+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

характеристика, схемы, как сделать своими руками

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

(1/N)~F*S*B

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно.

Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

12В

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

3.3 В

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Схемы самодельных блоков питания


Как из бесперебойника (UPS, ИБП) сделать лабораторный блок питания (0-12В, 5А)

Как неисправный или устаревший источник бесперебойного питания (UPS) переделать в лабораторный источник питания для радиолюбителя. Основное назначение источников бесперебойного питания (ИБП) — непродолжительное питание различной офисной техники (в первую очередь, компьютеров) в аварийных …

4 1897 1

Мощный линейный источник питания на полевых транзисторах (13В, 20А)

Схема мощного источника питания на полевых транзисторах, обеспечивающего стабилизированное напряжение 13В при токах до 20А и больше.

2 4195 4

Схема мощного двухполярного стабилизатора напряжения для УМЗЧ (41В, 4А)

Описание и принципиальная схема мощного двуполярного стабилизатора напряжения для питания усилителей мощности звуковой частоты, 2 х 41В, ток 4А. Компенсационные стабилизаторы напряжения непрерывного действия последовательного типа обладают невысоким КПД, однако большим коэффициентом стабилизации …

1 588 0

Стабилизированный лабораторный блок питания на 1,3-30V при токе 0-5A

Приводится принципиальная схема самодельного блока питания позволяющего получить напряжения от 1,3В до 30В при токах от 0А до 5А, работает в режиме стабилизации напряжения и тока.

3 3497 0

Схема лабораторного блока питания для налаживания усилителей ЗЧ

В радиолюбительской практике нередки случаи выхода из строя мощного УМЗЧ в процессе его налаживания или ремонта. При этом, как правило, бывают повреждены самые дорогостоящие детали — мощные выходные транзисторы. Чтобы избежать таких последствий, необходим специализированный блок питания …

0 1191 0

Сетевой блок питания на 1,5В для электромеханических часов

Электромеханические часы обычно питаются от элемента на 1,5V. Его можно заменить сетевым источником, схема которого показана здесь. В ней в качестве стабилитрона используется ИК-светодиод с прямым напряжением около 1,5V. Механизм часов питается от этого напряжения. Рис. 1. Схема сетевого …

0 880 0

Схемы микромощных сетевых блоков питания на основе микросхемы PT4515

Три варианта сетевых бестрансформаторных микромощных источников питания с выходным током единицы-десятки миллиампер на основе микросхемы РТ4515. Эта микросхема широко применяется в светодиодных лампах. Для управления симисторами, три-нисторами, полевыми транзисторами и т. п., коммутирующими …

1 7320 0

Схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт (IR2153, IR2155)

Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует …

3 4235 4

Бестрансформаторный источник питания (IRF730, 7805, VN2460N8, SR037)

Принципиальная схема простого бестрансформаторного блока питания из доступных деталей, два варианта. В своих конструкциях радиолюбители очень часто применяют бестрансформаторные маломощные источники питания. Обычно, они представляют собой своеобразный симбиоз параметрического стабилизатора …

0 1749 0

Блок питания на 9В с таймером (CD4069, NJM4020)

Схема простого блока питания, который может отключаться от сети через некоторое время после включения. Это время устанавливается плавно (переменным резистором) в пределах от 10 минут до 2 часов. Блок можно использовать там, где нужно выключать какую-то батарейную аппаратуру, питающуюся от сетевого …

1 725 0

1 2  3  4  5  … 14 

Радиодетали, электронные блоки и игрушки из китая:

Блок питания 12В своими руками: схема и описание

Автор Aluarius На чтение 5 мин. Просмотров 677 Опубликовано

Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.

Из чего можно собрать блок питания

Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:

  • Трансформатор.
  • Конденсатор.
  • Диоды, из которых своими руками придется собрать диодный мост.

В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.

Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.

Собираем диодный мостик

А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками. Во-первых, начнем с того, что диод – это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:

  • Сначала соединяются между собой два элемента по схеме плюс-минус.
  • Точно также соединяются между собой и два других диода.
  • После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.

В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.

Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.

Полная сборка прибора

Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.

Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».

Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.

 

Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.

Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:

  • Выдерживаемая нагрузка, измеряемая в амперах.
  • Выходное напряжение.

Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.

И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.

Блок питания для светодиодной ленты своими руками

Современная электроника часто комплектуется внешними источниками питания на 5В, 12В, 19В. После того как прибор выходит из строя, они часто валяются в кладовке или тумбочке.

  • 5V — это напряжение зарядных устройств для телефонов и USB;
  • 12V — используется в компьютерах, некоторых планшетах, ТВ, сетевых маршрутизаторах.
  • 19V — в ноутбуках, мониторах, моноблоках.

Мы будем рассматривать, каким образом можно адаптировать любой блок питания для светодиодной ленты на 12В. Будут только простые и бюджетные варианты доступные каждому. Зарядники на 5В не подходят. Но из таких зарядников я делаю ночники, на корпус приклеивается от 3 или 6 диодов. Ночью светит не ярко, в самый раз.

Содержание

  • 1. Источники питания на 12V
  • 2. БП на 19V
  • 3. Характеристики импульсных стабилизаторов
  • 4. Простые схемы своими руками
  • 5. Видео, как доработать своими руками
  • 6. Готовые модули из Китая
  • 7. Питание и драйвер в одном модуле
  • 8. Где купить дешево?

Источники питания на 12V

БП от маршрутизатора 12V, 1А

Источники питания на 12В от электроники обычно бывают от 6 до 36 Ватт. 10 Ватт хватает для подсветки рабочей поверхности светодиодной лентой на кухне. Такие блоки делятся на 2 основных вида:

  1. старые на трансформаторах, отличаются большим весом;
  2. современные импульсные, еще называют электронный трансформатор, отличаются малым весом и большой мощностью при малых габаритах.

Использовать на трансформаторах не рекомендую. При установке светодиодной ленты я сперва подключил трансформаторный БП от роутера, мощность которого была в 2 раза больше мощности ленты. Сам выпрямитель стал сильно греться. Поставил диодный мост выпрямителя на самодельный радиатор для охлаждения, все равно греется сильно, долго он так не протянет. Времени не было разбираться в тонкостях, поэтому спросил у специалиста. Он кое-как нашел причину, светодиоды имеют особенную вольт-амперную характеристику (сокращенно ВАХ), что приводит к сильному нагреву. Он подарил мне от телевизора на 12В и 2 Ампера, то есть мощность равна 24W. Теперь все работает без проблем и не греется.

БП на 19V

БП ноутбучного типа на 19В, 90W

Напряжение в 19В широко используется в настольной компьютерной технике, чаще всего в ноутбуках, моноблоках, мониторах, сканерах. В эту категорию можно отнести БП от принтеров, они мощные, бывает 16В, 20В, 24В, 32В.

У меня давно валяется отличный блок питания для светодиодов на 90W и 19V от ноутбука Asus. Такой мощности хватит, чтобы запитать светодиодную ленту на 6000 Люмен, а этого хватит, чтобы сделать диодное освещение комнаты 20 квадратов. Но БП не 12 вольт, и потребуется доработка. Внутрь корпуса мы не полезем, перепаивать схему под 12 вольт сложно, долго и надо быть электронщиком. Сделаем проще, подключим  небольшой  понижатель со стабилизатором. Существует два типа.

Тип №1

Стабилизатор  на 7812

Стабилизатор на микросхеме типа КРЕН 7812 (lm317), выглядит почти как транзистор, при установке на радиатор охлаждения выдерживает ток 1 Ампер. Этот вариант устаревший и громоздкий. Для использования всей мощности ноутбучного БП потребуется 5-6 таких (или 1 большая) и большой алюминиевый радиатор для охлаждения.

Тип №2

Импульсный на специализированных микросхемах

Современный импульсный стабилизатор, миниатюрен, не греется, простой как 3 рубля. В русских магазинах за него просят 600-900 р, цена сильно завышенная. У китайцев на 3 ампера стоит 50 р., 5-7А продается за 100-150 р., поэтому рекомендую заказать пару штук на Aliexpress.

Рекомендую использовать импульсный, КПД у него выше 80-90%, проще и дешевле. Только не покупайте источник тока на LM2596, вам нужен источник напряжения. Чтобы найти в китайском интерне-магазине используйте запросы:

  • LM2596 power supply;
  • 12v switching regulator;
  • voltage regulator 12v 7a;

Характеристики импульсных стабилизаторов

Специалист на видео инструкции расскажет основные технические характеристики современных импульсных стабилизаторов, схемотехнику и рекомендации по их правильному использованию. Чтобы вы своими руками не спалили его во время экспериментов.

Простые схемы своими руками

Примеры готовых импульсных модулей на 36W

..

Если вышеописанные БП вам не подходят, то блок питания для светодиодной ленты 12в можно спаять по схеме своими руками. Для самодельного потребуется много времени и немало деталей, не буду рассматривать полные схемы для подключения к сети 220B. при современном развитии электроники их проще купить у китайцев. Есть схемы для сборки своими руками еще на TL594 и других новых элементах. Но мне больше нравится описанный ниже, легко повторяется за 10 минут.

Рассмотрим оптимальный и современный на LM2596. Потребуется установить всего 4 радиоэлемента. Аналоги, схожие по функционалу, это ST1S10, L5973D, ST1S14.

Существует несколько модификаций микросхемы:

  • фиксированное 12 V, LM2596-12, указано в конце маркировки;
  • регулируемый вариант LM2596ADJ;
  • цена в России одной 170 р.. В Китае весь собранный блок на LM2596 стоит 35р. включая доставку.

Характеристики

Параметр Значение
Входное напряжение, не более 40В
Вольт на выходе 3-37В
Выходной ток
Срабатывание защиты по току
Частота преобразования 150 кГц

Видео, как доработать своими руками

Коллега подобно расскажет, как подключить и настроить стабилизатор к блоку питания от ноутбука на 19V.

Готовые модули из Китая

Вариант с регулятором  на выходе от 3 до 37В

В первой схеме будем использовать LM2596ADJ с регулируемым вольтажом на выходе. Выпускаться она может в разных корпусах, но самый оптимальный как на картинке. Плюсом такой конструкции будет возможность регулировать яркость led ленты без диммера.

Схема с фиксированным 12B

Стабилизатор на микросхеме LM2596-12, отсутствует переменный резистор для регулировки, на выходе ровно 12B. Схема проще на одну детальку.

Питание и драйвер в одном модуле

Универсальный блок с 3 регуляторами

Универсальный вариант, регулируется сила тока и напряжение. Можно запитать не только диодную ленту, но и светодиоды. то есть может выступать в качестве драйвера и электронного трансформатора.

На видео ролике вам покажут как пользоваться и настраивать самостоятельно универсальный вариант модуля с драйвером, регулируемой силой тока.

Где купить дешево?

Бывает, что у вас дома не оказалось БП подходящего от бытовых приборов, но точно есть у других, тоже валяется без дела. Сперва спросите у знакомых или соседей, наверняка что то есть. За пару сотен или жидкую валюту вы можете сними договорится.

Большой ассортимент  вы найдете на Авито и на местных форумах. Многие избавляются от ненужного хлама и продают БП за символическую цену, потому что выбрасывать жалко, а реальную стоимость не знают. Таким образом, я часто покупаю хорошие приборы, тем более торг никто не отменял. Недавно мне удалось купить фирменный ACER от моноблока на 190W за 400 р. Он герметичен и высокого качества, так как компьютерная электроника требует очень стабильного и качественного питания в отличие от диодной ленты.

Как изготовить блок питания для шуруповерта 12в своими руками: схема сборки

Приобретая аккумуляторный шуруповерт, практически никто не задумывается о сроке службы аккумуляторных батарей. В зависимости от производителя и стоимости инструмента, аккумуляторы могут прослужить исправно и 5 лет, и менее года. Особенно это касается инструмента от безымянного производителя из Китая (а таких на рынке подавляющее большинство). Замена аккумуляторных батарей на новые по финансовым затратам сравнима с покупкой нового инструмента, поэтому часто возникает потребность сделать блок питания для шуруповерта 18В или 12В своими руками.

Аккумуляторный шуруповерт

Требования к источнику питания

Вне зависимости от того, на какое напряжение рассчитан шуруповерт, к блоку питания предъявляются особые требования: при высокой нагрузке на инструмент, например, при закручивании длинных шурупов в твердую древесину или в режиме сверления ток потребления двигателя может повышаться до десятка ампер. Если в режиме холостого хода потребляемый ток составляет не более 1-2 А и достаточно блока питания с мощностью 30-40 Вт, то для нормальной работы требуется мощность порядка 200 Вт.

С аккумуляторными батареями все просто. Специфика их работы такова, что они способны на короткое время выдавать большие токи, восстанавливая рабочее напряжение во время простоя. Возникает вопрос: зарядное устройство для любого шуруповёрта имеет малый вес и габариты, почему бы не использовать его в качестве источника напряжения? Ответ – однозначно нет. Зарядное устройство рассчитано на выдачу малого тока в течение длительного времени, нам же требуются большие токи на короткий срок. Поэтому внешний блок питания должен иметь запас по мощности.

Конструкция блока питания

Самодельные БП для шуруповертов могут иметь различные варианты схемотехнического и конструктивного исполнения:

  • Встроенные в корпус стандартных аккумуляторов;
  • В виде отдельного блока;
  • Импульсные;
  • Трансформаторные.

Теперь подробнее о каждом из них.

Встроенные

Несомненное преимущество встроенных устройств заключается в том, что из внешних деталей остается только лишь сетевой шнур маленького сечения. Самостоятельно изготовить такой блок питания под силу не всем. Тут требуется немалый опыт, поскольку малогабаритные мощные блоки питания можно сделать только по импульсной схеме. Трансформатор необходимой мощности классической конструкции в рукоять шуруповерта не поместится, а с подходящими габаритами будет иметь мощность в единицы ватт, чего хватит только для холостой работы.

Встроенный БП

Отдельный блок

Ввиду того, что блок питания находится вне корпуса шуруповерта, к нему не предъявляются ограничения по габаритам и массе, поэтому он может быть выполнен с желаемым запасом по мощности. Единственное ограничение – длина и площадь поперечного сечения соединительных шнуров между инструментом и источником питания, ведь, согласно закона Ома, при снижении напряжения при одинаковой мощности потребления растет ток, поэтому низковольтный шнур питания должен иметь большее сечение, чем сетевой на 220 В. К этому добавляется также требование по минимизации падения напряжения на проводах. Толстый шнур имеет повышенную массу и жесткость, что уменьшает удобство пользования инструментом.

Импульсные источники

Импульсные источники питания характеризуются тем, что понижающий трансформатор в них работает на повышенной частоте, в результате чего имеет минимальные габариты при той же мощности. Общие габариты устройства вполне позволяют разместить конструкцию в стандартном корпусе вместо неисправных аккумуляторов. Из минусов – сложность конструкции для самостоятельного повторения.

Трансформаторные устройства

Блоки питания на трансформаторах еще не потеряли своей актуальности ввиду простоты изготовления и надежности. Единственный минус таких изделий – большие габариты и масса, но это не существенно, когда устройство выполнено в виде отдельного блока и установлено стационарно.

Устройства на трансформаторах получили преимущественное распространение среди самодельных устройств, поэтому будут рассмотрены самым подробным образом.

Конструкция трансформаторного блока питания

Данное устройство характеризуется наличием следующих составных частей:

  • Силовой трансформатор;
  • Выпрямитель:
  • Фильтр питания;
  • Стабилизатор напряжения.

Силовой трансформатор представляет собой самую габаритную и тяжелую часть устройства. Он предназначен для преобразования высокого входного напряжения в низкое, соответствующее требованиям подключаемой нагрузки.

Задача выпрямителя состоит в преобразовании переменного напряжения в постоянное. Наибольшей эффективностью обладают мостовые схемы выпрямления, состоящие из четырех диодов или монолитного выпрямительного моста.

Фильтр сглаживает пульсации напряжения после выпрямительного моста.

Теоретически этих элементов достаточно для работы шуруповерта, но скачки напряжения в питающей сети, его просадки из-за увеличения нагрузки могут привести к нестабильной работе двигателя, а увеличение сверх нормы – к выходу из строя.

Задача стабилизатора состоит в поддержании стабильного напряжения на выходе, вне зависимости от величины нагрузки и уровня напряжения питающей сети.

Для самостоятельной сборки можно порекомендовать простую проверенную схему стабилизатора, которая отличается минимумом деталей и доступна для повторения любому, кто умеет держать в руках паяльник и пользоваться измерительными приборами.

Блок питания со стабилизатором

В приведенной схеме можно увеличить емкость конденсатора до 1000-2000 мкФ, а транзисторы использовать типов КТ807, КТ819 с любой буквой.

Основная проблема состоит в подборе трансформатора с необходимым уровнем выходного напряжения. Оно должно быть несколько больше того, что требуется для инструмента, поскольку часть будет оставаться на элементах стабилизатора. Для нормальной работы стабилизатора требуется, чтобы выпрямленное напряжение превышало стабилизированное на несколько вольт. Слишком много нельзя, поскольку его излишек будет падать на ключевом транзисторе, нагревая его, а низкое значение в ряде случаев приведет к снижению выходного напряжения.

Обратите внимание! После мостового выпрямителя и фильтра значение постоянного напряжение будет превышать входное переменное примерно в 1.4 раза.

Таким образом, блок питания для шуруповерта на 12В требует трансформатор с выходным напряжением 12-14 В переменного тока.

Важно! Транзистор обязательно должен крепиться на радиатор охлаждения.

Использование блока питания компьютера

Собрать блок питания для шуруповерта с двигателем 12В своими руками рационально из блока питания от компьютера. Стандартные напряжения материнской платы и внешних устройств компьютера составляют:

  • + 3.3 В;
  • + 5 В;
  • + 12 В;
  • – 12 В.

Стандартные БП способны выдавать в цепи +12 В ток до 10-15 А, что абсолютно приемлемо для большинства моделей шуруповертов. На разъемах питания необходимое напряжение присутствует на черном (масса) и желтом проводах. Остальные провода не нужны, и их желательно отпаять прямо на плате блока питания, чтобы они не мешались и не создавали повода для замыкания.

Компьютерный БП

В некоторых случаях, возможно, использовать компьютерный блок питания для шуруповерта 14 В. Правда будет наблюдаться небольшое падение мощности. А вот шуруповерты на 16 и 18 Вольт с такими устройствами работать не будут. При наличии квалификации можно внести в схему стандартного блока питания изменения с целью повышения напряжения, но рядовому пользователю такое обычно не под силу.

Обратите внимание! Все сказанное относится к устаревшим, но еще встречающимся блокам питания АТ. Более современные ATX требуют некоторых переделок для возможности включения, поскольку оно организовано на материнской плате компьютера специальной схемой.

При должной аккуратности это можно сделать самостоятельно. Для этого на самом большом разъеме устройства нужно найти провод зеленого цвета. Замыкая его через кнопку на черный провод массы, можно включить блок питания.

Разъем блока АТХ

Используя любой источник, не требуется вносить каких-либо изменений в конструкцию инструмента. Для подачи напряжения следует воспользоваться корпусом от неисправных аккумуляторов, просверлив в нем отверстия для питающих проводов. Сами проводники нужно аккуратно, не расплавив пластик, припаять к выходным клеммам, строго соблюдая полярность.

Собранную конструкцию требуется поместить в подходящий корпус и, при необходимости, снабдить ручкой для переноски.

Бестрансформаторные устройства

В интернете можно встретить рекомендации по переделке пускорегулирующих устройств мощных люминесцентных ламп (экономок) для использования в качестве блока питания шуруповерта. Но мало где говорится, что такие конструкции имеют гальваническую связь с сетью переменного тока и пользоваться ими небезопасно. Не следует повторять подобные конструкции и подвергаться риску удара электрическим током.

Конструирование внешнего источника может послужить временной мерой в качестве замены аккумуляторов, поскольку именно мобильность и независимость от сети являются основным преимуществом аккумуляторных устройств. Неудобно, когда шнур питания путается и мешает работать, особенно в труднодоступных местах.

Видео

Как сделать простейший блок питания и выпрямитель

Как сделать простейший блок питания и выпрямитель

В этой статье ЭлектроВести расскажут вам как сделать простейший блок питания и выпрямитель.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

  • Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.
  • Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1. 41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1. 5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0. 6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что Служба безопасности Украины обнаружила в режимных помещениях Южно-Украинской атомной электростанции компьютерную технику, которая использовалась для майнинга криптовалют. По данным следствия, из-за несанкционированного размещения компьютерной техники произошло разглашение сведений о физической защите атомной электростанции, что является государственной тайной. К майнингу криптовалют, возможно, были причастны служащие части Национальной гвардии Украины, охраняющие АЭС.

По материалам: electrik.info.

Как сделать блок питания на 12 вольт

Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей – всё это можно вытащить из старой техники, как импортной, так и советской.


Принципиальная схема БП (уменьшенная)

Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.

Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах.

Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.

Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП.

На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики – с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! Автор: Игорь.

Обсудить статью САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В

Блок питания 12 Вольт позволит осуществить питание практически любой бытовой техники, включая даже ноутбук. Обратите внимание на то, что на вход ноутбука подается напряжение до 19 Вольт. Но он прекрасно будет работать, если провести запитку от 12. Правда, максимальный ток составляет 10 Ампер. Только до такого значения потребление доходит очень редко, среднее держится на уровне 2-4 Ампер. Единственное, что следует учесть – при замене стандартного источника питания на самодельный использовать встроенную батарею не получится. Но все равно блок питания на 12 вольт идеально подходит даже для такого устройства.

Параметры блока питания

Самые главные параметры любого блока питания – это выходное напряжение и ток. Зависят их значения от одного – от используемого провода во вторичной обмотке трансформатора. О том, как провести выбор его, будет рассказано немного ниже. Для себя вы должны заранее решить, для каких целей планируется использовать блок питания 12 Вольт. Если необходимо запитывать маломощную аппаратуру – навигаторы, светодиоды, и прочее, то вполне достаточно на выходе 2-3 Ампер. И то этого будет много.

Но если вы планируете с его помощью осуществлять более серьезные действия – например, заряжать аккумуляторную батарею автомобиля, то потребуется на выходе 6-8 Ампер. Ток зарядки должен быть в десять раз меньше емкости АКБ – это требование обязательно учитывается. Если же возникает необходимость в подключении приборов, напряжение питания которых существенно отличается от 12 Вольт, то разумнее установить регулировку.

Как выбрать трансформатор

Первый элемент – это преобразователь напряжения. Трансформатор способствует преобразованию переменного напряжения 220 Вольт в такое же по амплитуде, только со значением, намного меньше. По крайней мере, вам нужно меньшее значение. Для мощных блоков питания за основу можно взять трансформатор типа ТС-270. У него высокая мощность, даже имеются 4 обмотки, которые выдают по 6,3 Вольт каждая. Они использовались для питания накала радиоламп. Без особого труда из него можно сделать блок питания 12 Вольт 12 Ампер, который сможет даже АКБ автомобиля заряжать.

Но если вас полностью не устраивают его обмотки, то можно вторичные все убрать, оставить только сетевую. И провести намотку провода. Проблема в том, как посчитать необходимое количество витков. Для этого можно воспользоваться простой схемой вычисления – посчитайте, сколько витков содержит вторичная обмотка, которая выдает 6,3 Вольт. Теперь просто разделите 6,3 на число витков. И вы получите величину напряжения, которое можно снять с одного витка провода. Осталось только высчитать, сколько нужно намотать витков, чтобы на выходе получить 12,5-13 Вольт. Будет даже лучше, если на выходе окажется на 1-2 Вольт напряжение выше требуемого.

Изготовление выпрямителя

Что такое выпрямитель и для чего он нужен? Это устройство на полупроводниковых диодах, которое является преобразователем. С его помощью переменный ток превращается в постоянный. Для анализа работы выпрямительного каскада нагляднее использовать осциллограф. Если на перед диодами вы увидите синусоиду, то после них окажется практически ровная линия. Но мелкие куски от синусоиды все равно останутся. От них избавитесь после.

К выбору диодов стоит отнестись с максимальной серьезностью. Если блок питания на 12 Вольт будет использоваться в качестве зарядчика аккумулятора, то потребуется использовать элементы, у которых величина обратного тока до 10 Ампер. Если же намерены осуществлять питание слаботочных потребителей, то вполне достаточно окажется мостовой сборки. Вот тут стоит остановиться. Предпочтение стоит отдавать схеме выпрямителя, собранного по типу мост – из четырех диодов. Если применить на одном полупроводнике (однополупериодная схема), то КПД блока питания уменьшается практически вдвое.

Блок фильтров

Теперь, когда на выходе имеется постоянное напряжение, то необходимо, чтобы схема блока питания на 12 Вольт была немного усовершенствована. Для этой цели нужно использовать фильтры. Для питания бытовой техники достаточно применить LC-цепочку. О ней стоит рассказать более подробно. К плюсовому выходу выпрямительного каскада подключается индуктивность – дроссель. Ток должен проходить через него, это первая ступень фильтрации. Далее идет вторая – электролитический конденсатор с большой емкостью (несколько тысяч микрофарад).

После дросселя к плюсу подключается электролитический конденсатор. Второй его вывод соединяется с общим проводом (минусом). Суть работы электролитического конденсатора в том, что он позволяет избавиться от всей переменной составляющей тока. Помните, на выходе выпрямителя оставались небольшие кусочки синусоиды? Вот, именно от нее нужно избавиться, иначе блок питания 12 Вольт 12 Ампер будет создавать помеху для устройства, подключаемого к нему. Например, магнитола или радиоприемник будет издавать сильный гул.

Стабилизация напряжения на выходе

Для осуществления стабилизации выходного напряжения можно воспользоваться одним всего полупроводниковым элементом. Это может быть как стабилитрон с напряжением рабочим 12 Вольт, так и более современные и совершенные сборки типа LM317, LM7812. Последние рассчитаны на стабилизацию напряжения на уровне 12 Вольт. Следовательно, даже при условии, что на выходе выпрямительного каскада 15 Вольт, после стабилизации останется всего 12. Все остальное уходит в тепло. А это значит, что крайне важно устанавливать стабилизатор на радиатор.

Регулировка напряжения 0-12 Вольт

Для большей универсальности прибора стоит воспользоваться несложной схемой, которую можно соорудить за несколько минут. Такое можно воплотить при помощи ранее упомянутой сборки LM317. Только отличие от схемы включения в режиме стабилизации будет небольшое. В разрыв провода, который идет на минус, включается переменный резистор 5 кОм. Между выходом сборки и переменным резистором включено сопротивление около 220 Ом. А между входом и выходом стабилизатора защита от обратного напряжения – полупроводниковый диод. Таким образом, блок питания 12 Вольт, своими руками собранный, превращается в многофункциональное устройство. Теперь остается только произвести сборку его и градуировку шкалы. А можно и вовсе на выходе поставить электронный вольтметр, по которому и смотреть текущее значение напряжения.

Блок питания достаточно прост в изготовлении, если немножко разобраться с теоретической частью и понять, как он работает. Все не так сложно, как кажется. Из чего состоит блок питания на 12 вольт, с фото и примерами, а также описание его элементов и принцип работы – далее в статье.

Краткое содержимое статьи:

Основные элементы и принцип действия блоков питания

Главной частью является понижающий трансформатор, причем при отсутствии его с необходимыми параметрами, то вторичная обмотка перематывается вручную и получается необходимое выходное напряжение. Посредством трансформатора происходит уменьшение напряжения сети 220 вольт до 12, идущих дальше к потребителю.

Принципиальной разницы между штатными устройствами и с перемотанной вторичной обмоткой нет, главное – правильно рассчитать сечение провода и количество его витков на обмотке.

Далее ток идет на выпрямитель. Состоит из полупроводников, например, диодов. Диодный мост, в разных схемах, может состоять из одного, двух или четырех диодов. После выпрямителя ток поступает на конденсатор, также в схеме для выдачи стабильного напряжения желательно включение стабилитрона с соответствующими характеристиками.

Трансформатор

Состоит трансформатор из сердечника, изготовленного из ферромагнетика, а также первичной и вторичной обмоток. На первичную обмотку приходит 220 вольт, а со вторичной, в данном случае, снимается 12, идущие на выпрямитель. Сердечники в данном типе блоков питания по большей части изготавливают Ш-образной и U-образной формы.

Расположение обмоток допускается как одна на другой на общей катушке, так и по отдельности. К примеру, у U-образного сердечника пара катушек, на каждую из которых намотано по половине обмоток. Выводы при подсоединении трансформатора подключают последовательно.

Простая схема источника питания 12 В 2 А

Сегодня мой сын построил простую схему источника питания 12 В для солнечного насоса 12 В. Это нерегулируемый источник питания 2А. Потому что нагрузка — только двигатель постоянного тока.

Почему вы должны этому научиться?
Это пример принципа работы нерегулируемого источника питания . Которые являются основными для каждого источника питания.

Как это работает

Учу сына понимать принцип работы этих проектов.

Основной принцип, мы используем этот проект для снижения напряжения от сети переменного тока 220В до 12В постоянного тока.( Источник питания с фильтром 12 В )

На Рисунке 1 Переменный ток 220 В 50 Гц подключен к цепи через переключатель S1-ВКЛ-ВЫКЛ и предохранитель F1 для защиты этой цепи.

Затем они протекают через трансформатор 2А для понижения напряжения до 12 В переменного тока.

Затем через оба диода к выпрямительному преобразователю переменного тока в постоянный.

Затем на конденсаторе в качестве фильтра постоянного напряжения.

Светодиод LED1 отображает питание при включении, а R1 ограничивает ток для использования светодиодов.


Рисунок 1 простая принципиальная схема блока питания 12 В 2 А

Детали, которые вам понадобятся

T1: Трансформатор 12 В CT, 12 В, 2 А
D1, D2: 1N5402, 3A Диод
C1: 2200 мкФ Электролитический конденсатор 25 В
R1 : 1.Резисторы 2 кОм 0,5 Вт
LED1: светодиоды, как вам нравится
S1: выключатели
F1: предохранитель 1A
Медные провода и гвоздь 0,5 дюйма, питание от сети переменного тока

Сделайте источник питания 12 В постоянного тока

Этот проект, мой сын построил 12 вольт фильтровал блок питания с самим собой много ступенек.

В первую очередь кладем бумагу на лист фанеры и забиваем гвоздь в стык деталей. ( Рисунок 2 )

Паял все детали на шляпку гвоздя вместо печатной платы. ( Рисунок 3 ).

Все части линии переменного тока под высоким напряжением Я подключаю их вместо моего сына.


Рисунок 2 Забить гвоздь в стык деталей


Рисунок 3 припаять все детали на гвоздь

По завершении Он измеряет напряжение на выходе 17В Без нагрузки ( Рисунок 4 )

Рисунок 4

Затем он пытается применить насос постоянного тока в качестве нагрузки. Как на видео ниже.


Тогда он измеряет ток нагрузки около 0.9A как Рисунок 5

Этот проект применяется на открытом воздухе, поэтому он поместил его в пластиковые коробки для защиты воды как Рисунок 6

Схема источника питания 12 В 3 А

Если вам нужен выход 3 А. Перечень нескольких частей легко изменить:
1. Переключите трансформатор на ток 3А.
2. Добавьте еще конденсаторный фильтр до 4700 мкФ. Добавив параллельно еще один 2200 мкФ.

Это просто?

Это первый проект по обучению мальчика на дому. Мы рады, что он отлично работает.

Подробнее: Разработка линейного источника питания 12 В, 5 А

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

Простейшая схема источника питания

Эта схема источника питания проста в изготовлении и недорого. А для этого требуется всего 5 компонентов.

За свою жизнь я построил много схем, но на самом деле это первый раз, когда я построил схему источника питания с нуля.

Последним проектом, который я хотел создать, был сетевой адаптер с USB-разъемом для зарядки моего iPhone.Но сначала я хотел начать с создания простой схемы, которая преобразует напряжение сети 220 В или 110 В в 5 В.

Поскольку я нахожусь в Австралии, когда пишу это, а напряжение здесь 220 В, я сделал это с расчетом на 220 В. Но вместо этого очень легко преобразовать его в 110 В, переключив одно соединение (или один компонент).

Осторожно: НЕ подключайте к электросети все, что вы делаете самостоятельно, если вы не на 100% уверены в том, что делаете. Неправильное действие может привести к серьезным повреждениям, даже к смерти.Используйте предоставленную здесь информацию на свой страх и риск.

Если вам нужна совершенно безопасная и чрезвычайно полезная схема источника питания, вам следует проверить это портативное зарядное устройство USB, которое я построил. Он даже включает в себя загружаемое пошаговое руководство о том, как собрать его самостоятельно.

Проектирование источника питания

Я хочу построить схему источника питания на базе регулятора напряжения LM7805, потому что это легко найти и просто использовать. Этот компонент даст стабильное выходное напряжение от 5В до 1. 5 А.

Я легко могу понять, как использовать LM7805, посмотрев на его техническое описание.

Из таблицы я нашел эту маленькую схему:

Выбор номиналов конденсатора

На изображении выше показан стабилизатор напряжения с конденсатором 0,33 мкФ на входе и 0,1 мкФ на выходе. Трудно найти хороший источник информации об этих значениях конденсаторов, но, согласно этим вопросам и ответам, в этих значениях нет ничего волшебного.

В сети есть много мнений по поводу этих конденсаторов.Некоторые предлагают конденсаторы 0,1 мкФ, другие — конденсаторы 100 мкФ. Некоторые предлагают использовать одновременно 0,1 мкФ и 100 мкФ.

Значения, которые вы должны использовать, зависят от множества факторов. Например, какой длины будут провода. Но эта статья о том, как построить простую схему блока питания, поэтому не будем усложнять. Наверное, подойдет практически любая емкость конденсатора. Вероятно, он будет работать даже без конденсаторов.

Чтобы сделать выходное напряжение «немного стабильным», я собираюсь использовать на выходе конденсатор 1 мкФ. Я пропущу входной конденсатор, потому что конденсатор все равно будет в этом положении — просто продолжайте читать.

Преобразование из 220 В

В таблице данных также указано, что для правильной работы требуется от 7 до 25 В. Итак, мне нужно только добавить несколько компонентов, которые преобразуют 220 В (или 110 В) переменного тока в постоянное напряжение, которое остается между 7 и 25 В.

Это относительно просто. Я просто добавлю трансформатор, который преобразует напряжение, например, примерно до 12 В. Затем я подам это переменное напряжение в мостовой выпрямитель, чтобы его выпрямить.

И я использую большой конденсатор на выходе, чтобы постоянно поддерживать напряжение выше необходимых 7В. Это значение конденсатора не критично. Я видел много схем блоков питания, в которых используется 470 или 1000 мкФ, поэтому сейчас я попробую с 470 мкФ.

Схема блока питания

Итак, итоговая схема выглядит так:

Список деталей

Деталь Значение Описание
Т1 220В (или 110В) до 12В Трансформатор
DB1 Выпрямитель с диодным мостом
C1 470 мкФ (20 В и выше) Конденсатор
C2 1 мкФ (10 В и выше) Конденсатор
U1 7805 Регулятор напряжения

Общая стоимость комплектующих около 12-15 $. Самый дорогой компонент — трансформатор (около 10 долларов).

Поиск компонентов для схемы

Когда я не уверен, как выбрать компоненты для схемы, я обычно иду в интернет-магазины электроники для любителей и смотрю на их варианты. В этих магазинах обычно есть компоненты, которые должны работать от стандартного блока питания без каких-либо особых требований.

В Австралии Jaycar — хороший вариант.

Быстрый поиск по слову «трансформер» на Jaycar дает мне несколько вариантов.Входное напряжение должно быть около 220 В, а выходное — около 12 В. После быстрого просмотра их вариантов и цен я остановился на этом:
https://www.jaycar.com.au/12-6v-ct-7va-500ma-centre-tapped-type-2853-transformer/p / MM2013

Трансформатор имеет центральный отвод на выходной стороне, который я могу игнорировать.

Это на 220В. Если вы живете в стране с напряжением 110 В, в магазинах вашей страны, вероятно, найдется подходящая версия. Щелкните здесь, чтобы просмотреть мой список интернет-магазинов.

Тогда мне нужен выпрямитель. Мы можем использовать 4 силовых диода (например, 1N4007) или мостовой выпрямитель (который состоит из четырех диодов, встроенных в один компонент). Самый дешевый вариант, который появляется при поиске мостового выпрямителя на Jaycar, — это:
https://www.jaycar.com.au/w04-1-5a-400v-bridge-rectifier/p/ZR1304

Готовая схема

Это простая схема для пайки на макетной плате. Вот прототип, который я построил:

Напоминание: не подключайте к электросети все, что вы построили самостоятельно, если вы не уверены на 100% в том, что делаете.Используйте предоставленную здесь информацию на свой страх и риск.

Вы его построили?

Вы построили эту схему? Какой у вас опыт? С чем вы боролись? Дайте мне знать в комментариях ниже, как все прошло.

Объяснение 4 простых схем бестрансформаторного источника питания

В этом посте мы обсудим 4 простых в сборке, компактных простых схемах бестрансформаторного источника питания. Все схемы, представленные здесь, построены с использованием теории емкостного реактивного сопротивления для понижения входного напряжения сети переменного тока.Все представленные здесь конструкции работают независимо без трансформатора или без трансформатора .

Концепция бестрансформаторного источника питания

Как следует из названия, бестрансформаторная схема источника питания обеспечивает низкий постоянный ток от сети высокого напряжения переменного тока без использования трансформатора или индуктора.

Он работает за счет использования высоковольтного конденсатора для понижения сетевого переменного тока до необходимого более низкого уровня, который может быть подходящим для подключенной электронной схемы или нагрузки.

Характеристики напряжения этого конденсатора выбраны таким образом, чтобы его пиковое значение действующего напряжения было намного выше, чем пиковое напряжение сети переменного тока, чтобы гарантировать безопасную работу конденсатора. Пример конденсатора, который обычно используется в цепях бестрансформаторного питания, показан ниже:

Этот конденсатор подключается последовательно с одним из входов сети, предпочтительно с фазовой линией переменного тока.

Когда сетевой переменный ток поступает на этот конденсатор, в зависимости от номинала конденсатора, реактивное сопротивление конденсатора вступает в действие и не позволяет сетевому переменному току превышать заданный уровень, определяемый номиналом конденсатора.

Однако, несмотря на то, что ток ограничен, напряжение нет, поэтому, если вы измеряете выпрямленный выход бестрансформаторного источника питания, вы обнаружите, что напряжение равно пиковому значению сетевого переменного тока, что составляет около 310 В, и это может насторожить любого нового любителя.

Но поскольку конденсатор может значительно снизить уровень тока, с этим высоким пиковым напряжением можно легко справиться и стабилизировать с помощью стабилитрона на выходе мостового выпрямителя.

Мощность стабилитрона должна выбираться соответствующим образом в соответствии с допустимым уровнем тока конденсатора.

ВНИМАНИЕ: прочтите предупреждающее сообщение в конце сообщения

Преимущества использования схемы бестрансформаторного источника питания

Идея недорогая, но очень эффективная для приложений, требующих малой мощности для работы.

Использование трансформатора в источниках питания постоянного тока, вероятно, довольно распространено, и мы много слышали об этом.

Однако одним из недостатков использования трансформатора является то, что вы не можете сделать его компактным.

Даже если текущие требования к вашей схеме невысоки, вы должны включить тяжелый и громоздкий трансформатор, что сделает вещи действительно громоздкими и беспорядочными.

Схема бестрансформаторного источника питания, описанная здесь, очень эффективно заменяет обычный трансформатор для приложений, требующих тока ниже 100 мА.

Здесь на входе используется высоковольтный металлизированный конденсатор для необходимого понижения напряжения сети, а предыдущая схема представляет собой не что иное, как простые мостовые конфигурации для преобразования пониженного переменного напряжения в постоянное.

Схема, показанная на схеме выше, представляет собой классическую конструкцию, может использоваться в качестве источника питания постоянного тока 12 В для большинства электронных схем.

Однако, обсудив преимущества вышеупомянутой конструкции, стоит сосредоточиться на нескольких серьезных недостатках, которые эта концепция может включать.

Недостатки цепи бестрансформаторного источника питания

Во-первых, схема не может выдавать сильноточные выходные сигналы, но это не будет проблемой для большинства приложений.

Еще один недостаток, который, безусловно, требует некоторого внимания, заключается в том, что данная концепция не изолирует цепь от опасных потенциалов сети переменного тока.

Этот недостаток может иметь серьезные последствия для конструкций с оконечными выводами или металлическими шкафами, но не имеет значения для устройств, в которых все находится в непроводящем корпусе.

Следовательно, начинающие любители должны работать с этой схемой очень осторожно, чтобы избежать поражения электрическим током. И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проходить через нее, что может вызвать серьезное повреждение цепи с питанием и самой цепи питания.

Однако в предлагаемой простой схеме бестрансформаторного источника питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих каскадов после мостового выпрямителя.

Этот конденсатор заземляет мгновенные скачки высокого напряжения, таким образом эффективно защищая связанную с ним электронику.

Как работает схема

Работу этого источника питания без преобразования можно понять по следующим пунктам:

  1. Когда вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня. уровень, определяемый значением реактивного сопротивления C1.Здесь можно примерно предположить, что он составляет около 50 мА.
  2. Однако напряжение не ограничено, и поэтому полные 220 В или что-либо еще на входе может достигать следующей ступени мостового выпрямителя.
  3. Мостовой выпрямитель выпрямляет эти 220 В постоянного тока до более высоких 310 В постоянного тока из-за преобразования среднеквадратичного значения в пиковое значение сигнала переменного тока.
  4. Это 310 В постоянного тока мгновенно понижается до низкого уровня постоянного тока с помощью следующего каскада стабилитрона, который шунтирует его на значение стабилитрона. Если используется стабилитрон 12 В, он станет 12 В и так далее.
  5. C2 наконец фильтрует 12 В постоянного тока с пульсациями в относительно чистый 12 В постоянного тока.

1) Базовая бестрансформаторная конструкция

Давайте попробуем более подробно разобраться в функциях каждой из частей, используемых в приведенной выше схеме:

  1. Конденсатор C1 становится наиболее важной частью схемы, так как он является единственным который снижает высокий ток из сети 220 В или 120 В до желаемого более низкого уровня, чтобы соответствовать выходной нагрузке постоянного тока. Как показывает практика, каждая отдельная микрофарада этого конденсатора будет обеспечивать выходную нагрузку током около 50 мА.Это означает, что 2 мкФ обеспечит 100 мА и так далее. Если вы желаете более точно изучить расчеты, можете обратиться к этой статье.
  2. Резистор R1 используется для обеспечения пути разряда для высоковольтного конденсатора C1 всякий раз, когда цепь отключена от сетевого входа. Потому что C1 может сохранять в себе сетевой потенциал 220 В, когда он отсоединен от сети, и может вызвать удар высоким напряжением у любого, кто дотронется до контактов вилки. R1 быстро разряжает C1, предотвращая любую подобную аварию.
  3. Диоды D1 — D4 работают как мостовой выпрямитель для преобразования слаботочного переменного тока от конденсатора C1 в слаботочный постоянный ток. Конденсатор C1 ограничивает ток до 50 мА, но не ограничивает напряжение. Это означает, что постоянный ток на выходе мостового выпрямителя является пиковым значением 220 В переменного тока. Это можно рассчитать как: 220 x 1,41 = 310 В постоянного тока приблизительно . Итак, у нас на выходе моста 310 В, 50 мА.
  4. Однако напряжение 310 В постоянного тока может быть слишком высоким для любого устройства с низким напряжением, кроме реле.Следовательно, стабилитрон соответствующего номинала используется для переключения 310 В постоянного тока на желаемое более низкое значение, такое как 12 В, 5 В, 24 В и т. Д., В зависимости от характеристик нагрузки.
  5. Резистор R2 используется как токоограничивающий резистор. Вы можете почувствовать, когда C1 уже существует для ограничения тока, зачем нам R2. Это связано с тем, что во время периодов мгновенного включения питания, то есть, когда входной переменный ток впервые подается на схему, конденсатор C1 просто действует как короткое замыкание в течение нескольких миллисекунд.Эти несколько начальных миллисекунд периода включения позволяют полному высокому току 220 В переменного тока попасть в цепь, чего может быть достаточно, чтобы разрушить уязвимую нагрузку постоянного тока на выходе. Чтобы этого не произошло, введем R2. Однако лучшим вариантом может быть использование NTC вместо R2.
  6. C2 — это конденсатор фильтра, который сглаживает пульсации 100 Гц от выпрямленного моста к более чистому постоянному току. Хотя на схеме показан высоковольтный конденсатор 10uF 250V, вы можете просто заменить его на 220uF / 50V из-за наличия стабилитрона.

Схема печатной платы для объясненного выше простого бестрансформаторного источника питания показана на следующем изображении. Обратите внимание, что я также включил место для MOV на печатной плате со стороны входа сети.

Пример схемы для светодиодного декоративного освещения.

Следующая схема бестрансформаторного или емкостного источника питания может использоваться в качестве схемы светодиодной лампы для безопасного освещения второстепенных светодиодных цепей, таких как маленькие светодиодные лампы или светодиодные гирлянды.

Идею запросил г-н.Jayesh:

Требования к спецификации

Струна состоит из примерно 65-68 светодиодов на 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 6 струн связаны вместе, чтобы образовать одну струну, так что расположение лампы составляет 4 дюйма в окончательной веревке. итак всего 390 — 408 светодиодных лампочек в финальной тросе.
Итак, пожалуйста, предложите мне лучшую схему драйвера для работы
1) одна строка из 65-68 строк.
или
2) полная веревка из 6 нитей вместе.
у нас есть еще одна веревка из 3-х струн. Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 3 струны связаны вместе, чтобы образовать одну струну, поэтому размещение лампы получается, что длина последней веревки составляет 4 дюйма. итак всего 195-204 светодиодных лампочки в готовом тросе.
Итак, пожалуйста, предложите мне лучшую схему драйвера для работы
1) одна строка из 65-68 строк.
или
2) полная веревка из 3-х ниток.
Пожалуйста, предложите лучшую надежную схему с устройством защиты от перенапряжения и посоветуйте, какие дополнительные вещи необходимо подключить для защиты схем.
и убедитесь, что на принципиальных схемах указаны значения, необходимые для того же, поскольку мы не являемся техническим специалистом в этой области.

Конструкция схемы

Схема драйвера, показанная ниже, подходит для управления любой цепочкой светодиодных ламп , имеющей менее 100 светодиодов (для входа 220 В), каждый светодиод рассчитан на 20 мА, 3,3 В 5 мм светодиоды:

Здесь вход конденсатор 0,33 мкФ / 400 В определяет величину тока, подаваемого на светодиодную цепочку. В этом примере это будет около 17 мА, что примерно соответствует выбранной светодиодной цепочке.

Если один драйвер используется для большего количества параллельных цепочек светодиодов 60/70, то просто указанное значение конденсатора может быть пропорционально увеличено для поддержания оптимального освещения светодиодов.

Следовательно, для двух параллельно включенных последовательностей требуется значение 0,68 мкФ / 400 В, для трех строк вы можете заменить его на 1 мкФ / 400 В. Аналогично, для 4-х струн его необходимо увеличить до 1,33 мкФ / 400 В и так далее.

Важно : Хотя я не показал ограничивающий резистор в конструкции, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой цепочкой светодиодов для дополнительной безопасности. Его можно было вставить где угодно последовательно с отдельными струнами.

ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УКАЗАННЫЕ В ДАННОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ переменного тока, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ОПАСНЫ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ AC ……..

2) к бестрансформаторному источнику питания со стабилизированным напряжением

Теперь давайте посмотрим, как обычный емкостный источник питания может быть преобразован в бестрансформаторный источник питания со стабилизированным или регулируемым напряжением без перенапряжения, применимый практически ко всем стандартным электронным нагрузкам и схемам.Идея была предложена г-ном Чанданом Мэйти.

Технические характеристики

Если вы помните, я уже общался с вами раньше с комментариями в вашем блоге.

Бестрансформаторные схемы действительно хороши, я протестировал пару из них и использовал светодиоды мощностью 20 Вт, 30 Вт. Теперь я пытаюсь добавить контроллер, вентилятор и светодиоды вместе, следовательно, мне нужен двойной источник питания.

Примерная спецификация:

Текущий рейтинг 300 мАР1 = 3.3-5 В 300 мА (для контроллера и т. Д.) P2 = 12-40 В (или более высокий диапазон), 300 мА (для светодиода)
Я подумал использовать вашу вторую цепь, как упоминалось https://homemade-circuits.com/2012/08/ high-current-transformerless-power.html

Но я не могу заморозить способ получения 3,3 В без использования дополнительного конденсатора. 1. Можно ли поставить вторую схему с выхода первой? 2. Или второй мост TRIAC, который нужно разместить параллельно первому, после конденсатора, чтобы получить 3.3-5V

Буду рад, если поможете.

Спасибо,

Конструкция

Функционирование различных компонентов, используемых на различных этапах показанной выше схемы управления напряжением, можно понять из следующих пунктов:

Напряжение сети выпрямляется четырьмя 1N4007 диоды и фильтруется конденсатором 10 мкФ / 400 В.

Выходной сигнал на 10 мкФ / 400 В теперь достигает примерно 310 В, что является пиковым выпрямленным напряжением, достигаемым от сети.

Сеть делителей напряжения, сконфигурированная в основании TIP122, обеспечивает снижение этого напряжения до ожидаемого уровня или требуемого уровня на выходе источника питания.

Вы также можете использовать MJE13005 вместо TIP122 для большей безопасности.

Если требуется 12 В, потенциометр 10 кОм может быть установлен для достижения этого через эмиттер / землю TIP122.

Конденсатор 220 мкФ / 50 В гарантирует, что во время включения база получает мгновенное нулевое напряжение, чтобы поддерживать ее в выключенном состоянии и защищать от начального скачка напряжения.

Катушка индуктивности также обеспечивает высокое сопротивление катушки во время включения и предотвращает попадание пускового тока внутрь цепи, предотвращая возможное повреждение цепи.

Для достижения 5 В или любого другого прилагаемого пониженного напряжения можно использовать регулятор напряжения, такой как показанная 7805 IC.

Принципиальная схема

Использование MOSFET Control

Вышеупомянутая схема, использующая эмиттерный повторитель, может быть дополнительно улучшена за счет применения источника питания MOSFET-повторителя вместе с дополнительным каскадом регулирования тока с использованием транзистора BC547.

Полную принципиальную схему можно увидеть ниже:

Видео-подтверждение защиты от перенапряжения

3) Цепь бестрансформаторного источника питания с нулевым переходом

Третий интерес объясняет важность обнаружения пересечения нуля в емкостных бестрансформаторных источниках питания для полной защиты от бросков скачков тока при включении сетевого выключателя. Идея была предложена г-ном Фрэнсисом.

Технические характеристики

Я с большим интересом читал статьи о безтрансформаторных источниках питания на вашем сайте, и, если я правильно понимаю, основная проблема — это возможный пусковой ток в цепи при включении, и это вызвано тем, что включение не всегда происходит при нулевом напряжении цикла (переход через ноль).

Я новичок в электронике, и мои знания и практический опыт очень ограничены, но если проблема может быть решена, если реализован переход через ноль, почему бы не использовать компонент перехода через ноль для управления им, например, оптотриак с пересечением нуля.

Входная сторона Optotriac имеет малую мощность, поэтому можно использовать резистор малой мощности для понижения сетевого напряжения для работы Optotiac. Поэтому на входе оптотриака конденсатор не используется. Конденсатор подключен к выходу, который будет включаться TRIAC, который включается при переходе через ноль.

Если это применимо, это также решит проблемы с высокими требованиями к току, так как Optotriac, в свою очередь, может без каких-либо проблем управлять другим более высоким током и / или напряжением TRIAC. В цепи постоянного тока, подключенной к конденсатору, больше не должно быть проблем с пусковым током.

Было бы неплохо узнать ваше практическое мнение и спасибо, что прочитали мою почту.

С уважением,
Фрэнсис

Конструкция

Как правильно указано в приведенном выше предположении, вход переменного тока без контроля перехода через нуль может быть основной причиной броска импульсного тока в емкостных бестрансформаторных источниках питания.

Сегодня, с появлением сложных оптоизоляторов драйвера симистора, переключение сети переменного тока с контролем перехода через нуль больше не является сложной задачей и может быть легко реализовано с использованием этих устройств.

О MOCxxxx Оптопары

Драйверы симисторов серии MOC представлены в виде оптопар и являются специалистами в этом отношении и могут использоваться с любым симистором для управления сетью переменного тока посредством обнаружения и контроля перехода через ноль.

Драйверы симисторов серии MOC включают в себя MOC3041, MOC3042, MOC3043 и т. Д., Все они почти идентичны по своим рабочим характеристикам с небольшими различиями в размах напряжений, и любой из них может быть использован для предлагаемого приложения контроля перенапряжения в емкостных источниках питания.

Обнаружение и выполнение перехода через ноль обрабатываются внутри этих блоков оптических драйверов, и нужно только настроить силовой симистор с ним для наблюдения за предполагаемым управляемым срабатыванием при переходе через ноль интегральной схемы симистора.

Прежде чем исследовать схему бестрансформаторного питания симистора без перенапряжения с использованием концепции управления переходом через ноль, давайте сначала вкратце разберемся, что такое переход через нуль, и связанные с ним особенности.

Что такое переход через нуль в сети переменного тока

Мы знаем, что потенциал сети переменного тока состоит из циклов напряжения, которые растут и падают с изменением полярности от нуля до максимума и наоборот по заданной шкале. Например, в нашей сети переменного тока 220 В напряжение переключается с 0 на пиковое значение +310 В) и обратно до нуля, затем идет вниз от 0 до -310 В и обратно к нулю, это происходит непрерывно 50 раз в секунду, составляя переменный ток 50 Гц. цикл.

Когда сетевое напряжение близко к мгновенному пику цикла, то есть около 220 В (для 220 В) на входе сети, оно находится в самой сильной зоне с точки зрения напряжения и тока, и если происходит включение емкостного источника питания в этот момент можно ожидать, что все 220 В выйдет из строя через источник питания и связанную с ним уязвимую нагрузку постоянного тока.Результатом может быть то, что мы обычно наблюдаем в таких блоках питания … то есть мгновенное сгорание подключенной нагрузки.

Вышеупомянутые последствия обычно наблюдаются только в емкостных бестрансформаторных источниках питания, потому что конденсаторы имеют характеристики короткого замыкания в течение доли секунды при воздействии напряжения питания, после чего они заряжаются и настраиваются до заданного значения. выходной уровень

Возвращаясь к проблеме пересечения нулевого уровня сети, в обратной ситуации, когда сеть приближается или пересекает нулевую линию своего фазового цикла, ее можно рассматривать как самую слабую зону с точки зрения тока и напряжения, и можно ожидать, что любое устройство, включенное в этот момент, будет полностью безопасным и не подверженным скачкам напряжения.

Следовательно, если емкостной источник питания включается в ситуациях, когда вход переменного тока проходит через нулевую фазу, мы можем ожидать, что выходной сигнал источника питания будет безопасным и не будет иметь импульсного тока.

Как это работает

Схема, показанная выше, использует драйвер оптоизолятора симистора MOC3041 и сконфигурирована таким образом, что всякий раз при включении питания он срабатывает и запускает подключенный симистор только во время первого перехода фазы переменного тока через ноль, и затем держит переменный ток включенным в обычном режиме до тех пор, пока питание не будет отключено и снова не включено.

Обращаясь к рисунку, мы можем увидеть, как крошечный 6-контактный MOC 3041 IC соединен с симистором для выполнения процедур.

Вход на симистор подается через высоковольтный токоограничивающий конденсатор 105/400 В, нагрузку можно увидеть, подключенную к другому концу источника через конфигурацию мостового выпрямителя для достижения чистого постоянного тока на предполагаемой нагрузке, которая может светодиод.

Как контролируется импульсный ток

При включении питания сначала симистор остается выключенным (из-за отсутствия привода затвора), как и нагрузка, подключенная к мостовой сети.

Напряжение питания, полученное на выходе конденсатора 105/400 В, достигает внутреннего ИК-светодиода через контакт 1/2 оптической микросхемы. Этот вход контролируется и обрабатывается внутри в соответствии с откликом светодиодного ИК-света … и как только обнаруживается, что цикл питания переменного тока достигает точки пересечения нуля, внутренний переключатель мгновенно переключает и запускает симистор и сохраняет систему включенной в течение оставшуюся часть периода, пока блок не будет выключен и снова включен.

При описанной выше настройке при каждом включении питания оптоизолирующий симистор MOC обеспечивает включение симистора только в тот период, когда сеть переменного тока пересекает нулевую линию своей фазы, что, в свою очередь, отлично поддерживает нагрузку. безопасный и свободный от опасного всплеска спешки.

Улучшение вышеупомянутой конструкции

Здесь обсуждается комплексная схема емкостного источника питания с детектором перехода через ноль, ограничитель перенапряжения и регулятор напряжения, идея была представлена ​​г-ном Чами.

Разработка улучшенной схемы емкостного источника питания с Обнаружение пересечения нуля

Привет, Свагатам.

Это моя конструкция емкостного источника питания с защитой от перенапряжения с переходом через ноль и стабилизатором напряжения, я постараюсь перечислить все мои сомнения.
(я знаю, что это будет дорого для конденсаторов, но это только для целей тестирования)

1-Я не уверен, нужно ли менять BT136 на BTA06 для обеспечения большего тока.

2-Q1 (TIP31C) может обрабатывать только 100 В макс. Может, его стоит поменять на транзистор 200В 2-3А?, Вроде 2SC4381.

3-R6 (200R 5W), я знаю, что этот резистор довольно маленький, и это моя неисправность
, я действительно хотел поставить резистор 1 кОм.А вот с резистором 200R 5W
работать будет?

4-Некоторые резисторы были изменены после ваших рекомендаций, чтобы сделать его способным к напряжению 110 В. Может быть, резистор 10 кОм должен быть меньше?

Если вы знаете, как заставить его работать правильно, я буду очень рад исправить это. Если он работает, я могу сделать для него печатную плату, и вы можете опубликовать ее на своей странице (бесплатно, конечно).

Спасибо, что нашли время и просмотрели мою полную неисправностей схему.

Хорошего дня.

Chamy

Оценка конструкции

Здравствуйте, Chamy,

мне кажется, что ваша схема в порядке. Вот ответы на ваши вопросы:

1) да BT136 следует заменить на более мощный симистор.
2) TIP31 следует заменить транзистором Дарлингтона, например, TIP142 и т. Д., Иначе он может работать неправильно.
3) при использовании Дарлингтона базовый резистор может быть высокого номинала, может быть, резистор 1 кОм / 2 ватт будет вполне нормальным.
Однако дизайн сам по себе выглядит излишним, гораздо более простую версию можно увидеть ниже https://homemade-circuits.com/2016/07/scr-shunt-for-protecting-capacitive-led.html
С уважением

Swagatam

Артикул:

Схема перехода через ноль

4) Импульсный бестрансформаторный источник питания с использованием IC 555

концепция схемы переключения при переходе через нуль, в которой входная мощность от сети может поступать в схему только во время перехода через нуль сигнала переменного тока, тем самым исключая возможность скачков напряжения.Идею подсказал один из заядлых читателей этого блога.

Технические характеристики

Будет ли работать бестрансформаторная схема с нулевым переходом для предотвращения начального пускового тока, не позволяя включаться до точки 0 в цикле 60/50 Гц?

Многие твердотельные реле, которые дешевы, менее 10,00 индийских рупий и имеют встроенную возможность.

Также я хотел бы управлять 20-ваттными светодиодами с этой конструкцией, но я не уверен, какой ток или насколько горячие конденсаторы получат, я полагаю, это зависит от того, как светодиоды подключены последовательно или параллельно, но допустим, конденсатор рассчитан на 5 амперы или 125 мкФ конденсатор нагреется и взорвется ???

Как считывать характеристики конденсаторов, чтобы определить, сколько энергии они могут рассеять.

Вышеупомянутый запрос побудил меня искать соответствующую конструкцию, включающую концепцию переключения перехода через нуль на основе IC 555, и натолкнулся на следующую превосходную схему бестрансформаторного источника питания, которую можно было бы использовать для убедительного устранения всех возможных шансов на скачки напряжения.

Что такое переключение с переходом через нуль:

Важно сначала изучить эту концепцию, прежде чем исследовать предлагаемую бестрансформаторную схему без перенапряжения.

Все мы знаем, как выглядит синусоида сетевого сигнала переменного тока.Мы знаем, что этот синусоидальный сигнал начинается с отметки нулевого потенциала и экспоненциально или постепенно повышается до точки пикового напряжения (220 или 120), а оттуда экспоненциально возвращается к отметке нулевого потенциала.

После этого положительного цикла осциллограмма опускается и повторяет вышеуказанный цикл, но в отрицательном направлении, пока снова не вернется к нулевой отметке.

Вышеупомянутая операция происходит примерно от 50 до 60 раз в секунду в зависимости от технических характеристик электросети.
Поскольку именно эта форма сигнала входит в цепь, любая точка формы сигнала, кроме нуля, представляет потенциальную опасность выброса при включении из-за высокого тока в форме сигнала.

Однако вышеупомянутой ситуации можно избежать, если нагрузка сталкивается с переключателем во время перехода через нуль, после которого экспоненциальный рост нагрузки не представляет никакой угрозы для нагрузки.

Именно это мы и попытались реализовать в предлагаемой схеме.

Работа схемы

Ссылаясь на приведенную ниже принципиальную схему, 4 диода 1N4007 образуют стандартную конфигурацию мостовых выпрямителей, катодный переход создает пульсации 100 Гц по линии.
Вышеупомянутая частота 100 Гц сбрасывается с помощью делителя потенциала (47 кОм / 20 кОм) и подается на положительную шину IC555. На этой линии потенциал соответствующим образом регулируется и фильтруется с помощью D1 и C1.

Вышеупомянутый потенциал также прикладывается к базе Q1 через резистор 100 кОм.

IC 555 сконфигурирован как моностабильный MV, что означает, что на его выходе будет высокий уровень каждый раз, когда его контакт №2 заземлен.

Для периодов, в течение которых напряжение сети переменного тока выше (+) 0,6 В, Q1 остается выключенным, но как только форма сигнала переменного тока касается нулевой отметки, то значение ниже (+) 0. 6 В, Q1 включает заземляющий контакт №2 ИС и обеспечивает положительный выход контакта №3 ИС.

Выход IC включает SCR и нагрузку и сохраняет его включенным до истечения времени MMV, чтобы начать новый цикл.

Время включения моностабильного может быть установлено изменением предустановки 1M.

Увеличенное время включения обеспечивает больший ток нагрузки, делая ее ярче, если это светодиод, и наоборот.

Условия включения этой бестрансформаторной схемы питания на основе IC 555, таким образом, ограничиваются только тогда, когда переменный ток близок к нулю, что, в свою очередь, гарантирует отсутствие скачков напряжения при каждом включении нагрузки или цепи.

Принципиальная схема

для приложения драйвера светодиода

Если вы ищете бестрансформаторный источник питания для приложения драйвера светодиодов на коммерческом уровне, то, вероятно, вы можете попробовать концепции, описанные здесь.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

3 простых схемы ИБП постоянного тока для модема / маршрутизатора

В следующей статье мы обсудим 3 полезные схемы источника бесперебойного питания постоянного тока или схемы ИБП постоянного тока для источников бесперебойного питания с низким постоянным током

Первая идея ниже представляет ИБП постоянного тока Схема может использоваться для обеспечения резервного питания модемов или маршрутизаторов во время сбоев в электросети, так что широкополосное / WiFi-соединение никогда не прерывается.Идея была предложена г-ном Галивом.

Технические характеристики

Мне нужна такая схема, как
У меня есть два адаптера постоянного тока на 12 В (600 мА и 2 А).
Когда присутствует входная сеть, с адаптером 600 мА я хочу зарядить аккумулятор (7,5 Ач), а с адаптером 2 А я хочу использовать свой Wi-Fi роутер.
при отключении сети переменного тока батарея будет обеспечивать резервное копирование моего Wi-Fi роутера без перебоев. Как ИБП.
MY модем рассчитан на 12 В 2.0А. Вот почему я хочу использовать два адаптера постоянного тока 12 В.

Конструкция

Два адаптера фактически не требуются для предлагаемого применения. Один адаптер, вероятно, тот, который используется для зарядки аккумулятора ноутбука, также может использоваться для зарядки внешнего аккумулятора.

Глядя на данную принципиальную схему ИБП с модемом постоянного тока, мы можем увидеть простую, но интересную конфигурацию, включающую пару диодов D1, D2 и резистор R1.

Обычно зарядное устройство для ноутбука рассчитано на 18 В, поэтому для зарядки аккумулятора на 12 В его необходимо снизить до 14 В.Это легко сделать с помощью транзисторного стабилитрона.

При наличии сети напряжение на катоде D1 больше положительного, чем на D2, что поддерживает обратное смещение D2. Это позволяет проводить только D1, подавая напряжение с адаптера на модем.

D2 выключается, подключенная батарея начинает получать необходимое зарядное напряжение через R1 и начинает заряжаться в процессе.

В случае сбоя в сети переменного тока D1 отключается и, следовательно, позволяет D2 проводить, позволяя напряжению батареи мгновенно достигать модема, не вызывая перебоев в сети.

R1 необходимо выбирать в зависимости от величины тока зарядки подключенного аккумулятора.

Намного лучшая и улучшенная версия вышеупомянутого показана на следующей диаграмме:

2) Схема повышающего ИБП от 6 В до 220 В

Вторая схема объясняет простую схему ИБП с повышающим преобразователем для обеспечения бесперебойного питания спутникового ТВ. ящики, чтобы запись в автономном режиме никогда не прерывалась во время отключения электроэнергии. Идея была предложена г-ном Анируддха Мукхерджи.

Технические характеристики

Я энтузиаст, увлекающийся электроникой. Хотя я знаю только основы, я уверен, что вы должны получать сотни писем ежедневно, и я полностью уверен в своей удаче, если это попадет вам в «глаза»

Мое требование:

16 вольт Резервный источник постоянного тока 1 А для моей квартиры Централизованный распределительный щит Tata sky.
Проблема: Люди, обслуживающие мою квартиру, не используют резервное копирование (генератор) в дневное время, у меня есть цифровой видеорегистратор Tata sky, который не может записывать, так как происходит потеря сигнала из-за сбоя питания.

Разрешение:

Я подумал о небольшой резервной системе, я купил небольшую схему балласта CFL на 6 вольт и 11 Вт, думая как дешевое альтернативное решение, но то же самое не сработало.

Почему я ищу источник переменного тока вместо постоянного тока? Я не хочу вмешиваться в их систему и получать штрафы за любые сбои, которые могут возникнуть из-за естественного хода работы.

Не могли бы вы помочь мне с очень простой рентабельной схемой, которая даст мне 220 вольт 20 ватт мощности от 6 вольт 5ач батареи.Если быть точным, 220 вольт от 6-вольтовой батареи, так как я недавно купил 6-вольтовую 5-ач батарею . Требуемая выходная мощность составляет менее 20 Вт, характеристики адаптера
:

Выход — 16 вольт 1 ампер
Вход — 240 вольт 0,06 ампер

Я знаю, что у вас много работы, но если бы вы могли уделить немного времени и помочь мне с этим, это было бы большим подспорьем. спасибо

Спасибо,
Aniruddha

Конструкция

Поскольку сегодня все электронные системы используют источник питания SMPS, вход не обязательно должен быть переменного тока для питания этого оборудования, а скорее его эквивалентом Постоянный или импульсный постоянный ток также становятся полезными и работают так же хорошо.

Ссылаясь на схему выше, можно увидеть пару секций, конфигурация IC1 позволяет повысить постоянный ток с напряжением 6 В до гораздо более высокого импульсного постоянного тока 220 В через топологию повышающего преобразователя с использованием IC 555 в нестабильной форме. Крайняя левая аккумуляторная секция обеспечивает переключение с сети на резервную батарею каждый раз, когда цепь обнаруживает сбой питания.

Идея довольно проста и не требует особой проработки.

Как работает схема

IC1 сконфигурирован как нестабильный генератор, который управляет T1 и, следовательно, L1 с одинаковой частотой.

T1 индуцирует полный ток батареи через L1, в результате чего на нем появляется пропорционально повышенное напряжение во время периодов выключения T1 (индуцированная обратная ЭДС от L1).

L1 должен быть соответствующим образом рассчитан так, чтобы он генерировал требуемую величину напряжения на показанных клеммах.

Указанные 200 витков предварительно рассчитаны и могут потребовать значительных изменений для достижения предполагаемого напряжения 220 В от входного источника питания 6 В.

T2 введен для регулирования выходного напряжения до желаемого безопасного уровня, который здесь составляет 220 В.

Z1, следовательно, должен быть стабилитроном 220 В, который проводит только тогда, когда этот предел превышен, что заставляет T2 проводить и заземлять вывод 5 ИС, останавливая частоту на выводе 3 до нулевого напряжения.

Вышеупомянутый процесс постоянно быстро настраивается, обеспечивая постоянное напряжение 220 В на выходе.

Адаптер, который можно увидеть в крайнем левом углу, используется по двум причинам, во-первых, чтобы гарантировать, что IC1 работает непрерывно и выдает необходимое 220 В для подключенной нагрузки независимо от наличия сети (как и в онлайн-системах ИБП), а также для обеспечения зарядного тока аккумулятора при наличии сетевого напряжения.

Соответствующий транзистор TIP122 предназначен для генерации регулируемого постоянного тока 7 В для аккумулятора, а также для ограничения чрезмерной зарядки аккумулятора.

Использование отключения операционного усилителя

Если вам нужна точная схема, которая будет точно контролировать батарею ИБП постоянного тока и реализовывать требуемые отключения по перезарядке и малой разрядке, следующая конструкция может оказаться полезной.

3) Цепь резервного ИБП постоянного тока

В этой третьей концепции ниже мы изучаем пару простых резервных цепей ИБП для обеспечения безопасного бесперебойного питания важнейших устройств, таких как компьютер ATX, модемы и т. Д.Идея была предложена г-ном Шаяном Фирузи.

Цели и требования схемы

  1. Есть много продуктов, которые имеют 2 входа для разных источников питания, например, один для нормальной сети, один для генератора или другой сети, такой как серверы, маршрутизаторы и некоторое критическое оборудование, которое мы называем это резервные источники питания
  2. У меня есть оборудование, которое потребляет 3 ампера при 12 вольт постоянного тока, если я использую 2 передачи с 12 вольт, 3-амперный выход, который берет на себя ответственность, а какой ждет первой потери ?? Оба одинаковы по напряжению и силе тока, я не хочу, чтобы они работали вместе,
  3. Я хочу, чтобы второй источник питания был в режиме ожидания
  4. Просто простой вопрос: что произойдет, если я заменю батарею другим источником питания на 12 вольт? Будет ли он работать как резервный или резервный источник питания?
  5. Спасибо за ваш ответ заранее. И если возможно, расскажите нам о модели диода и других компонентов на 12 вольт 3 ампера

Конструкция

По запросу, схема, описанная в приведенной выше ссылке, может быть изменена для работы с другим источником питания постоянного тока путем исключения батареи и связанных каскадов, как показано в следующей форме резервной схемы ИБП:

Использование двух входов источника питания

Как мы видим, схема предназначена для работы с парой источников питания блоки питания с идентичными характеристиками, так что при выходе из строя первичного источника питания реле мгновенно переключается на вторичный источник питания, обеспечивая бесперебойное питание подключенной нагрузки.

Диод D1 гарантирует, что пока первичный источник питания активен, а реле находится в деактивированном положении, он подключается последовательно с D3, создавая большее прямое падение, чем диод первичного питания D4 … таким образом, позволяя первичному напряжению быть в команде и питании нагрузки.

Однако, как только основной источник выходит из строя, D4 отключается, и в течение этой доли секунды D1 и D4 принимают на себя питание нагрузки, пока реле не переключится на обход D1 и включение полной номинальной мощности нагрузки.

На следующей схеме показан метод, который позволяет включить батарею в предложенную резервную схему ИБП, а основной источник питания заменить солнечной панелью, что делает систему трехсторонней защищенной цепью ИБП.

Использование источника питания с батареей

Ссылаясь на схему, пока доступна солнечная энергия, реле остается активированным, обеспечивая отключение питающей сети 14 В от системы.

Солнечная энергия тем временем заряжает аккумулятор, а также подключенную нагрузку через D1.

Энергия батареи немного ниже, чем мощность солнечной панели, поэтому D2 остается деактивированным, так что только D1 может передавать солнечную энергию на подключенную нагрузку на выходе.

Использование TIP122 для зарядки батареи постоянного тока

TIP122 обеспечивает регулируемое и безопасное защищенное от перезарядки питание для батареи, которая заряжается исключительно через напряжение панели в дневное время.

С наступлением ночи реле деактивируется в какой-то момент, когда солнечная энергия становится слишком слабой, чтобы удерживать реле в активном состоянии.

Вышеупомянутое переключение мгновенно включает сетевое напряжение 14 В в систему, позволяя нагрузке без прерывания переключаться на сетевое напряжение.

Питание от батареи гарантирует, что пока реле переключается с солнечной батареи на питание от сетевого адаптера, оно компенсирует кратковременный перерыв в подаче электроэнергии, подавая собственное питание на нагрузку и предотвращая даже микросекундный перерыв в питании. Загрузка.

Батарея также образует третью «линию защиты» на случай одновременного отказа и первичного, и вторичного питания, и всегда находится в режиме ожидания для рекомендуемой работы схемы резервного источника бесперебойного питания.

Первую резервную схему ИБП, включающую два источника питания, можно лучше модифицировать, как показано ниже, здесь видно, что реле Н / З напрямую подключено к нагрузке, что обеспечивает нулевое падение напряжения в линии питания:

Модем ИБП с использованием зарядного устройства TP4056 Li-IOn

Если вы заинтересованы в изготовлении ИБП 5 В постоянного тока для вашего маршрутизатора с использованием высокопроизводительных зарядных устройств, таких как TP4056 и модули повышающих преобразователей, вам может помочь следующая конструкция:

Можно также построить вышеуказанную конструкцию без реле, как указано ниже:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Как запустить проект

Добавлено в избранное Любимый 59

Обзор

Это руководство расскажет о различных способах реализации ваших электронных проектов.В нем будут подробно описаны параметры напряжения и тока, которые вы, возможно, захотите сделать. Также будут учтены дополнительные соображения, которые вы должны учесть, если ваш проект является мобильным / удаленным или, другими словами, вы не собираетесь сидеть рядом с розеткой.

Если это действительно ваш первый электронный проект, у вас есть возможность прочитать это руководство или придерживаться рекомендованных материалов для проекта или платы разработки по вашему выбору. Комплект SparkFun Inventor’s Kit содержит USB-кабель, необходимый для питания, и отлично подходит для всех проектов в комплекте, а также для многих более сложных проектов.Если вы чувствуете себя подавленным, лучше всего начать с этого комплекта.

Рекомендуемая литература

Вот соответствующие уроки, которые вы можете проверить перед чтением этого:

Способы питания проекта

Вот некоторые из наиболее распространенных методов, используемых для поддержки проекта:

  • USB-питание
  • Настольный источник питания переменного тока
  • Настенный адаптер переменного тока в постоянный (например, компьютер или ноутбук)
  • Батареи

Четыре распространенных способа электроснабжения вашего проекта

Какой вариант мне выбрать для поддержки моего проекта?

Ответ на этот вопрос во многом зависит от конкретных требований вашего проекта.

Питание от USB

Если вы начинаете с SparkFun Inventor’s Kit или другой базовой платы для разработки, вам, скорее всего, понадобится только USB-кабель. Arduino Uno — это пример, для которого требуется только кабель USB A — B для подачи питания на работу схем из комплекта. Вот несколько USB-кабелей из нашего каталога для питания вашего проекта от USB-порта.

Кабель USB от A до B — 6 футов

В наличии CAB-00512

Это стандартная проблема USB 2.0 кабель. Это наиболее распространенный периферийный кабель типа «папа / папа» от А до В, из тех, что обычно…

1

Кабель USB micro-B — 6 футов

В наличии CAB-10215

USB 2.0 типа A на 5-контактный микро-USB.Это новый разъем меньшего размера для USB-устройств. Разъемы Micro USB примерно вдвое дешевле…

13
Настольный источник питания переменного тока

Если вы занимаетесь строительными проектами и регулярно тестируете схемы, настоятельно рекомендуется приобрести настольный источник питания переменного тока. Это позволит вам установить напряжение на определенное значение в зависимости от того, что вам нужно для вашего проекта.Это также дает вам некоторую защиту, поскольку вы можете установить максимально допустимый ток. Затем, если в вашем проекте произойдет короткое замыкание, источник питания скамейки будет отключен, и мы надеемся, что это предотвратит повреждение некоторых компонентов в вашем проекте.

Вот несколько настольных источников питания переменного тока из нашего каталога.

Настенные адаптеры переменного тока в постоянный

Определенный источник питания переменного тока в постоянный часто используется после проверки цепи. Этот вариант также хорош, если вы часто используете одну и ту же доску разработки снова и снова в своих проектах.Эти настенные адаптеры обычно имеют заданное выходное напряжение и ток, поэтому важно убедиться, что выбранный вами адаптер имеет правильные характеристики для проекта, который вы будете использовать, и не превышать эти характеристики. Вот несколько настенных адаптеров из каталога, которые предлагают несколько усилителей.

Если вам нужны более актуальные проекты, ознакомьтесь с некоторыми из этих источников питания в нашем каталоге. Просто убедитесь, что в списке рекомендованных продуктов на странице продукта вы найдете кабель, подходящий для вашего региона.

Батареи

Если вы хотите, чтобы ваш проект был мобильным или базировался в удаленном месте, вдали от того, где вы можете получить настенное питание переменного тока из сети, батареи — это то, что вам нужно. Батарейки бывают самых разных, поэтому обязательно ознакомьтесь с последующими частями этого руководства, чтобы вы могли точно определить, что выбрать. Обычно выбираются щелочные аккумуляторы NiMH AA и литий-полимерные. Вот несколько батареек из каталога.

Литий-ионный аккумулятор — 2 Ач

В наличии PRT-13855

Это очень тонкие и чрезвычайно легкие батареи на основе литий-ионной химии.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…

. 7

Щелочная батарея 9 В

В наличии PRT-10218

Это ваши стандартные щелочные батареи на 9 вольт от Rayovac. Даже не думайте пытаться их перезарядить.Используйте их с…

1

NiMH аккумулятор 2500 мАч — AA

В наличии PRT-00335

Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В. [Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…

Если вашему проекту требуется определенное напряжение или немного больше тока от батареи, попробуйте добавить повышающий преобразователь или импульсный стабилизатор.Вы можете снимать переменное напряжение с батареи и выдавать заданное напряжение 5 В. В зависимости от платы и компонентов, используемых в вашем проекте, вы потенциально можете выводить 9 В или 10 В в зависимости от конфигурации. Вам просто нужно убедиться, что вы получили необходимые компоненты для построения вашей схемы, чтобы выходное напряжение превышало 5 В. Вот несколько конвертеров из нашего каталога.

LiPower — повышающий преобразователь

В наличии PRT-10255

Плата LiPower основана на невероятно универсальном повышающем преобразователе TPS61200.Плата сконфигурирована для использования с Li…

5

Рекомендации по напряжению / току

Какое напряжение мне нужно для Project X?

Это во многом зависит от схемы, поэтому на этот вопрос нет простого ответа. Однако большинство микропроцессорных плат для разработки, таких как Arduino Uno, имеют на борту регулятор напряжения. Это позволяет нам подавать напряжение в указанном диапазоне выше регулируемого. Многие микропроцессоры и ИС на платах разработки работают от 3,3 В или 5 В, но имеют регуляторы напряжения, которые могут работать от 6 В до 12 В.

Питание поступает от источника питания, а затем регулируется с помощью регулятора напряжения, так что каждый чип получает постоянное напряжение, даже если потребляемый ток может колебаться в разное время. Здесь, в SparkFun, мы используем блоки питания 9 В для многих наших продуктов, которые работают в режиме 3.Диапазон от 3 до 5 В. Однако, чтобы проверить, какое напряжение является безопасным, рекомендуется проверить техническое описание регулятора напряжения на плате разработки, чтобы узнать, какой диапазон напряжения рекомендуется производителем.

Сколько тока мне нужно для Project X?

Этот вопрос также зависит от макетной платы и микропроцессора, которые вы используете, а также от того, какие схемы вы планируете подключать к ним. Если ваш источник питания не может дать вам количество энергии, необходимое для проекта, схема может начать работать странным и непредсказуемым образом.Это также известно как потемнение.

Как и в случае с напряжением, рекомендуется свериться с таблицами данных и оценить, что может понадобиться различным частям схемы. Также лучше округлить и предположить, что вашей схеме потребуется больше тока, чем для обеспечения достаточного тока. Если ваша схема включает элементы, требующие большого количества тока, такие как двигатели или большое количество светодиодов, вам может потребоваться большой источник питания или даже отдельные источники питания для микропроцессора и дополнительных двигателей.В противном случае падение мощности может привести к перезагрузке микропроцессора, недостаточному крутящему моменту двигателя или неполному горению светодиодных индикаторов. Опять же, всегда в ваших интересах получить блок питания, рассчитанный на более высокий ток, и не использовать дополнительные по сравнению с блоком, который не может обеспечить достаточно.

Браун-ауты со светодиодными лентами, соединенными цепочкой

Не знаете, насколько актуален ваш проект?

После того, как вы некоторое время поиграете со схемами, вам будет легче оценить количество тока, которое требуется вашему проекту.Однако распространенные способы выяснить это экспериментально — либо использовать настольный источник питания переменного тока постоянного тока, который имеет считывание тока, либо использовать цифровой мультиметр для измерения тока, идущего в вашу схему во время ее работы. Это даст вам общее представление о том, какой блок питания выбрать для вашего проекта.

Если вы не знаете, как измерить ток с помощью мультиметра, обратитесь к нашему руководству по мультиметру.

Мы настоятельно рекомендуем иметь цифровой мультиметр в вашем электронном ящике.Он отлично подходит для измерения тока или напряжения.

Подключения

Как подключить аккумулятор или источник питания к цепи?

Есть много способов подключить источник питания к вашему проекту.

Общие способы подключения питания к вашей цепи

Настольные переменные блоки питания обычно подключаются к цепям напрямую с помощью банановых разъемов или проводов. Они также похожи на разъемы на кабелях щупов мультиметра.

Кабели с крючками от банана к микросхеме

В наличии CAB-00506

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, функциональным генераторам и т. Д. Кабели…

7

Кабель от банана к аллигатору

В наличии CAB-00509

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Кабели из банана в банан

В наличии CAB-00507

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Многие проекты сначала строятся на макетной плате с использованием проводов в качестве прототипа, прежде чем они станут конечным продуктом. Существует множество способов питания вашей макетной платы, многие из которых включают те же разъемы, которые упоминаются здесь.

Как только проект проходит стадию прототипирования, он обычно попадает на печатную плату. Если вы планируете сделать схему один или два раза, можно перенести схему на макетную плату и вручную подключить схему для защиты проекта.Если вы планируете создавать схему более нескольких раз, вы можете рассмотреть возможность проектирования схемы с помощью программного обеспечения САПР (например, Eagle), чтобы сэкономить время при подключении проекта или если вы планируете уменьшить размер всей схемы.

Одним из наиболее распространенных разъемов питания, используемых на готовой печатной плате, как в бытовой, так и в хобби-электронике, является цилиндрический разъем, также известный как цилиндрический разъем. Они могут различаться по размеру, но все они работают одинаково и обеспечивают простой и надежный способ поддержки вашего проекта.В зависимости от вашего дизайна вы также можете получать питание от USB-порта компьютера или настенного адаптера.

Разъем SparkFun USB-C

В наличии BOB-15100

SparkFun USB-C Breakout обеспечивает в 3 раза большую мощность, чем предыдущая плата USB, при этом отключая каждый контакт на соединении…

4

Батареи обычно хранятся в футляре, который удерживает батареи и подключает цепь с помощью проводов или цилиндрического разъема. В некоторых батареях, например, в литий-полимерно-ионных батареях, часто используется разъем JST. Вот несколько из нашего каталога.

Держатель батареи 9 В

В наличии PRT-10512

Этот держатель батареи 9 В позволяет вашей батарее плотно защелкнуться и удерживать ее на месте, что прекрасно в ситуациях, когда вы надеваете…

3

Чтобы узнать больше о различных разъемах питания, см. Наше руководство по разъемам.

Основные сведения о разъеме

18 января 2013 г.

Разъемы — главный источник путаницы для людей, только начинающих заниматься электроникой. Из-за большого количества различных вариантов, терминов и названий соединителей выбор одного или поиск нужного вам может оказаться сложной задачей. Эта статья поможет вам окунуться в мир разъемов.

Удаленное / Мобильное питание

Какую батарею мне выбрать?

Когда вы запитываете удаленную цепь, все еще возникают те же проблемы с поиском батареи, которая обеспечивает правильное напряжение и ток.Срок службы или емкость аккумулятора — это показатель общего заряда аккумулятора. Емкость аккумулятора обычно оценивается в ампер-часов, (Ач) или миллиампер-часов (мАч), и это говорит вам, сколько ампер может обеспечить полностью заряженная батарея за период в один час. Например, аккумулятор емкостью 2000 мАч может обеспечивать ток до 2 А (2000 мА) в течение одного часа.

Размер, форма и вес аккумулятора также следует учитывать при создании мобильного проекта, особенно если он будет летать на чем-то вроде небольшого квадрокоптера.Вы можете получить общее представление о разнообразии, посетив этот список в Википедии. Узнайте больше о типах батарей в нашем руководстве по аккумуляторным технологиям.

Последовательные и параллельные батареи

Вы можете добавлять батареи последовательно или параллельно, чтобы получить желаемое напряжение и ток, необходимые для вашего проекта. Когда две или более батареи помещаются в серии , напряжения батарей складываются. Например, свинцово-кислотные автомобильные аккумуляторы фактически состоят из шести одноэлементных свинцово-кислотных аккумуляторов, соединенных последовательно; шестерка 2.Ячейки 1 В в сумме дают 12,6 В. При последовательном соединении двух батарей рекомендуется, чтобы они были одного химического состава. Кроме того, будьте осторожны при последовательной зарядке аккумуляторов, так как многие зарядные устройства ограничены зарядкой от одной ячейки.

При подключении двух или более батарей в параллельно емкости увеличиваются. Например, четыре батареи AA, соединенные параллельно, по-прежнему будут вырабатывать 1,5 В, однако емкость батарей увеличится в четыре раза.

Какая емкость аккумулятора мне нужна для моего проекта?

На этот вопрос легче ответить, если вы определили величину тока, который обычно потребляет ваша схема.В следующем примере мы будем использовать оценку. Однако рекомендуется измерять ток, потребляемый вашей схемой, с помощью цифрового мультиметра, чтобы получить точные результаты.

В качестве примера давайте начнем со схемы, оценим ее текущий выходной ток, затем выберем батарею и посчитаем, как долго схема будет работать от батареи. Давайте выберем микроконтроллер ATmega 328, который станет нашим мозгом для схемы. В нормальных условиях он потребляет около 20 мА. Давайте теперь подключим три красных светодиода и стандартные резисторы ограничения тока 330 Ом к цифровым контактам ввода / вывода микроконтроллера.В этой конфигурации каждый добавленный светодиод заставляет схему потреблять ток примерно на 10 мА больше. Теперь давайте подключим к микроконтроллеру два мотора Micro Metal. Каждый из них при включении потребляет примерно 25 мА. Наш общий возможный текущий розыгрыш сейчас:

Давайте выберем для этого стандартную щелочную батарею AA, потому что она имеет более чем достаточный ток (до 1 А), имеет приличную емкость батареи (обычно в диапазоне от 1,5 Ач до 2,5 Ач) и очень распространена. Мы предположим, что в этом примере среднее значение составляет 2 Ач.Обратной стороной использования AA является то, что он имеет выходное напряжение только 1,5 В, и, поскольку остальные наши компоненты будут работать от 5 В, нам необходимо увеличить напряжение. Мы можем использовать этот повышающий разрыв на 5 В, чтобы получить необходимое нам напряжение, или мы можем использовать три батареи AA последовательно, чтобы приблизить нас к необходимому напряжению. Три последовательно включенных АА дают нам напряжение 4,5 В (3 раза по 1,5 В). Вы также можете добавить еще одну батарею на 6 В и отрегулировать напряжение до уровня, необходимого для вашей схемы.

Чтобы рассчитать, как долго цепь будет работать от батареи, мы используем следующее уравнение:

Для схемы, питаемой параллельно от 3 АА и подключенной к цепи с постоянным потребляемым током 100 мА, это соответствует:

В идеале мы могли бы получить 60 часов автономной работы от этих трех щелочных батарей AA в этой параллельной конфигурации. Однако рекомендуется «снижать номинальные характеристики» аккумуляторов, что означает предполагать, что время автономной работы будет ниже идеального. Давайте консервативно скажем, что мы получим 75% идеального времени автономной работы и, следовательно, около 45 часов автономной работы для нашего проекта.

Срок службы батареи также может варьироваться в зависимости от фактического потребляемого тока. Вот график для батареи Energizer AA, показывающий ожидаемое время автономной работы при постоянном потреблении тока.

Energizer AA, ток и время работы от батареи

Это лишь одна из многочисленных конфигураций, которые вы можете использовать для удаленного управления вашим проектом.

Ищете другие примеры? Ознакомьтесь с Powering LilyPad LED Projects, чтобы получить еще один пример расчета, сколько энергии потребуется вашему проекту для светодиодов!

Стресс-тестирование

Теперь, когда вы выбрали блок питания и разъем, обязательно протестируйте свой проект и понаблюдайте за его поведением. В зависимости от производителя блоки питания могут иметь разную производительность. Обязательно протестируйте сетевой адаптер в течение определенного периода времени, чтобы убедиться, что микроконтроллер не отключится, а блок питания не сбросится под нагрузкой.Для определенных проектов, использующих емкостные сенсорные датчики, обязательно проверьте наличие задержек, вызванных шумными источниками питания.

Если вы управляете своим проектом удаленно, обязательно проверяйте его с батареей. Батареи могут обеспечивать разную мощность в зависимости от подключенной нагрузки и химического состава батареи. Это также может привести к отключению микроконтроллера или прекращению подачи питания.

Ресурсы и дальнейшее развитие

Теперь вы должны знать наиболее распространенные способы питания вашей цепи и то, как определить, какой из них лучше всего подходит для вас в зависимости от конкретных требований вашего проекта.Теперь вы можете сделать лучшее суждение, исходя из соображений тока, напряжения, разъема и мобильности для вашего проекта. Ознакомьтесь с этими другими замечательными руководствами для мониторинга, управления или поддержки вашего проекта!

Добавление кнопки с таймером в проект

Это руководство проведет вас через создание таймерного контроллера мощности для интерактивных проектов. Вы узнаете, как добавить кнопку включения, которая на некоторое время будет обеспечивать питание вашего проекта, а затем снова отключится.

Или посмотрите некоторые из этих сообщений в блоге, чтобы найти идеи:

Схема цепи двойного источника питания

+ 12В и -12В

Целью этого проекта является преобразование источника переменного тока 220В в источник питания +12В и -12В постоянного тока , поэтому он назван Dual Power Supply , как мы получаем положительный и отрицательный источник питания 12 В. одновременно.

Этого можно достичь за три простых шага:

  1. Во-первых, 220 В переменного тока преобразуется в 12 В переменного тока с помощью простого понижающего трансформатора (220 В / 12 В).
  2. Во-вторых, выход этого трансформатора передается на схему выпрямителя, которая преобразует источник переменного тока в источник постоянного тока. Выходной сигнал выпрямительной цепи постоянного тока содержит пульсации выходного напряжения. Для фильтрации этих пульсаций используется конденсатор на 2200 мкФ, 25 В.
  3. Наконец, выход конденсатора, представляющий собой чистый постоянный ток, подается на регуляторы напряжения IC 7812 и IC7912, которые будут регулировать выходное напряжение на 12 В и -12 В постоянного тока, несмотря на изменение входного напряжения.

Требуемые компоненты:

  • Трансформатор с центральным ответвлением (220В / 12В)
  • Силовые диоды (6А) — 4 шт.
  • Конденсатор (2200 мкФ, 25 В) — 2 шт.
  • Регулятор напряжения (IC 7812 и 7912)
  • Тумблер
  • Нагрузка постоянного тока (двигатель постоянного тока)

Принципиальная схема:

Создание двойной цепи питания:

Шаг-I: преобразование 220 В переменного тока в 12 В переменного тока с помощью понижающего трансформатора

Первичные выводы трансформатора с центральным ответвлением подключены к бытовой электросети (220 В, переменного тока, , 50 Гц), а выход берется с вторичных выводов трансформатора. Центральное ответвление описывает выходное напряжение трансформатора с центральным ответвлением. Например: трансформатор 24 В с центральным ответвлением будет измерять 24 В переменного тока на двух внешних отводах (обмотка в целом) и 12 В переменного тока от каждого внешнего отвода до центрального отвода (половина обмотки). Эти два источника питания 12 В, переменного тока, , сдвинуты по фазе на 180 градусов друг к другу, что упрощает получение от них положительного и отрицательного 12-вольтных источников питания постоянного тока и . Преимущество использования трансформатора с центральным ответвлением состоит в том, что мы можем получить питание как + 12В, так и -12В постоянного тока , используя только один трансформатор.

ВХОД : 220 В переменного тока , 50 Гц

ВЫХОД : Между внешней клеммой и средней клеммой: 12 В, переменного тока, 50 Гц

Между двумя внешними клеммами: 24 В перем. 50 Гц

Шаг — II: Преобразование 12 В переменного тока в 12 В постоянного тока с помощью мостового выпрямителя

Две внешние клеммы трансформатора с центральным ответвлением подключены к схеме мостового выпрямителя.Схема выпрямителя представляет собой преобразователь, который преобразует источник переменного тока в источник постоянного тока . Обычно он состоит из диодных переключателей, как показано на принципиальной схеме.

Чтобы преобразовать переменного тока в постоянного тока , мы можем изготовить два типа выпрямителей: один — полумостовой выпрямитель, а второй — полный мостовой выпрямитель. В полумостовом выпрямителе выходное напряжение составляет половину входного напряжения. Например, если входное напряжение составляет 24 В, то выходное напряжение постоянного тока и составляет 12 В, а количество диодов, используемых в этом типе выпрямителя, равно 2. В полномостовом выпрямителе количество диодов равно 4, и он подключен, как показано на рисунке, а выходное напряжение такое же, как входное.

Здесь используется полный мостовой выпрямитель . Таким образом, количество диодов равно 4, входное напряжение (24 В, переменного тока, ) и выходное напряжение также равно 24 В, постоянного тока, , с пульсациями в нем.

Для выходного напряжения полного мостового выпрямителя,

V  DC  = 2Vm / Π, где Vm = пиковое значение напряжения питания переменного тока, а Π Pi 

Форма сигнала входного и выходного напряжения полного мостового выпрямителя показана ниже.

В этой схеме двойного источника питания диодный мостовой выпрямитель состоит из четырех силовых диодов на 6 А. Номинал этого диода 6А и 400В. Нет необходимости использовать такое количество диодов с высокой токовой нагрузкой, но из соображений безопасности и гибкости используется диод с высокой токовой нагрузкой. Как правило, из-за скачков тока возможно повреждение диода, если мы используем диод с малым током.

Выходной сигнал выпрямителя не чистый dc , но он содержит пульсации.

ВХОД: 12 В переменного тока

ВЫХОД: 24 В пик (с волнами)

Шаг-III: Отфильтруйте рябь на выходе:

Теперь выход 24V dc , который содержит пульсации от пика до пика, нельзя подключать напрямую к нагрузке. Так, чтобы убрать пульсации с питания , используются конденсаторы фильтра. Теперь используются два фильтрующих конденсатора номиналом 2200 мкФ и 25 В, как показано на принципиальной схеме.Оба конденсатора подключаются таким образом, что общий вывод конденсаторов подключается непосредственно к центральному выводу центрального трансформатора с ответвлениями. Теперь этот конденсатор будет заряжен до 12 В постоянного тока , поскольку оба подключены к общей клемме трансформатора. Кроме того, конденсаторы удаляют пульсации от источника постоянного тока и дают чистый выходной сигнал постоянного тока . Но выход обоих конденсаторов не регулируется. Итак, чтобы сделать питание регулируемым, выходные конденсаторы передаются на микросхемы регулятора напряжения, что объясняется в следующем шаге.

ВХОД: 12В пост. Тока (с волнами, не чисто)

ВЫХОД: Напряжение на конденсаторе C 1 = 12 В постоянного тока (чистое постоянного тока, , но не регулируемое)

Напряжение на конденсаторе C 2 = 12 В постоянного тока (чистый постоянного тока, , но не регулируемый)

Шаг-IV: Отрегулируйте источник питания постоянного тока 12 В

Следующим важным моментом является регулировка выходного напряжения конденсаторов, которое в противном случае будет изменяться в соответствии с изменением входного напряжения. Для этого в зависимости от требований к выходному напряжению используются микросхемы стабилизатора . Если нам нужно выходное напряжение +12 В, то используется IC 7812. Если требуемое выходное напряжение + 5В, то используется 7805 IC. Последние две цифры IC обозначают номинальное выходное напряжение. Третья последняя цифра показывает положительное или отрицательное напряжение. Для положительного напряжения (8) и для отрицательного напряжения (9) используется число. Таким образом, IC7812 используется для регулирования напряжения +12 В, а IC7912 — для регулирования напряжения -12 В.

Теперь соединение двух микросхем выполняется, как показано на принципиальной схеме.Клемма заземления обоих микросхем соединены с центральным отводом выводом трансформатора для создания ссылки. Теперь выходные напряжения измеряются между выходной клеммой и клеммой заземления для обеих ИС.

ВХОД: 12 В постоянного тока (чистый постоянного тока , но не регулируемый)

ВЫХОД: + 12V dc между выходной клеммой 7812 и землей (чистый dc и регулируемый)

-12 В постоянного тока между выходной клеммой 7912 и землей (чистый постоянного тока и регулируемый)

Применение двойной цепи питания:

  • Операционным усилителям требуется два источника питания (обычно один положительный источник и один отрицательный источник), потому что операционный усилитель должен работать при обеих полярностях входящего сигнала. Без отрицательного источника операционный усилитель не включится во время отрицательного цикла сигнала. Таким образом, выход этой сигнальной части будет «обрезан», то есть сам останется на земле; что явно не рекомендуется.
  • Если в качестве нагрузки используются двигатели постоянного тока, то для +12 В он будет вращаться по часовой стрелке, а для -12 В он будет вращаться в противоположном направлении. Например, двигатели, которые используются в игрушках (автомобиль, автобус и т.д.), будут двигаться вперед при напряжении +12 В и двигаться назад при напряжении -12 В.Мы показали вращение двигателя в обоих направлениях, используя эту схему двойного источника питания, в видео ниже .

Проверьте нашу другую схему источника питания :

Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике. Почти каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы завершаете свой первый дизайн блока питания, тестируете его, и он работает нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологии, он будет проходить вас на каждом этапе проектирования, попытается представить все простым языком, выполнит некоторые математические вычисления i.е. Если в схеме используется конденсатор, вы должны знать, зачем он нужен и как рассчитывается его значение.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой, занимаясь своими делами, то этот комплект для сборки блока питания (нажмите здесь) подойдет именно вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные участки схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем мы перейдем к проектированию. Я думаю, вам нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по очереди.

Трансформатор входной

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Ну, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор для понижения входящего переменного тока до требуемого нижнего уровня, то есть близкого к 5 В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная схема

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Прости, ты ошибаешься, как когда-то был я. Пониженное напряжение остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить требуемое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако тот, который нас интересует, — это полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток. Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсатор. Вы, наверное, слышали, конденсатор — это устройство для накопления заряда. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Стабилизатор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но также и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали некоторые базовые концепции проектирования источников питания. Давайте продолжим с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты схемы, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

А теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5 В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора. Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

В техническом описании 7805 также предписывается использование конденсатора 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительный выход. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.На выпрямителе имеется собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции источника питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов, расположенных по определенной схеме. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для обучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо помнить о его напряжении, номинальной мощности и емкости. Номинальное напряжение рассчитывается от вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т.е. 500 мА в нашей конструкции, Vo = выходное напряжение, т.е. в нашем случае 5 В, f = частота, например, 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3. 1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — это сопротивление нагрузки

. Rf — коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5: Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит наши поставки.

Практическое правило для выбора номинала предохранителя: он должен быть как минимум на 20% больше тока нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить к микросхеме регулятора радиатор.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как проектировать источник питания постоянного тока 5В.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

.
Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *