+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

что это такое, назначение, виды, устройство и принцип действия

Электротехнический агрегат, имеющий две, три или больше обмоток, статически устанавливается в электросеть. Силовой трансформатор изменяет переменное напряжение и ток без отклонения частоты. Преобразователь, применяемый во вторичных источниках питания, называют понижающим устройством. Повышающие конструкции увеличивают напряжение, используются в высоковольтных ЛЭП с большими мощностью, пропускной способностью и емкостью.

silovoy transformatorsilovoy transformator

Содержание

Область применения

В комплект установок, предназначенных для генерирования электричества, входят силовые трансформаторы. Электростанции используют энергию атома, органического, твердого или жидкого топлива, работают на газе или применяют силу водяного потока, но преобразователи выходных показателей подстанций необходимы для нормального функционирования потребительских и производственных линий.

Агрегаты устанавливают в сетях промышленных мощностей, сельских предприятий, на оборонных комплексах, разработках нефти и газа. Прямое назначение силового трансформатора — понижать и повышать напряжение и силу тока — используется для работы транспортной, жилищной, торговой инфраструктуры, сетевых распределительных объектов.

Основные детали и системы

Питающее напряжение и нагрузка подаются на вводы, которые располагаются на внутренней или наружной колодке для клемм. Контакт закрепляется болтами или специальными соединителями. В масляных агрегатах вводы устраиваются снаружи по сторонам бака или на крышке съемного корпуса.

Передача от внутренних обмоток идет на гибкие демпферы или резьбовые шпильки из цветных металлов. Силовые трансформаторы и их корпуса изолируются от шпилек фарфоровым или пластиковым слоем. Зазоры устраняются прокладками из материала, стойкого к действию масел и синтетических жидкостей.

Охладители снижают температуру масла из верхней области бака и передают его в боковой нижний слой. Остужающее устройство силового масляного трансформатора представлено:

  • внешним контуром, снимающим тепло с носителя;
  • внутренней цепью, нагревающей масло.

Охладители бывают разных видов:

  • радиаторы — совокупность плоских каналов со сваркой на торце, расположенных в пластинах для сообщения между нижними и верхними коллекторами;
  • гофрированные резервуары — ставятся в мало- и среднемощных агрегатах, являются одновременно емкостью для понижения температуры и рабочим баком со складчатой поверхностью стенок и нижней коробкой;
  • вентиляторы — ими оборудуются большие трансформаторные модули для принудительного охлаждения потока;
  • теплообменники — применяют в больших узлах для перемещения синтетических жидкостей с помощью насоса, т. к. организация естественной циркуляции требует много места;
  • водно-масляные установки — трубчатые теплообменники по классической технологии;
  • циркуляционные насосы — герметичные конструкции с полным погружением двигателя при отсутствии сальниковых прокладок.

Оборудование для трансформации напряжения снабжается регулирующими устройствами для изменения числа рабочих витков. Вольтаж на вторичной обмотке модифицируется с помощью переключателя количества спиралей или устанавливается болтовым соединением при выборе расположения перемычек. Так подсоединяются выводы заземленного или обесточенного трансформатора. Регулирующие модули преобразуют напряжение в небольших диапазонах.

В зависимости от условий переключатели количества спиралей делят на виды:

  • устройства, работающие при выключенной нагрузке;
  • элементы, функционирующие при замыкании вторичной обмотки на сопротивление.

Навесное оборудование

Газовое реле располагается в соединительной трубке между расширительным и рабочим баками. Прибор предупреждает разложение изолирующей органики, масла при перегреве и небольшие повреждения системы. Устройство реагирует на газообразование при неполадках, подает тревожный сигнал или полностью отключает систему в случае короткого замыкания или опасного понижения уровня жидкости.

Вверху бака в карманах ставят термопары для измерения температуры. Они работают по принципу математического расчета для выявления наиболее разогретой части агрегата. Современные датчики создаются на основе технологии оптоволокна.

Узел беспрерывной регенерации используется для восстановления и очистки масла. В результате работы в массе образуется шлак, в нее попадает воздух. Устройства регенерации бывают двух типов:

  • термосифонные модули, использующие естественное перемещение нагретых слоев вверх и прохождение через фильтр, последующее опускание охлажденных потоков на дно бака;
  • адсорбционные установки качества принудительно перекачивают массу через фильтры насосом, располагаются отдельно на фундаменте, используются в схемах преобразователей больших габаритов.

Модули для защиты масла представляют собой расширительный бак открытого типа. Воздух над поверхностью массы пропускается через поглотители влаги с силикагелем. Адсорбирующее вещество при максимальной влажности становится розовым, что служит сигналом к его замене.

Вверху расширителя устанавливают масляный затвор. Это прибор для снижения влажности воздуха, работающий на трансформаторном сухом масле. Модуль с помощью патрубка соединяется с расширительным баком. Вверху приваривается емкость с внутренним разделением в виде нескольких стенок по форме лабиринта. Воздух пропускается через масло, отдает влагу, затем очищается силикагелем и поступает в расширитель.

Контролирующие устройства

Прибор для сброса давления предупреждает аварийный скачок напора из-за короткого замыкания или сильного разложения масла и предусмотрен в конструкции мощных агрегатов в соответствии с ГОСТ 11677-1975. Устройство выполняется в виде сбрасывающей трубы, располагающейся под наклоном к трансформаторной крышке. На конце находится герметичная мембрана, способная моментально раскладываться и пропускать выхлоп.

Кроме этого, в трансформаторе устанавливаются и другие модули:

  1. Датчики уровня масла в баке, снабжены циферблатом или выполнены в виде стеклянной трубки сообщающихся емкостей, ставят на торце расширителя.
  2. Встроенные трансформаторы устраивают внутри агрегата или недалеко от заземляющего рукава на стороне изоляторов проходного типа или на шинах с низким вольтажом. В этом случае не нужно большое число отдельных преобразователей на подстанции с внутренней и внешней изоляцией.
  3. Детектор горючих примесей и газов выявляет водород в масляной массе и выдавливает его сквозь мембрану. Прибор показывает начальную степень газообразования до того, как концентрированная смесь заставит действовать контролирующее реле.
  4. Расходомер контролирует потери масла в подстанциях, работающих по принципу принудительного снижения температуры. Прибор измеряет разницу напора и определяет давление с двух сторон от возникшего препятствия в потоке. В агрегатах, работающих на водяном охлаждении, расходомеры считывают потребление влаги. Элементы снабжаются сигнализацией на случай аварии и циферблатом для определения показателей.

silovoy-transformatorsilovoy-transformator

Принцип действия и режимы работы

Простой трансформатор снабжен сердечником из пермаллоя, феррита и двумя обмотками. Магнитопровод включает комплект ленточных, пластинчатых или формованных элементов. Он передвигает магнитный поток, возникающий под действием электричества. Принцип работы силового трансформатора заключается в преобразовании показателей силы тока и напряжения с помощью индукции, при этом постоянной остается частота и форма графика движения заряженных частиц.

В трансформаторах повышающего типа схема предусматривает повышенное напряжение на вторичной обмотке по сравнению с первичной катушкой. В понижающих агрегатах входной вольтаж выше выходного показателя. Сердечник со спиральными витками располагается в емкости с маслом.

При включении переменного тока на первичной спирали образуется переменное магнитное поле. Оно замыкается на сердечнике и затрагивает вторичную цепь. Возникает электродвижущая сила, которая передается подключенным нагрузкам на выходе трансформатора. Функционирование станции проходит в трех режимах:

  1. Холостой ход характеризуется разомкнутым состоянием вторичной катушки и отсутствием тока внутри обмоток. В первичной спирали течет электричество холостого хода, составляющее 2-5% номинального показателя.
  2. Работа под нагрузкой проходит с подключением питания и потребителей. Силовые трансформаторы показывают энергию в двух обмотках, работа в таком регламенте является распространенной для агрегата.
  3. Короткое замыкание, при котором сопротивление на вторичной катушке остается единственной нагрузкой. Режим позволяет выявить потери для разогрева обмоток сердечника.

Режим холостого хода

Электричество в первичной спирали равно значению переменного намагничивающего тока, вторичный ток показывает нулевые показатели. Электродвижущая сила начальной катушки в случае ферромагнитного наконечника полностью замещает напряжение источника, отсутствуют нагрузочные токи. Работа на холостом ходу выявляет потери на мгновенное включение и вихревые токи, определяет компенсацию реактивной мощности для поддержания требуемого вольтажа на выходе.

В агрегате без ферромагнитного проводника потерь на изменение магнитного поля нет. Сила тока холостого режима пропорциональна сопротивлению первичной обмотки. Способность противостоять прохождению заряженных электронов трансформируется при изменении частоты тока и размера индукции.

Работа при коротком замыкании

На первичную катушку поступает небольшое переменное напряжение, выходы вторичной спирали накоротко соединены. Показатели вольтажа на входе подбирают так, чтобы ток короткого замыкания соответствовал расчетному или номинальному значению агрегата. Размер напряжения при коротком замыкании определяет потери в катушках трансформатора и расход на противодействие материалу проводника. Часть постоянного тока преодолевает сопротивление и преобразуется в тепловую энергию, сердечник греется.

Напряжение при коротком замыкании рассчитывается в процентном отношении от номинального показателя. Параметр, полученный при работе в этом режиме, является важной характеристикой агрегата. Умножив его на ток короткого замыкания, получают мощность потерь.

Рабочий режим

При подсоединении нагрузки во вторичной цепи появляется движение частиц, вызывающее магнитный поток в проводнике. Оно направлено в другую сторону от потока, продуцируемого первичной катушкой. В первичной обмотке происходит разногласие между электродвижущей силой индукции и источника питания. Ток в начальной спирали повышается до того времени, когда магнитное поле не приобретет первоначальное значение.

Магнитный поток вектора индукции характеризует прохождение поля через выбранную поверхность и определяется временным интегралом мгновенного показателя силы в первичной катушке. Показатель сдвигается по фазе под 90˚ по отношению к движущей силе. Наведенная ЭДС во вторичной цепи совпадает по форме и фазе с аналогичным показателем в первичной спирали.

Типы и виды трансформаторов

Силовые агрегаты используют в случае преобразования высоковольтного тока и больших мощностей, их не применяют для измерения показателей сети. Установка оправдана в случае разницы между напряжением в сети производителя энергии и цепи, идущей к потребителю. В зависимости от числа фаз станции можно классифицировать как узлы с одной катушкой или многообмоточные устройства.

Однофазный силовой преобразователь устанавливается статически, для него характерны связанные взаимной индукцией обмотки, располагаемые неподвижно. Сердечник выполняется в виде замкнутой рамы, различают нижнее, верхнее ярмо и боковые стержни, где располагаются спирали. Активными элементами выступают катушки и магнитопровод.

Обвивки на стержнях находятся в установленных сочетаниях по числу и форме витков или устраиваются в концентрическом порядке. Наиболее распространена и часто применяется цилиндрическая обвивка. Конструктивные элементы агрегата фиксируют части станции, изолируют проходы между витками, охлаждают части и предупреждают поломки. Продольная изоляция охватывает отдельные витки или их сочетания на сердечнике. Главные диэлектрики используют для предупреждения перехода между заземлением и обмотками.

В схемах трехфазных сетей электричества ставят двухобмоточные и трехобмоточные установки для равномерного распределения нагрузки между входами и выходами или устройства замещения для одной фазы. Трансформаторы с масляным охлаждением содержат магнитопровод с обмотками, которые расположены в баке с веществом.

Обвивки устраиваются на общем проводнике, при этом предусмотрены первичные и вторичные контуры, взаимодействующие благодаря возникновению общего поля, тока или поляризации при перемещении заряженных электронов в магнитной среде. Такая общая индукция затрудняет определение рабочих показателей установки, высокого и низкого напряжения. Используется план замещения трансформатора, при которой обмотки взаимодействуют не в магнитной, а в электрической среде.

Применяется принцип эквивалентности действия рассеивающих потоков работе сопротивлений индуктивных катушек, пропускающих ток. Различают спирали с активным сопротивлением индукции. Второй вид представляет собой магнитосвязанные обвивки, передающие частицы без потоков рассеивания с минимальными препятствующими свойствами.

Виды трансформаторов. Где и для чего применяются?

Здравствуйте, дорогие друзья! Сегодня поговорим про виды трансформаторов, рассмотрим их общее устройство и принцип работы, узнаем где применяются. И так…

В энергетике и электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.

Общее устройство и принцип работы

Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.

Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.

В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода – сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.

 

Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все виды трансформаторов разделяются:

  • По количеству фаз могут быть одно- или трехфазными
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н)
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Среди многообразных трансформаторных устройств чаще всего встречаются трансформаторы:

  • силовые
  • измерительные
  • специальные

Силовые трансформаторы

Термином «силовой» определяют назначение, связанное с преобразованием высоких мощностей. Вызвано это тем, что большинство бытовых и производственных потребителей электрических сетей нуждаются в питании напряжением 380/220 вольт. Однако доставка его на большие расстояния связана с огромными потерями энергии, которые снижаются за счет использования высоковольтных линий.

Воздушные ЛЭП высокого напряжения соединяют в единую сеть подстанции с силовыми трансформаторами соответствующего класса.

   Силовой трансформатор 110 кВ

А по другим линиям напряжение 6 или 10 кВ подводится к силовым трансформаторам, обеспечивающих питанием 380/220 вольт жилые комплексы и производственные предприятия.

   Силовой мачтовый трансформатор 10 на 0,4 кВ

Измерительные трансформаторы

В этом классе работают два вида устройств, обеспечивающих в целях измерения параметров сети преобразования:

  1. тока
  2. напряжения

Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики периодически подвергают поверке на правильность измерения как величин, так и углов отклонения векторов тока и напряжения.

Трансформаторы тока

Главная особенность их устройства заключается в том, что они постоянно эксплуатируются в режиме короткого замыкания. У них вторичная обмотка полностью закорочена на маленькое сопротивление, а остальная конструкция приспособлена для такой работы.

Чтобы исключить аварийный режим входная мощность ограничивается специальным устройством первичной обмотки: в ней создается всего один виток, который не может создать при протекании по нему тока большого падения напряжения на обмотке и, соответственно, передать в магнитопровод высокую мощность.

Этот виток врезается непосредственно в силовую цепь, обеспечивая его последовательное подключение. У отдельных конструкций просто создается сквозное отверстие в сердечнике, через которое пропускают провод с первичным током.

Нагрузку вторичных цепей трансформатора тока, находящегося под напряжением, нельзя разрывать. Все провода и соединительные клеммы по этой причине изготавливаются с повышенной механической прочностью. В противном случае на разорванных концах сразу возникает высоковольтное напряжение, способное повредить вторичные цепи.

Благодаря работе трансформаторов тока создается возможность обеспечения постоянного контроля и анализа нагрузок, протекающих в электрической системе. Особенно это актуально на высоковольтном оборудовании.

   Измерительные трансформаторы тока 110 кВ

Номинальные значения вторичных токов измерительных трансформаторов энергетики принимают в 5 ампер для оборудования до 110 кВ включительно и 1 А — выше.

Широкое применение трансформаторы тока нашли в измерительных приборах. За счет использования конструкции раздвижного магнитопровода удается быстро выполнять различные замеры без разрыва электрической цепи, что необходимо делать при использовании обычных амперметров.

Токовые клещи с раздвижным магнитопроводом трансформатора тока позволяют обхватить любой проводник с напряжением и замерить величину и угол вектора тока.

Трансформаторы напряжения

Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.

Виды трансформаторов

   Измерительный трансформатор напряжения 110 кВ

Измерительные трансформаторы напряжения обеспечивают гальваническую развязку оборудования первичных и вторичных цепей, работают в каждой фазе высоковольтного оборудования.

Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.

За счет работы трансформаторов тока и напряжения снимают вектора вторичных величин, пропорциональные первичным в реальном масштабе времени. Это позволяет не только создавать цепи измерения и защит по току и напряжению, но и за счет математических преобразований векторов анализировать состояние мощностей и сопротивлений в действующей электрической системе.

Специальные виды трансформаторов

К этой группе относят:

  • разделительные
  • согласующие
  • высокочастотные
  • сварочные и другого типа трансформаторные устройства, созданные для выполнения специальных электрических задач
Разделительные трансформаторы

Размещение двух обмоток совершенно одинаковой конструкции на общем магнитопроводе позволяет из 220 вольт 50 герц на входе получать такое же напряжение на выходе.

Напрашивается вопрос: зачем делать такое преобразование? Ответ прост: в целях обеспечения электрической безопасности.

Виды трансформаторов

   Разделительный трансформатор с системой контроля изоляции, тока нагрузки, температуры трансформатора

При пробое изоляционного слоя провода первичной схемы, на корпусе прибора появляется опасный потенциал, который по случайно сформированной цепи через землю способен поразить человека электрическим током, нанести ему электротравму.

Гальваническое разделение схемы позволяет оптимально использовать питание электрооборудования и в то же время исключает получение травм при пробоях изоляции вторичной схемы на корпус.

Поэтому разделительные трансформаторы широко используются там, где проведение работ с электроинструментом требует принятия дополнительных мер безопасности. Также они широко используются в медицинском оборудовании, допускающем непосредственный контакт с телом человека.

Высокочастотные трансформаторы

Отличаются от обычных материалом магнитопровода, который способен, в отличие от обычного трансформаторного железа, хорошо, без искажений передавать высокочастотные сигналы.

Используется в электротермии, в частности при индукционном нагреве в электротермических установках для высокочастотной сварки металлов, плавки, пайки, закалки и т.д.

Согласующие трансформаторы

Основное назначение — согласование сопротивлений разных частей в электронных схемах. Согласующие трансформаторы нашли широкое применение в антенных устройствах и конструкциях усилителей на электронных лампах звуковых частот.

Сварочные трансформаторы

Первичная обмотка создается с большим число витков, позволяющих нормально обрабатывать электрическую энергию с входным напряжением 220 или 380 вольт. Во вторичной обмотке число витков значительно меньше, а ток протекающий по ним высокий. Он может достигать тысяч ампер.

Поэтому толщина провода этой цепи выбирается повышенного поперечного сечения. Для управления сварочным током существует много различных способов.

Сварочные трансформаторы массово работают в промышленных установках и пользуются популярностью у любителей изготавливать различные самоделки своими руками.

Рассмотренные виды трансформаторов являются наиболее распространёнными. В электрических схемах работают и другие подобные устройства, выполняющие специальные задачи технологических процессов.

 

Смотрите также по теме:

   Трансформатор Тесла (Tesla coil). Делаем своими руками.

   Принцип работы трансформатора. Устройство и режимы работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики

Электрика » Электрооборудование » Трансформаторы

Трансформаторы

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.

Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Импульсные трансформаторы.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Разделительный трансформатор.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Пик—трансформатор.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

ОБЛАСТЬ ПРИМЕНЕНИЯ

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


расшифровка, принцип действия и устройство

В некоторых случаях возникает необходимость изменения характеристик трансформатора в процессе эксплуатации. Рассмотрим особенности конструкции и принцип действия ПБН трансформаторов, порядок регулировки, диапазон действия и прочие сопутствующие вопросы.

Что такое ПБВ

Термин ПБВ трансформатора означает переключение без возбуждения. Данное устройство позволяет регулировать показатели напряжения силовых трансформаторов для обеспечения заданных характеристик потребляющего оборудования.

Переключение производится при условии полного отключения агрегата от нагрузки.

Конструкция, принцип действия

ПБВ включает следующие элементы:

  • избиратель – переключатель между ответвлениями;
  • приводной механизм.

конструкция

1КОНСТРУКЦИЯ

В зависимости от конструкции и мощностных характеристик трансформатора, переключатель может приводиться в действие посредством ручного или механизированного привода. Механизированный привод предусматривает непосредственное и дистанционное включение.

При ручном приводе переключение производится с помощью рукоятки, выведенной за корпус агрегата.

К конструкции указанных переключателей предъявляются следующие требования:

  • обеспечение надлежащей температуры контактных и токоведущих элементов при прохождении через них электрического тока;
  • способность выдерживать прохождение тока при коротком замыкании;
  • показатель ресурса в пределах до 2 тысяч переключений;
  • надёжную изоляцию.

Данное устройство может устанавливаться для изменения количества работающих витков на входной и выходной катушке.

СХЕМА

Учитывая, что параметры напряжения на выходе определяются количеством витков в выходной и входной обмотке, переключатель изменяет данную характеристику на одной из катушек, позволяя добиться необходимого результата.

Как проводится регулировка

Порядок проведения регулировки предусматривает следующие операции:

  • в начальном положении витки замкнуты, согласно нахождению замыкающих элементов избирателя;
  • агрегат отключается от напряжения;
  • поворотом рукоятки или включением механизированного привода перемещается замыкающий элемент избирателя с изменением рабочего количества витков на обмотке;
  • агрегат включается в сеть.

Переключение производится на необходимое значение, согласно требуемым характеристикам потребляющего оборудования.

Классификация

В зависимости от особенностей конструктивного устройства, различают переключатели следующих типов:

  • с ручным или механизированным приводом;
  • непосредственного или дистанционного включения;
  • однофазного и трёхфазного;
  • барабанного, оборудованные контактом в виде кольца, сегмента или ламели;
  • реечного.

реечный

Устройства могут предназначаться для использования в агрегатах различного напряжения и силы тока.

Преимущества и недостатки

ПБВ – компактный и простой переключатель, в чём преимущество данного устройства перед РПН, переключающими трансформатор без снятия нагрузки.

К недостаткам следует отнести необходимость полного отключения агрегата для проведения регулировки. Но данным минусом можно пренебречь, если оборудование запитано от двух трансформаторов, один из которых выступает в роли резервного.

Также недостатком устройства является высокая степень окисления замыкающих контактов в процессе эксплуатации. Данная особенность составляет проблему, если переключение производится не слишком часто. Поэтому устройство нуждается в проведении периодическом техническом обслуживании.

Применение ПБВ позволяет добиться следующих положительных результатов:

  • улучшить режим энергоснабжения потребителей;
  • увеличить допустимые потери напряжения;
  • повысить качественные характеристики электрического напряжения, подающегося на запитанное оборудование.

Простота конструкции обеспечивает высокую степень надёжности устройства.

пбв

На какие проценты может регулироваться напряжение

Переключатель предоставляет возможность регулировки напряжения в пределах до 5 процентов в каждую сторону, с шагом в 2,5 процента.

Защита ПБВ

Чтобы исключить самопроизвольное срабатывание переключателя, устройство снабжается фиксатором, освобождаемым при включении. Данный элемент не позволяет ПБВ переключиться произвольно, тем самым предотвращая нештатные ситуации.

Надёжность эксплуатации достигается регулярным техническим обслуживанием. Выход из строя может быть обусловлен следующими обстоятельствами:

  • недостаточной плотностью прилегания элементов;
  • ослабеванием регулировочных контактов;
  • снижением прочности элементов в ходе эксплуатации по причине некачественной пайки.

В результате повреждённые места перегреваются, что может вызвать выход агрегата из строя. В процессе технического обслуживания места контактов очищаются от оксидной плёнки, покрывающей элементы со временем с помощью растворителя или бензина.

По завершении обслуживания устройство испытывается.

Применение ПБВ позволяет изменить характеристики напряжения, выдаваемого трансформатором на выходе. Это устройство намного проще, чем РПН, но для переключения требует отключения агрегата от нагрузки.

Вводы для трансформаторов: описание. конструкция, проблемы эксплуатации

Вводы для силовых трансформаторов – необходимые конструктивные элементы оборудования, к которым предъявляются особые технические требования. Вводы бывают различных типов, они классифицируются по особенностям конструкции, наполненности маслом, типологии изоляции. Безусловно, есть определенные проблемы эксплуатации в зависимости от вида элемента, а также основные методики контроля технологического состояния в зависимости от вида.

Назначение

Вводы для трансформатора являются необходимым элементом конструкции. Они предназначаются для изоляции выводимых концов обмотки и последующего крепления устройства к различным дополнительным приборам и элементам.

Выводов существует несколько десятков видов, при этом они различаются в зависимости от размеров и форм, мощности, напряжения, принципа установки, необходимых технических особенностей и другого.

Высоковольтный ввод представляет собой довольно простую конструкцию. Изолятор из фарфоровой пластин соединяется с фланцем из качественного чугуна. Последний необходим для того, что соединить ввод и крышку бака надежно и прочно. Ток передается по медному стержню, именно он связывает обмотку с элементами оборудования. Изолятор по типу своей поверхности имеет мелкие ребра или даже полностью гладкий. Также бывают варианты с зонтообразными ребрами на изоляторе, благодаря чем удается избежать разрядов на поверхности.

Ранее вводы трансформатора обладали такой конструкцией, которая не позволяла убрать их и заменить быстро. Приходилось снимать крышку или открывать активную часть бака, а уже потом снимать их и ремонтировать. На новых трансформаторах устанавливаются вводы, которые имеют съемную конструкцию. Благодаря тому, что нет обойм и фланцев, их легко снимать и заменять на новые в случае необходимости, не поднимая сердечник. Просто открывается устройство, которое прижимает ввод к крышке, а потом снимается уплотнительное кольцо. Ввод вынимается и заменяется.

Проблема работы вводов состоит в том, что появляется сильнейший магнитный поток. Особенно это касается оборудования, которое предназначается для работы с большими токами. Магнитное поле приводит к сильному нагреву крышки и фланцев. Для избегания поломок, связанных с этим фактором, заменяют фланцы из стали и чугуна латунными. Также для уменьшения нагрева к крышке размещают вводы совместно, при этом в одно отверстие, или же делают диаметр дырки для ввода больше, чтоб токовый стержень находился дальше.

Вводы

Классификация и особенности конструкции

Конструктивные особенности изменяются в зависимости от требуемых технических характеристик и особенностей эксплуатации. Обязательно учитывается этот пункт, в противном случае трансформатор даже если и будет работать, то на эффективность и безопасность рассчитывать не стоит.

Составные

Составные вводы используются исключительно для трансформаторов с напряжением до 1000 В. Они состоят и двух или трех изоляторов из фарфора. При этом в отличии от маслонаполненных внутри полости тут нет масляного состава. Их применение в устройствах с большими показателями напряжения недопустимо.

Съемные

Конституция съемных вводов подразумевает, что понятно из названия, что их можно быстро вынимать и ставить обратно при необходимости. Несъемные варианты подходят только для токов, которые сейчас не соотнесены значениям. Диаметр шпилек у старых образцов значительно меньше. В тоже время съемные вариации отличаются большим диаметром шпилек, что позволяет увеличить показатели длительности рабочего тока.

Ввод на трансформаторе

Маслонаполненные

Трансформаторный ввод представляет собой два или три фарфоровых изолятора, внутри полости которых находится масло. Если речь идет о конфигурациях вводах с напряжением 110 кв или больше, то присутствует две крыши из фарфора. Они сочетаются между собой и крепятся втулкой. Часть внутри в масле, обязательно контролируется его расход.

Маслоподпорные

Маслоподпорные выводы отличаются особой герметичностью, но особенность состоит в том, что масло поступает при помощи специальной трубки, которая располагается непосредственно у самого ввода. Изоляция жидкого типа общая, то есть она с такими же химическим составом, что и трансформаторная. Используется исключительно для устройств с напряжением от 110 кВ.

С твердой изоляцией

Приборы с твердой изоляцией также герметичны и применяются для оборудования с большими мощностными показателями. По своим конструктивным особенностям схожи с вариантами масляными, однако у них нет нижней фарфоровой покрышки.

Вводы трансформатора

Проблемы эксплуатации

Проблемы с выводами безусловно коснуться трансформатора. Но специалистам требуется выявить причину и максимально постараться ограждать от нее устройства при последующем использовании.

Более 60 процентов от всех причин поломки силовых трансформаторов относятся к проблемам со вводами. Наибольшая часть — это оборудование высоковольтное от 110 кВ. Типология, особенности повреждений зависят от конструктивных деталей внутри механизма и данных о напряжении. Показывают меньший процент поломок несъемные варианты, но их ремонт невозможен. Чаще меняются приборы с большой мощностью нежели менее 100 кВ.

Присущие дефекты конструкции во многом различаются благодаря внутренней изоляции. Характерны для:

  • покрытой крышки маслом — механические повреждения и протекания из-за естественных факторов;
  • твердой изоляции с маслом — растекание, старение состава, повреждение фарфоровой крышки;
  • маслобарьерной изоляции — протекания в фарфоре, естественный износ и уменьшение внутренних показателей изоляции, нарушение работы прокладок и цилиндров;
  • бумажно-масляных изоляторов не герметичных — перекрытие, приводящее к пробою, уменьшение соединений на вводах, механические проведение, нарушение объема циркуляции масла, увлажнение или окисление узлов в местах течи масла;
  • бумажно-масляных изоляторов герметичных — естественное старение состава и выпадание осадка, затрудняющего работу, появление в составе алюминия и наблюдение вибрации, появление разрядов в зоне около крышки, уменьшение показателей давления.

Работа с вводом трансформатора

В зависимости от технических характеристик ввода при плановом осмотре трансформатора специалист сверяется, не появились ли дефекты из вышеизложенного списка. Выделяют и другие причины приводящие к снижению чувствительности изоляционных материалов оборудования. Их объединили в четыре большие группы для удобства.

Электрическое старение

Электрическое старение относится к естественным природным факторам, приводящим к износу изоляции тс. Этот фактор представляет собой совокупность, в число которой входят и постоянное увлажнение, окислительные процессы, проявление частичных электрических токовых импульсов на поверхности, перманентное воздействие тепла.

Частые коммутации

Электроприводы, используемые в производстве, подразумевают воздействие на напряжение питающей сети. Появление гармоник и смена напряжения влечет за особой смену частотных коммутаций. К перенапряжение приводят и электроламповые выключатели, применяющиеся часто в совокупности на предприятиях.

Вводы трансформатора

Тяжелые режимы работы

Тяжелые режимы работы вызывают перегрев проводников. Как следствие, возникает износ изоляции и так называемый природный температурный износ. При тяжелых режимах работы оборудование применяется с четко ограниченным планом, когда оно функционирует, а когда отдыхает.

Особенности конструкции

Конструктивные нюансы, в особенности увлажнение, являются также частой проблемой вводов трансформаторов. Увлажнение характерно для тс, которые не относятся к герметичному типу. А вот в герметизированных установках превосходящая часть повреждений обусловлена снижением качества состава, а также появление частых электрических разрядов.

Любая проблема на начальном этапе не вызывает беспокойства и не приводит к резкому снижению эффективности устройства или выходу его из строя. На ранних стадиях проблемы наблюдается изменение состава масла, например добавление в него частиц алюминия. В итоге происходит разложение продуктов изоляции, которые приводят к пробою поверхности.

Это влечет за собой выход и строя и необходимость не только смены самих вводов, но и частиц деталей, прилегающих к ним, проверки конститутивных узлов трансформатора.

Конструкция ввода трансформатора

Основные методы контроля технологического состояния

Методик контроля несколько, к их числу относятся интегральные и дифференциальные. Эти типы различные по своему принципу действия, и они оценивает разные характеристики изоляции. Например, интегральные направлены прежде всего на проверку в общем состояния ввода, а не на то, чтоб обнаружить и искоренить определенный дефект. Используя их, вы будете уверены, что поломка найдется, но не конкретная область, а именно факт того, что она присутствует.

Тогда можно экстренно заменить ввод и не беспокоится о сохранности прибора. А вот дифференциальные направлены на то, чтоб устанавливать конкретное место поломки. В зависимости от характеристик проводимого исследования изменяются первичные установки, в том числе требуется или нет отключать оборудование из сети.

Интегральные

Интегральные методики позволяют проверить состояние устройства в целом. Они не направлены на то, чтоб определять поконкретнее местоположение поломки. Но они сигнализируют о том, что потребуется или полная замена ввода, если это возможно, или проверка дифференциальным методом дополнительно.

Вводы на трансформаторах

Измерение сопротивления изоляции

При помощи методики измерения сопротивления изоляции специалисты выявляют такие дефекты как увлажнение твердой изоляции и наличие загрязнений, в том числе пыли, грязи на поверхности, которые могут служить причиной уменьшения энергоемкости. Этот способ имеет ряд преимуществ, в то числе и то, что можно оценивать не только внешнее состояние и показатели изолятора, но и абсорбционные процессы, которые происходят внутри обмотки.

К недостаткам методики относят то, что трансформатор обязательно отключается при выполнении исследования.

Измерение диэлектрических потерь и емкости изоляции

Различают несколько видов измерения. Распространенное — это измерение тангенса и емкости по зонам устройства. Позволяют выявить то, есть ли частичные разряды в обмотке, насколько увлажнена твердая оболочка и не состарились ли масло. Особенности этой методики:

  • выявление общего и местного состояния;
  • невозможность выявить природу дефекта.

измерение сопротивления изоляции трансформатора

Также определяют зависимость тангенса и емкости от напряжения для выявления наличия разрядов. Методика довольно эффективная, но придется отключать приборы от сети. А вот если проводится полное измерение, то при его помощи выявляются не только все вышеизложенные показатели, но и наличие пробоя теплового или ионизирующего характера. Хорошая доля вероятности, но это не распространяется на выявление дефектов в масляном канале.

Кроме того, выявить можно и зависимости от температурных показателей. Методика позволяет определить состарилось ли масло и вероятность появления пробоя теплового характера. Единственным недостатком этой методики является то, что исследование должно проводится при различных температурных вариациях.

Анализ масла

Анализ состава масла выявляет разные характеристик и дефекты. При помощи физико-химического исследования определяется уровень увлажнения, перегрева, загрязнения и старения. Анализ газовой составляющей поможет выявить дефекты строения молекул, а производных фурана — износ изоляции твердого типа. Способ эффективный, но нельзя исключать возможность загрязнения при взятии анализа. Вводы должны быть тщательно очищены перед внедрением специального стеклянного шприца.

Масло трансформаторное

Измерение давления

Просмотр сведений о давлении выявляет в каком состоянии находится герметичность и наличие или отсутствие частичных разрядов в масляном составе. Измерение давления относится к простейшим процедурам, так как контроль не требуется. Но минус существенный — разряды выявляются только на их последней стадии.

Дифференциальные

Дифференциальные способы в отличии от интегральных направлены на выявление конкретной проблематики. Ими пользуются, когда интегральные методики дали положительный ответ.

Тепловизионное обследование

Данный вид исследования выявляет массу нарушений состояния проводников. К ним относят:

  • чрезмерный нагрев в местах подсоединения;
  • наличие контора короткозамкнутых типов;
  • уменьшение масляной составляющей во вводах;
  • влажность части остова и другое.

Тепловизионное обследование трансформатора

Методика действенная и популярная по причине того, что не нужно выключать оборудование в сети и проводить специального рода манипуляции перед анализом. Контролировать сдачу не нужно, так как все происходит в автоматическом режиме. Информация наглядна и понятна даже не специалисту. Единственная проблема данного вида дифференциального контроля заключается в том, что можно проследить лишь верхнюю и среднюю часть ввода. Для обследования нижней способ не годится.

Регистрация (локализация) частичных разрядов

Локализация определяет характеристики состава, изменилось ли напряжение и наличие дефектов определенной части ввода. При помощи способа выявляются дефекты любой части. Минус в том, что понять типологию сигнала не всегда просто из-за возникающих помех.

Воздушный трансформатор: принцип работы и применение

Воздушный трансформатор представляет собой прибор для преобразования параметров электрического тока при отсутствии непосредственного контакта между составными частями. Другими словами, передача энергии производится беспроводным способом, через воздух.

Принцип действия

Поскольку воздушная среда при обычных условиях (нормальная влажность, отсутствие разнозаряженных ионов) – плохой проводник тока, то использование воздушных трансформаторов в качестве источников повышенного тока или напряжения малоэффективно. Иное дело – преобразование частоты переменного тока, где не требуются значительные энергетические затраты. Поэтому рассматриваемые устройства предназначаются для передачи токов разной частоты во время трансляции радиосигналов.

трансформатор от батарейки

По схеме действия воздушный трансформатор – это устройство с условным воздушным «сердечником» – зазором, который разделяет первичную и вторичную обмотки. Для стабильности такого зазора проволочные обмотки наматываются на прямоугольную основу из конденсаторного картона или другого изолятора, ввиду чего основной токопроводящей средой является воздух.

Классификация разновидностей

Все виды воздушных трансформаторов сводятся к двум группам:

  • Импедансные, используемые для согласования значений падения напряжения у источника и потребителя нагрузки с целью обеспечения наиболее эффективной передачи энергии;
  • Изолирующие, которые применяются по соображениям безопасности для изоляции части оборудования от источника энергии.

В воздушных трансформаторах все токи считаются возбуждающими. Они индуцируют вторичное напряжение, значение которого сравнимо с общей индуктивностью электрической системы. Поэтому материал основы сердечника отличается наивысшими показателями магнитной проницаемости. К таким материалам относят также стекло, фарфор, слюда, некоторые виды пластмассы.

Однако только электроизоляционный картон ГОСТ 2824-86 отличается благоприятным сочетанием показателей прочности (электрической и механической), плотности и стойкости к перепадам влажности окружающей среды.

схема воздушного трансформатора

Устройство

В трансформаторах сердечник используется с целью ограничения магнитного потока и усиления связи между первичной и вторичной обмотками. Во всех конструкциях воздушных трансформаторов применение диамагнитных материалов обеспечивает отсутствие гистерезисных и вихревых потерь и искажений электромагнитного поля, поскольку это приводит к ухудшению качества радиосигнала.

В дополнение к бесшумной работе беспроводные трансформаторы отличаются ещё и малым весом. Именно поэтому этот тип трансформатора подходит для портативных, легких электронных и высокочастотных устройств.

По исполнению сердечника воздушные трансформаторы подразделяют на цилиндрические и тороидальные. Правильный выбор материала сердечника обеспечивает изделиям:

  1. Усиление магнитного поля.
  2. Высокий КПД устройства.
  3. Отсутствие потерь мощности при трансформации.
  4. Стабильность соотношения первичного напряжения ко вторичному.

большой воздушный трансформатор

Как изготовить и собрать воздушный трансформатор

Предварительно определяются с материалом сердечника. Используя электротехнический картон, необходимо, чтобы его рабочие характеристики соответствовали следующим нормам ГОСТ 2824-86:

  • Толщине, мм, не менее – 2,0…2,5.
  • Плотности, г/см3, не менее – 1,0…1,15.
  • Пределу прочности на растяжение, МПа, не менее – 105…110.
  • Пределу прочности на изгиб, МПа, не менее – 35…40.
  • Электрической прочности, кВ/мм, не менее – 11…12.
  • Относительной влажности, % – 8±2.

В случае использования других материалов их физико-механические характеристики должны быть не ниже перечисленных выше.

Катушки изолированной медной проволоки наматываются на пластиковую трубку или полый тор. Для принятой конфигурации сердечника его момент сопротивления принимают наибольшим при заданном внешнем размере поперечного сечения: это обеспечивает обмотке необходимую механическую поддержку.  Медная обмотка вокруг тора или цилиндра может, при необходимости, выноситься на разные точки, откуда и снимается вторичное напряжение.

Иногда, с целью поддержания в схеме настройки постоянного резонанса, к обмотке дополнительно подключается конденсатор.  Магнитный поток протекает через воздух, окружающий обмотку, и воздух, имеющийся внутри полого сердечника.

Для правильного согласования значений падения напряжения поверх основной медной обмотки наматывается еще и защитная обмотка. Ее соединяют с антенными приемниками и должным образом заземляют.

Тороидальные сердечники имеют преимущество перед цилиндрическими, поскольку влияние блуждающей связи здесь минимально. Воздушные трансформаторы такого исполнения используются в особо высокочастотных приложениях.

что это, характеристики регулировочных агрегатов, схемы

Линейные трансформаторы устанавливаются в электрических цепях для возможности регулирования подаваемого напряжения при снижении рабочей мощности. Катушки создают электромагнитное поле, которое разряжается, когда уменьшается сила тока в цепи. Таким образом обеспечивается подача стабильного электричества.

При их изготовлении не используются ферромагнитные сердечники. Эта особенность позволяет регулировать напряжение в сети. Специальные трансформаторы изготавливаются для уменьшения напряжения на высоковольтных линиях с 6, либо 10 кВ до 230 или 115 В.

Для чего служит?

Такие трансформаторы используются для регулирования объемов электричества, проходящего по электрической сети. Каждая катушка последовательно включается в сеть. Это важный элемент электрической цепи, изменяющий силу тока и напряжения. Прибор изготавливается из пары неподвижных катушек, в которых не используются ферромагнитные сердечники. Такие устройства называются воздушными и относятся к категории линейных. Они изготовлены без ферромагнитных сердечников.

Такие приборы устанавливаются на отдельных или нескольких линиях с целью регулирования мощности. Последовательный и питающий элемент входит в основу трансформатора. Они используются для реконструкции сетей, в которых установлены не регулирующие приборы, пропускающие через себя высокую нагрузку.

Линейный трансформатор

Преимущества использования

Преимущества этих агрегатов по сравнению с устройствами, в которых установлен первый магнитный сердечник, заключается в возможности регулирование мощности, проходящей в цепи. Другие изделия не могут выполнять эту функцию из-за особенностей своей конструкции.

Регулировочный механизм имеет такие достоинства:

  • Эффективная работа обеспечивается при разной нагрузке. Изделие легко переносит быстрый запуск системы на максимальную мощность из выключенного состояния.
  • Устойчивость к коротким замыканиям.
  • Хорошая защита от внешнего атмосферного воздействия, обеспечивает устойчивость к химическим и механическим воздействиям, высокому уровню влажности.
  • Возможность регулировки объемов электричества позволяет экономично расходовать электроэнергию.

Особенности функционирования делают их универсальными изделиями, преобразующими электроэнергию.

Схема линейного трансформатора

Предельный двухобмоточный трансформатор можно рассматривать в виде пары катушек с линейной индуктивностью.

Схема линейного трансформатора

Сопротивление R1 и R2 учитывает снижение энергии в парных катушках. В ситуации, когда нелинейность магнитных элементов не воздействует на свойства прибора с установленными ферромагнитными сердечниками, они рассматриваются в качестве линейных при изучении цепей с применением соответствующей схемы замещения.

Уравнение:

Уравнение первое

Данная пара уравнений равнозначна следующей:

Уравнение 2

Указанные уравнения считаются контурными для следующей схемы:

Схема трансформатора

Это схема замещения, не имеющая связанных индуктивностей.

При одинаковом количестве витков на каждой обмотке индуктивность рассеивается. Работе на холодном ходу (12=0), ток в первой обмотки отличен от 0.

Это явление тока намагничивания:

Намагничивание

Способ решения уравнений касательно электричества, проходящего через первую обмотку:

Последнее уравнение линейного трансформатора

Показатели на первичной и вторичной обмотках пропорциональны в данном примере. Сопротивление нагрузки Zн всегда определяет коэффициент пропорциональности.

Трансформатор, изготовленный по такой схеме, уменьшает потери при переходе электричества с первой обмотки на вторую. Оценка КПД проводится для определения невосполнимой потери энергии. Динамические свойства тоже могут повлиять на уменьшение объемов проходящей энергии, если на мотках не предусмотрена фазировка токов. Поэтому при оценке КПД по соотношению объемов энергии, проходящей через регулировочный механизм в первой цепи с объемом, проходящим по вторичной цепи, разница не должна быть больше 0,8. Такой показатель является оптимальным для электрических установок малой и средней мощности, работающих на активную нагрузку.

Японский линейный трансформатор

В обычных приборах при повышении тока в обмотках возникает накопление энергии и усиление магнитного поля. При уменьшении мощности эта энергия расходуется, и таким образом сохраняется стабильная мощность в сети. Энергия продолжает накапливаться в магнитопроводе, благодаря разрядке конденсаторов при снижении значения тока в парной катушке. Поэтому ток холостого хода значительно уменьшается.

Где применяют?

Наибольшая польза от использования регулировочных устройств получается на электростанциях, переводящих мощность одновременно с низкой и средней на высокую. Приборы без ферромагнитных стержней используются при необходимости обеспечения связи между несколькими повышенными мощностями.

Трансформаторы применяются, если на обычных автоматических механизмах не установлен РПН.

Такие устройства не используются только в небольших установках 380-220 В. Использование регулировочных изделий актуально при необходимости независимого изменения на участке низшего напряжения.

Как работают трансформаторы. Трансформаторы — это тип нейронных… | Giuliano Giacaglia

Нейронная сеть, используемая Open AI и DeepMind

Giuliano Giacaglia

Трансформаторы — это тип архитектуры нейронных сетей, который набирает популярность. Трансформеры недавно использовались OpenAI в своих языковых моделях, а также недавно использовались DeepMind для AlphaStar — их программы для победы над лучшим профессиональным игроком Starcraft.

Трансформаторы были разработаны для решения проблемы преобразования последовательности , , или нейронного машинного перевода. Это означает, что любая задача преобразует входную последовательность в выходную последовательность. Это включает в себя распознавание речи, преобразование текста в речь и т. Д.

Преобразование последовательности. Входные данные представлены зеленым цветом, модель представлена ​​синим цветом, а выходные данные представлены фиолетовым цветом. GIF от 3

Для моделей, выполняющих преобразование последовательности , необходимо иметь какую-то память. Например, допустим, что мы переводим следующее предложение на другой язык (французский):

«The Transformers» — японская группа [[hardcore punk]].Группа была образована в 1968 году, в разгар японской музыкальной истории »

В этом примере слово« группа »во втором предложении относится к группе« Трансформеры », введенной в первом предложении. Когда вы читаете о группе во втором предложении, вы знаете, что она относится к группе «Трансформеры». Это может быть важно для перевода. Есть много примеров, когда слова в некоторых предложениях относятся к словам в предыдущих предложениях.

Для такого перевода предложений модели необходимо выяснить такие зависимости и связи.Рекуррентные нейронные сети (RNN) и сверточные нейронные сети (CNN) были использованы для решения этой проблемы из-за их свойств. Давайте рассмотрим эти две архитектуры и их недостатки.

Рекуррентные нейронные сети содержат петли, позволяющие информации сохраняться.

Вход представлен как x_t

На рисунке выше, мы видим часть нейронной сети, A, , обрабатывающую некоторые входные данные x_t и выходные данные h_t. Цикл позволяет передавать информацию от одного шага к следующему.

Петли можно представить по-другому. Рекуррентная нейронная сеть может рассматриваться как несколько копий одной и той же сети, и , каждая сеть передает сообщение своему преемнику. Рассмотрим, что произойдет, если мы развернем цикл:

Развернутая рекуррентная нейронная сеть

Эта цепочечная природа показывает, что рекуррентные нейронные сети явно связаны с последовательностями и списками. Таким образом, если мы хотим перевести некоторый текст, мы можем установить каждый ввод как слово в этом тексте.Рекуррентная нейронная сеть передает информацию предыдущих слов в следующую сеть, которая может использовать и обрабатывать эту информацию.

На следующем рисунке показано, как обычно последовательность модели последовательности работает с использованием рекуррентных нейронных сетей. Каждое слово обрабатывается отдельно, и результирующее предложение генерируется путем передачи скрытого состояния на стадию декодирования, которая затем генерирует выходные данные.

GIF от 3

Проблема долгосрочных зависимостей

Рассмотрим языковую модель, которая пытается предсказать следующее слово на основе предыдущих.Если мы пытаемся предсказать следующее слово предложения «облака в небе» , нам не нужен дополнительный контекст. Совершенно очевидно, что следующим словом будет небо.

В этом случае, когда разница между соответствующей информацией и необходимым местом мала, RNNs могут научиться использовать прошлую информацию и выяснить, каково следующее слово для этого предложения.

Изображение из 6

Но есть случаи, когда нам нужно больше контекста. Например, допустим, что вы пытаетесь предсказать последнее слово текста: «Я вырос во Франции… я бегло говорю…». Согласно недавней информации, следующее слово, вероятно, является языком, но если мы хотим сузить язык, нам нужен контекст Франции, который находится дальше в тексте.

Изображение из 6

RNN становится очень неэффективным, когда разрыв между соответствующей информацией и точкой, где она необходима, становится очень большим. Это связано с тем, что информация передается на каждом этапе, и чем длиннее цепочка, тем более вероятна потеря информации по цепочке.

Теоретически, RNN могут изучать эти долгосрочные зависимости.На практике они, кажется, не изучают их. LSTM, особый тип RNN, пытается решить эту проблему.

При составлении календаря на день мы расставляем приоритеты для наших встреч. Если есть что-то важное, мы можем отменить некоторые встречи и учесть то, что важно.

RNN не делают этого. Всякий раз, когда он добавляет новую информацию, он полностью преобразует существующую информацию, применяя функцию. Вся информация модифицируется, и не учитывается, что важно, а что нет.

LSTM вносят небольшие изменения в информацию путем умножения и сложения. С LSTM информация течет через механизм, известный как состояния ячейки. Таким образом, LSTM могут выборочно помнить или забывать вещи, которые важны и не так важны.

Внутренне LSTM выглядит следующим образом:

Изображение из 6

Каждая ячейка принимает в качестве входных данных x_t (слово в случае перевода предложения в предложение), состояние предыдущей ячейки и выход предыдущей ячейки .Он манипулирует этими входами и, основываясь на них, генерирует новое состояние ячейки и вывод. Я не буду вдаваться в подробности о механике каждой клетки. Если вы хотите понять, как работает каждая ячейка, я рекомендую запись в блоге Кристофера:

С состоянием ячейки информация в предложении, которая важна для перевода слова, может быть переведена из одного слова в другое при переводе.

Проблема с LSTM

Та же проблема, которая обычно возникает с RNN, возникает с LSTM, т.е.е. когда предложения слишком длинные, LSTM все еще не очень хорошо. Причина этого заключается в том, что вероятность сохранения контекста от слова, которое находится далеко от текущего обрабатываемого слова, экспоненциально уменьшается с расстоянием от него.

Это означает, что когда предложения длинные, модель часто забывает содержание удаленных позиций в последовательности. Другая проблема с RNN и LSTM заключается в том, что трудно распараллеливать работу по обработке предложений, поскольку вам приходится обрабатывать слово за словом.Мало того, но нет модели долгосрочных и краткосрочных зависимостей. Итак, LSTM и RNN представляют 3 проблемы:

  • Последовательные вычисления препятствуют распараллеливанию
  • Нет явного моделирования длинных и коротких зависимостей
  • «Расстояние» между позициями является линейным

Для решения некоторых из этих проблем исследователи создали техника обращать внимание на конкретные слова.

При переводе предложения я уделяю особое внимание слову, которое я сейчас перевожу.Когда я записываю аудиозапись, я внимательно слушаю сегмент, который активно записываю. И если вы попросите меня описать комнату, в которой я сижу, я осмотрю объекты, которые я описываю, когда я это делаю.

Нейронные сети могут достичь того же поведения, используя внимание , сосредоточив внимание на части подмножества информации, которую им дают. Например, RNN может присутствовать на выходе другого RNN. На каждом временном шаге он фокусируется на разных позициях в других RNN.

Для решения этих проблем Внимание — это метод, который используется в нейронной сети. Для RNN вместо кодирования всего предложения в скрытом состоянии каждое слово имеет соответствующее скрытое состояние, которое передается полностью до стадии декодирования. Затем скрытые состояния используются на каждом этапе RNN для декодирования. Следующий рисунок показывает, как это происходит.

Зеленый этап называется этапом
кодирования , а фиолетовый этап является этапом кодирования. GIF от 3

Идея заключается в том, что в каждом слове предложения может быть соответствующая информация. Таким образом, чтобы декодирование было точным, необходимо учитывать каждое слово ввода, уделяя внимание .

Чтобы обратить внимание на RNN при передаче последовательности, мы разделим кодирование и декодирование на 2 основных этапа. Один шаг представлен зеленым, , а другой — фиолетовым. Зеленый этап называется этапом кодирования , а фиолетовый этап — этапом декодирования .

GIF от 3

Этап зеленого цвета отвечает за создание скрытых состояний на входе. Вместо того, чтобы передавать только одно скрытое состояние декодерам, как мы делали до внимания , мы передаем все скрытые состояния, генерируемые каждым «словом» предложения, на этап декодирования. Каждое скрытое состояние используется на этапе декодирования , чтобы выяснить, где сеть должна уделять внимания .

Например, при переводе предложения « Je suis étudiant» на английский язык требуется, чтобы на этапе декодирования при его переводе рассматривались разные слова.

Этот рисунок показывает, какой вес придается каждому скрытому состоянию при переводе предложения «Je suis étudiant» на английский. Чем темнее цвет, тем больше веса связано с каждым словом. GIF от 3

Или, например, когда вы переводите предложение «L’accord sur la zone économique européenne a été signé en aûût 1992». с французского на английский, и сколько внимания уделяется каждому входу.

Перевод предложения «Экономическое соглашение между странами и государствами в 1992 году».» на английский. Изображение из 3

Но некоторые из проблем, которые мы обсуждали, до сих пор не решены с RNN, использующими внимание . Например, параллельная обработка входных данных (слов) невозможна. Для большого корпуса текста это увеличивает время, затрачиваемое на перевод текста.

Сверточные нейронные сети помогают решить эти проблемы. С их помощью мы можем

  • Тривиально распараллелить (на слой)
  • Эксплуатация локальных зависимостей
  • Расстояние между позициями является логарифмическим

Некоторые из наиболее популярных нейронных сетей для преобразования последовательности, Wavenet и Bytenet, являются сверточными нейронными сетями.

Wavenet, модель — это сверточная нейронная сеть (CNN). Изображение из 10

Причина, по которой сверточные нейронные сети могут работать параллельно, заключается в том, что каждое слово на входе может обрабатываться одновременно и не обязательно зависит от предыдущих слов, которые нужно перевести. Мало того, но «расстояние» между выходным словом и любым входом для CNN имеет порядок log (N) — это размер высоты дерева, сгенерированного из выходного на вход (вы можно увидеть это на GIF выше.Это намного лучше, чем расстояние выхода RNN и входа, которое составляет порядка N .

Проблема заключается в том, что сверточные нейронные сети не обязательно помогают решить проблему зависимостей при переводе предложений. Вот почему Трансформеры были созданы, они представляют собой сочетание обеих CNN с вниманием.

Чтобы решить проблему распараллеливания, трансформаторы пытаются решить эту проблему, используя сверточные нейронные сети вместе с моделями внимания . Внимание повышает скорость, с которой модель может переводить одну последовательность в другую.

Давайте посмотрим, как работает Transformer . Трансформер — это модель, которая использует внимания для повышения скорости. Точнее говоря, он использует самоуважения.

Трансформер. Изображение от 4

Внутри Transformer имеет архитектуру, аналогичную предыдущим моделям выше. Но Transformer состоит из шести кодеров и шести декодеров.

Изображение из 4

Каждый кодировщик очень похож на другого. Все кодеры имеют одинаковую архитектуру. Декодеры имеют одно и то же свойство, то есть они также очень похожи друг на друга. Каждый кодировщик состоит из двух уровней: , самообслуживания, и нейронной сети прямой связи.

Изображение из 4

Сначала входы энкодера проходят через слой самосохранения . Это помогает кодировщику взглянуть на другие слова во входном предложении при кодировании конкретного слова. Декодер имеет оба этих слоя, но между ними находится слой внимания, который помогает декодеру сфокусироваться на соответствующих частях входного предложения.

Изображение из 4

Примечание: Этот раздел взят из поста в блоге Джея Алламара

Давайте начнем с рассмотрения различных векторов / тензоров и того, как они перемещаются между этими компонентами, чтобы превратить ввод обученной модели в вывод. Как и в случае с приложениями NLP в целом, мы начинаем с преобразования каждого входного слова в вектор с использованием алгоритма встраивания.

Изображение взято с 4

Каждое слово встроено в вектор размером 512. Мы представим эти векторы с помощью этих простых прямоугольников.

Встраивание происходит только в самом нижнем кодере. Абстракция, которая является общей для всех кодировщиков, заключается в том, что они получают список векторов, каждый из которых имеет размер 512.

В нижнем кодировщике это будет вложение слов, но в других кодировщиках это будет вывод кодера, который прямо под После встраивания слов в нашу входную последовательность каждое из них проходит через каждый из двух уровней кодера.

Image from 4

Здесь мы начинаем видеть одно ключевое свойство Transformer, которое заключается в том, что слово в каждой позиции проходит через свой собственный путь в кодере.Существуют зависимости между этими путями в слое самообслуживания. Слой прямой связи, тем не менее, не имеет этих зависимостей, и, таким образом, различные пути могут выполняться параллельно, проходя через слой прямой связи.

Далее мы переключим пример на более короткое предложение и посмотрим, что происходит на каждом подуровне кодера.

Self-Attention

Давайте сначала рассмотрим, как рассчитать самообслуживание с использованием векторов, а затем перейдем к рассмотрению того, как оно на самом деле реализовано — с использованием матриц.

Выяснение соотношения слов в предложении и уделение внимания . Изображение из 8

Первым этапом при вычислении собственного внимания является создание трех векторов из каждого из входных векторов кодировщика (в данном случае, вложение каждого слова). Таким образом, для каждого слова мы создаем вектор запроса, вектор ключа и вектор значения. Эти векторы создаются умножением вложения на три матрицы, которые мы обучали в процессе обучения.

Обратите внимание, что эти новые векторы меньше по размеру, чем вектор вложения.Их размерность равна 64, тогда как векторы ввода и вывода кодирования имеют размерность 512. Они не ДОЛЖНЫ быть меньше, это выбор архитектуры, чтобы вычисление многоголовочного внимания (в основном) было постоянным.

Изображение взято из 4

Умножение x1 на весовую матрицу WQ дает q1, вектор «запроса», связанный с этим словом. В итоге мы создаем «запрос», «ключ» и «значение» проекции каждого слова во входном предложении.

Что представляют собой векторы «запрос», «ключ» и «значение»?

Это абстракции, которые полезны для расчета и размышления о внимании.Как только вы начнете читать, как рассчитывается внимание ниже, вы узнаете почти все, что вам нужно знать о роли, которую играет каждый из этих векторов.

Второй этап в подсчете собственного внимания — это подсчет очков. Скажем, мы рассчитываем внимание к самому первому слову в этом примере «Мышление». Нам нужно сравнить каждое слово входного предложения с этим словом. Оценка определяет, сколько внимания нужно уделить другим частям входного предложения, когда мы кодируем слово в определенной позиции.

Оценка рассчитывается путем взятия точечного произведения вектора запроса с вектором ключа соответствующего набираемого нами слова. Таким образом, если мы обрабатываем самообслуживание для слова в позиции # 1, первым результатом будет скалярное произведение q1 и k1. Вторым результатом будет скалярное произведение q1 и k2.

Изображение из 4

Третий и четвертый этапы должны делить оценки на 8 (квадратный корень из измерения ключевых векторов, используемых в статье — 64. Это приводит к более стабильным градиентам.Здесь могут быть другие возможные значения, но это значение по умолчанию), затем передайте результат через операцию softmax. Softmax нормализует оценки, так что они все положительные и составляют в целом 1.

Изображение из 4

Эта оценка softmax определяет, сколько слов будет выражено в этой позиции. Очевидно, что слово в этой позиции будет иметь самый высокий балл softmax, но иногда полезно обратиться к другому слову, которое относится к текущему слову.

Пятый шаг должен умножить каждый вектор значений на показатель softmax (в подготовке к их суммированию).Интуиция здесь заключается в том, чтобы сохранить неизменными значения слов, на которых мы хотим сфокусироваться, и исключить ненужные слова (например, умножив их на крошечные числа, такие как 0,001).

Шестой этап состоит в суммировании векторов взвешенных значений. Это производит вывод слоя самообслуживания в этой позиции (для первого слова).

Изображение из 4

На этом завершается расчет самосовершенствования. Результирующий вектор — это тот, который мы можем отправить в нейронную сеть прямой связи.В реальной реализации, однако, этот расчет выполняется в матричной форме для более быстрой обработки. Итак, давайте посмотрим на это сейчас, когда мы увидели интуицию вычислений на уровне слов.

Многоголовое внимание

Трансформаторы в основном работают так. Есть несколько других деталей, которые заставляют их работать лучше. Например, вместо того, чтобы обращать внимание друг на друга только в одном измерении, трансформаторы используют концепцию многоголового внимания.

Идея заключается в том, что всякий раз, когда вы переводите слово, вы можете уделять различное внимание каждому слову в зависимости от типа вопроса, который вы задаете.Изображения ниже показывают, что это значит. Например, всякий раз, когда вы переводите «пнул» в предложении «Я пнул мяч», вы можете спросить «Кто пнул». В зависимости от ответа перевод слова на другой язык может измениться. Или задайте другие вопросы, такие как «Что сделал?» И т. Д.

.
Иллюстрированный трансформатор — Джей Аламмар — Визуализация машинного обучения по одной концепции за раз.

Обсуждения: Hacker News (65 баллов, 4 комментария), Reddit r / MachineLearning (29 баллов, 3 комментария)
Переводы: китайский (упрощенный), японский, корейский, русский
Watch: лекция MIT о глубоком изучении искусства, ссылающаяся на этот пост

В предыдущем посте мы рассмотрели Attention — вездесущий метод в современных моделях глубокого обучения. Внимание — это концепция, которая помогла повысить производительность приложений нейронного машинного перевода.В этом посте мы рассмотрим Transformer — модель, которая использует внимание для повышения скорости, с которой эти модели могут быть обучены. Transformers превосходит модель машинного перевода Google Neural в определенных задачах. Однако самое большое преимущество исходит от того, как Transformer подходит для распараллеливания. Фактически, Google Cloud рекомендует использовать Transformer в качестве эталонной модели для использования своего предложения Cloud TPU. Итак, давайте попробуем разбить модель на части и посмотрим, как она работает.

Трансформатор был предложен в статье «Внимание — это все, что вам нужно». Его реализация TensorFlow доступна как часть пакета Tensor2Tensor. Гарвардская группа НЛП создала руководство, аннотирующее статью с реализацией PyTorch. В этом посте мы попытаемся немного упростить вещи и представим концепции один за другим, чтобы, надеюсь, облегчить понимание людям без глубокого знания предмета.

A Высокоуровневый взгляд

Давайте начнем с рассмотрения модели как единого черного ящика.В приложении машинного перевода оно будет принимать предложение на одном языке и выводить его перевод на другом.

Открыв это блага Optimus Prime, мы видим компонент кодирования, компонент декодирования и связи между ними.

Компонент кодирования — это набор кодировщиков (на бумаге шесть из них расположены друг над другом — в числе шесть нет ничего волшебного, определенно можно поэкспериментировать с другими устройствами).Компонент декодирования представляет собой стек декодеров с одинаковым номером.

Все кодеры имеют одинаковую структуру (но они не имеют общего веса). Каждый разделен на два подслоя:

Сначала входы кодировщика проходят через слой самообслуживания — уровень, который помогает кодировщику взглянуть на другие слова во входном предложении при кодировании конкретного слова. Позже мы рассмотрим внимательность к себе.

Выходные данные уровня самообслуживания поступают в нейронную сеть с прямой связью.Точно такая же прямая сеть независимо применяется к каждой позиции.

Декодер имеет оба этих слоя, но между ними находится слой внимания, который помогает декодеру сфокусироваться на соответствующих частях входного предложения (аналогично тому, что внимание делает в моделях seq2seq).

Ввод тензоров в картину

Теперь, когда мы увидели основные компоненты модели, давайте начнем рассматривать различные векторы / тензоры и то, как они перемещаются между этими компонентами, чтобы превратить вход обученной модели в выход.

Как и в случае с приложениями NLP в целом, мы начинаем с преобразования каждого входного слова в вектор с использованием алгоритма встраивания.


Каждое слово встроено в вектор размером 512. Мы представим эти векторы с помощью этих простых прямоугольников.

Встраивание происходит только в самом нижнем кодере. Абстракция, которая является общей для всех кодировщиков, состоит в том, что они получают список векторов, каждый из которых имеет размер 512. — В нижнем кодировщике это будет вложение слов, но в других кодировщиках это будет вывод кодера, который находится непосредственно под ним. ,Размер этого списка — это гиперпараметр, который мы можем установить — в основном это будет длина самого длинного предложения в нашем обучающем наборе данных.

После встраивания слов в нашу входную последовательность каждое из них проходит через каждый из двух уровней кодера.


Здесь мы начинаем видеть одно ключевое свойство Transformer, которое заключается в том, что слово в каждой позиции течет через свой собственный путь в кодере. Существуют зависимости между этими путями в слое самообслуживания.Слой прямой связи, тем не менее, не имеет этих зависимостей, и, таким образом, различные пути могут выполняться параллельно, проходя через слой прямой связи.

Далее мы переключим пример на более короткое предложение и посмотрим, что происходит на каждом подуровне кодера.

Теперь мы кодируем!

Как мы уже упоминали, кодер получает список векторов в качестве входных данных. Он обрабатывает этот список, передавая эти векторы на уровень «самоуважения», затем в нейронную сеть с прямой связью, а затем отправляет выходные данные вверх следующему кодеру.


Слово в каждой позиции проходит через процесс самоуважения. Затем они проходят через нейронную сеть с прямой связью — точно такую ​​же сеть с каждым вектором, проходящим через нее отдельно.

Самообслуживание на высоком уровне

Не обманывайтесь тем, что я бросаю вокруг себя слово «самообслуживание», как будто это концепция, с которой все должны быть знакомы. Лично я никогда не сталкивался с этой концепцией, пока не прочитал статью «Внимание — все, что тебе нужно».Давайте рассмотрим, как это работает.

Скажем, следующее предложение является входным предложением, которое мы хотим перевести:

Животное не переходило улицу, потому что было слишком уставшим

Что означает «это» в этом предложении? Имеется в виду улица или животное? Это простой вопрос для человека, но не так просто для алгоритма.

Когда модель обрабатывает слово «оно», самообслуживание позволяет ей связать «это» с «животным».

Поскольку модель обрабатывает каждое слово (каждую позицию во входной последовательности), самообслуживание позволяет ей искать другие позиции во входной последовательности для подсказок, которые могут помочь улучшить кодировку для этого слова.

Если вы знакомы с RNN, подумайте о том, как поддержание скрытого состояния позволяет RNN включать свое представление предыдущих слов / векторов, которые он обработал, в текущий, который он обрабатывает. Самоуважение — это метод, который Transformer использует, чтобы превратить «понимание» других релевантных слов в то, которое мы сейчас обрабатываем.


Поскольку мы кодируем слово «оно» в кодировщике № 5 (верхний кодировщик в стеке), часть механизма внимания была сосредоточена на «животном», и запечатала часть его представления в кодировке «это».

Обязательно ознакомьтесь с записной книжкой Tensor2Tensor, в которую можно загрузить модель Transformer, и изучите ее с помощью этой интерактивной визуализации.

Уверенность в деталях

Давайте сначала посмотрим, как рассчитать внимание к себе с помощью векторов, а затем перейдем к тому, как это на самом деле реализовано — с использованием матриц.

Первый этап в вычислении собственного внимания состоит в том, чтобы создать три вектора из каждого из входных векторов кодера (в этом случае, вложение каждого слова).Таким образом, для каждого слова мы создаем вектор запроса, вектор ключа и вектор значения. Эти векторы создаются умножением вложения на три матрицы, которые мы обучали в процессе обучения.

Обратите внимание, что эти новые векторы меньше по размеру, чем вектор вложения. Их размерность равна 64, тогда как векторы ввода и вывода кодирования имеют размерность 512. Они не ДОЛЖНЫ быть меньше, это выбор архитектуры, чтобы вычисление многоголовочного внимания (в основном) было постоянным.


Умножение x1 на весовую матрицу WQ дает q1, вектор «запроса», связанный с этим словом. В итоге мы создаем проекцию «запрос», «ключ» и «значение» для каждого слова во входном предложении.

Что такое векторы «запрос», «ключ» и «значение»?

Это абстракции, которые полезны для расчета и размышлений о внимании. Как только вы приступите к readi

.

частей силового трансформатора

Что такое трансформатор?

Трансформатор — это электрическое устройство, которое передает электрическую энергию из одной цепи в другую посредством электромагнитной индукции (также называемой действием трансформатора). Он используется для повышения или понижения переменного напряжения.

Основные части трансформатора

Это основные компоненты трансформатора.

  1. Ламинированный сердечник
  2. обмоток
  3. Изоляционные материалы
  4. Трансформаторное масло
  5. РПН
  6. Консерватор масла
  7. Дыхательный аппарат
  8. Охлаждающие трубки
  9. Реле Бухгольца
  10. Взрывное отверстие

Из вышеперечисленного ламинированный сердечник из мягкого железа, обмотки и изоляционный материал являются основными частями и присутствуют во всех трансформаторах, тогда как остальные можно увидеть только в трансформаторах, имеющих мощность более 100 кВА.

Сердечник

Сердечник действует как опора для обмотки в трансформаторе. Это также обеспечивает низкий путь сопротивления магнитному потоку. Он сделан из ламинированного мягкого железного сердечника, чтобы уменьшить потери на вихревые токи и гистерезисные потери. Состав сердечника трансформатора зависит от таких факторов, как напряжение, ток и частота. Диаметр сердечника трансформатора прямо пропорционален потерям меди и обратно пропорционален потерям железа. Если диаметр сердечника уменьшается, вес стали в сердечнике уменьшается, что приводит к меньшим потерям в сердечнике трансформатора и увеличению потерь в меди.Когда диаметр сердечника увеличивается, наоборот.

Обмотка

Два комплекта обмоток выполнены над сердечником трансформатора и изолированы друг от друга. Обмотка состоит из нескольких витков медных проводников, связанных вместе и соединенных последовательно.

Намотка может быть классифицирована двумя различными способами:

  1. На основе входного и выходного питания
  2. На основании диапазона напряжений

В классификации входов / выходов обмотки подразделяются на следующие категории:

  1. Первичная обмотка — это обмотка, к которой подается входное напряжение.
  2. Вторичная обмотка — это обмотка, к которой подается выходное напряжение.

В рамках классификации диапазона напряжения обмотки подразделяются на следующие категории:

  1. Обмотка высокого напряжения — изготовлена ​​из медного провода. Число выполненных витков должно быть кратным числу витков в обмотке низкого напряжения. Используемый проводник будет тоньше, чем у обмотки низкого напряжения.
  2. Обмотка низкого напряжения — состоит из меньшего числа витков, чем обмотка высокого напряжения.Изготовлен из толстых медных проводников. Это связано с тем, что ток в обмотке низкого напряжения выше, чем в обмотке высокого напряжения.

Входное питание для трансформаторов может быть подано либо от обмотки низкого напряжения, либо от высокого напряжения, в зависимости от требований.

Изоляционные материалы

Изоляционная бумага и картон используются в трансформаторах для изоляции первичной и вторичной обмоток друг от друга и от сердечника трансформатора.

Трансформаторное масло — еще один изоляционный материал.Трансформаторное масло выполняет две важные функции: в дополнение к изолирующей функции оно также может охлаждать сердечник и катушку в сборе. Сердечник и обмотка трансформатора должны быть полностью погружены в масло. Обычно углеводородные минеральные масла используются в качестве трансформаторного масла. Загрязнение маслом является серьезной проблемой, поскольку загрязнение лишает масло его диэлектрических свойств и делает его бесполезным в качестве изолирующей среды.

Консерватор

Консерватор экономит трансформаторное масло.Это герметичный металлический цилиндрический барабан, установленный над трансформатором. Резервуар консерватора выпускается в атмосферу в верхней части, и нормальный уровень масла находится примерно в середине консерватора, чтобы позволить маслу расширяться и сжиматься при изменении температуры. Консерватор подключен к основному резервуару внутри трансформатора, который полностью заполнен трансформаторным маслом через трубопровод.

Передышка

Передышка контролирует уровень влажности в трансформаторе.Влага может возникнуть, когда колебания температуры вызывают расширение и сжатие изолирующего масла, что приводит к изменению давления внутри консерватора. Изменения давления уравновешиваются потоком атмосферного воздуха в и из консерватора, что позволяет влаге проникать в систему.

Если изоляционное масло встречает влагу, это может повлиять на изоляцию бумаги или даже привести к внутренним неисправностям. Следовательно, необходимо, чтобы воздух, поступающий в резервуар, не содержал влаги.

Передышка трансформатора представляет собой цилиндрический контейнер, заполненный силикагелем. Когда атмосферный воздух проходит через силикагель сапуна, влага воздуха поглощается кристаллами кремнезема. Передышка действует как воздушный фильтр для трансформатора и контролирует уровень влажности внутри трансформатора. Это связано с концом дыхательной трубы.

Tap Changer

Выходное напряжение трансформаторов зависит от его входного напряжения и нагрузки.В условиях нагрузки напряжение на выходной клемме уменьшается, тогда как в условиях без нагрузки выходное напряжение увеличивается. Чтобы сбалансировать изменения напряжения, используются устройства РПН. Устройство РПН может быть либо устройством РПН, либо устройством РПН. В переключателе отводов под нагрузкой ответвление можно менять, не изолируя трансформатор от источника питания. В устройстве РПН, это происходит после отключения трансформатора. Автоматические устройства РПН также доступны.

Охлаждающие трубки

Охлаждающие трубки используются для охлаждения масла трансформатора. Трансформаторное масло циркулирует через охлаждающие трубки. Циркуляция масла может быть естественной или принудительной. В естественной циркуляции, когда температура масла повышается, горячее масло естественным образом поднимается наверх, а холодное масло опускается вниз. Таким образом, масло естественным образом циркулирует по трубам. При принудительной циркуляции для циркуляции масла используется внешний насос.

Реле Бухгольца

Реле Бухгольца представляет собой контейнер защитного устройства, размещенный над соединительной трубой от основного резервуара к резервуару консерватора.Он используется для определения неисправностей, возникающих внутри трансформатора. Это простое реле, которое работает от газов, выделяющихся при разложении трансформаторного масла при внутренних неисправностях. Это помогает в обнаружении и защите трансформатора от внутренних неисправностей.

Взрывной клапан

Взрывной клапан используется для удаления кипящего масла в трансформаторе во время тяжелых внутренних неисправностей, чтобы избежать взрыва трансформатора. При тяжелых неисправностях масло выливается из вентиляционного отверстия.Уровень вентиляционного отверстия обычно поддерживается выше уровня резервуара зимнего сада.

Подробнее о трансформаторах

Я написал серию статей, чтобы помочь читателю понять силовые трансформаторы. Я перечислил два здесь, и если вы хотите найти больше, вы можете найти их, нажав на мой профиль автора в верхней части этой статьи.

Как работает трансформатор — Основные принципы работы трансформатора.

,

Написать с трансформатором

Это веб-приложение, созданное командой Hugging Face, является официальной демонстрацией 🤗 / трансформаторы возможности генерации текста в репозитории.

Контрольно-пропускные пункты

🐎 DistilGPT-2

Ученик теперь вездесущего GPT-2 не оправдывает ожиданий своего учителя. Полученный дистилляцией, DistilGPT-2 весит на 37% меньше и в два раза быстрее, чем его аналог OpenAI, сохраняя при этом ту же мощность генерации.Работает гладко на iPhone 7. Рассвет легких генеративных
трансформаторов?

🤓 АРХИВ-НЛП

Команда Hugging Face, построенная на модели OpenAI GPT-2, настроила небольшую версию на крошечный набор данных (60 МБ текста) документов Arxiv. Целевой предмет — Обработка естественного языка, что приводит к очень ориентированному на лингвистику / глубокому обучению поколению.

Модели

🦄 ГПТ-2

Всемогущий король генерации текста, GPT-2 выпускается в четырех доступных размерах, только три из которых были публично доступны.Опасаясь за его поддельные возможности генерации новостей, в настоящее время это наиболее синтаксически последовательная модель. Прямой преемник оригинального GPT, он усиливает уже созданный дуэт убийц перед тренировкой / тонкой настройкой. Из статьи: «Языковые модели — многозадачные ученики без присмотра» Алек Рэдфорд, Джеффри Ву, Ревон Чайлд, Дэвид Луан, Дарио Амодей и Илья Суцкевер.

💯 XLNet

Преодолевая однонаправленное ограничение и поддерживая алгоритм независимой маскировки, основанный на перестановке, XLNet улучшает современную модель авторегрессии TransformerXL.Используя двунаправленный контекст, сохраняя свой авторегрессионный подход, эта модель превосходит BERT по 20 задачам, сохраняя впечатляющую генеративную согласованность. Из статьи: XLNet: Обобщенная авторегрессионная предварительная подготовка для понимания языка. Авторы: Жилин Янг, Зиханг Дай, Имин Янг, Хайме Карбонелл, Руслан Салахутдинов и Куок В. Ле.

☠️ GPT

Эта оригинальная архитектура, выпущенная OpenAI, показала, что большой выигрыш по нескольким задачам НЛП может быть достигнут путем генеративной предварительной подготовки языковой модели. на немаркированном тексте, прежде чем настраивать его для последующей задачи.Из статьи: «Улучшение понимания языка с помощью генеративной предварительной подготовки» Алек Рэдфорд, Картик Нараймхан, Тим Салиманс и Илья Суцкевер.

Хотите внести свой вклад или предложить новую модель контрольного пункта? Открыть вопрос на 🤗 / трансформаторы 🔥.

«Это писать, что калькуляторы для исчисления».

,
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *