+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Конденсаторная сварка своими руками: схема и описание


Контактная или конденсаторная сварка является одним из самых распространенных видов соединения изделий и деталей из металла. Ее широко применяют не только в промышленных, но и в домашних условиях. Именно поэтому вопрос о сборке аппарата конденсаторной сварки своими руками остается актуальным и интересует многих умельцев.

Как работает конденсаторная сварка

Сварочный аппарат конденсаторной сварки представляет собой корпус, оснащенный выступающими рабочими клешнями. На каждой имеются электроды. Соединение прутков и металлических пластин происходит за счет расположения электродов напротив друг друга.

Технология конденсаторной сварки

Процесс начинается с зажима свариваемых заготовок между клешнями. После включения аппарата через электроды и свариваемые детали проводят ток с большой силой. В результате в нужном месте происходит образование жидкого ядра, разрушение решетки молекул и их соединение. Толщина сварочного шва зависит от мощности тока и используемых электродов. Материал расплавляется и сжимается.

Конденсаторную точечную сварку успешно применяют в бытовых, домашних условиях. Благодаря трансформатору можно преобразовывать ток из сети, понижая и усиливая его до необходимых параметров. Аппарат создает импульс тока, длительность которого всего 0,1-1,5 сек. За это короткое время образуется точка, скрепляющая две металлические части. Образовавшийся бугорок зачищают щеткой или болгаркой, придавая изделию эстетичный вид.

Преимущества

Самостоятельная конденсаторная сварка известна целым рядом преимуществ:

Принципиальная схема конденсаторной сварки

  • возможно соединение мелких и тонких элементов;
  • быстрое выполнение соединения;
  • надежность соединительного шва;
  • аккуратность шва;
  • соединение разных видов металлов;
  • экономичность;
  • доступность для начинающих мастеров.

При помощи точечной или конденсаторной сварки можно соединять очень тонкие детали без перегрева и подрезов.

Аппарат сконструирован таким образом, что процесс не занимает много времени. Создается достаточная сила электрического тока, надежно соединяющая детали.

Шов выглядит аккуратно, без верхнего слоя наплавленного материла. Для улучшения внешнего вида изделия достаточно зачистить место сплава щеткой. Соединять можно даже драгоценные металлы. Для выполнения сплава нет необходимости использовать присадочные материалы, что снижает стоимость метода. Обучение и выполнение сварочных работ доступно широкому кругу работников.

Схема самостоятельной сборки аппарата

Составляющие конденсаторной сварки достаточно просты, поэтому агрегат можно собрать самостоятельно, следуя определенной схеме. Основным элементом является трансформатор, способный значительно понижать силу электрического тока из бытовой сети. Оптимальными параметрами являются цифры – 10-12 V. При этом необходимо добиться силы электричества в 300-500 А. С такими показателями возможно выполнение конденсаторной сварки в домашних условиях.

Схема сварочного конденсаторного аппарата

Работа аппарата основана на преобразовании используемого напряжения и его передаче на накопители. Накопителями в данном случае являются конденсаторы, емкость которых должна быть в пределах 46 мкФ. Конструкция оснащается диодным мостом и диодами в количестве две штуки. Управление сварочным процессом происходит при помощи реле РЭК 74. Это устройство подает ток на встроенные электроды, таким способом осуществляя процесс.

Конденсаторный аппарат должен содержать специальный автомат, который будет срабатывать во время перегрузки. Для предотвращения перегрева используется кулер, который встраивают сзади конденсаторной конструкции. На клешнях устанавливают пусковую кнопку, с помощью которой осуществляют запуск сварочного процесса. Сварщик зажимает соединяемые стороны изделия между клешнями, совершает конденсаторную сварку точечным способом.

Сварочный процесс

Процесс сварки конденсаторным агрегатом начинается с подготовки изделий. Стороны соединения очищают от всех имеющихся загрязнений. Если этого не сделать, шов может получиться недостаточно надежным.

Процесс сварки конденсаторным аппаратом

Подготовленные элементы соединяют в нужном месте, помещают между двумя электродами, один из которых подвижный, а другой находится в неподвижном состоянии. С помощью клешней с электродами металлические свариваемые детали сдавливаются с силой. После нажатия на кнопку пуска происходит подача электрического разряда.

В том месте, где соединяются электроды, образуется сварочный шов. Клешни следует разжимать через некоторое время – необходимо дать остыть и кристаллизоваться сварочному соединению под действием давления. Затем детали перемещают для соединения следующего участка. Для удобства проведения конденсаторной сварки необходимо обзавестись пассатижами, наждачной бумагой, отверткой, ножом и болгаркой.

Контактный блок и последовательность действий

Самодельное устройство для конденсаторной сварки

Блок для проведения конденсаторной сварки своими руками можно собрать в домашних условиях. Многие используют в качестве трансформатора элемент от микроволновки. Чтобы прибор справлялся со своими функциями – снижение напряжения и увеличение ампер – первичный слой обмотки удаляют. Вместо нее заводят кабель для сварки. Пространства хватает для выполнения трех витков.

Выполнив основу, приступают к установке реле и диодного моста. Все детали необходимо монтировать в непосредственной близости от трансформатора. Блок укомплектовывают автоматом. К задней стенке крепят кулер или маленький вентилятор, необходимый для охлаждения агрегата. Для расположения элементов советуют использовать диэлектрическую основу.

Рабочие органы изготавливают из профиля или бруса. Нижняя деталь с электродом неподвижна. Верхнюю деталь фиксируют с помощью стержня между стойками, она является подвижной. Верхний элемент находится в поднятом положении, в котором его фиксирует прикрепленная пружина.

Конденсаторная сварка своими руками — схема

Толщина медных электродов должна соответствовать толщине кабеля для сварки вторичной обмотки. Их крепят на клешни болтовым соединением. Сюда же подсоединяют клеммы от трансформатора. Кнопку для запуска конденсаторного сварочного процесса выводят на корпус так, чтобы удобно было ее включить.

На первом этапе работы детали очищают от посторонних частиц. Затем их соединяют и помещают в сварочное поле, образуемое электродами. Кнопкой запускают аппарат, подавая импульс. По завершении контакта электроды раздвигают.

Видео по теме: Самодельная конденсаторная сварка


Конденсаторная сварка своими руками схема и описание

Устройство, которые мы представим в этой статье носит название «конденсаторная сварка». Этой сваркой можно соединять очень мелкие или тонкие предметы и детали. Ее отличие от стандартной точечной сварки состоит в том, что нагрев места соединения деталей осуществляется за счет энергии разряда конденсаторов.


Куча электронных увлекательных штучек в этом китайском магазине .

Удобство этого вида конструкций в относительной простоте электрической схемы, которую можно собрать своими руками. Модель, представленная на видео, питается от сварочного трансформатора, переменный ток преобразуется выпрямителем. Напряжение составляет 70 вольт. Ток поступает на емкостное сопротивление, которое при необходимости можно заменить обычным сопротивлением, равным 10 кОм.

После сопротивления ток поступает на конденсаторную батарею общей емкостью 30000 Мкф. Накопленный заряд на конденсаторах высвобождается через тиристор.


Конденсаторная точечная сварка. Собираем аппарат своими руками

Далее посмотрите, как работает точечная конденсаторная сварка.

После включения питания загорается лампочка, которая в данном случае играет роль индикатора напряжения. Когда лампочка перестает гореть, это означает, что конденсаторная батарея полностью заряжена. После этого сварочный аппарат готов к работе. Включение разряда осуществляется нажатием на кнопку, встроенной в держатель. Такая сварка позволяет приваривать не только тонкие пластинки, но и шпильки разного диаметра к металлическим поверхностям. Для этого предусмотрена возможность удержания шпильки в держателе.


Сварочный аппарат своими руками

Приветствую всех читателей сайта « Вольт-Индекс », иногда делая те или иные проекты на основы литиевых аккумуляторов, многие читатели часто критикуют, что литиевые батарейки нельзя паять. Это конечно так, но если паять очень быстро и не нагревать чрезмерно – можно. Входе этой статьи мы постараемся сделать аппарат для контактной сварки конденсаторного типа.

На самом деле в интернете очень много вариантов построения таких аппаратов, но мы остановимся на самом простом и безотказном. Это бестрансформаторная или ударная контактная сварка, чтобы потом не путаться хочу сказать, что трансформатор на нашей схеме.

Все же есть, он предназначен для зарядки конденсатора. Но есть сварочные аппараты, где емкость конденсатора разряжается на месте сварки не напрямую, а через разделительный трансформатор.

Такие аппараты называют трансформаторными.

В отличие от обычных аппаратов контактной сварки, у которых процесс происходит нагреванием двух металлов, конденсаторная сварка не нагревает деталь из-за очень кратковременного процесса сварки. Это особенно хорошо для пайки аккумуляторов.

В схеме S3 подключается на массу. В архиве на схеме, все исправлено.

Напряжение с сетевого трансформатора выпрямляется двухполупериодным выпрямлителем и заряжает электролитический конденсатор большой емкости. Целесообразно использовать батарею из параллельно соединенных конденсаторов одинакового напряжения и емкости.

Если честно, емкости могут отличаться, но важно чтобы конденсаторы имели одинаковое расчетное напряжение.

В момент сварки вся емкость конденсатора разряжается на определенной точке, к которой подключаются съемные контакты. Притом в качестве этих контактов иногда могут быть использованы сами детали, которые нужно сварить вместе.

Моментальный разряд емкости мощных конденсаторов вызывает огромный скачок тока, процесс очень кратковременный, но токи могут доходить до десятков тысяч ампер в зависимости от емкости и напряжения конденсаторной батареи. Кратковременный разряд такой емкости приводит к моментальному плавлению металла под электродами.

Давайте более подробно рассмотрим систему.

Напряжение было выбрано порядка 40 вольт. Такое напряжение полностью безопасно для человека, хотя все зависит от физиологии индивида. Для кого-то и 12 вольт максимум.

Но, во всяком случае, 40 вольт не смертельно. Поскольку аппарат планировался с питанием от сети нужно использовать понижающий трансформатор для зарядки конденсаторов.

В нашем случае был использован трансформатор, выдающий на вторичке около 30 вольт при токе в 1.5 ампера, что отлично подходит для наших целей.

После выпрямителей напряжение на конденсаторах будет порядка 40 вольт. Естественно из-за нестабилизированного источника это напряжение может отклоняться в ту или иную сторону в зависимости от напряжения в сети.

В принципе подойдет любой трансформатор мощностью свыше 50 ватт, которое обеспечивает на выходе нужное напряжение. От тока вторичной обмотки будет зависеть время зарядки конденсаторов.

Для ограничения тока заряда конденсатора использован 10 ваттный резистор проволочного типа с сопротивлением 10-15 Ом.

Если же не ограничивать ток заряда, то система будет потреблять колоссальные токи, в следствие чего может сгореть диодный мост.

В аппарате предусмотрен тиристорный замыкатель.

При нажатии слаботочной кнопки сработает мощный тиристор, который разрядит всю емкость конденсаторной батареи, то есть произойдет короткое замыкание. В нашем случает был взят тиристор Т 171-320.

Кратковременный ударный ток в нашей системе может доходить до 4 000 ампер.

Для того, чтобы этот «монстр» сработал нужно подать на управляющий электрод напряжение от 3.5 – 12 вольт. Указанное напряжение можно получить путем использования делителя напряжение на базе двух резисторов на 0.5 -1 ватт. Их подбором в средней точке нужно получить раннее указанное напряжение.

В качестве диодного выпрямителя был использован готовый мост на 10 Ампер, напряжение моста не менее 100 вольт, хотя такие мосты делают на 400 и более вольт. Мост в ходе работы не нагревается, но желательно посадить его на теплоотвод.

Цепочка из резистора, светодиода и стабилитрона представляет собой индикатор заряда конденсаторов и при достижении на них около 40 вольт светодиод загорается, что свидетельствует, о том, что аппарат готов к использованию.

Можно также использовать цифровой вольтметр.

При отсутствии стабилитронов на 40 вольт можно использовать несколько штук меньших номиналов.

Светодиод можно взять любой, а ограничительный резистор 0.25 ватт.

Конденсаторы были взяты с напряжением в 50 вольт — желательно на 63 либо 100 вольт. Общая емкость батареи составила 41 000 мкф.

Конечно можно увеличить емкость конденсатров лишь бы тиристор справился, а увеличение емкости даст возможность варить более крупные детали.

Конденсаторы были запаяны на общую плату, дорожки были дополнительно усилены. Также парралельно к конденсаторам был запаян 5 ваттный резистор на 1.5 кОм. Для разряда последних после выключения прибора. Также была предусмотрена кнопка для экстренного разряда емкости. Здесь принцип тот же – разряд через резистор только в этом случае он низкоомный.

Для запуска тиристора можно использовать абсолютно любой низковольную кнопку.

В первичной цепи трансформатора можно внедрить простой диммер. Это позволит регулировать напряжение на конденсаторах и выбрать оптимальное напряжение для сварки деталей из определенных металлов.

Members 244 сообщений Город: Кишинев Имя: Владимир

Контактная сварка — DIY конденсаторная

Народ, привет!

Назрела проблема ремонтировать аккумуляторные сборки (NiMh, LiIon etc), а следовательно нужен аппарат точечной сварки. Паять буду тонкой никелевой лентой. Вникнув немного в тему, определили для себя, что с этой задачей хорошо будет справляться самодельный конденсаторный аппарат.

За основу буду брать буржуйскую конструкцию:

Оригинальная конструкция

У буржуинов получается очень хорошо.

Как накопитель энергии возьму т. н. «автомобильный9quot; силовой аудио конденсатор на 1-2 Фарада, 24В. Эти конденсаторы довольны распространены, стоят около 70 долларов даже в нашем молдавском захолустье. С учетом местных цен один такой конденсатор брать дешевле, чем набирать батарею + компактнее + стильный корпус с вольтметром и подсветкой.

Блок питания — 24В 5А от ноутбука, благо он имеет второй выход USB На 5В. Тиристор — на 100А (есть в наличии симистор ТС171-250-8-3 на 250А, но, по моему, лучше брать именно тиристор, т.к. односторонняя проводимость уменьшит длительность импульса (с симистором будет образоваться колебательный контур — проверено на практике, когда делал подобие Гаусс-пушки).

Микросхема контроллера тоже есть в наличии, LM22678, получал как образцы.

Что хочется поменять во второй конструкции — иметь возможность устанавливать длительность импульса. Благо один вывод контроллера свободен, значит можно поменять его на PIC12F675 — совместим по выводам + есть АЦП, программу переписать не проблема. На свободный вывод садим линейный потенциометр + шкалу к нему.

Вообще-то у меня есть и личная разработка программируемого таймера на PI16F628 и ЖКИ экране, в свое время делал для устройства экспозиции УФ-светом печатных плат. Может возьму и ее за основу, т.к. ЖКИ экран более информативен + можно точно задавать форму и длительность импульса.

Буду постепенно выкладывать результаты.

Кто желает изучать тему по второй ссылке — будьте внимательны . в лучших традициях открытых разработок заложены несколько ошибок в разводке платы (не проведена дорожка к 4-й ноге контроллера зарядки) и в программе — разные имена процедур в теле программы DLY_xxx против Dly_xxx, ассемблер будет ругаться на необьявленные переменные).

Не верю, что так и было, автор специально поставил, чтоб народ хоть немного думал !
Прикрепленные изображения

Сообщение отредактировал kreitzz: 12 December 2010 — 14:11

Members 2339 сообщений

Контактная сварка — DIY конденсаторная

Лет 15 назад делал такую сварку, т. е. именно для сварки (соединения) аккумуляторов таких. За основу брал схемку из Радио (именно та, где держак выполнен в виде пистолета). Немного переработал, и на базе ее собрал три варианта. В том числе и конденсаторный. Кондер использовал какой-то обычный. О фарадных емкостях тогда можно было только мечтать. Схемки реализовывал на коленке, очень срочно нужно было. Что интересно, все работали неплохо. Ленточка соединительная отрывалась от тела аккумуляторов с дырками, т.е. ее куски оставались на местах сварки, что говорило о неплохом качестве сварки. На сколько помню, не все типы тиристоров хорошо работали, симисторы тоже не хотели (кажется). Держаки делал с прямой рукояткой, ставил вертикально, кнопка пуск монтировалась на вершине рукоятки (микрик обычный), удобно. Выбирая усилие прижима опытным путем быстро находил оптимальный вариант. Схемы были простыми, без контроллеров.

ВВ.

#5 kreitzz

kreitzz Отправлено 16 December 2010 — 02:23

16 December 2010 — 02:23

Members 2339 сообщений

Контактная сварка — DIY конденсаторная

А контроллер, по моему, прилада необходимая, если он способен запоминать режимы сварки. 2*T, но как искать я так и не понял.

Или BTA40 взять? Или Т171-250-9?

Я насколько понимаю, на пригодность схемы влияет не только мощность тиристора, но в первую очередь быстродействие. Если можете посоветуйте несколько аналогов подходящих тиристров.

Раскрыть ветвь 3

Ищите параметр «ударный ток» или «I tsm», пользуйтесь калькулятором, например для нашей схемы нужен тиристор, который способен выдержать 2000 А. 2 тиристора 70TPS12 выдержат 2200 ампер. Если же брать 40TPS12, то у них 500А и их нужно будет 4 шт. минимум, а лучше 5.

ESR каждого конденсатора принимается за 0,1 (по таблице на просторах интернета, лучше конечно измерить, но прибора нет под рукой) в итоге 6 параллельных конденсаторов будут иметь ESR 0,01667 Ом, это значение нужно подставить в формулу закона Ома 32/0,016=2000А

Раскрыть ветвь 2

У меня в магазине из мощных тиристров только Т171-250-9 и 40TPS12. У Т171-250-9 ударный ток 6000, но di/dt в два раза меньше чем у 40TPS12, т. е. 80 против 150. Что лучше будет сборка из 40TPS12 или один Т171-250-9?

Раскрыть ветвь 1

я бы взял Т171-250-9, di/dt — 80 а/мкс, а постоянная времени для 60000х32 — почти 1мс. то есть 1000 мкс. и если разделить 2000А на 80 а/мкс, то получим 25 мкс. а это значительно меньше 1000 мкс

Конденсаторная сварка является методом сварки с запасенной энергией. Энергетические заряды будут накапливаться в конденсаторах в процессе зарядки от выпрямителя, после чего трансформироваться в теплоту. Она будет образовываться в процессе протекания тока между свариваемыми деталями. Именно поэтому конденсаторная сварка также называется контактной.

Электрическая схема точечной микросварки.

Элементы, которые будут необходимы:

устройство для сварки; электрод; трансформатор; проволока; конденсатор.

Отличие точечного метода сварки от других существующих

Конденсаторная сварка с разрядом конденсатора через первичную обмотку трансформатора: а—схема процесса; б—диаграмма тока.

Основным отличием подобного метода соединения является экологичность. Стандартное устройство конденсаторной сварки работает на высоких токах, благодаря чему есть возможность получить шов отменного качества при небольшом расходе электроэнергии.

Конденсаторный метод сварки, как и приспособления для него, используется чаще всего в случаях, когда необходимо выполнить микросварку или соединить заготовки больших сечений и толщин. Точечная сварка своими руками заключается в следующем:

В конденсаторах накапливается энергия в необходимом количестве. Заряды превращаются в тепло, которое используется для сварки.

Следует знать, что точечная сварка является экологичной, так как она практически не оказывает влияния на окружающую среду. Используемые устройства не нуждаются в жидкости для охлаждения, так как из них не выделяется тепло. Подобное значительное преимущество дает возможность увеличить цикл жизни всего устройства для получения неразъемных соединений.

Вместо типичных цилиндров в конструкциях используются специальные сервоприводы, в связи с чем отсутствует необходимость в пневмоподключении. Встраиваемые компоненты позволяют скопить сварочное усилие довольно быстро и эффективно. Электроды при этом будут действовать на основание деликатно.

Конденсаторная сварка имеет следующие преимущества:

возможность производить сварку на высокой скорости; точность соединения элементов; высокий уровень экологичности; надежность соединения; долговечность сварочных устройств.

Схема конденсаторной сварки.

За счет высокой скорости точечная сварка не будет деформировать и расплавлять металл. Устройства действуют на различные обрабатываемые заготовки щадящим образом. Отличные показатели качества можно получить при контактном или ударном способе соединения заготовок. Например, ударно-конденсаторный метод лучше всего использовать для соединения цветных металлов и сплавов на их основе. В итоге шов получится эстетичным, надежным, а процесс получения неразъемных соединений займет небольшое количество времени.

Конденсаторная сварка достаточно часто используется в промышленных условиях благодаря сочетанию эксплуатационных характеристик. Образуется технологическое явление, в процессе которого нераздельный контакт заготовок из металла производится ввиду выделения тепла. При этом из места сварки путем усилия сжатия устранятся грязь, оксидные пленки, различные включения и выпуклости. В результате появятся соединения между атомами соединяемых покрытий.

Заряды энергии будут аккумулироваться при зарядке от генератора или выпрямителя. Производить регулировку энергии можно с помощью изменения напряжения и емкости зарядки.

Существующие разновидности точечной сварки

Конструкция трансформаторов для точечной сварки.

Иногда используется соединение без трансформаторов. Конденсаторы в данном случае будут разряжать энергию на соединяемое основание. Допускаются следующие схемы зарядки:

1000 мкФ устройства будут аккумулировать энергию на напряжение до 1000 В путем повышающего трансформатора, при этом время сварки составит 0,005 с. Ток сварки находится в промежутке от 10 до 100 А. Подобный способ опасен для человека в связи с высоким напряжением. 40000-400000 мкФ устройства будут аккумулировать энергию на напряжение до 60 В путем понижающего трансформатора. Время сварки может достигать 0,6 с. при этом ток сварки находится в промежутке от 1000 до 2000 А.

В других случаях используется сварка с использованием трансформаторов. В данном случае конденсатор будет разряжать заряд энергии на первичную обмотку устройства трансформатора.

Виды контактной сварки: а – стыковая; б – точечная; в – роликовая; 1 – сварочный шов; 2 – электрод; 3 – свариваемые детали; 4 – подвижная плита с перемещаемой деталью; 5 – сварочный трансформатор; 6 – неподвижная плита.

Соединяемые детали при этом размещаются в контуре сварки, который соединяется со вторичной обмоткой трансформатора. Данный способ соединения используется в качестве микросварки со следующими параметрами:

напряжение зарядки – 1000 В; время сварки – 0,001 с.; ток сварки – 6000 А; емкость конденсаторных устройств – 1000 мкФ.

Конденсатор будет аккумулировать энергию до конкретного количества при левом размещении рычага. При правом выполняется разряд тепловых обменников на первичную обмотку трансформаторной конструкции. Конденсаторный метод соединения во вторичной обмотке индуктируется электродвижущей силой. Данная сила обусловливает силу тока в цепочке сварки.

Сварка цветных металлов точечной сваркой

Цветные металлы контрастируют с обыкновенной сталью. В данном случае могут использоваться различные методы тепловой обработки. Все будет зависеть от вида соединяемого металла. Сварка подобных металлов имеет следующие особенности:

температура плавления; плотность; сродство к газам атмосферы; механические показатели при низких и высоких температурах.

Сварочные горелки для точечной сварки.

По совокупности данных можно выделить металлы:

тяжелые цветные; активные и тугоплавкие; легкие.

Из первой группы можно плавить металлы точечной сваркой без особых трудностей. Для проводов из меди в большинстве случаев применяются механизированные устройства. Они способны обеспечить соединение высокого качества и сохранять исходные размеры заготовок.

Для обработки металлов двух остальных групп понадобятся устройства с высокой концентрацией энергии. Сварка своими руками заготовок из данных групп выполняется крайне редко, так как в данном случае могут образовываться летучие вредные соединения.

Технология конденсаторной сварки

Процесс соединения заготовок точечным способом состоит из нескольких этапов. Прежде всего, соединяемые заготовки понадобится совместить в необходимом положении, поместить между электродами устройства для сварки, после чего прижать друг к другу. После этого их понадобится нагреть до состояния пластичности и подвергнуть последующей пластической деформации. В условиях промышленности в процессе использования автоматических конструкций частота сварки достигает 600 точек/мин. Чтобы можно было произвести качественную конденсаторную сварку своими руками, понадобится поддерживать одинаковую скорость перемещения всех электродов. Обязательно надо обеспечить необходимую величину давления и полный контакт свариваемых заготовок.

Заготовки будут нагреваться за счет прохождения тока сварки в виде кратковременного импульса. Длительность импульса зависит от условий сварки и может составлять от 0,01 до 0,1 с. Данным импульсом обеспечится расплавление элемента в зоне действия электродов и образуется общее жидкое ядро двух заготовок. Диаметр ядра может составлять от 4 до 12 мм. После того как прекратит действовать импульс тока, заготовки некоторое время под давлением будут удерживаться, чтобы образованное ядро могло остыть и кристаллизоваться.

Продолжительность нагрева и сила давления

Продолжительность нагрева или прохождения тока сварки может изменяться, она зависит от условий сварки и мощности используемой конструкции. В случае соединения элементов из сталей, которые склонны к закалке и образованию трещинок, понадобится увеличить продолжительность нагрева. Это делается для того, чтобы была возможность замедлить дальнейшее охлаждение металла. Сварку заготовок из нержавеющей стали понадобится производить с минимальной продолжительностью нагрева. Это нужно для того, чтобы была возможность предотвратить опасность нагрева наружного основания точки соединения до температуры превращений структуры. Следует знать, что в результате могут быть нарушены высокие антикоррозийные свойства внешних слоев металла.

Сила давления между электродами должна обеспечить надежное соединение заготовок в месте сварки. Она зависит от вида соединяемого металла и толщины свариваемых заготовок. Давление после нагрева имеет важное значение, так как его величина будет обеспечивать мелкозернистую структуру металла в месте соединения, при этом прочность точки соединения будет равна прочности базового металла.

Особенности выбора и использования электродов

Положение электрода при сварке.

Факторы, от которых зависит качество сварки:

Качество сварки будет зависеть от правильного выбора диаметра электрода из меди. Диаметр точки соединения обязательно должен превышать толщину тонкого элемента соединения сварки в несколько раз. Прижимом заготовок в момент прохождения импульса сварки может обеспечиться появление пояска для уплотнения возле расплавленного ядра. Благодаря этому не понадобятся какие-либо дополнительные меры защиты места соединения. Чтобы была возможность улучшить кристаллизацию расплавленной заготовки, электроды понадобится разжать с небольшой задержкой после прохождения импульса сварки. Чтобы можно было получить качественный и надежный шов сварки, соединяемые основания понадобится первым делом подготовить. В данном случае имеется в виду очистка элементов от ржавчины. Расстояние между точками соединения должно обеспечить уменьшение шунтирования тока через ближние точки. К примеру, для соединения двух заготовок толщиной в 2-5 мм расстояние между точками соединения будет изменяться от 15 до 50 мм.

Электроды, которые используются для конденсаторной сварки, должны обеспечить прочность в интервале рабочих температур, высокую электро- и теплопроводность, а также легкость их обработки. Подобным требованиям соответствуют некоторые бронзы, которые включат в себя кобальт и кадмий. Подходят и сплавы меди с содержанием хрома. Следует знать, что по показателям тепло- и электропроводности медь существенно превосходит бронзу и сплавы, но данный металл во много раз хуже по показателям износостойкости. Поэтому лучше всего подходит для подобных целей сплав типа ЭВ, который являет собой практически чистую медь с добавлением хрома и цинка.

Чтобы уменьшить износ электродов, в процессе использования нужно интенсивно охлаждать их водой.

Как своими руками сделать устройство для сварки точечным способом?

Схема шовной сварки.

Устройство для сварки проволоки из меди можно с легкостью собрать самому. Для этого следует приобрести трансформатор мощностью 450 Вт. Трансформатор нужен стандартного типа, с первичной медной обмоткой толщиной в 0,75х2 мм и вторичной обмоткой силовым кабелем из алюминия 6 мм. В данном случае понадобится и угольный электрод.

Устройство для сварки проводов из меди работает на переменном токе от 35 до 40 А. Высшая точка напряжения составляет 15 В. В качестве держателя электрода можно использовать несколько зажимов. Проводником для изготавливаемого устройства может служить угольный электрод, который изготавливается из щетки троллейбусного контакта.

Если аккуратно эксплуатировать данное приспособление, то оно может прослужить несколько лет. Нужно следить за контактами, а также за тем, чтобы не разряжался аккумулятор. Схема сварки проводов из меди не подразумевает применение устройств с высокими ресурсами. Самодельное приспособление способно отлично справиться со значительными объемами работы.

Следует заметить: сварочные работы в данном случае можно автоматизировать, что является существенным преимуществом.

Конденсаторная сварка является сложным процессом, поэтому необходимо знать все нюансы.

Внимание, только СЕГОДНЯ!

Схема и описание конденсаторной сварки своими руками: общие сведения, изготовление устройства


Существует множество технологий сварки различных материалов и среди них — конденсаторная сварка. Технология известна с 30-х годов прошлого века и представляет разновидность контактной сварки. Соединение металлов происходит во время расплавления в местах короткого замыкания электрического тока за счет приложенной энергии разряда заряженных конденсаторов большой емкости. Процесс занимает 1-3 миллисекунды.

Основа аппарата — конденсатор или блок конденсаторов, которые заряжаются источником питания постоянного напряжения. Электроды конденсаторов после достижения необходимого уровня энергии в процессе заряда подключаются к точкам сварки. Ток, текущий во время разряда между свариваемыми деталями, вызывает нагревание поверхностей до такой степени, что металл расплавляется и образовывается качественный точечный сварочный шов.

ГОСТ и прочие требования

Согласно принятым в стране нормативным актам и стандартам, при ведении сварочного процесса соблюдают следующие правила:

  1. Создают регулярную поставку кратковременных импульсов тока длительностью не более 5 миллисекунд.
  2. Обеспечивают оборудованию возможность быстрого восстановления заряда для следующей подачи. Перерыв должен быть максимально коротким.
  3. Устанавливают проводники так, чтобы они крепко фиксировали листы. Необходимо обеспечить возможность и для быстрого их отсоединения.
  4. Для сварки выбирают медные стержни, толщина которых должна в 3 раза превышать параметр самого тонкого места детали.
  5. Перед сваркой деталь тщательно очищают от ржавчины, жировых загрязнений, следов коррозии.
  6. Предусматривают регулировку величины потока для любых технологий работы. Самодельное оборудование непрерывно функционирует только при наличии 2 источников питания.
  7. Подготавливают средства индивидуальной защиты сварщика от поражения током.

Сфера применения конденсаторной сварки

Подобная технология применяется в таких отраслях промышленности и народного хозяйства, как:

  1. Автомобилестроение. Популярна конденсаторная сварка в мастерских по кузовному ремонту. В отличие от электродуговой сварки, конденсаторная не способствует прожиганию и деформации краев обрабатываемых элементов. В дальнейшем соединение не требует дополнительной обработки.
  2. Радиоэлектроника. Конденсаторный метод применяют для пайки деталей, не соединяющихся стандартными способами или выходящих из строя при длительном нагреве.
  3. Ювелирные работы, изготовление медицинских инструментов и аппаратов, коммуникационных шкафов.
  4. Строительство. Конденсаторный метод используют при прокладке трубопроводов, возведении зданий и мостов.


Конденсаторная сварка используется для соединения металлов однородного типа.

Существующие виды

Перед началом работы важно правильно выбрать способ сварки. Все технологии используются для соединения тех или иных видов деталей. При неправильном выборе метода качество сварного шва снижается.

Точечный способ

Такой вариант применяют для соединения деталей, имеющих разную толщину. Конденсаторная точечная сварка применяется в радиоэлектронике и приборостроении. Для формирования шва подаются короткие импульсы тока, быстро расплавляющие металл. Универсальная технология проста в исполнении.


Точечная конденсаторная сварка заменяет пайку.

Роликовый метод

Принцип работы практически тот же, что в предыдущем случае. Однако точки располагаются не на расстоянии, а частично перекрывают друг друга. Герметичное соединение не пропускает влагу и загрязнения. Роликовую технологию применяют при создании мембранных и вакуумных изделий.

Рекомендуем к прочтению Как варить давлением

Стыковая технология

Способ сварки сильно отличается от 2 рассмотренных ранее технологий. Электрический разряд расплавляет не поверхность металла, а торцевые части деталей. В дальнейшем их стыкуют, создавая надежное соединение. Согласно описанию, стыковая технология считается наиболее сложной в исполнении.


Стыковая технология получила широкое распространение.



Конденсаторная сварка своими руками

Разработанная в 30-х годах двадцатого века, технология конденсаторной сварки получила широкое распространение. Этому способствовал ряд факторов.

  • Простота конструкции сварочного аппарата. При желании его можно собрать своими руками.
  • Относительно низкая энергоёмкость рабочего процесса и малые нагрузки, создаваемые на электрическую сеть.
  • Высокая производительность, что, безусловно, важно при выпуске серийной продукции.
  • Снижение термического влияния на соединяемые материалы. Эта особенность технологии позволяет применять её при сварке деталей малых размеров, а также на видовых поверхностях, где использование обычных методов неизбежно привело бы к нежелательным деформациям материала.

Если добавить к этому, что для наложения качественных соединительных швов достаточно иметь средний уровень квалификации, причины популярности этого способа контактной сварки становятся очевидны.

В основе технологии лежит обычная контактная сварка. Отличие в том, что ток подаётся на сварочный электрод не непрерывно, а в виде короткого и мощного импульса. Это импульс получают, устанавливая в оборудование конденсаторы большой ёмкости. В результате удаётся достичь хороших показателей двух важных параметров.

  1. Короткого времени термического нагрева соединяемых деталей. Эту особенность с успехом используют производители электронных компонентов. Лучше всего подходят для этого бестрансформаторные установки.
  2. Высокой мощности тока, что для качества шва значительно важнее его напряжения. Эту мощность получают, используя трансформаторные системы.

Разновидности технологии

В зависимости от требований производства, выбирают один из трёх технологических приёмов.

  1. Точечная конденсаторная сварка. Используя короткий импульс тока, выбрасываемого конденсатором, соединяют детали в прецизионном машиностроении, электровакуумной и электронной технике. Подходит данная технология и для сварки деталей, значительно отличающихся по толщине.
  2. Роликовое наложение шва позволяет получить полностью герметичное соединение, состоящие из множества перекрывающихся точек сварки. Это обуславливает применение технологии в процессе изготовления электровакуумных, мембранных и сильфонных устройств.
  3. Стыковая сварка, которая может быть произведена как контактным, так и неконтактным способом. В обоих случаях происходит оплавление в месте соединения деталей.

Область применения

Области применения технологии различны, но с особым успехом её используют для крепления втулок, шпилек и другого крепежа на листовой металл. С учётом особенностей процесса, его удаётся адаптировать для нужд многих отраслей производства.

  • Автомобилестроение, где необходимо надёжно соединять между собой панели кузова, выполненные из листовой стали.
  • Авиастроение, предъявляющее особые требования к прочности сварных швов.
  • Судостроение, где, с учётом больших объёмов работ, экономия электроэнергии и расходных материалов даёт особенно ощутимый результат.
  • Производство точных приборов, где недопустимы значительные деформации соединяемых деталей.
  • Строительство, в котором широкое распространение получили конструкции из листового металла.

Повсюду востребовано простое в устройстве и несложное в применении оборудование. С его помощью можно наладить выпуск мелкосерийной продукции или обустроить приусадебный участок.

Самодельная конденсаторная сварка

В магазинах можно без проблем приобрести уже готовое оборудование. Но из-за простоты его конструкции, а также низкой стоимости и доступности материалов, многие предпочитают собирать аппараты для конденсаторной сварки своими руками. Стремление сэкономить деньги понятно, а обнаружить в сети нужную схему и подробное описание можно без труда. Работает подобное устройство следующим образом:

  • Ток направляют через первичную обмотку питающего трансформатора и выпрямляющий диодный мост.
  • На диагональ моста подают управляющий сигнал тиристора, оборудованного кнопкой запуска.
  • В цепь тиристора встраивают конденсатор, служащий для накопления сварочного импульса. Этот конденсатор также подключают к диагонали диодного моста и подсоединяют к первичной обмотке трансформаторной катушки.
  • При подключении аппарата конденсатор накапливает заряд, запитываясь от вспомогательной сети. При нажатии кнопки этот заряд устремляется через резистор и вспомогательный тиристор в направлении сварочного электрода. Вспомогательная сеть при этом отключается.
  • Для повторной зарядки конденсатора требуется отпустить кнопку, разомкнув цепь резистора и тиристора и вновь подключив вспомогательную сеть.

Длительность импульса тока регулируется с помощью управляющего резистора.

Это лишь принципиальное описание работы простейшего оборудования для конденсаторной сварки, в устройство которого можно вносить изменения, в зависимости от решаемых задач и требуемых выходных характеристик.

Необходимо знать

Тому, кто решил собрать свой сварочный аппарат самостоятельно, следует обратить внимание на следующие моменты:

  • Рекомендуемая ёмкость конденсатора должна составлять порядка 1000 – 2000 мкФ.
  • Для изготовления трансформатора лучше всего подходит сердечник разновидности Ш40. Его оптимальная толщина – 70 мм.
  • Параметры первичной обмотки – 300 витков медного провода диаметром 8 мм.
  • Параметры вторичной обмотки – 10 витков медной шины, имеющей сечение 20 квадратных миллиметров.
  • Для управления хорошо подойдёт тиристор ПТЛ-50.
  • Входное напряжение должен обеспечивать трансформатор мощностью не менее 10 Вт и выходным напряжением 15 В.

Опираясь на эти данные, можно собрать вполне работоспособное устройство для точечной сварки. И хотя оно будет не столь совершенно и удобно, как оборудование заводского изготовления, с его помощью вполне можно будет освоить азы профессии сварщика и даже приступить к изготовлению различных деталей.

Используя описываемую технологию, удаётся соединять не только тонкие стальные листы, но и изделия из цветных металлов. При проведении работ важно учитывать не только толщину, но и другие особенности материалов. Если металл при нагреве склонен к образованию микротрещин, или при его обработке возникают высокие внутренние напряжения, необходимо увеличить длительность импульса, подняв, таким образом, температуру нагрева.

Поделись с друзьями

0

0

0

0

Как выполняется конденсаторная сварка своими руками?

Часто возникает необходимость в точечной сварке, когда не надо соединять трубы или профили, а просто требуется присоединить небольшую, но важную деталь. Осуществить это поможет конденсаторная сварка своими руками.

Электрическая схема точечной микросварки.

Контактная сварка – это достаточно востребованный вид соединения металлов, особенно цветных. Многие стремятся к тому, чтобы иметь возможность ее осуществить в домашних условиях. Конденсаторная сварка своими руками вполне доступна и легко выполнима.

Читайте также:

Как провести проверки нивелира.

Обзор современных теодолитов.

Об устройстве теодолита читайте тут.

Разновидности конденсаторной сварки

Конденсаторная сварка с разрядом конденсатора через первичную обмотку трансформатора: а—схема процесса; б—диаграмма тока.

Конденсаторная сварка представляет собой разновидность сварки, при которой расплавление металла происходит за счет запасенной электрической энергии в конденсаторах. По методу проведения конденсаторную сварку можно подразделить на контактную, ударную и точечную.

Контактная сварка подразумевает, что конденсатор разряжается на предварительно прижатые друг к другу две металлические заготовки. В месте контакта возникает дуга, которая расплавляет и соединяет заготовки на небольшом участке их контакта. Сварочный ток в зоне дуги достигает 15 кА при времени воздействия до 3 мс. При ударной сварке контакт между металлическими заготовками, на который подан разряд, совершается в виде кратковременного удара. Время действия дуги при этом не превышает 1,5 мс, что еще уменьшает участок сварки.

При точечной сварке разряд подается на два медных электрода, которые в точках касаются поверхности металлов с двух сторон. Дуга образуется между электродами в течение 0,01-0,1 с в зависимости от регулировки. Сила сварочного тока может достичь 10 кА. Сварка металлов происходит практически в точке.

Схема конденсаторной сварки.

По виду формируемого разряда конденсаторная сварка подразделяется на бестрансформаторную и трансформаторную сварку. При первом виде разряд с конденсаторов поступает непосредственно на поверхность металла. Такая сварка может производиться путем высоковольтного разряда (напряжение до 1 кВ) с током до 100 А в течение 0,005 с или низковольтного разряда (напряжение до 60 В) с током 1-2 кА в течение до 0,6 с.

Трансформаторный вид конденсаторной сварки заключается в том, что разряд с конденсатора производится на обмотку трансформатора, а с его вторичной обмотки поступает в зону сварки. Такой вид сварки расширяет возможности регулировки процессом. Напряжение разряда достигает 1 кВ при этом во вторичной обмотке достигается сварочный ток силой до 6 кА, который подается в течение до 0,001 с.

Вернуться к оглавлению

Принцип точечной сварки

Конструкция трансформаторов для точечной сварки.

Наиболее распространенным типом конденсаторной сварки в бытовых условиях является точечная сварка трансформаторного вида. Основной принцип точечной сварки заключается в том, что свариваемые заготовки, совмещенные в необходимом положении, зажимаются между двумя электродами, на которые подается кратковременный сварочный ток большой величины. Образующаяся между электродами электрическая дуга расплавляет металл заготовок в зоне диаметром 4-12 мм, что приводит к их соединению.

Действие сварочного импульса обеспечивается в течение 0,01-0,1 с, что обеспечивает образование общего для обоих свариваемых металлов ядра расплава. После снятия импульса тока на заготовки продолжает действовать сдавливающая нагрузка, что обеспечивает образование общего сварного шва. Ограничение зоны расплавления металлов достигается тем, что в момент подачи импульса, металлы контактировали между собой, обеспечивая теплоотвод.

Сварочный ток (импульс) подается на электроды с вторичной обмотки, где обеспечивается большой ток при малом напряжении. На первичную обмотку подается импульс, возникающий при разряде конденсатора (или блока конденсаторов). В самом конденсаторе заряд накапливается в период между подачей импульсов на электроды, т.е. зарядка конденсатора осуществляется за время, пока электроды перемещаются в другую точку для сварки.

Область применения такой сварки обширна по виду материала. Особо хорошие результаты получаются при сварке цветных металлов, в том числе меди и алюминия. По толщине свариваемых листов есть существенное ограничение – до 1,5 мм. Зато точечная сварка прекрасно показала себя в случае присоединения тонких полос проволоки к любой массивной конструкции. При этом соединяемые материалы могут быть разнородными.

Вернуться к оглавлению

Требования к конденсаторной сварке

Виды контактной сварки: а – стыковая; б – точечная; в – роликовая; 1 – сварочный шов; 2 – электрод; 3 – свариваемые детали; 4 – подвижная плита с перемещаемой деталью; 5 – сварочный трансформатор; 6 – неподвижная плита.

Для того чтобы конденсаторная точечная сварка своими руками была произведена качественно, необходимо выполнить некоторые условия. Должна быть обеспечена подача кратковременного импульса в течение до 0,1 с и последующее накопление энергии от сети для нового импульса за очень короткое время.

Давление электродами на свариваемые детали в момент подачи сварочного импульса должно обеспечивать надежный контакт между ними. Разжимание электродов необходимо производить с задержкой для того, чтобы расплав остывал под давлением, что улучшает режим кристаллизации металла в сварном шве.

В качестве электродов для точечной сварки наиболее распространены медные электроды. Диаметр точки в месте контакта должен превышать толщину самой тонкой свариваемой заготовки в 2-3 раза.

Поверхность свариваемых заготовок перед сваркой должна быть тщательно очищена, чтобы окисные пленки и ржавчина не создали большое сопротивление для тока.

Конденсаторная точечная сварка своими руками может быть произведена только при условии сборки устройства, имеющего как минимум два блока: источник сварочного импульса и сварочный блок. Кроме того, необходимо предусмотреть возможность регулирования режимом сварки и защиту.

Вернуться к оглавлению

Простая конструкция для точечной сварки

Сварочные горелки для точечной сварки.

При сваривании тонких листов (до 0,5 мм) или при варке тонких элементов к любым деталям можно использовать упрощенную конструкцию сварочного аппарата. В нем подача сварочного импульса осуществляется через трансформатор. При этом один конец вторичной обмотки соединен непосредственно с массивной деталью, к которой приваривается тонкая деталь, а второй конец – к электроду. Другими словами, устройство предусматривает применение только одного (верхнего) электрода. Прижим его к тонкой детали производится вручную. Для крепления и удержания электрода можно, например, использовать стандартные зажимные клеммы для автомобильного аккумулятора (зажим типа «крокодил»).

При изготовлении простого источника сварного тока (импульса) можно использовать следующую схему. Первичная обмотка трансформатора, питающего сварочный блок, подключена к электросети, причем одним концом через одну из диагоналей выпрямительного диодного моста. На другую диагональ этого моста подается сигнал с тиристора, управление которого производится при помощи пусковой кнопки.

Положение электрода при сварке.

Сварочный импульс накапливается в конденсаторе, который располагается в цепи тиристора и подключен к диагонали моста с выходом на первичную обмотку трансформатора. Зарядка конденсатора производится от вспомогательной цепи, включающей входной трансформатор и выпрямительный диодный мост.

Работает источник в следующем порядке. Пока сварочный трансформатор отключен, идет зарядка конденсатора от вспомогательной сети. При нажатии пусковой кнопки (включении сварочного трансформатора) конденсатор отключается от вспомогательной сети и разряжается на первичную обмотку трансформатора через резистор. Разрядка конденсатора протекает через управляющий тиристор. Время длительности разряда изменяется с помощью регулирующего резистора. При выключении кнопки цепь разряда разрывается, а вспомогательная цепь включается, начинается цикл зарядки конденсатора.

Источником импульса является конденсатор емкостью 1000 мкФ или 2000 мкФ на напряжение до 25 В. Важным элементом схемы является трансформатор. Он может быть изготовлен на базе сердечника Ш 40 толщиной 70 мм. Первичная обмотка выполняется из провода ПЭВ-2 диаметром 0,8 мм. Количество витков – 300. Вторичная обмотка имеет 10 витков и выполняется из медной шины сечением 20 мм². Для управления можно использовать тиристор ПТЛ-50 или КУ202. В качестве входного трансформатора можно использовать любой трансформатор мощностью 10 Вт с напряжением на вторичной обмотке 15 В. При использовании рекомендованного источника, можно обеспечить импульс тока до 500 А с длительностью до 0,1 с.

Вернуться к оглавлению

Аппарат с повышенной мощностью

Схема шовной сварки.

Для повышения мощности источника сварочного тока следует рекомендовать изменение конструкции, позволяющее сваривать листы толщиной до 1 мм или провод до 5 мм. Управление сигналом производится с помощью бесконтактного пускателя МТТ4К на ток 80 А и обратное напряжение до 800 В. В управляющий модуль включены два параллельно соединенные тиристора, два диода и резистор. Время срабатывания регулируется с помощью реле времени, включенном в цепь входного трансформатора.

Накопление энергии происходит в электролитических конденсаторах, собранных в батарею путем параллельного соединения. Конденсаторы, обычно в количестве 6 штук, выбираются следующего номинала: два конденсатора емкостью 47 мкФ, два – емкостью 100 мкФ, два – емкостью 470 мкФ, на рабочее напряжение не менее 50 В. В качестве реле времени можно использовать герконовое реле РЭС42, РЭС43 на напряжение до 20 В.

Схема рельефной сварки.

Первичная обмотка сварочного трансформатора изготавливается из провода диаметром 1,5 мм, а вторичная из медной шины или провода сечением не менее 60 кв.мм. Количество витков во вторичной обмотке – 4-7. При этом обеспечивается ток в зоне сварки до 1500 А.

Работает аппарат следующим образом. При нажатии пусковой кнопки срабатывает реле, которое через управляющие контакты тиристоров включает сварочный трансформатор. После разрядки конденсаторов реле отключается. Точное регулирование длительности импульса осуществляется переменным резистором.

В связи с увеличением мощности, сварочный блок следует сделать более надежным. В нем используются два медных электрода. Достаточно часто в качестве электродов используются сварочные клещи, в которых обеспечивается давление до 20 кг/см². Диаметр контактных площадок подбирается самым минимальным.

Вернуться к оглавлению

Конструкции контактного блока

Сварочный блок представляет собой контактный блок, т.е. приспособление, позволяющее крепить и перемещать электроды. Самая простая конструкция предусматривает ручное удержание и сдавливание электродов. Более надежна система, предусматривающая стационарный нижний электрод и подвижный верхний электрод. В этом случае на любом основании закрепляется медный пруток небольшой длины (10-20 мм) диаметром не менее 8 мм. Верхний срез электрода закругляется. Верхний электрод из такого же прутка закрепляется на площадке, которая имеет возможность перемещаться свободно вверх или откидываться. Должны быть предусмотрены регулировочные винты, позволяющие создать дополнительное давление после контакта верхнего электрода с поверхностью заготовки. Основание блока и верхняя площадка должны быть надежно изолированы друг от друга до контакта электродов.

Вернуться к оглавлению

Проведение конденсаторной точечной сварки

Весь процесс конденсаторной точечной сварки своими руками можно разделить на несколько этапов. Сначала проводится подготовка поверхности свариваемых заготовок. Затем заготовки совмещаются в необходимом порядке, помещаются в пространство между электродами и сдавливаются ими. С помощью пусковой кнопки подается сварочный импульс. Через 1-2 мин после прекращения импульса электроды раздвигаются. Сваренная деталь снимается и устанавливается в другой точке.

Промежуток между точками сварки зависит от толщины заготовки и обычно колеблется в интервале 15-60 мм.

Процесс сварки повторяется.

Чтобы произвести точечную сварку своими руками потребуется следующий дополнительный инструмент:

  • тиски;
  • ножовка;
  • болгарка;
  • круг наждачный;
  • напильник;
  • плоскогубцы;
  • отвертка;
  • ключи гаечные;
  • шкурка наждачная;
  • нож;
  • тестер;
  • молоток;
  • зубило;
  • штангенциркуль.

Конденсаторная сварка своими руками поможет соединить нетолстые листы из любого металла или приварить небольшие делали к любой металлической конструкции. Такая точечная сварка достаточно проста и доступна.

Схема и описание конденсаторной сварки

Существует несколько способов бесшовного соединения металлических элементов, но среди всех особое место занимает именно конденсаторная сварка. Технология стала пользоваться популярностью примерно с 30-х годов прошлого столетия. Стыковка осуществляется за счет подачи электрического тока к нужному месту. Создается короткое замыкание, которое позволяет расплавить металл.

Преимущества и недостатки технологии

Самое интересное, что конденсаторная сварка может применяться не только в промышленных условиях, но и в быту. Она предполагает использование небольшого по размерам аппарата, который имеет заряд постоянного напряжения. Такой прибор может легко перемещаться по рабочей территории.

Из достоинств технологии следует отметить:

  • высокую производительность работ;
  • долговечность используемого оборудования;
  • возможность соединения различных металлов;
  • низкий уровень тепловыделения;
  • отсутствие дополнительных расходных материалов;
  • точность соединения элементов.

Однако существуют ситуации, когда применить сварочный аппарат конденсаторной сварки для соединения деталей невозможно. Это в первую очередь связано с кратковременностью мощности самого процесса и ограничением по сечению совмещаемых элементов. Кроме того, импульсная нагрузка способна создавать различные помехи в сети.

Особенности и специфика применения

Сам процесс соединения заготовок предполагает контактное сваривание, для осуществления которого расходуется определенный запас энергии в специальных конденсаторах. Ее выделение происходит практически мгновенно (в течение 1 – 3 мс), благодаря чему уменьшается зона термического воздействия.

Достаточно удобно осуществлять конденсаторную сварку своими руками, так как процесс является экономичным. Применяемый аппарат можно подключить к обычной электрической сети. Для использования в промышленности существуют специальные устройства высокой мощности.

Особую популярность технология получила в цехах, предназначенных для ремонта кузовов транспортных средств. При проведении работ тонкие листы металла не прожигаются и не подвергаются деформации. Необходимость в осуществлении дополнительной рихтовки отпадает.

Основные требования к процессу

Чтобы конденсаторная сварка была выполнена на высоком качественном уровне, следует придерживаться некоторых условий.

  1. Давление контактных элементов на обрабатываемые детали непосредственно в момент импульса должно быть достаточным, чтобы обеспечить надежное соединение. Разжимание электродов следует производить с небольшой задержкой, добиваясь тем самым лучшего режима кристаллизации металлических деталей.
  2. Поверхность соединяемых заготовок должна быть очищена от загрязнений, чтобы пленки окиси и ржавчина не вызывали слишком большое сопротивление при воздействии электрического тока непосредственно на деталь. При наличии посторонних частиц значительно снижается эффективность технологии.
  3. В качестве электродов требуется использовать медные стержни. Диаметр точки в зоне контакта должен быть не менее чем в 2-3 раза больше толщины свариваемого элемента.

Технологические приемы

Существует три варианта воздействия на заготовки:

  1. Конденсаторная точечная сварка в основном применяется для соединения деталей с разным соотношением толщины. Она успешно используется в сфере электроники и приборостроения.
  2. Роликовая сварка представляет собой определенное количество точечных соединений, выполненных в виде сплошного шва. Электроды напоминают вращающиеся катушки.
  3. Ударная конденсаторная сварка позволяет создавать стыковые соединения элементов с небольшим сечением. Перед столкновением заготовок образуется дуговой разряд, оплавляющий торцы. После соприкосновения деталей осуществляется сваривание.

Что касается классификации по применяемому оборудованию, то можно разделить технологию по наличию трансформатора. При его отсутствии упрощается конструкция основного прибора, а также происходит выделение основной массы тепла в зоне непосредственного контакта. Основным достоинством трансформаторной сварки является возможность обеспечения большим количеством энергии.

Конденсаторная точечная сварка своими руками: схема простейшего прибора

Для соединения тонких листов до 0,5 мм или мелких деталей можно применять незамысловатую конструкцию, изготовленную в бытовых условиях. В ней импульс подается через трансформатор. Один из концов вторичной обмотки подводится к массиву основной детали, а другой – к электроду.

При изготовлении такого устройства может применяться схема, при которой первичная обмотка подключается к электрической сети. Один из ее концов выводится через диагональ преобразователя в виде диодного моста. С другой стороны осуществляется подача сигнала непосредственно с тиристора, находящегося под управлением пусковой кнопки.

Импульс в данном случае вырабатывается при помощи конденсатора, имеющего емкость 1000 — 2000 мкФ. Для изготовления трансформатора может быть взят сердечник Ш-40, имеющий толщину 70 мм. Первичную обмотку из трехсот витков легко сделать из провода сечением 0,8 мм с маркировкой ПЭВ. Для управления подойдет тиристор с обозначением КУ200 или же ПТЛ-50. Вторичная обмотка с наличием десяти витков может быть изготовлена из медной шины.

Более мощная конденсаторная сварка: схема и описание самодельного устройства

Для увеличения показателей мощности придется изменить конструкцию изготавливаемого устройства. При правильном подходе с его помощью можно будет соединять провода сечением до 5 мм, а также тонкие листы толщиной не более 1 мм. Для управления сигналом применяется бесконтактный пускатель с маркировкой МТТ4К, рассчитанный на электрический ток 80 А.

Обычно в управляющий блок включаются тиристоры, соединенные параллельно, диоды и резистор. Интервал срабатывания настраивается при помощи реле, находящегося в основной цепи входного трансформатора.

Энергия накаливается в электролитических конденсаторах, совмещенных в единую батарею посредством параллельного подключения. В таблице можно ознакомиться с необходимыми параметрами и количеством элементов.

Число конденсаторов

Емкость, мкФ

2

470

2

100

2

47

Основная трансформаторная обмотка делается из провода сечением 1,5 мм, а вторичная – из медной шины.

Работа самодельного аппарата происходит по следующей схеме. При нажатии кнопки запуска срабатывает установленное реле, которое при помощи контактов тиристоров включает трансформатор сварочного блока. Отключение происходит сразу после разрядки конденсаторов. Настройка импульсного воздействия производится посредством переменного резистора.

Устройство контактного блока

Изготовленное приспособление для конденсаторной сварки должно иметь удобный сварочный модуль, предоставляющий возможность фиксировать и беспрепятственно перемещать электроды. Простейшая конструкция подразумевает ручное удержание контактных элементов. При более сложном варианте нижний электрод закрепляется в стационарном положении.

Для этого на подходящем основании он фиксируется длиной от 10 до 20 мм и сечением более 8 мм. Верхняя часть контакта закругляется. Второй электрод крепится к площадке, способной двигаться. В любом случае должны быть установлены регулировочные винты, с помощью которых будет осуществляться дополнительное нажатие для создания дополнительного давления.

Следует в обязательном порядке изолировать основание от подвижной площадки до контакта электродов.

Порядок проведения работ

Прежде чем будет произведена точечная конденсаторная сварка своими руками, необходимо ознакомиться с основными этапами.

  1. На начальной стадии соединяемые элементы подготавливаются должным образом. С их поверхности удаляются загрязнения в виде частиц пыли, ржавчины и других веществ. Наличие посторонних включений не позволит добиться качественной стыковки заготовок.
  2. Детали соединяются друг с другом в необходимом положении. Они должны располагаться между двумя электродами. После сдавливания к контактным элементам подается импульс путем нажатия пусковой кнопки.
  3. Когда электрическое воздействие на заготовку прекратится, электроды могут быть раздвинуты. Готовая деталь вынимается. Если есть необходимость, то она устанавливается в иной точке. На величину промежутка непосредственное влияние оказывает толщина привариваемого элемента.

Применение готовых аппаратов

Работы могут быть проведены с использованием специального оборудования. Такой комплект обычно включает:

  • аппарат для создания импульса;
  • приспособление для приварки и зажима крепежей;
  • обратный кабель, оснащенный двумя фиксаторами;
  • цанговый набор;
  • инструкцию по применению;
  • провода для подключения к электросети.

Заключительная часть

Описываемая технология соединения металлических элементов позволяет не только сваривать стальные изделия. С ее помощью можно без особой сложности стыковать детали, изготовленные из цветных металлов. Однако при выполнении сварочных работ необходимо учитывать все особенности используемых материалов.

Как сделать дома точечный сварочный аппарат с использованием высоковольтного конденсатора

Что такое точечный сварщик?

Аппараты для точечной сварки

— это электрический инструмент, который используется для сварки двух металлических пластин вместе путем приложения давления и электрического тока. Точечная сварка используется в широком спектре отраслей, включая, помимо прочего, производство листового металла и автомобилестроение; особенно для сборки автомобильных кузовов из листовой стали. Они обеспечивают прочный сварной шов и просты в сборке из небольшого количества компонентов.Итак, в этой статье мы рассмотрим пошаговый процесс создания точечного сварочного аппарата с использованием высоковольтного конденсатора.

Точечная сварка использует явление Контактной сварки ; Сварка сопротивлением — это соединение металлов путем приложения давления и пропускания электрического тока в течение длительного времени через металлическую область, которую необходимо соединить, создавая прочный и сфокусированный сварной шов.

Компоненты оборудования для точечной сварки

Для сборки этого проекта вам потребуются следующие детали.

[inaritcle_1]

Полезные шаги

Ниже приведены инструкции по изготовлению аппарата для точечной сварки. БУДЬТЕ ОСТОРОЖНЫ при работе с источниками переменного тока 220 В и высоковольтными конденсаторами.

1) Снимите выводы двух электрических щупов и припаяйте их на концах 1,5-миллиметрового изолированного медного провода.

2) Сделайте отверстие в крышке пустой пластиковой бутылки и подсоедините концы проводов к двухконтактному разъему через крышку бутылки.

3) Подключите клеммы + ve и -ve конденсатора к зондам + ve и -ve соответственно, затем поместите конденсатор и питание в пластиковую бутылку и плотно закройте крышку.

4) Поместите металлическую поверхность, которую нужно приварить, к другой поверхности (здесь мы используем металлический вывод батареи постоянного тока) на изолирующую поверхность (предпочтительно пластиковую / деревянную подставку)

4) Сварка: Наденьте перчатки и защитные очки, поместите два щупа в токоведущую и нейтральную клеммы сети 220 В переменного тока на несколько секунд, чтобы зарядить конденсатор.( НИКОГДА НЕ ПРИКАСАЙТЕСЬ К МЕТАЛЛИЧЕСКОЙ ЧАСТИ ДАТЧИКОВ ПОСЛЕ ЗАРЯДКИ КОНДЕНСАТОРА, ЧТО МОЖЕТЕ ПОЛУЧИТЬ СМЕРТЕЛЬНЫЙ ПОРАЖЕНИЕ! ).

5) Закрепите свариваемую металлическую деталь с помощью сварочного стенда с зажимами из крокодиловой кожи и поместите их друг на друга так, чтобы они соприкасались друг с другом. Поместите один из щупов на нижнюю металлическую деталь, а другой щуп прижмите к верхнему металлическому листу. Разлетятся искры, после чего вы должны увидеть надежный сварной самородок. Полностью разряжайте конденсатор после каждой сварки.

[inaritcle_1]

Рабочее объяснение

При точечной сварке

используется геометрия сварочных электродов для направления сварочного тока в требуемом месте сварного шва, а также давление для сварки деталей. После создания достаточного сопротивления материалы складываются и соединяются, образуя надежный сварной шов.

Меры предосторожности

  • ЗАПРЕЩАЕТСЯ прикасаться к металлической части зонда после зарядки, так как это может вызвать смертельный удар.
  • ЗАПРЕЩАЕТСЯ прикасаться к поверхности двух металлических корпусов во время сварки, так как это может привести к сильному удару.
  • ВСЕГДА Полностью разряжайте конденсаторы после каждой точечной сварки.
  • ВСЕГДА надевайте перчатки и защитные очки во время точечной сварки.

Применение аппарата для точечной сварки

  • Аппараты для точечной сварки обычно используются в таких местах, как производство автомобилей и заводы по производству листового металла.

См. Также: DIY 12V Зарядное устройство для свинцово-кислотных аккумуляторов | Бестрансформаторный источник питания | Схема FM-передатчика

Конденсаторно-разрядный микро-точечный сварочный аппарат с открытым исходным кодом для хобби конструирование

Устройство, которое может пригодиться различным любителям, — это микро-точечный сварочный аппарат, работающий от разряда большого конденсатора.Профессиональные устройства такого типа (Powerstream, MTI Microwelding, Spotco, MacGregor и т. Д.) довольно дороги, так что здесь есть смысл самоваренной конструкции, например, отремонтировать аккумуляторы самостоятельно.

Контактная точечная сварка на первый взгляд может показаться тривиальной, однако я могу только посоветовать вам забыть о простых конструкции на основе тиристора, которые можно найти в Интернете. Время импульса (ов) важно для получения хорошего и воспроизводимого полученные результаты.Если сбросить сразу всю энергию конденсатора через тиристор, то либо ее будет слишком мало и стык будет недостаточно прочным или слишком сильным, и вы прожигете отверстие в материале (и, возможно, обожжетесь от капель жидкого металла :-)). С другой стороны, для хобби точно не нужна точная форма импульса, предлагаемая высококлассными профессиональными устройствами. поэтому следующая конструкция кажется мне разумным компромиссом между простотой и стоимостью по сравнению с функциональностью.

Я нашел в Интернете красивую конструкцию, однако она управлялась микроконтроллером PIC, в то время как я предпочитаю работать с Atmel из-за поддержки GCC для этой архитектуры.
Примечание: этот веб-сайт некоторое время был отключен, поэтому для вашего удобства я привожу здесь схемы и спецификацию материалов сварочного аппарата Ultrakeet, которые я скачал оттуда. Однако заметьте также, что для новой конструкции некоторые улучшения должны быть сделаны в силовой части, ср.примечания ниже и на страницах других людей, которые занимались разработкой подобных сварочных аппаратов, ссылки на которые приведены здесь.

В своей конструкции я по существу скопировал силовую часть вышеуказанного проекта со следующими незначительными изменениями, перечисленными ниже (я даже не рисовал новую схему и использовал универсальную печатную плату для прототипирования для сборки устройства):
Вместо автомобильного конденсатора Hi-Fi я использовал 20 штук 47000 мкФ / 35 В параллельно, чтобы иметь возможность перейти к более высокому напряжению, имея около 600 Джоулей энергии, доступной для более тяжелой работы.Конденсаторы защищены стабилитроном от случайного перенапряжения (они недешевы!), А истекающий резистор 2 кОм медленно разряжает их, когда они не работают. Я добавил резистор 1 кОм / 1 Вт между электродами, чтобы клеммы истока полевых транзисторов имели определенный потенциал, когда сварочный электрод отключен.
Я использовал 6 IRFP2907 параллельно, а не 4, чтобы управлять током.
Запитываю прибор от лабораторного блока питания, так как в коробке было так полно конденсаторов и радиаторы, не оставляя места для собственного источника питания.3А достаточно для сварки, резки для повторяющихся импульсов потребуется больше. В цепях управления есть дополнительный конденсатор на 10000 мкФ после диода для мост через периоды более низкого входного напряжения из-за высокой нагрузки источника питания при зарядке основного конденсатора.
5 В для логики получаются с помощью LM2575-5, подключенного в соответствии с техпаспортом.
Atmel ATmega16, синхронизируемый кристаллом (с соответственно запрограммированными битами предохранителя), с байпасным конденсатором 100 нФ, используется для управления устройством и отображения состояния на дисплее.
На задней панели (на фото не видно) находится разъем для программирования ISP и TTL-уровня RS232 — штучка банальная, но довольно удобная при разработке прошивки. Кодер вращения
использует контакты прерывания Atmel, потенциометры подключены к контактам аналого-цифрового преобразователя (см. Комментарии в исходном коде).
Электроды изготовлены из медных стержней диаметром 8 мм, заостренных на одном конце, изолированных термоусадочной трубкой с вырезом обмотки M8 на другом конце. Они вкручиваются в шляпообразные латунные гайки, к которым припаяны кабели диаметром 6 мм, и затягиваются другой гайкой M8.
Сильноточные соединения внутри устройства выполнены из медной проволоки диаметром 6 мм, сдвоенной там, где это механически возможно.
Стоимость материалов для строительства должна составлять около 300 долларов США (и все еще может быть уменьшена, если вы используете конденсаторы более низкого напряжения — 12 В достаточно для сварки аккумуляторной батареи), на порядок ниже, чем цена бюджетного профессионального устройства.

Результат можно увидеть ниже, а здесь вы можете скачать

опубликовано под лицензией GPLv3. В исходном коде перечислены подключения контактов ATmega к управляющей и силовой части.
В зависимости от версии avr-gcc и заголовков вам может понадобиться заголовок backward.h
Если вы просто хотите собрать его без кросс-компиляции исходного кода, вот шестнадцатеричные файлы для ATMega16 и ATMega32. НОВИНКА: Кто-то попросил у меня шестнадцатеричный код с большей длительностью второго импульса, он здесь для ATMega16 . Предполагается, что внешний кристалл 14,7456 МГц, поэтому не забудьте также соответствующим образом запрограммировать биты предохранителей (я использовал fuse_l = 0x2f и fuse_h = 0xf9).

Цифры на дисплее — это напряжение внешнего источника питания, заданное напряжение, текущее напряжение конденсатора в первой строке; время первого импульса, задержка между импульсами, время второго импульса в миллисекундах во второй строке.
Вращающийся кодер с нажимным переключателем выбирает напряжение конденсатора (и в будущем микропрограммное обеспечение переключения между различными режимами работы через меню может быть легко реализовано), три потенциометра определяют время. После срабатывания триггера фактическая энергия импульса (включая потери на внутреннем сопротивлении) вычисляется и отображается до тех пор, пока педаль триггера не будет отпущена.

Фото внутри и детали электродов здесь.

Советы по микро-точечной сварке аккумуляторной батареи с помощью этого самодельного устройства:

Используйте 0.Полосы из нержавеющей стали толщиной от 075 до 0,12 мм. Рекомендованные для этой цели никелевые может быть трудно получить на месте а зарубежные почтовые расходы будут стоить как минимум вдвое дороже материала … После долгих поисков я нашел листы нержавеющей стали подходящей толщины, производимые www.ksmetals.com, в местном магазине для любителей моделизма. Из этого материала легко вырезать полоски.
Сделайте электроды очень острыми и плотно прижмите их к соединительной планке, лежащей на верхней части аккумуляторного элемента.
Для толщины 0,075 мм, 6 В и 0,5 мс первый импульс, задержка 2 мс, второй импульс 4 мс работали лучше всего для меня. Это, конечно, может отличаться в зависимости от того, какое внутреннее сопротивление сварщика вам удастся достичь в своей конструкции.

Схема и печатная плата для точечной сварки

Недавно (2010 г.) коллега из Великобритании построил подобное устройство и согласился опубликовать его схемы и дизайн печатной платы здесь. Вы можете скачать PDF-файл, или файл SCHDOC дизайнера Altium и файл печатной платы.(Если кто-нибудь знает, как преобразовать формат Altium Designer в Eagle, дайте мне знать.) Эта конструкция немного отличается от моей конструкции (в основном блоком питания), но должен быть полностью совместим с моей прошивкой. Однако печатная плата не тестировалась. Также он предложил доработать конструкцию силовой части, разместив разрядные и сварочные выводы на нижней стороне нагрузки (исток к GND, сток к одному электроду, другой электрод к Vcap) и использование полевого транзистора с каналом P для зарядки конденсатора.

Еще одна схема (в Eagle) была добавлена ​​Францем (Tauchsport-Tschur на web.de), Вы можете скачать это здесь; он должен быть совместим с моей прошивкой.

В ноябре 2011 года Тим О’Брайен опубликовал на своей веб-странице конструкцию сварочного аппарата для компакт-дисков, вдохновленную, в частности, этой конструкцией. Он также предложил некоторые улучшения, среди прочего, это лучший способ управления затворами MOSFET для снижения рассеиваемой мощности и обеспечения более коротких и более точно управляемых импульсов. Особенно полезен его опыт работы с автомобильными конденсаторами нескольких производителей, которые часто продают продукцию гораздо худшего качества, чем рекламируется.Его страница очень подробная, содержит много полезной информации и ее определенно стоит прочитать, если вы подумываете о создании аналогичного проекта.

В 2012 году была опубликована конструкция аппарата для точечной сварки, вдохновленная этим дизайном. от Раду Мотисана на его веб-странице, а также на сайте hackaday.com. Он опубликовал схемы и дизайн печатной платы, переписал мою оригинальную прошивку на C ++ и реализовал режим резки. См. Также статью здесь.

Кроме того, если вас интересуют более тяжелые работы, с которыми не может справиться конденсаторное устройство, то вам подойдет трансформаторный сварочный аппарат для точечной сварки. лучший выбор.Очень интересная модификация старинного ручного точечного сварочного аппарата производства ГДР. Хенрика Хафтмана, добавившего управляющую электронику на основе ATtiny, можно найти здесь (на немецком языке), включая схемы с открытым исходным кодом и исходный код прошивки.

В 2014 году Георгий Белев построил сварочный аппарат на основе этой прошивки и опубликовал красивое видео о его работе на YouTube.

Вернуться на страницу моей электроники

Вернуться на страницу моего хобби

Моя главная страница с электронной почтой

TOP

Сборка емкостного сварочного аппарата — Немного более серьезный подход — Общее обсуждение — Форум производителей электрических скейтбордов

Итак, пока жду печатные платы для http: // www.electric-skateboard.builders/t/flexibms-first-prototype-kicad-project-files-released-f flexible-configuration-and-charging-bms/46117/1 для изготовления и отправки. Я разрабатываю еще один инструмент, который мне нужно обновить в своем арсенале, — сварочный аппарат для батарейного отсека.

Если вам интересно, как я борюсь с моим старым сварщиком, обратитесь к моей сборке из 50 ячеек здесь: http://www.electric-skateboard.builders/t/10s5p-battery-pack-build-log- 50 штук-самсунг-35e-ячеек / 23547

В целом, сварщик — это неполноценный аппарат из-за тяжелых аккумуляторов и путаницы с проводами, и я не доволен его работой.Так что же делать? Что ж, сначала давайте посмотрим, что профессионалы используют в более промышленных условиях. Видео начинается со сварочной части аккумуляторной батареи.


Итак, обычно используется один из двух типов источников питания сварщика. Они либо используют батарею конденсаторов, которую они заряжают до определенного напряжения, а затем разряжают ее точным импульсом, либо двойным импульсом, длительность которого настраивается. Или они используют сварочный трансформатор для понижения напряжения переменного тока на стене, чтобы снизить напряжение, но более высокое напряжение.

На видео из-за того, что информация о производителе и модели скрыта лентой на сварочном аппарате, я не могу подтвердить тип питания для этого конкретного аппарата.

Практические примеры обоих: Емкостные передние ручки управления позволяют вам установить напряжение конденсаторной батареи, которое отображается как накопленная энергия в Вт (ватт-секунды), и две ручки для настройки длительности двух импульсов: Сварщики Sunstone

High Power — Micro Resistance — Advanced CD Spot Welder

Sunstone High Power — Advanced — Dual Pulse CD 1200 предлагает множество возможностей, включая мониторинг сварных швов, инструменты SPC и большой емкостный сенсорный экран.Интерфейс с сенсорным экраном обеспечивает легкий доступ ко всем параметрам сварки. Кроме того, …

Цена: 11900 долларов

Трансформатор сварочный. Теперь, если вам случится проверить ссылку на ebay, вы обнаружите, что эта конкретная машина работает в диапазоне от 3000 долларов + то же самое касается емкостных, и я не хочу добавлять что-то подобное. https://www.ebay.co.uk/itm/Pneumatic-Pulse-Battery-Spot-Welder-Welding-Machine-18-Kva-3500-A-Ps300-B-/112415963445?hash=item1a2c837935


Так что же, сделай сам, путь к славе? Хорошо, я знаком с конденсаторами и вижу много плюсов, если сварщик с ними справится.Я беру некоторые концепции и идеи из этой конкретной сборки http://www.zeva.com.au/Projects/SpotWelderV2/, но я стараюсь сделать ее немного более совершенной, но все же простой и легкой в ​​использовании. собрать по возможности (без пайки толстых проводов). И позвольте ему интегрироваться в систему ЧПУ, как показано на видео.

Я собираюсь собрать сварочную машину из трех основных блоков. Блок конденсаторов, электронный переключатель и плата микроконтроллера. Таким образом, я могу сделать его более модульным и не рисковать полным редизайном того, что не работает в едином интегрированном пакете.

В настоящее время у меня есть конденсаторная батарея и платы электронного переключателя, смоделированные с изображениями ниже.

Плата блока конденсаторов со встроенными TVS-диодами для защиты от скачков индуктивного напряжения, которые могут стать реальной проблемой из-за высоких токов и паразитной индуктивности в кабелях. Выбор конденсатора тока https://www.digikey.fi/products/en?keywords=25USC47000MEFCSN35X50

Электронный коммутатор. Использует https://www.fairchildsemi.com/datasheets/FD/FDBL86561_F085.pdf мощные МОП-транзисторы с добавленным TVS-диодом для защиты от скачков индуктивного напряжения.

А вот быстрый и грязный рендер блендером установки, скрепленной вместе, без платы микроконтроллера.

С 20 конденсаторами вышеупомянутой модели она будет иметь теоретическую энергию ~ 290 Вт, что является довольно большим количеством энергии, и добавить больше конденсаторных плат довольно легко с помощью только более длинных шин и плат, установленных с двух сторон, прикручен к шине.

В целом, я хочу построить этот сварочный аппарат, чтобы избавиться от химических источников энергии, таких как батареи AKA.Я считаю, что у них проблемы с воспроизводимостью и ухудшением характеристик со временем из-за химического разложения, происходящего внутри них.

Мысли и дискуссии по этому поводу?

🎈 Общественная лаборатория: сварочный аппарат емкостного разряда

Я работал над этим

В основном не связанные и относительно опасные

Проект

за последнюю неделю построил небольшой сварочный аппарат емкостного разряда.

Предыстория

Привет, меня зовут Кина, и я занимаюсь разработкой датчиков и регистраторов данных для Университета Аляски в Фэрбенксе.Я работал с людьми над некоторыми проектами по физиологии деревьев, о которых я опубликую позже в другой заметке. Я только начал работать над созданием сенсоров Sap Flux для измерения скорости потока жидкости в дереве. Я собираюсь использовать метод Гранье, который требует, чтобы в дерево были встроены два датчика температуры и небольшая спираль нагревателя. Затем расход можно рассчитать по разнице температур между нагретым датчиком и датчиком окружающей среды. В этом методе используются крошечные термопары из 0.Проволока диаметром 005 дюймов внутри игл 18 калибра … так что нам нужно сделать термопары.

Что такое термопара?

В мире существует множество различных датчиков температуры. Здесь обычно упоминаются термисторы, сопротивление которых зависит от температуры. Термопары отличаются тем, что они представляют собой соединение двух разных типов металлических сплавов, которые генерируют небольшой электрический потенциал при изменении их температуры. Прикрепленный к специальному усилителю, вы можете получать точные показания температуры в очень широком диапазоне.Они также могут быть сделаны из проводов меньше человеческого волоса (которые очень быстро реагируют на изменения температуры), и, поскольку они работают из-за эффекта Зеебека, их можно использовать для охлаждения, если к ним приложить заряд. Аккуратный!

Так почему сварщик?

Ну, паять провода термопары — дело не самое лучшее. Припой не любит прилипать к ним, он также добавляет присадочный металл, который влияет на реакцию соединения и добавляет к нему тепловую массу, и если вы пытаетесь измерить температуры выше точки плавления припоя…. да, это не сработает. Так что сваривать их — это идеальный вариант … но сварочные аппараты для термопар стоят тысячи долларов, и все, что они, по сути, представляют собой батарею конденсаторов, несколько больших МОП-транзисторов для их разряда и микроконтроллер для измерения времени разряда.

Сварщик

Я быстро погуглил. Для самодельных сварочных аппаратов с термопарами не так много возможностей, но наверняка есть аппараты для сварки емкостным разрядом для приварки контактов к батареям. И это одно и то же. У Hackaday есть несколько хороших проектов, но у Instructables есть один проект, который хорошо документирован.Там же я получил большую часть бета-версии этого проекта.

Вся система довольно проста и состоит из 2 частей.

Накопитель энергии

Энергоаккумулятор представляет собой конденсаторную батарею, которая заряжается от настольного источника переменного тока. Я использовал 24 конденсатора емкостью 47000 мкФ 25 В, сгруппированных в 8 групп по 3. Конденсаторная батарея разряжается через 16 силовых полевых МОП-транзисторов (по 2 на группу) в некоторые изготовленные мной алюминиевые шины. МОП-транзисторы контролируются системой управления.

Система управления

Система управления — это ардуино (я использовал pro mini, который у меня был), кнопка, поворотная ручка, маленький экран и микросхема драйвера MOSFET. Система управления питается от настенной бородавки 9 или 12 В, которую я лежал (здесь есть тема). Кнопка запускает запуск разряда, а Arduino контролирует его время. Довольно просто.

Сборка

Общая стоимость запчастей, которых у меня не было, составила около 300 долларов.По большей части это были конденсаторы и полевые МОП-транзисторы.

Я смог сделать свои собственные печатные платы, потому что у меня есть несколько модных игрушек (например, небольшая фрезерная машина с ЧПУ), что сделало этот проект немного дешевле.

Шины были сделаны из квадратной алюминиевой ложи 0,5 дюйма с просверленными и резьбовыми отверстиями, соответствующими монтажным платам.

МОП-транзисторы между автобусами красиво. Каждая плата подключается к следующей, передавая сигнал запуска и балансируя заряд конденсаторной батареи.

Это остальные платы конденсаторов, готовые к сборке.

Это собранная конденсаторная батарея. Маленькая плата на конце представляла собой набор диодов для защиты от обратного напряжения из-за разряда огромных всплесков тока через индуктивную нагрузку. Возможно, я спроектировал это неправильно или что-то в этом роде, потому что это вызвало странные проблемы смещения с MOSFET, и я просто удалил его. Я проверил скачки напряжения с помощью осциллографа и не обнаружил никаких проблем, так что все в порядке.Также был большой резистор для разряда конденсаторной батареи, когда все выключено, чтобы уменьшить неожиданное поражение электрическим током.

Это заключительный этап тестирования … Только не трогайте искрящиеся части, и все будет в порядке. Положительный вывод зачищен и прикреплен лентой к круглому углеродному стержню, а отрицательный вывод зачищен и приклеен лентой к набору фиксирующих кровоостанавливающих зажимов, которые, угадайте, у меня были!

В итоге я просто бросил все это в картонную коробку и пока горячо приклеил плату управления к верхней части.У меня нет времени на причудливые случаи, и я не чувствую, что это не так уж и опасно.

Результаты

Положительны. Он сваривает. И он действительно сваривает довольно хорошие термопары, которые действительно работают! Я тестировал провод 0,015 дюйма с отличными результатами.

VID_20160712_111719 от Кины Смит на Vimeo.

Другое применение

С другими электродами это было бы волшебством при сварке язычков батарей. Он отлично подходит для отпаривания отверток (ой).Крис Фасти также предположил, что это может быть действительно полезно для использования со спектрометром #spectrometer для анализа содержания металлов путем создания электрической дуги на металле и снятия с нее спектров.

Документация

Код и файлы печатной платы находятся на Github. Если вы хотите попробовать создать это, дайте мне знать. Я был бы рад предоставить более подробную схему системы и техническую помощь.

Ищу совет по модернизации сварочного аппарата MIG DIY (конденсаторная батарея, индуктор и т. Д.)

Ага.У меня есть совет. Не делай этого. По крайней мере, до тех пор, пока вы не изучите конструкцию электроники сварщика более тщательно.

Я с энтузиазмом занимаюсь своими руками и увлекаюсь электроникой (без формального обучения электронике), и мне нравится идея повышения производительности оборудования своими руками, но вы тратите много энергии и должны знать что вы делаете, чтобы не повредить себя или свое оборудование. Характер некоторых из ваших вопросов вызывает у меня опасение, что ваш энтузиазм может превзойти ваши знания на данном этапе.Я ценю, что вы задаете вопросы перед тем, как приступить к модам, которые у вас есть. Однако, если вы по сути не копируете схемы в существующих коммерческих продуктах или успешных проектах других экспериментаторов (совсем неплохая идея), я не уверен, что здесь есть опыт для разработки предлагаемых вами модов. (Есть ли там кого-нибудь, кого я еще не оскорбил?)

Я понимаю, что могу неправильно понять ваши намерения, но вот мои наблюдения по поводу того, что, как мне кажется, вы предлагаете:

«Имеет ли значение, где я размещаю банк в цепи? » Да, конечно! У меня сложилось впечатление, что вы планируете разместить батарею конденсаторов на выходе вашего сварочного аппарата и непосредственно перед вашим пистолетом.2) / 2, или (0,1355 * 50 * 50) / 2 = 170 Дж. (Вы не можете превышать номинальное напряжение конденсатора с наименьшим номиналом в вашей батарее.) Банк на 75 вольт, если заряжен до 75 вольт, будет содержать 307 джоулей. 307 Дж — это не огромное количество энергии, но высвобождается за несколько микросекунд и ничто не ограничивает ток, кроме паразитного сопротивления и индуктивности кабеля / провода / рабочего контура, это, вероятно, по крайней мере вызовет неприятную вспышку в момент контакт проволоки с изделием и может привести к образованию небольшой воронки на изделии и испарению проволоки.Под испарением я не имею в виду нанесение присадочного металла в сварочную ванну. Я имею в виду наполнить атмосферу рядом с вашей работой металлическими парами.

Будет ли выгодна ваша идея добавить конденсаторную батарею к вашему сварочному аппарату, будет зависеть от схемы сварочного аппарата. Моя первоначальная мысль заключается в том, что это не так, но, насколько я знаю, это может быть обычной практикой.

Следует иметь в виду, что установка слишком большой батареи конденсаторов на выходе выпрямительного моста может вызвать отказ выпрямителей, поскольку заряд, необходимый для перезарядки конденсаторов, может быть сконцентрирован в короткие периоды около пика формы волны напряжения. а не в течение более длительного периода цикла зарядки.Это приводит к более коротким и более сильным импульсам тока через выпрямители, чем рассчитана система. Я понятия не имею, как это проанализировать без исследования, и, возможно, это вообще не проблема с предлагаемой вами настройкой.

«вопрос 1: плохая ли идея построить батарею для моего MIG из разнородных конденсаторов?» Нет, при условии, что вы никогда не превысите напряжение самого низкого номинального конденсатора.

Как бы вы разместили блок крышек на стороне зажима заземления?

Если ваш сварочный аппарат использует слабую связь между первичной и вторичной обмотками трансформатора в качестве метода контроля тока, я не думаю, что вы можете преобразовать его в CV.Трансформатор, вероятно, рассчитан на гораздо более высокое выходное напряжение, чем вы хотите. Если он использует активную схему управления, вы, возможно, сможете выполнить такое преобразование, но вам придется проникнуть внутрь органов управления.

Параллельное использование нескольких диодов не обязательно дает вам сумму номинальных значений тока всех диодов. Производители сварочных аппаратов иногда делают это для экономии, но, по-видимому, они классифицируют партию диодов на группы с соответствующим падением прямого напряжения. При отсутствии балластных резисторов этой категории или балластных резисторов низкого номинала, включенных последовательно с каждым диодом, один диод может потреблять ток от параллельно включенных и выходить из строя из-за чрезмерного тока.

Развлекайтесь, но будьте осторожны.

нормально

Сопротивление и ударно-дуговая сварка диодов, конденсаторов, силовых выпрямителей

СОПРОТИВЛЕНИЕ СВАРКИ создается за счет тепла, полученного от сопротивления на стыке металлических предметов протеканию электрического тока через соединение. Как правило, соединение поддерживается внешней силой, которая прижимает предметы друг к другу. Закон

ОМ лежит в основе контактной сварки. Этот закон гласит: «Если напряжение остается постоянным, ток, протекающий через любую цепь, обратно пропорционален сопротивлению в этой цепи.”E = IR. E = вольты, I = ток в амперах, R = сопротивление в омах.

Основным требованием для контактной сварки является выделение тепла. Формула мощности, рассеиваемой в электрической цепи: P = I²R. P = мощность в ваттах, I = ток, R = сопротивление. Ток в амперах одинаков во всех частях однолучевой цепи независимо от сопротивления от точки к точке. Однако тепло, выделяемое в точке, будет прямо пропорционально сопротивлению в этой точке.

При контактной сварке детали спроектированы так, чтобы иметь наибольшее сопротивление и, следовательно, наибольший нагрев в точке, где требуется сварка.Соединительные провода имеют очень низкое сопротивление при одинаковой силе тока. Следовательно, соединительные провода остаются относительно холодными.



В точках A и C на рисунке 1 сопротивление электрода к проводу и электрода к пробке сведено к минимуму за счет использования медно-вольфрамового материала, который обеспечивает как низкое электрическое сопротивление, так и хорошую физическую износостойкость.

В точке B на рисунке 1 острие долота, врезанное в проволоку, обеспечивает начальную точку высокого сопротивления, которая приводит к точке наибольшего нагрева.

Тепловая энергия, генерируемая в свариваемом стыке и соединительных электродах, выражается законом Джоуля как: W = I²RT. W = тепловая энергия в ватт-секундах или джоулях, I = ток в амперах, R = сопротивление в омах, T = время приложенного тока в секундах.

Как правило, значительное количество тепла рассеивается на сопротивлении постоянного тока в трансформаторе, во всех соединительных муфтах, линиях шин к электродам, электродам и интерфейсам, а также на индуктивных потерях переменного тока в трансформаторе.То есть тепло выделяется и теряется во многих точках, кроме самого соединения.

С учетом эффекта потерь формула тепловой энергии принимает следующий вид: H = I²RTK. K = коэффициент тепловых потерь.

Потери в основном вызваны излучением от светильников и предметов в окружающий воздух. Поскольку эти потери нелегко контролировать, время приложения тока является важным фактором.

Если тепло, генерируемое приложенным током, поднимает температуру соединения выше точки плавления металла, в различных точках могут образовываться газовые карманы, что приводит к взрыву мельчайших частиц, что называется «искрообразованием».При дальнейшем повышении температуры зона термического влияния переместится дальше в подводящий провод и вызовет обесцвечивание.

Поскольку тепло, выделяемое в точке, пропорционально квадрату тока, без учета потерь, удвоение тока приведет к учету тепла, выделяемого за данный период времени. Изменение выделяемого тепла может быть получено либо изменением уровня тока, либо изменением продолжительности времени. Однако передача тепла через металл, окружающий переход, занимает ограниченное время.В результате для создания сварного шва надлежащего размера продолжительность времени не может быть меньше минимума, независимо от увеличения тока. Обычным эффектом сильного тока при недостаточной продолжительности времени является настолько быстрое выделение тепла, что на контактных поверхностях происходит горение.

Давление сварного шва — это сила на единицу площади, действующая на СВАРНЫЙ ИНТЕРФЕЙС и РЕЗЕРВНЫЙ ЭЛЕКТРОД со стороны СВАРОЧНОГО ЭЛЕКТРОДА. Внешняя сила сближает детали и поддерживает постоянное давление на стыке во время процесса сварки.

Давление сварного шва не входит напрямую в только что обсужденную формулу, но оно оказывает прямое влияние на сварочный ток, поскольку влияет на сопротивление на стыке двух заготовок.

Для контактной сварки доступно множество различных источников питания. Существует четыре основных категории: СОХРАНЕННЫЙ ЕМКОСТНЫЙ РАЗРЯД, СИНХРОННЫЙ ПЕРЕМЕННЫЙ ТОК, ВЫСОКОЧАСТОТНЫЙ ПОСТОЯННЫЙ ТОК И СВАРКА ЧИСТЫМ ПОСТОЯННЫМ током.

Типичный пример показан на блок-схеме на Рисунке 2.Он состоит из силовой цепи, способной переключать обе половины сетевого напряжения переменного тока (рис. 2A), схемы обнаружения нулевого напряжения для синхронизации переключения силовой цепи, схемы синхронизации для запуска силовой цепи на желаемое время сварки. и сварочный трансформатор для преобразования высокого напряжения при низком токе в низкое напряжение (обычно от 2 до 6 вольт) при высоком токе.

Выход синхронного источника питания переменного тока обычно регулируется тремя способами, как показано на Рисунке 3 (ниже):

  1. Настройка нагрева — Управляет процентным соотношением линейного напряжения каждого полупериода, приложенного к сварочному трансформатору, относительно точки пересечения нуля переменного напряжения.(Рисунок 3A)
  2. Half or Full Cycle (Половина или полный цикл) — устанавливает источник питания для подачи последовательных полупериодов линейного тока одинаковой или переменной полярности. Полный цикл обеспечивает, по крайней мере, один полный цикл линейного тока. (Рисунки 3B и 3C)
  3. Number of Cycles — Устанавливает количество циклов линейного тока, подаваемого при каждом пуске сварочного аппарата. (Рисунок 3D)
Типичная схема показана на рисунке 4 (ниже). Конденсатор (ы) заряжается постоянным током от выпрямителя или генератора.Эта энергия сварки хранится от 50 до 300
Напряжение постоянного тока, а затем разряд через механические или электрические методы переключения в первичную обмотку сильноточного сварочного трансформатора.

Элементы управления для этого источника питания сварочного шва:

  1. Приложенное напряжение — регулировка напряжения, хранящегося в конденсаторах.
  2. Amount of Capacitance — Регулировка количества конденсаторов.
  3. Weld Current — Регулировка отводов сварочного трансформатора для изменения напряжения на вторичной обмотке.
Существует четыре типа дюметов: ОКИСЛЕННЫЕ, ДУМЕТЫ С НАНЕСЕНИЕМ, ПОКРЫТЫЕ
. ДУМЕТ И ГОЛЫЙ ДУМЕТ.

Окисленный дюмет состоит из никелевого железа, плакированного медью, которое проходит процесс нагрева, в результате которого на поверхности плакированной медью образуется оксид меди. Этот затвор обычно используется в приложениях, в которых в процессе герметизации используется определенная форма контролируемой атмосферы.

В борированном дюмете также используется окисленное никелевое железо, плакированное медью. Однако после окисления дюмет подвергают термообработке раствором буры с образованием поверхности тетрабората натрия, которая облегчает герметизацию стекла в процессах пламенного типа.

CCFE (медная железо-стальная проволока) бывает разных размеров и имеет проводимость от 20% до 88%. Электропроводность чистой меди считается 100%.

Чтобы изготовить приварной пуансон к сборке CCFE, как показано на рис. 6, необходимо сначала отрезать пуансон до нужной длины. Правильно сделанный надрез требует, чтобы на обоих концах отрезанной заготовки не было заусенцев и чтобы пятно меди проходило через примерно 75% поверхности, противоположной сварному шву, как показано на Рисунке 8A, и чтобы поверхность уплотнения оправки не иметь царапин или следов, которые могут повлиять на межметаллическое уплотнение.Затем проволоку из CCFE обрезают до нужной длины, образуя острие в виде долота, как показано на рисунке 8B. Это острие долота срезается под разными углами, обычно <30%, чтобы обеспечить относительно высокое сопротивление сварного соединения.

Заглушка думета и проволока CCFE сводятся вместе под давлением, и сварочный ток подается через набор зажимных губок на проволоке из CCFE и через электрод, который контактирует с заготовкой dumet на стороне, противоположной сварному шву, как показано на Рис. 1.Когда ток проходит через детали, относительно высокое сопротивление интерфейса CCFE / Dumet заставляет соединение быстро нагреваться, поскольку сварочное давление заставляет две детали соединяться вместе, сваривая два металла. Фактический процесс сварки швов DO 41 и DO 35 занимает от 3 до 8 миллисекунд, в зависимости от материала, проводимости и размера проволоки.

Сварные швы тантала и тантала используются для изготовления танталовых анодов конденсаторов. Фактический процесс сварки такой же, как и при сварке в сварочном аппарате CCFE.Однако, поскольку заготовки прессуются из порошкообразного тантала, их необходимо подавать в сварочный аппарат с помощью вибрационной чаши и питателя. Процесс контактной сварки хорошо подходит для этого типа сварки, потому что тантал при нагревании очень реактивен по отношению к кислороду и другим газам и может фактически воспламениться от электрической дуги.

При контактной сварке не возникает дуги, которая могла бы вызвать быстрое окисление порошкообразной металлической заготовки тантала. Это также сводит к минимуму воздействие кислорода и азота, которые могут вызвать образование оксидов и нитридов в сварном стыке и в области, окружающей сварной шов.Обращение, правка и резка тантала требует осторожности, чтобы избежать прилипания смазочных масел, которые могут повредить готовый конденсатор.

Тантал чрезвычайно абразивен. Требуется, чтобы резка производилась инструментами из карбида вольфрама, а матрицы в ротационном правильном станке были изготовлены из керамики или нейлона для предотвращения преждевременного износа. Поскольку тантал очень абразивен, танталовая пыль, которая накапливается на сварочных аппаратах, должна удаляться ежедневной очисткой, чтобы предотвратить чрезмерный износ движущихся частей.

Ударная сварка — это процесс сварки, в котором тепло получается от дуги, возникающей в результате быстрого разряда электрической энергии через зазор, и удара заготовки, который прикладывается во время или сразу после электрического разряда. Мелкий слой металла на контактных поверхностях заготовки расплавляется за счет тепла дуги, возникающей между ними. Одна из заготовок сталкивается с другой, гасит дугу, удаляет оксиды и ковка сварного шва.

Возникновение дуги, время дуги и сварочное воздействие контролируются и синхронизируются автоматически.Источник питания сварочного шва обычно емкостного типа. Сварочное воздействие (сила ковки) прикладывается электромагнитными устройствами, электромеханическими устройствами, кулачковым прямым приводом, пружинами или силой тяжести.

Вырабатываемое тепло интенсивное, но очень короткое по времени и локализовано близко к стыку. Он позволяет выполнять ударную сварку небольшого компонента с более крупным, а также разнородных металлов, которые значительно различаются по удельному электрическому сопротивлению и температуре плавления.Удельное электрическое сопротивление свариваемых деталей не оказывает заметного влияния на количество тепла, выделяемого на стыке. Дуга обеспечивает тепло для сварки металлов.

Зажим, губки или патрон сварочной головки не обязательно должны быть хорошим проводником электричества, как при контактной сварке, потому что величина пропускаемого тока сравнительно мала, а продолжительность протекания тока чрезвычайно мала. Материал зажима заготовки обычно выбирается в первую очередь по прочности и износостойкости.Обычно используется закаленная сталь.

Ударная сварка используется для сварки тонких проводов проволоки с нитями нити в лампах и
к клеммам электрических и электронных компонентов, где требуется надежное соединение, выдерживающее удары, вибрацию и продолжительное обслуживание при повышенной температуре. Он обычно используется при сварке меди с молибденом для использования в производстве выпрямителей мощности, в производстве телефонных и электрических устройств, а также для прикрепления контактов большой площади к компонентам переключателей.

Ударные сварные швы можно выполнять на расстоянии нескольких тысячных дюйма от стеклянных уплотнений или других термочувствительных материалов без повреждения этих материалов, поскольку общее выделяемое тепло невелико и может быть локализовано. Ударная сварка может быть массивной или тонкой металлической, как в емкости с катодом конденсатора, многопроволочной или сплошной проволокой. Плоские заготовки любой формы можно приваривать к сопрягаемым плоским поверхностям с помощью дугового наконечника.

Детали должны быть отдельными объектами.Концы сплошной заготовки нельзя соединить в кольцо. Одна из заготовок сборки должна иметь возможность закрепляться в сварочной головке в надежном положении, чтобы она могла удариться о неподвижную заготовку без соскальзывания.

Ударная сварка конденсаторным разрядом может использоваться для стыковой сварки проволок одинакового или очень разных диаметров. Для некоторых металлов диаметр проволоки может составлять всего 0,005 дюйма.

Термически обработанные, холодно обработанные или предварительно обработанные металлы не подвержены влиянию тепла ударной сварки, поскольку зона термического влияния очень мала, обычно всего несколько тысячных долей дюйма.

Очистка не критична для производства прочных ударных сварных швов, потому что по крайней мере тонкий слой металла плавится с каждой детали и удаляется из стыка.

Практически любую пару одинаковых или непохожих металлов или сплавов можно соединить ударной сваркой. Заготовки самого разного состава, температуры плавления, электропроводности и теплопроводности можно легко сваривать.

Легко свариваемые металлы включают медные сплавы, алюминиевые сплавы, никелевые сплавы, низкоуглеродистые стали
, среднеуглеродистые и нержавеющие стали.Также были сварены различные комбинации этих сплавов.

Медь может быть сварена с молибденом ударной сваркой. Хотя настоящие сварные швы между этими двумя металлами в одно время считались невозможными из-за взаимной нерастворимости, испытания показали проникновение меди в молибден на 0,0004 дюйма в месте сварного соединения.

Для ударной сварки используются три типа источников питания. Это: низковольтный конденсатор, высоковольтный конденсатор и трансформатор. Будут рассмотрены низковольтные конденсаторные и высоковольтные конденсаторные источники питания.

Низковольтные конденсаторы с высокой емкостью обычно используются в источниках питания для ударной сварки конденсаторным разрядом. Конденсатор заряжается постоянным током от выпрямителя или генератора, а энергия сварки сохраняется на уровне от 50 до 300 В постоянного тока, а затем разряжается для сварки.

Относительно низкое напряжение делает этот тип источника питания подходящим для использования со стационарными сварочными головками, поскольку оператор не подвергается воздействию слишком высокого напряжения.

Высоковольтные конденсаторы с малой емкостью также используются для питания конденсаторной ударной сварки.Электрически они работают так же, как и низковольтные конденсаторы, но сохраняют энергию сварки от 1000 до 6000 В постоянного тока.

Высоковольтные конденсаторы

могут производить более равномерный разряд дуги, и использование
этого типа источника питания является одним из способов избежать необходимости в наконечнике для зажигания дуги. Высокое напряжение дает больше свободы в управлении рабочими параметрами сварочного процесса. Однако обеспечить защиту оператора от напряжений, которые часто превышают 1000 вольт, сложнее и дороже.

Типовая схема сварки емкостным разрядом показана на Рисунке 4 (ниже).

Время дуги — это временной интервал, который начинается, когда дуга зажигается, и заканчивается, когда одна деталь сталкивается с другой и дуга гаснет.

Факторы, влияющие на время дуги, включают обрабатываемый металл или комбинацию рабочих металлов, массу движущейся заготовки и движущихся частей станка, размеры наконечника, сварочное напряжение и ток, сварочное усилие и синхронизацию зажигания дуги с приложением сварочного усилия. .

Наименьшее время дуги, которое позволяет сформировать прочную металлургическую связь с некоторым проникновением в заготовку, обычно используется для минимизации теплового воздействия на прилегающие области заготовки. Типичное время дуги при ударной сварке составляет от 0,5 до 1,5 миллисекунд.

Из-за короткого времени дуги зона термического влияния очень мала. Для сварки конденсаторным разрядом оно часто составляет всего от 0,0015 до 0,005 дюйма. В ударных сварных швах между металлами, которые имеют сильно различающиеся температуры плавления, зона термического влияния может составлять всего несколько миллионных долей дюйма в металле с более высокой температурой плавления и.От 015 до 0,025 дюйма в металле с более низкой температурой плавления.

Заряд конденсатора (конденсаторов) и напряжение дают приблизительную меру энергии сварки, затрачиваемой на соединение при дуговом разряде. Эту энергию можно рассчитать по следующему уравнению: W = 1 / 2CE2, где W — энергия в ватт-секундах или джоулях, C — емкость в фарадах, а E — напряжение в вольтах.

Количество энергии, используемой для выполнения ударного сварного шва, зависит от площади поперечного сечения стыка, свойств обрабатываемого металла или металлов и глубины, на которую металл расплавляется в обрабатываемых деталях.

Сварочный ток или характер дугового разряда при ударной сварке зависит от области применения и обычно не измеряется. Однако пики тока в 400 ампер эквивалентны почти 1/2 миллиона ампер на квадратный дюйм на проводе диаметром 0,032 дюйма.

Полярность не имеет значения при выполнении ударных сварных швов между деталями, изготовленными из одного и того же материала и имеющими одинаковую площадь поперечного сечения, но может существенно повлиять на сварку разнородных металлов или материалов с разной площадью поперечного сечения.При сварке металлов с разной температурой плавления металлу с наивысшей точкой плавления или наибольшей площадью поперечного сечения обычно придается ПОЛОЖИТЕЛЬНАЯ полярность.

Выбор полярности имеет особое значение при ударной сварке разнородных металлов, которые сильно различаются по температуре плавления, и используется для минимизации глубины зон термического влияния в металле с более низкой температурой плавления.

Разница температур двух заготовок относительно полярности объясняется эффектом электронной бомбардировки анода во время дугового разряда.Эта электронная бомбардировка анода вызывает сильное нагревание анода до температуры примерно 3600 ° Кельвина (3326 ° по Цельсию). Хотя температура катода намного ниже этой, он все равно будет достаточно горячим, чтобы расплавить большинство металлов.

Силу, используемую при ударной сварке, трудно измерить, потому что она скорее динамическая, чем статическая, и зависит от скорости и массы движущейся детали и движущихся частей машины.

Для получения хороших сварных швов усилие сварки необходимо регулировать эмпирически, пока не будет достигнуто надлежащее качество сварки.Сварочное усилие может создаваться с помощью электромагнита, силы тяжести, прямого привода с кулачковым приводом или пружины, в зависимости от типа сварочного аппарата и соединяемых деталей.

При ударной сварке используются три метода зажигания дуги.

При пуске под высоким напряжением дуга запускается путем приложения к обрабатываемым деталям напряжения постоянного тока, которое достаточно велико для преодоления сопротивления воздуха в зазоре между деталями, когда одна деталь движется по направлению к другой. Воздух ионизируется, и начинается подача сварочного тока.

В методе RF-START процесс включает наложение высокочастотного переменного тока высокого напряжения на постоянный ток низкого напряжения через зазор между деталями. Высокочастотное поле ионизирует воздух в зазоре, вызывая дугу, а постоянный ток низкого напряжения от конденсаторов поддерживает его. Этот метод зажигания дуги используется в некоторых ударных сварочных аппаратах с низковольтным конденсаторным разрядом. Это избавляет от необходимости готовить перо на одной из заготовок

В третьем методе STARTER NIB подготавливается, как показано на рисунке 5A, на одной из заготовок путем резки ее под углом или в форме острия долота.Постоянный ток низкого напряжения, подаваемый конденсаторами, когда две детали соединяются, создает достаточно тепла, чтобы расплавить перо, которое нагревается так быстро, что происходит взрыв расплавленных частиц. Этот взрыв способствует дальнейшему образованию электрической дуги, которая затем постепенно распространяется по стыку.

Когда детали приближаются к контакту и конденсаторы разряжаются, расплавляя наконечник, интенсивный нагрев дуги поднимает границу раздела рабочей поверхности до температуры плавления за доли миллисекунды.Когда одна заготовка сталкивается с другой с высокой скоростью, расплавленный металл выталкивается из границы раздела рабочей поверхности, и заготовки свариваются вместе, чтобы завершить сварку. Последовательность шагов графически показана слева на Рисунке 5.

Тщательный контроль напряжения, емкости, скорости удара и предельного сопротивления важен для получения качественной сварки. Напряжение и емкость определяют количество энергии, хранящейся в системе, и, следовательно, способность дуги к тепловыделению.Скорость удара определяет количество энергии ковки. Ограничивающее сопротивление контролирует пиковый ток разряда.

Эти четыре параметра взаимодействуют для определения продолжительности дуги и синхронизации дугового разряда. Быстрое приближение деталей вызывает дуговую разрядку.

Обычно условия регулируются таким образом, чтобы получить наименьшее время дуги, что позволяет стабильно производить сварные швы с желаемыми свойствами. Если детали соединяются слишком рано, дуга гаснет до того, как рабочая поверхность обеих деталей расплавится.Если удар откладывается слишком долго после зажигания дуги, расплавленные поверхности раздела могут затвердеть, не допуская вытеснения оксидов и избыточного расплавленного металла.

Как показано в правом верхнем углу рисунка 5, пиковый сварочный ток достигается почти сразу при зажигании дуги (точка A). Затем ток быстро спадает во время дугового разряда (точка B). Ток увеличивается до вторичного пика при контакте с деталями (точка C) из-за внезапного падения электрического сопротивления, а затем снижается до нуля в течение дополнительных 3-5 миллисекунд.

Как показано в правом нижнем углу рисунка 5, напряжение на сварном шве очень быстро снижается (точка A) до доли своего первоначального значения разомкнутой цепи, когда дуга возникает при близком приближении движущейся заготовки к неподвижной детали. кусок. Затем напряжение уменьшается менее быстро (точка B) по мере продолжения дугового разряда. Дуга гаснет при контакте деталей (точка C). После типичного времени дуги 0,25 и 1,15 миллисекунды напряжение почти мгновенно падает почти до нуля.

Большая разница в температуре плавления молибдена и циркония и меди диктует, что единственный практический метод соединения этих металлов — это использование ударной дуговой сварки.

Для запуска подачи сварочного тока можно использовать любой из трех методов пуска, упомянутых в разделе «Пуск дуги». Однако наиболее распространены методы NIB и RF START. Из-за низкой температуры плавления циркония и меди по сравнению с точкой плавления молибдена, когда происходит этот сварной шов, из сварного соединения вытесняется довольно большое количество циркониевой меди.

Эти брызги сварочного шва могут вызвать проблемы. Проблемы заключаются в избытке меди на поверхности молибденовой заготовки и загрязнении рабочей зоны и станка, что может помешать последовательной сварке последовательности деталей.

Одно из решений — сваривать в масляной ванне, чтобы затвердеть и унести горячие частицы меди, как только они покинут зону сварки. Эта масляная ванна также поможет контролировать процесс сварки за счет создания атмосферы с пониженным содержанием кислорода во время сварки.

Когда масло используется для сдерживания брызг сварочного шва, NIB START является наиболее приемлемым средством начала сварки.Метод RF START неприемлем для использования с маслом, потому что диэлектрическая прочность масла влияет на синхронизацию высокочастотного разряда и препятствует равномерной сварке деталей.

Компания CIT начала производить сварку тантала с танталом с 1979 года по настоящее время. Модель 7200/1 CIT с индивидуальным источником питания была разработана специально для приваривания танталового анодного стояка к танталовому аноду.

Энергия, необходимая для сварки, хранится в электролитических конденсаторах, которые заряжаются регулируемым источником постоянного тока через токоограничивающий резистор до заданного напряжения.Затем заряженные конденсаторы переключаются на первичную обмотку сварочного трансформатора. Вторичная обмотка трансформатора соединяется с деталями, на которых сварка завершена.

Процесс контактной сварки хорошо подходит для этого типа сварки, поскольку тантал при нагревании очень реактивен по отношению к кислороду и другим газам и может фактически воспламениться от электрической дуги. Сварка сопротивлением не дает дуги, которая могла бы вызвать быстрое окисление порошкообразной металлической заготовки тантала. Это также сводит к минимуму воздействие кислорода и азота
, которые могут вызвать образование оксидов и нитридов в сварном соединении и в области, окружающей сварной шов.

С танталовыми анодами обращаются очень осторожно, чтобы предотвратить физическое повреждение и загрязнение маслами. Они подаются из чаши вибропитателя через питающую дорожку из нержавеющей стали в инжекторы из закаленной стали и устройства подачи штифтов в сварочные клещи для вольфрамовой меди. Подъемная танталовая проволока подается с катушки на вращающийся выпрямитель. Нейлон используется в штампах выпрямителя из-за очень абразивной природы тантала. После правки проволоку измеряют и подают в нож из карбида вольфрама, а затем вырезают, режут и помещают в сварочные губки из вольфрамовой меди.Поскольку тантал очень абразивен, пыль, скапливающуюся на сварочных аппаратах, необходимо удалять путем ежедневной очистки, чтобы предотвратить чрезмерный износ движущихся частей.

После установки в приварные губки обе детали сводятся вместе, и давление прикладывается предварительно нагруженными пружинными плунжерами. Конденсаторы подключаются к первичной обмотке сварочного трансформатора, и затем через две заготовки пропускается большой ток, создавая сварной шов. Ток и время сварки варьируются в зависимости от диаметра проволоки и плотности анода, но типичный пиковый ток будет составлять примерно 173 А в течение прибл.005
секунд (5 мс). Высокий ток в течение этого короткого времени вызывает очень интенсивный нагрев поверхности раздела двух заготовок с относительно высоким сопротивлением. Это вызывает быстрое образование ванны расплава тантала, которая превращается в локализованный сварной узел. Сварочный аппарат имеет переключаемые батареи конденсаторов с полностью регулируемым источником постоянного тока, который позволяет точно регулировать энергию сварки.

Большая часть наших работ выполнялась с цилиндрическими анодными таблетками, но у нас также есть опыт работы с прямоугольными анодами.Диапазон размеров цилиндрических деталей составляет от 0,8 до 3,5 мм и длиной от 1,95 до 7,4 мм. Типичные прямоугольные детали составляют 2,30 мм x 4,00 мм x 0,75 мм. Диаметр проволоки составляет от 0,3 мм до 0,4 мм при длине 12,7 мм.
Анодные гранулы меньшего размера могут быть сварены с изменением инструментов и регулировкой источника питания сварочного аппарата. Плотность порошка этих анодных таблеток варьируется, но не представляет серьезных проблем при сварке, если они достаточно долговечны, чтобы выдерживать подачу вибрационной чаши
и последующий зажим сварочных губок без повреждений.CIT проверит плотность гранул до принятия любого заказа на сварочное оборудование. Обратите внимание: вся сварка, которую мы делали до этого времени, была выполнена на анодах, которые были ФОРМОВАНЫ и СПЕЧЕНЫ ОДИН РАЗ перед сваркой. После сварки готового анодного узла с райзером он проходит ВТОРОЙ СПЕЧЕНИЕ. Если у вас есть вопросы или вам нужна дополнительная информация, свяжитесь с нами.

Этот сварной шов, показанный на Рисунке 7, обычно используется при изготовлении танталовых конденсаторов для соединения никелевого выводного провода с танталовым анодным стояком.Можно использовать контактную сварку, поскольку тантал и никель обеспечивают относительно высокое сопротивление на границе раздела деталей. Однако короткий анодный стояк и покрытие из пятиокиси тантала, которое находится на поверхности стояка, диктуют необходимость выполнения сварного шва внахлест, а не стыкового шва.

Использование ударной сварки для приваривания райзера к никелевой свинцовой проволоке позволяет автоматически подавать незакрепленные аноды через вибрационный питатель с чашей в автоматический сварочный аппарат. Относительно высокие напряжения и низкие токи, типичные для ударной сварки, позволяют сварочным клещам, захватывающим короткий анодный стояк, быть небольшими по размеру и изготавливаться из материала с длительным сроком службы, такого как вольфрам или инструментальная сталь.Высокое напряжение ударного сварного шва легко преодолевает изолирующие свойства пятиокиси тантала, покрывающей райзер, и сводит к минимуму эффекты немного более высокого сопротивления на границе раздела зажима губки и райзера.

Мазок

Медная оболочка, которую протягивают через обрезанный конец оправки во время разрезания заготовки (см. Рисунок 10A ниже).

Узел сварной

Угловой шов вокруг границы раздела между проволокой и заготовкой (Рисунок 10B).

Axe Weld

Неполный сварной шов между заготовкой и хвостовой проволокой, по-видимому, разрезанный топором (Рисунок 10C).

Обрыв / отсечка (BO / CO)

Два эффекта разрезания пули думета. Облом — это неразрезанная часть пули. Обрезка гладкая.

Тент

Степень наклона пули к проволоке.

Заусенец

Деформированный металл на каждом конце отрезанной заготовки, вызванный износом режущего инструмента.

Tir (Общее указанное биение)

Мера концентричности между проволокой и заготовкой, как показано

Перо стартера

Небольшая острие, нарезанное на одной детали, которая пригорает от начального сварочного тока и используется для зажигания сварочной дуги.

Сварка сопротивлением

Преимущества

Этот метод позволяет выполнять очень маленькие и прочные сварные швы из аналогичного металла, такого как CCFE, на думет. Скорость сварки более 500 PPM.

Для более медленного нагрева заготовок большого диаметра можно использовать несколько циклов линии переменного тока.

Низкое сварочное напряжение:
1,56 В переменного или постоянного тока.

Недостатки

Заготовки должны быть подготовлены с относительно высоким сопротивлением в точке сварного соединения.

Высокие сварочные токи требуют очень плотных сварочных губок с низким сопротивлением, которые изнашиваются быстрее из-за давления материала и нагрева.

Ударная дуга и высокочастотная ударная сварка

Преимущества

Сварка разнородных металлов, меди со сталью.

Эти сварочные аппараты обычно имеют длительный срок службы сварочных клещей из-за очень короткого относительно слабого сварочного импульса.

Сварка металлов с высокой температурой плавления, таких как вольфрам, молибден.

Недостатки

Сварка обычно более грязная и менее гладкая, чем сварка сопротивлением.

При сварке ударной дугой с пусковым наконечником необходимо нарезать пусковой наконечник на заготовки.

При сварке ударной дугой с запуском «RF» детали должны быть очищены от масла или грязи.

Сварочное напряжение высокое: от 50 до 300 В постоянного тока.

Аппарат для точечной сварки емкостным разрядом | Hackaday.io


Ядро этого устройства — батарея конденсаторов 20 x 4,6 мФ = 94 мФ с максимальным напряжением 40 В, равным 75.2 Дж энергии. Конденсаторная батарея заряжается от источника тока 2 А, реализованного с помощью U4 (LM317) — убедитесь, что у него есть возможность отводить среднюю рассеиваемую мощность 5 Вт. Зарядка включается сигналом CHARGE от микроконтроллера, включающего транзистор Q3 PMOS. Напряжение измеряется на делителе напряжения VCAP, и когда достигается напряжение, необходимое для заданной энергии разряда, зарядка прекращается.

— ОПРЕДЕЛЕНИЕ РАЗМЕЩЕНИЯ ЭЛЕКТРОДОВ —
Напряжение батареи конденсаторов всегда поддерживается на фиксированном уровне около 2 В.Когда напряжение ниже, транзистор Q3 включается и конденсатор заряжается до желаемого напряжения. Напряжение на электроде E2 измеряется с помощью делителя напряжения, образованного R24 и R25. Когда электроды не подключены, измеренное напряжение составляет 0 В, но когда оба электрода прикреплены к сварному образцу, напряжение повышается до 2 В (напряжение конденсатора), и, таким образом, определяется размещение электродов.

— ПРОЦЕСС СВАРКИ —
Между обнаружением размещения электрода и началом процесса сварки существует задержка в 1 с, чтобы оператор мог отрегулировать положение электрода и давление.Если электроды все еще подключены после этой задержки, батарея конденсаторов заряжается до требуемой энергии (= напряжения), и когда она достигается, оба тиристора D8 и D9 срабатывают, и энергия конденсатора разряжается.
После фиксированной задержки (100 мс) измеряется напряжение конденсатора, и если оно больше 3 В, разряд помечается как неисправный.

— СТУПЕНЬ ПИТАНИЯ —

Изначально я хотел использовать несколько мощных N-MOSFET (NTD5804N, 7,5 мОм; 70 А номинал; 125 А @ 10 мкс) параллельно для переключения сварочного тока, но я сжег 10 параллельно и позже 20 параллельно.Это была очень глупая идея, и я должен был сначала ее смоделировать 🙂
Идея заключалась в том, что положительный температурный коэффициент Rdson будет уравновешивать токи, но, скорее всего, паразитная индуктивность схемы не позволяла равномерно разделить ток, и ближайший транзистор к электродам всегда выходил из строя и стало коротко. Тиристоры кажутся гораздо более подходящими для переключения экстремальных токов, к тому же они намного дешевле. Одного было бы достаточно, но я хотел перестраховаться, чтобы два были параллельны.

— ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ —

Пользовательский интерфейс очень прост.
Напряжение питания отображается на дисплее вместе с установленной энергией разряда, энергией, хранящейся в конденсаторах, и максимально возможной энергией разряда при заданном напряжении питания.
Энергия разряда устанавливается с шагом 5 Дж с помощью зеленой (увеличение) и желтой (уменьшение) кнопок.
Все взаимодействия, результаты, сбои и т. Д. Также объявляются звуковым сигналом.
Сварка начинается с присоединения электродов.

— ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ —
Энергия разряда: макс. 75 Дж (Втс)
Напряжение питания: 8-40 В постоянного тока
Ток питания: 3 A
Защита от обратного напряжения
Защита от перенапряжения (предохранитель)
Защита от перегрузки по току (предохранитель)

Измерение напряжения питания
Измерение напряжения конденсатора
Индикатор зуммера
Дисплей 128 x 32 пикселей
Кнопки управления

— ТЕСТИРОВАНИЕ —
(извините за низкое качество)