Выбор автоматических выключателей — по току, мощности, нагрузке: таблица, расчет и условия выбора
В электрической сети иногда возникают перегрузки, способные привести к аварии и даже к пожару. Чтобы этого не допустить, были созданы специальные устройства – автоматические выключатели (АВ), которые способны сами определять, когда цепь близка к опасному режиму, и отключать “плохой” участок, не дожидаясь, пока последствия неисправности примут масштабный характер.
Как они работают
Существует два основных способа отключения автоматов: тепловой и электромагнитный. Во-первых задействован механизм теплового расширения и сжатия материалов, тогда как во-вторых – способность электрического тока вызывать электромагнитное поле, которое может механически воздействовать на материальные объекты. Эти методы служат разным целям, и, как правило, они оба применяются в любом автоматическом выключателе.
Тепловое расцепление
Этот вид защиты электрической сети оберегает цепь от скачков силы тока, которые иногда случаются при неполадках на линии и у потребителя. В автомате ток проходит не через провод, а через особую биметаллическую пластину (это пластина, изготовленная из разных металлов, соединенных “бутербродом”), и когда его величина становится слишком большой, пластина нагревается.
Но так как разные ее части имеют разную теплоемкость, одна сторона греется сильнее, и потому вся конструкция начинает не просто расширяться, как было бы в случае с обычной металлической пластиной, а изгибаться. Изогнутая часть начинает давить на кнопку отключения от сети, и при определенном усилии, автомат срабатывает.
Электромагнитное расцепление
Второй способ выключения – основан на способности электромагнитного поля двигать металлические предметы. Катушка (соленоид) – это аналог постоянного магнита, и при протекании через нее тока, она тоже приобретает свойство притягивать и отталкивать металлы.
Внутрь катушки вставляют стальной сердечник, прикрепленный пружинкой, и когда сила тока в витках катушки достигает порогового значения, магнитное давление превышает силу сопротивления пружины, и выталкивает сердечник прямо на кнопку. От удара она срабатывает, и автомат отключает защищаемый участок от электрической сети.
Типы автоматов
Электрические сети и их элементы – цепи бывают самых разных видов и конфигураций, и для каждой из них требуются свои автоматические выключатели.
Число полюсов
Автоматический выключатель нужно подбирать под конкретную цепь – он должен обязательно контролировать все фазы линии, и можно, но не обязательно, нольЭлектрические сети могут быть одно- и многофазными. Например, в линиях электропередач течет трехфазный ток, а когда он доходит до наших домов, он превращается в двухфазный, поэтому в розетках только две дырки.
Автоматический выключатель нужно подбирать под конкретную цепь – он должен обязательно контролировать все фазы линии, и можно, но не обязательно, ноль.
На нулевой провод ставят автомат, в том случае, если он вводной, или проще говоря, – самый главный, например в подъезде. Это делают для того, чтобы была возможность в любой момент полностью обесточить квартиру для проведения каких-либо ремонтных работ.
Число полюсов автомата отвечает за то, на какую линию он ориентирован. Если на однофазную, то у него 1 полюс, если на двухфазную, то 2 и так далее. А сами полюса представляют собой ни что иное, как клеммы, которые находятся в углублениях на корпусе автоматического выключателя, и обычно клеммы одного полюса расположены вверху и внизу по одной линии друг с другом.
В квартиры, как правило, устанавливают 2-х полюсные АВ.
Важное правило: на разные провода одной линии можно ставить только один выключатель. Например, если имеется 2 провода – фаза и ноль, нельзя ставить на них по одному однополюсному автомату, а только один общий двухполюсный, потому что в первом случае, срабатывание одного не гарантирует срабатывания другого, а во втором отключатся сразу оба провода неисправной линии.
Максимальный рабочий ток
Автомат срабатывает при определенном значении силы протекающего через него тока, или тока уставки. Это также необходимо учитывать при выборе, поскольку, если например, у вас в квартире сила тока в 6 А – это нормальная величина, а вы взяли автомат, который выключается при 5-ти Амперах, то вы явно не сможете проводить у себя дома время с комфортом.
Учтите, что номинальный ток (ток, при котором автоматический выключатель работает нормально) должен быть не меньше максимально возможного тока в вашей квартире, а иначе при любом включении в цепь, он неизбежно будет срабатывать.
Посмотрите на корпусе автомата, на какой номинал он рассчитан, а затем вычислите примерный максимальный ток линии, которую вы защищаете. Для этого:
- Сложите мощности всех бытовых устройств, подключенных к линии, их можно узнать в технических паспортах или на упаковке, а иногда даже на корпусе самого изделия.
- Затем разделите получившуюся суммарную мощность на номинальное напряжение
- Сравните полученный ток с номинальным током автомата. Если он рассчитан на нормальную работу при таком его значении, то все хорошо, и можно переключаться на сверку других параметров, если же автомат при таком токе будет отключаться, то следует поискать еще.
Ток короткого замыкания
КЗ – это аварийное состояние, при котором тoки линии поднимаются до очень больших значений, и плавят проводку.
На сегодня по правилам ПУЭ разрешается устанавливать АВ с током кз не менее 6 КА, они же являются самыми распространенными автоматами в жилом секторе. Но на промышленных предприятиях, где токи кз могут быть в десятки и в сотни раз выше, используют более мощные автоматические выключатели. Ведь слабый автомат при таких токах просто сгорит и придет в негодность, а постоянно заменять их невыгодно.
Итак, если вы живете в квартире или частном доме, АВ на 6 КА вам хватит, но если дом находится рядом с трансформаторной подстанцией, или по соседству живет какой-нибудь изобретатель-самоучка, из-за которого постоянно отключается свет, то можно взять и на 10.
Рабочее напряжение
Обычные домашние автоматы рассчитаны на переменное напряжение в 220 В в квартире и 380 В в линии. Эти данные можно найти на корпусе АВ.
Селективность выключателя
Это очень полезное свойство, позволяющее отключать от сети поврежденный участок, но при этом оставить в работе максимальное количество других потребителей. Например, у вас в доме 4 розетки и на одной из них произошло кз. Обычный, неселективный выключатель отключит от сети всю квартиру, тогда как селективный обесточит лишь только поврежденную розетку, и вы сможете дальше, как ни в чем ни бывало, наслаждаться прелестями электрификации.
Технически это реализуется следующим образом: на каждую последующую ветвь ставится автомат, время срабатывания которого меньше, чем на предыдущей.
Когда в одной из ветвей происходит кз, автомат срабатывает при длительности кз в 0,1 с, поэтому вышестоящий АВ не успевает отключиться, так как он запрограммирован срабатывать, когда замыкание длится 0,5 с.
Маркировка автоматических выключателей
Сегодня международным стандартом принята единая маркировка АВ, которая существенно упрощает жизнь электрикам из разных стран:
- Обозначается производитель.
- Серия.
- Время-токовая характеристика и номинал. Для квартир подходит буква “С”, но есть еще “B”, “C” и “D”. Токовый номинал – это величина тока, который может долго протекать через автомат без его срабатывания.
- Предельный ток кз, при котором автомат будет продолжать функционировать после отключения в режиме кз, или проще говоря, не перегорит.
- Класс токоограничения. Это та доля тока кз, при которой срабатывает автомат, не давая ему вырасти до максимума.
Блиц-советы
- Выбирая автомат, не дешевите и не экономьте на здоровье. Китайский хлам не даст вам 100%-ной гарантии, что защита сработает в нужный момент. Отдавайте предпочтение немецкой фирме Шнайдер или АББ, хоть они и дороже, но надежнее.
- Тщательно подберите все параметры на соответствие номиналу.
- Обеспечьте селективность, так как электрики смогут починить вашу проводку не ранее, чем через день, вы же не хотите сидеть два дня без света? А если выходные?
Правильно установленная система будет работать долго, поэтому наймите квалифицированного мастера.
housetronic.ru
Расчет токов короткого замыкания и выбор автоматических выключателей и
Элементы электроснабжения и электрического освещенияРасчет токов короткого замыкания необходим для правильного выбора и отстройки защитной аппаратуры. Ток короткого замыкания возникает при соединении токоведущих частей фаз между собой или с заземленным корпусом электроприемника в схемах с глухозаземленной нейтралью и нулевым проводом. Его величина, А, может быть определена по формуле
где Uф — фазное напряжение сети, В;
Zп — сопротивление петли фаза-нуль, Ом,
R — активное сопротивление одного провода цепи короткого замыкания, Ом;
X — индуктивное сопротивление, рассчитываемое по удельному индуктивному сопротивлению равному 0,6 Ом/км;
Zт — полное сопротивление фазной обмотки трансформатора на стороне низшего напряжения, Ом,
где UH, IH — номинальные напряжение и ток трансформатора;
UK% — напряжение короткого замыкания трансформатора, % от номинального.
Величины UH, lН и Uк% для соответствующего трансформатора приводятся в главе 5.
Выбор электрического аппарата осуществляется по его функциональному назначению, по роду напряжения и тока, ->о величине мощности.
Следует иметь в виду современную тенденцию, заключающуюся в том, что при выборе между предохранителями и автоматическими выключателями, предпочтение отдается последним в силу их большей надежности, лучшей защиты от неполнофазных режимов, универсальности и т. д.
Выбор аппаратов по напряжению заключается в соответствии номинального напряжения, указанного в паспорте аппарата, и его рода (переменное, постоянное) номинальному напряжению питающей сети. При выборе аппарата по току следует учесть, что его номинальный ток должен быть не меньше рабочего тока установки.
Выбор автоматических выключателей
Автоматические выключатели выбираются прежде всего по номинальным значениям напряжения и тока. Затем определяются токи уставки теплового и электромагнитного расцепителей.
Тепловой росцепитель автомата защищает электроустановку от длительной перегрузки по току. Ток уставки теплового расцепителя принимается равным на 15—20% больше рабочего тока:
где 1Р — рабочий ток электроустановки, А.
Электромагнитный расцепитель автомата защищает электроустановку от коротких замыканий. Ток уставки электромагнитного расцепителя определяется из следующих соображений: автомат не должен срабатывать от пусковых токов двигателя электроустановки Iпуск.дв., а ток срабатывания электромагнитного расцепителя IЭМР выбирается кратным току срабатывания теплового расцепителя:
где К = 4,5—10 — коэффициент кратности тока срабатывания электромагнитного расцелителя.
Выбранный автоматический выключатель проверяется по чувствительности и по отключающей способности. Автоматы с номинальным током до 100 А должны срабатывать при условии
где IО.К.З. — ток однофазного короткого замыкания.
Чувствительность автомата, имеющего только тепловой расцепитель, определяется соотношением: |
Автоматы с номинальным током более 100 А должны срабатывать при
Отключающая способность автомата с электромагнитным расцепителем определяется величиной тока трехфазного короткого замыкания IТ.К.З.
Выбор предохранителей
Ток плавкой вставки предохранителя выбирается в соответствии с выражением
Ток плавкой вставки предохранителей, используемых для защиты асинхронного двигателя с короткозамкнутым ротором,
где Iпуск — пусковой ток двигателя, А;
β — коэффициент, зависящий от условий пуска, при средних условиях пуска (β = 2,5.
proelectro2.ru
Выбор автоматического выключателя — Руководство по устройству электроустановок
Критерии выбора автоматического выключателя
Выбор автоматических выключателей определяется электрическими характеристиками электроустановки, условиями эксплуатации, нагрузками и необходимостью дистанционного управления (в зависимости от типа планируемой телекоммуникационной сети). |
Выбор автоматического выключателя производится с учетом:
- электрических характеристик электроустановки, для которой предназначен этот автоматический выключатель;
- условий его эксплуатации: температуры окружающей среды, размещения в здании подстанции или корпусе распределительного щита, климатических условий и др.;
- требований к включающей и отключающей способности при коротких замыканиях, эксплуатационных требований: селективного отключения, требований к дистанционному управлению и индикации и соответствующим вспомогательным контактам, дополнительным расцепителям, соединениям;
- правил устройства электроустановок, в частности требований в отношении обеспечения защиты людей;
- характеристик нагрузки, например электродвигателей, люминесцентного освещения, разделительных трансформаторов низкого напряжения.
Следующие замечания относятся к выбору низковольтного автоматического выключателя для использования в распределительных системах.
Выбор номинального тока с учетом окружающей температуры
Номинальный ток автоматического выключателя определяется для работы при определенной температуре окружающей среды, которая обычно составляет:
- 30°С для бытовых автоматических выключателей;
- 40°С для промышленных автоматических выключателей.
Функционирование этих автоматических выключателей при другой окружающей температуре зависит главным образом от технологии применяемых расцепителей (рис. h50).
Рис. h50: Температура окружающей среды
Некомпенсируемые термомагнитные комбинированные расцепители
Порог срабатывания автоматических выключателей с некомпенсируемыми комбинированными расцепителями зависит от окружающей температуры. |
Автоматические выключатели с некомпенсируемыми термомагнитными расцепителями имеют порог срабатывания, который зависит от окружающей температуры. Если автоматический выключатель установлен в оболочке или в помещении с высокой температурой (например, в котельной), то ток, необходимый для отключения этого автоматического выключателя при перегрузке, будет заметно ниже. Когда температура среды, в которой расположен автоматический выключатель, превышает оговоренную изготовителем температуру, его характеристики окажутся «заниженными». По этой причине изготовители автоматических выключателей приводят таблицы с поправочными коэффициентами, которые необходимо применять при температурах, отличных от оговоренной температуры функционирования автоматического выключателя. Из типовых примеров таких таблиц (рис. h51) следует, что при температуре, оговоренной изготовителем, происходит повышение порога срабатывания соответствующего автоматического выключателя. Кроме того, небольшие модульные автоматические выключатели, установленные вплотную друг к другу (рис. h37), обычно монтируются в небольшом закрытом металлическом корпусе. В таком случае, вследствие взаимного нагрева при прохождении обычных токов нагрузки, к их токовым уставкам необходимо применять поправочный коэффициент 0,8.
Автоматические выключатели C60a, C60H: кривая C; C60N: кривые B и C (стандарт. температура: 30°С)
Ном. ток (А) | 20 °C | 25 °C | 30 °C | 35 °C | 40 °C | 45 °C | 50 °C | 55 °C | 60 °C |
---|---|---|---|---|---|---|---|---|---|
1 | 1,05 | 1,02 | 1,00 | 0,98 | 0,95 | 0,93 | 0,90 | 0,88 | 0,85 |
2 | 2,08 | 2,04 | 2,00 | 1,96 | 1,92 | 1,88 | 1,84 | 1,80 | 1,74 |
3 | 3,18 | 3,09 | 3,00 | 2,91 | 2,82 | 2,70 | 2,61 | 2,49 | 2,37 |
4 | 4,24 | 4,12 | 4,00 | 3,88 | 3,76 | 3,64 | 3,52 | 3,36 | 3,24 |
6 | 6,24 | 6,12 | 6,00 | 5,88 | 5,76 | 5,64 | 5,52 | 5,40 | 5,30 |
10 | 10,6 | 10,3 | 10,0 | 9,70 | 9,30 | 9,00 | 8,60 | 8,20 | 7,80 |
16 | 16,8 | 16,5 | 16,0 | 15,5 | 15,2 | 14,7 | 14,2 | 13,8 | 13,5 |
20 | 21,0 | 20,6 | 20,0 | 19,4 | 19,0 | 18,4 | 17,8 | 17,4 | 16,8 |
25 | 26,2 | 25,7 | 25,0 | 24,2 | 23,7 | 23,0 | 22,2 | 21,5 | 20,7 |
32 | 33,5 | 32,9 | 32,0 | 31,4 | 30,4 | 29,8 | 28,4 | 28,2 | 27,5 |
40 | 42,0 | 41,2 | 40,0 | 38,8 | 38,0 | 36,8 | 35,6 | 34,4 | 33,2 |
50 | 52,5 | 51,5 | 50,0 | 48,5 | 47,4 | 45,5 | 44,0 | 42,5 | 40,5 |
63 | 66,2 | 64,9 | 63,0 | 61,1 | 58,0 | 56,7 | 54,2 | 51,7 | 49,2 |
NS250N/H/L (стандартная температура: 40°C)
Ном. ток (А) | 40 °C | 45 °C | 50 °C | 55 °C | 60 °C |
---|---|---|---|---|---|
TM160D | 160 | 156 | 152 | 147 | 144 |
TM200D | 200 | 195 | 190 | 185 | 180 |
TM250D | 250 | 244 | 238 | 231 | 225 |
Рис. h51: Таблицы для определения коэффициентов понижения/повышения токовых уставок, которые должны применяться к автоматическим выключателям с некомпенсируемыми тепловыми расцепителями в зависимости от температуры
Пример:
Какой номинальный ток (In) следует выбрать для автоматического выключателя C60 N? Этот аппарат:
- обеспечивает защиту цепи, в которой максимальный расчетный ток нагрузки составляет 34 А;
- установлен вплотную к другим автоматическим выключателям в закрытой распределительной коробке;
- эксплуатируется при окружающей температуре 50°С.
При окружающей температуре 50°С уставка автоматического выключателя C60N с номинальным током 40 А снизится до 35,6 А (см. таблицу на рис. h51). Взаимный нагрев в замкнутом пространстве учитывается поправочным коэффициентом 0,8. Таким образом, получаем 35,6 x 0,8 = 28,5 A, что неприемлемо для тока нагрузки 34 А.
Поэтому будет выбран автоматический выключатель на 50 А, и соответствующая скорректированная уставка по току составит 44 x 0,8 = 35,2 А.
Компенсированные комбинированные расцепители
Эти расцепители содержат биметаллическую компенсирующую пластину, которая обеспечивает возможность регулировки уставки по току отключения при перегрузке (Ir или Irth) в установленных пределах независимо от температуры окружающей среды.
Пример:
- В некоторых странах система заземления TT является стандартной в низковольтных распределительных системах, а бытовые (и аналогичные) электроустановки защищаются в месте ввода автоматическим выключателем, который устанавливается соответствующей энергоснабжающей организацией. Такой автоматический выключатель, помимо защиты от косвенного прикосновения, обеспечит отключение цепей при перегрузках, если потребитель превысит уровень потребляемого тока, оговоренный в его контракте с энергоснабжающей организацией. Регулировка уставок автоматического выключателя с номинальным током менее 60 А возможна при температуре от — 5 до +40°С.
- Низковольтные автоматические выключатели с номинальным током менее 630 А обычно оснащаются компенсируемыми расцепителями для этого диапазона температуры (от — 5 до +40 °С).
Электронные расцепители
Электронные расцепители устойчиво функционируют при изменении окружающей температуры. |
Важным преимуществом электронных расцепителей является их устойчивая работа при изменении температурных условий. Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому изготовители обычно приводят рабочую диаграмму, на которой указываются максимально допустимые значения уставок тока в зависимости от окружающей температуры (рис. h52).
Тип автоматического выключателя Masterpact NW20 | 40°C | 45°C | 50°C | 55°C | 60°C | ||
---|---|---|---|---|---|---|---|
h2/h3/h4 | Выкатной, горизонтальное исполнение | In (A) | 2,000 | 2,000 | 2,000 | 1,980 | 1,890 |
Максимальное значение токовой уставки (Ir) | 1 | 1 | 1 | 0,99 | 0,95 | ||
L1 | Выкатной, вертикальное исполнение | In (A) | 2,000 | 200 | 1,900 | 1,850 | 1,800 |
Максимальное значение токовой уставки (Ir) | 1 | 1 | 0,95 | 0,93 | 0,90 |
Рис. h52: Снижение максимального значения токовой уставки автоматического выключателя Masterpact NW20 в зависимости от температуры
Выбор уставок срабатывания без выдержки времени
На рис. h53 представлены основные характеристики расцепителей мгновенного срабатывания.
Тип | Расцепитель | Применения |
---|---|---|
Электромагнитный 3-5 In Тип B |
| |
Электромагнитный 5-10 In Тип C |
| |
Электромагнитный 10-14 In Тип D или K |
| |
12 In Тип MA |
|
Рис. h53: Различные расцепители мгновенного действия
Выбор автоматического выключателя с учетом требований к отключающей способности при КЗ
Для установки низковольтного автоматического выключателя требуется, чтобы его предельная отключающая способность (или отключающая способность вышестоящего выключателя, удовлетворяющего условиям координации с нижестоящим) была равна расчетному ожидаемому току короткого замыкания или превышала. |
Автоматический выключатель, предназначенный для использования в низковольтной электроустановке, должен удовлетворять одному из двух следующих условий:
- иметь предельную отключающую способность Icu (Icn), которая равна расчетному ожидаемому току короткого замыкания в месте установки или превышает его;
- использоваться совместно с другим устройством, расположенным выше по цепи и имеющим требуемую отключающую способность.
Во втором случае характеристики этих двух устройств должны быть согласованы так, чтобы ток, который может проходить через вышерасположенное устройство, не превышал максимальный ток, который способны выдержать нижерасположенный выключатель и все соответствующие кабели, провода и другие элементы цепи без какого-либо повреждения. Данный метод целесообразен при использовании:
Выбор автоматических выключателей вводных и отходящих линий
Случай применения одного трансформатора
Если трансформатор расположен на потребительской подстанции, то в некоторых национальных стандартах требуется применение низковольтного автоматического выключателя, в котором были бы явно видны разомкнутые контакты, такого как, например, выкатной выключатель Compact NS.
Пример (рис. h54):
Какой тип автоматического выключателя пригоден для главного автомата защиты электроустановки, питаемой от трехфазного понижающего трансформатора мощностью 250 кВА и напряжением во вторичной обмотке 400 В, установленного на потребительской подстанции?
Ток трансформатора In = 360 А
Ток (трехфазный) Isc = 8,9 кА
Для таких условий подходящим вариантом будет автоматический выключатель Compact NS400N с диапазоном регулировки расцепителя 160 — 400 А и предельной отключающей способностью (Icu) 45 кА.
Рис. h54: Пример установки автоматического выключателя на выходе трансформатора, расположенного на потребительской подстанции
Несколько трансформаторов, включенных параллельно
(рис. h55)
При наличии нескольких трансформаторов, включенных параллельно, автоматический выключатель, установленный на выходе самого маленького трансформатора, должен иметь отключающую способность не менее суммарной отключающей способности других низковольтных автоматических выключателей трансформаторов. |
- Каждый из автоматических выключателей CBP, установленных на линиях, отходящих от низковольтного распределительного щита, должен быть способен отключать суммарный ток короткого замыкания от всех трансформаторов, подсоединенных к шинам, т.е. Isc1 + Isc2 + Isc3.
- Автоматические выключатели CBM, каждый из которых контролирует выход соответствующего трансформатора, должны быть способны отключать максимальный ток короткого замыкания, например, ток Isc2 + Isc3, если короткое замыкании возникло в месте, расположенном выше выключателя CBM1.
Из этих соображений понятно, что в таких обстоятельствах автоматический выключатель самого маленького трансформатора будет подвергаться самому большому току короткого замыкания, а автоматический выключатель самого большого трансформатора будет пропускать наименьший ток короткого замыкания.
- Номинальные токи отключения автоматических выключателей CBM должны выбираться в зависимости от номинальной мощности к КВА соответствующих трансформаторов.
Примечание: необходимыми условиями для успешной параллельной работы трехфазных трансформаторов являются следующие:
1. Фазовый сдвиг напряжений во вторичной и первичной обмотках должен быть одинаков во всех параллельно включенных трансформаторах.
2. Коэффициенты трансформации должны быть одинаковы для всех трансформаторов.
3. Напряжения короткого замыкания (Uк %) должны быть одинаковыми для всех трансформаторов.
Например, трансформатор мощностью 750 кВА с Uк = 6% будет правильно делить нагрузку с трансформатором мощностью 1000 кВА, имеющим Uк = 6%, т.е. эти трансформаторы будут автоматически нагружаться пропорционально их мощностям. Для трансформаторов, у которых отношение номинальных мощностей превышает 2, параллельная работа не рекомендуется.
Рис. h55: Параллельное включение трансформаторов
В таблице, приведенной на рис. h56, указаны максимальные токи короткого замыкания, которым подвергаются автоматические выключатели вводных и отходящих линий (соответственно CBM и CBP на рис. h55), для самой распространенной схемы параллельной работы (2 или 3 трансформатора одинаковой мощности). Приведенные данные базируются на следующих допущениях:
- мощность трехфазного короткого замыкания на стороне высокого напряжения трансформатора составляет 500 МВА;
- трансформаторы являются стандартными распределительными трансформаторами напряжением 20/0,4 кВ, характеристики которых приведены в таблице;
- кабели от каждого трансформатора к его низковольтному автоматическому выключателю состоят из одножильных проводников длиной 5 метров;
- между каждым автоматическим выключателем вводной цепи (CBM) и каждым автоматическим выключателем отходящей цепи (CBP) имеется шина питания длиной 1 м;
- распределительное устройство расположено в напольном закрытом распределительном щите, температура окружающего воздуха — 30°С.
Кроме того, в этой таблице указаны модели автоматических выключателей Schneider Electric, рекомендуемые для применения в каждом случае в качестве автоматических выключателей вводных и отходящих линий.
Количество и мощность трансформаторов 20/0,4 кВ (кВА) | Мин. отключающая способность авт. выключателя ввода Icu (кА) | Авт. выключатели ввода (CBM),полностью согласованные с авт.выключателем отходящих линий (CBP) | Мин. отключающая способность авт. выключателя отходящих линий Icu (кА) | Авт. выключатели ввода (CРВ)на ном. ток 250 A |
---|---|---|---|---|
2 x 400 | 14 | NW08N1/NS800N | 27 | NSX250H |
3 x 400 | 28 | NW08N1/NS800N | 42 | NSX250H |
2 x 630 | 22 | NW10N1/NS1000N | 42 | NSX250H |
3 x 630 | 44 | NW10N1/NS1000N | 67 | NSX250H |
2 x 800 | 19 | NW12N1/NS1250N | 38 | NSX250H |
3 x 800 | 38 | NW12N1/NS1250N | 56 | NSX250H |
2 x 1,000 | 23 | NW16N1/NS1600N | 47 | NSX250H |
3 x 1,000 | 47 | NW16N1/NS1600N | 70 | NSX250H |
2 x 1,250 | 29 | NW20N1/NS2000N | 59 | NSX250H |
3 x 1,250 | 59 | NW20N1/NS2000N | 88 | NSX250L |
2 x 1,600 | 38 | NW25N1/NS2500N | 75 | NSX250L |
3 x 1,600 | 75 | NW25N1/NS2500N | 113 | NSX250L |
2 x 2,000 | 47 | NW32N1/NS3200N | 94 | NSX250L |
3 x 2,000 | 94 | NW32N1/NS3200N | 141 | NSX250L |
Рис. h56: Максимальные значения тока короткого замыкания, который должне отключаться автоматическими выключателями ввода и отходящих линий (соответственно CBM и CBP) при параллельной работе нескольких трансформаторов
Пример (рис. h57):
- Выбор автоматического выключателя вводной линии (CBM):
Для трансформатора мощностью 800 кВА In = 1126 А, Icu (минимальный ток) = 38 кА (из рис. h56).
При таких характеристиках таблица рекомендует использовать Compact NS1250N (Icu = 50 кА).
- Выбор автоматического выключателя отходящей линии (CBP):
Из рис. h56 требуемая отключающая способность (Icu) для таких автоматических выключателей составляет 56 кА.
Для трех отходящих линий 1, 2 и 3 рекомендуется использовать токоограничивающие автоматические выключатели типа NS400 L, NS250 L и NS 100 L. В каждом случае номинальная отключающая способность Icu = 150 кА.
Рис. h57: Параллельная работа трансформаторов
Эти автоматические выключатели обеспечивают следующие преимущества:
— полное согласование с характеристиками вышерасположенных автоматических выключателей (CBM), т.е. селективность срабатывания защит;
— использование метода каскадирования с соответствующей экономией затрат в отношении всех элементов, расположенных ниже по цепи.
Выбор автоматических выключателей отходящих и оконечных линий
Значения тока короткого замыкания в любом месте электроустановки можно определить с помощью таблиц. |
Использование таблицы G39
С помощью этой таблицы можно быстро определить величину трехфазного тока короткого замыкания в любом месте электроустановки, зная:
- величину тока короткого замыкания в точке, расположенной выше места, предназначенного для установки соответствующего автоматического выключателя;
- длину, сечение и материал проводников между этими двумя точками.
После этого можно выбрать автоматический выключатель, у которого отключающая способность превышает полученное табличное значение.
Детальный расчет тока короткого замыкания
Для того, чтобы более точно рассчитать величину тока короткого замыкания, особенно в случае, когда отключающая способность автоматического выключателя чуть меньше величины, полученной из таблицы, необходимо использовать метод, описанный в разделе Ток короткого замыкания.
Двухполюсные автоматические выключатели (для фазы и нейтрали) с одним защищенным полюсом
Такие автоматические выключатели обычно имеют устройство максимальной защиты только на полюсе фазы и могут применяться в системах TT, TN-S и IT. В системе IT должны выполняться следующие условия:
- условие (B) из таблицы G67 для максимальной защиты нулевого проводника в случае двойного короткого замыкания;
- отключающая способность при КЗ: двухполюсный автоматический выключатель (фаза-нейтраль) должен быть способен отключать на одном полюсе (при линейном напряжении) ток двойного короткого замыкания, равный 15% трехфазного тока короткого замыкания в месте его установки, если этот ток не превышает 10 кА, или 25% трехфазного тока короткого замыкания, если он превышает 10 кА;
- защита от косвенного прикосновения: такая защита обеспечивается в соответствии с правилами, предусмотренными для систем заземления IT.
Недостаточная отключающая способность при КЗ
В низковольтных распределительных системах, особенно в сетях, эксплуатируемых в тяжелых условиях, иногда случается, что рассчитанный ток трехфазного КЗ Isc превышает предельную отключающую способность Icu автоматических выключателей, имеющихся в наличии для установки, или же изменения, произошедшие в системе выше, привели к изменениям требований к отключающим способностям автоматических выключателей.
- Решение 1: убедитесь в том, что соответствующие автоматические выключатели, расположенные выше тех, которых это коснулось, являются тогоограничивающими, поскольку в таком случае можно использовать принцип каскадного включения (см. подраздел Согласование характеристик автоматических выключателей).
- Решение 2: установите несколько автоматических выключателей с более высокой отключающей способностью. Такое решение представляется экономически целесообразным в том случае, если затронуты один или два автоматических выключателя.
- Решение 3: установите последовательно с затронутыми автоматическими выключателями и выше по цепи токоограничивающие плавкие предохранители (типа gG или aM). При этом такая схема должна отвечать следующим условиям:
— предохранитель должен иметь соответствующий номинал;
— предохранитель не должен устанавливаться в цепи нулевого проводника, за исключением определенных электроустановок системы IT, в которых при двойном коротком
замыкании в нулевом проводнике возникает ток, превышающий отключающую способность автоматического выключателя.
В этом случае расплавление предохранителя в нулевом проводнике приведет к тому, что этот автоматический выключатель отключит все фазы.
ru.electrical-installation.org