+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Зачем и для чего нужны резисторы

Рубрика: Статьи обо всем, Статьи про радиодетали Опубликовано 05.02.2020   ·   Комментарии: 0   ·   На чтение: 6 мин   ·   Просмотры:

Post Views: 1 451

Резистор – это самая распространенная деталь в электронике. Он гасит лишнее напряжение, ограничивает ток, изменяет и фильтрует сигналы. Резисторы применяются везде, от процессоров, где их миллионы, до энергетических систем. где их размеры с напольный шкаф.

Свойства в теории и практике

Основное свойство этой радиодетали – это сопротивление. Измеряется в омах (Ом).

Разберем для начала понятие активного сопротивления. Оно так называется потому, что есть у всех материалов (даже у сверхпроводников, пусть и 0,00001 Ом). И именно оно является основным у резисторов.

Что говорит теория

В теории у резистора есть постоянное сопротивление, которое на зависит от внешних условий (температуры, давления, напряжения и т.п.).

График зависимости тока от напряжения прямолинеен.



В идеальных и математических условиях у резистора только активное сопротивление. По типам бывают нелинейные и линейные резисторы.

Что на самом деле

На самом у всех резисторов непрямолинейная зависимость тока от напряжения. То есть, его сопротивление тоже зависит от внешних условий, конкретно от температуры.

Конечно, эта зависимость не такая, как у полупроводников, но она есть. И самое главное, у этой радиодетали есть емкость и индуктивность. Помимо активного сопротивления, есть еще и реактивное.

Реактивное сопротивление отличается от активного тем, что оно по разному пропускает электрический ток на разных частотах.

Например, для постоянного тока сопротивление 200 Ом, а если есть высокие значения индуктивности, то на частотах выше 2 кГц, сопротивление будет уже 250 Ом.

Именно поэтому резисторы делаются из разных материалов. Они бывают керамическими, углеродными, проволочными и у них разные допуски и погрешности. SMD деталь обладает меньшей емкостью и индуктивностью, чем DIP.

Еще существует специальные типы резисторов с более выраженной нелинейной вольт-амперной характеристикой. Если у обычных резисторов вольт-амперный график чуть-чуть не линейный, то у такого типа деталей он лавинообразный.

У них сопротивление резко зависит от внешних условий, не так. как у обычных:

  • Терморезистор. Повышает или понижает сопротивление из-за влияния температуры;
  • Варистор. Изменяет свои свойства в зависимости от приложенного напряжения;
  • Фоторезистор. Уменьшается сопротивление, если на него действует свет;
  • Тензорезистор. При деформировании (сжатии, механических воздействиях) изменяет свое сопротивление.

Кроме того, еще одна особенность активного сопротивления – выделение тепла, когда проходит электрический ток. Когда протекает электрический ток замкнутой цепи, электроны ударяются об атомы.

И поэтому выделяется тепло. Тепло измеряется в мощности. Она рассчитывается исходя из напряжения и тока.

Одна из популярных функций резисторов это снижение напряжения и ограничения тока. Например, если через резистор проходит ток 0,25 А и на нем есть падение напряжения 1 В, то мощность, которая будет на нем рассеиваться это 0,25 Вт.

Поэтому, некоторые детали и изменяют свое сопротивление, даже если они не предназначены для этого. Это уже свойства материала. И если резистор сделан из проволоки, то при нагреве она расширяется и ее проводимость ухудшается. Поэтому у деталей есть допуск, который измеряется в процентах.

И из-за этого и существуют резисторы с разной рассеиваемой мощностью. Нельзя ставить резистор 0,125 Вт на место 1 Вт. Он начнет греться, трескаться, чернеть. А потом и сгорит. Потому, что не рассчитан на такую мощность.

Обозначения на схемах

На схемах в Европе и СНГ обознается прямоугольником и латинской букой R. Согласно ГОСТу, на отечественных схемах не указывается номинал сопротивления, а только номер детали (R). Однако, если под изображением детали указано число, например 120, оно по умолчанию читается как 120 Ом.

В таблице примеры обозначений детали.

Типы включения и примеры использования

Основные типы включения это последовательные и параллельные соединения.

Последовательно сопротивление рассчитывается просто. Достаточно все сложить.

При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.

Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.

Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.

Однако, если вы хотите использовать делитель напряжения для питания цепи, то должны помнить, что нужно согласовать сопротивления. В этой схеме сопротивление 1 кОм. Если вы подключите к ней нагрузку меньше этого сопротивления, то она не получит напряжения на свои выводы в полном объеме.

Поэтому, все схемы с делителями напряжения должны быть рассчитаны и согласованы друг с другом.

Рассмотрим пример усилителя на транзисторе.

Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.

Это необходимо для того, чтобы он работал без искажений.

Параллельное включение

При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.

В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.

Формулы расчета

Для двух резисторов:

Для более:

Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.

Его сопротивление рассчитывается по формуле:

Эквивалентное соединение

В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.

В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.

А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.

Если бы был только один R3, то мощность усилителя была намного меньше из-за того, что он забирает переменное напряжение на себя. А конденсатор пропускает без потерь, но не пропускает постоянное напряжение.

Фильтры и резисторы

С помощью резисторов и конденсаторов можно делать фильтры. Так называются RC фильтры.

Эта пара может разделять сигнал на постоянные и переменные составляющие.

В качестве примера рассмотрим ФНЧ и ФВЧ.

В схеме фильтра низких частот конденсатор C1 забирает на себя высокочастотные токи. Его сопротивление для них намного меньше, чем у нагрузки. Он шунтирует нагрузку. Таким образом, можно получить низкую частоту, отделив от нее все высокие составляющие.
В фильтре высоких частот наоборот. Высокие частоты свободно проходят через C1, и если в сигнале есть низкочастотные, то они пойдут через R1.

Такие фильтры бывают разные по конструкции. П образные, Г образные и т.п. Конкуренцию резистору может составить катушка индуктивности или дроссель. У них меньше активное сопротивление, но реактивное больше. Благодаря этому снижаются потери от активного сопротивления.


Post Views: 1 451

Что такое резистор и зачем он нужен. Часть 1

Приветствую, друзья!

Сегодня мы познакомимся ещё с одним «кирпичиком» электроники — резистором.

Мы не будем рассматривать все многообразие современных резисторов, но ознакомимся с принципом их действия.

И дадим кое-какие практические рекомендации применительно к компьютерам и периферийным устройствам.

Но сначала немного теории «на пальцах».

Проводники, полупроводники и диэлектрики

С точки зрения прохождения электрического тока (движения заряженных частиц) все вещества можно условно разделить на три большие группы — проводники, полупроводники и диэлектрики.

Проводники — это вещества, которые, в первом приближении, хорошо проводят ток, полупроводники — это вещества, которые плохо проводят ток, диэлектрики — не проводят ток вообще. Класс вещества определяется степенью сопротивление электрическому току.

Степень сопротивления вещества определяется строением его молекул и наличием различного количества свободных заряженных частиц.

Меньше всего сопротивляются прохождению электрического тока проводники, больше всего —  диэлектрики.

Большинство металлов и их сплавов являются проводниками.

Проводники используются для доставки электрической энергию от генератора к потребителю.

Чтобы энергия доходила без больших потерь, необходимо, чтобы проводники (провода и кабели) обладали низким сопротивлением. Лучшими проводниками являются серебро, медь и алюминий.

Полупроводники в чистом виде плохо проводят электрический ток.

Но при добавлении определенных веществ в них появляется избыток заряженных частиц того или иного знака (p – положительно заряженных частиц и n – отрицательно заряженных).

При соединении двух полупроводников  различного знака получается такая фундаментальная вещь как p-n переход.

P-n переход является основой большинства полупроводниковых приборов (диодов, транзисторов и т.п.)

В компьютере присутствуют и проводники, и полупроводники, и диэлектрики.

Так, например, материнская плата вашего компьютера сделана из диэлектрического материала (стеклотекстолита), на поверхности которого расположены медные проводники, к которым припаяны различные детали.

Процессор вашего компьютера содержит в себе несколько миллионов полупроводниковых транзисторов.

Кроме того, на плате полно отдельных (дискретных) диодов, транзисторов, конденсаторов и резисторов.

Что такое резистор

Резистор — это электронная деталь (условно относящаяся к классу проводников), обладающая сопротивление электрическому току.

В электронной технике очень часто надо внести в электрическую цепь не просто сопротивление, но сопротивление определенной величины.

Чем больше сопротивление электрической цепи, тем меньше соответствии с законом Ома ток в ней  при том же напряжении:

I = U/R, где I – электрический ток, U – напряжение, R – сопротивление

Если ток представить в виде движения стада животных, то пастух будет представлять собой напряжение. Сопротивлением в этом случае будет выступать нрав животных. Стадо можно заставить двигаться быстрее (увеличить силу тока), если пастух начнет щелкать бичом (поднимется напряжение).

Ток (сила тока) измеряется в амперах, напряжение — в вольтах, сопротивление – в омах.

Все эти единицы названы в честь физиков Анри-Мари Ампера, Алессандро Вольты и Георга Ома.

Резисторы могут иметь сопротивление от долей Ома до десятков и сотен Мегом (миллионов Ом). Электрическая лампочка накаливания – это, по существу, также резистор, обладающий сопротивлением в несколько десятков или сотен Ом (в зависимости от мощности лампы).

Постоянные, переменные и подстрочные резисторы

Постоянный резистор — это деталь с двумя выводами, которая вносит в электрическую цепь постоянное сопротивление.

Постоянный резистор представляет собой стержень из диэлектрического материала (чаще всего из керамики) на поверхности которой нанесена токопроводящая пленка из углерода или металлического сплава.

На торцы стержня плотно насажены «чашечки», переходящие в проволочные выводы. Чем тоньше плёнка, тем больше сопротивление.

На поверхность стержня могут наноситься канавки, увеличивающие сопротивление. Резистор с небольшим значением сопротивления может представлять собой керамическое основание с намотанным на него тонким проводом.

Для защиты резистивного слоя сверху наносится слой компаунда или лака, поверх которого наносится буквенно-цифровая маркировка или маркировка в виде нескольких цветных колец.

Раньше выводы резисторов в большинстве случаев были медными. Теперь же часто основу этих выводов составляет железо (которое дешевле меди).

Очень часто возникает задача изменить вносимое в электрическую цепь сопротивление. Это задачу выполняют переменные или подстроечные резисторы, у которых три (или более) вывода.

Переменные резисторы отличаются тем, что токопроводящий слой на них нанесен виде подковы, к концам которой подключены два неподвижных вывода.

Третий вывод – подвижный — скользит по подкове, поэтому при перемещении его сопротивление между ним и крайними выводами меняется.

Положение подвижного вывода можно менять посредством соединенной с ним вращающейся рукоятки.

Подстроечный резистор отличается от переменного тем, что в нем труднее повернуть рукоятку.

Часто в рукоятке подстроечного резистора делают прорези под шлиц отвертки.

Иногда после регулировки электрической схемы рукоятку заливают компаундом или полиэтиленом —  чтобы невозможно было ее повернуть и сбить настройку.

Кстати, регулятор громкости в ваших настольных акустических системах – это переменный резистор.

SMD резисторы

Если посмотреть на материнскую плату компьютера, можно увидеть другое конструктивное исполнение резисторов (и других деталей тоже). Это SMD (Surface Mounted Device) исполнение, предназначенное для монтажа на поверхность платы.

Традиционный резистор с проволочными выводами монтируется «через отверстие» (through hole).

При этом SMD резисторы выглядят в виде «кирпичиков» различного размера без проволочных выводов. Выводами в этом случае является торцы кирпичика, покрытые припоем.

При использовании SMD компонентов увеличивается плотность монтажа, уменьшаются размеры изделий, и в плате не нужно сверлить сотни отверстий.

Кроме того, из-за отсутствия длинных проволочных выводов уменьшается паразитная емкость и индуктивность резистора, что улучшает характеристики устройства в целом.

Выбор необходимого типоразмера SMD осуществляется исходя из необходимой рассеиваемой мощности. Здесь действует та же физика: чем больше размер, тем большую мощность может рассеивать резистор. Типоразмеры SMD резисторов и рассеиваемая мощность приведены в таблице.

Конструктивно SMD резистор представляет собой кусочек из той же керамики в виде параллелепипеда с нанесенной на его поверхность резистивной пленкой. Толщина и состав резистивных пленок могут быть различными.

Условно SMD резисторы разделяют на толстопленочные (10-70 микрометров) и тонкопленочные (единицы микрометров и менее), которые различаются технологией производства. Резистивные пленки могут быть из нихрома, нитрида тантала, оксида свинца и других материалов. Точная подстройка номинала резистора осуществляется с помощью луча лазера.

Сверху резистивный слой защищен защитным слоем с нанесенной на нем маркировкой.

Существует SMD резисторы с нулевым сопротивлением, которые используется в качестве перемычек.

Тепловое действие электрического тока

При прохождении через проводник электрический ток оказывает тепловое действие — проводник нагревается. Степень нагрева определяется величиной тока и сопротивлением в соответствии с законом Джоуля-Ленца.

Q = I²*R*t, где Q – количество теплоты, I – сила тока, R – сопротивление, t — время

На этом принципе работают паяльники и всякого рода нагреватели.

Заканчивая первую часть статьи, отметим, что и «обычный» резистор в электронной схеме тоже в той или иной мере нагревается.

Через резисторы могут проходить различные токи, поэтому на них может рассеиваться различная мощность.

Тепловая мощность рассеивается в виде излучения. Интенсивность излучения определяется в том числе и площадью поверхности излучения.

Поэтому, чтобы рассеять бОльшую мощность, требуется бОльшая поверхность излучения, и, соответственно, бОльшие габариты резистора.


Резисторы / Электроника / RoboCraft. Роботы? Это просто!

Резистор — самая простая и распространённая радиодеталь. Фактически это просто проводник с точно известным сопротивлением(маркированный и с выводами). Нужен он для выполнения закона ома=)

То есть, для ограничения тока. Если простым языком — чтоб тока больше чем надо, куда надо не пошло, а лишний улетел в тепло =)
Но из этого нехитрого назначения, столько всего полезного получается, что ниже вышла, просто неприличных размеров, простыня=)

На схемах обозначается, по отечественному — прямоугольничком, по зарубежному — угловатой пружинкой:

Номиналы
Основной параметр резистора — его сопротивление (их часто так и называют — “сопротивление”), измеряется оно в Омах(Ом, Ω ), если омов больше тысячи, то в КилоОмах (Ком, К), а если перевалили за миллион — в мегаомах (Мом).

Чтоб не говорить «пятнадцать тысяч ом» или не рисовать нули, говорят 15 кило ом.
Как граммы-килограммы=)

Значений сопротивлений резисторов (говорят «номиналов») не бесконечное множество — есть стандартные ряды значений. Так что не надо искать резистор 321ом — вряд ли найдёте, хотя в природе он наверное есть=) Но если вам срочно нужен именно он, то есть два выхода — простроечные-переменные резисторы (см ниже) или несколько соединённых резисторов.

Соединение резисторов
Соединять можно последовательно:

При этом сопротивления сложатся.

Ещё полезно знать(понимать), что ток через все последовательно соединённые резисторы будет одинаковый, а вот всё приложенное к ним напряжение поделится пропорционально сопротивлениям, согласно всё тому же закону Ома:

говорят — «на резисторе падает напряжение» На этом принципе строятся делители напряжения и шунты (см ниже).

А можно параллельно, тогда сопротивление цепочки уменьшится:

Проще параллелить одинаковые резисторы — общее сопротивление будет равно сопротивлению одного делённому на количество.

Тут тоже полезно знать(понимать), что при параллельном соединении напряжения на всех резисторах равны, а токи поделятся:

Старый немец Георг Ом рулит в электронике, ага=)

Ну и зачем они нужны?
В цифровой технике резисторы используются в основном для «подтяжки» — например подать на порт МК единичку(напр. питания), пока кнопка не нажата. Собственно резистор тут нужен не столько для подтяжки, сколько для ограничения тока, когда кнопку нажмут, ведь если его не будет — выйдет короткое замыкание:

Ещё часто светодиоду нужно ток ограничить:

Для обоих этих целей большого разнообразия номиналов не требуется:
Для подтяжки вообще не важно конкретное значение, скорее порядки — можно смело ставить единицы-десятки килоом.
Для светодиода, тоже необязательно выбирать резистор с точностью до 10ом — главное что бы ток был ниже номинального (см документацию, обычно — 20мА), а разница в свечении, скажем с 470ом и с 100ом весьма незначительна.

Второй вариант применения резисторов, как мы уже упомянули — делители напряжения(подробнее):

С помощью этой нехитрой схемы, применяя постоянные резисторы, можно измерять напряжения превышающие напряжения питания вашего контроллера — например контролировать заряд батареи.

А если подать на такую цепочку известное напряжение(стабилизированное напряжение питания, например) можно будет измерить сопротивление резистивного датчика, например фото- или терморезистора:

То есть померить температуру или узнать освещённость.

Кстати, обратите внимание на такую закономерность — если значок детали перечёркнут линией с «полкой» а на полке стоит значок какой-нибудь физической величины — то деталь эта чувствительна к этой самой величине. Например — тензорезистор, термистор, варистор. А если две стрелочки снаружи на деталь смотрят — то это неравнодушность к свету означает — фоторезистор например.

Мы уже сто раз сказали, что на резисторе падает напряжение пропорциональное его сопротивлению, но так же зависит это напряжение и от тока текущего через этот резистор. А значит зная сопротивление резистора и измерив напряжение на нём, можно измерить ток.
Например выяснить какой ток у нас потребляет двигатель и сделать вывод — буксуем, едем или застряли окончательно:

Тут тоже стоит обратить внимание на несколько вещей.
Во первых внутри значка резистора появились чёрточки — это так мощность любители ГОСТов обозначают.
На нерусских схемах просто рядом с резистором пишут, например — 5W.
Второй момент, это сопротивление нашего измерительного резистора (такой резистор называют «шунт»)
Оно довольно мало — это что бы не тратить зря энергию — мы же только измерить ток хотим, а не ограничить его — маршевым двигателям нужна вся доступная нам мощность! Да и выделится эта энергия исключительно в виде тепла:

Так что при неправильном расчёте/подборе вместо шунта(да кстати и вместо делителя и вместо балластного резистора) выйдет кипятильник.
А если мощность выделяемая на резисторе значительно превысит его рассеиваемую мощность — он зловонно сгорит:
youtube.com/v/8xaAk9FnrVg&hl=en» />
Мощность стандартных современных резисторов — 1/4 вата (0,25вт).

0,25Вт это конечно не очень много, но тут дело ещё и в размере нагреваемой детали. 30Вт-ный паяльник греет довольно массивное жало градусов до 300 и бодро плавит не иллюзорные количества припоя. А для такой мелочи как резистор, хватит и полувата, что бы оставить вам на память о себе ожог.

Для шунтов применят резисторы мощностью в единицы-десятки ват:

Если мерить надо жуткие десятки-сотни ампер то на резисторы уже не размениваются, а ставят, собственно шунты:

(Фотка из вики)
А в народе применяют куски нержавейки, вольфрамовых электродов, отрезки нихрома и т.п.=)

Используя всё прочитанное, нетрудно догадаться, что вместо дефицитного, мощного, малоомного резистора можно поставить параллельно, например, десяток четверть-ватных одноомоников. Сопротивление их поделится на 10, а мощность этой колбасы вырастет в 10 раз(токи же поделятся).
Выйдет 0,1ома, 4Вт — вполне себе шунт на 0,5-6А.

Переменные и подстроечные резисторы
Вроде с постоянными резисторами справились. Осталось коротко отметить, что в случаях когда вам надо плавно чего-то настраивать/регулировать — громкость, яркость, задержку какую-нибудь — вам надо сообщить о своих намерениях контроллеру. Сделать это проще всего(в случае ардуины) изменением напряжения на его аналоговом входе. Перетыкать постоянные резисторы в делителе не очень удобно, поэтому лучше использовать переменный резистор:

Средний вывод(бегунок) — подвижный, механически связан с ручкой и перемещается по резистивной дорожке, подключенной к крайним выводам — её сопротивление — и есть номинал переменного резистора.
Поворачивая ручку вы меняете длину (а значит и сопротивление) участка дорожки между крайним выводом и бегунком. В среднем положении сопротивления левого и правого участков (говорят плечей) равны, в крайних положениях движок соединяется с соответствующим крайним выводом:

Так что в руках у нас готовый регулируемый делитель=)
Такое включение называют «потенциометр«(иногда и сам пер. резистор так называют), можно использовать не только для взаимодействия пользователя и девайса, но и для контроля положения (угла поворота), чего-нибудь как например в сервах. Только не стоит забывать об ограниченном ресурсе резистивной дорожки(стирается) и невысокой нагрузочной способности(механической) вала — см в конце.
Используя только одно плечо можно получить регулируемое сопротивление — такое включение называют «реостат».
Иногда, оставшуюся не подключённой ногу, замыкают на среднюю — что бы в воздухе не болталась — помехи не ловила.

Ещё важное наблюдение по условным обозначениям — если вы видите значок детали перечёркнутый стрелочкой — значит он регулируемый — его значение можно менять.

Но если крутить надо не беспрестанно, а только несколько раз за время эксплуатации девайса — торчащий вал может быть не удобен — место занимает, да и зацепить его можно, сбив тонкую настройку. В таких случаях применяют подстроечные резисторы (подстроечники, триммеры). Там всё тоже самое только вместо вала — шлиц под отвёртку:

Обозначаются, если по-честному, не со стрелочкой, а с этаким молоточком:

Вообще если уведите подобный молоточек на обозначении какой-либо детали — это подстрочный элемент — возможна регулировка.(ага, символ настройки — молоток=)

Маркировка
Со всеми вариантами обозначений и применений разобрались, осталось выяснить как выбрать нужный резистор из кучки для втыкания в девайс, собираемый по схеме.
Раньше, отечественные резисторы маркировались человеко-понятными надписями(вот прям так и писали «1кОм»), и всем было хорошо. Но монтажники-вредители имеют обыкновение втыкать их в плату как попало и надпись часто оказывалась не видна, или неумолимая агрессивная среда, порой уничтожала именно сторону с надписью. А ремонтники-сервисники потом рыдали, пытаясь выяснить сопротивление умершего резистора. В общем всё это, в конце концов, привело к появлению полосатых резисторов. Теперь как ни воткни — маркировка всегда видна, а вредоносной среде стало значительно сложнее стереть цветные кольца до полной не читаемости.
Вот только в мирных условиях отсутствия монтажников и едких растворителей, читать этот весёлый ГАИ-шный микрожезл, стало затруднительно=\ Или в таблицу глядеть или учить/запоминать или тестером тыкать. Что делать — прогресс.

Можно попробовать сочинить какую-нибудь мнемо-считалочку для запоминания. Тем более что в середине таблицы цвета расположены в классическом радужно-спектральном порядке: Каждый Охотник Желает Знать где Сидит Фазан.
Ещё можно воспользоваться ворохом программ на все возможные операционки и платформы. А некоторые из них могут сделать почти всё за вас=)
Так же встречается на переменных, подстроечных, и SMD — резисторах маркировка тремя (для особо точных — четырьмя) циферками — без букавок. Принцип тот же что и в цветовой маркировке: первые две(три) цифры — значение, последняя — степень десятки на которую это значение умножается. По простому — берём первые цифры и рисуем к ним количество ноликов указанное последней цифрой — получилось сопротивление в омах. Лишние нули переводим в десятичные приставки — кило- или мега-.

Если кто не в курсе — приставка кило- означает тысячу(применяя её, отбрасываем 3 нолика), мега- миллион (применяя её, отбрасываем 6 ноликов)

И напоследок пара моих любимых бородатейших баянов по сабжу:

Зачем нужен резистор параллельно светодиоду | Дмитрий Компанец

Схемы соединения резисторов со светодиодами.

Схемы соединения резисторов со светодиодами.

Стандартные Схемы соединения резисторов со светодиодами

Резисторы всегда последовательно со светодиодами

Резисторы всегда последовательно со светодиодами

выглядят обычно — светодиоды защищаю резисторами от тока который их может повредить в случае повысившегося напряжения.

На некоторых платах от фонариков,где применяется светодиод или на платах импульсных блоков питания, где находится оптопара,можно увидеть,что параллельно светодиоду установлен резистор.

В китайском фонарике 自学成才, с мощным светодиодом, параллельно диоду установлен резистор на 3кОм.

Импульсная схема питания светодиода

Импульсная схема питания светодиода

Транзистор не является идеальным ключом, да же в закрытом состоянии есть токи утечки. А так как диод сверхяркий, — ему только дай понюхать, микротоков вполне хватит что бы он чутка светился, вот его резистор и шунтирует — именно так думают специалисты по электронике.

Вот и еще один пример, где параллельно светодиоду в оптопаре стоит резистор номиналом

Резистор паралельно светодиоду

Резистор паралельно светодиоду

В этом случае шунтируется не сверх яркий , а мощный ИК диод способный выдерживать в пике до 1 ампера . (Так сказано в описаниях светодиодов оптопар)

Если внимательно присмотреться, то видно что ограничительный резистор в 100 Ом и «параллельный» в 430 Ом имеют суммарно не такое уж и большое сопротивление и так называемое «ветвление тока» будет весьма значительно нагружать схему питания ИК диода и управления.

В данной схеме говорить о том, что светодиод будет слегка светить из за недостатков ключа управления — транзистора глупо!

Достаточно привести пример пульта дистанционного управления — там как раз и используется ИК мощный светодиод и к нему прилагается транзисторный ключ управляемый импульсами от модулятора — микросхемы в которую вшиты коды пуска всех кнопок управления.

Ради интереса я решил взглянуть на токи сопротивления и напряжения светодиодов в стандартном включении

Не смотрите на сопротивления на этой картинке

Не смотрите на сопротивления на этой картинке

ВНИМАНИЕ! То что автор картинки пытался подсчитать сопротивление светодиодов по формуле Ома это его фантазии.
Светодиоды как и диоды — элементы нелинейные и законы Ома им не писаны, там «все сложно»

Экспериментально можно убедиться, что одинаковые по функционалу светодиоды, в реалии очень сильно отличаются поведением по отношению к току и напряжению.
Аналогией могу привести Лампочки — светодиодные, газоразрядные, люминисцентные и накаливания. Вроде все это лампочки, но все они разные.

Так и с разноцветными светодиодами — хотя кристаллы и проволока в них похожи, но поведение полупроводника сильно различается.

ДУМАЕТСЯ МНЕ, ЧТО СХЕМА ТАКОГО ПОДКЛЮЧЕНИЯ ПРИШЛА ВОТ ОТСЮДА

Схема и способы подключения светодиодов для автомобиля

Схема и способы подключения светодиодов для автомобиля

Конструкция кластера включает в себя диодный элементы и резистор, который, кстати, является важной составляющей любого кластера. Резисторное устройство, использующееся для погашения лишнего напряжения, ставится из расчета одна штука на три диодных элемента.

Это описание с рекомендациями по подключению светодиодов в автомобиле. Вот тут резисторы «Резисторное устройство»( как выразился автор статьи) служат вполне разумно.

Цель установки таких резисторов в данной цепи — продление срока службы светильника в случае перегорания одного из светодиодов.
За счет резисторов цепь остается замкнутой и светильник продолжает светить. Цена за такую надежность — излишние потери тока расходуемого аккумулятором автомобиля.

По моему мнению , СТАРАЯ КЛАССИКА куда проще и надежнее

Классическая схема включения светодиодов

Классическая схема включения светодиодов

Резисторов в такой схеме столько же, а вот ток от АКБ автомобиля расходуется только на свечение и при выгорании одного звена, остальные продолжают светить как положено.

Остается только удивляться тому Зачем авторы таких схем с вычурным включением «Резисторных устройств» придумывают то что работает хуже и не может заменить старых проверенных схем.

Хотя, почитывая на досуге статьи в Дзен от популярных Блогеров, я вполне осознаю, что вакцину от вируса или хорошие дороги нам придумают именно такие «гении пера и чернил».

Пока я не докопался до истинного предназначения резистора устанавливаемого параллельно светодиоду (слишком много мусора в сети интернет), но эта тема мне интересна и будьте уверены (а мои давние зрители и читатели знают это) я докопаюсь до
РЕАЛЬНОЙ ПРИЧИНЫ СОЗДАНИЯ ТАКИХ СХЕМ

Если Алгоритм Дзен не станет прессовать эту статью и удалять Ваши комментарии, я смогу услышать ваши мнения и советы и вместе мы скорее докопаемся до реальности!

Искренний ваш
Д. К.

для чего он нужен? Как узнать, какой резистор нужен?

При создании радиоэлектронных схем применяется множество различных элементов. Одни из наиболее используемых, без которых практически невозможно обойтись, — это резисторы. Что они собой являют? Какие типы есть? Какой их параметр наиболее важен? И какие особенности есть при последовательном и параллельном соединении?

Что такое резистор?

Так называют пассивный элемент электрической цепи, который оказывает сопротивление току во время его протекания. В больших схемах они применяются чаще, чем любой другой элемент электроники. Важным является обеспечение режима смещения транзисторов при использовании в усилительных каскадах. Но наиболее значимой функцией признают контроль и регулирование напряжения и значений токов в электрических цепях. Мы позднее рассмотрим, какие их типы бывают. В рамках статьи будет уделено внимание 5 основным, которые чаще всего используются, но могут быть и другие. Когда проводится расчет резисторов, то обязательно следует оценить, какая необходима мощность.

Хотите понять, что необходимо в конкретном случае?

Как узнать, какой резистор нужен при создании схем? Первоначально следует понять, что обязательным является знание силы тока или значение сопротивления нагрузки. В рамках статьи будет рассмотрено два варианта влияния на характеристики схемы:

1) Если ничего неизвестно, то берём переменный резистор и подключаем его последовательно с нагрузкой. Вращаем регулятор до того момента, пока у нас не будет нужное напряжение. Теперь вместо переменного сопротивления подключаем постоянное с необходимыми параметрами. Измерьте ток, что идёт после резистора и перемножает полученное значение с напряжением, что подаётся. Тогда будем знать, сколько и куда подавать.

2) Необходимо знать ранее указанные величины тока и нагрузки. Для повышения точности вычисления желательно также знать и значение внутреннего сопротивления источника питания.

Давайте смоделируем немного другие условия действий. Есть один резистор в качестве нагрузки, закон Ома и необходимость рассчитать необходимое для цепи сопротивление. Это довольно интересный момент и он заслуживает, чтобы ему было уделено внимание. Почему была выбрана именно такая формулировка? Дело в том, что люди, которые только начинают заниматься созданием схем, очень часто задают такой вопрос. Но, увы, цепь рассуждений, которой они идут, является немного неверной. Рассчитать необходимое значение с одним законом Ома здесь не выйдет. Необходимо дополнительно воспользоваться формулой вычисления добавочного резистора: СДБ = СН(НИП-НН)/НН=СН(х-1). Разберём формулу:

СДБ – сопротивление добавочного резистора;

НИП – напряжение источника питания;

СН – сопротивление нагрузки;

Х = НИП/НН;

НН – напряжение, что нужно получить на нагрузке.

Воспользуемся этой формулой. Допустим, что при сопротивлении в 1 Ом СДБ будет составлять 0,6 Ом. Если мы поставим 5 Ом, то конечный результат будет 3,3 Ом. Почему всё так? Это из-за того, что чем меньший показатель имеет сопротивление нагрузки, тем большая характеристика тока в цепи. При этом будет просаживаться источник питания, ведь он тоже создаёт определённые помехи для прохождения тока. А учитывая, что с этим будет падать и напряжение, то выходит, что нужен добавочный резистор с меньшими характеристиками для получения желаемого напряжения. Это напряжение буквально «на пальцах». Может быть сложно понять, что и как, но вы попробуйте.

Постоянный резистор

Так называют устройства, которые являются обладателями постоянного значения сопротивления. Эта характеристика резистора не меняется под действием внешних воздействий (температуры, протекающего тока, света, приложенного напряжения) в разумных рамках. Если так разобраться, то про все радиоэлементы можно сказать, что у них есть внутренние шумы и нестабильности из-за стороннего влияния. Но обычно это всё настолько ничтожно, что игнорируется любительской радиоэлектроникой и имеет смысл только при создании действительно сложных систем, которые даже не факт, что где-то собираются сейчас.

Переменный резистор

Так называют устройства, значение сопротивления которых можно изменить с помощью специальной ручки (она может быть ползункового, кнопочного или вращающегося типа). Зачем нужен резистор подобного типа? Хорошим примером применения данного элемента является регулятор громкости на звуковых колонках компьютера или мобильного телефона.

Построечный резистор

Так называются устройства, режим работы которых меняется лишь изредка. Чтобы регулировать значения сопротивления, необходимо с помощью отвертки покрутить шлиц, который имеет резистор. Для чего он нужен? Широкое распространение они получили на печатных платах радиосхем в качестве делителя тока или напряжения.

Фоторезистор

Это специальные устройства, которые могут менять значение своего сопротивления под влиянием света. Фоторезисторы производятся из полупроводниковых материалов. Если необходимо реагировать на наличие видимого света, то применяют селенид и сульфид кадмия. Чтобы регистрировать инфракрасное излучение, используют германий.

Терморезистор

Это специальное устройство, с помощью которого можно измерять температуру внешней среды. Терморезистор также используется в цепях термостабилизации для транзисторных каскадов. Как уже можно было догадаться, его сопротивление может меняться под воздействием температуры. В инкубаторах для цыплят, оранжереях, производственных аппаратах — везде можно найти этот резистор. Для чего он нужен? Чтобы при достижении определенной температурной границы включались системы отопления\охлаждения.

Рассеиваемая мощность

Это поглощаемая резистором энергия, которая образовывается током и напряжением. Из-за того, что происходит именно рассеивание, а не сохранение, данное устройство и называется пассивным. Благодаря этому о резисторе можно говорить как об активном элементе, который одинаково может работать в цепях переменного и постоянного токов.

Обозначение мощности рассеивания

Как понять, что может сделать постоянный резистор? Для этого необходимо посмотреть на его обозначение:

  1. Когда есть две косые линии, мощность рассеивания составляет 0,125 Вт.
  2. Есть одна косая линия — мощность рассеивания равняется 0,25 Вт.
  3. Одна горизонтальная линия — мощность рассеивания 0,5 Вт.
  4. Одна вертикальная линия — мощность рассеивания 1 Вт.
  5. Две вертикальные линии — мощность рассеивания 2 Вт.
  6. Две косые линии, что создают латинскую букву V, — мощность рассеивания 5 Вт.

Начиная от одного Ватта, для обозначения используются римские цифры.

Последовательное соединение

Когда имеет смысл применять подобный подход? Если надо получить значительное сопротивление, но есть резисторы с малым номиналом, то используют последовательно соединение. Чтобы оценить, что и как сделано в схеме, то нужно просуммировать их характеристики.

Параллельное соединение

А где необходим такой подход? Здесь общее сопротивление резисторов будет равняться сумме, которая является ему обратно пропорциональной. Эту величину также называют «проводимость». Вам может быть немного сложно понять, о чем автор ведёт речь, поэтому предлагаем взглянуть на такую формулу (С — сопротивление):

1/Собщее=1/С1+1/С2+…+1/Сх.

Применение

Вот мы и поняли, что такое резистор, для чего он нужен. Фото, размещённые в статье, позволяют понять, как он выглядит. Но хочется уделить внимание и его применению. Итак, резистор. Для чего он нужен в машине? Как вы знаете, в автомобилях используется значительное количество электроники. Вот для контроля её работы его и применяют. Для чего нужен резистор печки в автомобиле? Видели возможность переключения и настройки температурного режима? Вот для чего нужен резистор отопителя! Ведь без него можно было бы включить только заранее установленные настройки и всё. Теперь подумаем, зачем нужен резистор для светодиода? С его помощью можно регулировать яркость его свечения. Как вы могли догадаться, если внимательно читали статью, ответ на вопрос о том, какие резисторы нужны для светодиодов, — переменные!

Заключение

Как видите, резистор — это необходимая и полезная вещь, которая имеет широкие возможности применения. Теоретически обойтись без резистора можно в простейших схемах, на пару деталей, при том, что источники энергии будут очень точно выбраны. Но такое маловероятно, и для достижения необходимого значения этих показателей придётся длительное время подбирать их. Вот для упрощения процесса и применяются резисторы, ведь они позволяют проводить значительные перепады характеристик, открывая возможность даже кратного их изменения.

Зачем нужны резисторы в светодиодных линейках

Почему светодиод нужно подключать через резистор

На светодиодной ленте есть резисторы, на печатных платах (где светодиоды служат индикаторами) есть резисторы, даже в светодиодных лампах — и то есть резисторы. В чем же дело? Почему светодиод обычно подключен через резистор? Для чего светодиоду резистор?

На самом деле все очень просто: светодиоду для работы необходимо очень маленькое постоянное напряжение, а если подать больше — светодиод перегорит. Если даже подать немного больше, на 0,2 вольта больше номинала — ресурс светодиода уже начнет стремительно уменьшаться, и очень скоро жизнь этого полупроводникового источника света закончится плачевно.

Например, красному светодиоду для нормальной работы нужно ровно 2,0 вольта, при этом ток его потребления составляет 20 миллиампер. А если подать 2,2 вольта — наступит пробой p-n-перехода. У разных производителей светодиодов, в зависимости от применяемых полупроводников и технологии создания светодиодов, рабочее напряжение может чуть-чуть в ту или иную сторону отличаться. Однако, взгляните для примера на вольт-амперную характеристику красного SMD светодиода одного известного производителя:

Здесь видно, что уже при 1,9 вольта светодиод начинает слабо светиться, а при подаче на его выводы ровно 2 вольт, свечение получится достаточно ярким, это его номинальный режим. Если теперь увеличивать напряжение до 2,1 вольт — светодиод начнет перегреваться, и стремительно терять свой ресурс. А при подаче более 2,1 вольта — светодиод перегорит.

Теперь вспомним Закон Ома для участка цепи: сила тока в участке цепи прямопропорциональна напряжению на концах этого участка, и обратно пропорциональна его сопротивлению:

Следовательно, если у нас сила тока через светодиод равна 20 мА при напряжении на его выводах в 2,0 В, значит какое светодиод имеет сопротивление в рабочем состоянии, исходя из этого закона? Правильно: 2,0/0,020 = 100 Ом. Светодиод в рабочем состоянии по своим характеристикам эквивалентен резистору номиналом 100 Ом, мощностью 2*0,020 = 40 мВт.

А что если в наличии на плате имеется лишь напряжение 5 вольт или 12 вольт? Как питать светодиод таким высоким напряжением, и чтобы он при этом бы не перегорел? Вот разработчики всюду и решили, что удобнее всего применить дополнительный резистор.

Почему резистор? Потому что это – наиболее выгодный, наиболее экономичный, наименее затратный по ресурсам и рассеиваемой мощности, путь решения проблемы ограничения тока через светодиод.

Итак, если в наличии 5 вольт, а необходимо получить 2 вольта на «резисторе» в 100 Ом, значит необходимо разделить эти 5 вольт между нашим полезным светящимся резистором в 100 Ом (в роли которого выступает ДАННЫЙ светодиод), и другим резистором, номинал которого сейчас предстоит вычислить исходя из того, что имеется в распоряжении:

В данной цепи ток постоянный, не переменный, элементы все в установившемся режиме линейные, следовательно ток по всей цепи будет одной и той же величины, в нашем примере 20 мА — так нужно светодиоду. 2/R = 9/150 = 60 мВт. Подойдет резистор на 0,125 Вт, чтобы не сильно грелся. Теперь всем ясно, для чего светодиоду резистор.

Как определить параметры светодиодной линейки?

Поиск по тем данным, что указаны на линейке ничего не дал. Всё что я понял, так это то что здесь 90 светодиодов и размер каждого 4 на 1.4. А хотелось бы подобрать блок к этой линейке. Таких оказалось довольно много и поэтому вариант с “просто забить и купить нормальную ленту с известными параметрами” хотелось бы рассматривать в последнюю очередь. Спасибо.

Дубликаты не найдены

Предполагаю что 15s 6p значит что 6 параллельных кусков по 15 светодиодов. Вероятное напряжение питания около 48 вольт, поскольку резисторов не видно – лента скорее всего токовая. Раз светодиоды 4014, то ток где-то 60мА на штучку. Нужен драйвер 0.06*6*48=17 Вт, плюс-минус туда сюда.

Спасибо, буду пробовать.

Как раз наоборот, в светодиодных лентах светодиоды ну ни разу не предназначены для освещения, местная подсветка максимум. Плюс потери в 20% или около того на резисторах. А на этих линейках милое дело. Их только на металл надо приклеить для охлаждения. Судя по внешнему виду, цветовая температура будет порядка 3000К, чуть белее, чем лампа накаливания.

Если наплевать на свои глаза и устраивает CRI в районе 70 (а предполагаем именно такое, пока не доказано обратное) можете их ставить везде, но я бы кроме как в шкафчиках таким пользоваться не стал.

Разумеется, сначала надо одну-две линейки включить и посмотреть, оценить как светит, как греется и т.д. Но эти линейки, если они алюминиевые, изначально предназначены для освещения, в отличие от светодиодных лент.

Это на данной линейке.

Я бы порекомендовал прощупать светодиод при помощи ЛБП. Выставив ток на 60 mA и постепенно по десятой милливольта поднимая напряжение.

А как конечное напряжение определить? Ну светит и светит.

Так же можно и до 220В догонять.

Как нагрелось – чуть назад и хватит.

ага, классный способ. Главное не переборщить перед “чуть назад”.

или еще круче: пожертвовать одним диодиком. А потом дать на остальные 70% мощности.

шарики припоя отковыряй только

Возьми мультиметр, прозвони, нарисуй схему. Тогда будет значительно понятнее чем же эта схема питается.

но тут нет нужного

Это случайно не с матрицы полоска?

Отдали тридцать таких линеек, сказали что нашли при разборе склада, на складе хранилась мебельная фурнитура, т.е. может быть эти линейки использовали в качестве подсветки для мебели, встроенная подсветка для зеркал, как вариант.

если с мебельки то они обычно 12 вольтовые используют, коннектор/место под пайку – 2 пина?

Если хочешь зажечь, можно вот этой штуковиной, она сама вольтаж подберёт, и яркость можно регулировать. Она универсальна.

ссылка не работает

это переходник для подсветки матриц. не для любых.

это универсальный драйвер подсветки led матриц. Повышает напряжение до пробоя светодиода. И что значит не для любых? У меня проблем не было.

70 вольтовую с телека подожгёт?

Врать не буду телики не делаем, 55 В на этой фигне видел. Но тут человеку еще меньше надо.

Такие диоды обычно в 12V линейках используют, у тебя на фото слева видно контакт резистора, сфотографируй кусок с резистором, это сильно облегчит задачу.

Классная линейка. Нужен драйвер на 20 либо более ватт, 250 – 350 мА, в зависимости от охлаждения линейки.

Понять в режиме ли работает линейка, можно по ее нагреву. В идеале, при долговременной эксплуатации, рассеиватель тепла, к которому она приклеена должен быть не теплее 45 градусов, тогда можно надеяться на долгую работу.

Без рассеивателя использовать нельзя, ну либо совсем на малых токах.

От источника напряжения подключать очень не рекомендуется.

Как правильно рассчитать резистор для светодиода?

Основным параметром, влияющим на долговечность светодиода, является электрический ток, величина которого строго нормируется для каждого типа LED-элемента. Одним из распространенных способов ограничения максимального тока является использование ограничительного резистора. Резистор для светодиода можно рассчитать без применения сложных вычислений на основании закона Ома, используя технические значения параметров диода и напряжение в цепи включения.

Особенности включения светодиода

Работая по одинаковому принципу с выпрямительными диодами, светоизлучающие элементы, тем не менее, имеют отличительные особенности. Наиболее важные из них:

  1. Крайне отрицательная чувствительность к напряжению обратной полярности. Светодиод, включенный в цепь с нарушением правильной полярности, выходит из строя практически мгновенно.
  2. Узкий диапазон допустимого рабочего тока через p-n переход.
  3. Зависимость сопротивления перехода от температуры, что свойственно большинству полупроводниковых элементов.

На последнем пункте следует остановиться подробнее, поскольку он является основным для расчета гасящего резистора. В документации на излучающие элементы указывается допустимый диапазон номинального тока, при котором они сохраняют работоспособность и обеспечивают заданные характеристики излучения. Занижение величины не является фатальным, но приводит к некоторому снижению яркости. Начиная с некоторого предельного значения, прохождение тока через переход прекращается, и свечение будет отсутствовать.

Превышение тока сначала приводит к увеличению яркости свечения, но срок службы при этом резко сокращается. Дальнейшее повышение приводит к выходу элемента из строя. Таким образом, подбор резистора для светодиода преследует цель ограничить максимально допустимый ток в наихудших условиях.

Напряжение на полупроводниковом переходе ограничено физическими процессами на нем и находится в узком диапазоне около 1-2 В. Светоизлучающие диоды на 12 Вольт, часто устанавливаемые на автомобили, могут содержать цепочку последовательно соединенных элементов или ограничительную схему, включенную в конструкцию.

Зачем нужен резистор для светодиода

Использование ограничительных резисторов при включении светодиодов является пусть и не самым эффективным, зато самым простым и дешевым решением ограничить ток в допустимых пределах. Схемные решения, которые позволяют с высокой точностью стабилизировать ток в цепи излучателей достаточно сложны для повторения, а готовые имеют высокую стоимость.

Применение резисторов позволяет выполнять освещение и подсветку своими силами. Главное при этом — умение пользоваться измерительными приборами и минимальные навыки пайки. Грамотно рассчитанный ограничитель с учетом возможных допусков и колебаний температуры способен обеспечить нормальное функционирование светодиодов в течении всего заявленного срока службы при минимальных затратах.

Параллельное и последовательное включение светодиодов

С целью совмещения параметров цепей питания и характеристик светодиодов широко распространены последовательное и параллельное соединение нескольких элементов. У каждого типа соединений есть как достоинства, так и недостатки.

Параллельное включение

Достоинством такого соединения является использование всего одного ограничителя на всю цепь. Следует оговориться, что данное достоинство является единственным, поэтому параллельное соединение практически нигде не встречается, за исключением низкосортных промышленных изделий. Недостатки таковы:

  1. Мощность рассеивания на ограничительном элементе растет пропорционально количеству параллельно включенных светодиодов.
  2. Разброс параметров элементов приводит к неравномерности распределения токов.
  3. Перегорание одного из излучателей ведет к лавинообразному выходу из строя всех остальных ввиду увеличения падения напряжения на параллельно включенной группе.

Несколько увеличивает эксплуатационные свойства соединение, где ток через каждый излучающий элемент ограничивается отдельным резистором. Точнее, это является параллельным соединением отдельных цепей, состоящих из светодиодов с ограничительными резисторами. Основное достоинство — большая надежность, поскольку выход из строя одного или нескольких элементов никаким образом не отражается на работе остальных.

Недостатком является тот факт, что из-за разброса параметров светодиодов и технологического допуска на номинал сопротивлений яркость свечения отдельных элементов может сильно различаться. Такая схема содержит большое количество радиоэлементов.

Параллельное соединение с индивидуальными ограничителями находит применение в цепях с низким напряжением, начиная с минимального, ограниченного падением напряжения на p-n переходе.

Последовательное включение

Последовательное включение излучающих элементов получило самое широкое распространение, поскольку несомненным достоинством последовательной цепи является абсолютное равенство тока, проходящего через каждый элемент. Поскольку ток через единственный ограничительный резистор и через диод одинаков, то и рассеиваемая мощность будет минимальной.

Существенный недостаток — выход из строя хотя бы одного из элементов приведет к неработоспособности всей цепочки. Для последовательного соединения требуется повышенное напряжение, минимальное значение которого растет пропорционально количеству включенных элементов.

Смешанное включение

Использование большого количества излучателей возможно при выполнении смешанного соединения, когда используют несколько параллельно включенных цепочек, и последовательного соединения одного ограничительного резистора и нескольких светодиодов.

Перегорание одного из элементов приведет к неработоспособности только одной цепи, в которой установлен данный элемент. Остальные будут функционировать исправно.

Формулы расчета резистора

Расчет сопротивления резистора для светодиодов базируется на законе Ома. Исходными параметрами для того, как рассчитать резистор для светодиода, являются:

  • напряжение цепи;
  • рабочий ток светодиода;
  • падение напряжения на излучающем диоде (напряжение питания светодиода).

Величина сопротивления определяется из выражения:

где U — падение напряжения на резисторе, а I — прямой ток через светодиод.

Падение напряжения светодиода определяют из выражения:

где Uпит — напряжение цепи, а Uсв — паспортное падение напряжения на излучающем диоде.

Расчет светодиода для резистора дает значение сопротивления, которое не будет находиться в стандартном ряду значений. Брать нужно резистор с сопротивлением, ближайшим к вычисленному значению с большей стороны. Таким образом учитывается возможное увеличение напряжения. Лучше взять значение, следующее в ряду сопротивлений. Это несколько уменьшит ток через диод и снизит яркость свечения, но при этом нивелируется любое изменение величины питающего напряжения и сопротивления диода (например, при изменении температуры).

Перед тем как выбрать значение сопротивления, следует оценить возможное снижение тока и яркости по сравнению с заданным по формуле:

Если полученное значение составляет менее 5%, то нужно взять большее сопротивление, если от 5 до 10%, то можно ограничиться меньшим.

Не менее важный параметр, сказывающийся на надежности работы — рассеиваемая мощность токоограничительного элемента. Ток, проходящий через участок с сопротивлением, вызывает его нагрев. Для определения мощности, которая будет рассеиваться, используют формулу:

Используют ограничивающий резистор, чья допустимая мощность рассеивания будет превосходить расчетную величину.

Имеется светодиод с падением напряжения на нем 1. 7 В с номинальным током 20 мА. Необходимо включить его в цепь с напряжением 12 В.

Падение напряжения на ограничительном резисторе составляет:

U = 12 — 1.7 = 10.3 В

R = 10.3/0.02 = 515 Ом.

Ближайшее большее значение в стандартном ряду составляет 560 Ом. При таком значении уменьшение тока по сравнению с заданным составляет чуть менее 10%, поэтому большее значение брать нет необходимости.

Рассеиваемая мощность в ваттах:

P = 10.3•10.3/560 = 0.19 Вт

Таким образом, для данной цепи можно использовать элемент с допустимой мощностью рассеивания 0.25 Вт.

Подключение светодиодной ленты

Светодиодные ленты выпускаются на различное напряжение питания. На ленте располагается цепь из последовательно включенных диодов. Количество диодов и сопротивление ограничительных резисторов зависят от напряжения питания ленты.

Наиболее распространенные типы светодиодных лент предназначены для подключения в цепь с напряжением 12 В. Использование для работы большего значения напряжения здесь также возможно. Для правильного расчета резисторов необходимо знать ток, идущий через единичный участок ленты.

Увеличение длины ленты вызывает пропорциональное увеличение тока, поскольку минимальные участки технологически соединены параллельно. Например, если минимальная длина отрезка составляет 50 см, то на ленту 5м из 10 таких отрезков придется возросший в 10 раз ток потребления.

Управление светодиодом с резистором и без резистора

В статье сделана попытка показать, почему необходимо использовать токоограничивающий резистор для светодиода. И как можно управлять светодиодом без резистора. Когда вы читаете о светодиодах, вы можете заметить, что все говорят о необходимости использования токоограничивающего резистора. Но обычно не говорится почему. Светодиод с токоограничивающим резистором Если посмотреть документацию на светодиод, можно заметить, что вольт-амперная характеристика светодиода нелинейна. Поскольку светодиод является полупроводниковым элементом, его характеристика отличается от характеристики резистора.

Если к резистору приложить определенное напряжение, ток через него можно вычислить по формуле: I = R/V Пример: I = 100 Ом / 5 В = 20 мА Очевидно, что эта формула неприменима к светодиодам, потому что они являются линейным сопротивлением. Если посмотреть на приведенный выше график, то становится ясным, что повышение напряжения от 0 до 1,6 В не приводит к заметному увеличению тока. Если приложить еще немного больше напряжения, ток увеличится, и светодиод начнет светиться. Мы достигли открывающего потенциала для pn-перехода. Открывающий потенциал для типичного красного светодиода находится в диапазоне от 1,7 до 2,2 В. Небольшие изменения напряжения приводят к сильным изменениям прямого тока.

В документации обычно указывается абсолютное максимальное значение прямого тока, например, 25 мА. Если приложить напряжение, приводящее к большему току, светодиод выйдет из строя. Так что жизненно важно оставаться в рамках предельно допустимых параметров. Если подсоединить светодиод напрямую к 5 В источнику питания, он тут же сгорит. Сильный ток разрушит pn-переход. С этого момента появляется ограничивающий резистор. Предположим, что у нас имеется красный светодиод с максимальным прямым током 25 мА и открывающим потенциалом 2,1 В. Если мы хотим использовать 5 В источник питания, чтобы на нем упало оставшиеся 2,9 В. Для резистора получим: R = V / I = (5 В – 2.1 В) / 25 мА = 116 Ом. Для безопасности светодиода используйте резистор номиналом 120 Ом или лучше 150 Ом.

Так мы не доведем светодиод до предельно допустимого тока. R = V / I = (5 В – 2 В) / 20 мА = 150 Ом. Для сохранения резистора обратим внимание на рассеиваемую мощность. Она вычисляется следующим образом: P = V * I = 3 В * 20 мА = 60 мВт. Так что проще всего взять резистор 150 Ом, 0,25 Вт. Итак, это все об обычном использовании светодиода с ограничивающим резистором. Светодиод без токоограничивающего резистора Во-первых, почему мы хотим избавиться от резистора? Есть две причины. Для начала, он рассеивает энергию. Превращает электричество в тепло. А мы хотим получить свет от светодиода. Нехорошо. Еще, вы можете уменьшить количество компонентов. Устройство будет экономичнее и на печатной плате останется больше места. Есть два способа обойтись без резистора. Один из них – понизить входное напряжение.

Если все ваше устройство может работать при напряжении, равном открывающему напряжению светодиода, это замечательно. Резистор не нужен. Другим способом является использование широтно-импульсной модуляции (ШИМ). Это означает, что мы включаем и выключаем светодиод. Если это происходит достаточно быстро, человеческий глаз не замечает разницы. Он интегрирует яркость за определенный промежуток времени, как говорят. Часто в документации указывается пиковый прямой ток. Например: IF(peak) = 160 mA (пиковый прямой ток = 160 мА) Condition: Pulse W >

Смотря на график, можно оценить его уровень около 3 – 3,2 В, но автор не проверял этого. Оба метода были использованы автором для 64-пиксельной светодиодной матрицы, где светодиоды были подключены к микроконтроллеру без токоограничивающих резисторов.

Входное напряжение было 3 В, если использовать 2 батареи типа АА или около 2,4 В с использованием аккумуляторов. Это позволяет получить открывающий потенциал светодиодов. Матрица позволяет адресацию одной строки целиком в данный момент времени. Вы можете выбирать ячейки только на выбранной строке, устанавливая биты столбцов. В следующий момент времени первая строка отключается, подключается вторая, и т.д. Так вы переключаете в цикле все строки. Это делается так быстро, что видеть мигание невозможно. Каждая строка обновляется с частотой примерно 2 кГц и заполнением импульса 1/8 (потому что строк 8).

Если для управления светодиодом или светодиодной матрицей вы используете микроконтроллер, нужно обратить внимание на предельно допустимый ток для микроконтроллера. Каждый I/O вывод может быть источником или поглотителем определенного тока.

В документации к ATtiny2313 на странице 181 написано: Absolute Maximum Ratings (абсолютные максимальные параметры):

* DC Current per I/O pin: 40.0 mA (постоянный ток – 40 мА на вывод) И на странице 182 есть замечание: 4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: 1] The sum of all IOL, for all ports, should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

(4. не смотря на то, что I/O ток при тестировании составляет 10 мА при питании 5 В и 5 мА при питании 3 В, в отсутствие переходных процессов должно наблюдаться: 1] Сумма всех втекающих в процессор токов для всех портов не должна превышать 60 мА. Если втекающий ток превышает тестовые условия, то напряжение логического нуля может превышать номинальные значения. Не гарантируется, что выводы будут проводить ток, больший чем указано в тестовых условиях.)

Как можно понять, если вы пытаетесь получить ток более 10 мА, высокий или низкий уровень выходного напряжения может выйти за рамки гарантированные производителем. Взгляд на следующие два графика из документации может прояснить эту вещь.

Этот график показывает как выходное напряжение вывода просаживается при увеличении тока для питания 2,7 В. 2,7 В это не те 3 В, которые могут обеспечить 2 батареи АА типа, но на данный момент это довольно близко. Как видно, если потребляется больше тока, выходное напряжение падает. При 5 мА мы имеем напряжение 2,5 В, а при 15 мА напряжение падает до 2,1 В.

Этот график показывает как выходное напряжение вывода зависит от втекающего в вывод тока. В этом случае при потреблении большего тока выходное напряжение увеличивается. При 5 мА напряжение равно 0,15 В, и при 15 мА оно возрастает до 0,5 В. Чтобы проверить, можно ли в данной схеме использовать ATtiny2313, нужно провести некоторые вычисления. Для матрицы у нас нет документации с красивыми графиками, но есть некоторые цифры. Forward Voltage: 1.80 – 2.20 V (Прямое напряжение: 1,8 – 2,2 В) Maximum Rating: Forward Current: 25 mA (Предельный ток: 25 мА) Предположим, что светодиод работает при 1,8 В и 5 мА.

Это выглядит разумным, если посмотреть на другую документацию. Теперь, если проанализировать показанные выше 2 графика при токе 5 мА, получим 2,5 В для вывода – источника и 0,15 В для вывода – стока. 2.5 В – 0.15 В = 2.35 В Таким образом, мы получаем 2,35 В для светодиода. Это больше, чем мы предполагали (1,8 В). Большее напряжение для светодиода означает больший ток. Теперь посчитаем для 10 мА. Анализируя снова, получим 2,3 В для вывода – источника и 0,3 В для вывода – стока. 2.3 В – 0.3 В = 2.0 В Как видно, если напряжение на светодиоде повышается, ток также увеличивается. Увеличение тока приводит к уменьшению/увеличению выходного напряжения на выводе – источнике/стоке. А это означает уменьшение тока.

Т.е. на каком-то уровне ток стабилизируется. Похоже, 2,0 В при 10 мА подходит для светодиода и микроконтроллера. Это справедливо для светодиода на двух выводах. А что, если мы хотим управлять всей линейкой из 8 светодиодов? В этом случае мы имеем 8 выводов – источников, 8 светодиодов и один вывод – сток. Из вышеприведенного примера следует, что 10 мА на каждый светодиод соответствует 80 мА (!). Это много. На графике это даже не показано. Предположим, что в сумме мы имеем только 25 мА, тогда получается 3,125 мА на светодиод.

Это дает 2,6 В на каждом источнике и 1,0 В на стоке. 2.6 В – 1.0 В = 1.6 В Это означает, что для каждого светодиода остается 1,6 В, что немного меньше открывающего потенциала. Светодиоды будут затемнены. Опять же, если светодиоды потребляют больше тока, микроконтроллер даст им меньшее выходное напряжение. В таком случае яркость строк будет зависеть от числа подключенных ячеек: строки с меньшим количеством горящих диодов будут ярче. Все эти подсчеты и изучение соответствующей документации помогут понять в каких случаях нужно, а в каких не нужно использовать токоограничивающий резистор.

Перевод: Piyavka, по заказу РадиоЛоцман

Как правильно рассчитать и подобрать резистор для светодиода

Каждый из нас видел светодиод. Обычный маленький светодиод выглядит как пластиковая колбочка-линза на проводящих ножках, внутри которой расположены катод и анод. На схеме светодиод изображается как обычный диод, от которого стрелочками показан излучаемый свет. Вот и служит светодиод для получения света, когда электроны движутся от катода к аноду — p-n-переходом излучается видимый свет.

Изобретение светодиода приходится на далекие 1970-е, когда для получения света во всю применяли лампы накаливания. Но именно сегодня, в начале 21 века, светодиоды заняли наконец место самых эффективных источников электрического света.

Где у светодиода «плюс», а где «минус»?

Чтобы правильно подключить светодиод к источнику питания, необходимо прежде всего соблюсти полярность. Анод светодиода подключается к плюсу «+» источника питания, а катод — к минусу «-». Катод, подключаемый к минусу, имеет вывод короткий, анод, соответственно, – длинный — длинную ножку светодиода – на плюс «+» источника питания.

Взгляните во внутрь светодиода: большой электрод — это катод, его — к минусу, маленький электрод, похожий просто на окончание ножки, – на плюс. А еще рядом с катодом линза светодиода имеет плоский срез.

Паяльник долго на ножке не держать

Паять выводы светодиода следует аккуратно и быстро, ведь полупроводниковый переход очень боится лишнего тепла, поэтому нужно краткими движениями паяльника дотрагиваться его жалом до припаиваемой ножки, и тут же паяльник отводить в сторону. Лучше в процессе пайки держать припаиваемую ножку светодиода пинцетом, чтобы обеспечить на всякий случай отвод тепла от ножки.

Резистор обязателен при проверке светодиода

Мы подошли к самому главному — как подключить светодиод к источнику питания. Если вы хотите проверить светодиод на работоспособность, то не стоит напрямую присоединять его к батарее или к блоку питания. Если ваш блок питания на 12 вольт, то используйте для подстраховки резистор на 1 кОм последовательно с проверяемым светодиодом.

Не забывайте о полярности — длинный вывод на плюс, вывод от большого внутреннего электрода — к минусу. Если не использовать резистор, то светодиод быстро перегорит, в случае если вы нечаянно превысите номинальное напряжение, через p-n-переход потечет большой ток, и светодиод практически тут же выйдет из строя.

Цвет свечения светодиода

Светодиоды бывают разных цветов, однако цвет свечения не всегда определяется цветом линзы светодиода. Белый, красный, синий, оранжевый, зеленый или желтый — линза может быть прозрачной, а включишь — окажется красным или синим. Светодиоды синего и белого свечения — самые дорогие. Вообще, на цвет свечения светодиода влияет в первую очередь состав полупроводника, и как вторичный фактор – цвет линзы.

Многоцветные RGB светодиоды содержат в одном корпусе несколько излучающих свет p-n-переходов, каждый из которых дает свой цвет свечения. Комбинируя яркости компонентов токами или частотами импульсов токов (для красного, зеленого и синего кристаллов), можно получить любой оттенок. Здесь, конечно, балансирующие резисторы нужны на каждый цветовой канал.

Находим номинал резистора для светодиода

Резистор включается последовательно со светодиодом. Функция резистора — ограничить ток, сделать его близким к номиналу светодиода, чтобы светодиод мгновенно не перегорел, и работал бы в нормальном номинальном режиме. Берем в расчет следующие исходные данные:

Vps – напряжение источника питания;

Vdf – прямое падение напряжения на светодиоде в нормальном режиме;

If – номинальный ток светодиода при нормальном режиме свечения.

Теперь, прежде чем находить значение необходимого резистора R, отметим, что ток в последовательной цепи у нас будет постоянным, одним и тем же в каждом элементе: ток If через светодиод будет равен току Ir через ограничительный резистор.

Следовательно Ir = If. Но Ir = Ur/R – по закону Ома. А Ur = Vps-Vdf. Таким образом, R = Ur/Ir = (Vps-Vdf)/If.

То есть, зная напряжение источника питания, падение напряжения на светодиоде и его номинальный ток, можно легко подобрать подходящий ограничительный резистор.

Если найденное значение сопротивления не удается выбрать из стандартного ряда номиналов резисторов, то берут резистор несколько большего номинала, например вместо найденных 460 Ом, берут 470 Ом, которые всегда легко найти. Яркость свечения светодиода уменьшится весьма незначительно.

Пример подбора резистора:

Допустим, имеется источник питания на 12 вольт, и светодиод, которому нужно 1,5 вольта и 10 мА для нормального свечения. Подберем гасящий резистор. На резисторе должно упасть 12-1,5 = 10,5 вольт, а ток в последовательной цепи (источник питания, резистор, светодиод) должен получиться 10 мА, следовательно из Закона Ома: R = U/I = 10,5/0,010 = 1050 Ом. Выбираем 1,1 кОм.

Какой мощности должен быть резистор? Если R = 1100 Ом, а ток составит 0,01 А, то, по закону Джоуля-Ленца, на резисторе каждую секунду будет выделяться тепловая энергия Q = I*I*R = 0,11 Дж, что эквивалентно 0,11 Вт. Резистор мощностью 0,125 Вт подойдет, даже запас останется.

Последовательное соединение светодиодов

Если перед вами стоит цель соединить несколько светодиодов в единый источник света, то лучше всего соединение выполнять последовательно. Это нужно для того, чтобы к каждому светодиоду не цеплять свой резистор, чтобы избежать лишних потерь энергии. Наиболее подходят для последовательного соединения светодиоды одного и того же вида, из одной и той же партии.

Допустим, необходимо последовательно объединить 8 светодиодов по 1,4 вольта с током по 0,02 А для подключения к источнику питания 12 вольт. Очевидно, общий ток будет составлять 0,02 А, но общее напряжение составит 11,2 вольта, следовательно 0,8 вольт при токе в 0,02 А должны рассеяться на резисторе. R = U/I = 0,8/0,02 = 40 Ом. Выбираем резистор на 43 Ом минимальной мощности.

Параллельное соединение цепочек светодиодов — не лучший вариант

Если есть выбор, то светодиоды лучше всего соединять последовательно, а не параллельно. Если соединить несколько светодиодов параллельно через один общий резистор, то в силу разброса параметров светодиодов, каждый из них будет не в равных условиях с остальными, какой-то будет светиться ярче, принимая больше тока, а какой-то — наоборот тусклее. В результате, какой-нибудь из светодиодов сгорит раньше в силу быстрой деградации кристалла. Лучше для параллельного соединения светодиодов, если альтернативы нет, применить к каждой цепочке свой ограничительный резистор.

Подбор токоограничивающего резистора для светодиода

Светодиод – это полупроводниковый элемент электрической схемы. Его особенностью является нелинейная вольт-амперная характеристика. Стабильность и срок службы прибора во многом обусловлены силой тока. Малейшие перегрузки приведут к ухудшению качества светодиода (деградации) или его поломке.

Зачем резистор перед светодиодом.

В идеале для работы диоды следует подключать к источнику постоянного тока. В этом случае элемент будет работать стабильно. Но на практике для подключения чаще всего используют более распространенные блоки питания с постоянным напряжением. При этом для ограничения силы тока, которая протекает через LED элемент, нужно включать в электрическую цепь дополнительное сопротивление − резистор. В статье рассмотрены методы расчета резистора для светодиода.

Когда следует подключать светодиод через резистор

Существует несколько случаев, когда такая электрическая схема уместна. Во-первых, токоограничивающий резистор стоит использовать, если эффективность схемы не первоочередная задача. В качестве примера можно привести применение светодиода в качестве индикатора в приборах. В таком случае важно самом свечение, а не его яркость.

Во-вторых, применение резистора оправдано в случаях, когда необходимо выяснить полярность и работоспособность LED элемента. Одним из методов является подключение прибора к блоку питания. В этом качестве часто используют аккумуляторы от мобильных телефонов или батарейки. Напряжение на них может достигать 12 В. Это очень высокая величина, и прямое подключение светодиода приведет к поломке. Для ограничения напряжения в цепь вставляют резистор.

В-третьих, резистор используют в исследовательских целях для изучения работы новых образцов светодиодов.

В других случаях можно воспользоваться драйвером – прибором, стабилизирующим ток.

Математический расчет.

Для подбора сопротивления придется вспомнить школьный курс физики.

На рисунке представлена простая последовательная электрическая схема соединения резистора и диода. На схеме применены следующие обозначения:

  • U – входное напряжение блока питания;
  • R – резистор с падением напряжения UR;
  • LED – светодиод с падением напряжения ULED (паспортное значение) и дифференциальным сопротивлением RLED;

Поскольку элементы соединены последовательно, то сила тока I в них одинакова.

По второму закону Кирхгофа:

Одновременно используем закон Ома:

Подставим формулу (2) в формулу (1) и получим:

Путем простых математических преобразований из формул (1) и (3) найдем искомое сопротивление резистора R:

Для более точного подбора можно рассчитать мощность рассеивания резистора Р.

Примем напряжение блока питания U = 10 В.

Характеристики диода: ULED = 2В, I = 40 мА = 0,04A.

Подставим нужные цифры в формулу (4), получим: R = (10 – 2) / 0,04 = 200 (Ом).

Мощность рассеивания (5): составит Р = (10 – 2) * 0,04 = 0,32 (Вт).

Графический расчет.

При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом. Метод применяется редко, но полезно про него знать.

Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.

Например, ILED = 10 мА, а U = 5 В. По графику IMAX примерно равна 25 мА.

По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).

Примеры вычислений сопротивления для светодиода.

Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.

Вычисление токоограничивающего сопротивления при последовательном соединении нескольких светодиодов.

Из курса физики известно, что в такой схеме значение тока постоянное, а напряжение на LED элементах суммируется.

Возьмем напряжение источника питания U = 12 В.

Характеристики диодов одинаковы: ULED = 2В, ILED = 10 мА.

Преобразуем формулу (4), учитывая три LED элемента.

R = (12 – 3* 2) / 0,01 = 600 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2 * 3) * 0,01 = 0,6 (Вт).

Вычисление сопротивления при параллельном соединении светодиодов.

В этом случае постоянным сохраняется напряжение, а силы тока складываются. Поэтому при тех же входных данных (напряжение источника питания U = 12 В, напряжение и ток на диодах ULED = 2В, ILED = 10 мА), расчет будет несколько другим.

Используем формулу (4), учитывая три LED элемента.

R = (12 – 2) / 3*0,01 = 333,3 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2) * 3*0,01 = 0,3 (Вт).

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Для параллельного соединения светодиодов необходимо к каждому из них подключать свой резистор.

Вычисление сопротивления при параллельно-последовательном соединении LED элементов.

Для подключения большого количества светодиодов уместно использовать параллельно-последовательную электрическую схему. Поскольку в параллельных ветках напряжение одинаковое, то достаточно узнать сопротивление резистора в одной цепи. А количество веток не имеет значения.

Напряжение блока питания U = 12 В.

Характеристики диодов одинаковы: ULED = 2В, ILED = 10 мА.

Максимальное количество LED элементов n для одной ветки рассчитывается так:

В нашем случае n = (12 – 2) / 2 = 5 (шт).

Сопротивление резистора для одной ветки:

Для трех светодиодов оно составит: R = (12 – 3*2)/ 0,01 = 600 (Ом).

Ардуино для начинающих. Урок 7. Основы схемотехники

В этом уроке мы поговорим об основах схемотехники, применительно к Arduino. И начнем, конечно же, с закона Ома, так как это основа всей схемотехники. Так же в этом уроке мы поговорим о сопротивлении, стягивающих и подтягивающих резисторах, расчете силы тока и напряжения.

В этом уроке используется:

Большая макетная плата на 1600 точек с 4 шинами питания:Купить
Набор резисторов из 100 штук на все случаи:Купить
Набор светодиодов из 100 штук:Купить
5 штук кнопок в удобной форме:Купить
Соединительные провода 120 штук:Купить
Потенциометры с колпачками 5 штук:Купить

Закон Ома

Закон Ома гласит следующее: V = IR. V — это напряжение (измеряется в вольтах). I — это сила тока (измеряется в амперах). R — это сопротивление (измеряется в омах). Определение вы можете почитать на википедии.

В прошлых уроках мы подключали светодиод через резистор. Давайте разберемся зачем нужен этот резистор и как рассчитать необходимый номинал. Дело в том что пин Arduino Uno выдает 5 В, а светодиоду нужно всего 3 В. Если резистор не ставить то светодиод будет потреблять гораздо больше тока чем ему необходимо. Это приведет к более быстрой разрядке аккумулятора (если ваша ардуино питается от него), к неправильному цвету свечения (если светодиод цветной) и к быстрому перегоранию светодиода. Для того что бы рассчитать номинал резистора надо знать напряжение и силу тока необходимую для конкретного светодиода. Светодиоды бывают разные, но с ардуино используются светодиоды потребляющие 20 мА и работающие от 2 В. Эти параметры можно посмотреть на сайте производителя или узнать у продавца.

Теперь нам надо просто подставить эти данные в формулу и вычислить сопротивление: R = V / I = 3 В / 20 мА = 150 Ом. Вот и все. Теперь мы знаем какой резистор необходим для подключения светодиода к плате Ардуино.

Подтягивающее и стягивающее сопротивление

В одном из прошлых уроков при подключении кнопки к ардуино, мы использовали стягивающий резистор. Сейчас самое время разобраться зачем он там нужен.

подключение кнопки к ардуино

Мы использовали резистор номиналом 10 кОм, который стягивал вход ардуино с землей. Так мы избавились от электрического шума, который мог давать помехи и мешать точно отслеживать нажатие кнопки. Для стягивания необходимо использовать резистор большого номинала. Можно взять и 1 кОм, но рекомендуется использовать больше.

Подтягивающее сопротивление мы пока не использовали в уроках. Оно работает по такому же принципу как и стягивающее, но подключается к линии 5 В. Подключенная таким образом кнопка по умолчанию будет отдавать сигнал HIGH.

Краткое руководство по электронике

УРОК 2 — РЕЗИСТОРЫ

Электроны легче перемещаются через одни материалы, чем через другие при приложении напряжения. В металлах электроны удерживаются настолько свободно, что движутся почти беспрепятственно. Мы измеряем сопротивление электрическому току как , сопротивление .

Резисторы находятся где-то между проводниками, которые легко проводят, и изоляторами, которые вообще не проводят. Сопротивление измеряется в Ом после Ом, открывшего закон, связывающий напряжение с током.Ом представлены греческой буквой омега.

Вернитесь к модели воды, текущей в трубе. Толщина трубы должна отражать сопротивление. Чем уже труба, тем труднее проходить воде и, следовательно, тем выше сопротивление. Для конкретного насоса время, необходимое для заполнения пруда, напрямую зависит от толщины трубы. Увеличьте трубу вдвое, и скорость потока увеличится вдвое, и пруд наполняется вдвое быстрее.

Резисторы, используемые в наборах MadLab, изготовлены из тонкой пленки углерода, нанесенной на керамический стержень.Чем меньше углерода, тем выше сопротивление. Затем на них наносят прочное внешнее покрытие и наносят цветные полосы.

Основная функция резисторов в цепи — регулировать прохождение тока к другим компонентам. Возьмем, к примеру, светодиод (свет). Если через светодиод проходит слишком большой ток, он разрушается. Таким образом, резистор используется для ограничения тока.

Когда через резистор протекает ток, энергия тратится и резистор нагревается. Чем больше сопротивление, тем горячее становится.Батарея должна выполнять работу, чтобы заставить электроны проходить через резистор, и эта работа превращается в тепловую энергию в резисторе.

Важное свойство резистора — это то, сколько тепловой энергии он может выдержать до того, как будет поврежден. Резисторы MadLab могут рассеивать около 1/4 Вт тепла (сравните это с бытовым чайником, который использует до 3000 Вт для кипячения воды).

Трудно сделать резистор на точное значение (да и в большинстве схем это все равно не критично).Сопротивления даны с определенной точностью или . Это выражается как положительное или отрицательное значение процента. 10% резистор с заявленным значением 100 Ом может иметь сопротивление в пределах от 90 до 110 Ом. Резисторы MadLab составляют 5% (это то, что означает золотая полоса), что более чем достаточно точности.

Реальные сопротивления варьируются в огромном диапазоне. В детекторе лжи есть резистор на 1 000 000 Ом рядом с резистором на 470 Ом.На принципиальных схемах вы часто видите букву «R» вместо омега для обозначения сопротивления. Это соглашение, появившееся еще до появления компьютеров и лазерных принтеров, когда греческие буквы редко можно было встретить на пишущих машинках. Буква «k» означает тысячу, а ее позиция показывает положение десятичной точки.

Вот несколько примеров:

     10R = 10 Ом
     10 кОм = 10 кОм = 10 000 Ом
     4k7 = 4,7 кОм = 4700 Ом
 

Закон Ома

Закон Ома на самом деле очень прост.Это говорит о том, что чем больше напряжения приложено к резистору, тем больше тока проходит через него. Если напряжение увеличивается вдвое, то ток удваивается, если напряжение увеличивается втрое, то увеличивается ток и т. Д. Всегда существует постоянное соотношение между напряжением и током для конкретного резистора. Это значение сопротивления, измеренное в Ом.

Чтобы определить сопротивление чего-либо, просто измерьте напряжение на нем и ток через него. Разделите первую цифру на вторую, и вы получите сопротивление.

Если вы знаете сопротивление и напряжение, вы можете рассчитать ток. Или, если вы знаете сопротивление и ток, вы можете рассчитать напряжение. Это делает закон Ома очень полезным.


Цветовой код резистора

Цветовой код резистора — это способ показать номинал резистора. Вместо обозначения сопротивления на его корпусе, которое часто было бы слишком мало для чтения, используется цветовой код. Десять разных цветов представляют числа от 0 до 9. Первые две цветные полосы на теле — это первые две цифры сопротивления, а третья полоса — «множитель».Множитель просто означает количество нулей, добавляемых после первых двух цифр. Красный представляет собой цифру 2, поэтому резистор с красными, красными и красными полосами имеет сопротивление 2, за которым следуют 2, за которыми следуют 2 нуля, что составляет 2 200 Ом или 2,2 кОм.

Последняя полоса — это допуск (точность). Все резисторы MadLab составляют 5%, что показано золотой полосой.

Вот полный список цветов:

  1-я полоса 2-я полоса 3-я полоса 
     Черный 0 0 x 1
     Коричневый 1 1 x 10
     Красный 2 2 x 100
     Апельсин 3 3 x 1000
     Желтый 4 4 x 10000
     Зеленый 5 5 x 100000
     Синий 6 6 x 1000000
     Фиолетовый 7 7
     Серый 8 8
     Белый 9 9
 

Вот несколько примеров:

     Желтый, фиолетовый, красный, золотой = 47 x 100 = 4700 Ом = 4.7 кОм
     Коричневый, черный, желтый, золотой = 10 х 10 000 = 100 кОм
     Желтый, фиолетовый, черный, золотой = 47 x 1 = 47 Ом
     Коричневый, черный, красный, золотой = 10 x 100 = 1000 Ом = 1 кОм
     Коричневый, черный, зеленый, золотой = 10 x 100 000 = 1 000 кОм = 1 МОм
     Все +/- 5%
 

Переменные резисторы

Неудивительно, что переменные резисторы — это резисторы, сопротивление которых можно изменять. Переменные резисторы MadLab (называемые пресетами ) имеют металлический стеклоочиститель, опирающийся на круглую дорожку из углерода.Стеклоочиститель движется по дорожке при повороте предустановки. Ток проходит через стеклоочиститель, а затем через часть углеродистой дорожки. Чем больше трасса должна пройти, тем больше сопротивление.

Пресеты

MadLab имеют три ножки. Верхняя опора соединяется со стеклоочистителем, а две другие опоры — с двумя концами гусеницы. Обычно фактически используется только одна из опор гусеницы.

Переменные резисторы используются в схемах для изменения параметров, которые необходимо изменить, например громкости и т. Д.


СЛЕДУЮЩИЙ УРОК | СОДЕРЖАНИЕ Закон

Ом — Зачем нужны резисторы в светодиоде

Светодиод — это диод, сделанный из полупроводникового материала, который генерирует фотоны света, когда через материал протекает ток. Чем больше ток через светодиод, тем больше света будет излучать светодиод, тем он будет ярче. Однако существует верхний предел — величина тока, достаточная для повреждения светодиода.

Светодиод оказывает небольшое сопротивление протекающему через него току. Большая часть небольшого сопротивления, которое он предлагает, происходит из-за потери энергии из-за излучаемого света, а генерация фотонов настолько эффективна, что сопротивление довольно незначительно.Однако по мере увеличения тока, увеличения количества света, светодиод в какой-то момент выйдет из строя, потому что количество тока, проходящего через светодиод, вызывает повреждение материала. При достаточно большом токе катастрофическое испарение материала может привести к небольшому взрыву внутри внешней оболочки светодиода. При более низких уровнях тока в цифровых схемах 3,3 В или 5 В наиболее вероятным результатом является отказ полупроводникового материала и прекращение проводимости, а светодиод больше не светится.

Как напряжение цепи влияет на потребление тока светодиодами? Поскольку светодиод — это тип диода, уравнение диода Шокли описывает ток, который диод допускает при различных уровнях напряжения. Уравнение показывает, что результаты функции Шокли для заданного диапазона напряжений следует экспоненциальной кривой. Это означает, что небольшие изменения напряжения могут привести к большим изменениям тока. Таким образом, использование светодиода в простой цепи, напряжение которой выше, чем прямое напряжение светодиода, может привести к тому, что светодиод будет потреблять на удивление больше тока, чем рекомендуемые уровни, что приведет к отказу светодиода.

См. Тему в Википедии «Схема светодиода», а также тему «Уравнение диода Шокли» в Википедии.

Итак, идея состоит в том, чтобы спроектировать схему светодиода так, чтобы ограничить количество тока, протекающего через светодиод. Мы хотим сбалансировать наличие достаточного тока, чтобы обеспечить желаемый уровень яркости, не имея такого большого значения, чтобы светодиодный материал выходил из строя. Самый распространенный метод ограничения тока — это добавление в схему резистора.

Светодиод должен иметь технический паспорт, в котором описаны электрические характеристики светодиода и допуски.Например, см. Этот технический паспорт Номер модели: YSL-R531R3D-D2.

Первые характеристики, которые нас интересуют, это (1) максимальный ток, который светодиод может выдержать до того, как возможен отказ материала, приводящий к отказу светодиода, и (2) каков рекомендуемый диапазон тока. Эти и другие максимальные значения для типичного стандартного красного светодиода (разные светодиоды будут иметь разные значения) приведены в таблице, дублированной ниже.

В таблице технических данных для этого стандартного красного светодиода мы видим, что максимальный ток составляет 20 мА, а рекомендуемый диапазон — от 16 мА до 18 мА.Этот рекомендуемый диапазон — это ток, при котором светодиоды должны быть максимально яркими, без риска повреждения материала. Мы также видим, что номинальная рассеиваемая мощность составляет 105 мВт. Мы хотим быть уверены в том, что при проектировании нашей схемы светодиодов мы придерживаемся этих рекомендуемых диапазонов.

В следующей таблице мы находим значение прямого напряжения для светодиода 2,2 В. Значение прямого напряжения — это падение напряжения при протекании тока через светодиод в прямом направлении от анода к катоду. См. Что такое «прямое» и «обратное» напряжение при работе с диодами ?.

Если бы мы использовали этот светодиод в цепи с напряжением 2,2 В и током 20 мА, тогда светодиод будет рассеивать 44 мВт, что находится в пределах нашей зоны безопасности по рассеянию мощности. Если ток изменится с 20 мА до 100 мА, рассеиваемая мощность будет в 5 раз больше или 220 мВт, что намного выше номинальной рассеиваемой мощности 105 мВт для светодиода, поэтому можно ожидать, что светодиод выйдет из строя. Посмотрите, что происходит с моим светодиодом, когда я подаю слишком большой ток ?.

Чтобы снизить ток через светодиод до рекомендуемых уровней, мы введем в схему резистор.Какой номинал резистора мы должны использовать?

Мы рассчитываем номинал резистора, используя закон Ома, В = I x R . Однако мы сделаем алгебраическое преобразование, потому что мы хотим найти сопротивление, а не напряжение, поэтому вместо этого мы используем формулу R = V / I .

Значение I, тока в амперах, довольно очевидно, давайте просто используем рекомендуемый минимум 16 мА или 0,016 А из таблицы данных светодиода в преобразованной формуле. Но какое значение мы должны использовать для вольт, В?

Нам нужно использовать падение напряжения на резисторе, которое является вкладом резистора в общее падение напряжения во всей цепи.Таким образом, нам нужно будет вычесть вклад падения напряжения светодиода из общего напряжения цепи, чтобы определить вклад падения напряжения, необходимый для резистора. Падение напряжения светодиода — это значение прямого напряжения, падение напряжения в прямом направлении от анода к катоду, из таблицы выше.

Для стандартного проекта Raspberry Pi, использующего шину 3,3 В в качестве источника питания, расчет будет (3,3–2,2 В) / 0,016 А = 69 Ом (округление до 68,75 в большую сторону)

Итак, почему обычно используется сопротивление резистора, например 200 Ом, если в расчетах указано 69 Ом?

Простой ответ заключается в том, что резистор на 200 Ом — это обычный резистор, включенный во многие экспериментальные наборы.Мы хотим использовать общий резистор, если свет, излучаемый светодиодом, не будет заметно уменьшаться.

Итак, если мы заменим резистор 69 Ом на резистор 200 Ом, как изменится ток? Опять же, на этот раз мы используем закон Ома для определения тока в цепи, I = V / R или 3,3 В / 200 Ом = 0,0165 A , и когда мы смотрим на таблицу данных светодиода, мы видим, что это значение находится в рекомендуемый диапазон от 16 мА до 18 мА, поэтому светодиод должен быть достаточно ярким.

Почему резистор должен быть на аноде светодиода?

Посмотрите еще раз на книгу Forrest Mims III .Он не утверждает, что резисторы должны быть на аноде, и есть примеры, когда они находятся на катоде. В моем издании книги 1988 года серийная защита светодиодов представлена ​​на стр. 69:

.
ЦЕПЬ ПРИВОДА СИД

— Поскольку светодиоды зависят от тока, обычно необходимо защитить их от чрезмерного тока с помощью последовательного резистора. Некоторые светодиоды имеют встроенный резистор. Большинство не .

Затем дается формула о том, как рассчитать сопротивление по напряжению питания и прямому току светодиода.На прилагаемой схеме резистор установлен на аноде, но не объясняется, что выбор произвольный.

Однако на той же странице представлено устройство «индикатор полярности светодиода», в котором два последовательно соединенных светодиода совместно используют резистор, который обязательно находится на аноде одного и катоде другого. В «трехпозиционном индикаторе полярности» ограничительный резистор находится на стороне питания, а не на стороне земли.

Обычно в некотором смысле лучше (если есть выбор), чтобы важное устройство было подключено к земле, а окружающие аксессуары, такие как резисторы смещения, были на стороне питания.

В цепях высокого напряжения выбор между нагрузкой со стороны питания или со стороны земли имеет значение с точки зрения безопасности. Например, следует ли поместить выключатель света на горячую сторону лампы или на нейтраль? Если вы подключаете выключатель так, что свет выключается путем прерывания возврата нейтрали, это означает, что патрон лампочки постоянно подключен к горячему! Это означает, что если кто-то выключит выключатель перед заменой лампы, на самом деле это не безопаснее; главная панель должна использоваться для фактического разрыва горячего соединения с розеткой.В цепи батареи нет защитного заземления: минусовая клемма произвольно обозначена как общий возврат, а слово «земля» используется для этого общего.

Является ли нагрузочное устройство стороной заземления или стороной питания, также имеет значение, если напряжение от устройства передается в какую-либо другую цепь, где оно используется для какой-либо цели. Светодиод 1,2 В, анод которого подключен к 5 В, будет обеспечивать показание 3,8 В с катода, если течет ток. Если вместо этого катод заземлен, то анод будет обеспечивать 1.2В чтение. Таким образом, размещение резистора не имеет значения, только если такой ситуации не существует в схеме: нет третьего соединения с переходом между резистором и светодиодом, которое влияет на какую-то другую схему.

Дизайн печатной платы

— Почему компьютерные схемы имеют так много резисторов и конденсаторов?

У них гораздо больше транзисторов, чем резисторов и конденсаторов, просто транзисторы в основном интегрированы как часть интегральных схем (и когда они не интегрированы, визуальная разница между дискретным транзистором и ИС с малым количеством выводов незначительна), так что вы их действительно не видите.

С другой стороны, резисторы и конденсаторы

сложно интегрировать в ИС, поэтому они, скорее всего, будут дискретными компонентами.

Конденсаторы

в основном используются для поддержания стабильности источника питания. Каждый раз, когда логический вентиль переключается, он потребляет всплеск тока, в основном из-за зарядки и разрядки паразитной емкости в проводке, а иногда также из-за частичного одновременного включения как верхнего, так и нижнего транзисторов. Каждый фронт тактовой частоты вызывает переключение большого количества логики в основном в одно и то же время, поэтому источник питания микросхемы в целом также показывает всплески.

Итак, «развязывающие конденсаторы» используются для подачи этих всплесков тока и поддержания стабильного напряжения источника питания. Из-за паразитной индуктивности дорожек на печатной плате конденсаторы должны быть расположены близко к микросхемам, для которых они защищают источник питания, отсюда их большое количество.

Конденсаторы большего размера, но более медленные (с более высоким ESR и / или ESL) часто рассматриваются как часть схемы питания, где они служат для сглаживания колебаний тока от переключающего действия понижающих преобразователей, которые понижают напряжение 12 В от источника питания до напряжение или около того, используемое основной логикой.

Резисторы

встречаются гораздо реже, чем конденсаторы, но у них есть несколько важных применений, одна из которых — оконцовка высокоскоростных сигнальных линий, чтобы предотвратить влияние отражений на сигнал. Другой обеспечивает «подтягивания» или «понижение», так что сигнал переходит в известное состояние, когда он не используется активно. Существует также определенное количество «аналоговых» схем (например, источников питания), для которых, вероятно, потребуются резисторы.

Также иногда встречаются «перемычки с нулевым сопротивлением», которые иногда классифицируются как резисторы.Они используются, когда дизайнер хочет разрешить несколько вариантов построения платы с немного разными соединениями.

Резисторы

и их значение в электрических цепях: все подробности

Значение резисторов : резистор — это пассивный двухконтактный электрический компонент, который реализует электрическое сопротивление как элемент схемы. Резисторы уменьшают протекание тока и в то же время снижают уровни напряжения в цепях.

Существует много тысяч различных типов резисторов, которые производятся в различных формах, поскольку их особые характеристики и точность подходят для определенных областей применения, таких как высокая стабильность, высокое напряжение, высокий ток и т. Д.или используются в качестве резисторов общего назначения, где их характеристики не вызывают проблем. В этой статье мы увидим, почему резисторы являются важной частью электрических соединений и типы резисторов.

Что такое резисторы? Типы, характеристики

Резисторы — это так называемые «пассивные устройства», то есть они не содержат источника мощности или усиления, а только ослабляют или уменьшают сигнал напряжения или тока, проходящий через них. Это затухание приводит к потере электрической энергии в виде тепла, поскольку резистор сопротивляется потоку электронов через него.

Некоторые из общих характеристик, связанных со скромным резистором, — это температурный коэффициент, коэффициент напряжения, шум, частотная характеристика, мощность, а также номинальные значения температуры резисторов, физические размеры и надежность.

На всех электрических и электронных схемах и схемах наиболее часто используемым символом для резистора с фиксированным значением является линия «зигзагообразного» типа со значением ее сопротивления, указанным в Ом,?. Резисторы имеют фиксированные значения сопротивления от менее одного Ом (<1 Ом) до более десятков миллионов Ом (> 10 МОм).

Резисторы

бывают разных форм и размеров. Они могут быть сквозными или поверхностными. Это может быть стандартный статический резистор, набор резисторов или специальный переменный резистор.

Зачем нужны резисторы?

В электронной схеме основная функция резистора заключается в ограничении тока до безопасного значения, чтобы связанные сложные детали могли нормально функционировать.

Может быть практически невозможно построить электронную схему без резисторов.В основном функция резистора всегда заключается в противодействии протеканию через него тока, и сила этого сопротивления называется его сопротивлением. Немецкий физик сэр Г.С.Омс смог обнаружить определенную взаимосвязь между напряжением, током и сопротивлением. По его словам, разность потенциалов или напряжение (В) на резисторе (R) пропорционально мгновенному току (I), протекающему через него, и определяется как:

V = R.I

Здесь R — постоянная пропорциональности, известная как сопротивление резистора.

Схема резисторов

Резисторы
серии

При последовательном использовании резисторы можно назвать «сетью деления напряжения». Это связано с тем, что в последовательной цепи ток, протекающий через каждый резистор, имеет одинаковое значение, но напряжение, присутствующее на каждом резисторе, составляет только часть общего значения напряжения цепи.

Параллельные резисторы

При параллельном использовании резисторы можно назвать «токораспределительной сетью».Это связано с тем, что в параллельной цепи напряжение на каждом резисторе имеет одинаковое значение, но ток, протекающий через каждый резистор, составляет лишь часть общего значения тока цепи.

Функции резистора

Смещение транзисторов: в одной из моих предыдущих статей вы, должно быть, приобрели хорошие знания о транзисторах. Транзистору в основном требуется небольшое базовое напряжение (> 0,6), чтобы через его выводы коллектора / эмиттера протекало большое напряжение. Но база транзистора довольно уязвима для высоких токов, поэтому для ограничения тока и обеспечения безопасного напряжения смещения встроен резистор.

Значение резистора базы транзистора можно рассчитать по следующей формуле:

R = (V − 0,6) .Hfe / I

Здесь V = напряжение источника на базовом резисторе, I = ток нагрузки коллектора, Hfe = прямое усиление транзистора (номинальное значение 150) и 0,6 = минимальное напряжение смещения транзистора.

Предел тока светодиода: как и транзисторы, светодиоды очень чувствительны к высоким токам. Резистор, установленный последовательно со светодиодами, регулирует надлежащее прохождение тока через них.Для расчета номинала последовательного светодиодного резистора можно использовать следующую формулу:

R = V− [NV (LED)] / I

Здесь R = последовательный резистор светодиода, V = напряжение питания, N = количество последовательно подключенных светодиодов, V (светодиод) = прямое напряжение используемого светодиода и I = ток через светодиоды (оптимально 10 мА).

Резистор в таймерах

В схемах синхронизации: компоненты синхронизации, используемые в схемах таймера и генератора, всегда включают в себя резистор и конденсатор. Здесь время, необходимое для зарядки или разрядки конденсатора, составляет основной временной импульс или триггер для схемы.Для управления процессом зарядки и разрядки эффективно используется резистор, и его значение изменяется для получения различных временных интервалов.

Защита от перенапряжения: Первоначальное включение источника питания может иногда вызывать опасный скачок напряжения в электронной цепи, повреждая ее критически важные компоненты. Резистор, подключенный последовательно к клеммам питания схемы, помогает предотвратить внезапное повышение напряжения и предотвратить возможное повреждение. Эти резисторы, как правило, имеют низкие значения, так что это не влияет на общую производительность схемы.

Приведенные выше базовые примеры должны были предоставить вам достаточные знания относительно использования резисторов в электронных схемах и помочь вам понять, какова функция резистора. Для получения дополнительной информации, не стесняйтесь добавлять свои комментарии (комментарии требуют модерации, и для их появления может потребоваться время).

Часто задаваемые вопросы

Вот некоторые из часто задаваемых вопросов о важности резисторов:

Q1: Сколько типов резисторов существует в зависимости от типа используемых материалов?
A: В зависимости от типа материала, из которого изготовлен резистор, существует множество видов резисторов:
1.Резисторы с проволочной обмоткой
2. Металлопленочные резисторы
3. Металлооксидные пленочные резисторы
4. Фольговые резисторы
5. Углеродные резисторы (CCR)
6. Углеродные пленочные резисторы

Q2: Какая цветовая кодировка резисторов?
A: Цветовая кодировка резистора использует цветные полосы для быстрого определения значения сопротивления резистора и его процентного отклонения от физического размера резистора, указывающего его номинальную мощность.

Q3: Какие области применения резисторов?
A: Есть много практических применений резисторов.Некоторые из наиболее распространенных приложений перечислены ниже:
(i) Регулятор скорости вращения вентилятора (потенциометр)
(ii) Зарядное устройство для мобильного телефона
(iii) Зарядное устройство для ноутбука
(iv) Лампа-молнии (углеродная / металлическая пленка)
(v) Улица освещение (LDR)

Q4: Что такое допуск резисторов?
A: Допуск резистора — это максимальная разница между его фактическим значением и требуемым значением и обычно выражается как положительное или отрицательное процентное значение.

Теперь вы все поняли о резисторах и их важности, если у вас есть сомнения, не стесняйтесь спрашивать.Мы будем готовы вам помочь.

677 Просмотров

Почему резисторы? [Настоящие быстрые причины]

Привет. Надеюсь, у тебя хорошая жизнь. В этом посте я делюсь своими знаниями об основах резисторов и пытаюсь ответить на вопрос, почему мы используем резисторы? Или, другими словами, каково применение резисторов?

Надеюсь, этот пост поможет.

Почему мы используем резисторы?

Насколько мне известно, резистор является частью почти каждой электронной схемы.Вы, вероятно, увидите любую схему без него.

Он используется для ограничения тока, деления напряжения, обратной связи, повышения или понижения плавающих напряжений, управления усилением и согласования нагрузок.

В остальной части поста я дам больше информации об упомянутых приложениях.

Ограничение тока

Позвольте мне рассказать вам кое-что очень интересное о напряжении и токе. Вы можете контролировать напряжение на вашем устройстве, в то время как ток — это то, что вы не можете контролировать, оно потребляется вашим устройством в соответствии с его потребностями i.е. значение его сопротивления.

Если сопротивление вашего устройства не меняется ни от чего, например, от температуры и приложенного напряжения.

Тогда никаких ограничений по току не требуется.

Но если сопротивление вашего устройства действительно изменяется в соответствии с указанными параметрами, вам понадобится ограничивающий ток резистор, чтобы ограничить ток и предотвратить сгорание вашего устройства.

Например, в случае светодиода. Сопротивление светодиода изменяется в зависимости от приложенного напряжения.

Мы знаем, что светодиод — это тип диода, он включается, когда вы прикладываете определенное характеристическое прямое напряжение (1.От 5 до 4 В для корпуса светодиода).

Интересно то, что когда вы увеличиваете прямое напряжение, сопротивление светодиода уменьшается, и по закону Ома ток начинает увеличиваться. Если мы позволим току увеличиться до определенного предела, мы можем закончить прожиганием нашего прекрасного светодиода.

Почему?

Поскольку с увеличением тока увеличивается и мощность, устройство может работать с определенным пределом мощности. Если вы превысите лимит, вы его сожжете.

Таким образом, мы используем токоограничивающий резистор последовательно с любым устройством или схемой, чтобы обеспечить определенную величину тока для безопасной работы.

Отдел напряжения

Вы любитель электроники или эксперт, вы уже знаете, что очень непрофессионально иметь одну схему с более чем одним подключенным к ней блоком питания.

Вы, вероятно, не видели ни одной такой схемы и не хотите создавать такую ​​самостоятельно. Но как решить эту проблему, один блок питания и все разные уровни напряжения в цепи.

Например, у вас есть источник питания 12 В, а светодиод в вашей цепи требует 5 В, зуммера — 6 В, усилителя — 9 В, и этот список можно продолжать в зависимости от вашей схемы.

Простейшим решением являются схемы деления напряжения на резисторе .

Резисторный делитель напряжения представляет собой простую схему, которая делит высокое входное напряжение на небольшую часть, то есть от 12 В до 5 В или от 12 В до 6 В и т. Д.

Вы можете запитать все компоненты вашей схемы с различными номинальными значениями напряжения и тока от одного источника питания, используя схемы резисторного делителя напряжения.

Поскольку этот пост посвящен только тому, почему мы используем резисторы? Вы можете подробно узнать об этом из Electronics-Tutorials и Sparkfun.

Цепи обратной связи

Отзыв, может быть, тема немного заблаговременна. Это петля, которая соединяет выход обратно со входом схемы для обеспечения безопасности, контроля и бесперебойной работы.

Возможно, вы слышали об операционных усилителях. Идеальный вариант имеет очень высокое усиление разомкнутого контура, то есть бесконечность, что на практике приводит к насыщению операционных усилителей.

Вы применили вход 0f 10mVpp и открытое усиление равно бесконечности, выход теоретически должен быть бесконечным, что невозможно.Для решения этой проблемы вводится резистор отрицательной обратной связи (R2 на приведенном выше рисунке), чтобы уменьшить коэффициент усиления до практических пределов.

Резистор используется в цепях обратной связи для снижения высокого коэффициента усиления до определенных безопасных пределов.

Повышение или понижение Плавающее напряжение

Резисторы

используются как повышающие или понижающие, чтобы гарантировать отсутствие плавающих выводов в микроконтроллере или любом цифровом логическом устройстве.

Плавающий сигнал — очень частое явление в микроконтроллерах, когда вывод остается открытым или неиспользуемым.

Например, у вас есть микроконтроллер (MCU) с одним контактом, настроенным как вход.

Если к контакту ничего не подключено, и ваша программа считывает состояние контакта, будет ли оно высоким (подтянутым к VCC) или низким (потянутым к земле)? Сложно сказать. Это явление обозначается как плавающий .

Чтобы предотвратить это неизвестное состояние, подтягивающий или понижающий резистор будет гарантировать, что вывод находится в высоком или низком состоянии, при этом также используется низкий ток.(Sparkfun)

Конечная нагрузка

Оконечная нагрузка очень полезна при тестировании определенной цепи. Например, вы разработали блок питания для определенной нагрузки. Допустим нагрузка 10к. Вы можете проверить свою конструкцию, просто подключив к выходу источника питания резистор 10 кОм.

Вы также можете проверить другие нагрузки, чтобы определить наихудшие возможные случаи.

В микроволновых цепях, если вы не ограничиваете выход согласующим нагрузочным резистором, например, 50 Ом.Все ваши волны будут отражаться обратно, создавая стоячие волны в линиях передачи.

Помимо микроволн, в коммуникационной оконечной нагрузке используется для обеспечения рецессивной передачи битов. Это также предотвращает отражения, которые могут вызвать сбой связи в результате звона на краях битов.

Регулятор усиления

Резистор

играет ключевую роль в управлении усилением многих схем. В конструкции с общим коллектором (CE) коэффициент усиления прямо пропорционален значению сопротивления коллектора.Чем больше значение резистора, тем больше коэффициент усиления, но вы не можете увеличить его значение до определенных пределов.

На этом все я хочу ответить на вопрос, зачем мы используем резисторы в схемах.

Я буду обновлять его по мере того, как узнаю что-то новое о резисторах. Не стесняйтесь комментировать, если у вас есть какие-либо вопросы. Вы также можете повысить его ценность, поделившись своими знаниями в разделе комментариев. Поделитесь этим с другими людьми, чтобы тоже им помочь, и увидимся в следующем посте.

Спасибо и желаю счастливой жизни.


Прочие полезные сообщения

Что делает резистор и почему это важно?

Если вы ремонтируете кондиционер, подключаете новые светодиодные лампы или подключаете реле, вы, вероятно, работаете с резистором. Резисторы можно найти почти в каждой электрической цепи, но они часто встроены в другие компоненты. Так что же на самом деле делают эти скрытые резисторы? И почему они так важны для электрических цепей, которые вы используете каждый день?


Резистор контролирует прохождение электрического тока в цепи.Резисторы сделаны из таких материалов, как медь или углерод, что затрудняет прохождение электрических зарядов через цепь. Наиболее распространенный тип резистора — это углеродный резистор, который является резистором общего назначения, лучше всего подходящим для схем с меньшей мощностью. Некоторые другие распространенные типы резисторов включают пленочный резистор и резистор с проволочной обмоткой. Резисторы необходимы для многих избирательных схем, и их можно применять во множестве различных приложений.

Защита от скачков напряжения.Резисторы также защищают компоненты от скачков напряжения. Компоненты, чувствительные к сильному электрическому току, такие как светодиодные лампы, будут повреждены, если не будет резистора для управления прохождением электрического тока. Кроме того, предохранители и автоматические выключатели также могут использоваться для защиты вашей электрической цепи от скачков напряжения.

Обеспечьте правильное напряжение. Резисторы гарантируют, что компоненты получают правильное напряжение, создавая падение напряжения, и они могут защитить компонент от скачков напряжения.Каждый компонент в электрической цепи, такой как свет или выключатель, требует определенного напряжения. Если компонент в вашей цепи требует меньшего напряжения, чем остальная часть вашей цепи, резистор создаст падение напряжения, чтобы компонент не получил слишком большое напряжение. Резистор будет создавать падение напряжения, замедляя или сопротивляясь электронам, когда они пытаются пройти через резистор. Если компонент получает слишком высокое напряжение, он может быть поврежден или работать неправильно. При замене ламп накаливания на светодиодные, для каждой лампы требуется нагрузочный резистор светодиодов, чтобы обеспечить правильную работу указателей поворота.Нагрузочный резистор светодиода создает падение напряжения, поэтому светодиоды мигают с правильной скоростью. Если светодиодный нагрузочный резистор не был установлен, светодиодный сигнал поворота будет мигать слишком быстро и в конечном итоге будет разрушен из-за высокого напряжения. Нужно обновить? Прочтите этот пост, чтобы узнать, как перейти на светодиоды.


Хотя резисторы можно купить по отдельности, они часто встраиваются в другие электрические компоненты, такие как нагрузочный резистор светодиодов, реле и другие электрические изделия на 12 В.В реле резистор поглощает напряжение доступа, возникающее при срабатывании реле. Это защитит любые другие компоненты цепи от скачков напряжения. Реле позволяют управлять сильноточной цепью с помощью слаботочной цепи, и они созданы для различных применений.

Некоторые распространенные реле включают реле с резистором, которое помещается в стандартный блок предохранителей. Это реле идеально подходит для приложений с полным напряжением, таких как сигнальные рожки, стеклоподъемники, кондиционеры и многое другое.Хотя реле идеально подходит для приложений с полным напряжением, встроенный резистор защитит любое чувствительное оборудование от скачков напряжения.

Герметичное реле также идеально подходит для приложений с полным напряжением, но оно обеспечивает дополнительную защиту для морских приложений и транспортных средств, работающих в суровых условиях. Термин «залитый» означает, что реле защищено от пыли и влаги, а внутренний резистор защищает от скачков напряжения.

Реле mini 280 с ободком и резистором аналогично стандартному реле с резистором, но реле с ободком подключается к герметичному разъему OEM в автомобиле.Это реле с юбкой также имеет контакты типа Mini 280.

Микро реле ISO 280 с резистором является уменьшенной версией стандартного реле. Площадь основания ISO 280 подходит для большинства распространенных блоков предохранителей Mini (ATM).

Они могут быть небольшими и часто встроенными в другие компоненты, но резисторы необходимы почти для каждой электрической цепи. Эти скрытые резисторы важны, потому что они контролируют поток электрического тока к чувствительным компонентам и защищают компоненты от скачков напряжения.Поэтому в следующий раз, когда вы включите кондиционер или новую светодиодную лампу, помните, что резистор работает для защиты вашего компонента и обеспечения его правильной работы.

Если вы хотите узнать больше или у вас есть вопросы о продуктах Del City со встроенными резисторами, посетите сайт www.delcity.net или позвоните по телефону 1.800.654.4757.


Источники

http: //www.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *