Закон Ома в интегральной форме
Для того, чтобы перейти к интегральной форме записи закона Ома для участка проводника, на котором действуют две силы, введем понятие линии тока.
Линия тока – кривая, в каждой точке которой вектор плотности тока направлен по касательной к этой кривой. В этом случае вектор плотности находится из соотношения:
где τ ⃗ – единичный вектор касательной к линии тока.
Предположим, что удельное сопротивление (r) и напряженность поля движущих сил (E ⃗) на поперечном сечении проводника однородны, т.к. E ⃗ однородна, то j ⃗ так же однородная величина. Возьмем произвольное значение поперечного сечения цепи – S. Тогда:
, а значитПоследнее равенство до множим на dl (элементарное перемещение вдоль вектора плотности тока):
где- dφ – элементарный сброс потенциала электростатического поля,
- dε – элементарная работа сторонних сил по перемещению единичного положительного заряда (ЭДС).
Учитывая, что ρ/S dl=dR (элементарное сопротивление), запишем закон Ома в интегральной форме:
Закон Ома в интегральной форме для неоднородного участка цепи
Проинтегрируем получившееся соотношение на конкретном участке цепи постоянного тока между поперечными сечениями S1 и S2:
интегральный закон Ома для участка цепи
где:
- – сопротивление участка,
- – работа сторонних сил на перемещении единичного положительного заряда по данному участку цепи ЭДС участка,
- – работа электростатических сил на перемещении единичного положительного заряда по данному участку цепи (напряжение участка),
- – абсолютная величина работы сил сопротивления на перемещении единичного положительного заряда по данному участку цепи (падение напряжения участка).
Запишем значение напряжения при постоянном токе:
Отсюда запишем закон Ома:
Таким образом закон Ома в интегральной форме – это закон изменения механической энергии единичного положительного заряда на этом участке. В арифметическом виде этот закон можно записать так:
Решение задач
Какой будет плотность тока в металлическом проводнике с удельным сопротивлением ρ постоянного сечения, имеющем длину l, если напряжение, которое приложено к проводу равно U?
Дано: | Решение: |
---|---|
|
Дано: | Решение: |
---|---|
|
|
zakon-oma.ru
Закон Ома в интегральной и дифференциальной форме. — КиберПедия
Закон Ома в интегральной форме:
— для участка цепи: «Сила тока на однородном участке электрической цепи прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению этого участка »:
— для всей цепи:
где – электродвижущая сила, В;
– сопротивление всех элементов цепи, Ом;
– внутреннее сопротивление источника питания, Ом;
– сила тока, А.
Закон Ома в дифференциальной форме:
— для участка цепи: «Плотность тока в каждой точке однородного участка цепи пропорциональна напряженности электрического поля в этой же точке»:
Где – вектор плотности тока, А/м²;
– удельная проводимость, См= ;
– вектор напряженности электрического поля, В/м.
Работа и мощность электрического тока. Закон Джоуля-Ленца в интегральной и дифференциальной форме.
За время t по участку электрической цепи будет перенесён заряд и при этом будет совершена работа:
где – электрический заряд, Кл;
– напряжение, В;
– сила тока, А;
– время, с.
Работа, совершаемая в единицу времени – мощность электрического тока:
Закон Джоуля-Ленца в дифференциальной форме: «Мощность тепла , выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля »:
где – удельная электрическая проводимость, См= .
Закон Джоуля-Ленца в интегральной форме:
где – полное количество теплоты, выделенное за промежуток времени от до , Дж;
– сила тока, А;
– сопротивление. Ом.
Закон Ома для участка цепи и для замкнутой цепи, содержащей э.д.с.
Закон Ома для участка цепи:
«Сила тока на однородном участке электрической цепи прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению этого участка »:
Закон Ома для неоднородного участка цепи (содержащего ЭДС):
где – разность потенциалов (напряжение), В;
– электродвижущая сила, В;
– сопротивление участка, Ом.
Если направление тока совпадает с направлением обхода, его принято считать положительным; если источник тока повышает потенциал в направлении обхода (источник посылает ток в направлении обхода), то ЭДС такого источника считается положительной.
Закон Ома для замкнутой цепи, содержащей ЭДС:
где – электродвижущая сила, В;
– сопротивление всех элементов цепи, Ом;
– внутреннее сопротивление источника питания, Ом;
– сила тока, А.
Законы Кирхгофа.
Первое правило Кирхгофа: «Алгебраическая сумма токов, сходящихся в узле, равна нулю:
».
Второе правило Кирхгофа: «В любом замкнутом контуре алгебраическая сумма напряжений равна алгебраической сумме ЭДС, встречающихся в этом контуре:
где – число источников ЭДС;
– число ветвей в замкнутом контуре;
– ток и сопротивление -той ветви, А, Ом».
Правило знаков:
1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;
2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.
cyberpedia.su
3.2.2. Закон Ома в интегральной и дифференциальной форме
| Пусть по проводнику длиной l и сечением S течет ток I. В проводнике создается электрическое поле напряженности |
Закон Ома: сила тока, текущего по однородному участку проводника, прямо пропорциональна падению напряжения на проводнике:
— закон Ома в интегральной форме
где R – электрическое сопротивление проводника.
Размерность сопротивления в СИ: [R] = В/А = Ом.
Ом – сопротивление такого проводника, в котором при напряжении в 1 В течет ток 1А.
Сопротивление зависит от геометрических размеров и формы проводников, материала и температуры проводников. Для цилиндрического проводника
где — удельное сопротивление проводника.
Удельное сопротивление численно равно сопротивлению проводника длиной 1 м и площадью поперечного сечения 1 м2. Размерность удельного сопротивления в СИ: [] = Омм.
Величина, обратная сопротивлению, называется проводимостью.
Величина, обратная удельному сопротивлению, называется удельной проводимостью:
Единица, обратная Ом, называется Сименсом
Учитывая выше написанные уравнения, а также , получим:
– закон Ома в дифференциальной форме.
3.2.3. Сторонние силы. Закон Ома для цепи, содержащей эдс
Для возникновения и существования электрического тока необходимо:
наличие свободных носителей тока – заряженных частиц, способных перемещаться упорядоченно;
наличие электрического поля, энергия которого должна каким-то образом восполняться.
Соединим проводником два тела с зарядами +q и –q. Кулоновские силы заставляют электроны перемещаться по проводнику. Возникнет ток. Однако тела при этом будут разряжаться, разность потенциалов уменьшится, ток быстро прекратится. |
Т.е. если в цепи действуют только силы электростатического поля, то происходит перемещение носителей таким образом, что потенциалы всех точек цепи выравниваются и электростатическое поле исчезает.
Следовательно, поле кулоновских сил не может являться причиной постоянного электрического тока.
Ток в проводнике нейтрализует заряды на его концах. Для поддержания постоянного тока необходимо поддерживать постоянную разность потенциалов, следовательно, разделять заряды. Электрические силы разделять заряды не могут.
Силы, разделяющие заряды, имеют неэлектрическую природу и называются сторонними силами.
Устройство, в котором действуют сторонние силы, называется источником тока.
Сторонние силы заставляют заряды двигаться внутри источника тока против сил поля. Благодаря этому в цепи поддерживается постоянная разность потенциалов.
Перемещая заряды, сторонние силы совершают работу за счет энергии, затраченной в источнике тока. Например, в электрофорной машине разделение зарядов происходит за счет механической работы, в гальваническом элементе – за счет энергии химических реакций и т.д.
Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС).
Обозначим — вектор напряженности поля сторонних сил.
Результирующее поле, действующее на заряды в проводнике, в общем случае
Плотность тока в цепи
.
– закон Ома в дифференциальной форме для цепи, содержащей ЭДС.
Рассмотрим участок AB замкнутой цепи, содержащей ЭДС (рис.3.18). Выделим мысленно малый элемент dl. |
Плотность тока на этом участке опишется уравнением . Умножим скалярно обе части этого равенства наи проинтегрируем по участкуAB:
Рассмотрим каждый интеграл в отдельности:
а)
где А — В – разность потенциалов между точками A и B.
Разность потенциалов численно равна работе кулоновских сил по перемещению единичного положительного заряда из т.A в т.B;
б)
где — ЭДС.
ЭДС, действующая на участке цепи, численно равна работе сторонних сил по перемещению единичного положительного заряда из т.A в т.B;
в)
где RAB – сопротивление участка AB.
С учетом выше сказанного можно получить:
— закон Ома для участка цепи с ЭДС.
Частные случаи:
если на данном участке цепи источник тока отсутствует, то получаем закон Ома для однородного участка цепи:
если цепь замкнута (=0), то получим закон Ома для замкнутой цепи:
где — ЭДС, действующая в цепи, R – суммарное сопротивление всей цепи, rвнутр – внутреннее сопротивление источника тока, Rвнеш – сопротивление внешней цепи;
если цепь разомкнута, то I = 0 и 12 = 2 — 1, т.е. ЭДС, действующая в разомкнутой цепи равна разности потенциалов на ее концах.
В случае короткого замыкания сопротивление внешней цепи Rвнеш = 0 и сила тока в этом случае ограничивается только величиной внутреннего сопротивления источника тока.
Величина IRAB = UAB называется падением напряжения на участке AB.
Падение напряжения на участке AB численно равно работе кулоновских и сторонних сил по перемещению единичного положительного заряда из т.A в т.B.
Если цепь замкнута, то 1 = 2 и
– закон Ома для замкнутой цепи.
Если участок цепи не содержит ЭДС, то
studfile.net
Закон Ома в дифференциальной и интегральной форме
Закон Ома для участка цепи утверждает: сила тока I прямо пропорциональна напряжению U на участке цепи и обратно пропорциональна сопротивлению R
.
Закон Ома можно представить в дифференциальной форме. Через поперечное сечение проводника течет ток силой dI равной dI = jdS. Напря- жение, приложенное на концах проводника, будет равно Е·dl (т.к. и dφ = -Edl). Для проводника постоянного сечения длиной l будем иметь
.
Отсюда , где— удельная проводимость проводника. Таким образом, выражениезакона Ома в дифференциальной форме в векторном виде будет
j = γ E.
Плотность тока в проводнике прямо пропорциональна напряженности электрического поля в нем.
Рассмотрим замкнутую электрическую цепь, содержащую ЭДС. Источник тока в такой цепи обладает внутренним сопротивлением r. Сопротивление внешней части цепи R называют внешним или сопротивлением нагрузки. Падение напряжения на внутреннем участке цепи равно U1 = Ir, а на внешнем — U =IR. При замкнутой внешней цепи ЭДС источника тока ؏ равна сумме падений напряжения на внутреннем сопротивлении источника тока и во внешней цепи, ؏ = Ir + IR, откуда
I = ؏ / (r + R).
Это есть выражение закона Ома в интегральной форме.
Закон Джоуля-Ленца в дифференциальной и интегральной форме
Опытом установлено, что если в проводнике течет ток, то работа сторонних сил расходуется на его нагревание. Предположим, что на концах участка проводника имеется разность потенциалов U = φ1 – φ2.
Тогда работа по переносу заряда q на этом участке равна
A = q(φ1 – φ2) = qU.
Если ток постоянный, то иA = I U t.
Эта работа равна количеству теплоты Q и формула Q = I U t выражает закон Джоуля-Ленца в интегральной форме.
Используя выражение закона Ома получим
.
Преобразуем закон Джоуля–Ленца. Введем плотность тепловой мощности w – величину, равную энергии, выделяемой за время t прохождения тока в единице объема проводника:
,
где S — сечение, l — длина проводника. Подставляя Q = I2 R t и , получим .
Здесь — плотность тока,, и учитывая, чтоj = γE, получим
.
Это есть выражение закона Джоуля-Ленца в дифференциальной форме. Плотность тепловой мощности в проводнике, по которому течет ток, прямо пропорциональна квадрату напряженности поля в проводнике. Коэффициентом пропорциональности является удельная проводимость проводника.
Вывод законов Ома и Джоуля-Ленца из классических электронных представлений
Какова природа носителей тока в металлах? В 1901 г. Рикке проделал опыты: через 3 цилиндра, установленных друг на друга в течение 3-х лет пропускал постоянный ток. Был пропущен заряд, равный 3,5·106 Кл. Взвешивание показало неизменный вес цилиндров. Исследование торцов цилиндров не показало следов переноса вещества. Из этого был сделан вывод, что носители заряда не ионы, а открытые Томпсоном в 1897 г. электроны.
Чтобы отождествить носители заряда с электронами, нужно было определить знак и величину удельного заряда носителей.
Если в металле имеются легко перемещающиеся заряженные частицы, то при торможении металлического проводника эти частицы должны некоторое время продолжать двигаться по инерции, в результате чего в проводнике возникнет импульс тока и будет перенесен некоторый заряд.
Мандельштам и Папалекси в 1913 г. проделали такой опыт – они приводили в быстрое крутильное колебание катушку с проводом вокруг ее оси. К концам катушки подключили телефон, в котором был слышен звук, обусловленный импульсами тока. Был получен качественный результат – зарегистрирован импульс тока.
Толмен и Стюарт в 1916 г. получили количественный результат. Катушка с проводом длиной 500 м приводилась во вращение со скоростью v=300 м/с. Катушка резко тормозилась и с помощью баллистического гальванометра измеряли заряд, протекавший в цепи во время торможения. Вычисленное значение отношения заряда к массе e/m получалось очень близким для электронов. Таким образом было доказано, что носителем тока являются электроны. Исходя из представлений о свободных электронах была создана классическая теория электропроводности металлов в предположении, что:
— электроны в металле ведут себя подобно молекулам идеального газа;
— движение электронов подчиняется законам классической механики;
— взаимодействие электронов сводится к соударениям с ионами кристалли-ческой решетки;
— силами взаимодействия между электронами можно пренебречь и они между собой не сталкиваются;
— электроны в отсутствие электрического поля движутся хаотически.
Вычислим плотность тока j в проводнике, возникающего под действием поля напряженностью Е.
По определению плотность тока j = n e <v> — это заряд, переносимый через единицу площади S = 1м2 за единицу времени t=1 с; n – концентрация электронов, е – заряд электрона, <v> — средняя скорость упорядоченного движения электронов.
На каждый электрон действует сила F = eE = ma, поэтому электрон приобретает ускорение и к концу свободного пробега он достигнет скорости, а средняя скорость <v>=vmax/2.
Если <vT> — средняя скорость теплового хаотичного движения электронов, а средняя длина свободного пробега электронов <λ>, то среднее время между соударениями <t> = . Подставляя <t> в формулу для <v> получим:
.
Подставляя <v> в формулу для j, получим
,
т.е. плотность тока прямо пропорциональна Е, а это и есть выражение закона Ома в дифференциальной форме. Если положить, что
то j = γ E.
Удельная проводимость γ ~ n и < λ>, <vт> ~ T, поэтому проводимость снижается с ростом температуры, а удельное сопротивление повышается с ростом температуры. К концу свободного пробега электрон приобретает кинетическую энергию
Предполагается, что вся энергия при соударении передается узлу кристаллической решетки и переходит в тепло. За 1 с электрон испытывает <vT>/ < λ > cоударений, а значит выделяет во столько же раз больше тепла. Если в единице объема n электронов, то в единице объема за единицу времени выделится количество тепла
.
Таким образом, — выражение закона Джоуля-Ленца в дифференциальной форме.
studfile.net
Закон Ома в дифференциальной форме
Закон Ома в интегральной форме для однородного участка цепи (не содержащего ЭДС)
(7.6.1) |
Для однородного линейного проводника выразим R через ρ:
, | (7.6.2) |
ρ – удельное объемное сопротивление; [ρ] = [Ом·м].
Найдем связь между и в бесконечно малом объеме проводника – закон Ома в дифференциальной форме.
В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока и вектор напряженности поля коллинеарны (рис. 7.6).
Рис. 7.6
Исходя из закона Ома (7.6.1), имеем:
А мы знаем, что или . Отсюда можно записать
, | (7.6.3) |
это запись закона Ома в дифференциальной форме.
Здесь – удельная электропроводность.
Размерность σ – [].
Плотность тока можно выразить через заряд электрона е, количество зарядов n и дрейфовую скорость :
.
Обозначим , тогда ;
(7.6.4) |
Теперь, если удельную электропроводность σ выразить через е, n и b: то вновь получим выражение закона Ома в дифференциальной форме:
.
Закон Ома для неоднородного участка цепи Работа и мощность тока. Закон Джоуля – Ленца
ens.tpu.ru
17.4. Закон Ома в интегральной форме
Для любой точки внутри проводника напряженность результирующего поля равна сумме напряженности поля кулоновских сил и поля сторонних сил . Подставляя в (17.6), получим
Умножим скалярно обе части на вектор , численно равный элементу длины проводника и направленный по касательной к проводнику в ту же сторону, что и вектор плотности тока
Так как скалярное произведение совпадающих по направлению векторов и , равно произведению их модулей, то это равенство можно переписать в виде
С учетом
Интегрируя по длине проводника от сечения 1 до некоторого сечения 2 и учитывая, что сила тока во всех сечениях проводника одинакова, получаем
(17.7) |
Интеграл численно равен работе, совершаемой кулоновскими силами при перенесении единичного положительного заряда с точки 1 в точку 2. В электростатике было показано, что
Таким образом,
где и — значение потенциала в т.1 и т.2.
Интеграл, содержащий вектор напряженности поля, сторонних сил, представляет собой эдс , действующей на участке 1-2
(17.9) |
Интеграл
(17.10) |
равен сопротивлению участка цепи 1-2.
Подставляя (17.10), (17.9) и (17.8) в (17.7), окончательно получим
(17.11) |
Последнее уравнение выражает собой закон Ома в интегральной форме для участка цепи, содержащего эдс и формулируется следующим образом: падение напряжения на участке цепи равно сумме падений электрического потенциала на этом участке и эдс всех источников электрической энергии, включённых на участке.
При замкнутой внешней цепи сумма падений электрических потенциалов и эдс источника равна сумме падений напряжения на внутреннем сопротивлении источника и во всей внешней цепи где или Отсюда
(17.12) |
physics-lectures.ru
ЗАКОН ОМА В ИНТЕГРАЛЬНОЙ ФОРМЕ — КиберПедия
Для любой точки внутри проводника напряженность результирующего поля равна сумме напряженности поля кулоновских сил и поля сторонних сил . Подставляя в (6) получим:
Умножим скалярно обе части на вектор численно равный элементу d𝑙 длины проводника и направленный по касательной к проводнику в ту же сторону, что и вектор плотности тока
Так как скалярное произведение совпадающих по направлению векторов и d , равно произведению их модулей, то это равенство можно переписать в виде
С учетом 𝑱 = 𝑰 /S
Интегрируя по длине проводника 𝑙от сечения 1 до некоторого сечения 2 и учитывая, что сила тока во всех сечениях проводника одинакова, получаем:
Интеграл
численно равен работе, совершаемой кулоновскими силами при перенесении единичного положительного заряда с точки 1 в точку 2. В электростатике было показано, что
Таким образом,
где и — значения потенциала в т.1 и т. 2.
Интеграл, содержащий вектор напряженности поля, сторонних сил, представляет собой эдс , действующей на участке 1-2.
( 9)
Интеграл
Равен сопротивлению участка цепи 1 – 2.
Подставляя (10, 9 и 8) в (7), окончательно получим
( 11 )
Последнее уравнение выражает собой закон Ома в интегральной форме для участка цепи, содержащего эдс и формулируется следующим образом: падение напряжения на участке цепи равно сумме падений электрического потенциала на этом участке и эдс всех источников электрической энергии, включенных на участке.
При замкнутой внешней цепи сумма падений электрических потенциалов и эдс источника равна сумме падений напряжения на внутреннем сопротивлении источника и во всей внешней цепи
= 𝑰r, U = 𝑰r, или
Отсюда,
ЗАКОН ДЖОУЛЯ – ЛЕНЦА В ИНТЕГРАЛЬНОЙ
И ДИФФЕРЕНЦИАЛЬНОЙ ФОРМАХ
Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов тогда работа по переносу заряда q на этом участке равна
По определению I= q/t, откуда q = I . Следовательно, А = IUt.
Так как работа идет на нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил
Q = A U t (13 )
Соотношение (13) выражает закон Джоуля – Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии, выделенной за единицу времени прохождения тока в каждой единице объема проводника.
где S — поперечное сечение проводника, 𝑙 – его длина. Используя (13) и соотношение
получим
Но 𝐼/S = а ρ = 1/σ, тогда
Ома в дифференциальной форме = U ( 14 )
Формула (14) выражает закон Джоуля – Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.
cyberpedia.su