Как заряжать литиевый аккумулятор: виды зарядных устройств
Автор: Voltmarket
Время прочтения: 5 мин
На данный момент, в зависимости от сферы применения, наиболее популярными являются два вида аккумуляторных батарей: литиевые и свинцово-кислотные. Свинцовые аккумуляторы постепенно теряют популярность, так как не отличаются высокой плотностью энергии и длительным ресурсом. Если требуется максимально компактный источник питания, всегда выбор падает именно на литиевые АКБ.
Как и в случае со свинцово-кислотными аналогами, литиевые аккумуляторные батареи делятся на множество типов. Наиболее распространенными являются литий-ионные (Li-ion) и литий-полимерные (Li-pol). Именно они используются в мобильных гаджетах и даже в электрокарах. К примеру, в Tesla model S установлено более 7 тысяч литий-ионных аккумуляторов Panasonic Li-ion NCR18650B.
Большая часть техники, где используются литиевые аккумуляторы, имеют встроенные механизмы зарядки, поэтому пользователю требуется лишь подключиться к электросети.
Как заряжать литиевый аккумулятор, чтобы ему не навредить? Несмотря на очевидность, попробуем разобраться, чем заряжать литиевый аккумулятор можно, а чем — нельзя.
Что надо знать об аккумуляторе
Процесс заряда всегда зависим от того, какой аккумулятор заряжается. Нельзя одинаковым режимом пополнять заряд разных по характеристикам и типам моделей.
Если обобщить, то приблизительно подобрать правильный режим заряда можно при наличии данных о типе аккумулятора, его емкости и напряжении.
- Тип АКБ. Почему важно знать тип? Достаточно сравнить номинальное напряжение литий-титанатного и литий-ионного аккумулятора. 2,4В и 3,7В соответственно. Нетрудно догадаться, к каким последствиям может привести заряд литий-титанатной батареи неким абстрактным зарядным устройством для литиевого аккумулятора, которое предназначено именно для Li-ion.
- Емкость АКБ. Данный параметр заряжаемого аккумулятора важен из-за того, что ток, как правило, подбирается в процентном соотношении к номинальной емкости. Литий-ионные аккумуляторы, например, не рекомендуется заряжать током выше, чем 0,5С-1С (ток, равный 50% и 100% соответственно по отношению к емкости в ампер-часах). Этот показатель может значительно меняться от модели к модели. Яркий тому пример — литий-титанатные АКБ, некоторые модели которых позволяют зарядку токами, в сотни раз превышающими номинальную емкость.
- Напряжение АКБ. Тип литиевого аккумулятора говорит лишь о напряжении одной ячейки или отдельного элемента питания, состоящего из одной ячейки. Тем не менее, для выбора зарядного устройства или подходящего режима на уже имеющемся ЗУ, надо знать суммарное напряжение всей цепи, так как оно может быть многократно нарощено путем последовательного соединения ячеек. В уже готовых аккумуляторах на основе множества ячеек напряжение всегда указано в маркировке.
Как зарядить АКБ
Нередко пользователи интересуются в сети, как заряжать литиевый аккумулятор мотоцикла. Учитывая, что литиевый АКБ для мотоцикла — это устройство фабричное, а не самодельное, вся важная информация, в том числе и ток заряда, обычно размещена на бирке. Другое дело — это когда имеется элемент питания, собранный из одной или множества ячеек, в том числе из упомянутых ранее аккумуляторов panasonic.
Важно учитывать наличие в аккумуляторе или в схеме защиты в виде BMS. BMS — это контроллер, который выполняет сразу множество функций. Он может защищать элементы питания от опасных значений напряжения и тока, балансировать элементы на последних стадиях заряда, а также осуществлять регулировку подаваемого напряжения. Зарядка литий-ионных аккумуляторов напрямую может представлять опасность для АКБ, особенно если используется кустарное ЗУ. Применять кустарные приспособления как на основе трансформатора с диодным мостом, так и на основе переделанных компьютерных блоков питания не рекомендуется даже для свинцово-кислотных АКБ.
Если по какой-то причине в литиевом аккумуляторе отсутствует BMS, на ЗУ требуется выставить напряжение, являющееся максимальным для данного типа батарей. К примеру, литий-ионные АКБ при полном заряде выдают 4,2В на одну ячейку, а LiFePO4 — 3,65. Если ток, при этом, превышает 0,5С, рекомендуется его ограничить. Если ЗУ не позволяет регулировать ток, понизить его можно путем снижения выходного напряжения. Как только оно будет достигнуто, его можно поднять до конечного показателя, соответствующего полному заряду аккумулятора.
В случае с литиевыми аккумуляторами, оборудованных BMS (к счастью, таких большинство), все куда проще. Контроллер попросту не допустит подачу опасных номиналов тока и напряжения. Единственное исключение — это когда пользователь самостоятельно припаивает BMS к своей сборке батарей. В таком случае нельзя гарантировать, что контроллер настроен верно в соответствии с требованиями, предъявляемыми конкретным блоком аккумуляторов. В принципе, если пользователь делает сборку АКБ и самостоятельно припаивает контроллер — видимо, он знает, что делает.
Как бы там ни было, лучшим способом безопасно и на 100% зарядить аккумуляторную батарею любого типа — это использовать умное зарядное устройство, работающее в автоматическом режиме. Такое устройство не просто выдает постоянный ток с определенным номиналом напряжения, а изменяет режим заряда в зависимости от стадии. Также важным преимуществом являются многочисленные настраиваемые параметры, позволяющие использовать один и тот же прибор с абсолютно разными сборками аккумуляторов.
К выбору зарядного устройства следует относиться максимально серьезно, так как во многом от качества заряда зависит срок службы аккумулятора. И если аккумулятор состоит из множества ячеек с высокой суммарной стоимостью, то даже небольшое увеличение срока службы экономит заметную сумму.
Способы заряда Li-ion аккумуляторов и батарей на их основе
В данной статье мы не будем касаться самих электрохимических процессов, протекающих в Li-ion аккумуляторе, а рассмотрим все с точки зрения конечного пользователя. Для потребителя и разработчика электроники любой аккумулятор выглядит как некий двухполюсник, имеющий два контакта, выходящих из корпуса. Такой элемент схемы имеет ряд числовых характеристик, графиков зависимости и т. д., и практически ничем не отличается по количеству приводимых в документации параметров от, например, диода. С этой точки зрения мы и будем рассматривать способы заряда этих устройств.
Литий-ионные аккумуляторы производят как в корпусном (например, типоразмера 18650), так и в ламинированном исполнении (гель-полимерные), электроды и электродные массы которых помещены в герметичный пакет из специальной пленки. Электрохимические процессы протекают одинаково как в тех, так и в других, и все, сказанное ниже, в равной степени относится ко всем аккумуляторам вне зависимости от их исполнения.
Сразу отметим, что классический способ заряда Li-ion аккумулятора делится на два этапа. Первый — это заряд постоянным током, второй — заряд при постоянном напряжении (рис. 1).
Рис. 1. Этапы заряда Li-ion аккумулятора:
I — ток;
U — напряжение;
t — время
На рис. 1 можно увидеть этап 1′. Он необходим, когда напряжение на аккумуляторе ниже некоторого установленного значения (например, 2,5 В). При долгом хранении аккумулятора вследствие саморазряда и/или потребления системы обеспечения функционирования (СОФ) напряжение на аккумуляторе может упасть ниже, к примеру, 2,5 В (СОФ входит в состав аккумуляторной батареи, даже если она состоит из одного аккумулятора). Малый ток заряда обеспечивает постепенный выход активных электродных материалов на заданные уровни напряжения, при которых они штатно функционируют (например, при более 2,8 В), после чего включается основной ток заряда. Данный режим призван обеспечить более долгую жизнь аккумулятора при выходе его из заданного диапазона напряжений. Также этап 1′ применяется при заряде аккумулятора при низких температурах, например ниже +5 °C — для «разогрева» электродных масс.
Первоначальный заряд малым током используется и для обеспечения безопасности аккумулятора при заряде. Если внутри аккумулятора произошло микрокороткое замыкание (или просто КЗ), то по истечении некоторого времени заряда напряжение на нем не будет возрастать. Этот факт может свидетельствовать о неисправности. Если начать заряд достаточно большим током сразу, то при КЗ может произойти сильный разогрев аккумулятора и его разгерметизация. Хотя СОФ имеет температурный датчик, при быстром заряде и относительно большой теплоемкости аккумулятора и высоком конечном значении теплопроводности разгерметизация может произойти немного раньше, чем СОФ отключит аккумуляторы от заряда. Функция заряда малым током часто возлагается не на зарядное устройство, а на СОФ батареи. В схеме СОФ это может быть дополнительный MOSFET (управляющий зарядом), включенный через последовательный резистор, ограничивающий ток, подключенный к аккумуляторной батарее (АБ). Необходимо отметить, что данный этап часто исключают из цикла заряда батареи, начиная заряд сразу с этапа 1.
На первом этапе заряд осуществляется номинальным током, который измеряется в долях от номинальной емкости аккумулятора (Сн). Например, емкость аккумулятора 10 А·ч, номинальный ток заряда 0,2Сн, то есть 2 А — пятичасовой режим заряда. Понятно, что потребитель хочет, чтобы заряд осуществлялся как можно быстрее — в течение 1–2 ч, что соответствует 0,5–1Сн. Такой режим заряда обычно называют ускоренным. Для нормальной работы аккумулятора номинальный ток заряда лежит в пределах 0,2–0,5Сн, а ускоренный, как уже говорилось, — в диапазоне 0,5–1Сн. Каким максимальным током можно заряжать тот или иной аккумулятор, можно узнать в документации на конкретный тип устройства. График роста напряжения на аккумуляторе, показанный на рис. 1, носит линейный характер (для простоты восприятия).
Чем выше ток заряда (или меньше время, отводимое на полный заряд), тем меньше аккумулятор «наберет» емкости и тем пристальней необходимо следить за разогревом, чтобы его температура не вышла за установленный предел. При большом токе заряда существенно продлевается время 2-го этапа (рис. 1), когда ток постепенно падает до определенного предела. Так, например, при токе заряда 1Сн и отводимом на заряд времени в 1 ч аккумулятор достигнет своего конечного напряжения за 45–50 мин. Любой аккумулятор имеет внутреннее сопротивление (включающее в себя несколько составляющих — омическую, диффузионную и т. д.). Падение напряжения на внутреннем сопротивлении при большом токе заряда приведет к более быстрому достижению конечного зарядного напряжения. При достижении конечного напряжения заряд перейдет ко второму этапу — падающему току при постоянном напряжении. За оставшееся время 10–15 мин. аккумулятор «наберет» еще 0,1–0,15Сн, что в сумме составит не более 0,85–0,95Сн. При более коротком режиме заряда и лимите времени зарядная емкость будет еще меньше. Можно учитывать внутреннее сопротивление аккумулятора и ввести зависимость конечного зарядного напряжения от тока заряда, но это требует проработки для конкретного типа аккумуляторов и более сложных зарядных устройств. Обычно разработчики не используют данные зависимости при проектировании простых устройств.
Ускоренный и номинальный режим заряда необходимо чередовать, особенно при заряде батарей, состоящих из нескольких последовательно соединенных аккумуляторов. При номинальном токе заряда возрастает его продолжительность. Увеличение времени заряда способствует лучшей балансировке аккумуляторов в батарее [1]. Чем больше время такой балансировки, тем лучше будут сбалансированы аккумуляторы по емкости и, в конечном итоге, батарея отдаст емкость, близкую к номинальной при разряде. Обычно системы баланса делаются пассивными, и работают они только при заряде батареи. Заряд номинальным режимом особенно рекомендуется после длительного хранения батареи, когда степень заряженности отдельных аккумуляторов будет сильно зависеть от токов саморазряда, который у разных аккумуляторов разный, даже при специально подобранных аккумуляторах в одной батарее.
Второй этап — заряд при постоянном напряжении и падающем токе. Ток на этом этапе падает до определенного значения. Например, процесс считается завершенным при установлении тока заряда менее 0,1–0,05Сн (в нашем примере <100 мА). Как было показано выше, продолжительность фазы падающего тока зависит от тока заряда. Для номинального режима заряда (0,2Сн) она длится обычно не более нескольких десятков минут, при этом аккумулятор набирает до 0,1–0,15Сн. Время заряда падающим током также зависит от степени деградации аккумулятора в процессе эксплуатации (иначе говоря, от срока службы и количества циклов заряд/разряд). Чем больше деградация, тем длиннее фаза падающего тока.
После окончания заряда напряжение на аккумуляторе падает на 0,05–0,1 В (рис. 1), приходя к своему равновесному состоянию. Держать аккумулятор продолжительное время (десятки часов) при конечном напряжении (например, 4,2–4,3 В) не рекомендуется из-за несколько повышенной в этом состоянии скорости деградации электродных масс. Поэтому после фазы падающего тока желательно прекратить заряд.
Производители электроники предоставляют уже готовые схемотехнические решения, реализующие описанный выше алгоритм заряда, выполненные в одном корпусе микросхемы — например МАХ1551, МАХ745 и т. д. Одна из популярных микросхем, применяемых для заряда Li-ion аккумуляторов (мобильных телефонов, фототехники и т. д.) от сети постоянного тока 12–24 В, — MC34063 (рис. 2). На рис. 2 выходное напряжение MC34063 — 5 В, но его можно пересчитать на конечное зарядное напряжение аккумулятора 4,1–4,3 В, варьируя резисторами R1, R2. Дополнительный выходной фильтр для уменьшения пульсаций можно исключить.
Рис. 2. Структурная схема МС34063, реализующая алгоритм заряда Li-ion аккумулятора
Часто возникает желание осуществлять заряд устройством, на выходе которого есть только постоянный ток (без фазы постоянного напряжения в конце заряда). Это позволяют сделать, к примеру, зарядные устройства от никель-кадмиевых аккумуляторных батарей. Рассмотрим этот способ.
Необходимо отметить, что литий-ионная аккумуляторная батарея подключается через СОФ к зарядному устройству (ЗУ), имеющему внутренние ключи (для батарей небольшой емкости до 40–60 А·ч это обычно MOSFET). Поэтому прежде, чем подключать ЗУ к АБ, необходимо убедиться, что выходное напряжение ЗУ (напряжение разомкнутой выходной цепи) не слишком высокое, чтобы не вывести из строя коммутаторы заряда АБ. Сам алгоритм заряда можно осуществить с помощью постоянного тока (этап 1) и фазы импульсов (этап 2), показанной на рис. 3. Фаза импульсов заменяет фазу падающего тока (также этап 2), показанную на рис. 1.
Рис. 3. Заряд постоянным током с прерывистой фазой зарядного тока:
I — ток;
U — напряжение;
t — время
Критерием остановки заряда могут служить напряжение на аккумуляторе или время импульса тока (Tимп), за которое напряжение на аккумуляторе достигает конечного зарядного напряжения (например, 4,2 В). При каждом импульсе напряжение на аккумуляторе будет повышаться, как показано на рис. 3. Как только оно достигнет уровня полностью заряженного аккумулятора с фазой падающего тока (рис. 1, примерно 4,1–4,15 В), заряд можно прекращать. Измерение напряжения на аккумуляторе необходимо производить через некоторое время после завершения зарядного импульса. Этот критерий окончания заряда при фазе импульсного тока Li-ion аккумулятора в большей степени справедлив для аккумуляторов на основе кобальтата лития (так называемые кобальтатные аккумуляторы). Об отличительных особенностях этих типов аккумуляторов мы поговорим далее.
Если ориентироваться на Tимп, то как только длительность импульса, в течение которого напряжение на аккумуляторе достигнет своего конечного значения, будет достаточно маленькой, заряд можно прекращать. Длительность можно считать маленькой, если аккумулятор за это время наберет менее 0,2–1% от своей емкости Сн. Например, при емкости аккумулятора 10 А·ч — 0,5% от Сн составит 0,05 А·ч. При токе заряда 5 А расчетная длительность зарядного импульса составит порядка 30 с.
Реализацию данного алгоритма заряда можно возложить на СОФ АБ, если она спроектирована таким образом, что можно изменять алгоритм ее функционирования [2]. Тогда микроконтроллер СОФ может отслеживать напряжение на аккумуляторе или производить вычисления времени импульса и останавливать заряд, размыкая окончательно зарядный ключ.
Еще один способ — заряд ступенчатым током (рис. 4).
Рис. 4. Заряд ступенчатым током:
I — ток;
U — напряжение;
t — время
Для упрощения ЗУ обычно заряд осуществляют в два этапа: номинальный ток (этап 1) и ток вдвое меньше номинального. То есть существует всего две ступени заряда. На рис. 4 для наглядности показано три ступени. И действительно, если есть возможность уменьшать ток ЗУ дискретно не в два раза, а на меньшую величину, то заряд будет осуществляться почти так же, как показано на рис. 1, а на этапе 2 напряжение на аккумуляторе будет колебаться около конечного напряжения заряда.
Помимо аккумуляторов с катодом из кобальтата лития, в мире все большую популярность набирают железо-фосфатные аккумуляторы (литированный фосфат железа). Железо-фосфатные аккумуляторы хоть и имеют меньшие удельные характеристики (Вт·ч/кг, Вт·ч/дм3), но из-за меньшей стоимости (при той же емкости) становятся все более и более популярными. На рис. 5 представлены зарядные кривые двух типов аккумуляторов.
Рис. 5. Графики заряда при различных температурах аккумуляторов с материалом положительного электрода:
а) кобальтат лития;
б) литированный фосфат железа
Заряд производился током 0,5Сн. Из графиков видно, что аккумуляторы с положительным электродом на основе кобальтата лития имеют почти линейную характеристику роста напряжения от степени заряженности. Характеристика аккумуляторов с положительным электродом на основе литированного фосфата железа почти горизонтальна и только в конце заряда резко возрастает, а также существенно зависит от температуры. Конечное напряжение заряда у железо-фосфатных аккумуляторов обычно ниже и составляет 3,7–3,9 В. После заряда (фазы падающего тока) напряжение даже у заряженного на 100% такого аккумулятора при нормальных условиях упадет до 3,35–3,45 В. Поэтому не будет наблюдаться такого роста напряжения, как показано на рис. 3, оно будет снижаться после каждого импульса заряда до указанного уровня (3,35–3,45 В). Критерием оценки заряженности аккумулятора в этом случае будет только Tимп, если заряд ведется прерывистой фазой тока (рис. 3).
Существуют Li-ion аккумуляторы с положительным электродом на основе никель-кобальт-алюминия и никель-кобальт-марганца. Зарядные зависимости у них ближе к зависимостям кобальтатных (рис. 5а). В любом случае при выборе и эксплуатации конкретного устройства необходимо внимательно ознакомиться с рекомендациями и документацией производителя. Заряд таких аккумуляторов также производится в два этапа.
Фаза постоянного напряжения (падающий ток) на рис. 5 отражена на представленных зависимостях в виде горизонтальной площадки в конце заряда. По величине этой площадки можно судить о емкости, набранной аккумулятором на этом этапе. Приведем экспериментальные данные заряда аккумулятора, иллюстрирующие способы, рассмотренные выше (рис. 6).
Рис. 6. Изменение напряжения литий-железо-фосфатного аккумулятора емкостью 240 А·ч в процессе заряда токами от 0,5 до 3Сн
На рис. 6 представлены зарядные кривые аккумулятора емкостью 240 А·ч с положительным электродом на основе литированного фосфата железа. Зарядные зависимости нормированы относительно емкости аккумулятора, а не времени. Заряд осуществлялся токами 120 А (0,5Сн), 240 А (1Сн), 480 А (2Сн) и 720 А (3Сн) до напряжения 3,7 В (при токах 0,5, 1 и 2Сн) и до 3,8 В (при токе 3Сн), при нормальных климатических условиях и температуре +20 °C. На графике видно, что при токе заряда 0,5Сн фаза падающего тока (при постоянном напряжении) составляет 12–15 А·ч (плоская площадка в конце графика). При токе 1Сн это уже 35–40 А·ч. При токе заряда 2Сн емкость составила всего около 190 А·ч при достигнутом напряжении 3,7 В, затем ток уменьшили в два раза (провал по напряжению), после чего аккумулятор еще зарядился на 35–40 А·ч. При токе заряда 3Сн напряжение отключения было повышено до 3,8 В, емкость составила всего около 180 А·ч, фаза падающего тока при постоянном напряжении отсутствует. На графике видно также, что при токе заряда 3Сн произошел некоторый провал по напряжению в середине кривой заряда. Это связано с повышением температуры аккумулятора и, как следствие, понижением внутреннего сопротивления (при повышении температуры возрастает скорость электрохимических реакций).
Выводы
Существует несколько способов заряда Li-ion аккумуляторов, но все они отражают сущность двухэтапного процесса: заряд постоянным и падающим током при постоянном напряжении. При заряде аккумуляторов или батарей током 0,5–1 Сн и более фаза падающего тока обязательна для увеличения принятой аккумулятором зарядной емкости. При заряде током 0,1–0,3 Сн фазой падающего тока можно пренебречь, так как за 3,5–10 ч заряда аккумулятор и так зарядится почти на всю емкость.
Как заряжать литий-ионные аккумуляторы
Li-ion аккумуляторы в последнее время широко используются в самых различных устройствах – от электрических автомобилей до смартфонов и игрушек. Учитывая, что такие элементы питания чрезвычайно требовательны к уровню напряжения при зарядке, важно использовать штатные зарядные устройства. Если вы хотите, чтобы любой аккумулятор служил вам максимально долго, требуется придерживаться при его зарядке нескольких простых правил. Каковы эти правила для литий-ионных аккумуляторов, мы и расскажем в этой статье.
В первую очередь важно понимать, что современные литий-ионные аккумуляторы существенно отличаются от более распространенных ранее кадмиевых или литий-металлогидридных элементов питания – как нюансами самого процесса подзарядки, так и особенностями эксплуатации и хранения. А значит следует забыть те рекомендации, которые были усвоены Вами ранее относительно предшественников Li-ion аккумуляторов, и усвоить новые.
Правильная зарядка литий-ионных аккумуляторов.
Если речь идет о новом аккумуляторе, перед использованием в любом устройстве его нужно зарядить. Что касается аккумуляторов данного типа для электровелосипедов и других средств электротранспорта, то самой распространенной ошибкой при первой эксплуатации аккумуляторов является их использование непосредственно после покупки. Начинающие драйверы часто считают, что АКБ продаются в заряженном виде. Это действительно так – производители заряжают аккумуляторы, однако только наполовину, и без первой полноценной зарядки емкость и срок службы АКБ снижается.
Другой важный момент – не рекомендуется доводить аккумулятор до полного разряда. После каждой даже самой непродолжительной поездки на электросамокате или на электровелосипеде аккумулятор следует подзарядить. Если Вы усвоите данное правило, то сможете значительно увеличить срок жизни АКБ. Таким образом, сразу же после разрядки литий-ионного аккумулятора его необходимо поставить на подзарядку.
К сожалению, часто неквалифицированные продавцы рекомендуют покупателям довести аккумулятор до полного разряда после первого заряда. Категорически не рекомендуем делать это – так вы рискуете столкнуться с внезапным выходом новой АКБ из строя. Возможно, нерадивые продавцы дают такую рекомендацию из корыстных побуждений -ведь когда аккумулятор выйдет из строя вам потребуется купить новый.
Литий-ионные АКБ очень чувствительны к высоким температурам, поэтому старайтесь не допускать их чрезмерного нагрева. При эксплуатации аккумулятора при температуре в пределах +25 градусов достигается максимальный ресурс и наибольшая отдача тока. Поэтому следите за тем, чтобы аккумулятор не оставался долго под солнцем и избегайте хранить АКБ в помещении, где температура выше указанного максимума.
В том случае, если литий-ионный аккумулятор продолжительное время находился на холоде, перед зарядкой его необходимо прогреть до комнатной температуры. Заряжать АКБ сразу после нахождения на морозе нельзя. Такие резкие температурные колебания могут нанести аккумулятору непоправимый вред.
И последняя важная рекомендация: при длительном перерыве в эксплуатации аккумулятор лучше хранить в холодном месте – зимой, к примеру, на неотапливаемом балконе или в гараже. Это продлит срок его жизни.
Сам процесс зарядки Li-ion аккумулятора не представляет сложности – необходимо сначала присоединить его к штатному устройству для зарядки, а потом соединить устройство с электрической сетью. После того, как полный заряд будет получен, просто отключите аккумулятор от ЗУ.
Перейти в раздел Li-ion аккумуляторовЗаряжаем литий ионный аккумулятор правильно
Зарядное устройство для литий ионных аккумуляторов очень похоже на зарядное для свинцово- кислотных, за тем лишь исключением, что у Li-ion аккумуляторов значительно выше напряжение на каждой банке и более жёсткие требования к допускам по напряжению.
В то время, когда для свинцово-кислотных аккумуляторов возможны некоторые неточности в установке граничных напряжений при зарядке, с литий-ионными все гораздо жёстче. Во врем заряда, когда напряжение на элементе возрастает до 4,2 вольта, должно прекращаться подача напряжения на элемент питания. Разрешенный допуск в напряжении всего 0,05 вольт.Банкой называют литий ионные элементы питания за из схожесть по форме на алюминиевую банку из-под прохладительных напитков (напр. coca-cola) Самым распространенным элементом такой формы является банка формата 18650. То есть 18 мм в диаметре и 65 мм в высоту.
Средний литий-ионный аккумулятор заряжается около 3 часов. Однако точное время зарядки, все же зависит от ёмкости аккумулятора.
Итак приведём несколько основных правил, используя которые можно продлить срок использования li-ion аккумулятора в разы.
Использование оригинальных зарядных устройств
При изготовлении литий ионных аккумуляторов, их производители довольно серьёзно относятся к зарядным устройствам. Никто не даст вам гарантии, что зарядные устройства сомнительного происхождения не погубят Ваши аккумуляторы. Оригинальные же зарядки 100% выдают только необходимое напряжение и правильно заканчивают зарядку каждого элемента питания. Ведь, если в конце процесса зарядки напряжение будет затухать со значительным опозданием, это может привести к перезарядке элемента, что в свою очередь скажется весьма негативно на химической системе литий-ионного аккумулятора и будет потеряна часть емкости.
Хранить аккумуляторы лучше с малым зарядом (30-50%)
Если Вам приходится оставлять li-ion аккумуляторы на продолжительное время бездействовать, то лучше их вынуть из устройства (фонаря, Р/У машинки и т.д.).
Очень вероятно, что полностью заряженный аккумулятор при продолжительном хранении потеряет часть своей ёмкости. Полностью разряженный или при минимальном уровне, хранящийся аккумулятор, может «умереть» навсегда. Т.е. восстановить его так и не удастся после длительной спячки. Исходя из этого и рекомендуется держать 50% заряд у хранящихся, длительное время li-ion аккумуляторов.
Не допускайте перезаряда и полного разряда аккумулятора.
Учитывая химическую особенность литийевых аккумуляторов, весьма не рекомендуют, как полностью разряжать, так и чрезмерно перезаряжать такие аккумуляторы.
Как известно, у li-ion аккумуляторов, полностью отсутствует «эффект памяти«, исходя из этого рекомендуется разряжать аккумулятор до 10-20% а заряжать до 80-90, дабы не повредить химическую систему элемента.
Эффект памяти, в основном свойствен только Никель-Кадмиевым аккумуляторам.
А означает он некую потерю емкости аккумулятора после неправильного режима зарядки, в частности дозарядки при не полностью разрядившемся аккумуляторе. Проще говоря Ni-Cd нельзя начинать заряжать, до того, как он разрядится до допустимо низкого уровня. Нарушая данное правило, емкосли никель кадмиевого аккумулятора несколько уменьшается.
Литий ионные аккумуляторы, лучше начинать заряжать не дожидаясь их полного разряда. Таким образом можно значительно продлить срок жизни элемента питания.
Вышеуказанное правило относится только к незащищённым аккумуляторам. Литиевые аккумуляторы с защитой не страдают от пере или недозаряда. Встроенная плата защиты, отсекает чрезмерное напряжение (более 3,7 вольт на банку) при зарядке и отключает аккумулятор, если уровень заряда упал до минимального, обычно до 2,4 вольт.
Li-Ion аккумулятор не любит холода и жары.
Оптимальной температурой для литиевых аккумуляторов, является от +10°С до +25°С. Li-ion аккумуляторы чувствительны к большим перепадам температур. При отрицательной температуре, время работы аккумулятора сильно сокращается, хим. система элемента может сильно пострадать и даже разрушиться. Наверняка, вы замечали, как заряд мобильного телефона, на морозе резко начинает стремиться к минимуму, хотя ранее, в тепле, заряд был полным.
Нужно заметить, что литий-ионные аккумуляторы, весьма неприхотливы. При должном уходе, они проживут от 3 до 5 лет исправной службы хозяину. Так же нужно знать что такие аккумуляторы имеют свой срок использования от даты производства, а это значит, что заранее покупать запасные аккумуляторы не всегда хорошая идея. Обычно считается нормальным покупать литий-ионки не позднее 2-х лет после производства.
По поводу ёмкости литий ионных аккумуляторов. Банки самого распространенного формата 18650, могут иметь реальную емкость до 3500 мАч. При цене не менее 3-4 долларов за шт. Аккумуляторы, ёмкостью в 9900 мАч по цене $2 за шт. — это как минимум смешно. В действительности там будет 3000 мАч. если повезет.
Бренд против Нонейма
Стоит сказать несколько слов о производителях литий ионных аккумуляторов.
Практически все аккумуляторы имеют название (Бренд изготовителя), но это может быть «Panasonic» в котором реальная емкость будет меньше на 50 мАч из 3000 мАч или какой ни-будь «ХуньСюньПродакшн», в котором не хватает 1900 мАч из 3000 мАч. И это не смешно, а реальные цифры.
Так вот нормальными (честными) брендами среди аккумуляторов без защиты, считаются:
- Panasonic,
- Sony,
- Sanyo,
- Samsung,
- LG,
Напротив, такие бренды, как:
- UltraFire,
- SingFire,
- Bailong,
- TrastFire
имеют далеко не точную указанную емкость, зато стоят в 2 — 3 раза дешевле.
Среди достойных установщиков защиты на литий-ионки стоит отметить:
- Keeppower;
- Efest;
- Nitecore
Купить литий ионные аккумуляторы, например, формата 18650 можно как в местных интернет магазинах, так и у китайцев на прямую.
И пожалуйста не обольщайтесь на низкую цену и банки аккумуляторов в прозрачной термо-усадке. Из опыта, могу сказать, что в таком варианте используются в основном оригинальные банки но совсем никудышние платы защиты.
Как правильно заряжать полимерный аккумулятор
Литий полимерный отличается от литий ионного аккумулятора только лишь консистенцией электролита. Более подробнее читайте здесь. В остальном же, литий-полимерный поддается тем же правилам, что и литий-ионный аккумулятор.
Как правильно заряжать литий-ионный аккумулятор
Литий-ионные аккумуляторы сейчас чрезвычайно популярны. Больше 80% всех бытовых аккумуляторов являются литий-ионными. И для того, чтобы эти аккумуляторы служили верой и правдой долгое время, очень важно правильно с ними обращаться и правильно заряжать.
Как правило, литий-ионный аккумулятор представляет собой дуэт – собственно, саму аккумуляторную банку и присоединенную к ней плату защиты. Плата защиты предохраняет аккумулятор от перезарядки или чрезмерной разрядки. Также она ограничивает максимальный ток аккумулятора – следит, чтобы не было короткого замыкания. Все это очень важно, поскольку литий-ионный аккумулятор может очень драматично реагировать на перезарядку или чрезмерный ток (а еще на перегрев) – банально взрываться, нанося совершенно небанальные повреждения.
Тем не менее, вполне могут поставляться аккумуляторы без защиты – только банки. В этом случае подразумевается, что контроль степени заряда и тока будет осуществляться дополнительной электроникой, о которой должен позаботиться сам потребитель.
Литий-ионные аккумуляторы с защитой и без нее
Необходимо всегда обращать внимание на наличие защитной электроники при использовании литий-ионных аккумуляторов. Без схем защиты ни заряжать, ни использовать эти аккумуляторы нельзя! Поскольку в нештатных ситуациях химические процессы в аккумуляторах могут начать протекать чрезмерно бурно. Это может привести к разрыву аккумуляторной банки, воспламенению выделяющихся газов, электролита и, в итоге, к нехилому взрыву с пламенем и разбрасыванием вокруг горящих частей аккумулятора.
Сам процесс правильного заряда аккумулятора – это контролируемый и управляемый процесс. Вначале разряженный аккумулятор заряжается постоянным током 0.2 – 1 С (С – это емкость аккумулятора в ампер/часах). При достижении напряжения 4.0-4.1В (в зависимости от рекомендаций производителя) зарядка продолжается при постоянном напряжении до достижения 4.2В на элемент. Допустимое отклонение напряжения составляет всего +-0.05В. Для соблюдения этих режимов, безусловно, необходима соответствующая электроника. Как правило, это схемы, собранные на специализированных микросхемах. Хороший выбор – для заряда аккумуляторов использовать специализированные зарядные устройства. Также можно собрать зарядное устройство самостоятельно.
Литий-полимерные аккумуляторы заряжаются также, как и литий-ионные, поскольку по природе своей они очень похожи. В чем их основное различие — читайте в статье «Литий-полимерный аккумулятор — отличие от литий-ионного».
Лучший вариант – заряжать каждый аккумулятор отдельно. Кроме зарядных устройств, можно приобрести готовые платы-контроллеры для зарядки отдельных аккумуляторов. Например, на базе популярной микросхемы TP4056.
Зарядка одного литий-ионного аккумулятора
Миниатюрная плата (около 20х30 мм) позволяет заряжать литий-ионный аккумулятор от источника постоянного напряжения до 8В. Подойдет, в том числе, компьютерный USB. Два индикатора отображают ход заряда. Плата сама остановит зарядку при достижении напряжения 4.2В – с ее помощью можно заряжать и аккумуляторы без платы защиты.
Если используется несколько аккумуляторов одновременно, то возможны варианты. Для увеличения емкости при том же выходном напряжении батареи соединяют параллельно – плюс к плюсу, минус к минусу. Например, если взять два аккумулятора емкостью 2500 мАh и соединить их параллельно, то получится батарея емкостью 5000 mAh с выходным напряжением 4.2В. Заряжать такую батарею нужно также, как и отдельный аккумулятор, только это займет в 2 раза больше времени.
Если нужно повысить напряжение при сохранении емкости, аккумуляторы соединяют последовательно. Те же две банки из предыдущего примера, соединенные последовательно, дадут батарею с напряжением 8.4В и емкостью 2500mAh.
Ток зарядки последовательно соединенных аккумуляторов должен быть такой же, как и при зарядке одного аккумулятора, а напряжение соответствовать напряжению всей батареи – 4.2В умножить на количество последовательно соединенных элементов.
Когда аккумуляторы используются в связке, очень важно подбирать совершенно одинаковые банки – одного производителя и модели, одной степени свежести. В идеале – из одной партии. Дело в том, что разные аккумуляторы могут иметь немного отличающиеся емкости, напряжение и другие параметры. Соответственно, работать они будут неравномерно и быстрее выйдут из строя.
Правильно заряжать литий-ионные аккумуляторы, соединенные последовательно, необходимо устройствами, которые имеют систему балансировки заряда каждого элемента. Строго говоря, и разряжаться такие батареи должны через аналогичные системы балансировки. Суть ее работы состоит в том, чтобы следить за параметрами каждого аккумулятора и останавливать зарядку всей батареи, если один из аккумуляторов будет уже заряжен полностью. Аналогично при разряде: если один из аккумуляторов полностью разрядился – отключается вся батарея. Это позволит избежать перезаряда/переразряда аккумуляторов и продлит срок их службы.
Контроллер заряда/разряда двух последовательно соединенных аккумуляторов может выглядеть так:
Зарядка двух последовательно соединенных литий-ионных аккумуляторов
Контакты P+ и P- платы служат как для подачи напряжения при зарядке, так и при снятии тока при разрядке батареи. Плата может использоваться с аккумуляторами без плат защиты.
Для зарядки трех последовательно соединенных аккумуляторов может подойти такая схема:
Зарядка трех последовательно соединенных литий-ионных аккумуляторов
Так же как и в предыдущем варианте, контакты Р+ и Р- используются как для подачи напряжения зарядки, так и для снятия питания при работе от аккумуляторов. Плата имеет систему балансировки, защиту от перезаряда/разряда и защиту от короткого замыкания. И также может использоваться с незащищенными аккумуляторами.
Похожая плата зарядки/разрядки имеется и для четырех последовательно соединенных аккумуляторов.
Зарядка четырех последовательно соединенных литий-ионных аккумуляторов
Большее количество последовательно соединенных аккумуляторов встречается достаточно редко. Чаще для увеличения мощности используют последовательно соединенные пары параллельно соединенных аккумуляторов. Например, батареи ноутбуков могут содержать три или четыре пары аккумуляторов.
Правильная зарядка аккумуляторов – совершенно необходимое условие для того, чтобы использование литий-ионных аккумуляторов было долговременным и эффективным. Уделите этому достойное внимание и аккумуляторы будут служить вам верой и правдой.
Параметры зарядного устройства для аккумулятора, как их рассчитать
Параметры зарядного устройства для аккумулятора, как их рассчитать
Аккумулятор — устройство для накопления энергии с целью её последующего использования.
Чтобы рассчитать параметры зарядного устройства для конкретного аккумулятора, необходимо прежде всего принять в расчет тип и параметры аккумулятора, который вы собираетесь этим устройством заряжать. Важнейшие характеристики заряжаемого аккумулятора — это: емкость, напряжение полного заряда, максимально допустимый ток заряда, а также диапазон допустимых рабочих температур.
В зависимости от того, что это за аккумулятор, какого типа материалы в нем используются — параметры зарядного устройства должны подбираться индивидуально. Здесь мы рассмотрим свинцово-кислотный и литий-ионный аккумуляторы, а точнее особенности их зарядки.
Правда в том, что если аккумулятор всегда заряжать правильно, с соблюдением оптимальных величин напряжения и тока, то он сохранит свою емкость на протяжении многих циклов заряда-разряда. Разумеется при условии, что и разряжается он тоже с соблюдением ограничений, без перегрузок, без перегревов. Итак, как же рассчитать параметры зарядного устройства для аккумулятора?
Литий-ионный аккумулятор
Главная заряженная частица, отвечающая за образование тока в литий-ионном аккумуляторе, — это положительно заряженный ион лития. Он способен внедряться в кристаллическую решетку материала на аноде, например в углерод в форме графита, а также образовывать соли или оксиды металлов (например с марганцем, кобальтом или с железом и фосфором).
В силу именно такого химического состава, максимальное конечное напряжение заряда между электродами литий-ионного аккумулятора не должно превышать 4,2 вольта, а лучше — 4,1 вольта, это продлит срок его службы, замедлит необратимые изменения.
Заряжать литий-ионный аккумулятор необходимо напряжением в 5 вольт, чтобы не ждать бесконечно долго. При этом оптимальный ток заряда должен составлять от 50 до 100% от значения емкости, то есть аккумулятор емкостью 2400мАч оптимально будет заряжать током от 2,4А до 1,2А.
Для недопущения перезаряда, качественные зарядные устройства заряжают такие аккумуляторы в 2 стадии: на первой стадии на электроды подается 5 вольт и заряд некоторое время идет с предельно разрешенным током до достижения порогового напряжения в районе 4,1 вольт, а потом начинается вторая стадия — с меньшим током, когда напряжение доводится до конечных 4,1-4,2 вольт.
Поэтому мощность зарядного устройства для литий-ионного аккумулятора (для 1 ячейки) рассчитывается так: максимальное напряжение умножить на максимальный ток, допустим 5В*2,4А=1,2Вт — для нашего примера.
Свинцово-кислотный аккумулятор
Свинцово-кислотный аккумулятор работает благодаря химическим реакциям свинца и диоксида свинца в водном растворе серной кислоты. Любой классический автомобильный аккумулятор устроен именно так. В процессе заряда сульфат свинца распадается на ионы (отрицательно заряженный SO4 и положительно заряженный H), на катоде образуется диоксид свинца, на аноде — чистый свинец. При разряде — металлический свинец окисляется до сульфата свинца, диоксид свинца восстанавливается на катоде, а на аноде окисляется свинец.
Если аккумулятор перезарядить (продержать на зарядке чрезмерно долго), то сульфат свинца закончится, останется только вода, и начнется ее электролиз: на аноде при этом будет выделяться кислорода, а на катоде (отрицательном электроде) — водород — в жидком электролите будет видно как пойдут пузырьки.
В силу именно такого химического состава, напряжение максимального заряда одной ячейки свинцово-кислотного аккумулятора составляет 2,17 вольта. В 12 вольтовом аккумуляторе таких последовательно соединенных секций 6, а в 6 вольтовом — 3 последовательно соединенные секции. Поэтому максимальное напряжение заряда 12 вольтного аккумулятора составляет 13,02 вольта. Для 6 вольтного — 6,51 вольт.
Таким образом, зарядное устройство в процессе зарядки должно подавать на электроды постоянное напряжение исходя из по крайней мере 2,45 вольт на элемент (чтобы зарядка не шла бесконечно долго) — для 12 вольтного это 14,7 вольт, а для 6 вольтного получается 7,35 вольт. Начальный ток заряда оптимально принять за 30% от емкости.
В итоге максимальная рабочая мощность зарядного устройства должна рассчитываться как максимальное напряжение умножить на максимальный ток, допустим 14,7В*30А=441Вт — для свинцово-кислотного аккумулятора номинальным напряжением 12 вольт, емкостью 100Ач.
Ранее ЭлектроВести писали, что немецкие учёные не перестают удивлять. Технологический институт Карлсруэ (Karlsruhe Institute of Technology) опубликовал пресс-релиз, в котором сообщил об одном интересном исследовании. Оказывается, параметры литиево-ионных аккумуляторов можно заметно улучшить с помощью обыкновенной яичной скорлупы.
По материалам: electrik.info.
Зарядные устройства для Li-ion-аккумуляторов. Особенности и принцип работы
Данная статья является переводом главы Battery Chargers and Fuel Gauges из руководства MOBILE POWER. Product Selector Guide от компании Maxim Integrated. В ней рассматриваются основные виды зарядных устройств и принцип их действия.
Современным мобильным устройствам для нормальной работы требуются аккумуляторы большой емкости. Как правило, в таких устройствах используют Li-ion-аккумуляторы, так как они отличаются малым весом и высокой плотностью энергии. Зарядные микросхемы от Maxim Integrated реализуют множество функций, которые позволяют создавать надежные зарядные устройства, обеспечивающие безопасную работу аккумуляторов. Кроме того, датчики уровня заряда от Maxim Integrated гарантируют высокую точность измерений благодаря уникальным алгоритмам ModelGauge™. Пользователям также предлагаются микросхемы с функцией аутентификации SHA-256, которые исключают возможность использования нелицензионных аккумуляторов. Зарядные микросхемы и датчики уровня заряда от Maxim Integrated обеспечивают эффективность, точность и безопасность при работе с Li-ion-аккумуляторами (Рис. 1).
Рис. 1. Зарядные микросхемы и датчики уровня заряда от Maxim Integrated отвечают самым жестким требованиям безопасности, предъявляемым при работе с Li-ion-аккумуляторами
Особенности процесса заряда Li-ion-аккумуляторов
Оптимальный алгоритм заряда является обязательным условием долгого срока службы для всех типов аккумуляторов. Кроме того, при работе с Li-ion-аккумуляторами требуется особая осторожность, так как их неправильная зарядка может привести к катастрофическим последствиям. Для достижения высокого уровня безопасности зарядные микросхемы от Maxim Integrated разбивают процесс заряда Li-ion-аккумуляторов на три этапа: этап подготовки (prequalifcation), этап быстрой зарядки (fast-charging), этап завершения зарядки (Top-off) (рис. 2). В некоторых случаях для повышения уровня защиты аккумулятора и увеличения эффективности процесс заряда может быть разделен на большее число этапов.
Рис. 2. Для обеспечения безопасности процесс зарядки аккумулятора разбивается на несколько этапов
Если Li-ion-аккумулятор находится в состоянии глубокого разряда, то его нельзя сразу заряжать большим током, так как это может привести к повреждению элемента питания. По этой причине разряженный аккумулятор проходит этап подготовки. На этом этапе для обеспечения безопасности выполняется медленная зарядка аккумулятора малым током с точным контролем напряжения. Аккумулятор плавно заряжается до тех пор, пока его напряжение не поднимется выше заданного значения. Как только аккумулятор зарядится до безопасного уровня, начинается этап быстрой зарядки.
На этапе быстрой зарядки аккумулятор сначала заряжается повышенным постоянным током. Величина тока определяется емкостью аккумулятора и требуемым временем заряда. Производители аккумуляторов часто указывают максимальный ток, который может использоваться в процессе заряда. Ограничение тока заряда, в свою очередь, приводит к ограничению минимальной длительности безопасного заряда аккумулятора. После первой фазы быстрой зарядки с повышенным током следует фаза завершения быстрой зарядки. Зарядные устройства от Maxim Integrated предлагают широкий спектр методов завершения быстрой зарядки (подробнее о них рассказывается в следующем пункте). На рис. 2 представлен вариант с постоянным напряжением и плавным уменьшением тока.
На заключительном этапе выполняется плавное завершение зарядки (top-o?). При этом аккумулятор также заряжается при постоянном напряжении. Длительность этапа определяется таймером, который по окончании счета отключает ток заряда. Эта стадия призвана очень аккуратно и безопасно довести уровень заряда аккумулятора до максимального значения.
Методы завершения этапа быстрой зарядки
Вторая фаза этапа быстрой зарядки может проходить по различным сценариям с учетом различных требований. Перечень требований обычно определяется индивидуальными электрохимическими особенностями заряжаемого аккумулятора. Ниже приведен список вариантов окончания процесса быстрой зарядки при работе с Li-ion-аккумуляторами.
Вариант с ограничением по току – устанавливает максимальный предел зарядного тока. Зарядное устройство продолжает поддерживать максимальный постоянный ток до тех пор, пока не будет достигнуто максимальное напряжение и/ или не истечет время, задаваемое таймером. Максимальное напряжение и интервал таймера являются регулируемыми параметрами, что обеспечивает гибкость данного метода.
Данные параметры настраиваются либо аппаратно (например, с помощью внешних резисторов), либо программно с помощью интерфейсов I2C/ SMBus. Таким образом, метод с ограничением по току обеспечивает и быструю зарядку, и высокую гибкость.
Вариант с ограничением минимального тока зарядки. Зарядные устройства, использующие такой метод, в начале этапа быстрого заряда устанавливают фиксированный постоянный ток. После того как напряжение аккумулятора достигает заданного порогового значения, ток заряда начинает уменьшаться. Зарядка заканчивается после достижения указанного минимального значения зарядного тока.
Вариант с внешним управлением – зарядные устройства, использующие такой метод, обычно имеют вход для управления зарядным током. Это позволяет разработчикам реализовывать собственные алгоритмы зарядки с использованием внешнего микроконтроллера. Эти устройства отличаются простотой и гибкостью, что делает их интересными для самых разных приложений
Вариант Smart Battery Control – метод, используемый при работе с интеллектуальными аккумуляторами со встроенной функцией управления зарядом. Согласно спецификации Smart Battery Control управление зарядом таких аккумуляторов осуществляется с помощью шины SMBus. Для получения подробной информации по данному методу управления следует обратиться к документу Smart Battery Charger Specifcation Revision 1.1.
Вариант с ограничением по времени. При использовании данного метода процесс зарядки заканчивается по таймеру. Таймер начинает отсчет времени в начале фазы зарядки. Этот метод также используется для защиты от перезаряда.
Вариант с ограничением максимальной температуры. В данном случае зарядка прекращается при достижении заданной температуры аккумулятора. Контроль температуры предотвращает перегрев аккумулятора, что обеспечивает его защиту. Для измерения температуры аккумулятор должен иметь встроенный датчик температуры, например, термистор.
Линейные и импульсные зарядные устройства
Зарядные устройства могут использовать различные топологии, каждая из которых оказывается оптимальной с учетом тех или иных требований. Мобильные устройства, как правило, используют низковольтные микросхемы и компоненты, для питания которых достаточно низковольтных аккумуляторов. По этой причине зарядные устройства обычно являются понижающими преобразователями. Для понижения напряжения и регулирования тока можно применять как линейные, так и импульсные преобразователи.
Линейные зарядные устройства модулируют сопротивление встроенного МОП-транзистора, тем самым управляя зарядным током аккумулятора. Импульсные зарядные устройства представляют собой понижающие преобразователи, позволяющие управлять током заряда аккумулятора за счет изменения коэффициентом заполнения или частоты ШИМ-сигнала. Выходной ШИМ-сигнал таких преобразователей дополнительно фильтруется с помощью внешних фильтров для получения стабильного напряжения и требуемого тока.
У линейных и импульсных зарядных устройств есть достоинства и недостатки. Рассмотрим их подробнее.
Преимущества линейных зарядных устройств:
- Низкая стоимость
- минимальное число компонентов
- не требуются индуктивности и трансформаторы
- Компактные размеры
- для работы требуются только входные/ выходные конденсаторы
- не требуется фильтрация
- Низкий уровень собственных помех
Преимущества импульсных зарядных устройств:
- Высокий зарядный ток > 1А. Зарядный ток ограничен только максимальным током полевых транзисторов
- широкий диапазон входных напряжений ограничен только минимальным и максимальным значением коэффициента заполнения
- Высокая эффективность
- минимальные собственные потери
- низкое тепловыделение
Пример реализации зарядного устройства для портативных игровых устройств
Рассмотрим пример построения зарядного устройства для портативной игровой консоли с аккумуляторным питанием.
Быстрорастущая индустрия видеоигр характеризуется постоянным появлением на рынке все более компактных игровых консолей с расширенным функционалом. Портативные игровые устройства поддерживают обработку потокового видео, определяют движения в реальном времени, используют беспроводные каналы связи, обсчитывают показания множества периферийных датчиков. Очевидно, что для таких устройств необходимы аккумуляторы большой емкости. В свою очередь это влечет за собой необходимость реализации зарядного устройства, которое должно обеспечивать высокий ток в фазе быстрой зарядки и при этом сохранять компактные габариты. Зарядная микросхема MAX8971 может выдавать ток быстрой зарядки до 1,55 А и имеет корпусное исполнение WLP размером всего 2,18 мм х 1,62 мм. Встроенный LDO-стабилизатор обеспечивает питание для малопотребляющих USB PHY. MAX8971 соответствует JEITA, что гарантирует безопасную зарядку в широком диапазоне температур. Кроме того, MAX8971 поддерживает режим GSM test mode, который обеспечивает пиковый импульсный ток 2,3 А на частоте 217 Гц с рабочим циклом 12,5%. Данный режим позволяет производителю проверять работоспособность аккумулятора при работе с переходными нагрузками, ожидаемыми от приемопередатчиков GSM. Это повышает надежность игровых устройств с функциями определения местоположения и/ или передачи данных. На рисунке 3 показан пример использования MAX8971 в составе типового портативного игрового устройства.
Рис. 3. Типовая портативная игровая система с зарядным устройством MAX8971
Источник: https://pdfserv.maximintegrated.com
Зарядка литиевых батарей | RELiON
Замена может быть сложной даже при переходе со свинцово-кислотной батареи на литиево-железо-фосфатную. Все мы знаем, что правильная зарядка аккумулятора имеет решающее значение и напрямую влияет на производительность и срок службы аккумулятора. Давайте посмотрим, как зарядить аккумулятор RELiON LiFePO4, чтобы получить максимальную прибыль.
Условия зарядки
Как и ваш мобильный телефон, вы можете заряжать литий-железо-фосфатные батареи в любое время. Очевидно, что если вы дадите им полностью разрядиться, вы не сможете использовать их, пока они не зарядятся. Важно отметить, что, в отличие от свинцово-кислотных аккумуляторов, литий-железо-фосфатные аккумуляторы не повреждаются, если остаются в частично заряженном состоянии, поэтому вам не нужно беспокоиться о том, чтобы зарядить их сразу после использования. И они не обладают эффектом памяти, поэтому вам не нужно полностью их разряжать перед зарядкой.
АккумуляторыRELiON LiFePO4 могут безопасно заряжаться при температуре от -4 ° F до 131 ° F (0 ° C — 55 ° C), однако мы рекомендуем заряжать при температуре выше 32 ° F (0 ° C).Если вы все-таки заряжаете при температурах ниже нуля, вы должны убедиться, что ток заряда составляет 5-10% от емкости аккумулятора.
Как зарядить литий-железо-фосфатный аккумулятор
Идеальный способ зарядить LiFePO4 аккумулятор — использовать зарядное устройство для литий-железо-фосфатного аккумулятора, так как оно будет запрограммировано с соответствующими пределами напряжения. Большинство зарядных устройств для свинцово-кислотных аккумуляторов прекрасно справятся со своей задачей. Профили заряда AGM и GEL обычно находятся в пределах напряжения литий-железо-фосфатной батареи.Зарядные устройства для влажных свинцово-кислотных аккумуляторов, как правило, имеют более высокий предел напряжения, что может привести к переходу системы управления батареями (BMS) в режим защиты. Это не повредит аккумулятор, однако может вызвать появление кодов неисправностей на дисплее зарядного устройства.
Параллельная зарядка аккумуляторов Передовой опыт
При параллельном подключении литиевых батарей лучше заряжать каждую батарею по отдельности, прежде чем выполнять параллельное (ые) соединение (я). Если у вас есть вольтметр, проверьте напряжение через пару часов после завершения зарядки и убедитесь, что оно находится в пределах 50 мВ (0.05V) друг друга, прежде чем подключать их параллельно. Это минимизирует вероятность дисбаланса между батареями и, в конечном итоге, максимизирует производительность системы. Если со временем вы заметите, что емкость вашей аккумуляторной батареи уменьшилась, отключите параллельные соединения и зарядите каждую батарею по отдельности, а затем снова подключите.
Последовательная зарядка аккумуляторов Передовой опыт
Последовательное соединение литиевых батарей во многом похоже на их параллельное соединение, лучше всего заряжать каждую батарею по отдельности, проверять напряжение и убедиться, что оно находится в пределах 50 мВ (0.05V) друг от друга перед последовательным подключением.
Настоятельно рекомендуется заряжать литиевые батареи последовательно с помощью универсального зарядного устройства. Это означает, что каждая батарея заряжается одновременно, но полностью независимо друг от друга. В некоторых приложениях это непрактично, поэтому RELiON предлагает батареи на 24 В и 48 В, чтобы снизить потребность в нескольких батареях, подключенных последовательно.
Что делать при хранении?
Литий-железо-фосфатные батареи намного проще хранить, чем свинцово-кислотные. При кратковременном хранении от 3 до 6 месяцев ничего делать не нужно. В идеале перед хранением оставьте их заряженными примерно на 50%. Для длительного хранения лучше всего хранить их с уровнем заряда 50%, а затем циклически разряжать их, заряжать и затем частично разряжать примерно до 50% каждые 6-12 месяцев.
Основные различия между литий-железо-фосфатными и свинцово-кислотными аккумуляторами при зарядке
Литиевые батареимогут заряжаться при гораздо более высоком токе, и они заряжаются более эффективно, чем свинцово-кислотные, что означает, что их можно заряжать быстрее.Литиевые батареи не нужно заряжать, если они частично разряжены. В отличие от свинцово-кислотных аккумуляторов, которые при частичном заряде сульфатируются, что резко снижает производительность и срок службы.
Литиевые батареиRELiON поставляются с внутренней системой управления батареями (BMS), которая защищает батарею от перезарядки, в то время как свинцово-кислотные батареи могут быть перезаряжены, что увеличивает скорость коррозии сети и сокращает срок службы батареи.
Для получения дополнительных сведений о зарядке литиевых батарей RELiON ознакомьтесь с нашими инструкциями по зарядке и свяжитесь с нами, если у вас возникнут какие-либо вопросы.
Об авторе:
Кристина Федорова — вице-президент по управлению продуктами и стратегии в RELiON Battery. Обладая более чем 23-летним опытом работы с аккумуляторами глубокого цикла, в том числе свинцово-кислотными и AGM, а также литиевыми аккумуляторами, Кристина является инженером с опытом тестирования аккумуляторов, разработки продуктов и управления ими, а также технической поддержки. Следите за Кристин в LinkedIn здесь.
Как заряжать литий-железо-фосфатные батареи (LiFePO4)
Если вы недавно приобрели или исследуете литий-железо-фосфатные батареи (в этом блоге они называются литиевыми или LiFePO4), вы знаете, что они обеспечивают больше циклов, равномерное распределение мощности и весят меньше, чем сопоставимые герметичные свинцово-кислотные батареи (SLA ) аккумулятор. Знаете ли вы, что они также могут заряжаться в четыре раза быстрее, чем SLA? Но как именно заряжать литиевую батарею?
Power Sonic рекомендует выбирать зарядное устройство, разработанное с учетом химического состава вашей батареи. Это означает, что при зарядке литиевых батарей мы рекомендуем использовать литиевые зарядные устройства, такие как LiFe Charger Series от Power Sonic.
МОЖЕТ ЛИ СВИНЦОВО-КИСЛОТНОЕ ЗАРЯДНОЕ УСТРОЙСТВО ЗАРЯДИТЬ ЛИТИЕВУЮ БАТАРЕЮ?
Как вы узнаете из этого блога, профили зарядки SLA и лития имеют много общего.Тем не менее, следует проявлять особую осторожность при использовании зарядных устройств SLA для зарядки литиевых батарей, поскольку они могут повредить литиевую батарею при недостаточной зарядке или снизить ее емкость со временем. Есть много различий при сравнении литиевых батарей и батарей SLA.
ПРОФИЛЬ ЗАРЯДКИ АККУМУЛЯТОРА ДЛЯ АККУМУЛЯТОРА С УПЛОТНЕНИЕМ (SLA)
Давайте вернемся к основам зарядки герметичных свинцово-кислотных аккумуляторов. Наиболее распространенный метод зарядки представляет собой трехэтапный подход: начальный заряд (постоянный ток), дополнительный заряд насыщения (постоянное напряжение) и плавающий заряд.
В Stage 1 , как показано выше, ток ограничен, чтобы избежать повреждения батареи. Скорость изменения напряжения непрерывно изменяется во время Стадии 1, в конечном итоге начиная с выхода на плато при приближении к пределу полного заряда. Перед переходом к следующему этапу решающее значение имеет постоянный ток / этап 1 заряда. Зарядка на этапе 1 обычно выполняется при токе 10–30% (0,1–0,3 ° C) от номинальной емкости аккумулятора или меньше.
Этап 2 , постоянное напряжение, начинается, когда напряжение достигает предела напряжения (14.7 В для быстрой зарядки аккумуляторов SLA). Во время этого этапа потребление тока постепенно уменьшается по мере продолжения максимального заряда батареи. Этот этап завершается, когда ток падает ниже 5% от номинальной емкости батареи. Последний этап, плавающий заряд, необходим для предотвращения саморазряда и потери емкости аккумулятора.
Если аккумулятор используется в режиме ожидания, подзарядка необходима для обеспечения полной емкости аккумулятора, когда требуется разрядка аккумулятора.В приложении, где батарея находится на хранении, плавающая зарядка поддерживает батарею SLA на уровне 100% заряда (SOC), что необходимо для предотвращения сульфатирования батареи, что, таким образом, предотвращает повреждение пластин батареи.
ПРОФИЛЬ ДЛЯ ЗАРЯДКИ АККУМУЛЯТОРА LIFEPO4
Аккумулятор LiFePO4 использует те же ступени постоянного тока и постоянного напряжения, что и аккумулятор SLA. Несмотря на то, что эти две ступени похожи и выполняют одну и ту же функцию, преимущество батареи LiFePO4 состоит в том, что скорость заряда может быть намного выше, что значительно сокращает время зарядки.
Этап 1 Зарядка батареи обычно выполняется при токе 30% -100% (от 0,3 ° C до 1,0 ° C) от номинальной емкости аккумулятора. Для завершения этапа 1 приведенной выше таблицы SLA требуется четыре часа. На этап 1 литиевой батареи может потребоваться всего один час, что делает литиевую батарею доступной для использования в четыре раза быстрее, чем SLA.
Этап 2 необходим в обоих химикатах, чтобы довести аккумулятор до 100% SOC. Батареи SLA требуется 7 часов для завершения этапа 2, тогда как литиевая батарея может занять всего 15 минут.В целом литиевая батарея заряжается за четыре часа, а SLA-батарея обычно занимает 10. В циклических приложениях время зарядки очень важно. Литиевую батарею можно заряжать и разряжать несколько раз в день, тогда как свинцово-кислотную батарею можно полностью перезаряжать только один раз в день.
Там, где они становятся разными по профилям зарядки, это Stage 3 . Литиевая батарея не нуждается в плавающем заряде, как свинцово-кислотная. При долгосрочном хранении литиевые батареи не должны храниться при 100% SOC, и поэтому их можно поддерживать в полном цикле (заряжать и разряжать) один раз каждые 6–12 месяцев до 30–70% SOC.
В резервных приложениях, поскольку скорость саморазряда лития очень мала, литиевая батарея будет работать почти до полной емкости, даже если она не заряжалась в течение 6–12 месяцев. Для более длительных периодов времени рекомендуется система зарядки, которая обеспечивает подзарядку в зависимости от напряжения.
ХАРАКТЕРИСТИКИ ЗАРЯДА ЛИТИЕВОЙ БАТАРЕИ
Настройки напряжения и тока во время зарядки
Номинальное напряжение полной зарядки 12 В SLA-батареи составляет около 13.1, а полное напряжение заряда литиевой батареи 12,8 В составляет около 13,4. Аккумулятор будет поврежден только в том случае, если приложенное напряжение зарядки значительно выше, чем напряжение полной зарядки аккумулятора.
Это означает, что уровень заряда батареи SLA должен быть ниже 14,7 В для стадии 2 зарядки и ниже 15,2 В для литиевой. Плавающая зарядка требуется только для батареи SLA, рекомендуется около 13,8 В. Исходя из этого, диапазона напряжения заряда от 13,8 В до 14,7 В достаточно для зарядки любой батареи без повреждения. При выборе зарядного устройства для любого химического соединения важно выбрать такое, которое будет находиться в пределах, указанных выше.
Зарядные устройствавыбираются в соответствии с емкостью заряжаемой батареи, поскольку ток, используемый во время зарядки, зависит от номинальной емкости батареи. Литиевую батарею можно заряжать со скоростью 1С, тогда как свинцово-кислотную батарею следует хранить при температуре ниже 0,3С. Это означает, что литиевый аккумулятор емкостью 10 Ач обычно можно заряжать при токе 10 А, а свинцово-кислотный аккумулятор емкостью 10 А · ч можно заряжать при токе 3 А.
Ток отключения заряда составляет 5% от емкости, поэтому ток отключения для обеих батарей будет 0,5 А. Обычно ток на клеммах определяется зарядным устройством.
Универсальные зарядные устройстваобычно имеют функцию выбора химического состава. Эта функция выбирает оптимальный диапазон напряжения зарядки и определяет, когда аккумулятор полностью заряжен. Если он заряжает литиевую батарею, зарядное устройство должно отключиться автоматически. Если он заряжает аккумулятор SLA, он должен переключиться на плавающий заряд.
Литиевые батареи заменяют герметичные свинцово-кислотные в поплавковых устройствах
Литиевые батареи очень часто помещают в приложения, в которых батареи SLA обычно поддерживаются на плавающем заряде, например в системе ИБП. Были некоторые опасения, безопасно ли это для литиевых батарей. Обычно допустимо использовать стандартное зарядное устройство SLA с постоянным напряжением с нашими литиевыми батареями, если оно соответствует определенным стандартам.
При использовании зарядного устройства SLA с постоянным напряжением,
Зарядное устройство должно соответствовать следующим условиям:
— Зарядное устройство не должно содержать настройки десульфатирования.
— Напряжение быстрой зарядки 14.7V
— Рекомендуемое напряжение плавающего заряда 13,8V
В качестве примечания, некоторые интеллектуальные или многоступенчатые зарядные устройства SLA имеют функцию, которая определяет напряжение холостого хода (OCV). Чрезмерно разряженная литиевая батарея, находящаяся в режиме защиты, будет иметь OCV, равное 0. Этот тип зарядного устройства предполагает, что эта батарея разряжена, и не будет пытаться ее зарядить. Зарядное устройство с литиевой настройкой попытается восстановить или «разбудить» чрезмерно разряженную литиевую батарею.
Долгосрочное хранение
Если вам нужно хранить батареи в хранения в течение длительного периода, есть несколько вещей, которые следует учитывать в качестве Требования к хранению отличаются для SLA и литиевых батарей.Есть два Основные причины, по которым хранение SLA по сравнению с литиевой батареей отличается.
Первая причина в том, что химия аккумулятор определяет оптимальный SOC для хранения. Для батареи SLA вы хотите хранить его как можно ближе к 100%, чтобы избежать сульфатирования, которое вызывает скопление кристаллов сульфата на пластинах. Наращивание кристаллов сульфата уменьшит емкость аккумулятора.
Для литиевой батареи структура положительного вывода становится нестабильной при истощении электронов в течение длительного периода времени. Нестабильность положительного вывода может привести к необратимой потере емкости. По этой причине литиевый аккумулятор следует хранить около 50% SOC, который равномерно распределяет электроны на положительных и отрицательных выводах.
Второе влияние на хранение — это скорость саморазряда. Высокая скорость саморазряда батареи SLA означает, что вы должны поставить ее на постоянный или непрерывный заряд, чтобы поддерживать его как можно ближе к 100% SOC, чтобы избежать необратимой потери емкости. Для литиевой батареи, которая имеет гораздо более низкую скорость разряда и не требует 100% SOC, вы можете обойтись с минимальной поддерживающей зарядкой.
Рекомендуемые зарядные устройства
Всегда важно соответствовать вашему зарядное устройство для обеспечения правильного тока и напряжения для аккумулятора, который вы используете зарядка. Например, вы не будете использовать зарядное устройство на 24 В для зарядки аккумулятора 12 В. Также рекомендуется использовать зарядное устройство, соответствующее вашей батарее. химии, за исключением примечаний сверху о том, как использовать зарядное устройство SLA с литиевая батарейка.
Если у вас есть вопросы о существующем совместимость зарядного устройства с одним из наших продуктов, позвоните нам или отправьте нам электронное письмо.Мы будем рады помочь вам с зарядкой.
Могу ли я зарядить литиевый аккумулятор свинцово-кислотным зарядным устройством?
Можно ли зарядить литиевый аккумулятор свинцово-кислотным зарядным устройством?
Это вопрос, который нам каждый день задает широкая публика. Литиевые батареи не похожи на свинцово-кислотные, и не все зарядные устройства одинаковы.
Литиевая батарея LiFePO4 на 12 В, полностью заряженная до 100%, будет поддерживать напряжение около 13.3-13,4в. Его свинцово-кислотный двоюродный брат будет примерно 12,6–12,7 В. Литиевая батарея при 20% емкости будет выдерживать напряжение около 13 В, ее свинцово-кислотная родственница будет около 11,8 В при той же емкости. Как видите, мы играем с очень узким диапазоном напряжения для лития, менее 0,5 В на 80% емкости.
Зарядное устройство для лития LiFePO4 — это устройство ограничения напряжения, которое имеет сходство со свинцово-кислотной системой. Отличия от литий-ионных аккумуляторов заключаются в более высоком напряжении на элемент, более жестких допусках по напряжению и отсутствии непрерывного или плавающего заряда при полной зарядке.В то время как свинцово-кислотный предлагает некоторую гибкость с точки зрения отключения напряжения, производители элементов LiFePO4 очень строго подходят к правильной настройке, потому что литий-ионные аккумуляторы не могут выдерживать перезаряд. Так называемого чудо-зарядного устройства, обещающего продлить срок службы батареи и получить дополнительную емкость с помощью импульсов и других уловок, не существует. LiFePO4 — это «чистая» система, которая берет только то, что может поглотить.
Литиевые зарядные устройстваоснованы на алгоритме заряда CV / CC (постоянное напряжение / постоянный ток). Зарядное устройство ограничивает количество тока до предварительно установленного уровня, пока аккумулятор не достигнет предварительно установленного уровня напряжения.Затем ток уменьшается, когда аккумулятор полностью заряжается. Эта система обеспечивает быструю зарядку без риска перезарядки и подходит для литий-ионных и других типов батарей.
Алгоритм литиевого зарядного устройства ePOWER от Enerdrive
Как видно из приведенного выше графика заряда, литиевая батарея имеет резкий рост напряжения в самом конце цикла зарядки. На этом этапе зарядный ток очень быстро падает, и зарядное устройство переключается в режим питания.
Большинство свинцово-кислотных интеллектуальных зарядных устройств в наши дни имеют особые алгоритмы зарядки, подходящие для залитых / AGM / гелевых аккумуляторов, которые обычно требуют трехступенчатого процесса зарядки: объемный / абсорбционный / плавающий. Когда зарядное устройство переходит в объемное состояние, оно обычно заряжает свинцово-кислотный аккумулятор полным током примерно до 80% емкости. В этот момент зарядное устройство перейдет в стадию абсорбции.
Типичный алгоритм свинцово-кислотного зарядного устройства
На этой фазе зарядки зарядное устройство будет поддерживать максимальное напряжение для выбранной батареи и заряжать батарею пониженным током, поскольку внутреннее сопротивление батареи не может принять ток заряда на максимальной мощности.Как только ток снизится примерно до ≤10% от общей выходной мощности зарядного устройства, он перейдет в плавающее состояние. Стадия абсорбции также зависит от времени: если зарядное устройство все еще находится в фазе абсорбции через 4 часа, зарядное устройство автоматически перейдет в стадию поплавка. Обычно это происходит, если размер зарядного устройства меньше размера для аккумуляторной батареи, или если в системе работают нагрузки, которые не позволяют зарядному устройству снизить ток ниже точки перехода.
Большинство, если не все свинцово-кислотные зарядные устройства имеют режим выравнивания. На некоторых зарядных устройствах этот режим может быть автоматическим, и его нельзя отключить. Литиевые батареи не требуют выравнивания напряжения. Применение выравнивающего заряда 15 В + к литиевой батарее приведет к необратимому повреждению элементов.
Другая функция свинцово-кислотных зарядных устройств — это возврат к основному напряжению. Напряжение полностью заряженных свинцово-кислотных аккумуляторов составляет около 12,7 В. Когда зарядное устройство находится в плавающем режиме, оно будет поддерживать заданное напряжение батареи (обычно в пределах 13,3-13,8 В в зависимости от типа батареи), а также поддерживать любые нагрузки, работающие в это время.Если нагрузка превысит максимальную выходную мощность зарядного устройства в плавающем режиме, то напряжение аккумулятора начнет снижаться. Как только напряжение достигнет значения «возврат к основному», зарядное устройство начнет новый цикл зарядки и начнет повторную зарядку аккумулятора.
Напряжение возврата в основной заряд свинцово-кислотных зарядных устройств обычно составляет 12,5–12,7 В. Это напряжение для литиевой батареи слишком низкое. При этом напряжении литиевая батарея будет разряжена примерно до 10-15% уровня заряда. Алгоритмы заряда лития обычно устанавливают возврат к основному напряжению 13.1-13,2 В. Это еще одна причина того, что стандартное свинцово-кислотное зарядное устройство не подходит для литиевых батарей.
Некоторые свинцово-кислотные зарядные устройства «проверяют» аккумулятор при запуске, чтобы определить напряжение / сопротивление аккумулятора. На основе полученной информации зарядное устройство затем определяет, с какой фазы зарядки начать. Поскольку литий будет удерживать напряжение выше 13 + В, некоторые свинцово-кислотные зарядные устройства будут рассматривать это как почти полную батарею и переходить в плавающую стадию и полностью обходить стадию зарядки. все вместе.
Если вы хотите использовать свинцово-кислотное зарядное устройство на литиевой батарее, вы можете, ОДНАКО, вы НЕ должны использовать свинцово-кислотное зарядное устройство, если оно имеет автоматический «режим выравнивания», который нельзя отключить постоянно. Свинцово-кислотное зарядное устройство, которое можно настроить на зарядку не выше 14,6 В, можно использовать для обычной зарядки, а затем ДОЛЖНО быть отключено после полной зарядки аккумулятора. ЗАПРЕЩАЕТСЯ оставлять подключенным свинцово-кислотное зарядное устройство для обслуживания или хранения аккумулятора, потому что большинство из них НЕ будет поддерживать надлежащий алгоритм заряда литиевых аккумуляторов, и это приведет к повреждению аккумулятора, и это не покрывается гарантией аккумулятора.
В конечном счете, использование зарядного устройства с особым алгоритмом зарядки литиевых батарей — лучший вариант для максимальной производительности и срока службы любой литиевой батареи.
СМОТРИТЕ НИЖЕ НАШ АССОРТИМЕНТ ЗАРЯДНЫХ УСТРОЙСТВ, ВКЛЮЧАЯ ЛИТИЕВЫЕ ЗАРЯДНЫЕ УСТРОЙСТВА:
Вот правда, лежащая в основе самых больших (и самых глупых) мифов о батареях
Для объекта, который почти никогда не отрывается от наших ладоней, смартфон иногда может показаться загадочным волшебством. И нигде это не проявляется более ярко, чем когда дело доходит до непостоянной батареи, которая разряжается на 20 процентов быстрее, чем вы можете отключить Bluetooth и полностью избавиться от призрака после пары лет зарядки.
Чтобы исправить эти недостатки, мы придумали всевозможные мифы о батареях. Независимо от того, избегаете ли вы оставлять телефон на зарядке на ночь или отключать его, чтобы дать батарее небольшой перерыв, мы всегда ищем способы немного повысить производительность наших перегруженных батарей, даже если этот метод не дает ужасных результатов. много смысла.
Чтобы помочь отделить науку от фольклора, мы попросили эксперта по батареям вынести свой вердикт по некоторым из наиболее распространенных мифов, объяснить научные данные, стоящие за слухами, и, возможно, дать нам несколько мудрых советов по продлению срока службы наших смартфонов. .
Даже когда ваша батарея разряжена на 100 процентов, все еще есть место для некоторого дополнительного заряда
True
В вашем смартфоне батареи больше заряда, чем показывает отображаемый процент, но если вы использовали этот заряд, вы бы закончили резко сокращая общий срок службы батареи. В основе этой проблемы лежит тонкий компромисс между производителями. Увеличение доступного заряда внутри батареи сокращает количество раз, когда батарея может быть заряжена и разряжена без внутренних повреждений.Чтобы батареи хватило на сотни или тысячи циклов зарядки, производители устанавливают ограничения на количество разряда батареи.
Чтобы понять почему, вам нужно немного узнать о том, как работают батареи. Внутренности большинства литий-ионных аккумуляторов, таких как аккумуляторы в смартфонах, ноутбуках и электромобилях, состоят из двух слоев: один из оксида лития-кобальта, а другой — из графита. Энергия высвобождается, когда ионы лития перемещаются из слоя графита в слой оксида лития-кобальта.Когда вы заряжаете аккумулятор, вы просто перемещаете эти ионы лития обратно в другую сторону — из слоя оксида лития-кобальта обратно в графит.
Вот где мы подходим к проблеме со сроком службы батареи и циклами зарядки. Переместите слишком много этих ионов лития из слоя оксида лития-кобальта, и вся структура слоя испортится. «Атомная структура материала фактически разваливается, если удалить весь этот литий», — говорит Кент Гриффит, исследователь накопления энергии в Кембриджском университете.
Итак, хотя можно зарядить батарею более чем на 100 процентов, единственный способ сделать это — извлечь больше этих важных ионов лития. «Это было бы похоже на вытаскивание всех опор из пола здания», — говорит Гриффит. Вы можете извлечь ионы лития, но удачи с их возвращением, если вы испортили внутреннюю структуру.
Вот почему производители устанавливают ограничения на количество заряда своих аккумуляторов. В большинстве случаев они настроены таким образом, что только около половины лития в слое оксида лития-кобальта удаляется во время одной полной зарядки.«Ваша батарея могла бы дать вам больше заряда, если бы вы удалили половину лития, но вы не сможете делать это очень много раз».
Взрывная гонка за полностью изобретать аккумулятор для смартфонаИспользование Wi-Fi и Bluetooth в фоновом режиме сильно расходует заряд батареи
True
Помимо экрана, одним из самых больших расходов на время автономной работы является энергия, которую ваш телефон тратит, пытаясь найти и подключиться к Wi-Fi или сети передачи данных. Если вы когда-нибудь замечали, что батарея резко разряжается в поезде, вероятно, это связано с тем, что ваше устройство работает сверхурочно, чтобы подключиться к мобильной сети. «Если вы можете подключиться к чему-то стабильному, например, если в поезде есть Wi-Fi, вероятно, лучше подключиться к нему», — говорит Гриффит. Уменьшение яркости экрана и время, необходимое вашему телефону для перехода в спящий режим, также являются простыми способами продлить срок службы батареи.
Использование неофициального зарядного устройства приводит к повреждению вашего телефона.
True
Не все зарядные устройства для телефонов одинаковы, и это может отрицательно сказаться на сроке службы аккумулятора вашего телефона.Зарядные устройства имеют всевозможные элементы управления, которые ограничивают количество подаваемого тока и останавливают его зарядку, когда батарея полностью заряжена, но некоторые зарядные устройства сторонних производителей могут не иметь таких строгих настроек безопасности.
И если на батарею подается слишком большой ток, это может означать, что вырвется слишком много ионов лития и приведет к такому же виду деградации, о котором вы читали ранее. «Нельзя сказать, что все зарядные устройства сторонних производителей будут такими плохими, — отмечает Гриффит, — но вам все же, вероятно, лучше придерживаться официальной модели.
Зарядка телефона через компьютер или ноутбук приведет к повреждению аккумулятора.
Неверно
Во всяком случае, более медленная зарядка, вероятно, хороша для аккумуляторов, говорит Гриффит. Это снова возвращается к ионам лития — вы чувствуете здесь тему? Чем медленнее вы заряжаете аккумулятор, тем меньше нагрузка на ионы лития и структуры, принимающие их, и тем меньше вероятность повреждения аккумулятора. Вот почему производители устанавливают ограничения на устройства, чтобы они не заряжались слишком быстро.
Время от времени выключение устройства помогает продлить срок службы батареи
Неверно
Это тоже миф, но не полностью необоснованный. До того, как литий-ионные батареи стали повсеместными, предпочтительными перезаряжаемыми батареями были никель-металлогидридные батареи. В этих батареях было невозможно получить точное показание уровня заряда батареи без полной разрядки и последующей подзарядки батареи. «Если бы они были наполовину разряжены и перезаряжались, вы бы потерялись там, где были.Так что вам придется полностью разрядиться, чтобы отслеживать, — говорит Гриффит.
В литий-ионных аккумуляторах это уже не так. Современные батареи способны считывать свое состояние независимо от их уровня заряда, и когда ваше устройство не используется, нагрузка на батарею почти такая же, как если бы она была полностью отключена, поэтому вы не будете сильно отдавать батарею перерыва, если вы все равно выключили.
Китай берет на себя превосходство электромобилей Tesla (и побеждает)Батареи хуже работают в холодном состоянии.
Ложь (в основном)
На самом деле, все наоборот. «Использование аккумулятора при низких температурах и поддержание его в прохладном состоянии значительно увеличивает срок службы аккумулятора», — говорит Гриффит. Воздействие высоких температур на аккумулятор — гораздо более вероятный способ сократить срок его службы. «Вы же не хотите, чтобы ваша батарея была горячей. Вы не хотите, чтобы он перегревался во время зарядки, вы не хотите оставлять его на солнце или в машине ».
Но почему батареи так ненавидят тепло? Причина кроется в жидких электролитах, которые заполняют промежутки между слоями оксида лития-кобальта и графита (помните их?) И не дают двум компонентам соприкасаться.Это то, через что проходят ионы лития, когда они перемещаются между двумя слоями, поэтому это очень важно для конструкции батареи.
При высоких температурах эти жидкие электролиты начинают разрушаться, вызывая разрушение аккумулятора в течение всего нескольких сотен циклов зарядки. Это серьезная проблема для аккумуляторов электромобилей, которые часто проводят большую часть дня, сидя на ярком солнечном свете. Однако со смартфоном, если вы обычно держите его при комнатной температуре, все в порядке.
Возможно, ваш телефон будет работать немного медленнее при низких температурах, и это связано с тем, что ионы лития движутся немного медленнее, а это означает, что аккумулятор не сможет обеспечить такое количество энергии для компонентов, если на улице очень холодно. Однако это изменение, как правило, незначительное и не связано с каким-либо необратимым повреждением аккумулятора.
Оставление зарядного устройства подключенным к стене и включенным тратит энергию
Ложь (ну, может быть, немного)
С зарядными устройствами для телефонов и другими «тупыми» кабелями, у которых просто есть провод, их, вероятно, нет потребляет энергию, если к ней не подключено какое-либо устройство.Когда дело доходит до кабелей телевизора или ноутбука — или любого зарядного устройства, к которому прикреплен большой « кирпич » — они немного умнее, поскольку они часто потребляют небольшое количество энергии, в то время как они по существу ждут, пока телевизор или другое устройство отключится. загрузка из режима ожидания. В прошлом потребление энергии этими устройствами составляло до 10 процентов от среднего счета за электроэнергию в домашнем хозяйстве, но недавние изменения в законодательстве означают, что теперь они потребляют относительно небольшое количество энергии.
Вы должны дать батарее полностью разрядиться до 0 процентов перед подзарядкой
Неверно
Как ни странно, батареи испытывают наибольшую нагрузку, когда они полностью заряжены или полностью разряжены.Настоящая золотая середина для батареи — это 50-процентный заряд, поскольку это означает, что половина подвижных ионов лития находится в слое оксида лития-кобальта, а другая половина — в слое графита. Это равновесие снижает нагрузку на аккумулятор и увеличивает количество циклов зарядки, которое он может выдержать до выхода из строя.
Итак, если вы очень заинтересованы в том, чтобы батарея работала как можно дольше, вам следует поддерживать ее заряд в пределах от 20 до 80 процентов. Это означает, что он тратит как можно меньше времени с большим количеством ионов лития, забитых в любой слой, ситуация, которая заставляет слои расширяться, оказывая на них физическую нагрузку.«Но если бы вы сделали это, вы бы получали только половину заряда каждый раз, когда использовали бы его», — говорит Гриффит. Может, тогда и нет.
100-процентная зарядка приведет к повреждению аккумулятора.
Верно (но не по той причине, которую вы думаете)
Это тесно связано с вышеупомянутым мифом. Зарядка телефона, чтобы он оставался на 100% в течение ночи, не очень хорошая новость для аккумулятора, но это не потому, что вы набираете больше заряда, чем он может выдержать. Механизм «непрерывной зарядки» отключает зарядное устройство после того, как телефон полностью заряжен, и заряжает аккумулятор только тогда, когда он немного разряжается.
Проблема в том, что вы поддерживаете уровень заряда на уровне 100 процентов, что, как мы знаем из предыдущего мифа, подвергает батарею определенной нагрузке. «Это нехорошо, — говорит Гриффит, — но производитель батарей установил [ограничения на батарею], чтобы они не причиняли вреда».
Это лучшие смартфоны на любой бюджет 2020 года.Хотите узнать больше о будущем энергетики?
Эта статья является частью нашей серии WIRED on Energy. Мы внимательно изучаем технологии и идеи, изменяющие то, как мы питаем наш мир, — от китайских автомобильных компаний, берущих на себя роль Tesla, до неиспользованных возможностей кормы.
Следите за хэштегом #WIREDonEnergy в Твиттере, чтобы быть в курсе всех наших репортажей.
Началась борьба с пожирателями энергии биткойнов
Взрывная гонка за полностью изобретать аккумулятор для смартфона
Батареи для питания летающего автомобиля вашей мечты не существует (пока)
Быстрая зарядка литий-ионного аккумулятора: обзор
Основные моменты
- •
Литература по быстрой зарядке рассматривается в многомасштабной перспективе.
- •
Учитываются экстремальные температуры и неоднородности температуры / тока.
- •
Альтернативные протоколы быстрой зарядки подвергаются критической оценке.
- •
В настоящее время отсутствуют надежные бортовые методы обнаружения литиевых покрытий.
- •
Связи между производительностью ячеек и пакетов все еще недостаточно изучены.
Реферат
В последние годы литий-ионные батареи стали предпочтительной аккумуляторной технологией для портативных устройств, электромобилей и сетевых хранилищ.В то время как все большее число производителей автомобилей вводят в свое предложение электрифицированные модели, беспокойство по поводу дальности хода и продолжительности времени, необходимого для подзарядки аккумуляторов, по-прежнему вызывают беспокойство. Известно, что высокие токи, необходимые для ускорения процесса зарядки, снижают энергоэффективность и вызывают увеличение емкости и снижение мощности. Быстрая зарядка — это многомасштабная проблема, поэтому для понимания и улучшения производительности быстрой зарядки требуется понимание от атомарного до системного.В настоящей статье содержится обзор литературы по физическим явлениям, ограничивающим скорость зарядки аккумуляторов, механизмам деградации, которые обычно возникают в результате зарядки при высоких токах, и подходам, которые были предложены для решения этих проблем. Особое внимание уделяется низкотемпературной зарядке. Представлены и критически оценены альтернативные протоколы быстрой зарядки. Изучаются последствия для безопасности, в том числе возможное влияние быстрой зарядки на характеристики теплового разгона.Наконец, выявляются пробелы в знаниях и даются рекомендации относительно направления будущих исследований. Подчеркивается необходимость разработки надежных бортовых методов обнаружения литиевого покрытия и механической деградации. Надежные стратегии оптимизации зарядки на основе моделей определены как ключ к обеспечению быстрой зарядки в любых условиях. Стратегии управления температурой для охлаждения аккумуляторов во время зарядки и их предварительного нагрева в холодную погоду признаны критически важными, с особым упором на методы, позволяющие достичь высоких скоростей и хорошей однородности температуры.
Ключевые слова
Литий-ионный аккумулятор
Быстрая зарядка
Литиевое покрытие
Протоколы зарядки
Электромобили
Рекомендуемые статьиЦитирующие статьи (0)
© 2019 Авторы. Опубликовано Elsevier BV
Рекомендуемые статьи
Ссылки на статьи
Фотоускоренная быстрая зарядка литий-ионных аккумуляторов
Канг, К., Менг, Й.С., Брегер, Дж., Грей, CP & Ceder, Г. .Электроды большой мощности и большой емкости для литиевых аккумуляторных батарей. Наука 311 , 977–980 (2006).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Rolison, D. R. et al. Многофункциональные трехмерные наноархитектуры для хранения и преобразования энергии. Chem. Soc. Ред. 38 , 226–252 (2009).
CAS Статья Google ученый
Ван Ю. и Цао Г. Разработка наноструктурированных катодных материалов для высокоэффективных литий-ионных батарей. Adv. Mater. 20 , 2251–2269 (2008).
CAS Статья Google ученый
Брюс П.Г., Скросати Б. и Тараскон Дж .-М. Наноматериалы для литиевых аккумуляторных батарей. Angew. Chem. Int. Эд. 47 , 2930–2946 (2008).
CAS Статья Google ученый
Гуденаф, Дж. Б. и Парк, К.-С. Литий-ионная аккумуляторная батарея: перспектива. J. Am. Chem. Soc. 135 , 1167–1176 (2013).
CAS Статья Google ученый
Уиттингем М.С. Литиевые батареи и катодные материалы. Chem. Ред. 104 , 4271–4302 (2004).
CAS Статья Google ученый
Эллис, Б. Л., Ли, К. Т. и Назар, Л. Ф. Материалы положительных электродов для литий-ионных и литиевых батарей. Chem. Mater. 22 , 691–714 (2010).
CAS Статья Google ученый
Маром, Р., Амальрадж, С. Ф., Лейфер, Н., Джейкоб, Д. и Аурбах, Д. Обзор современных и практичных материалов для литиевых батарей. J. Mater. Chem. 21 , 9938–9954 (2011).
CAS Статья Google ученый
Lu, J. et al. Роль нанотехнологий в разработке аккумуляторных материалов для электромобилей. Nat. Nanotechnol. 11 , 1031–1038 (2016).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Теккерей М. М., Джонсон П. Дж., Де Пиччиотто Л. А., Брюс П. Г. и Гуденаф Дж. Б. Электрохимическая экстракция лития из LiMn 2 O 4 . Mater. Res. Бык. 19 , 179–187 (1984).
CAS Статья Google ученый
Хантер, Дж. С. Получение новой кристаллической формы диоксида марганца: λ-MnO 2 . J. Solid State Chem. 39 , 142–147 (1981).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Озуку Т., Китагава М. и Хираи Т. Электрохимия диоксида марганца в неводном литиевом элементе III.Рентгеноструктурное исследование восстановления связанного со шпинелью диоксида марганца. J. Electrochem. Soc. 137 , 769–775 (1990).
CAS Статья Google ученый
Сираиси, Й., Накаи, И., Цубата, Т., Химеда, Т., Нишикава, Ф. Анализ тонкой структуры поглощения рентгеновских лучей на месте в процессе заряда-разряда в LiMn 2 O 4 , материал перезаряжаемой литиевой батареи. J. Solid State Chem. 133 , 587–590 (1997).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Кушида К. и Курияма К. Наблюдение расщепления кристаллического поля, связанного с полосами Mn-3d в пленках шпинель-LiMn2O4, путем оптического поглощения. Заявл. Phys. Lett. 77 , 4154–4156 (2000).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Хоанг, К. Понимание электронной и ионной проводимости и сверхстехиометрии лития в шпинели LiMn2O4. J. Mater. Chem. А 2 , 18271–18280 (2014).
CAS Статья Google ученый
Mukerjee, S. et al. Структурная эволюция LixMn2O4 в элементах литий-ионной батареи, измеренная на месте с использованием методов синхротронной дифракции рентгеновских лучей. J. Electrochem. Soc. 145 , 466–472 (1998).
CAS Статья Google ученый
Вюрфель П. и Вюрфель У. Физика солнечных элементов: от основных принципов до передовых концепций . (Вайли-ВЧ, 2009).
Стоянова Р., Горова М., Жечева Е. ЭПР Mn4 + в шпинелях Li 1 + x Mn 2 − x O 4 с 0 ≤ x ≤ 0,1. J. Phys. Chem. Твердые вещества 61 , 609–614 (2000).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Н. Жечева, Е., Ю. Горова, М. и К. Стоянова, Р. Микроструктура шпинелей Li1 + xMn 2 − x O4, полученных из металлорганических прекурсоров. J. Mater. Chem. 9 , 1559–1567 (1999).
Артикул Google ученый
Абрагам А. и Блини Б. Электронный парамагнитный резонанс переходных ионов . 944 (Издательство Оксфордского университета, 2012 г.).
Pilbrow, J.Р. Переходный ионный электронный парамагнитный резонанс. 738 (Clarendon Press, 1991).
Saponjic, Z. V. et al. Разделение зарядов и реконструкция поверхности: исследование легирования Mn 2+ . J. Phys. Chem. B 110 , 25441–25450 (2006).
CAS Статья Google ученый
Мисра С.К. Интерпретация спектров ЭПР Mn2 + в неупорядоченных материалах. Заявл.Magn. Резон. 10 , 193–216 (1996).
CAS Статья Google ученый
Канамура, К., Наито, Х., Яо, Т. и Такехара, З.-i Структурные изменения структуры шпинели LiMn2O4, вызванные экстракцией лития. J. Mater. Chem. 6 , 33–36 (1996).
CAS Статья Google ученый
Рамана, К.В., Массо, М. и Жюльен, С. М. Исследование шпинелей LiMn2O4 с помощью РФЭС и комбинационного рассеяния света. Surf. Интерфейс Анал. 37 , 412–416 (2005).
CAS Статья Google ученый
Родригес-Карвахаль, Дж., Русе, Г., Маскелье, К. и Эрвье, М. Электронная кристаллизация в материале литиевой батареи: столбчатое упорядочение электронов и дырок в шпинели LiMn2O4. Phys. Rev. Lett. 81 , 4660–4663 (1998).
ADS Статья Google ученый
Ходес, Г., Манассен, Дж. И Кахен, Д. Фотоэлектрохимическое преобразование и накопление энергии с использованием поликристаллических халькогенидных электродов. Nature 261 , 403–404 (1976).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Li, N., Wang, Y., Тан, Д. и Чжоу, Х. Интеграция фотокатализатора в гибридную литий-серную батарею для прямого хранения солнечной энергии. Angew. Chem. 127 , 9403–9406 (2015).
Артикул Google ученый
Paolella, A. et al. Делитирование нанокристаллов литий-фосфата железа с помощью света в фото-перезаряжаемые ионно-литиевые батареи. Nat. Commun. 8 , 14643 (2017).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Аммундсен, Б., Бернс, Г. Р., Ислам, М. С., Кано, Х. и Розьер, Дж. Динамика решетки и колебательные спектры оксидов лития-марганца: компьютерное моделирование и спектроскопическое исследование. J. Phys. Chem. B 103 , 5175–5180 (1999).
CAS Статья Google ученый
Chitra, S. et al. Характеристика и электрохимические исследования катодных материалов LiMn2O4, полученных методом сжигания. J. Electroceram. 3 , 433–441 (1999).
CAS Статья Google ученый
Hwang, S.-J., Park, D.-H., Choy, J.-H. И Кэмпет, Г. Влияние замещения хрома на колебания решетки шпинели манганата лития: новая интерпретация рамановского спектра LiMn2O4. J. Phys. Chem. B 108 , 12713–12717 (2004).
CAS Статья Google ученый
Paolo, G. et al. QUANTUM ESPRESSO: модульный программный проект с открытым исходным кодом для квантового моделирования материалов. J. Phys .: Condens. Дело 21 , 395502 (2009).
ADS Google ученый
Хаманн, Д. Р. Оптимизированные сохраняющие норму псевдопотенциалы Вандербильта. Phys. Ред. B 88 , 085117 (2013).
ADS Статья Google ученый
Schlipf, M. & Gygi, F. Алгоритм оптимизации для генерации псевдопотенциалов ONCV. Comput. Phys. Commun. 196 , 36–44 (2015).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Lejaeghere, K. et al. Воспроизводимость при расчетах твердых тел по теории функционала плотности. Наука 351 , aad3000 (2016).
Warburton, R.E., Iddir, H., Кертисс, Л. А. и Грили, Дж. Термодинамическая стабильность поверхностных окончаний шпинели LiMn2O4 с низким и высоким показателем преломления. ACS Appl. Mater. Интерфейсы 8 , 11108–11121 (2016).
CAS Статья Google ученый
Gygi, F. Архитектура Qbox: масштабируемый код молекулярной динамики из первых принципов. IBM J. Res. Dev. 52 , 137–144 (2008).
Артикул Google ученый
Цзян Л., Левченко С. В. и Рапп А. М. Строгое определение степени окисления ионов в твердых телах. Phys. Rev. Lett. 108 , 166403 (2012).
ADS Статья Google ученый
Чен, Дж., Ву, X. и Селлони, А. Электронная структура и связывающие свойства оксида кобальта в структуре шпинели. Phys. Ред. B 83 , 245204 (2011).
ADS Статья Google ученый
Амос, К. Д., Ролдан, М. А., Варела, М., Гуденаф, Дж. Б. и Феррейра, П. Дж. Выявление реконструированной поверхности Li [Mn 2 ] O 4 . Nano Lett. 16 , 2899–2906 (2016).
CAS ОБЪЯВЛЕНИЯ Статья Google ученый
Scivetti, I. & Teobaldi, G. (Sub) поверхностное диспропорционирование и абсолютное выравнивание полос в катодах из LiMn2O4 с высокой мощностью. J. Phys.Chem. С 119 , 21358–21368 (2015).
CAS Статья Google ученый
Безопасная, быстро заряжаемая литиевая батарея выдерживает в 5 раз больше тока
Тщательное введение новых материалов в конструкцию современных литий-ионных аккумуляторов может значительно улучшить их характеристики, и ученые только что обнаружили многообещающую возможность использования углерода нанотрубки. Включив эти материалы в электрод литий-металлической батареи, исследователи создали версию, которая не только более безопасна, но и способна заряжаться всего за долю времени по сравнению с обычными устройствами.
Исследование проводилось в Инженерном колледже Техасского университета A&M и сосредоточено на архитектуре аккумуляторных батарей с огромным потенциалом. Когда традиционный литий-ионный аккумулятор заряжается и разряжается, ионы лития перемещаются туда и обратно между катодом и анодом, последний из которых обычно состоит из смеси графита и меди.
Но ученые видят отличную альтернативу в использовании чистого металлического лития, который предлагает очень высокую плотность энергии и может сделать батареи, которые заряжаются намного быстрее и предлагают в 10 раз большую емкость.В одном исследовании, проведенном в прошлом году, литиевый анод описывается как «критически важный для преодоления узкого места плотности энергии в современной химии литий-ионных ионов». Достаточно сказать, что существует значительный интерес к тому, чтобы заставить эти вещи работать.
Однако на пути стоят опасные предметы щупальца, называемые дендритами. Эти древовидные структуры образуются на поверхности анода, когда ионы лития не осаждаются равномерно, и по мере своего роста они могут пробить ключевые компоненты батареи и вызвать ее короткое замыкание или возгорание. Если этого не происходит, они все равно приводят к быстрой разрядке аккумулятора.
Итак, многие исследовательские центры занимаются проблемой образования дендритов, и команда Texas A&M считает, что, возможно, она нашла решение в сверхлегких и высокопроводящих углеродных нанотрубках. Конструкция отражает конструкцию другой экспериментальной батареи, которую мы рассматривали в 2018 году, в которой используется тонкая пленка углеродных нанотрубок для эффективного удушения дендритов, прежде чем они должным образом обретут форму, но исследователи, стоящие за новым исследованием, избрали немного другой подход.
В качестве анода ученые использовали углеродные нанотрубки для создания трехмерных пористых каркасов, содержащих молекулы, которые заставляют ионы лития связываться с его поверхностью. Потребовались некоторые эксперименты, но с правильной концентрацией этих связывающих молекул команда обнаружила, что они создали анод батареи, который избегал накопления дендритов на его поверхности.
Схема, иллюстрирующая функцию нового анода батареи, разработанного в Техасском университете A&MДжуран Но
«Но когда у нас было только нужное количество этих связывающих молекул, мы могли« расстегнуть »каркасы углеродных нанотрубок только в определенных местах, позволяя ионам лития проходить и связываться со всей поверхностью каркасов, а не накапливаться на них. внешняя поверхность анода и образуют дендриты », — говорит автор исследования Джуран Но.
Еще одним следствием этого равномерного и безопасного распределения ионов лития была повышенная способность батареи производить большие токи. Команда сообщает, что анод может выдерживать ток в пять раз больше, чем обычные батареи. Это увеличивает вероятность того, что батарея будет не только более безопасной и с большей плотностью энергии, но и будет заряжаться, возможно, быстрее.
«Создание безопасных и имеющих длительный срок службы металлических литиевых анодов было научной проблемой на протяжении многих десятилетий», — сказал Но.