+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Что такое конденсатор и для чего он нужен? — Записки радиолюбителя

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы), а на другой отрицательно заряженные частицы (электроны). Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока.  Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

Основными параметрами конденсатора являются:
  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф), на практике часто встречаются мкФ (1мкФ = 0,000001 Ф), нФ (1нФ = 0,000000001 Ф), пФ (1пФ = 0,000000000001 Ф), так как емкость в 1Ф очень велика. Но  есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже).
  2. Номинальное напряжение — это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В)
    . При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения —  допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее).
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) повышается вязкость электролита и его ESR
    (удельное электрическое сопротивление)
    , что ведет к уменьшению емкости конденсатора.
Для чего же нужны конденсаторы и с чем их «едят».
  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах), он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т.п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Если вы нашли ошибку или нерабочую ссылку на файл, выделите ее и нажмите Shift + Enter или нажмите здесь , чтобы сообщить нам.

Конденсаторы

Тебе понравилась эта статья? Поделись с друзьями!

О помехах и не только…X- и Y-конденсаторы

Проблема электромагнитной совместимости и электромагнитных помех становится с каждым годом актуальнее. Связано это в первую очередь с увеличением числа потребителей и изменением схемотехники источников питания. Причем происходит как количественный рост (увеличение уровня помехи), так и качественный (меняется ее спектр). Помехи, как физическое явление присутствовали в электрических сетях всегда. Если раньше основным источником были коллекторные электродвигатели, с неизбежным искрообразованием на щетках, то сегодня – это импульсные источники питания с характерными для них ключевыми каскадами.

Как известно, помехи возникающие при работе устройства бывают двух видов: дифференциальные – когда ток помехи протекает в питающих проводах в разных направлениях и синфазные, когда ток помехи протекает в одну сторону, то есть дифференциальная помеха – это помеха между двумя проводами питания, а синфазная – между проводами питания и землей. Чтобы снизить влияние на электрическую сеть, между источником и потребителем устанавливается фильтр, типовая схема которого показана на рисунке слева.

 Дифференциальные помехи в этой схеме подавляются дросселями Ld и конденсатором Сх, а синфазные помехи – дросселем Lc и конденсаторами Cy. 

Остановимся подробнее на особенностях этих конденсаторов и попытаемся разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов».

Начнем с дифференциальной помехи.

Для её подавления используются конденсаторы класса X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке это конденсатор – Cх.

К конденсаторам данного класса предъявляются повышенные требования – они должны выдерживать максимально допустимые в сети электропитания всплески, не загораться при выходе из строя и не поддерживать горение.

Сейчас используются два основных подкласса X-конденсаторов – X1 и X2:

Основные свойства конденсаторов типа Х

Подкласс Пиковое тестовое напряжение (Up), кВ Область применения
Х1 2.5 < Up ≤ 4.0 Трехфазные сети
Х2 Up ≤ 2.5 Общее применение
  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения не менее 4кВ.
  • X2 – самый распространенный подкласс конденсаторов. Используется в бытовых приборах с номинальным напряжением сети до 250В, выдерживают всплеск до 2.5кВ.

Величина ёмкости X-конденсаторов варьируется от 0.1мкФ до 1мкФ. Для каждого конкретного случая она рассчитывается в зависимости от потребляемой мощности нагрузки и уровня помех в линии. Как правило, противофазная составляющая комплексной помехи — это напряжение помехи между фазой и нейтралью.

Для подавления синфазной помехи применяется конденсатор класса Y — CY. Схема их включения напоменает букву Y. Отсюда и название класса таких конденсаторов. 

В качестве примера появления синфазной помехи рассмотрим структурную схему AC/DC преобразователя. 

Все гальванически развязанные AC/DC преобразователи напряжения имеют в своём составе трансформатор. Ему присущ такой существенный недостаток, как паразитная межобмоточная ёмкость (Спар). Так как силовой ключ преобразователя напряжения гальванически связан с входным напряжением, а частота преобразования составляет порядка нескольких десятков килогерц, то величина сопротивления паразитной ёмкости трансформатора на этой частоте мала и будет являться причиной появления синфазной помехи на выходе, на обоих проводах сразу. В некоторых случаях напряжение помехи может достичь опасных для человека величин. Ток синфазной помехи обязательно отводится в провод заземления.

Для подавления синфазной помехи применяются конденсаторы – СY — конденсаторы класса Y. Ток синфазной помехи, который просочился через паразитную ёмкость трансформатора на выход устройства, стекает по более короткому пути в нейтраль через помехоподавляющие конденсаторы и исключает воздействие на выходные цепи.

Обратим внимание на то, что в данном случае конденсаторы CY связывают один из проводов питающей сети с выходом преобразователя. Это накладывает дополнительные требования к конденсаторам по его надёжности. Конденсаторы класса Y предназначены для работы в тех местах, где выход их из строя угрожает безопасности людей.

Конденсаторы класса Y – типа делятся на 2 основных подкласса:

Основные свойства конденсаторов типа Y

Подкласс Пиковое тестовое напряжение (UP), кВ Номинальное переменное напряжение (UR), В
Y1 UP ≤ 8.0 UR ≥ 250
Y2 UP ≤ 5.0 150 ≤  UR ≤ 250
  • Y1 – Работают при номинальном сетевом напряжении более 250В и выдерживают импульсное напряжение до 8кВ
  • Y2 – Самый популярный тип, может быть использован при сетевом напряжении до 250В и выдерживает импульсы до 5кВ.

Подведем итог:

  • Конденсаторы класса Y можно использовать вместо конденсаторов класса X, но нельзя использовать конденсаторы класса X вместо конденсаторов класса Y.
  • Конденсаторы класса Y имеют обычно намного меньшую ёмкость, чем конденсаторы класса X.
  • Если для конденсаторов класса X типа чем больше ёмкости, тем лучше, то ёмкость конденсаторов класса Y нужно выбирать как можно меньшей. Типовое значение обычно не превышает 2.2нФ.
  • Если на конденсаторе присутствует обозначение X и Y, то возможно его применение для подавления противофазных и синфазных помех.

На сегодняшний день в группе компаний «Промэлектроника» конденсаторы классов X и Y широко представлены продукцией таких ведущих фирм, как Epcos и Vishay, Murata.

Примеры расшифровки партнамберов EpcosПримеры расшифровки партнамберов VishayПримеры расшифровки партнамберов Murata

Конденсатор

Конденсатор состоит из двух пластин (или обкладок), находящихся одна перед другой и сделанных из проводящего материала. Между пластинами находится изолирующий материал, называемый диэлектриком (рис. 4.1). Простейшими диэлектриками являются воздух, бумага, слюда и т. д.

Рис. 4.1. Конденсатор

 

Зарядка конденсатора

Основным свойством конденсатора является его способность запасать электрическую энергию в виде электрического заряда.
На рис. 4.2(а) изображена схема, в которой конденсатор соединяется через ключ с источником питания. Когда ключ замкнут (рис. 4.2(б)), положительный полюс источника «откачивает» электроны с обкладки А, и она приобретает положительный заряд. Отрицательный полюс источника питания тем временем «поставляет» электроны на обкладку В, в результате чего она приобретает отрицательный заряд, по абсолютной величине равный положительному заряду обкладки А. Такой поток электронов называется током заряда. Он продолжает течь до тех пор, пока напряжение на конденсаторе не сравняется с ЭДС источника питания. В этом случае говорят, что конденсатор полностью заряжен. Электрический заряд обозначается буквой Q, а его величина измеряется в кулонах (Кл).

 

 

Рис. 4.2. Заряд и разряд конденсатора

 

Когда конденсатор заряжен, между его обкладками возникает разность потенциалов, а следовательно, и электрическое поле.
Если в момент, когда конденсатор уже зарядился, разомкнуть ключ (рис. 4.2(в)), конденсатор будет хранить заряд. В этом случае внутри диэлектрика между обкладками возникает электрическое поле. При разряде конденсатора через сопротивление нагрузки (рис. 4.2(г)) электрическое ноле исчезает.

 

Емкость конденсатора

Способность конденсатора накапливать электрический заряд называется емкостью, а величина этой емкости обозначается буквой С и измеряется в фарадах (Ф). Фарада — очень большая единица емкости, и поэтому она практически не используется. Чаще используются дробные единицы:

                         1 микрофарада (мкФ) =  Ф = 10-6 Ф,

                         1 пикофарада (пФ) =   мкФ = 10-6 мкФ = 10-12 Ф.

 

Емкость конденсатора возрастает с увеличением площади обкладок и убывает с увеличением расстояния между ними.
Например, при возрастании площади обкладок вдвое емкость также увеличивается в два раза. Если же увеличить вдвое расстояние между обкладками, емкость станет вдвое меньше.

 

Связь заряда, емкости и напряжения

Если конденсатор заряжен до разности потенциалов V , его заряд определяется формулой Q=CV

где С выражается в фарадах, V – в вольтах, а Q – в кулонах. Преобразовав эту формулу, получим:

 

Энергия заряженного конденсатора

Энергия W, запасенная конденсатором, определяется формулой

где W выражается в джоулях, С – в фарадах, а V — в вольтах.

 

Параллельное и последовательное соединение конденсаторов

Если два конденсатора, С1 и С2, соединены параллельно (рис. 4.3(а)), результирующая емкость СТ такого соединения равна сумме емкостей этих конденсаторов:

Если конденсаторы соединены последовательно (рис. 4.3(б)), результирующая емкость СТ оказывается меньше емкости любого из конденсаторов я выражается формулой

Например, если С1 = С2, то результирующая емкость СТ последовательного соединения равна половине емкости любого из конденсаторов:

 

Напряжение на последовательно соединенных конденсаторах

На схеме, показанной на рис. 4.4, конденсаторы С1 и С2 соединены последовательно и подключены к источнику постоянного напряжения VТ. Полное напряжение VТ будет поделено между С1 и С2 таким образом, что на конденсаторе меньшей емкости установится большее напряжение,

Рис. 4.3. Параллельное (а) и последовательное (б) соединение конденсаторов.

Рис. 4.4. Напряжение на конденсаторах при их последовательном соединении

и наоборот.

Сумма V1 (напряжения на С1) и V2 (напряжения на С2) всегда равна полному напряжению VТ.
В общем случае, когда несколько конденсаторов, соединенных последовательно, подключено к источнику постоянного тока, напряжение на каждом из конденсаторов обратно пропорционально его емкости. При последовательном соединении двух конденсаторов напряжения на С1 и С2 соответственно равны

 

Пример 1

Определим результирующую емкость цепи, изображенной на рис. 4.5. Результирующая емкость параллельного соединения равна

С2 + С3 = 10 + 20 = 30 пФ

Поскольку емкость С1 также равна 30 пФ, то результирующая емкость всей цепи равна ½*30 = 15 пФ.

Рис. 4.6.                                                                                                   Рис. 4.7.

 

Пример 2

На рис. 4.6 напряжение на конденсаторе С1 равно

откуда напряжение на С2 равно 30 – 20 = 10 В.

 

Рабочее напряжение

Любой конденсатор характеризуется некоторым максимальным напряжением, при превышении которого наступает пробой диэлектрика. Это напряжение называется рабочим, или номинальным, напряжением конденсатора, и подаваемое на конденсатор напряжение ни в коем случае не должно его превышать. При использовании конденсатора в цепях переменного тока амплитудное значение напряжения в цепи также не должно превышать рабочего напряжения конденсатора. Рабочим напряжением для батареи конденсаторов, соединенных параллельно, является наименьшее из рабочих напряжений конденсаторов, входящих в схему, Например, рабочее напряжение для цепи, изображенной на рис. 4.7, равно 25 В.
Для конденсаторов, соединенных последовательно, рабочее напряжение подбирать труднее. Рассмотрим схему на рис. 4.8. Конденсатор С1 (1 мкФ, рабочее напряжение Vраб = 25 В) соединен последовательно с конденсатором С2 (10 мкФ, Vраб = 10 В). Поскольку на конденсаторе С1, обладающем меньшей емкостью, установится большее напряжение, чем на С2, то при расчетах следует прежде всего иметь в виду рабочее напряжение конденсатора С1, равное 25 В. Таким образом, V1 = 25 В. соотношения V1/ V2 = С1/ С2 следует, что

Поскольку рабочее напряжение конденсатора С2 выше, чем V2, рабочее напряжение данной батареи конденсаторов равно 25 + 2,5 = 27,5 В.
Следует заметить, что если бы рабочее напряжение конденсатора было равно, например, 2 В, как показано на рис. 4.9, то он зарядился бы

 

                      Рис. 4.8.                                                                          Рис. 4.9.

                           Рис. 4.10.                                     Рис. 4.11. Катушка индуктивности

 

до уровня рабочего напряжения прежде, чем напряжение на конденсаторе С1 достигло бы 25 В. Вот расчет для этого случая:
V2 = 2 В, тогда.

Следовательно, рабочее напряжение такой батареи будет составлять 20 + 2 = 22 В.

 

Пример 3

Конденсаторы С1 и С2, изображенные на рис. 4.10, имеют каждый рабочее напряжение 60 В. Какое максимальное напряжение может быть приложено к этой схеме?

 

Решение
Поскольку на конденсаторе С1 установится более высокое напряжение, чем на конденсаторе С2, то напряжение на нем раньше достигнет уровня рабочего напряжения. При V1 = 60 В

Максимальное напряжение, которое может быть подано на данную схему, составляет 60 + 20 = 80 В.

 

В этом видео рассказывается о понятии конденсатора:

Добавить комментарий

Усилитель с общим эмиттером и шунтирующим конденсатором

Усилитель с общим эмиттером и шунтирующим конденсатором

Обычно в усилителе с общим эмиттером (ОЭ) используют шунтирующий конденсатор, подобный Се на рис. 4.5, включенный параллельно Re, что позволяет увеличить коэффициент усиления по напряжению. Проблема состоит в том, чтобы выбрать достаточно большое значение для Се так, чтобы при самой низкой используемой частоте снижение коэффициента усиления не превышало 3 дБ (и, следовательно, сдвиг фазы из-за подключения Ze был не больше, чем 45°).

Рис. 4.5. Усилитель с общим эмиттером и шунтирующим конденсатором

Анализ для переменного тока проводится на модели, показанной в рис. 4.6. Значения h-параметров, используемые здесь, такие же, как и в примерах главы 3, относящихся к анализу усилителей ОЭ. Значения параметров элементов: Rs=50 Ом; R1=50 кОм; R2=8 кОм; Re=1 кОм; Rc=2 кОм; Cb=50 пФ; Се=100 мкФ и V=1 мВ. Анализ проводится для частот от 0,01 Гц до 10 кГц со следующим входным файлом:

Common-Emitter Amplifier with Emitter-Bypass Capacitor

V 1 0 AC 1m

V0 4 4A 0

E 4A 5 6 5 2.5E-4

F a 5 V0 50

R5 1 2 50

R1 3 0 50k

R2 3 0 8k

RI 3 4 1.1k

RE 5 0 1K

RO 6 5 40k

RC 6 0 2k

СВ 2 3 50uF

СЕ 5 0 100uF

.AC DEC 2 0 0.01Hz 10kHz

.PROBE

.END

Рис. 4.6. Модель для усилителя с общим эмиттером и шунтирующим конденсатором

Выполните анализ и в окне Probe получите график выходного напряжения V(6). Он должен быть похож на кривую на рис. 4.3. Используйте режим курсора, чтобы определить среднечастотное выходное напряжение. Убедитесь, что при f=5 кГц выходное напряжение V(6)=83,99 мВ.

Теперь выразим значения напряжения по оси Y в децибелах. Удалите выведенный график и замените его графиком зависимости

20·lg(V(6)/84мВ).

Вы вдруг обнаружите, что график выглядит странно. Информация, которая не была видна на линейном графике, при логарифмическом масштабе проявилась. Обратимся к рис. 4.7, на котором приведен этот график. В какой области частот размещены две изогнутые части, и почему они появляются? Для ответа необходимы дальнейшие исследования.

Рис. 4.7. Логарифмическая амплитудно-частотная характеристика (график Боде) для схемы на рис. 4.6

Установите по оси Y диапазон от -20 до 0, а по оси Х — от 1 Гц до 10 кГц. Используйте курсор, чтобы найти значение -3 дБ. Проверьте, что оно соответствует частоте f=74 Гц. Эта частота называется частотой полюса, но поскольку схема имеет и другой конденсатор (Cb), появляется и второй полюс при более низкой частоте.

Чтобы сконцентрировать исследование только на влиянии Се, измените ваш входной файл, исключив из него Сb. Это легко сделать, заменив команду, вводящую CB на 

RB 2 3 0.001

Внесите это изменение и снова выполните анализ. В Probe, как и прежде, получите график

20·lg(V(6)/84мВ).

Убедитесь, что вблизи отметки -3 дБ частота f=69,8 Гц. Таким образом, присутствие Сb почти не изменяет расположение первого полюса. Имеется также нуль в этой схеме, при частоте, соответствующей возрастанию сигнала от нижнего уровня до 3 дБ.

С помощью курсора определите ослабление при f=1 Гц. Оно должно составлять 31,47 дБ. Убедитесь, что прибавив к этому значению 3 дБ, получим значение -28,47 дБ, соответствующее частоте f=2,12 Гц. Таким образом, нуль достигается при частоте приблизительно 2,1 Гц.

Если вас интересует, что случится, когда не будет полюса, определяемого конденсатором Сe, просто установите значение сопротивления Re в 0,001 Ом и повторно запустите анализ, восстановив Сb. В результате вы получите одиночный полюс при f=3,26 Гц.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

цветовая маркировка и обозначение в схеме цепи переменного и постоянного тока, фото, видео урок как сделать конденсатор своими руками

Автор Aluarius На чтение 6 мин. Просмотров 135 Опубликовано

Вопрос, что такое конденсатор, сегодня встречается нечасто, ведь даже начинающие радиолюбители и электрики сталкиваются с этим прибором постоянно. Хотя точного определения дать никто из них не может. Так вот конденсатор – это прибор, в котором скапливается заряд и энергия электрического поля. Само слово так и переводится с латинского – накопление.

По сути, конденсатор – это пассивный электронный компонент, который состоит из двух электродов в виде пластин, а между ними залит диэлектрик. Так вот толщина диэлектрика в несколько раз меньше толщины пластин. Это простейшая схема конденсаторы, чтобы было понятно, как этот элемент устроен.

Разновидности конденсаторов

Немного истории

Все началось в середине 18 века в городе Лейдене (это Голландия). Ученый из этого города Питер ван Мушенбрук проводил опыты со стеклянной банкой, которая изнутри и снаружи была отделана станиолем – это оловянная фольга (кстати, в то время алюминий еще не был найдет, поэтому алюминиевой фольги не было). Чтобы зарядить лейденскую банку, необходимо было использовать так называемую электрофорную машину (в принципе, другого источника электричества в те времена не было). Этот источник электроэнергии давал напряжение в несколько сот киловольт.

А вот чтобы разрядить эту банку Мушенбрук использовал людей. Он ставил последовательно десять гвардейцев, которые держались за руки. Опасный был опыт, потому что еще никто не знал, что этот эксперимент может закончиться смертельным исходом. Правда, все обошлось, удар был не очень сильным, хотя чувствительным. Все дело в том, что емкость экспериментальной банки была незначительной, импульс получился короткий по времени, а, значит, и мощность разряда была не очень большой.

Изобретатель конденсатора

Устройство конденсатора

Итак, о простейшей конструкции прибора вы уже осведомлены. Кстати, в качестве диэлектрика может быть использован воздух. Так вот существует такое понятие, как емкость конденсатора. Именно этот показатель определяет возможность элемента принимать определенное количество электричества. Этот показатель определяется по формуле:

C=έS/4πd, где

  • C – это емкость, измеряемая в фарадах;
  • S – это площадь пластин в м²;
  • d – расстояние между пластинами в м;
  • έ – диэлектрическая проницаемость среды.

Внимание! Из этой формулы можно сделать вывод: чем больше площадь пластин и меньше расстояние между ними, тем больше конденсаторная емкость.

Конечно, нельзя использовать данную формулу, как стандартную для всех видов конденсаторов. Ведь геометрия у них может быть разной. Но зависимость площади и расстояния точно такая же.

Насчет геометрии. Пластины не всегда могут быть плоскими. К примеру, металлобумажные конденсаторы. Во-первых, у них цилиндрический корпус. Во-вторых, в роли пластин выступает алюминиевая фольга с пропитанной техническим трансформаторным маслом конденсаторной бумагой. Именно бумага выступает в роли диэлектрика. А масло выполняет функции изоляции. Поэтому сворачивается все эта конструкция в клубок по периметру корпуса элемента.

Чем показательна именно эта форма? Это компактные размеры и большая емкость до несколько сотен микрофарад. Таким же способом устроены и другие виды конденсаторов.

Конденсаторы в блоке питания

Вернемся к формуле и обратим внимание на тот факт, что все размерные показатели говорят о том, что конденсатор в цепи переменного тока будет работать даже в том случае, если площадь пластин будет малой, а расстояние между ними огромное. Все равно емкость (незначительная) будет присутствовать. Поэтому в электронной технике подчас вместо конденсаторов устанавливают две дорожки на плато или скрученные два проводка в пластиковой оплетке, по которым подается электрический ток. Даже многожильный кабель имеет определенную емкость.

Поэтому когда задается вопрос, как сделать конденсатор, можно привести эти примеры. Кстати, чем длиннее провод, тем больше его емкость.

Диэлектрики

Если посмотреть формулу, то диэлектрическая проницаемость стоит в ее знаменателе. То есть, чем больше проводимость среды, тем больше емкость конденсатора. Номинал этой величины – это вакуум. Точно такой же показатель имеют воздух, полиэтилен, лавсан и так далее.

Но есть и другие материалы, проницаемость которых в несколько раз больше. К примеру, если между двумя пластинами залить спирт или ацетон, то емкость такого прибора вырастает в 20 раз. Правда, при этом произойдет моментальное разряжение за счет высокой электропроводимости того же спирта. Ток утечки – так называется это явление.

Обозначение на схеме

Поэтому в качестве диэлектриков используются специально созданные материалы, которые обеспечивают большую емкость прибора и минимальный ток утечки. Именно большое разнообразие диэлектриков характеризует большое разнообразие самих конденсаторов, которые устанавливаются в различных приборах в соответствии с определенными условиями эксплуатации.

Виды конденсаторов

Определенной классификации нет, но есть две основные разновидности: простые и электролитические. Что касается второго вида, то:

  • во-первых, у них емкость в разы больше, а, значит, и размеры;
  • во-вторых, их подключение производится строго по полярности, то есть, один выход у них плюс, другой минус.

Все остальное разделение – это чисто назначение и подключение, а конкретно:

  • назначение;
  • по изменению емкости;
  • способ установки;
  • в зависимости от вида защиты.

Поэтому все конденсаторы можно обозначать по типам. К примеру, общего или специального назначения, с переменной или постоянной емкостью, подстрочные, для печатного, поверхностного или навесного монтажа, защищенные или незащищенные, герметичные или открытые, изолированные или нет. По виду установки также существует разделение: на пайке, защелках или на винт.

Отметим, что электролитический вид – это конденсатор в цепи постоянного тока. То есть, он применяется чаще всего именно здесь. Но это не говорит о том, что его нельзя установить в сеть переменного тока.

Ионистор

Об этом конденсатора хотелось бы сказать пару слов отдельно. Это элемент электролитического типа, схожий с работой аккумулятора. Начнем с того, что ионистор заряжается буквально за несколько минут, поэтому его можно даже использовать в качестве дополнительного источника питания, настолько большая у него емкость.

Ионистор

Правда, есть у этого прибора и свои ограничения. Особенно это касается условий эксплуатации, которые влияют на срок службы. К примеру, если температура окружающей среды не превышает +40С, а подаваемое на элемент напряжения составляет 60% от номинала, то срок эксплуатации его будет выше 400000 часов. Если температуру поднять до +70С, а напряжение до 80%, то срок службы падает до 500 часов.

Маркировка

Существует два вида маркировки:

  • цифровая;
  • цветовая.

Что касается первой, то здесь есть также небольшое разделение, которое зависит от количества цифр, используемых в марке. Если цифр три, то две первые определяют емкость, а последняя количество нулей. Если в числе встречается буква «R», то она играет роль запятой. К примеру, 0R4 обозначает, что конденсатор 0,4 пФ. То же самое и с четырехчисловой кодировкой, где последняя цифра обозначает количество нулей, а три первые емкость прибора. Вот такая несложная расшифровка.

Цветовая маркировка конденсаторов – более сложная. Запомнить ее любителям очень сложно. Да и нет никакой надобности. Сегодня в интернете в свободном доступе можно найти сервисы, который сами определяют марку конденсатора. Здесь важно правильно вставить в таблицу цвета, которые размещены в последовательности на самом элементе.

Страничка эмбеддера » Сетевые фильтры и помехоподавляющие конденсаторы

В сетевых фильтрах часто используют хитрые конденсаторы с непонятными многим надписями — X1, Y2 итп. Это — помехоподавляющие конденсаторы. Разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов» поможет эта статья. Помех в сети всегда хватало — сначала они появлялись от щеточных двигателей, а теперь их в промышленных масштабах производят импульсные блоки питания. То, что помехи — это плохо, лишний раз распинаться не стоит. Сетевое напряжения в крайних случаях выглядит как-то вот так: Видно, что это сильно отличается от синусоиды, которая там должна быть. Для того, чтобы избавиться от помех, нужно сформировать беспрепятственный путь, по которому ток помехи может вернутся к источнику. Обычно такой путь, по закону Мерфи, лежит через самое чувствительное оборудование.

Наша задача сделать так, чтобы помехам не «захотелось» залазить в «нежные места» наших схем, но дать току помех течь туда, куда он «хотел» течь (в нейтраль, к примеру).  С другой стороны, можно не доводить сеть до плачевного состояния, не выпуская помехи за пределы устройства.

Для того, чтобы уменьшить помехи, применяют фильтры. Тип фильтра и даже его расположение зависит от конкретного случая. К примеру, если помехи создаются одним источником (двигателем, например), то лучше всего поместить фильтр поближе к этому источнику – замкнуть ток помехи (как на рисунке выше).

Если помехи создаются распределенной схемой в металлическом корпусе (компьютерный блок питания), то фильтр лучше поместить как можно ближе к сетевому шнуру – замкнуть ток помехи внутри корпуса и соединить корпус с самым “чистым” местом схемы, чтобы он сам не излучал.

На рисунке – типичная схема фильтра компьютерного блока питания. Красным показан путь излучаемой помехи, а зеленым – помехи, передающейся по проводам.

Помеха имеет две составляющих – синфазную и противофазную.

Противофазная составляющая помехи — это напряжение помехи между фазой и нейтралью. Для ее подавления используются конденсаторы типа X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке выше, это конденсатор – C1.

К этим конденсаторам предъявляются такие требования – они должны выдерживать максимально допустимые в сети всплески, не загораться при выходе из строя и не поддерживать горение.

Сейчас используются два основных подкласса X-конденсаторов – X1 и X2.

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4кВ.

  • X2 – самый распространенный класс конденсаторов. Используется в бытовых приборах с номинальным напряжением сети до 250В, выдерживают всплеск до 2.5кВ.

Емкость X конденсаторов варьируется от 0.1мкФ до 1мкФ. Какую емкость нужно выбрать для данного конкретного прибора можно выяснить только с осциллографом.

Синфазная составляющая помехи — это напряжение помехи между обоими сетевыми проводами и корпусом устройства. Понять, что это такое и зачем нужно немного сложнее.

Рассмотрим типичный импульсный источник питания. Между первичной и вторичной обмоткой трансформатора T1 всегда есть паразитная емкость (нарисована зелененьким). Представим, что конденсатора C7 пока нет. Высокочастотные пульсации беспрепятственно проникают со стока транзистора (самое шумное место схемы!) на вторичную обмотку через зелененькую емкость. Таким образом, на всей выходной части блока питания присутствуют пульсации (с частотой блока питания) относительно заземления и обоих сетевых проводов. Напряжение эти пульсаций может доходить до тысяч вольт. Наш мега-чувствительный прибор будет излучать эти пульсации в эфир, а излучать помехи – это тоже самое, что ловить помехи только с обратным знаком. Прибору будет плохо.

Теперь добавим конденсатор C7. Ток помехи, который просочился через зеленый конденсатор теперь может вернуться туда, откуда взялся по более короткому и менее сложному пути, чем в предыдущем случае и в наш мега-чувствительный прибор ему больше течь не хочется!

Заметьте, что конденсатор C7 теперь связывает сеть с выходом блока питания! Но ведь это-же опасно! Человек, который дотронется одновременно к выходу такого блока питания (к корпусу устройства) и к заземлению (к батареи отопления, к примеру), получит заметный, но не страшный удар. А что будет, если конденсатор C7 сломается? Правильно, выход блока питания станет “электрическим стулом”. Именно поэтому и сделали конденсаторы типа Y – они предназначены для работы в тех местах, где выход их из строя угрожает жизни людей.

Конденсаторы Y – типа делятся на 2 основных класса

  • Y1 – Работают при номинальном сетевом напряжении до 250В и выдерживают импульсное напряжение до 8кВ

  • Y2 – Самый популярный тип, может быть использован при сетевом напряжении до 250В и выдерживает импульсы в 5кВ

Теперь немного фактов.
  • Конденсаторы Y типа можно использовать вместо конденсаторов X типа, но нельзя использовать конденсаторы X типа вместо конденсаторов Y типа.

  • Конденсаторы Y типа имеют обычно намного меньшую емкость, чем конденсаторы X типа.

  • Если для конденсаторов X типа чем больше емкости, тем лучше, то емкость конденсаторов Y типа нужно выбирать как можно меньшей. Типичное значение 2.2нФ уже прилично бьется, если хватануться за выход БП и за батарею.

  • Несмотря на все меры безопасности, производители рекомендуют вынимать вилку из розетки, когда вы на долго покидаете дом.

Рекомендую также почитать документ

CAPACITORS FOR RFI SUPPRESSION OF THE AC LINE: BASIC FACTS

Плоский воздушный конденсатор. Емкость и пластины конденсатора

Две плоские пластины, находящиеся параллельно между собой, с диэлектриком внутри, образуют плоский конденсатор. Это наиболее простая модель конденсатора, накапливающая энергию разноименного заряда. Если на пластины подать заряд, одинаковый по размеру, но различающийся по модулю, то поле, а точнее его напряженность между проводниками повысится в два раза. Отношение размера заряда одного проводника к разности потенциалов между пластинами – это электроемкость.

Применение

Во всех электронных и радиотехнических устройствах, кроме микросхем и транзисторов используются конденсаторы. В разных схемах конденсаторов присутствует разное количество. Нет таких схем, где бы они не использовались. Они выполняют различные задачи: являются емкостями в фильтрах, служат передающим элементом для сигнала каскадов усиления, входят в состав частотных фильтров, для выдержки временного диапазона, для подбора частоты колебаний в генерирующих устройствах.

Конструкция и принцип действия

Устройство конденсатора заключается в двух обкладках с диэлектриком между ними. На всех схемах они так и отображаются.

S – площадь поверхности обкладок в м2, d – расстояние от обкладок, м, С – емкость, Ф, е – проницаемость диэлектрика. Все показатели выражены в системе СИ. Формула подходит плоскому конденсатору, помещают две пластины из металла с выводами, диэлектрик не нужен, так как им будет являться воздух.

Это показывает: емкость плоского конденсатора прямо зависит от площади пластин, и имеет обратную зависимость расстояния от пластин. Если геометрическая форма конденсатора иная, то формула емкости будет отличаться. Для вычисления кабеля. Но смысл зависимости остается таким же.

Пластины конденсаторов бывают и другой формы. Существуют металлобумажные конденсаторы с обкладками из алюминиевой фольги, которая свернута вместе с бумагой в клубок по форме корпуса.

Для повышения электрической прочности бумага конденсатора пропитывается специальным составом для изоляции, в основном это масло для трансформатора. Такое устройство дает возможность повысить емкость в разы. По такому же принципу сделаны конденсаторы других конструкций.

В формуле нет ограничений на размер пластин S и расстояние d. Если пластины отодвинуть далеко, и уменьшить их площадь, то малая емкость останется. Два соседних провода имеют электрическую емкость.

В технике высокой частоты такое свойство широко применяется. Конструкцию конденсаторов выполняют дорожками на печатном монтаже или скручивают два провода в полиэтилене. Простой провод, который называют «лапшой», имеет свою емкость. Чем длиннее провод, тем больше емкость.

Все кабели еще имеют сопротивление R, кроме емкости С. Свойства распределяются по длине кабеля, во время сигналов в виде импульсов являются цепочкой интеграции RС.

Импульс искажается специально. Для этого собрана схема. Емкость кабеля влияет на сигнал. На выходе появится измененный сигнал – «колокол», при коротком импульсе сигнал совсем пропадает.

Свойства материалов-диэлектриков

В формуле значение проницаемости диэлектрика находится в знаменателе, увеличение ведет к повышению емкости. Для воздуха, лавсана, фторопласта величина не отличается от вакуумного состояния. Существуют вещества-диэлектрики, у которых проницаемость больше. Конденсатор, залитый спиртом, повышает свою емкость в 20 раз.

Такие вещества кроме проницаемости имеют хорошую проводимость. Конденсатор с таким веществом держит заряд хуже, разряжается быстрее. Это свойство назвали током утечки. В качестве диэлектриков применяют материалы, позволяющие создавать нормальные токи утечки при большой удельной емкости. Поэтому существует много видов конденсаторов для различных условий применения.

Накопление энергии в конденсаторе

На схеме показан конденсатор с большой емкостью для медленного течения разряда. Можно взять лампочку от фонарика и проверить работу схемы. Такую лампочку можно найти в любом магазине электротоваров. Когда переключатель SA находится во включенном состоянии, то конденсатор получает заряд от батареи через резистор. Процесс изображен на рисунке.

Напряжение повышается по кривой-экспоненте. Ток отражается на графике в зеркальном виде, и имеет обратную зависимость от напряжения. Только в самом начале он подходит для приведенной формулы.

Через определенное время конденсатор получит заряд от источника до значения 4,5 вольт. Как можно вычислить время заряда конденсатора?

В формуле τ = R*C величины умножаются, итог получается в секундах. Это количество времени  нужно для заряда уровня 36,8% от источника. Чтобы зарядить конденсатор полностью, нужно время = 5*т.

Если в формулу ставить емкость в мкФ, сопротивление в Ом, то время будет в микросекундах. Для нас удобнее секунды. На схеме емкость 2000 мкФ, сопротивление 500 Ом, время получается т = R * C = 500 * 2000 = 1000000 микросекунд. Это равнозначно одной секунде. В итоге, чтобы конденсатор получил полный заряд, необходимо время 5 секунд.

После этого времени переключатель переводим вправо, конденсатор разряжается по лампочке. Будет видна вспышка разряда конденсатора. Время, необходимое для разряда вычисляется величиной «т».

По схеме можно убедиться в вышеописанном утверждении.

При замыкании переключателя лампа вспыхивает — конденсатор получил заряд по лампочке. На графике видно, что в момент включения значение тока наибольшее, с течением заряда ток снижается до полного прекращения. При качественном конденсаторе и небольшой степенью саморазряда включение не выдаст вспышку лампы. Чтобы лампа снова вспыхнула, нужно разрядить конденсатор.

Любой проводник создает вокруг себя электрическое поле. Электрическое поле можно описать с помощью такой величины, как электрический потенциал. В каждой точке пространства потенциал имеет какое-то значение. Потенциал на бесконечном расстоянии равен нулю. Приближаемся мысленно от бесконечности к проводнику. Чтобы пробиться к проводнику, необходимо совершить работу. Эта работа идет на увеличение потенциальной энергии пробного заряда.

Максимальное значение потенциальная энергия достигнет тогда, когда мы вплотную подойдем к проводнику. После проникновения внутрь проводника, потенциальная энергия перестает меняться. Если мы разделим потенциальную энергию на величину пробного заряда, то получим электрический потенциал.

Потенциал проводника зависит от заряда. Если мы удвоим заряд проводника, то потенциал так же удвоится. Потенциал проводника прямо пропорционален заряду, который несет на себе этот проводник. Отношение заряда проводника к потенциалу является характеристикой проводника, называется электрической емкостью.

Чтобы понять это определение электроемкости, представим себе высоту жидкости в сосуде, имеющим широкое дно. Высота жидкости будет мала, то есть, потенциал мал. Если сосуд узкий и высокий, то такое же количество жидкости приведет к тому, что уровень жидкости будет высоким.

Применение емкостей в фильтрах

В фильтрах емкость устанавливается в конце выпрямителя, который сделан двухполупериодным.

Такие выпрямители применяются с малой мощностью. Достоинством выпрямителей с одним полупериодом является его простота. Он состоит из трансформатора и диода. Емкость конденсатора рассчитывается по формуле:

C=1000000*Po/2 * U * f * dU, где С – емкость в мкФ, Po – мощность, ватт, U — напряжение, вольт, f – частота, герц, dU амплитуда, В.

В числителе находится большое значение, это определяет емкость в мкФ. В знаменателе число 2 – это количество полупериодов, для однополупериодного – это 1.

Классификация

По материалу диэлектрика:

  • Воздушные. Их емкость невелика, редко превышает 1000 пФ.
  • Слюдяные. В нем диэлектриком служит слюда. Слюда – это минерал, кристаллическое вещество, у которого очень интересная кристаллическая структура. Атомы расположены слоями, расстояние между которыми гораздо больше, чем расстояние между атомами в одном слое. Поэтому, слюда при попытке расколоть кристалл слюды колется на очень тонкие пластинки. У них большая диэлектрическая проницаемость. Толщина пластинок получается очень маленькой. Эти пластинки хорошо работают в быстропеременных электрических полях, обладают хорошей электрической плотностью. Поэтому слюдяные конденсаторы получили широкое распространение.
  • Бумажные. Диэлектриком служит бумага, пропитанная парафином. Это хороший диэлектрик, но в быстро меняющихся полях ведет себя не очень хорошо, поляризуется медленно. Используются ограниченно.
  • Керамические. Люди научились делать различные сорта керамики. Есть диэлектрики с проницаемостью более 1000, они сделаны из керамики. Можно получить большую емкость. Керамика хорошо работает на высоких частотах в быстропеременных электрических полях.
  • Электролитические. Они имеют самую большую емкость при заданных размерах.

Слюдяные конденсаторы

Пластинка слюды, две пластинки-электрода с прикрепленными выводами. Если вы хотите, чтобы емкость конденсатора была больше, то можно поступить следующим образом. Взять несколько пластинок слюды в качестве диэлектрика, между пластинами поместить много обкладок. Получается конденсатор, который состоит из нескольких конденсаторов, соединенных вместе, параллельно.

Воздушные конденсаторы могут быть с переменной емкостью. Они состоят из двух систем пластин.

Подвижные пластины вращающиеся, это ротор. Неподвижные – это статор. Промежутки между подвижными и неподвижными пластинами – это слой диэлектрика из воздуха. Если подвижные пластины выдвинуты из неподвижных, то эта емкость будет минимальная. Площадь перекрытия маленькая. Если пластины задвинуты, то площадь максимальная. Это воздушный конденсатор.

Существуют и керамические переменные конденсаторы. Они используются для перемены емкости в небольших пределах.

Диэлектриком служит керамика. Обкладка представляет собой покрытие из слоя серебра. Сбоку указана емкость в пФ. Отверткой вращают винт, меняется площадь перекрытия пластин. Это подстроечный керамический конденсатор.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Как работают конденсаторы? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 10 июля 2020 г.

Смотрите в небо большую часть дней, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой с помощью цифрового камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов.В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же хранят энергию. Давайте подробнее рассмотрим конденсаторы и как они работают!

Фотография: Типичный конденсатор, используемый в электронных схемах. Он называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Фото: Маленький конденсатор в транзисторной радиосхеме.

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите их изолятором (материал что не пропускает электричество очень хорошо), и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электроэнергии к конденсатору называется зарядка ; высвобождая энергию из Конденсатор известен как разрядный .

Конденсатор немного похож на батарею, но у него другая работа делать.Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее — часто за секунды или меньше. Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за доли секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку-вспышку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты. Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними. Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ: Открытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом).Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в области электротехники. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них — увеличить размер тарелок.Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите внизу какой-то ступеньки. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов — или как ваше тело и Земля. Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется , электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году. Точное расстояние между ними. пластины можно регулировать (и измерять) с помощью микрометрического винта.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов всего одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка.Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разрушится, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q), и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим зарядом (Q), хранящимся точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении — и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, — это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и с другой стороны, больше отрицательного электрического заряда).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.

Как работают конденсаторы? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 10 июля 2020 г.

Смотрите в небо большую часть дней, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой с помощью цифрового камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов.В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же хранят энергию. Давайте подробнее рассмотрим конденсаторы и как они работают!

Фотография: Типичный конденсатор, используемый в электронных схемах. Он называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Фото: Маленький конденсатор в транзисторной радиосхеме.

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите их изолятором (материал что не пропускает электричество очень хорошо), и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электроэнергии к конденсатору называется зарядка ; высвобождая энергию из Конденсатор известен как разрядный .

Конденсатор немного похож на батарею, но у него другая работа делать.Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее — часто за секунды или меньше. Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за доли секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку-вспышку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты. Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними. Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ: Открытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом).Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в области электротехники. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них — увеличить размер тарелок.Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите внизу какой-то ступеньки. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов — или как ваше тело и Земля. Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется , электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году. Точное расстояние между ними. пластины можно регулировать (и измерять) с помощью микрометрического винта.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов всего одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка.Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разрушится, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q), и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим зарядом (Q), хранящимся точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении — и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, — это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и с другой стороны, больше отрицательного электрического заряда).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.

Как работают конденсаторы? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 10 июля 2020 г.

Смотрите в небо большую часть дней, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой с помощью цифрового камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов.В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же хранят энергию. Давайте подробнее рассмотрим конденсаторы и как они работают!

Фотография: Типичный конденсатор, используемый в электронных схемах. Он называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Фото: Маленький конденсатор в транзисторной радиосхеме.

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите их изолятором (материал что не пропускает электричество очень хорошо), и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электроэнергии к конденсатору называется зарядка ; высвобождая энергию из Конденсатор известен как разрядный .

Конденсатор немного похож на батарею, но у него другая работа делать.Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее — часто за секунды или меньше. Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за доли секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку-вспышку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты. Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними. Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ: Открытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом).Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в области электротехники. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них — увеличить размер тарелок.Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите внизу какой-то ступеньки. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов — или как ваше тело и Земля. Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется , электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году. Точное расстояние между ними. пластины можно регулировать (и измерять) с помощью микрометрического винта.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов всего одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка.Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разрушится, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q), и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим зарядом (Q), хранящимся точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении — и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, — это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и с другой стороны, больше отрицательного электрического заряда).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.

Основы емкости | EC&M

В прошлой колонке объяснялось, что переменный ток, протекающий через индуктивность, достигает своей пиковой амплитуды после напряжения. Запаздывающий ток характерен для индуктивной цепи. Однако в емкостных цепях есть ток, который опережает напряжение.


Источники емкости. Два проводника, разделенные изоляционным материалом или диэлектриком, образуют конденсатор.Приложение электрического заряда к проводникам создаст электрическое поле, перпендикулярное проводникам через диэлектрик. Емкость измеряется в фарадах (Ф) или величине накопленного заряда на вольт.

Силовые конденсаторы состоят из блоков конденсаторов. Отдельные пакеты складываются вместе и соединяются перемычками, образуя параллельные или последовательные блоки. Каждый пакет состоит из металлических пластин, часто из алюминиевой фольги, разделенных полипропиленовым диэлектриком. Бумагу иногда также используют в качестве диэлектрика.Эти сэндвичи из фольги и полипропилена свернуты и помещены в резервуар, заполненный маслом. Подобные конденсаторы обычно используются для коррекции коэффициента мощности и фильтрации в системах от низкого напряжения до самых высоких напряжений передачи.

Силовые конденсаторы — не единственные устройства, демонстрирующие емкостные свойства. Изолирующие вводы оборудования, изолированный кабель и даже линии передачи и распределения с разомкнутыми проводами выглядят как конденсаторы, соединенные от линии к земле. Значения емкости этих устройств, как правило, больше при более высоких рабочих напряжениях.

Как работает конденсатор?

Конденсаторы накапливают энергию в электрическом поле, установленном в их диэлектриках, подобно тому, как индукторы накапливают энергию в своих магнитных полях. Электрическое поле создается электрическим зарядом на пластинах конденсатора. В фильтрах используются конденсаторы, чтобы «заполнить» промежутки в форме волны, отдавая накопленный заряд электрической цепи, или «сбрить» всплески в форме волны, поглощая избыточную энергию и сохраняя ее в электрическом поле.

Конденсаторы, подключенные от линии к нейтрали, обеспечивают реактивную мощность в цепи переменного тока, которая измеряется в реактивных вольт-амперах (ВАР).Для данного значения емкости при увеличении рабочего напряжения подается больше VAR. Поскольку они являются источником реактивной мощности, конденсаторы могут обеспечивать переменные мощности, потребляемые индуктивными нагрузками. Поскольку переменные мощности, обеспечиваемые конденсатором, не должны подаваться из системы, коэффициент мощности системы увеличивается из-за подключенного конденсатора. Это называется коррекцией коэффициента мощности и будет рассмотрено в столбце следующего месяца.

Резонанс.

Все компоненты системы питания имеют электрическое сопротивление и большинство из них обладают индуктивными характеристиками.Добавление конденсаторов в систему питания вносит возможность резонанса. Если реактивное сопротивление индуктивной и емкостной частей цепи равно, энергия будет колебаться между индуктивностью и емкостью, создавая высокие напряжения, которые могут превышать возможности изоляции системы.

Реактивное сопротивление катушки индуктивности и конденсатора зависит от частоты. Цепь, содержащая сопротивление, индуктивность и емкость, является резонансной на одной определенной частоте. Если эта частота близка к основной частоте (60 Гц в США) или целому кратному этой рабочей частоты, возникнут серьезные проблемы.Когда возникает резонанс, значения индуктивности или емкости должны быть отрегулированы так, чтобы резонансная частота не была близка к основной частоте или ее гармоникам — кратным 60, например 120, 180 или 240.

Типы и функции конденсаторов

Конденсаторы — это электрические устройства, которые хранят энергию, и они присутствуют в большинстве электрических цепей. Два основных типа конденсаторов — поляризованные и неполяризованные. Способ подключения нескольких конденсаторов определяет их значение в цепи.Их совокупное значение является самым высоким, когда они соединены последовательно, от положительного к отрицательному. Их совокупное значение является самым низким, когда они соединены параллельно, конец в конец. Конденсаторы в сочетании с резисторами и индукторами в цепи используются для электрического хронометража событий, а также в двигателях, вентиляторах, телевизорах, автомобилях и многих других потребительских товарах и в высокоэнергетических средах.

Поляризованные конденсаторы

••• Hemera Technologies / PhotoObjects.net / Getty Images

Некоторые конденсаторы имеют разные положительные и отрицательные полюса.Их называют поляризованными конденсаторами. Величина конденсатора измеряется в емкости, а емкость — в единицах Фарада. Большинство конденсаторов обычно имеют небольшие значения Фарада, называемые микрофарадами (мкФ) и пикофарадами. Конденсатор выполнен в одном из двух форматов: радиальном или осевом. В радиальном исполнении оба вывода конденсатора находятся на одном конце; в осевом исполнении выводы находятся на каждом конце конденсатора. Поляризованные конденсаторы обычно большие, электролитические и предназначены для цепей постоянного тока (DC).Обычно они имеют большую емкость. Недостатки поляризованных конденсаторов в том, что они имеют низкое напряжение пробоя, меньший срок службы и большую утечку тока.

Неполяризованные конденсаторы

••• Hemera Technologies / PhotoObjects.net / Getty Images

Большинство неполяризованных конденсаторов не являются электролитическими и не имеют определенного положительного или отрицательного полюса. Их еще называют биполярными конденсаторами. Чаще используются в цепях переменного тока (AC), они обычно имеют небольшие значения емкости в диапазоне микрофарадов и нанофарадов.Некоторые неполяризованные конденсаторы выдерживают колебания напряжения до 200 вольт без пробоя. Они используются в компьютерах, материнских платах и ​​простых платах. Неполяризованные конденсаторы недорогие и сделаны из керамики и слюды, хотя некоторые из них являются электролитическими.

Функции в электрических схемах

Конденсаторы используются в электронных схемах в качестве фильтров нижних и верхних частот и полосовых фильтров. Фильтр — это цепь, которая пропускает ток и напряжение определенной частоты и формы волны.Реактивное сопротивление конденсатора обратно пропорционально частоте. Управляя или изменяя реактивное сопротивление, вы можете управлять допустимой частотой в цепи. Конденсаторы также играют важную роль в логических схемах высокоскоростного переключения. Уровень напряжения в таких цепях, который должен быть постоянным, может изменяться при колебаниях тока, тем самым создавая шум или сигналы ошибки. В цепи встроены развязывающие конденсаторы для стабилизации тока и минимизации шумовых сигналов.

Высоковольтные приложения

Высоковольтные конденсаторы находят множество применений в источниках питания, инверторах и импульсных лампах.Они используются в рентгеновских аппаратах и ​​лазерных системах. В точечной сварке используются емкостные системы питания, а в мощных микроволновых системах (HPM) используются конденсаторы большой мощности. Системы HPM используются в обороне для отключения электронного оборудования. Они производят короткие всплески мощной микроволновой энергии, смертельной для электроники, но безвредной для человека. Банки мощных конденсаторов могут хранить огромную мощность и могут быть запрограммированы на разрядку или подачу энергии в электрические системы, испытывающие отключение электроэнергии.

Что такое конденсаторные цепи? | Универсальный класс

К настоящему времени мы представили источники питания, резисторы и переключатели, а также изучили значение напряжения, тока, сопротивления и рассеиваемой мощности в цепях.В этой статье рассматривается другой тип электронного компонента: конденсатор.

Ключевые термины

o Конденсатор

o Емкость

o Фарад

Цели

o Распознать функцию конденсатора

o Анализировать простые цепи, содержащие конденсаторы

Обратите внимание: не пытайтесь воспроизвести схемы, иллюстрации или инструкции из этой статьи в реальной жизни.Это может привести к поражению электрическим током, травме или смерти. Эти примеры предназначены только для теоретического обсуждения, а не для фактического / физического использования.

Резисторы

— важные электронные компоненты, но многие сложные электронные схемы — это гораздо больше. Сети резисторов довольно «статичны», то есть их параметры не сильно меняются с течением времени. Это нормально, скажем, в случае лампочки — как правило, вам нужен устойчивый источник света, а не мерцание или мигание.Но что, если мы хотим сделать еще кое-что интересное, например, создать падение напряжения, которое со временем уменьшается или увеличивается? Нам нужно нечто большее, чем просто резисторы. В этой статье мы обсудим один из таких компонентов: конденсатор.

Что такое конденсатор?

Заряд может двигаться в проводнике, и он перемещается под действием электрической силы. Обычно провода электрически нейтральны, но они могут проводить заряд, и заряд также может накапливаться в частях материала в ответ на электрические силы.Представьте себе сценарий ниже, где у нас есть обычный источник питания (напряжения). Каждая клемма соединена с металлической пластиной, но эти две пластины разделены изолятором (например, воздухом), что означает, что между ними не может перемещаться заряд. Также мы добавим переключатель, который начинается в «открытом» положении.

Когда переключатель разомкнут, ничего не происходит — нижняя металлическая пластина находится на «земле», а верхняя металлическая пластина отключена от любого источника напряжения. (Мы предполагаем, что он также находится на земле ».) Таким образом, между пластинами отсутствуют электрические силы. Теперь давайте закроем переключатель и посмотрим, что произойдет.

Первоначально, когда ток только начинает течь в цепи, две пластины не имеют разницы напряжений между ними. Но положительный заряд движется от положительного вывода источника питания к верхней пластине и начинает накапливаться (нижняя пластина находится на земле, а положительный заряд притягивается к ней под действием электрической силы). Обратите внимание, что ток не может течь между этими пластинами, потому что они разделены.Когда положительный заряд накапливается в верхней пластине, положительный заряд отталкивается от нижней пластины, оставляя на ней эквивалентный отрицательный заряд.

Заряд будет накапливаться до тех пор, пока падение напряжения между двумя пластинами не станет эквивалентным напряжению питания, В. Обратите внимание, что наличие электрической силы между пластинами (и, следовательно, разницы электрических потенциалов) четко видно, потому что одна пластина положительно заряжен, а другой заряжен отрицательно.По сути, эти пластины подобны источнику питания, который «заряжается» или «получает питание» от батареи (или другого источника питания) в цепи. Другими словами, эти пластины способны накапливать электрическую энергию, накапливая заряд. Такое устройство, состоящее из проводящих пластин, независимо от их формы, называется конденсатором . Мы будем использовать следующий интуитивно понятный символ цепи для конденсатора.

Как вы могли догадаться, пластины большего размера оставляют больше места для накопления заряда.Кроме того, чем ближе пластины, тем сильнее сила между накоплением заряда. Способность конденсатора удерживать заряд называется его емкостью , , которую мы обозначим как C. (Единица емкости в системе СИ — фарад, — мы не будем особо разбираться с этой единицей. Тем не менее, один фарад равен одному кулону на вольт, что довольно интуитивно понятно, если вдуматься!) Если конденсатор может удерживать больший заряд при данном падении напряжения на нем, то его емкость выше.

Практическая задача : Конденсатор имеет емкость 1 фарад. Если падение напряжения на нем составляет 10 вольт, сколько кулонов заряда он может удерживать?

Решение : Используйте определение фарада: это то, сколько заряда может удерживать конденсатор, измеренное в кулонах на вольт падения напряжения. Таким образом, если конденсатор имеет падение напряжения 10 В, он будет удерживать 10 кулонов заряда. (Умножьте падение напряжения на «емкость» заряда — это должно быть то же самое, что и емкость в фарадах.Другими словами, используйте соотношение Q = CV, где Q — заряд, накопленный в конденсаторе, C — емкость, а V — напряжение.)

На что способны конденсаторы?

Возможно, вам не сразу понятно, как можно использовать конденсаторы. Но пока давайте посмотрим на схему ниже, чтобы увидеть, на что способен конденсатор.

Сначала замкните переключатель S 1 , чтобы зарядить конденсатор; поскольку S 2 остается разомкнутым, на резисторе нет падения напряжения, поэтому он не участвует в работе схемы.

Как мы обсуждали выше, конденсатор будет «заряжаться», пока не достигнет напряжения В . (Время, необходимое для этого процесса, зависит от ряда факторов — если провода действительно идеальные проводники, процесс происходит мгновенно, но если провод имеет некоторое сопротивление, как в действительности, то этот процесс занимает некоторое конечное количество времени.) Как только конденсатор заряжен, мы размыкаем переключатель S 1 ; Верхняя пластина сохраняет свой заряд (потому что она не подключена к земле), поэтому напряжение на C остается В вольт.


Теперь замкните выключатель S 2 . Положительный заряд на верхней пластине конденсатора теперь имеет путь к земле — через резистор R. Следуя принципам анализа цепей, мы знаем, что (первоначально) падение напряжения на резисторе составляет В.

Но по мере того, как избыточный заряд в верхней пластине конденсатора течет на землю, конденсатор теряет свою запасенную энергию, что означает уменьшение его напряжения.Таким образом, по закону Ома уменьшается и ток. Этот процесс продолжается до тех пор, пока заряд конденсатора не разрядится; в этот момент схема «мертва» (это просто означает, что нет больше напряжения или тока через R и C ). (Между прочим, положительный заряд в этом случае лучше всего можно рассматривать как переход к нижней пластине конденсатора, где он «нейтрализует» отрицательный ток, накопленный при зарядке конденсатора.)

На этом этапе необходимо перезарядить конденсатор, чтобы повторить процесс.Если оба переключателя замкнуты одновременно в этой цепи, то конденсатор также заряжается, но как только он достигает своей максимальной емкости, течет только ток, протекающий через резистор R. Этот ток можно найти с помощью закона Ома.

Таким образом, при полной зарядке в этой цепи конденсатор фактически аналогичен разомкнутому переключателю!


В этой статье конденсатор кратко описан, и это сделано с минимальными математическими усилиями.Чтобы по-настоящему понять, что происходит с конденсаторами, нам потребуется сложная математика и более сложная электрическая теория. Но, как вы можете видеть из краткого обсуждения выше, конденсаторы — это электронные компоненты, которые могут накапливать электрическую энергию, накапливая заряд. Эта функция важна, например, в схемах радиосвязи, просто чтобы назвать один пример!

Введение в электронные компоненты: что такое конденсатор?

Вы когда-нибудь задумывались, где можно найти крошечный конденсатор? Что ж, если бы вы уделяли пристальное внимание своему окружению, вы бы действительно осознали, что оно повсюду! От телевизора до облаков над головой!

В этой статье мы поговорим обо всем, что касается конденсатора! Однако, прежде чем мы углубимся в это, давайте кратко рассмотрим эти ключевые концепции, которые помогут вам лучше понять конденсатор:

  • Электричество : движение положительно и отрицательно заряженных частиц.
  • Напряжение : разница в заряде между двумя точками.
  • Ток : поток электрических зарядов.
  • Сопротивление : мера сопротивления потоку тока.
  • Резисторы : Пассивный двухконтактный электрический компонент, реализующий электрическое сопротивление как элемент схемы.

Если вы хотите подвести итоги или узнать больше об этих концепциях, посетите следующие блоги:


С учетом сказанного, давайте перейдем к тому, что будет рассмотрено сегодня:

  • Обзор конденсатора
  • Взаимосвязи и расчеты
  • Конденсатор в схемах
  • Применение конденсатора
  • Проекты с конденсатором

Обзор конденсатора

Что такое конденсатор?

Конденсаторы, также известные как конденсаторы, представляют собой устройства, накапливающие электрическую энергию в электрическом поле.Проще говоря, конденсаторы изготавливаются из 2 проводов и размещения изолятора между проводниками. Таким образом, способность накапливать энергию — вот что делает конденсаторы уникальными. Они также являются одним из основных пассивных компонентов.

Они чем-то похожи на батарею, но работают по-другому. Батарея выделяет электрическую энергию медленнее, чем конденсатор. Конденсатор способен высвободить всю свою энергию за доли секунды .Но условия зарядки и разрядки одинаковы как для батареи, так и для конденсатора.

Как работает конденсатор?

Чтобы понять, как работает конденсатор, вы должны знать, что конденсатор состоит из двух металлических пластин (проводников), между которыми находится диэлектрик (изолятор).

Когда вы прикладываете напряжение через две пластины, создается электрическое поле. Как видно из диаграммы выше, положительный заряд будет накапливаться на одной пластине, а отрицательный — на другой пластине.

Что такое емкость?

Емкость определяется как емкость конденсатора в один фарад, когда на пластинах накапливается заряд в один кулон под напряжением в один вольт.

Емкость относится к количеству электрической энергии, которое конденсатор может хранить . Это в основном означает, что чем больше емкость, тем больше электроэнергии может хранить конденсатор.

Емкость измеряется в единицах, называемых фарад (F) , названных в честь английского пионера электротехники Майкла Фарадея (1791–1867).Однако обратите внимание, что единица измерения фарада очень велика, поэтому часто используются доли, кратные фарадам:

Единицы измерения емкости

Микрофарад (мкФ) 1 мкФ = 1/1000000 = 0,000001 = 10-6 F
Нанофарад (нФ) 1нФ = 1/1000000000 = 0,000000001 = 10-9 F
Пикофарад (пФ) 1pF = 1 / 1,000,000,000,000 = 0,000000000001 = 10-12 F

Типы конденсатора

Существует множество конденсаторов для различных целей, но вот некоторые факторы, влияющие на их работу:

  • Размер
  • Допуск : реально измерить емкость конденсаторов невозможно, поэтому точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.
  • Напряжение утечки
  • Эквивалентное последовательное сопротивление (ESR): пластины не являются полностью проводящими, поэтому сопротивление все еще есть.
  • Максимальное напряжение
Конденсатор электролитический
  • Используется, когда требуются конденсаторы большой емкости.
  • Тонкий слой металлической пленки используется для одного электрода, а для второго электрода (катода) используется полужидкий раствор электролита, который находится в желе или пасте.
  • Обычно используются в цепях питания постоянного тока, так как они имеют большую емкость и малы для снижения напряжения пульсаций.
Бумажный конденсатор
  • Как следует из названия, бумажный конденсатор сделан из тонкой фольги и бумаги.
  • В настоящее время пластик используется вместо бумаги или промасленной бумаги.
  • Обычно использовался в радио в первые дни, сейчас не так широко, но все еще можно увидеть в электронном оборудовании.

Слюдяной конденсатор

  • Слюда — это естественное прозрачное вещество, которое отслаивается тонкими листами.
  • Существует два типа слюдяных конденсаторов: зажимные конденсаторы и серебряные слюдяные конденсаторы.
  • Обычно встречается в радиоприемниках и радиопередатчиках.
Керамический конденсатор
  • В качестве диэлектрика использует керамический / фарфоровый материал.
  • Один из первых материалов, используемых при производстве конденсаторов в качестве изолятора.
  • Керамический конденсатор похож на слюдяной конденсатор, который имеет низкие потери и, следовательно, высокий КПД.

Существует гораздо больше типов конденсаторов, но перечисленные из них более известны и широко используются.


Взаимосвязи и расчеты

Мы только что упомянули емкость ранее, поэтому мы узнаем о взаимосвязи между зарядом, емкостью и напряжением. Их отношения можно показать с помощью этой формулы:

Где заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).

Судя по различным типам конденсаторов, которые мы только что видели, существует множество материалов, из которых изготовлен конденсатор. И каждый материал влияет на общую емкость конденсатора, чтобы рассчитать, что мы можем использовать это уравнение:

Вот график, который показывает, как относительная диэлектрическая проницаемость различных диэлектрических материалов:

Давайте посмотрим на пример того, как рассчитать емкость параллельного пластинчатого конденсатора:

Вопрос: Конденсатор состоит из двух проводящих металлических пластин размером 30 см x 50 см, расположенных на расстоянии 6 мм друг от друга, и использует сухой воздух в качестве единственного диэлектрического материала.Учитывая, что диэлектрическая проницаемость вакуума составляет 8,84 x 10-12 Фарад на метр, рассчитайте емкость конденсатора.

Для этого вам нужно всего лишь использовать формулу:


Конденсатор в цепях

Конденсаторы используются во многих схемах, приведенная ниже диаграмма представляет собой базовую схему, которая иллюстрирует величину напряжения, приложенного к пластинам:

Конденсаторы

встречаются как в параллельных, так и в последовательных цепях, давайте посмотрим на их схемы, чтобы лучше понять.

Конденсаторы серийные

Как видите, каждый конденсатор накапливает мгновенный заряд, равный заряду любого другого конденсатора в серии. Таким образом, общая разница напряжений от конца до конца распределяется между каждым конденсатором в соответствии с величиной, обратной его емкости. Метод расчета общей емкости:

Конденсаторы параллельно

Как мы знаем, конденсаторы, подключенные параллельно, имеют одинаковое приложенное напряжение. Таким образом, Плата распределяется между ними по размеру.Метод расчета общей емкости:


Применение конденсатора

Ранее мы упоминали несколько применений конденсаторов и знаем, что они широко используются в реальной жизни. Но вот некоторые из областей, которые они использовали:

Конденсаторы развязки

Разделительный конденсатор — это конденсатор, используемый для защиты одной части схемы от воздействия другой. Обычно используется между землей и источником питания.

Например, для подавления шума или переходных процессов.Шум, вызванный другими элементами схемы, шунтируется через конденсатор, уменьшая их влияние на остальную часть схемы.

Накопитель энергии

Это в значительной степени говорит само за себя, но он будет использоваться для хранения электроэнергии при отключении от цепи зарядки, поэтому его можно использовать как временный аккумулятор.

Например, в автомобильных аудиосистемах большие конденсаторы накапливают энергию для использования усилителем по требованию.


Проекты с конденсатором

С конденсаторами можно сделать так много всего, давайте рассмотрим несколько интересных проектов!

Завалялся старый фотоаппарат? Вы можете использовать повторно конденсатор и детали! В этом проекте вы узнаете, как собрать койлган своими руками, если у вас есть базовые навыки пайки и знания электроники!

Что вам понадобится:

  • Бывшая в употреблении одноразовая камера со схемой вспышки (ищите конденсатор с печатной платой)
  • Паяльник
  • Провода
  • Пластиковая шариковая ручка, трубка с чернилами удалена, поэтому оставьте только жесткую внешнюю пластиковую трубку.
  • Выключатель света
  • Изоляционная лента
  • Множество эмалированных магнитных проводов (диаметром около 0,5 мм)

Вам нравится? Щелкните здесь, чтобы узнать больше!

Дистанционное зажигание пиротехники

Хотите сделать детонатор, излучающий искры? Этот проект показывает вам, как сделать что-то неброско опасное, но захватывающее!

Что вам понадобится:

  • Стальная вата
  • Длинный двухжильный провод
  • Целлофановая пленка
  • Лента
  • Вспышка порошка или аналогичный
  • Конденсаторы

Готовы попробовать что-нибудь необычное? Нажмите здесь, чтобы узнать больше!


Сводка

Вот и все по конденсаторам! Вы узнали что-то новое? Мы рассмотрели детали того, что делают конденсаторы, расчеты и интересные проекты, которые вы можете с ними делать! Надеюсь, теперь вы сможете лучше разбираться в конденсаторах!

Следите за нами и ставьте лайки:

Продолжить чтение

.
Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *