентов в сборке снижается. Однако ручная сборка не может быть полностью без ошибок. Более того, поскольку несколько прототипов собираются вручную, проблемы, возникающие в каждом прототипе, могут различаться. Отсутствующие детали, несоосность, обратная полярность и т. Д. — все это усложняет создание прототипов. В конечном итоге от отбора проб до запуска пройдет не менее недели, не считая времени на подготовку материала на ранней стадии всех компонентов в списке спецификации.На этом этапе, если игроки, занимающиеся самостоятельным проектированием, производят только один прототип, это займет меньше времени, при условии, что время и затраты на подготовку материала на ранней стадии не включены в расчет. Поскольку отдельные игроки имеют ограниченный доступ к ресурсам, они должны покупать все компоненты один за другим в магазине электронных материалов. Подготовка всех материалов для одного прототипа определенно в 2–3 раза дороже, чем покупка готового блока питания.

Шаг 5: Электронная проверка и корректировка свойств

После завершения этапов запуска следует этап проверки и корректировки электронных свойств.Чтобы смоделировать питание систем разных стран и различных условий нагрузки, необходимо множество связанных инструментов и устройств для завершения проверки электронных свойств, включая программируемые источники питания переменного тока и аналоговые электронные фиктивные нагрузки. Конечно, также необходимы высокоточные осциллографы и соответствующие пробники (пробники напряжения / пробники тока / дифференциальные пробники), цифровые измерители, измерители мощности и паяльники с регулируемой температурой. В определенных ситуациях требуется подтверждение слабых сигналов в цепях.В этом случае необходим источник питания постоянного тока. Тем не менее, средний игрок не может себе позволить перечисленные выше инструменты. Чтобы продвинуться дальше, набор анализаторов частотных характеристик стоимостью 1 миллион тайваньских долларов также является необходимым оборудованием для достижения высокой стабильности обратной связи и адекватного запаса по фазе и запасу усиления.

Если вы до сих пор не переключили канал, значит, у вас есть страсть к источникам питания! Чтобы соответствовать вашему усердию, продолжим…

Что касается первого издания образцов, персонал отдела исследований и разработок обычно выполняет проверки, связанные с основными электрическими характеристиками, повышением температуры, электромагнитными помехами и EMS.Однако, поскольку источники питания относятся к аналоговым схемам, часто определенные меры противодействия изменению электрических параметров могут вызвать побочные эффекты. Это приведет к превышению технических характеристик другого электрического свойства или элемента проверки, что может иметь волновой эффект и время и снова и снова создавать проблемы для разработчиков (это явление известно как эффект качелей, при котором предположительно переданный параметр B снова выходит из строя после противодействие параметру A. изменено.Следовательно, то, как правильно справиться с ситуацией, будет зависеть от кропотливой настройки опытным инженером). Следовательно, в дополнение к предварительному тестированию, проводимому персоналом НИОКР, FSP создал отдел проверки, работающий на полную ставку, для проведения проверки одна за другой с точки зрения третьей стороны. Это, в свою очередь, обеспечит качество продукции.

В таблице ниже показаны стандартные блоки питания FSP, требующие проверки.

ОТЧЕТ О КВАЛИФИКАЦИОННОМ ИСПЫТАНИИ

Заказчик: Название режима: FSP120-AAAN3 Проверено: XXX
Отчет Ред .: 01 Этап: B-TEST Проверено: XXX
Спец.Ред .: 1.00 Дата: XXX Утверждено: XXX
Серийный номер: S7510030032

Товар Подпозиция Результаты Страница Комментарии

Входные характеристики

КПД Пройд 1-3
Входной ток Пройд 1-2
Коэффициент мощности Пройд 1-2
Пусковой ток Пройд 4
Время включения Арт. 24
Время поддержки Пройд 25

Выходные характеристики

Регулировка выходного напряжения Пройд 5-6
Пульсация и шум Пройд 7-8
Динамическая нагрузка Пройд 9-13
Перебег Пройд 14-18
П.Время задержки G Пройд 26
Время сбоя P.G Пройд 27
Время подъема Пройд 28

Защиты

Короткое замыкание Пройд 19-20
Сверхток Пройд 21
Перенапряжение Пройд 22-23

Безопасность

Ток утечки Пройд 37
Хай-пот Пройд 38
Сопротивление изоляции Пройд 39
Заземление Пройд 40 IEC60068-2-2

Окружающая среда / надежность

Тепловой Пройд 32-36
Записать Пройд 41
Акустическая эмиссия Пройд 53-55
Цикличное включение / выключение Пройд 56
Низкотемпературное хранение Пройд 57 IEC60068-2-1
Хранение при высоких температурах Пройд 58 IEC60068-2-2
Циклическое изменение температуры и влажности Пройд 59 IEC60068-2-14
Холодный старт Пройд 60 IEC60068-2-1
Напряжение напряжения Пройд 61-74
Вибрация Пройд 75-77 IEC60068-2-64

E.M.C.

Гармоника тока Пройд 29-31 EN61000-3-2
Всплеск освещения Пройд 42-43 EN61000-4-5
ESD Пройд 44-45 EN61000-4-2
EFT Пройд 46-47 EN61000-4-4
Электромагнитная проводимость Пройд 48-52 EN55032
Падения переменного напряжения Пройд 78-79 EN61000-4-11

Проигрыватели с собственной разработкой, как правило, не имеют полных тестовых инструментов и устройств.Поэтому после включения первого выпуска образцов они могут использовать только простой мультиметр для проверки правильности напряжения. В лучших сценариях игроки с самостоятельной конструкцией могут иметь сопротивление нагрузке, которое можно применять для основных тестов на старение и повышение температуры. Однако без более сложных устройств могут возникнуть более сложные проблемы, из-за которых игроки могут застрять и сделать дальнейшую проверку невозможной. Даже при нормальном включении стабильность и срок службы остаются неопределенными. При этом, если все процессы работают и проблемы будут решены, стоит иметь возможность самостоятельно укомплектовать блок питания, даже если это может быть более затратным, чем прямая покупка имеющегося в продаже блока питания.В конце концов, чувство достижения бесценно.

При этом блоки питания собственной разработки подвержены более высокому риску и не рекомендуются для использования с более дорогими продуктами. Если в работе что-то пойдет не так, может выйти из строя блок питания; в тяжелых случаях внутренние электрические устройства будут повреждены, что является скорее потерей, чем прибылью. На данный момент это, вероятно, будет для обычных источников питания собственной разработки, но каждый из сертифицированных FSP источников питания все равно должен будет пройти следующие этапы.

Шаг 6: Пробное производство и повторная проверка

После первоначальной проверки электрических свойств научно-исследовательским персоналом на заводе будет организовано пробное производство. Это делается в надежде найти проблемные области производства до официального начала массового производства. Это снизит количество брака при массовом производстве. С другой стороны, поскольку образцы пробной продукции более полны, чем образцы, полученные вручную, и их количество больше, отдел проверки FSP будет использовать образцы для выполнения проверки.В дополнение к элементам, проверенным вышеупомянутым персоналом, занимающимся исследованиями и разработками, также выполняются дополнительные компоненты, снижающие номинальные характеристики, и открытые короткие проверки. Снижение характеристик компонентов в основном предназначено для определения того, соответствуют ли излишки всех компонентов техническим характеристикам компонентов во время работы на мощности. Если есть избыток, он будет доведен до сведения сотрудников отдела НИОКР для внесения улучшений. Открытое короткое замыкание в основном предназначено для проверки того, какие реакции возникают в источнике питания при выходе из строя какого-либо компонента, возникновении разомкнутой цепи или короткого замыкания в отдельном устройстве.Поскольку блоки питания подключены к сети, теоретически энергия неисчерпаема. Отказ источника питания, вызывающий выделение тепла, дыма или даже искр, может привести к серьезным несчастным случаям, связанным с безопасностью. Такие исходы совершенно недопустимы. Таким образом, открытое короткое замыкание имитирует все возможные неблагоприятные результаты, чтобы исключить возможные опасности до того, как они произойдут. Поскольку два вышеупомянутых теста предназначены для проверки каждого компонента источника питания, проверка занимает много времени. Кроме того, имитация открытого короткого состояния часто приводит к повреждению источника питания.Таким образом, требуются многочисленные образцы, которые не могут быть заполнены одним только персоналом НИОКР, а специальным подразделением по проверке.

Шаг 7: Получите сертификат безопасности для продажи на месте

Как упоминалось выше, при отказе источника питания могут возникнуть серьезные проблемы с безопасностью. Источники питания также могут иметь разные соображения безопасности при использовании в разных местах. Хотя многие международные организации, такие как IEEE (Институт инженеров по электротехнике и радиоэлектронике), установили рекомендуемые спецификации, учитывая различное сетевое напряжение в разных странах, розетка переменного тока и определение безопасности различаются от страны к стране.В конце концов, страны по всему миру разработали свои собственные наборы критериев. Таким образом, адаптеры для ноутбуков, которые могут быть проданы и использованы в любой стране мира, должны быть протестированы с помощью профессиональной лаборатории и в соответствии с требованиями страны, в которой они находятся. Наконец, необходимо наличие сертификата безопасности, выданного этой страной. быть полученными для продуктов, которые будут разрешены для продажи на местном уровне, и это всего лишь одна страна. Если необходимо принять во внимание универсальное использование, нам нужно будет подавать заявки на сертификат безопасности от каждой страны по очереди.Безусловно, это будет стоить немалых денег. Кроме того, такая сертификация безопасности является обязательным требованием, имеющим юридическую силу. Несоблюдение приведет к штрафу, и товар больше не будет продаваться.

Заключение

В настоящее время можно описать основные этапы квалифицированного источника питания с нуля. Конечно, многие детали невозможно описать подробно. Многочисленные формы сигналов и подтверждения данных испытаний, альтернативные проверки материалов, особые правила, особые требования к окружающей среде, корректировки новых материалов и т. Д.добавить непреодолимые неизвестности к сложности, связанной с проектированием мощности.

Возвращаясь к вопросу индивидуально разработанных источников питания, помимо их более высокой стоимости по сравнению с коммерчески доступными источниками питания, личные усилия в формулировании спецификации / выборе структуры схемы / выборе модели трансформатора / конструкции обмотки / чертеже схемы / компоновке печатной платы / закупке материалов / сборка прототипа / и, наконец, отладка электрических свойств не только будет стоить денег, но также потребует много времени и энергии для завершения всего процесса.В дополнение к личной компетентности необходим значительный энтузиазм, не говоря уже об отсутствии возможности позволить себе дорогостоящие инструменты и устройства для проверки электрических свойств и сложных процессов проверки качества. Это, в свою очередь, приведет к высокой ненадежности готовой продукции.

Ясно, что блок питания DIY, который имеет низкое соотношение цены и качества, в конце концов, не такая уж и хорошая идея. С таким же успехом это может быть вызов для студентов или самореализующихся.

Статьи по теме: < Введение в источники питания переменного и постоянного тока >

Как спроектировать простую схему источника питания

В этом посте мы пытаемся понять, как работает базовая схема источника питания и как проектировать регулируемые и нерегулируемые схемы питания.

НЕРЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ

Источник питания с одной шиной показан на диаграмме ниже. Он состоит из трех отдельных частей: силового трансформатора, двухполупериодного мостового выпрямителя и конденсатора фильтра.

В целях безопасности предохранитель должен быть установлен на пути провода под напряжением к трансформатору. Предлагаемые напряжения представляют собой напряжения переменного тока, измеренные в вольтах (среднеквадратичное значение). Это может быть аналогичное напряжение «постоянного нагрева», и оно сопоставимо с 0,707 В (размах).

Выходной сигнал трансформатора составляет 6 В RMS, и это также может быть уровень напряжения «под нагрузкой». Если трансформатор просто не нагружен, это напряжение может увеличиться примерно на 25%.

Изменение выходного напряжения под нагрузкой и без нагрузки называется «регулировкой» трансформатора.Трансформаторы обладают номинальной мощностью, указанной в ВА. Трансформатор 10 ВА может выдавать 10 Вт мощности через вторичный выход.

Переменное напряжение через вторичную обмотку трансформатора полностью выпрямляется через диодный мост D1 — 4, после чего фильтруется конденсатором C1. Без какой-либо нагрузки на источник питания выходное (постоянное) напряжение, вероятно, будет примерно 11 В.

Однако, когда ему показана резистивная нагрузка, напряжение падает и появляется пульсация напряжения, что является результатом разряда конденсатора нагрузкой.

РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ

Два транзистора и источник опорного напряжения позволяют создавать регулируемый источник питания.

Транзистор Q1 используется в качестве элемента управления мощностью, поэтому его необходимо установить на радиаторе. Q2 обеспечивает неблагоприятную обратную связь и, таким образом, позволяет сгладить любые изменения на выходе, вызванные изменяющимися условиями нагрузки или вариантами в нерегулируемой направляющей.

Порядок работы схемы следующий. Ток проходит через Q2 и D5 и создает вокруг D5 напряжение 5 В1.База Q2 присоединена к выходу с помощью набора резисторов R2, 3, 4 и RV1.

Если выходное напряжение увеличивается, через Q2 проходит больше тока. Это приводит к падению напряжения на базе Q1, что часто снижает напряжение на выходе.

Следовательно, регулируется выходное напряжение. RV1 используется для создания выходного напряжения до + 9В. В случае, если необходимо непреднамеренно оторвать стеклоочиститель RV1, выходное напряжение может немедленно увеличиться до напряжения нерегулируемой шины.

Чтобы избежать этого, R3 обеспечивает длительный путь постоянного тока к базе Q2. Конденсатор C2 помогает улучшить регулирование при быстром изменении условий нагрузки.

Как работают блоки питания | ОРЕЛ

Блоки питания

составляют основу всех наших электронных устройств и обеспечивают единообразную схему работы там, где это больше всего необходимо. В современной электронике, такой как компьютеры и другие чувствительные к данным устройства, питание должно работать безупречно, а единичный отказ может означать потерю работы и данных.Но, как разработчики электроники, мы обычно оставляем наши соображения по поводу источника питания на потом, часто беря заранее подготовленный блок схемы, который, как мы знаем, уже работает. В конце концов, нам просто нужен выход 5 В, верно? Оказывается, под капотом творится еще много всего.

Источники питания от 10000 футов

Большинство источников питания получают питание от сети переменного тока и преобразуют его в постоянный ток, пригодный для использования в электронных устройствах. Во время этого процесса источник питания выполняет несколько ролей, в том числе:

  • Преобразование переменного тока из сети в устойчивый постоянный ток
  • Предотвращение воздействия переменного тока на выход источника постоянного тока
  • Поддержание выходного напряжения на постоянном уровне независимо от изменений входного напряжения

Чтобы осуществить все это преобразование, типичный источник питания будет использовать несколько общих компонентов, включая трансформатор, выпрямитель, фильтр и регулятор.

Процесс преобразования переменного тока в постоянный начинается с переменного тока, который возникает в розетке в виде синусоидальной волны. Этот сигнал переменного тока колеблется между отрицательным и положительным напряжением до шестидесяти раз в секунду.

Сигнал синусоидальной формы переменного тока. (Источник изображения)

Напряжение переменного тока сначала понижается трансформатором, чтобы удовлетворить требованиям напряжения источника питания. После понижения напряжения выпрямитель превратит синусоидальную форму волны переменного тока в набор положительных впадин и пиков.

Выпрямление удаляет отрицательную сторону сигнала переменного тока, оставляя только положительный выход. (Источник изображения)

На этом этапе все еще есть колебания в форме волны переменного тока, поэтому для сглаживания переменного напряжения в пригодный для использования источник постоянного тока используется фильтр.

Применение фильтра с резервуарным конденсатором устраняет агрессивные пики и впадины в нашей форме волны. (Источник изображения)

Теперь, когда переменный ток преобразован в пригодный для использования постоянный ток, некоторые источники питания будут дополнительно устранять любые колебания в форме волны с помощью регулятора.Этот регулятор будет обеспечивать стабильный выход постоянного тока независимо от изменений входного переменного напряжения.

Это краткий обзор процесса. Независимо от того, какой блок питания вы смотрите, в нем всегда будет как минимум три основных компонента — трансформатор, выпрямитель и фильтр. Регуляторы могут использоваться или не использоваться в зависимости от того, является ли источник питания нерегулируемым или регулируемым (подробнее об этом позже).

Детали блока питания

Трансформатор

В качестве первой линии защиты трансформатор выполняет работу по понижению входящего переменного тока от сети до уровня напряжения, с которым может справиться нагрузка источника питания.Трансформаторы также могут повышать напряжение, но в этой статье мы сосредоточимся на тех, которые понижают напряжение для низковольтных электронных устройств постоянного тока.

Внутри трансформатора находятся две обмотки катушки, физически отделенные друг от друга. Первая обмотка принимает переменный ток от сети, а затем электромагнитно соединяется со второй обмоткой, чтобы провести необходимое переменное напряжение во вторичной обмотке. Сохраняя эти две обмотки физически разделенными, трансформатор может изолировать напряжение сети переменного тока от выхода цепи питания.

Две физически разделенные катушки в трансформаторе проводят через электромагнитную связь. (Источник изображения)

Выпрямитель

После того, как переменный ток понижается трансформатором, выпрямитель должен преобразовать форму волны переменного тока в необработанный формат постоянного тока. Это достигается одним или несколькими диодами в полуволновой, полноволновой или мостовой конфигурации.

Полуволновое выпрямление

В этой конфигурации один выпрямительный диод используется для извлечения постоянного напряжения из половины цикла формы сигнала переменного тока.В результате у источника питания остается половина выходного напряжения, которое он мог бы получить от полной формы волны переменного тока при Vpk x 0,318. Half Wave — это самая дешевая конфигурация для проектирования, она идеальна для не требовательного использования энергии и обычно оставляет наибольшую пульсацию выходного напряжения.

Полуволновое выпрямление в цепи и форме выходного сигнала. (Источник изображения)

Полноволновое выпрямление

В этой конфигурации два выпрямительных диода используются для выделения двух полупериодов входящего сигнала переменного тока.Этот процесс обеспечит двойное выходное напряжение полуволнового выпрямления при Vpk x 0,637. Хотя эта конфигурация более дорогая в разработке, чем полуволновая, поскольку для нее требуется трансформатор с центральным отводом, она имеет дополнительное преимущество в виде улучшенного сглаживания пульсаций переменного тока.

Полноволновое выпрямление в цепи и форме выходного сигнала. (Источник изображения)

Мостовое выпрямление

В этой конфигурации используются четыре диода, расположенных в виде моста для достижения полноволнового выпрямления без использования трансформатора с центральным отводом.Это обеспечит то же выходное напряжение, что и Full Wave при Vpk x 0,637 с диодами, которым требуется только половина их обратного напряжения пробоя. В течение каждого полупериода два противоположных диода проводят ток, что обеспечивает полную форму волны переменного тока в конце полного цикла.

Мостовое выпрямление в цепи и форме выходного сигнала, как для полной волны. (Источник изображения)

Фильтр

Теперь, когда у нас преобразовано напряжение переменного тока, задача фильтра устраняет любые пульсации переменного тока в выходном напряжении, оставляя плавное постоянное напряжение.Зачем устранять рябь? Если они попадут на выход источника питания, они могут повредить нагрузку и потенциально вывести из строя всю вашу схему. В фильтрах используются два основных компонента: накопительный конденсатор и фильтр нижних частот.

Резервуарный конденсатор

Электролитический конденсатор большой емкости используется для временного хранения выходного тока, подаваемого выпрямительным диодом. При зарядке этот конденсатор может обеспечивать выходной постоянный ток в промежутках времени, когда выпрямительный диод не проводит ток.Это позволяет источнику питания поддерживать стабильный выход постоянного тока на протяжении циклов включения / выключения источника питания.

Здесь вы можете увидеть разницу в выходном сигнале с крышкой резервуара и без нее. (Источник изображения)

Фильтр низких частот

Вы можете сделать схему источника питания только с емкостным конденсатором, но добавление фильтра нижних частот дополнительно устраняет пульсации переменного тока, которые проходят через емкостной конденсатор. В большинстве базовых источников питания вы не найдете фильтров нижних частот, поскольку для них требуются дорогие индукторы с ламинированным или тороидальным сердечником.Однако в современной электронике с импульсным источником питания вы обнаружите, что фильтры нижних частот используются для устранения пульсаций переменного тока на более высоких частотах.

При добавлении в схему источника питания емкостного конденсатора и фильтра нижних частот можно удалить более 95% пульсаций переменного тока. Это позволит вам поддерживать стабильное и чистое выходное напряжение, которое соответствует пику исходной входной волны переменного тока.

Регулятор

В регулируемых источниках питания будет добавлен регулятор для дальнейшего сглаживания постоянного напряжения и обеспечения стабильного выходного сигнала независимо от изменений входных уровней.Это улучшенное регулирование также увеличивает сложность и стоимость питания схемы. Вы найдете регуляторы в двух различных конфигурациях: в виде шунтирующего регулятора или последовательного регулятора.

Шунтирующий регулятор

В этой конфигурации регулятор подключен параллельно нагрузке, что обеспечивает постоянное протекание тока через регулятор до попадания в нагрузку. Если ток нагрузки увеличивается или уменьшается, шунтирующий регулятор будет либо уменьшать, либо увеличивать свой ток, чтобы поддерживать постоянное напряжение и ток питания.

Шунтовые регуляторы подключаются параллельно нагрузке. (Источник изображения)

Регулятор серии

В этой конфигурации последовательный регулятор подключен последовательно с нагрузкой, которая обеспечивает переменное сопротивление. Этот регулятор будет последовательно измерять входящее напряжение нагрузки, используя систему отрицательной обратной связи. Если образец напряжения повышается или понижается, то последовательный регулятор либо понижает, либо увеличивает свое сопротивление, позволяя большему или меньшему току проходить через нагрузку.

Регуляторы серии

добавляют переменное сопротивление к управляющему току. (Источник изображения)

Типы источников питания

В типичных источниках питания переменного и постоянного тока используются некоторые или все вышеперечисленные компоненты в своей схеме в качестве нерегулируемого или регулируемого источника питания. Тип источника питания, который вы используете в своем электронном проекте, зависит от уникальных требований вашего дизайна.

Нерегулируемые блоки питания

Эти блоки питания не имеют регулятора напряжения и выдают только заданное напряжение при максимальном выходном токе.Здесь выход постоянного напряжения связан с внутренним трансформатором напряжения, и выходное напряжение будет увеличиваться или уменьшаться в зависимости от токового выхода нагрузки. Эти блоки питания известны своей прочностью и недорого, но не обеспечивают достаточной точности для чувствительных к мощности электронных устройств.

Нерегулируемые блоки питания

содержат все стандартные компоненты, кроме регулятора.

Регулируемые блоки питания

Регулируемые блоки питания включают в себя все основные компоненты нерегулируемого источника питания с добавлением регулятора напряжения.Следует отметить три конфигурации блока питания регулятора:

Линейный источник питания . В этой конфигурации используется полупроводниковый транзистор или полевой транзистор для управления выходными напряжениями в определенном диапазоне. Хотя эти блоки питания не самые эффективные и выделяют много тепла, они известны своей надежностью, минимальным электрическим шумом и широкой коммерческой доступностью.

Типовая схема линейного питания. (Источник изображения)

Импульсный источник питания .В этой конфигурации используется полупроводниковый транзистор или полевой транзистор, который включается / выключается для подачи напряжения на выходной накопительный конденсатор. Режимы переключения обычно меньше и легче, чем линейные источники питания, предлагают большой выходной диапазон и более эффективны. Однако они требуют сложной схемы, генерируют больше шума и требуют подавления помех для своих высокочастотных операций.

Здесь мы видим добавленную сложность в схеме переключения режимов. (Источник изображения)

Батарейный блок питания .Эта конфигурация действует как накопитель энергии и обеспечивает постоянный поток постоянного тока к электронному устройству. По сравнению с линейными и импульсными источниками питания, батареи являются наименее эффективным методом питания устройств, и их также трудно сопоставить с правильным напряжением в нагрузке. Тем не менее, батареи имеют то преимущество, что они служат источником питания, когда сеть переменного тока недоступна, и не создают электрических помех.

При выборе источника питания для вашего следующего проекта электроники обратите внимание на следующие преимущества и недостатки нерегулируемых и регулируемых источников питания:

Нерегулируемый Регулируемый
Преимущества:
  • Простая схема
  • Надежный и экономичный

Недостатки

  • Напряжение зависит от тока нагрузки
  • Идеально подходит для устройств, работающих с фиксированным выходным током / напряжением
Преимущества
  • Постоянное напряжение
  • Более высокое качество
  • Лучшая фильтрация шума
  • Регулируемое выходное напряжение / ток

Недостатки

  • Требуется более сложная схема
  • Дороже

При выборе между линейным, импульсным или аккумуляторным блоком питания учитывайте следующее:

Регулируемые блоки питания
Линейный Режим переключения Аккумулятор
Преимущества
  • Стабильно и надежно
  • Меньше электрических шумов
  • Хорошая регулировка линии и нагрузки

Недостатки

  • Низкий КПД <50%
  • Требуются радиаторы большего размера
  • Крупные компоненты и тяжелые
  • Дорого
Преимущества
  • Маленький размер и легче
  • Широкий диапазон входного напряжения
  • Высокая эффективность
  • Дешевле по сравнению с линейным

Недостатки

  • Требуется более сложная схема
  • Может загрязнять сеть переменного тока
  • Более высокий уровень шума
Преимущества
  • Не требует доступа к сети переменного тока
  • Портативный источник питания

Недостатки

  • Фиксированное входное напряжение
  • Фиксированный срок службы
  • Выходное напряжение падает из-за использования резервов энергии

Технические характеристики блока питания, о которых необходимо знать

Выбирая готовую схему источника питания вместо того, чтобы разрабатывать свою собственную, необходимо знать несколько спецификаций.К ним относятся:

  • Выходной ток . Это максимальный ток, который блок питания может подавать на нагрузку.
  • Регулятор нагрузки . Это определяет, насколько хорошо регулятор может поддерживать постоянный выходной сигнал при изменении тока нагрузки, обычно измеряемого в милливольтах (мВ) или максимальном выходном напряжении.
  • Шум и пульсация . Они измеряют нежелательные электронные помехи и колебания напряжения при преобразовании переменного тока в постоянный, обычно измеряемые в размахе напряжения для импульсных источников питания.
  • Защита от перегрузки . Это функция безопасности, которая отключит источник питания в случае короткого замыкания или перегрузки по току.
  • Эффективность . Это соотношение мощности, преобразованной из сети переменного тока в постоянный. Высокоэффективные системы, такие как импульсные блоки питания, могут достичь 80% -ного КПД, снизить нагрев и сэкономить энергию.

Последовательное преобразование

Источники питания

обеспечивают стабильную основу питания всех наших электронных устройств, будь то ваш компьютер, смартфон или телевизор, этот список можно продолжать.Независимо от того, какой тип источника питания вы используете или разрабатываете, все они включают в себя несколько основных компонентов для преобразования сети переменного тока в постоянный постоянный ток (DC). Трансформатор сначала понижает напряжение, которое затем выпрямляется в необработанный формат постоянного тока. Затем он фильтруется и регулируется, чтобы обеспечить плавное постоянное напряжение для стабильного выходного сигнала. При разработке собственной схемы источника питания рассчитывайте использовать эти основные компоненты вместе с уникальными характеристиками мощности для вашей конструкции, чтобы обеспечить постоянный выход постоянного тока в любое время дня.

Нужен разъем питания для вашего будущего проекта по разработке электроники? У нас есть масса бесплатных библиотек! Попробуйте Autodesk EAGLE бесплатно сегодня!

6 Простая схема импульсного источника питания

Вы когда-нибудь задумывались, что означает «переключатель» в импульсном источнике питания? Если быть точным, что такое «включение» и «выключение»?

Как следует из названия, импульсный источник питания использует электронные переключающие устройства (такие как транзисторы, полевые транзисторы, тиристоры и т. Д.).) для непрерывного включения и выключения электронных переключающих устройств через цепь управления. Что произошло дальше? Затем позвольте электронному коммутационному устройству импульсно модулировать входное напряжение для реализации преобразования постоянного / переменного тока, постоянного / постоянного напряжения, а также регулируемого выходного напряжения и автоматической стабилизации напряжения.

После того, как вы поймете основное определение импульсного источника питания, вы, возможно, захотите дополнительно изучить его применение и углубить свое понимание. Поэтому в этом блоге мы познакомим вас с 6 простыми схемами проектирования импульсных цепей питания.

Конечно, если у вас возникнут какие-либо вопросы по принципиальной схеме, оставьте свои вопросы в комментарии, и мы дадим вам восторженные и профессиональные ответы.

Видео об основах импульсных источников питания

Каталог

I Что такое импульсный источник питания

Импульсный источник питания (SMPS), также известный как импульсный источник питания и импульсный преобразователь, представляет собой высокочастотное устройство преобразования электрической энергии и тип источника питания.Его функция состоит в том, чтобы преобразовать уровень напряжения в напряжение или ток, требуемый пользователем, с помощью различных архитектурных форм.

Имя

Импульсный источник питания

Природа

Использовать современные технологии силовой электроники

Метод

Широтно-импульсная модуляция

Характеристики

Небольшой размер, легкий вес и высокая эффективность

II 6 Схемы импульсных источников питания

2.1 Простая схема импульсного источника питания

Эта схема несложна и может нормально работать без особых требований. В основном обращайте внимание на следующие моменты:

  1. Отрегулируйте C3 и R5 так, чтобы частота колебаний составляла 30–45 кГц;
  2. Требуется стабилизация выходного напряжения;
  3. Выходной ток может достигать 500 мА.
  4. Эффективная мощность 8 Вт, КПД 87%.

2.2 Импульсная цепь питания 24 В

Импульсный источник питания

24 В — это импульсный источник питания с высокочастотным инвертором. Трубка переключателя управляется схемой для проведения высокоскоростного прохода и отсечки, преобразования постоянного тока в высокочастотный переменный ток и подачи его на трансформатор для преобразования, тем самым генерируя требуемый один или несколько наборов напряжений.

Принцип работы импульсного источника питания 24 В:

  1. Входная мощность переменного тока выпрямляется и преобразуется в постоянный;
  2. Управляйте переключающей трубкой с помощью высокочастотного сигнала ШИМ (широтно-импульсной модуляции) и добавляйте этот постоянный ток к первичной обмотке переключающего трансформатора;
  3. Во вторичной обмотке коммутирующего трансформатора индуцируется высокочастотное напряжение, которое выпрямляется, фильтруется и подается на нагрузку;
  4. Выходная часть возвращается в схему управления через определенную схему для управления рабочим циклом ШИМ для достижения цели стабильного выхода.

2.3 Несимметричная прямая импульсная цепь питания

Типовая схема несимметричного импульсного источника питания прямого включения показана на рисунке ниже. Эта схема аналогична по форме несимметричной схеме обратного хода, но условия работы другие:

Когда переключающая трубка VT1 включена, VD2 также включен. В это время сеть передает энергию нагрузке, а катушка индуктивности L фильтра накапливает энергию;

Когда переключатель VT1 выключен, катушка индуктивности L продолжает отдавать энергию нагрузке через диод свободного хода VD3.

Также в цепи присутствует прижимная катушка и диод VD2. Диод может ограничивать максимальное напряжение на переключающей трубке VT1 в два раза выше напряжения источника питания. Чтобы соответствовать условию сброса магнитного сердечника, то есть время установления магнитного потока и время сброса должны быть одинаковыми, поэтому коэффициент заполнения импульса в цепи не может превышать 50%.

Поскольку эта схема передает энергию нагрузке через трансформатор при включении переключающей трубки VT1, диапазон выходной мощности велик, и она может выходить мощностью 50-200 Вт.Однако практических применений этой схемы немного. Причина в том, что используемый в этой схеме трансформатор имеет сложную конструкцию и большой объем.

2,4 Двухтактная импульсная схема питания

Типовая схема двухтактного импульсного источника питания показана на рисунке ниже. Это двусторонняя схема преобразования, и магнитный сердечник высокочастотного трансформатора работает по обе стороны от петли гистерезиса. В схеме используются две коммутационные лампы VT1 и VT2.Две переключающие лампы включаются и выключаются поочередно под управлением прямоугольного сигнала внешнего возбуждения. Напряжение прямоугольной формы получается во вторичной группе трансформатора T, которое выпрямляется и фильтруется до необходимого постоянного напряжения.

Преимущество этой схемы состоит в том, что две переключающие лампы легко управлять, а главный недостаток состоит в том, что выдерживаемое напряжение переключающих трубок должно в два раза превышать пиковое напряжение схемы. Выходная мощность схемы относительно велика, обычно в пределах 100-500 Вт.

2,5 Схема развязки обратной связи по мощности

В импульсном источнике питания схема развязки обратной связи по мощности состоит из оптопары, такой как PC817, и шунтирующего стабилизатора TL431, и ее типичное применение показано на следующем рисунке. Когда выходное напряжение колеблется, измеренное напряжение, полученное после резистивного делителя, сравнивается с опорным напряжением запрещенной зоны 2,5 В в TL431, и на катоде формируется напряжение ошибки. Впоследствии рабочий ток светодиода в оптическом соединительном устройстве изменяется соответствующим образом.Таким образом, текущий размер управляющего вывода TOPSwitch может быть изменен с помощью оптического соединительного устройства, а затем может быть отрегулирован выходной коэффициент заполнения, так что Uo может оставаться неизменным для достижения цели стабилизации напряжения.

Роль и выбор основных компонентов в цепи обратной связи: Основная роль R1R4R5 заключается в работе с TL431 и устройством оптической связи. Среди них R1 — токоограничивающий резистор оптопары, а R4 и R5 — резисторы делителя напряжения TL431, которые обеспечивают необходимый рабочий ток для полной защиты TL431.

2,6 Инверторно-выпрямительная цепь

Схема использует микросхему генератора UC3842 в качестве ядра для формирования схемы инвертора и выпрямителя. UC3842 — это высокопроизводительная микросхема широтно-импульсного модулятора с несимметричным выходным током. Источник питания переменного тока 220 В вводится через фильтр синфазных помех L1, который может лучше подавлять высокочастотные помехи от электросети и излучение от самого источника питания. Напряжение переменного тока фильтруется схемой мостового выпрямителя и конденсатором C4, чтобы получить нестабильное постоянное напряжение около 280 В, которое служит схемой инвертора, состоящей из колеблющегося кристалла U1, переключающей трубки Q1, переключающего трансформатора T1 и других компонентов.

III Заключение

Выше представлены 6 простых схем импульсных источников питания, которые мы подготовили для вас.

Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *