+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Стабилизатор напряжения своими руками

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Подобные устройства используются в составе конкретной бытовой аппаратуры и не более того.

Поэтому вполне актуальной является задача сделать мощный стабилизатор напряжения своими руками под работу с напряжением бытовой сети 220 вольт. В принципе, такая задача решаема. Посмотрим, каким способом удастся ее выполнить.

Блок: 1/6 | Кол-во символов: 575
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Стабилизация напряжения бытовой сети

Стремления владельцев разного вида недвижимости обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве.

Да и в целом фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений по такому оборудованию на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами.

Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Блок: 2/6 | Кол-во символов: 1509
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Характеристика стабилизатора

Прежде чем задавать вопрос, как сделать стабилизатор напряжения своими руками, нужно хорошо разузнать его характеристики.

Диапазон входного напряжения характеризуется двумя порогами – нижним и верхним. Работа между двумя порогами считается нормальной для стабилизатора. Встречаются модели с большой шкалой регулирования входного напряжения, но не стоит их приобретать. Так как чем больше параметр, тем медленнее будет реагировать прибор.

Точность и скорость реагирования также требует особого внимания. Все электроприборы требуют точность электроподачи с небольшим отклонением не больше пяти процентов. Основываясь на этом стоит выбирать стабилизирующее устройство. Но не стоит забывать про скорость реагирования. Например, если к стабилизатору подключено много разных приборов, то он должен реагировать плавно, чтобы не было сильных скачков.

Мощность устройства выбрать, наверно, легче всего. Так как для этого необходимо просто сложить напряжение всех приборов, которые работают в помещении. Это среднее число будет определять, какая мощность понадобиться стабилизатору.

Фазность различают однофазную и трехфазную. Какую выбрать зависит от того, какое количество фаз имеют нагрузки, которые подключаются к стабилизатору. Если хоть один прибор имеет три фазы, это значит устройство тоже должно быть трехфазным.

Что касается дополнительных опции и габаритов с массой, то здесь все зависит от предпочтений покупателя. В основном, выбирают с минимальным количеством ненужных функций, чтобы ремонт стабилизатора напряжения своими руками можно было сделать.

Блок: 3/6 | Кол-во символов: 1583
Источник: https://techsad. com/oborudovanie/stabilizator-napryazheniya-svoimi-rukami/

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 — феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка — феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 — автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Подобного рода схемы выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения.

Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 — электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже, становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно. Без опыта и знаний в сфере электротехники не обойтись.

Поэтому под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Блок: 3/6 | Кол-во символов: 3370
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока.

Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Блок: 2/5 | Кол-во символов: 581
Источник: http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html

Виды стабилизаторов напряжения

В зависимости от мощности нагрузки в сети и других условий эксплуатации, используются различные модели стабилизаторов:

  • Феррорезонансные стабилизаторы считаются самыми простыми, в них применяется принцип магнитного резонанса. Схема включает в себя всего два дросселя и конденсатор. Внешне он похож на обычный трансформатор с первичной и вторичной обмотками на дросселях. Такие стабилизаторы имеют большой вес и габариты, поэтому почти не используются для бытовой аппаратуры. Благодаря высокому быстродействию, эти приборы применяются для медицинского оборудования;

Схема феррорезонансного стабилизатора напряжения

  • Сервоприводные стабилизаторы обеспечивают регулировку напряжения автотрансформатором, реостатом которого управляет сервопривод, получающий сигналы с датчика контроля напряжения. Электромеханические модели могут работать с большими нагрузками, но имеют малую скорость срабатывания. Релейный стабилизатор напряжения имеет секционную конструкцию вторичной обмотки, стабилизация напряжения производится группой реле, сигналы на замыкание и размыкание контактов которых поступают с платы управления. Таким образом, осуществляется подключение нужных секций вторичной обмотки для поддержания выходного напряжения в пределах установленных величин. Скорость регулировки осуществляется быстро, но точность установки напряжения невысокая;

Пример сборки релейного стабилизатора напряжения

  • Электронные стабилизаторы имеют аналогичный принцип, как и релейные, но вместо реле используются тиристоры, симисторы или полевые транзисторы для выпрямления соответствующей мощности, в зависимости от тока нагрузки. Это значительно повышает скорость переключения секций вторичной обмотки. Бывают варианты схем без трансформаторного блока, все узлы выполнены на полупроводниковых элементах;

Вариант схемы электронного стабилизатора

  • Стабилизаторы напряжения с двойным преобразованием осуществляют регулировку по инверторному принципу. Эти модели преобразуют переменное напряжение в постоянное, потом обратно в переменное напряжение, на выходе преобразователя формируется 220В.

Вариант схемы инверторного стабилизатора напряжения

Схема стабилизатора не преобразует напряжение сети. Инвертор постоянного напряжения в переменное при любом напряжении на входе генерирует на выходе 220В переменного тока. Такие стабилизаторы совмещают высокую скорость срабатывания и точность установки напряжения, но имеют высокую цену по сравнению с ранее рассмотренными вариантами.

Блок: 2/4 | Кол-во символов: 2475
Источник: https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Блок: 3/9 | Кол-во символов: 869
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Видео

Блок: 4/4 | Кол-во символов: 5
Источник: https://elquanta. ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Блок: 4/5 | Кол-во символов: 888
Источник: http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html

Принцип работы

Каким же образом работает наш стабилизатор сетевого напряжения, который легко делается своими руками?

После того, как включается питание конденсатор С1 находится в разряженном состоянии, транзистор VT2 открыт, а VT2 является закрытым. Также закрытым является транзистор VT3. Именно через него будет подаваться ток на каждый светодиод и симисторный оптотрон.

Поскольку этот транзистор является закрытым, светодиоды не светятся, каждый симистор является закрытым и нагрузка отключена. В это время электрический ток проходит через резистор R1 и попадает в С1. Далее происходит зарядка этого конденсатора.

Интервал задержки длится всего лишь три секунды. За это время осуществляются все переходные процессы, и после окончания происходит срабатывание триггера Шмитта, основу которого составляют транзисторы VT1 и VT2.

Далее открывается третий транзистор и включается нагрузка.

Напряжение, которое выходит с третьей обмотки Т1, выпрямляется диодом VD2 и конденсатором С2. Далее ток проходит через делитель R13…14. Из R14 напряжение, уровень которого является пропорциональным количеству вольт в сети, входит в каждый неинвертирующий вход компараторов.

Количество компараторов равняется восьми и все они находятся на микросхемах DA2 и DA3. В этот же момент на инвертирующий вход каждого компаратора входит постоянный образцовый ток. Его подают резисторные делители R15…23.

После этого в игру вступает контроллер, который осуществляет обработку сигнала на входе у каждого компаратора.

Блок: 4/5 | Кол-во символов: 1485
Источник: http://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самлделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Блок: 6/6 | Кол-во символов: 689
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Блок: 7/9 | Кол-во символов: 1841
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

Самодельный стабилизатор напряжения

Блок: 9/9 | Кол-во символов: 2308
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Кол-во блоков: 16 | Общее кол-во символов: 18178
Количество использованных доноров: 6
Информация по каждому донору:
  1. http://sovet-ingenera. com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html: использовано 4 блоков из 6, кол-во символов 6143 (34%)
  2. http://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html: использовано 1 блоков из 5, кол-во символов 1485 (8%)
  3. https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html: использовано 2 блоков из 4, кол-во символов 2480 (14%)
  4. http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html: использовано 2 блоков из 5, кол-во символов 1469 (8%)
  5. https://techsad.com/oborudovanie/stabilizator-napryazheniya-svoimi-rukami/: использовано 1 блоков из 6, кол-во символов 1583 (9%)
  6. http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html: использовано 3 блоков из 9, кол-во символов 5018 (28%)

Как изготовить стабилизатор напряжения своими руками: 4 особенности


Основные виды стабилизаторов напряжения

Для осуществления правильного выбора стабилизатора напряжения, необходимо знать какие бывают устройства и по какому принципу они работают.

Виды стабилизаторов:

  • Электронные;
  • Релейные;
  • Электромеханические;
  • Инверторные;
  • Феррорезонансные.

Стабилизаторы электронного типа, разделяют на устройства симисторные и тиристорные. Данные элементы схемы, отвечают за переключение между обмотками. Наиболее распространенными, являются симисторные стабилизаторы, так как они обладают быстрым срабатыванием при переключении обмоток и высокими показателями КПД.

Обратите внимание! Электронные модели, ввиду своего устройства, достаточно дорогие.

Самыми популярными для установки в частном доме или для отдельной квартиры, являются релейные стабилизаторы. Данные изделия относят к ступенчатым устройствам. Работа релейных стабилизаторов основана на переключении обмоток, силовым реле.

Другое название электромеханических стабилизаторов – сервомоторный или сервоприводный. Для того чтобы стабилизировать напряжение, в данном устройстве, электропривод приводит в движение угольный электрод по обмотке трансформатора. Такие устройства, обладают достаточно компактными размерами, и невысокой стоимостью.

Для того чтобы установить параметры напряжения на только для дачи, но на различных производствах (до 10 кВт), используют инверторные устройства. Кварцевый генератор и микроконтроллер данных устройств, на входе преобразовывает переменный ток в постоянный, и на выходе в переменный. Тем самым обеспечивая точность регулировки напряжения.

Основным элементом в схеме феррорезонансных стабилизаторов, является конденсатор – трансформатор, благодаря которому достигается эффект феррорезонанса с цепи. Стоит отметить, что данные модели не совсем популярны, так как обладают крупными размерами и высоким шумом при работе.

Как правильно подключить однофазный стабилизатор напряжения

Схема подключения стабилизатора к сети 220 В, достаточно простая задача, с которой легко справиться самостоятельно. Но важно понимать, что подключение и установка устройства производится по определенным правилам.

Порядок действий:

  • Определяем тип защиты;
  • Осуществляем правильную установку;
  • Производим подключение.

В первую очередь, необходимо определить, для каких целей будет использоваться стабилизатор. Существуют модели, которые способны осуществлять регулировку напряжения сразу для всей квартиры, для одного или нескольких устройств.

Обратите внимание! Существуют модели стабилизаторов, которые необходимо подключать в сеть 220 или 380 Вольт.

Далее, определяем место, в котором будет устанавливаться устройство. Для правильного выбора места, существует несколько основных правил.

Установка должна осуществляться в сухой комнате с хорошей вентиляцией. Это необходимо для того, чтобы внутри корпуса стабилизатора не скапливался конденсат.

Если установка устройства, производится в нишу, необходимо позаботиться о пожарной безопасности. При этом стены должны быть изготовлены из бетона или кирпича.

Обязателен и зазор, между стенами ниши и корпусом устройства, который должен быть не менее 10 см.

После установки, можно подключать устройство к сети. Стоит отметить, что подключение устройства, производится трехжильным кабелем (фазный провод, нулевой и заземление).

Для простоты подключение, необходимо знать цветовую маркировку проводов. Фазный провод – белый или коричневый, нулевой провод – синий, заземление – желто – зеленый.

Подключение проводов к устройству производится согласно следующей маркировке на корпусе стабилизатора с обозначением вход. Фазный проводник к клемме (L), нулевой провод к клемме (N), заземление (заземлить устройство) к клемме (PE).

Оборудование к стабилизатору подключается в клеммной колодке с обозначение выход. Остается только подключить кабель в щиток, настроить стабилизатор (выпрямитель), и пользоваться. Стоит отметить, что в настоящее время, пользуются популярностью устройства фирмы Ресанта.

Ремонт стабилизатора напряжения своими руками: основы

Как и любой вид электрооборудования, стабилизаторы напряжения, выходят из строя. В процессе работы, изнашиваются различные элементы, входящие в состав устройства, которые необходимо заменить или отремонтировать.

Основные неисправности:

  • Загрязнение;
  • Серводвигатель;
  • Электронная плата;
  • Силовая часть.

Основной неисправностью стабилизаторов электромеханического типа, является перегрев. Обусловлено это тем, что щетка из графита, двигаясь по трансформатору, постепенно изнашивается, и с пылью, которая попадает внутрь устройства, оседает на дорожке контактной.

При такой работе, щетка начинает намного сильнее нагреваться. При этом мусор и пыль, осевшие на дорожке, под действием высоких температур пригорают к ней. Таким образом, напрев постоянно возрастает. В данном случае, устранить неисправность поможет обычная чистка устройства.

Обратите внимание! Не допустить критических перегревов стабилизатора, помогают термодатчики.

Ремонт производится следующим образом. При помощи наждачной бумаги (нулевкой), производится очистка поверхности контактной дорожки (по ходу). После этого, очищенная поверхность протирается чистой ветошью со спиртом.

Если серводвигатель перестал вращать щетку (или трещит при работе), его следует снять, прочистить и обязательно смазать. Можно осуществить чистку двигателя, и не снимая. Для этого необходимо подключить двигатель к источнику тока (постоянного) не более 5 Вольт.

Не вращать щетку, двигатель может из-за того, что на него просто не поступает питание от электронной платы. В этом случае, необходима проверка транзисторов. Если одни вышел из строя, производится замена обоих элементов питания.

Если на трансформатор не поступает напряжение, следует проверить силовую часть электрической схемы, в которую он включен. Неисправны могут быть автоматические выключатели (автомат) или контакторы. В данном случае, необходимо поставить новые устройства для включения трансформатора.

Стабилизатор напряжения для дома 220 Вольт своими руками

В большинстве квартир и частных домов, напряжение в общей сети является пониженным. Поэтому следует учитывать этот факт и изготавливать повышающий стабилизатор.

Основные элементы:

  • Трансформатор;
  • Регулятор.

Лучшим вариантом для изготовления самодельного стабилизатора, будет применение обычного (не электронного) трансформатора.

Обратите внимание! Перед изготовлением стабилизатора, необходимо произвести замеры напряжения в сети.

Замеры напряжения, производятся для того, чтобы правильно подобрать трансформатор. Например, если обычно напряжение в сети составляет около 192 Вольт, и при этом в самодельном стабилизаторе используется трансформатор 24 Вольта, то при работе, напряжение будет увеличиваться до 216 Вольт.

Стоит отметить, что при повышении напряжения в сети, например до 211 Вольт, стабилизатор будет выдавать напряжение до 240 Вольт, что является приемлемым напряжением для работы всех электроустройств.

Данный трансформатор, можно изготовить самостоятельно или найти уже готовый. Это могут быть детали старых телевизоров или радиоприемников.

Стоит отметить, что подключение трансформатора , производится по типу автотрансформатора. При этом выходное напряжение будет выше входного на 10 – 11 %. Обязателен подбор устройства и по мощности, которая должна превышать мощность подключаемого устройство на 10 – 11 %.

Посредством регулятора СА1, можно подключать нагрузку без автотрансформатора, что не требует высоких затрат времени и средств.

Ремонт стабилизатора напряжения своими руками (видео)

Используя данную информацию, вы легко сможете выбрать подходящее устройство, которое обеспечит качественную регулировку напряжения в вашей сети, произвести качественную установку.

схема + инструктаж по сборке

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Подобные устройства используются в составе конкретной бытовой аппаратуры и не более того.

Поэтому вполне актуальной является задача сделать мощный стабилизатор напряжения своими руками под работу с напряжением бытовой сети 220 вольт. В принципе, такая задача решаема. Посмотрим, каким способом удастся ее выполнить.

Содержание статьи:

  • Стабилизация напряжения бытовой сети
  • Схемные решения стабилизации электросети 220В
    • Вариант #1 — феррорезонансная схема
    • Вариант #2 — автотрансформатор или сервопривод
    • Вариант #3 — электронная схема
  • Подробные инструкции по сборке
    • Шаг #1 — изготовление корпуса стабилизатора
    • Шаг #2 — изготовление печатной платы
    • Шаг #3 — сборка стабилизатора напряжения
  •  Принцип работы и тест самоделки
  • Выводы и полезное видео по теме

Стабилизация напряжения бытовой сети

Стремления владельцев разного вида недвижимости обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве.

Да и в целом фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений по такому оборудованию на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами.

Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)
Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 — феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка — феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  • Дроссель 1.
  • Дроссель 2.
  • Конденсатор.
  • Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

    Вариант #2 — автотрансформатор или сервопривод

    Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

    В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

    Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

    Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

    Подобного рода схемы выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения.

    Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

    Вариант #3 — электронная схема

    Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже, становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

    Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

    Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

    Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно.Без опыта и знаний в сфере электротехники не обойтись.

    Поэтому под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

    Подробные инструкции по сборке

    Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор, в данном случае, применяется из числа тех, что устанавливались в телевизорах старых моделей.

    Вот такой, примерно, силовой трансформатор потребуется под изготовление самодельной конструкции стабилизатора. Однако не исключается подбор других вариантов или же намотка своими руками

    Правда, в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется, как минимум ТС-320, чтобы обеспечить выходную нагрузку до 2 кВт.

    Шаг #1 — изготовление корпуса стабилизатора

    Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

    Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

    Допустимо подобрать корпус от любой электроники, подходящий под размещение всех рабочих компонентов схемы самодельного стабилизатора. Также корпус можно собрать своими руками, к примеру, из листов стеклотекстолита

    Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

    Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

    Шаг #2 — изготовление печатной платы

    Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора.

    Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

    Далее вытравливают плату при помощи соответствующего раствора (электронщикам метод травления плат должен быть знаком).

    Изготовить печатную плату стабилизатора вполне доступными способами можно непосредственно в домашних условиях. Для этого нужно приготовить трафарет и набор средств для травления на фольгированном текстолите

    Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

    В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

    Шаг #3 — сборка стабилизатора напряжения

    Укомплектованная радиодеталями плата подготавливается для внешней обвязки – в частности, от платы выводятся линии внешней связи (проводники) с другими элементами — трансформатором, выключателем, интерфейсами и т.д.

    На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

    Пример самодельного стабилизатора напряжения релейного типа, изготовленного в домашней обстановке, помещённого в корпус от пришедшего в негодность промышленного измерительного прибора

    Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов.

    Можно приступать к настройке с дальнейшими испытаниями.

     Принцип работы и тест самоделки

    Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840.

    Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.

    Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

    Часть схемы, куда включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

    На случай повышения напряжения питающей сети, управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа.

    Соответственно на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

    Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

    Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

    После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

    Выводы и полезное видео по теме

    В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

    В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

    Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

    Трудностей с приобретением деталей для изготовления стабилизатора-самлделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

    Источник

    Стабилизатор тока для светодиодов своими руками

    Автор: Виктор

    В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

    Содержание

    Открытьполное содержание

    [ Скрыть]

    Схемы стабилизаторов и регуляторов тока

    Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

    Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

    На КРЕНке

    Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

    Крены для микросхем

    Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

    Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

    Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

    На двух транзисторах

    На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

    Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

    Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

    Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

    На операционном усилителе (на ОУ)

    Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

    При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

    Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

    На микросхеме импульсного стабилизатора

    Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

    Схема выпрямителя с импульсным выпрямителем

    Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

    Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

    Заключение

    Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

    Фотогалерея «Микросхемы для самодельных выпрямителей»

    1. Прибор на КРЕНке
    2. На двух транзисторах
    3. С операционным усилителем

    Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

    Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

     Загрузка …

    Видео «Выпрямитель для светодиодов своими руками»

    Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

    Ремонт стабилизатора, как отремонтировать стабилизатор напряжения

    Перед началом диагностики и ремонта следует учесть, что стабилизатор напряжения — сложное электромеханическое устройство, состоящее из большого количества различных по назначению и принципу работы компонентов. Причина разборки и вмешательства в структуру начинки аппарата, особенно не специалистом, должна быть обусловлена некорректной работой устройства, например, аварийными выключениями или нехарактерно громкими звуками при эксплуатации. Если очевидно, что ремонт неизбежен, следует предварительно разобраться в его устройстве. Возможные поломки проще найти, поочередно проверяя элементы устройства на наличие дефектов и поэтапно их устраняя. Чтобы провести ремонт стабилизатора напряжения, потребуется соответствующий набор измерительных приборов, инструменты диагностики и ремонта электрических цепей и, конечно, понимание схемы устройства и принципа его работы.

    Устройство стабилизаторов различных видов

    Конструктивно все модели имеют схожую структуру. К основным элементам относятся:

    • автоматический трансформатор тока;
    • электронный блок управления;
    • вольтметр;
    • элементы управления обмотками.

    В зависимости от производителя и марки, существенно отличаются органы подключения обмоток и управления ими, тогда как остальные детали имеют схожее строение. Вольтметр замеряет напряжение в сети и передает данные на управляющий блок. Электронная плата управляет обмотками, подключая их к трансформатору исходя из необходимости повышения или снижения вольтажа.

    Стабилизатор напряжения может быть релейного и электромеханического типа. В зависимости от вида двигателя, принцип работы и процесс ремонта отличаются.

    Возможные причины поломки

    Основные неисправности стабилизатора напряжения проявляются по таким причинам:

    • выход двигателя из строя вследствие износа;
    • поломка каскада управления;
    • деформация внутренних электронных элементов.

    Для электромеханических моделей сердцем агрегата является сервопривод, передающий электрический ток на медную обмотку через щетку при вращении. Релейные моторы выравнивают напряжение скачками, поочередно подключая витки к паре обмоток для достижения заданного параметра. Неисправности стабилизатора напряжения релейного типа зачастую проявляются в одном из 4 элементов реле, а на сервоприводе поломку вызывает перегрев от трения щетки и витков катушки из-за износа этих элементов.

    Уязвимым и наиболее сложным элементом схемы является управляющая плата. Проблема наверняка в ней, если остальные элементы при поломке системы функционируют исправно. Проверка каскада управления невозможна без использования специального оборудования, например осциллографа. Однако поверхностный осмотр зачастую позволяет увидеть проблему. При нарушении корректности работы возникают высокие температуры, что приводит к оплавлению, обугливанию, а иногда — механическим трещинам. Если замечены физические дефекты на плате, ремонту подлежит в первую очередь блок управления.

    Ремонт элементов стабилизатора

    Перед началом любых работ необходимо отключить устройство от сети. После этого можно открыть крышку и очистить детали от накопившейся пыли мелким ворсом, во избежание поражения деталей статическим током. Если не работает табло индикатора или выключатель, их следует заменить в первую очередь.

    В процессе ремонта следует осмотреть резисторы, транзисторы и прочие дополнительные элементы. На транзисторах можно заметить почернения, а вышедшие из строя конденсаторы вздуваются. Все поврежденные элементы необходимо заменить новыми. Визуальный осмотр модулей и обнаружение повреждений лишь позволяют диагностировать поломку, но чтобы починить стабилизатор напряжения и продолжить его эксплуатацию, важно найти причину.

    Проводить ремонт стабилизатора напряжения можно дома, если есть необходимое оборудование. Для этого проводится прозвонка силовых транзисторов и прочих электрических цепей — о наличии разрывов явно свидетельствует поломка резисторов и высокие температуры с обугливанием. При обнаружении разрывов восстанавливается плата, покупаются новые конденсаторы взамен высохших и вздувшихся. В релейных моделях требуется замена реле, которое изнашивается примерно за 2 года.

    Профилактика поломок и модификации

    Продлить срок службы электромеханического агрегата на сервоприводе можно обеспечив охлаждение мотора. Для этого напротив контактов щетки и обмотки устанавливается кулер. Это позволит избежать перегрева двигателя и повысит надежность.

    Почему вам следует использовать линейный стабилизатор напряжения

    Стабилизаторы напряжения

    являются неотъемлемой частью многих проектов, требующих стабильного входного напряжения. Их задача — принимать нерегулируемое входное напряжение и выводить регулируемое напряжение , с единственной загвоздкой в ​​том, что входное напряжение должно быть выше, чем выходное напряжение. Если у вас в разработке проект, требующий определенного напряжения, вы можете рассмотреть несколько вариантов:

    Фиксированное напряжение — LM78XX

    Микросхемы линейных стабилизаторов напряжения серии LM78XX чрезвычайно популярны, и не зря.Они дешевы, просты в использовании, требуют небольшого количества других компонентов и имеют встроенную защиту от слишком большого тока. Существуют разные модели для вывода разного напряжения, и последние две цифры в номере модели обозначают их выходное напряжение. Например, LM7805 выдает 5 вольт, LM7810 выдает 10 вольт, а LM7824 выдает 24 вольта.

    Фиксированное напряжение — стабилитрон

    Вы закончили свой проект и только что осознали, что только что освоили микросхемы линейных регуляторов.Что ты можешь сделать? Если у вас есть подходящий стабилитрон напряжения и силовой транзистор, вы можете сделать свой собственный стабилизированный стабилизатор напряжения, используя приведенную выше принципиальную схему. Выходное напряжение будет на 0,6 В ниже напряжения стабилитрона диода из-за падения напряжения база-эмиттер на транзисторе.

    Переменное напряжение — LM317

    Если вам нужно настроить выходное напряжение регулятора напряжения, LM317 — это то, что вам нужно. Он очень похож на серию LM78XX, за исключением того, что имеет регулировочный штифт для изменения выходного напряжения.Добавив в схему потенциометр, вы можете использовать его для таких целей, как управление скоростью вращения вентилятора или источники питания с переменным напряжением.

    Примечание о радиаторах

    Чем больше падение напряжения на регуляторе напряжения, тем больше тепла будет рассеиваться через компонент. Во избежание возгорания обязательно используйте радиатор!

    DIY LM2596 Регулируемый регулятор напряжения Импульсный блок питания Наборы понижающий преобразователь Блок питания DIY Наборы

    Функция:
    Он может вводить нестабильный переменный ток и выходное регулируемое напряжение.Его минимальное выходное напряжение составляет 1,23 В, а максимальный выходной ток — 3 А. LM2596 содержит генератор с фиксированной частотой (150 кГц) и стабилизатор эталонного напряжения (1,23 В), а также имеет совершенную схему защиты, ограничение тока, схему отключения тепла и т. Д. Эта схема имеет преимущества высокого КПД и низкого тепловыделения. Он может в полной мере использовать различные холостые трансформаторы вокруг вас, чтобы обеспечить стабильное напряжение источника питания.

    Рабочее напряжение:
    LM2596 — переключатель стабилизатора напряжения и понижающей цепи.Убедитесь, что входное напряжение выше выходного. Общий входной сигнал составляет 3,2–40 В, а выход — 1,23–35 В.

    Принцип схемы:
    Нестационарное переменное напряжение на входе J1 было выпрямлено с помощью фильтров d1-d4, C1 и C2, отфильтрованных, поскольку входное напряжение LM2596 выводит стабильное постоянное напряжение с J2 через LM2596. C3, C4 — емкость выходного фильтра. R2 и LED2 составляют цепь индикатора. LED1 — это белый светодиод диаметром 8 мм. Его яркость может примерно указывать на выходное напряжение.Если яркость слишком яркая, вы можете как следует увеличить сопротивление R2. L1 — это особая индуктивность, которая действует как преобразователь энергии. D5 — диод Шоттки, который играет постоянную роль в цепи. C5 мешает цепи. Выходное напряжение R1 и W1 можно рассчитать по следующей формуле: Vo = 1,23 (1 + W1 / R1)

    Принципиальная схема:

    Список компонентов:

    НЕТ. Название компонента Маркер для печатных плат Параметр КОЛ-ВО
    1 Электролитический конденсатор C1 1000 мкФ 35 В 1
    2 Электролитический конденсатор C3 220 мкФ 25 В 1
    3 Керамический конденсатор C2, C4 0.1 мкФ 104 2
    4 Керамический конденсатор C5 3300пф 332 1
    5 Светодиод LED1 1
    6 LM2596S-ADJ IC1 К-263 1
    7 1N5822 D5 SS34 1
    8 1N4007 D1-D4 4
    9 Предохранитель BX 1
    10 Металлопленочный резистор R1 510 Ом 1
    11 Металлопленочный резистор R2 1K 1
    12 Индуктивность L1 30uH 1
    13 Потенциометр W1 10 К 1
    14 Крышка ручки 1
    15 Терминал 2
    16 Печатная плата 37 * 46 мм 1

    И.Протестировано выдающимся партнером ICStation arduinoLab:

    Подробнее читайте в видео:
    (язык видео — Русский )


    II. Протестировано выдающимся партнером ICStation bzoli5706:

    Подробнее читайте в видео:
    (язык видео — английский )

    III.Протестировано выдающимся партнером ICStation Blue Matter:

    Подробнее читайте в видео:
    (язык видео — итальянский )

    Во-первых, мы должны сказать, что ICStation не принимает никаких форм оплаты при доставке. Раньше товары отправлялись после получения информации о заказе и оплаты.

    1) Paypal Платеж

    PayPal — это безопасная и надежная служба обработки платежей, позволяющая делать покупки в Интернете.PayPal можно использовать на icstation.com для покупки товаров с помощью кредитной карты (Visa, MasterCard, Discover и American Express), дебетовой карты или электронного чека (т. Е. С использованием вашего обычного банковского счета).



    Мы проверены PayPal

    2) Вест Юнион


    Мы знаем, что у некоторых из вас нет учетной записи Paypal.

    Но, пожалуйста, расслабься. Вы можете использовать способ оплаты West Union.

    Для получения информации о получателе свяжитесь с нами по адресу [email protected]

    3) Банковский перевод / банковский перевод / T / T

    Банковский перевод / банковский перевод / способы оплаты T / T принимаются для заказов, общая стоимость которых составляет до $ 500 . Банк взимает около 60 долларов США за комиссию за перевод, если мы производим оплату указанными способами.

    Чтобы узнать о других способах оплаты, свяжитесь с нами по адресу orders @ icstation.(с бесплатным номером отслеживания и платой за страховку доставки)

    (2) Время доставки
    Время доставки составляет 7-20 рабочих дней в большинство стран; Пожалуйста, просмотрите приведенную ниже таблицу, чтобы точно узнать время доставки к вам.

    7-15 рабочих дней в: большинство стран Азии
    10-16 рабочих дней в: США, Канаду, Австралию, Великобританию, большинство стран Европы
    13-20 рабочих дней в: Германию, Россию
    18-25 рабочих дней Кому: Франция, Италия, Испания, Южная Африка
    20-45 рабочих дней Куда: Бразилия, большинство стран Южной Америки

    2.EMS / DHL / UPS Express

    (1) Стоимость доставки: Бесплатно для заказа, который соответствует следующим требованиям
    Общая стоимость заказа> = 200 долларов США или Общий вес заказа> = 2,2 кг

    Когда заказ соответствует одному из вышеуказанных требований, он будет отправлен БЕСПЛАТНО через EMS / DHL / UPS Express в указанную ниже страну.
    Азия: Япония, Южная Корея, Монголия. Малайзия, Сингапур, Таиланд, Вьетнам, Камбоджа, Индонезия, Филиппины
    Океания: Австралия, Новая Зеландия, Папуа-Новая Гвинея
    Европа и Америка: Бельгия, Великобритания, Дания, Финляндия, Греция, Ирландия, Италия, Люксембург, Мальта, Норвегия, Португалия, Швейцария, Германия, Швеция, Франция, Испания, США, Австрия, Канада
    Примечание. Стоимость доставки в другие страны, пожалуйста, свяжитесь с orders @ ICStation.com

    (2) Время доставки
    Время доставки составляет 3-5 рабочих дней (около 1 недели) в большинство стран.

    Поскольку посылка будет возвращена отправителю, если она не была подписана получателем в течение 2-3 дней (DHL), 1 недели (EMS) или 2 недель (заказное письмо), обратите внимание на время прибытия. пакета.

    Примечание:

    1) Адреса APO и PO Box

    Мы настоятельно рекомендуем вам указать физический адрес для доставки заказа.

    Потому что DHL и FedEx не могут доставлять товары по адресам APO или PO BOX.

    2) Контактный телефон

    Контактный телефон получателя требуется агентством экспресс-доставки для доставки посылки. Сообщите нам свой последний номер телефона.


    3. Примечание
    1) Время доставки смешанных заказов с товарами с разным статусом доставки следует рассчитывать с использованием самого длительного из перечисленных ориентировочных сроков.
    2) Напоминание о китайских праздниках: во время ежегодных китайских праздников могут быть затронуты услуги определенных поставщиков и перевозчиков, а доставка заказов, размещенных примерно в следующее время, может быть отложена на 3–7 дней: китайский Новый год; Национальный день Китая и т. Д.
    3) Как только ваш заказ будет отправлен, вы получите уведомление по электронной почте от icstation.com
    4) Отследите заказ, который с номером отслеживания по ссылкам ниже:

    Источник питания 11 В с использованием регулятора напряжения LM7811

    В этом уроке мы продемонстрируем самый простой проект DIY с простым и экономичным дизайном.Источник питания 11 В на микросхеме LM7811. Источник питания — это электрическое устройство, которое преобразует изменяющееся входное напряжение в постоянное «регулируемое» выходное напряжение. Блок питания предназначен для подачи электроэнергии на электрическую нагрузку.

    В этом проекте используется микросхема стабилизатора напряжения

    LM7811 с ​​радиатором. LM7811 — это трехконтактная ИС регулятора напряжения на 1 А серии LM78xx, доступная в корпусе TO-220 / D-PAK с несколькими фиксированными выходными напряжениями. ИС имеет множество встроенных функций, таких как внутреннее ограничение тока, тепловое отключение и защита безопасной зоны.При наличии соответствующего теплоотвода они могут обеспечивать выходной ток более 1 А. Хотя серия LM78xx спроектирована как стабилизаторы постоянного напряжения, в этих устройствах также используются внешние компоненты для получения регулируемых напряжений и токов.

    Необходимое оборудование
    LM7811 Распиновка
    [inaritcle_1]

    Принципиальная схема

    Работа схемы

    Трансформатор переменного тока с номиналом первичной обмотки 230 В или 110 В и номиналом катушки с центральным отводом около 15 В и 2 А понижает входной сигнал синусоидального напряжения переменного тока с 230 В до 12 В.Затем сигнал переменного тока проходит через диодный мост, где мост выпрямляет синусоидальный сигнал переменного тока, то есть преобразует синусоидальный сигнал переменного тока в сигнал постоянного тока.

    Выпрямленный сигнал постоянного тока затем передается на электролитический конденсатор емкостью 2200 мкФ и неполярный конденсатор емкостью 330 нФ, который отфильтровывает шум и другие помехи из однонаправленного сигнала постоянного тока. Затем однонаправленный и отфильтрованный сигнал постоянного тока пропускается через микросхему LM7811, которая регулирует это входное напряжение и обеспечивает выходное напряжение 11 В постоянного тока.Поскольку радиатор уже встроен в микросхему LM7811, это сводит к минимуму тепловыделение в цепи и помогает поддерживать номинальную температуру цепи.

    Приложения и способы использования
    • Используется для питания малых электрических нагрузок
    • Используется в качестве выпрямителей, например, преобразователей переменного тока в постоянный
    • Используется для защиты от короткого замыкания
    • Прекрасно работает в сценариях, где существуют строгие ограничения на протекание внутреннего тока
    • Свойства отключения при перегреве.

    DIY Долговечная схема стабилизатора напряжения для Raspberry Pi

    Raspberry Pi — это простой, удобный и дешевый, но мощный одноплатный компьютер на все времена. Он имеет порты USB для подключения оборудования, такого как флеш-накопитель, клавиатура, мышь, порт HDMI для вывода изображения, порт 3,5 мм для аудио и несколько контактов GPIO для работы со встроенными проектами, все из которых могут получать питание от мобильного зарядного устройства.

    Вы даже можете сделать его портативным, просто подключив порт mini USB к блоку питания мобильного телефона, чтобы вы могли использовать свой Pi в дороге.Но если вы подключите больше USB-устройств и используете контакты GPIO, внешний аккумулятор быстро разрядится. В этом посте я расскажу, как я сделал собственный блок питания, используя литий-полимерный аккумулятор и регулятор напряжения.

    О нашем спонсоре — UTSource

    Начнем с того, что UTSource является дистрибьютором электронных компонентов в Шэньчжэне и одним из крупнейших дистрибьюторов электронных компонентов во всем мире.

    UTSource начинал как малый бизнес, который вырос до более чем 10 миллионов клиентов с объемом продаж около 150 миллионов долларов.Благодаря огромному количеству различных продуктов, распространяемых в UTSource, он может варьироваться от полупроводников до транзисторов до предоставления услуг по проектированию цепочек.

    UTSource обещает предоставлять своим клиентам только продукцию самого высокого качества. Вся продукция на парусе считается оригинальной и сертифицированной. Покупается напрямую у производителей и официальных агентов.

    Необходимые вещи

    Приступим

    Шаг 1 — Как заказать качественную продукцию в UTSource?

    Заказать продукцию в UTSource очень просто.Первое, что нужно сделать, это зайти на сайт UTSource и создать бесплатную учетную запись!

    Что касается категорий продуктов, то в UTSource есть компонент на основе категорий с четким указанием количества компонентов, сгруппированных по каждой категории.

    Если вы хотите увидеть подкатегории в каждой из этих категорий, вы можете прокрутить мимо этих основных категорий и найти подкатегории под каждой основной категорией.

    Следующее, что нужно сделать, это найти нужный компонент в поле поиска.

    Прокрутите страницу вниз, найдите нужный продукт и добавьте его в корзину.

    После того, как вы добавили все продукты в корзину, вы можете перейти в корзину, чтобы увидеть все компоненты. В корзине вы можете увидеть ориентировочную стоимость различных курьерских служб. Вы также можете добавить или удалить больше товаров из корзины.

    После того, как вы нажмете «Оформить заказ», вы можете нажать «Оформить заказ». Здесь вы должны указать адрес доставки, а также способ доставки.

    Когда это будет сделано, нажмите «Отправить заказ» и завершите платеж.Вот и все! Вы получите товар в указанный срок.

    Шаг 2 — Установка батареи

    Это перезаряжаемые батареи с сильным разрядом, которые используются в основном в проектах робототехники. Эти двигатели в основном используются в приводных двигателях, таких как двигатели постоянного тока или серводвигатели, которые потребляют значительный ток из-за своих высоких разрядных свойств.

    [AdSense-A] Однако при использовании этих батарей необходимо соблюдать особую осторожность. Для зарядки аккумуляторов этого типа используются специальные зарядные устройства.В нашем проекте мы будем использовать батарею LiPo 12 В для питания Pi

    .

    Сначала возьмите зарядное устройство LiPo аккумулятора и зарядите аккумулятор. Следите за тем, чтобы на него не попадали прямые солнечные лучи. Воздействие на аккумулятор прямого нагрева может привести к взрыву аккумулятора. Как только аккумулятор полностью зарядится, вы можете подключить его к регулятору.

    Шаг 3. Распиновка USB

    Теперь подключите контакты аккумулятора к другой паре проводов, которые нужно припаять ко входу регулятора.Подключите провод +12 В к + ve In, а провод 0 В к -ve In. Теперь подключите мультиметр к выходу регулятора и медленно поверните ручку регулятора с помощью отвертки. Вы заметите изменение напряжения на регуляторе.

    Отрегулируйте напряжение до 5 В + — 1 В, что является лучшим уровнем напряжения для работы Pi. После проверки уровня напряжения аккумулятор можно отключить.

    Шаг 4 — Пайка

    LM2596S 20083 Модуль регулируемого регулятора напряжения

    Литий-полимерный аккумулятор, который мы используем, может обеспечивать напряжение 12 В, тогда как пи-пи работает от 5 В.Подключение платы напрямую к батарее приведет к сносу всей платы. Поэтому нам понадобится что-то, чтобы преобразовать эти 12 В в 5 В и обеспечить постоянное питание этой схемы 5 В. [AdSense-B]

    LM2596S 20083 Регулируемый регулятор напряжения — это очень удобный и простой в использовании регулятор напряжения, выходное напряжение которого можно легко контролировать, поворачивая винт. Посмотрите видео ниже, чтобы узнать, как это сделать.

    Теперь припаиваем два провода к выходу регулятора. Мы должны подать эти 5 В на порт micro USB Raspberry Pi.Возьмите старый кабель micro USB и разрежьте его пополам.

    [AdSense-B] Теперь припаяйте красный (+ 5V) провод к + Ve Out регулятора, а черный (GND) провод к 0V Out регулятора. Теперь все, что вам нужно сделать, это подключить кабель micro USB к Raspberry Pi и подключить аккумулятор.

    Ste 5 — Подключение дисплея

    В зависимости от типа дисплея вам придется внести небольшие изменения в схемы. В этом посте я объясню схемы при использовании двух наиболее распространенных ЖК-дисплеев.

    Raspberry Pi 7 ″ сенсорный дисплей

    Это стандартный простой в использовании сенсорный дисплей от самой Raspberry Pi. Дисплей питается от разъема Micro USB на плате драйвера, который, в свою очередь, питает Raspberry Pi через контакты GPIO. Это устройство plug and play, если у вас установлена ​​последняя версия Raspbian OS.

    Raspberry Pi подключается к дисплею с помощью ленточного кабеля, который подключается к порту DSI. Плата драйвера выполняет две функции — включение экрана и преобразование сигналов параллельного дисплея в последовательный сигнал DSI.

    Шаги для подключения

    • Подсоедините ленточный кабель к задней части платы драйвера. Также подключите сигнальные кабели сенсорного экрана к J4.
    • Подсоедините ленточный кабель DSI к плате драйвера и подключите другой конец к Raspberry Pi.
    • Подключите несколько перемычек от 5V платы драйвера к входным контактам Power на Raspberry Pi.
    • Теперь подключите плату драйвера к выходу регулятора напряжения, который мы создали ранее. Плата драйвера будет включать как дисплей, так и Raspberry Pi.

    Это наиболее часто используемая дешевая плата дисплея, которая будет работать с Raspberry Pi. Он также поставляется с платой драйвера, к которой мы подключаем порт дисплея HDMI Raspberry Pi. Если у вас есть конвертер HDMI в VGA, вы также можете использовать его. Эта плата должна быть подключена к отдельному источнику питания 12 В 2 А постоянного тока. Поэтому нам придется добавить дополнительный модуль.

    В нашей предыдущей схеме мы использовали только один регулятор. Но здесь мы добавим еще один регулятор, настроенный на выход 12 В параллельно предыдущему регулятору.

    Шаг 6 — Тестирование источника питания DIY для Pi

    Шаги для подключения

    • Подсоедините ленточный кабель к задней части платы драйвера.
    • Подключите кабель HDMI к плате драйвера, а другой конец — к Raspberry Pi.
    • Подключите регулируемое напряжение +5 В к входным контактам питания на Raspberry Pi.
    • Подключите +12 В к плате драйвера, которая запитает экран.

    При этом raspberry pi с большой нагрузкой будет работать дольше, чем при использовании power bank.Этого будет более чем достаточно для включения Pi и устройств, подключенных к USB-порту.

    Оцените проект

    Вы нашли эту страницу полезной? Помогите нам стать лучше, оценив эту страницу.

    [RICH_REVIEWS_FORM]

    [RICH_REVIEWS_SNIPPET stars_only = ”true”]

    Самостоятельная сборка регулируемого контроллера генератора

    Самостоятельная сборка регулируемого контроллера генератора переменного тока

    плавучие дома в Амстердаме индекс

    Регулятор напряжения для генераторов постоянного тока;

    Речь идет о регулятор генератора, который вы можете построить самостоятельно за несколько долларов, подходит для зарядка жидкостных, гелевых или никель-кадмиевых аккумуляторов глубокого разряда для лодок, кемперов или что бы ни.

    Схема и фото внизу страница.

    Есть несколько причин, по которым вы можете захотеть сделать регулятор самостоятельно, а не покупать его.

    Есть хорошие регуляторы на рынке, но они дорогие. Ни один из них не делает все вещи, которые я хотел, или я купил бы один, вместо того, чтобы делать всю работу развиваю свою собственную, пока она действительно не сработает.

    С ручным управлением отрегулированный регулятор, вы можете адаптировать нагрузку к двигателю, например, если вы если небольшой двигатель управляет несколькими большими нагрузками, вы можете уменьшить заряжая нагрузку, пока другие пользователи находятся на двигателе.Например, двигатель-генератор, который может выдерживать или не выдерживать большую нагрузку переменного тока.

    С этой настройкой вы может управлять двумя или более генераторами одновременно, на одном двигателе или на разные двигатели. Трехступенчатая зарядка должна выполняться вручную. пару раз повернув ручку во время зарядки, дорогие регуляторы сделают за вас автоматически.

    И, конечно, вы можете заряжать Ni-CAD банки с этим легко, и запускать компенсационные заряды на свинцово-кислотных аккумуляторах.

    В основном мой дизайн включает температурную защиту генератора [ов], которая недоступна на любом стандартном трехступенчатом регуляторе, который я видел. Они говорят тебе установить генератор так, чтобы он не перегружался. Однако если ваш генератор будет развивать полную мощность при низких оборотах двигателя [желательно, если он установлен на вашем пропульсивный двигатель], то он будет способен плавиться при более высоких оборотах. Чтобы этого не произошло, оригинальные встроенные регуляторы ограничивают ток, когда они нагреваются.Самые лучшие внешние регуляторы имеют датчик тока, который вы настраиваете на максимальную номинальную мощность вашего генератора. Тем не мение, при более высоких температурах окружающей среды или если проскальзывание ремня вызывает перегрев вниз по валу в генератор, вы сможете перемешать его с помощью палка.

    Некоторые авторитеты говорят установить генератор настолько большой, что он никогда не будет перегружен. Но если у вас большой аккумулятор и возможность большой нагрузки [например, инвертор], вам понадобится генератор, который намного больше, чем вы, возможно, захотите установить, если вы следуете этой логике.

    Если у вас есть какая-то механическая неисправность, возможно, вы захотите зарядить большую батарею крениться медленно, с меньшей нагрузкой на механическую систему. Вы можете захотеть бежать ваш двигатель вообще без нагрузки. Регулируемый вручную регулятор дает вы все под контролем. Это не для всех, но если вы контролируете урод, как я, тогда тебе это понравится.

    Я намерен иметь надежную электрическую систему при умеренном бюджете.Создавая свой собственный регулятор, у меня также есть знания, чтобы легко его отремонтировать. Я использую б / у генераторы; У меня есть запасной или два, так как они такие доступные. Так далеко, Мне он не нужен.

    Используя два 80-амперных генераторы, вместо одного большого, есть встроенное резервирование, и большая площадь охлаждения. Судовые установки, работающие на бензине [бензин, бензин или всякий раз, когда это может быть вызвано по месту вашего проживания] требуются специальные искробезопасные электрические оборудование в машинном отделении! Я говорю здесь о дизелях.

    Важно, чтобы у каждого генератора должно быть два ремня! Одиночные ремни предназначены для зарядки пусковые батареи в автомобилях. Я не имел удовольствия работать с эти новые широкие ремни с множеством канавок; Я думаю, что у одного из них не должно быть проблем вообще.

    Теперь, когда я сделал опытно-конструкторские работы, отдаю всем желающим. Я не электрик инженер, и в этой конструкции нет ничего уникального. Я понял основную идею из книги М.К. Шарма, но внес много изменений. Я приспособил это к несколько разных генераторов;

    12 вольт 80 ампер Deco Remy, пара 12 напряжение Bosch 80-х годов и 24-вольтное Leece-Neville 60A.

    Меня интересует еще кто-нибудь разработка этого дизайна. Пожалуйста, дайте мне знать, используете ли вы его и что вы думаю об этом.

    Грэм Полли из Новой Зеландии добавил температурная компенсация АКБ в цепи; вот что он говорит;

    I добавлен термистор NTC с датчиком заряда батареи 1k, он был вставлен вместо Из-за чувства горшка к напряжению батареи я заменил 3.Резистор 3 кОм с Резистор 1,5 кОм, затем последовательно добавлен небольшой потенциометр 1 кОм, а затем 1 кОм NTC, дающий в сумме 3,5 кОм, и я установил горшок так, чтобы на основном потенциале было максимум 15 В.

    С этой настройкой я установил блок на 14,6 В и по мере увеличения заряда и температура батареи повышается, напряжение батареи падает обратно до 13.8, это обычно происходит через час езды.

    Важно иметь установлен цифровой вольтметр с собственными проводами [которые можно использовать для опорная цепь регулятора] непосредственно к батарее или стороне пользователя выключатель аккумулятора.Даже маленькие пользователи нескольких усилителей могут отключить некоторые десятые доли вольт, которые актуальны.

    Правильная зарядка Режим для влажных свинцово-кислотных аккумуляторов — заряд аккумуляторов 14,2 В. пока ток не упадет до 5 процентов от емкости батареи [так, для 400 ампер-час банка, амперметр показывает 20 ампер, а вольтметр все еще показывает 14,2], затем Понизьте напряжение до 13,8, очевидно, удвойте эти числа для системы на 24 вольта.

    Эти напряжения указаны для 20 градусов Цельсия [68F]; важно отрегулировать температуру.В аккумуляторы сильно нагреваются при зарядке от большого генератора! Для этого необходимо уменьшить напряжение. Формула 0,03 вольт на градус Цельсия. Когда температура поднимется на пять или десять градусов, вы необходимо снизить напряжение заряда на 0,1 или 0,3 В; это удивительно разница с текущим потоком. И температура батареи действительно поднимается на десять градусов!

    Рядом с цифровым амперметром и вольтметром стоит цифровой термометр.Отправитель прикреплен эпоксидной смолой к кольцу, которое прикручено к клемму аккумулятора.

    Если у вас подвержены большим колебаниям климата [если вы плывете под парусом или едете от полюсов до тропики] температурная компенсация жизненно важна. В очень холодном климате, вам нужно увеличить напряжение. Составьте график и держите его рядом с контроль.

    два из них установлены в моем Автодом на колесах в Индии

    Регулятор довольно простой;

    Есть два напряжения, 6.Опорный сигнал 2 вольт напряжение, создаваемое стабилитроном и резистором, и аналогичное напряжение, разделенное на резисторы от напряжения АКБ.

    Поставляются в операционный усилитель 741. Когда разделенное напряжение батареи ниже 6,2, операционный усилитель включается. положительный и питает транзистор 1. Когда разделенное напряжение батареи выше, чем опорное напряжение, операционный усилитель отключает питание.

    Выход Т1 идет к ptc, привинченному к корпусу генератора, а затем к силовому транзистору, который осушает катушку возбуждения генератора.Я установил несколько из них, и они хорошо работают.

    Как генератор нагревается, сопротивление ptc будет расти, постепенно понижая напряжение возбуждения и, следовательно, выход генератора. Этот метод защиты от перегрузки по току лучший, так как защитит генератор в любых климатических условиях.

    Главное преимущество этот регулятор в том, что его можно регулировать по желанию, а тепловая защита предоставлено машине. Кроме того, 2 генератора могут работать от 1 регулятора, даже если они на разных двигателях.

    Зарегистрированный bosch 80A с delco 80A [на том же двигателе] выдавал одинаковые токи, сохраняя понижение температуры, эффективность и срок службы ремня [двойные ремни необходимы на генераторы переменного тока более 60А, если они будут работать более нескольких минут при время].

    Я использую электронный термометр с датчик прикручен к одной из клемм аккумулятора; затем регулируется напряжение заряда для температуры аккумулятора и степени заряда.

    Я обнаружил, что в схема при некоторых нагрузках, когда провода были длинными; большой конденсатор заботится о эта проблема хорошо.

    У меня были проблемы поиск силового транзистора для приложения 24 В. Перегорели 2 транзистора на 60В с первых попыток; кажется, есть скачок напряжения, когда поле становится выключен.

    Я добавил рекомендуемый диод прокачки к схеме, которая должна решить проблему.

    Транзистор на 140 В [2n3773] работает нормально, но я только проверил его на одном генераторе; Не уверен, подойдет ли этот транзистор к управлять 2 генераторами от регулятора [что я сделал в другом приложении используя транзисторы, я больше не могу достать].Мне нужно проверить текущую между транзисторами.

    Идеальным было бы около 100: 1. Дарлингтон [750: 1 или больше] будет слишком реактивным и, возможно, сделать ptc неспособным сузить ток при высокой температуре. Если кто-то попытается он работает, дайте мне знать [вы можете нагреть ptc, поставив его на свет лампочка. Мощность генератора должна упасть, для этого теста потребуется некоторая нагрузка].

    Проверка, генератор не вращается, но «Зажигание» включено; аккумулятор достаточно заряжен

    На микросхеме 741 на выводе 2 должно быть напряжение недалеко от 6.2 [скажем, между 5 и 7 вольт], которые должны двигаться вверх и вниз по мере того, как потметр повернут.

    Контакт 3 должен иметь 6,2 В.

    Контакт 7 должен иметь напряжение аккумулятора.

    Контакт 4 должен быть заземлен.

    Вывод 6 — выходной; должно быть 0 вольт, если контакт 2 больше 6,2 и близкое напряжение батареи, если контакт 2 меньше 6,2

    Амплитуда должна включаться и выключаться по мере того, как Ручка регулировки напряжения [потенциометр] вращается вперед и назад.

    Запустить двигатель с помощью полностью вниз, и наблюдайте за вольтами и амперами, когда вы медленно поворачиваете регулировка вверх. Вы должны слышать нагрузку, проходя мимо статической батареи. напряжение, и система начинает работать. Снова выключите его; нагрузка [зарядка амперы] должно упасть до нуля, когда напряжение заряда упадет ниже напряжения батареи.

    Рекомендуемая литература;

    Библия по морской электротехнике и электронике, от Джона К.Пэйн. Я многому научился у этого человека.

    Механические и электрические устройства владельца лодки руководство Найджела Колдера. Охватывает больше, чем электрические системы, отличное книга.

    Электропроводка 12 вольт для достаточно власти, Дэвид Смид и Рут Ишахара предоставили некоторые дополнительные Информация. Эта книга любит продавать вам дорогие компоненты, но это ясно и честно.

    Подключение к генератору;

    PTC обычно крошечный, немного деликатный вещь.Я прикрепляю эпоксидную смолу к кольцевому выводу и прикручиваю к корпусу генератора.

    Подключение к Bosch очень прост, поскольку щеткодержатель / регулятор можно снять двумя винты сзади. Щеткодержатель получает питание от контакта, который вы можете видеть сквозь его отверстие. Этот контакт подключен напрямую к одному из кисти, и это положительный момент. Другая щетка подключена к регулятор. Обрежьте контакт парой кусачков и подключите провод к транзистору.По моим собственным тестам, этот генератор обеспечить номинальную мощность при 3000 об / мин. Максимальный ток возбуждения 5 А

    Мне нравится мой генератор переменного тока, но он необходимо разбить дела. Это довольно просто.

    Это было давно назад, и я не могу вспомнить подробности; но вы можете ясно видеть маленький диод мост, питающий регулятор. Обойти регулятор, чтобы диоды подайте кисть напрямую. Я не могу точно вспомнить, что мне нужно было сделать с вытащите из корпуса провод от другой щетки, вместо того, чтобы заземлять его. дело; но это было не очень сложно.Вот большой трюк с Delco генераторы; используйте булавку или небольшой гвоздь через отверстие в задней части корпуса чтобы удерживать щетки при сборке корпусов. Когда они в сборе, вытаскиваем гвоздь.

    The Leese-Neville 24V Агрегат 60А у меня военный. Работать с ним очень просто, так как под задней крышкой много места. Провода найти несложно и соедините их любым удобным для вас способом. Я установил транзистор на изолятор на задней крышке.Этот генератор выдает номинальную мощность всего 1200 Об / мин. Он может легко разрушиться на более высоких скоростях, если его не регулировать [не упомяните, что это может сделать с остальной частью вашей электрической системы!]. ток возбуждения составляет около 2,5 ампер.

    Важно, чтобы все соединения должны быть прочными. Они должны уметь противостоять тепло и вибрация. Провода должны быть достаточно толстыми, чтобы не нагреваться. заметно [квадрат 16мм хорош]. Они должны быть достаточно гибкими, чтобы они не нагружают соединительные шпильки.Завяжите их к футляру навсегда мера. Обжимаю разъемы и припаиваю к ним концы проводов [если припой поднимется по проводу, он станет жестким в этой области и соединительный стержень], а затем я покрываю все это термоусадочной трубкой 3M. Этот Внутри есть термоплавкий клей, он удивительно толстый и прочный.

    Большинство авторитетов рекомендуем полностью луженые тросы для лодок, предназначенных для морской воды; если твой бюджет может справиться с этим.Лично я просто заливаю открытый конец разъема припой. Чтобы металл не поднимался по кабелю, нужна практика. Это о контроле тепла; область кольца должна быть достаточно горячей, чтобы расплавить припой, в то время как задняя часть обжимной секции не должна быть достаточно горячей, чтобы расплавить припой. Затем термоусадочная трубка изолирует кабель от влаги.

    Важно; если отсоединяется кабель от генератора к аккумулятору, плохие вещи случаться.Сначала падает напряжение на АКБ, потом регулятор переходит в максимальная мощность. Напряжение на генераторе будет ОЧЕНЬ высоким, но некуда пройти через силовой транзистор и катушку возбуждения. Лампа усилителя [если есть] выгорает, так что можете и не заметить. Через несколько минут катушка возбуждения нагревается. и плавится, короткое замыкание; тогда силовой транзистор перегорит или даже расплавить [стальной ящик!]. Так что убедитесь, что у вас красивое толстое кольцо клемма, соединение плотное и без коррозии, а кабель в хорошем состоянии. размер.Литиевая смазка поможет предотвратить коррозию, не нарушая связь. После запуска машины проверьте кабель и соединения. на высокой мощности в течение нескольких минут и убедитесь, что ничего не становится слишком горячим. Отремонтируйте или замените провод, если он начинает изнашиваться или показывает признаки перегрева. я пришлось усвоить этот урок на собственном горьком опыте!

    Вот транзистор, который, как я обнаружил, должен Работа.

    Как я уже сказал, усиление может быть слишком маленьким для установка двойного генератора; если кто-нибудь попробует это прежде, чем я, пожалуйста, позвольте мне знать.

    Тип Pol Пакет Vceo Ic Hfe fT (Гц) Pwr (Вт)

    2n3773 NPN TO3 140 60

    Эта информация верна в меру мои знания, но я не могу гарантировать, что то, что сработало для меня, будет работать для ты.

    Я ничего не знаю о местных правилах или законы; ни о том, что любая страховая компания может подумать о самодельных части.

    Вся информация — пользователи рискуют!

    Удачи всем. Отправить письмо по адресу; [email protected]

    DIY Дискретный и простой регулятор напряжения — Toli’s DIY

    Некоторое время назад я немного поигрался со старинными аудиоусилителями / приемниками, и во многих из них я улучшал блок питания для слаботочных дифференциальных усилительных каскадов.Это всегда была простая и дешевая задача, которая стоила потраченного времени, когда дело доходило до звука. Стремясь «сделать это по-другому», я не хотел использовать для этого ИС, а скорее хотел использовать дискретный, но простой дизайн. Схема, которую я придумал, очень хорошо подходила для таких приложений, и поэтому я решил, что было бы неплохо сделать из нее независимую печатную плату регулятора для общего использования в аудиотехнике, которую я создаю. В то время у меня также был ограниченный опыт проектирования печатных плат, так что это казалось отличным проектом для начала.Нет лучшего способа научиться, чем просто попробовать.

    Рис. 1. Схема регулятора минимального напряжения Toli.

    Самая простая форма регулятора показана на рис. 1. Это старые схемы, которые я нарисовал с помощью TinyCAD до использования KiCAD, и поэтому они не так красивы, как схемы на моих более поздних схемах. Схема довольно проста, но она отличается от большинства регуляторов напряжения. В отличие от большинства регуляторов, в которых имеется явное опорное напряжение, которое затем буферизуется усилителем ошибки и проходными транзисторами, в этой схеме используется другой механизм.«Опорное» напряжение в этом случае — это VGS, необходимое для того, чтобы M3 пропускал ток, обеспечиваемый J2. Все компоненты слева от J2 представляют собой не более чем двухполупериодный выпрямитель и конденсатор фильтра большой емкости. J2 в этом случае работает в режиме насыщения и, следовательно, действует как источник постоянного тока (CCS). Этот ток заряжает узел затвора M2, который, в свою очередь, подтягивает выходной узел к высокому уровню. Это заставляет узел затвора M3 подниматься, и M3 проводит ток J2 в узел заземления. Состояние равновесия — это когда ток M3 равен току J2.Следовательно, выходное напряжение можно описать как:

    VOUT (DC) = VGS (M3) * Ra + RbRb

    Это (часть регулятора, без выпрямителя) представляет собой схему, которую я неоднократно использовал в качестве локальных регуляторов внутри старинных усилителей. Его можно построить на небольшом сборном картоне и разместить рядом с точкой нагрузки. Тот факт, что точное значение выходного постоянного тока не определяется перед измерением (из-за вариаций VTH M3), не имеет большого значения для аудиоприложений. Однако это довольно хороший регулятор с очень низким уровнем шума.

    Однако при использовании его в качестве автономного регулятора линейное регулирование имеет гораздо большее значение. Одна часть схемы, которая ухудшает линейное регулирование в этой цепи, — это чувствительность J2 к изменениям напряжения на нем. Поэтому, чтобы улучшить это, можно несколько модифицировать схему до той, что показана на рис. 2. В этой схеме J2 больше не работает напрямую от выпрямленного напряжения. Вместо этого используется стабилитрон D5, чтобы обеспечить J2 чистым питанием. J1 снова используется как CCS для ограничения колебаний тока через стабилитрон.Очевидно, что J1 должен поддерживать ток J2 и стабилитрона. Поскольку теперь у нас есть дополнительное напряжение, которое несколько выше, чем на затворе M2, мы можем использовать его для управления затвором дополнительного NMOS, M1. Он может действовать как каскод для M2, ограничивая вариации VDS над ним и дополнительно улучшая регулирование линии. Эта модифицированная схема, очевидно, происходит за счет увеличения требований к запасу мощности регулятора (Vin-Vout необходим для правильной работы).

    Рис. 2. Улучшенное регулирование линии

    Возможный компромисс между ними (высокий запас по мощности и хорошее регулирование линии переменного тока) может быть достигнут путем замены этих дополнительных устройств простым фильтром нижних частот (LPF), как на рис.3.

    Рис. 3. ФНЧ для уменьшенной пульсации 100 Гц / 120 Гц

    Однако я хотел посмотреть, насколько далеко я могу продвинуть эту базовую схему, расширив схему вокруг нее, чтобы дать дополнительную функциональность. Кое-что из того, чего я надеялся достичь, — это снижение требований к запасу мощности без ущерба для производительности, а также некоторая базовая форма ограничения тока. Я предпочитаю не строить схемы, в которых нет некоторых ограничений по току, просто в качестве меры минимизации повреждений в случае возникновения каких-либо проблем.После пары итераций я пришел к схеме на рис. 4, которую я назвал «ToliReg» 🙂

    . Рис. 4. Окончательная версия регулятора напряжения (ToliReg)

    В этой схеме немного больше деталей, и на самом деле она не соответствует первоначальному замыслу «сделать ее как можно более простой», но она предлагает гораздо больше. функциональность. Обозначение устройства было изменено по сравнению с первой схемой, но все еще легко распознать тот же механизм, который устанавливает выходное напряжение. M1 теперь является устройством обратной связи (усилителем ошибки), а M2 — проходным транзистором.Raa был добавлен в качестве дополнительной настройки для выходного напряжения, чтобы сделать его менее чувствительным к параметрам M1. CCS теперь реализован с использованием CRD1 (который все еще может быть JFET, что и есть CRD). Однако, чтобы иметь более низкий запас по запасу мощности, этот ток поступает не напрямую, а через токовое зеркало, состоящее из Q5 / Q6. Q7 используется как каскод для Q6, чтобы ограничить температурную разницу между Q5 / Q6. D6 нужен только для смещения базы Q7.
    Для обеспечения бесперебойного питания этой цепи смещения используется LPF (R1 и C4), буферизованный Q4 в качестве умножителя емкости.D5 / C3 действуют как цепь «удержания пика», что является очень эффективным дополнением. При такой топологии допускается значительное падение напряжения на конденсаторе большой емкости без влияния на работу усилителя ошибки, что, в свою очередь, означает лучшее регулирование даже при более высоком выходном токе.
    Наконец, в Rsense добавлена ​​функция ограничения тока. Этот резистор установлен на стоке M2, поэтому он не влияет на выходное сопротивление регулятора. Когда напряжение на этом резисторе возрастает до ~ 0,6 В, Q1 будет проводить.Это, в свою очередь, сделает второй / третий квартал активным. Q2 опускает затвор M2 ниже и ограничивает выходное напряжение (и ток). Q3 не является обязательным и может использоваться для управления светодиодом для визуального уведомления о текущем предельном состоянии.

    Рис. 5. Схема платы ToliReg V3

    Я также разработал версию этого же регулятора с двумя рельсами для использования в моих собственных проектах. Я сделал некоторые измерения шума регулятора (на более ранней версии печатной платы, как показано на рисунке ниже. Измерение шума было выполнено с использованием LNMP от тангенса (см. Ссылку для получения дополнительной информации) с полосой пропускания 100 кГц -3 дБ .Общий интегрированный шум на выходе регулятора, установленного на 24 В, был измерен при 10 мкВ (среднеквадратичное значение).

    Рис. 6. Печатная плата, используемая для измерения шума

    . Как и в случае с некоторыми другими проектами, которые я делал в то время, я собрал большую часть необходимой информации для создания одного из них в файле PDF для публикации на нескольких форумах. Я прилагаю сюда и этот файл со схемой, спецификацией и несколькими дополнительными примечаниями о схеме.

    ToliRegV3_Documentation

    Регуляторы напряжения

    — Основы схемотехники

    Стабилизатор напряжения — это устройство, используемое для изменения колеблющегося напряжения на его входе до определенного и стабильного на его выходе.Регуляторы напряжения могут быть механическими, переменного, постоянного и электронного. В этой статье мы рассмотрим электронные линейные регуляторы постоянного тока.

    Применение регуляторов

    Для большинства схем требуется постоянное напряжение питания, не зависящее от потребляемого тока. Даже небольшое перенапряжение может оказаться разрушительным, поэтому следует использовать регуляторы. Но регуляторы также очень помогают в устранении сетевого гула в аудиоусилителях. В генераторах сигналов или генераторах выходная частота будет изменяться в зависимости от напряжения питания и также должна хорошо регулироваться, чтобы поддерживать это значение постоянной.

    Типы регуляторов

    Существует три основных класса или типа регуляторов: положительных регуляторов, , где входящее напряжение положительное, отрицательных регуляторов, , где входное напряжение отрицательное, двойных регуляторов напряжения, , которые представляют собой наборы обоих, например, схему усилителя и, наконец, регулируемые регуляторы , в которых может присутствовать любой из вышеперечисленных, но есть ручка управления для изменения выходного напряжения по запросу.

    Простой стабилитрон Regulato r

    Стабилитрон — это тип диода, который при подключении в его конфигурации обратного смещения (см. Ниже) начинает «пробиваться» или проводить при определенном напряжении, называемом его напряжением Зенера.Как только он начинает проводить, ток не останавливается, поэтому резистор (R1, показанный ниже) должен ограничивать ток до безопасного значения.

    В приведенном выше простом регуляторе Vin — 12 В, Vout — 5 В, а I — 10 мА. Без стабилитрона R1 было бы R = V / I = 12-5 / 0,01 = 700 Ом. Однако не было бы никакого регулирования, так как стабилитрон не проводил бы. Используя практическое правило, стабилитрон должен проводить ток нагрузки в два-пять раз больше, например, 50 мА. Учитывая это, должно быть I = 50 + 10 = 60 мА, поэтому R1 = 7/0.06 = 116 Ом.

    Проблема, однако, в том, что рассеиваемая мощность в R1 и D1 для больших токов нагрузки будет чрезмерной. Но это вполне подходящая схема для преобразования уровней сигналов, скажем, с 5В в модули 3,3В.

    Стабилитрон
    в качестве эталона и транзистор Q1

    Здесь мы использовали стабилитрон в качестве эталона и транзистор Q1 в качестве последовательного стабилизатора, выполняющего тяжелую работу. R2 обеспечивает смещение для включения Q1 и подачи гораздо меньшего тока через стабилитрон D2.Если Vout составляет 5 В, к этому должно быть добавлено падение напряжения база-эмиттер на 0,6 В, поэтому D2 должен быть 5,6 В (обычно доступен), а R2 теперь должен будет обеспечивать ток коллектора / hfe транзистора (скажем, 1000). Для источника питания 1 А, 1/1000 10 мА, R2 = 12-5,6 / 0,01 = 640 Ом плюс небольшой ток для стабилитрона, скажем, 560 Ом.

    Но это все равно большой ток, потраченный на нагрев стабилитрона. Итак, теперь мы добавили Q5 и сеть обратной связи от Vout, чтобы обеспечить полезную схему. D4 больше не является критичным и может быть любым в диапазоне от 1 В до 4 В и регулироваться.Поскольку Vout пытается превысить напряжение базы / эмиттера Q5 +0,6 + D4, он начинает отбирать ток от базы Q4, стабилизируя напряжение. R6 теперь может иметь более важное значение и не критично, так как 1k вполне подойдет. R7 и R8 также дадут более легкую регулировку.

    Давайте сделаем еще один шаг и добавим защиту от перегрузки по току.

    Падение напряжения на D6 и D7 всегда будет 0,6 + 0,6 = 1,2 В, а Vbe Q6 также составляет 0,6 В. Например, если мы тщательно выбираем R14, чтобы соответствовать точке, мы хотим предотвратить перегрузку по току, скажем, 2А, если V на R14 = 1.2V, D6 и D7 будут отбирать ток от базы Q6, позволяя больше не потреблять ток более 2A.

    Следовательно, R14 = 1,2 / 2 = 0,6 Ом. Но есть еще одно усовершенствование, которое мы можем сделать, чтобы предотвратить большие токи в диодах.

    Заменили диоды на Q9. Все, что ему нужно, это 0,6, чтобы включить его и вызвать ограничение тока. Для 2А это будет R19 = 0,6 / 2 = 0,3 Ом.

    Трехконтактный стабилизатор постоянного напряжения

    Здесь перед нами простота трехконтактного стабилизатора с фиксированным напряжением.Они бывают разных напряжений: 7805 = 5 В, 7809 = 9 В и т. Д., Включая 7812, 7815, 7824 и отрицательные версии; 7905 7909 и т. Д. C4 и C10 не следует путать со сглаживающими конденсаторами. Они предназначены для снижения шума и стабильности и должны иметь низкое последовательное сопротивление ESR (эквивалентное последовательное сопротивление). C4 обычно составляет 10 мкФ, а C10 — 1 мкФ. Обратите внимание, что D9 должен разряжать любую большую емкость в нагрузке в обратном направлении, чтобы предотвратить обратное смещение регулятора, когда входной сигнал становится низким.

    Регулируемый трехконтактный регулятор

    И, наконец, мы подошли к концу эволюции с регулируемым трехполюсным регулятором — знаменитым LM317 и отрицательным аналогом LM337.C2 предназначен для шума и может составлять 1 мкФ. Соотношение R20 и R23 задает выходное напряжение. Это могут быть два фиксированных резистора или регулируемый потенциометр. R20 показан в справочнике как нестандартное 240 Ом, но если вы сделаете его стандартным 220 Ом, то для любого напряжения между V max и V min R7 = (176 * V из ) — 220.

    Итак, если вы хотите 9 В, R23 может быть фиксированным значением, то есть 176 * 9 — 220 = 1k4. Обратите внимание, что, поскольку внутреннее опорное напряжение составляет 1,25 В как самое низкое значение, которое может быть у регулятора, ему также требуется не менее 2 В между входом и выходом и максимальное напряжение 32 В, поэтому он может обеспечивать регулировку от 1.От 2 до 30 В. Сделайте R23 10к.

    Мощность, рассеиваемая в регуляторе, составляет (Vin-Vout) * Iout. Таким образом, для входа 12 В и выхода 5 В при 1 А мощность составляет (12-5) * 1 = 7 Вт. Это нелогично, но это означает, что регулятор рассеивает большую часть мощности, когда он установлен на самое низкое выходное напряжение.

    Если вы возьмете регулятор тока силой более 1 А или он будет слишком горячим, чтобы удерживать его пальцами, то потребуется радиатор. Вы можете попробовать установить его на кожух используемого вами алюминиевого корпуса или установить на кусок плоского алюминия или, что еще лучше, на подходящий радиатор и угадать размер.Вы должны иметь возможность удобно держать регулятор, не обжигая руки или пальцы.

    Стабилизат

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *