Внутреннее сопротивление — Википедия

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.
Введение
Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:
Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартёр потребляет ток порядка 250 А), а от батареи элементов стартёр вообще не станет вращаться, так как напряжение батареи при подключении к зажимам стартёра упадёт до долей вольта. Дело не в относительно небольшой электрической ёмкости батареек: запасённой в ней энергии и заряде в один ампер-час хватило бы для того, чтобы вращать стартёр в течение 14 секунд (при токе 250 А).
В соответствии с законом Ома в источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведённом примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.
Эквивалентная схема активного двухполюсника
Формально, в реальных гальванических элементах это внутреннее сопротивление можно идентифицировать физически. Это суммарное сопротивление плюсового стержня (углерода, стали), самого корпуса (цинка и никеля), а также самого электролита (соли) и поглотителя водорода (в солевых элементах). Все эти материалы, как и поверхности раздела между ними, имеют конечное сопротивление, отличное от нуля.
В иных источниках это омическое сопротивление обусловлено сопротивлением обмоток и контактов, которое включено последовательно с собственно внутренним сопротивлением источника и снижают характеристики источников напряжения.
Контактные разности потенциалов имеют иную природу возникновения напряжения и являются неомическими, то есть здесь затраты энергии идут на работу выхода носителей заряда.
Сопротивление и внутреннее сопротивление
Основной характеристикой абстрактного двухполюсника является его внутреннее сопротивление (или, иначе, импеданс[1]). Однако, описать двухполюсник одним только сопротивлением не всегда возможно. Дело в том, что термин сопротивление примени́м только для чисто пассивных элементов, то есть, не содержащих в себе источников энергии. Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, поскольку закон Ома в формулировке
Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников[3], то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».
Родственные термины
Если в какой-либо системе можно выделить вход и/или выход (пара электрических контактов), то часто употребляют следующие термины:
- Входное сопротивление, часто входной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является
- Выходное сопротивление, часто выходной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является выход системы.
Физические принципы
Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление, то есть резистор в нём присутствует обязательно), внутреннее сопротивление не обязательно сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности же, внутреннее сопротивление является внешним проявлением совокупности физических эффектов:
- Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление носит чисто активный характер (в низкочастотных цепях), и оно обусловлено физическими эффектами, которые не позволяют мощности, отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в химическом источнике мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
- В случае двухполюсника, содержащего внутри электрическую схему, внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).
Отсюда также следуют некоторые особенности внутреннего сопротивления:
- Внутреннее сопротивление невозможно убрать из двухполюсника[5]
- Внутреннее сопротивление не является стабильной величиной: оно может изменяться при изменении каких-либо внешних (нагрузка, ток) и внутренних (нагрев, истощение реагентов) условий.
Влияние внутреннего сопротивления на свойства двухполюсника
Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.
Если к источнику с ЭДС[6] генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:
I = E r + R , U R = E r + R R , P R = E 2 ( r + R ) 2 R . {\displaystyle I={\frac {E}{r+R}},\quad U_{R}={\frac {E}{r+R}}{R},\quad P_{R}={\frac {E^{2}}{(r+R)^{2}}}{R}.} |
Нахождение внутреннего сопротивления
Расчёт
Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).
Примечание: Строго говоря, любой реальный импеданс (в том числе и внутреннее сопротивление) обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства (например, при рассмотрении системы на высоких частотах), то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».
Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:
- ЭДС генератора напряжения U
- Внутреннее сопротивление r
В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:
U o u t 1 = U − r I 1 U o u t 2 = U − r I 2 {\displaystyle {\begin{matrix}U_{out1}=U-rI_{1}\\U_{out2}=U-rI_{2}\end{matrix}}} | (Напряжения) |
где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:
r = U o u t 1 − U o u t 2 I 2 − I 1 , U = U o u t 1 + I 1 U o u t 1 − U o u t 2 I 2 − I 1 = U o u t 1 + I 1 r {\displaystyle r={\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}},\quad U=U_{out1}+I_{1}{\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}}=U_{out1}+I_{1}r} | (ОбщийСлучай) |
Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (Напряжения) записывается следующим образом:
U o c = U − 0 0 = U − r I s c {\displaystyle {\begin{matrix}U_{oc}=U-0\\0=U-rI_{sc}\end{matrix}}} |
где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:
r = U o c I s c , U = U o c {\displaystyle r={\frac {U_{oc}}{I_{sc}}},\quad U=U_{oc}} | (ВнутрСопр) |
Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:
- Рассчитать выходное напряжение двухполюсника в режиме холостого хода
- Рассчитать выходной ток двухполюсника в режиме короткого замыкания
- На основании полученных значений найти r и U по формуле (ВнутрСопр).
Измерение
Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.
Иногда применяется следующий простой способ измерения, не требующий вычислений:
- Измеряется напряжение холостого хода
- В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.
После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.
Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.
Реактивное внутреннее сопротивление
Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.
Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:
- Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
- Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путём измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.
Измерение сопротивления петли фаза-нуль
Результат измерения сопротивления петли фаза-нуль в розетке бытовой электросетиЧастным случаем измерения внутреннего сопротивления является измерение сопротивления петли фаза-нуль в электроустановках. Двухполюсником в этом случае является пара проводников электроустановки: фазный и рабочий нулевой проводники или два фазных проводника. На фотографии показан результат такого измерения в розетке бытовой электросети напряжением 220 вольт:
- активная составляющая: 0,49 Ом
- реактивная составляющая: 0,09 Ом
- модуль полного сопротивления: 0,5 Ом
- ожидаемый ток короткого замыкания: 440 А
Прибор находит внутреннее сопротивление путём косвенного измерения методом падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию в приложении D ГОСТ Р 50571.16-99. Метод описывается приведённой выше формулой (ОбщийСлучай) при I1=0.
Результат измерения считается удовлетворительным, если ожидаемый ток короткого замыкания достаточно велик для надежного срабатывания аппарата, защищающего эту цепь от сверхтока.
Применение
В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.
Упрощение эквивалентных схем
Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.
Согласование источника и нагрузки
Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:
- Согласование по напряжению — получение в нагрузке максимального напряжения. Для этого сопротивление нагрузки должно быть как можно бо́льшим, по крайней мере, много больше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме холостого хода. При этом максимально достижимое в нагрузке напряжение равно ЭДС генератора напряжения E
- Согласование по току — получение в нагрузке максимального тока. Для этого сопротивление нагрузки должно быть как можно меньшим, по крайней мере, много меньше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме короткого замыкания. При этом максимально достижимый в нагрузке ток равен Imax=E/r. Применяется в электронных системах, когда носителем сигнала является ток. Например, при съеме сигнала с быстродействующего фотодиода целесообразно применять преобразователь ток-напряжение с минимальным входным сопротивлением. Малое входное сопротивление также решает проблему заужения полосы из-за паразитного RC-фильтра.
- Согласование по мощности — обеспечивает получение в нагрузке (что эквивалентно отбору от источника) максимально возможной мощности, равной Pmax=E²/(4r)[7]. В цепях постоянного тока: сопротивление нагрузки должно быть равно внутреннему сопротивлению r источника. В цепях переменного тока (в общем случае): импеданс нагрузки должен быть комплексно сопряженным внутреннему импедансу источника.
- Согласование по волновому сопротивлению — получение максимального коэффициента бегущей волны в линии передачи (в СВЧ технике и теории длинных линий). То же самое, что и согласование по мощности, но применительно к длинным линиям. Волновое сопротивление нагрузки должно быть равно внутреннему сопротивлению r. В СВЧ технике применяется практически всегда. Чаще всего термин согласованная нагрузка используется именно в этом смысле.
Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.
Понижение высоких напряжений
Иногда к источнику электропитания искусственно добавляют внешнее балластное сопротивление, соединённое последовательно с нагрузкой (оно суммируется с внутренним сопротивлением источника) для того, чтобы понизить получаемое от него напряжение, либо ограничить величину тока, отдаваемого в нагрузку. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) во многих случаях неприемлемо, так как ведёт к бесполезному выделению значительной мощности на нём[8]. Чтобы не расходовать энергию впустую и не решать проблему охлаждения дополнительного сопротивления, в системах переменного тока используют реактивные гасящие импедансы. На основе гасящего конденсатора может быть построен конденсаторный блок питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств. Индуктивный балласт широко применяется для ограничения тока в цепи газоразрядных люминесцентных ламп.
Минимизация шума
При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители, которые могут быть как низкоомные, например, на биполярных транзисторах, так и высокоомными на полевых транзисторах, однако спроектированы они таким образом, что наименьший коэффициент шума достигается лишь при полном согласовании выходного сопротивления источника сигнала и входного сопротивления самого усилителя. Например, если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор, который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.
Ограничения
Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем.
Примеры
Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r. Тривиальные случаи двухполюсников без источников оговорены особо.
Малое внутреннее сопротивление
- Нулевым внутренним сопротивлением обладает только идеальный генератор напряжения. Если также рассматривать двухполюсники без источников, то сверхпроводящее короткое соединение тоже имеет нулевое внутреннее сопротивление (до величины токов, вызывающих потерю сверхпроводимости). Генератор со сверхпроводящей обмоткой при не слишком больших частотах и небольших токах также имеет активное внутреннее сопротивление, весьма близкое к нулю (индуктивный импеданс при определенных условиях может быть тоже довольно невелик).
- Автомобильная свинцово-кислотная стартёрная аккумуляторная батарея имеет r около 0,01 Ом. Благодаря столь низкому внутреннему сопротивлению ток, отдаваемый батареей при запуске двигателя, достигает 250 ампер и более (для легковых автомобилей).
- Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от десятых долей Ом до 1 Ом и более (зависит от качества электропроводки). Высокое сопротивление соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. Повышается пожароопасность, поскольку на сопротивлении проводов выделяется значительная мощность. И наоборот, в хорошей сети с низким сопротивлением напряжение падает от допустимых нагрузок лишь незначительно. Ток при коротком замыкании в хорошей бытовой электросети достигает нескольких сотен ампер.
- Используя отрицательную обратную связь в электронных схемах, можно искусственно создавать источники, обладающие (при определённых условиях) очень низким внутренним сопротивлением. Такими свойствами обладают современные электронные стабилизаторы напряжения. Например, интегральный стабилизатор напряжения 7805 (выходное напряжение 5 В) имеет типичное выходное сопротивление менее 0,0009 Ома[9]. Однако это вовсе не означает, что такой стабилизатор может отдать в нагрузку ток до 5500 А или мощность до 13 кВт при правильном согласовании. Характеристики стабилизатора нормированы только для рабочего диапазона токов, то есть в данном примере до 1,5 А. При превышении этого значения сработает защита, и стабилизатор отключится (при других конструкциях защиты ток ограничивается, а не отключается полностью).
Большое внутреннее сопротивление
Обычно двухполюсники с большим внутренним сопротивлением — это различного рода датчики, источники сигналов и т. п. Типичная задача при работе с такими устройствами — снятие с них сигнала без потерь из-за неправильного согласования. Для достижения хорошего согласования по напряжению сигнал с такого двухполюсника должен сниматься устройством, имеющим ещё большее входное сопротивление (как правило, сигнал с высокоомного источника снимается при помощи буферного усилителя).
- Бесконечным внутренним сопротивлением обладает только идеальный источник тока. Если также рассматривать двухполюсники без источников, то простой разрыв цепи (два вывода, ничем не соединённые) тоже имеет бесконечное внутреннее сопротивление.
- Конденсаторные микрофоны, пьезоэлектрические и пироэлектрические датчики, а также все остальные «конденсаторо-подобные» устройства имеют реактивное внутреннее сопротивление, модуль которого может достигать[10] десятков и сотен мегаом. Поэтому такие источники требуют обязательного использования буферного усилителя для достижения согласования по напряжению. Конденсаторные микрофоны, как правило, уже содержат встроенный буферный усилитель, собранный на полевом транзисторе.
- Для измерения электрических потенциалов внутри живых клеток применяются электроды, представляющие собой стеклянный капилляр, заполненный проводящей жидкостью. Толщина такого проводника может быть порядка сотен ангстрем. Вследствие чрезвычайно малой толщины проводника такой «двухполюсник» (клетка с присоединёнными электродами) имеет внутреннее сопротивление порядка 100 мегаом. Высокое сопротивление и малое напряжение делают измерение напряжений внутри клетки непростой задачей.
Отрицательное внутреннее сопротивление
Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:
Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов.
См. также
Входной импеданс антенны
Ссылки
Литература
- Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
- Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5
- Tildon H. Glisson. Introduction to Circuit Analysis and Design. — Springer, 2011. — P. 768. — ISBN 9789048194421.
Примечания
- ↑ Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
- ↑ Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
- ↑ Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
- ↑ Реза Ф., Сили С.Современный анализ электрических цепей Энергия, M.-Л., 1964 г., 480 с. с черт.
- ↑ Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
- ↑ То же самое, что и напряжение
- ↑ 7.6. ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ В ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА. Проверено 6 апреля 2014.
- ↑ Тем не менее, гасящие резисторы широко применяются для ограничения пускового тока тяговых электродвигателей постоянного тока на электротранспорте.
- ↑ Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
- ↑ В рабочем диапазоне частот
Внутреннее сопротивление — Википедия

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.
Введение
Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:
Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартёр потребляет ток порядка 250 А), а от батареи элементов стартёр вообще не станет вращаться, так как напряжение батареи при подключении к зажимам стартёра упадёт до долей вольта. Дело не в относительно небольшой электрической ёмкости батареек: запасённой в ней энергии и заряде в один ампер-час хватило бы для того, чтобы вращать стартёр в течение 14 секунд (при токе 250 А).
В соответствии с законом Ома в источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведённом примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.
Эквивалентная схема активного двухполюсника
Реальные активные двухполюсники хорошо описываются математически, если их рассматривать как эквивалентную схему, состоящую из (см. рисунок) последовательно включённых генератора напряжения и сопротивления (в общем случае — импеданса). Генератор напряжения представляет собственно источник энергии, находящийся в этом двухполюснике. Идеальный генератор мог бы отдать в нагрузку сколь угодно большие мощность и ток. Однако сопротивление, включённое последовательно с генератором, ограничивает мощность, которую данный двухполюсник может отдать в нагрузку. Это эквивалентное сопротивление и называется внутренним сопротивлением. Оно является лишь параметром абстрактной модели двухполюсника, то есть физического «резистора» как электронного компонента внутри двухполюсников обычно нет.
Формально, в реальных гальванических элементах это внутреннее сопротивление можно идентифицировать физически. Это суммарное сопротивление плюсового стержня (углерода, стали), самого корпуса (цинка и никеля), а также самого электролита (соли) и поглотителя водорода (в солевых элементах). Все эти материалы, как и поверхности раздела между ними, имеют конечное сопротивление, отличное от нуля.
В иных источниках это омическое сопротивление обусловлено сопротивлением обмоток и контактов, которое включено последовательно с собственно внутренним сопротивлением источника и снижают характеристики источников напряжения.
Контактные разности потенциалов имеют иную природу возникновения напряжения и являются неомическими, то есть здесь затраты энергии идут на работу выхода носителей заряда.
Сопротивление и внутреннее сопротивление
Основной характеристикой абстрактного двухполюсника является его внутреннее сопротивление (или, иначе, импеданс[1]). Однако, описать двухполюсник одним только сопротивлением не всегда возможно. Дело в том, что термин сопротивление примени́м только для чисто пассивных элементов, то есть, не содержащих в себе источников энергии. Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, поскольку закон Ома в формулировке U=I·r не выполняется[2].
Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников[3], то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».
Родственные термины
Если в какой-либо системе можно выделить вход и/или выход (пара электрических контактов), то часто употребляют следующие термины:
- Входное сопротивление, часто входной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является вход системы [4]
- Выходное сопротивление, часто выходной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является выход системы.
Физические принципы
Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление, то есть резистор в нём присутствует обязательно), внутреннее сопротивление не обязательно сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности же, внутреннее сопротивление является внешним проявлением совокупности физических эффектов:
- Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление носит чисто активный характер (в низкочастотных цепях), и оно обусловлено физическими эффектами, которые не позволяют мощности, отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в химическом источнике мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
- В случае двухполюсника, содержащего внутри электрическую схему, внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).
Отсюда также следуют некоторые особенности внутреннего сопротивления:
- Внутреннее сопротивление невозможно убрать из двухполюсника[5]
- Внутреннее сопротивление не является стабильной величиной: оно может изменяться при изменении каких-либо внешних (нагрузка, ток) и внутренних (нагрев, истощение реагентов) условий.
Влияние внутреннего сопротивления на свойства двухполюсника
Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.
Если к источнику с ЭДС[6] генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:
I = E r + R , U R = E r + R R , P R = E 2 ( r + R ) 2 R . {\displaystyle I={\frac {E}{r+R}},\quad U_{R}={\frac {E}{r+R}}{R},\quad P_{R}={\frac {E^{2}}{(r+R)^{2}}}{R}.} |
Нахождение внутреннего сопротивления
Расчёт
Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).
Примечание: Строго говоря, любой реальный импеданс (в том числе и внутреннее сопротивление) обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства (например, при рассмотрении системы на высоких частотах), то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».
Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:
- ЭДС генератора напряжения U
- Внутреннее сопротивление r
В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:
U o u t 1 = U − r I 1 U o u t 2 = U − r I 2 {\displaystyle {\begin{matrix}U_{out1}=U-rI_{1}\\U_{out2}=U-rI_{2}\end{matrix}}} | (Напряжения) |
где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:
r = U o u t 1 − U o u t 2 I 2 − I 1 , U = U o u t 1 + I 1 U o u t 1 − U o u t 2 I 2 − I 1 = U o u t 1 + I 1 r {\displaystyle r={\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}},\quad U=U_{out1}+I_{1}{\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}}=U_{out1}+I_{1}r} | (ОбщийСлучай) |
Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (Напряжения) записывается следующим образом:
U o c = U − 0 0 = U − r I s c {\displaystyle {\begin{matrix}U_{oc}=U-0\\0=U-rI_{sc}\end{matrix}}} |
где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:
r = U o c I s c , U = U o c {\displaystyle r={\frac {U_{oc}}{I_{sc}}},\quad U=U_{oc}} | (ВнутрСопр) |
Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:
- Рассчитать выходное напряжение двухполюсника в режиме холостого хода
- Рассчитать выходной ток двухполюсника в режиме короткого замыкания
- На основании полученных значений найти r и U по формуле (ВнутрСопр).
Измерение
Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.
Иногда применяется следующий простой способ измерения, не требующий вычислений:
- Измеряется напряжение холостого хода
- В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.
После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.
Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.
Реактивное внутреннее сопротивление
Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.
Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:
- Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
- Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путём измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.
Измерение сопротивления петли фаза-нуль
Результат измерения сопротивления петли фаза-нуль в розетке бытовой электросетиЧастным случаем измерения внутреннего сопротивления является измерение сопротивления петли фаза-нуль в электроустановках. Двухполюсником в этом случае является пара проводников электроустановки: фазный и рабочий нулевой проводники или два фазных проводника. На фотографии показан результат такого измерения в розетке бытовой электросети напряжением 220 вольт:
- активная составляющая: 0,49 Ом
- реактивная составляющая: 0,09 Ом
- модуль полного сопротивления: 0,5 Ом
- ожидаемый ток короткого замыкания: 440 А
Прибор находит внутреннее сопротивление путём косвенного измерения методом падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию в приложении D ГОСТ Р 50571.16-99. Метод описывается приведённой выше формулой (ОбщийСлучай) при I1=0.
Результат измерения считается удовлетворительным, если ожидаемый ток короткого замыкания достаточно велик для надежного срабатывания аппарата, защищающего эту цепь от сверхтока.
Применение
В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.
Упрощение эквивалентных схем
Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.
Согласование источника и нагрузки
Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:
- Согласование по напряжению — получение в нагрузке максимального напряжения. Для этого сопротивление нагрузки должно быть как можно бо́льшим, по крайней мере, много больше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме холостого хода. При этом максимально достижимое в нагрузке напряжение равно ЭДС генератора напряжения E. Данный тип согласования применяется в электронных системах, когда носителем сигнала является напряжение, и его необходимо передать от источника к нагрузке с минимальными потерями.
- Согласование по току — получение в нагрузке максимального тока. Для этого сопротивление нагрузки должно быть как можно меньшим, по крайней мере, много меньше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме короткого замыкания. При этом максимально достижимый в нагрузке ток равен Imax=E/r. Применяется в электронных системах, когда носителем сигнала является ток. Например, при съеме сигнала с быстродействующего фотодиода целесообразно применять преобразователь ток-напряжение с минимальным входным сопротивлением. Малое входное сопротивление также решает проблему заужения полосы из-за паразитного RC-фильтра.
- Согласование по мощности — обеспечивает получение в нагрузке (что эквивалентно отбору от источника) максимально возможной мощности, равной Pmax=E²/(4r)[7]. В цепях постоянного тока: сопротивление нагрузки должно быть равно внутреннему сопротивлению r источника. В цепях переменного тока (в общем случае): импеданс нагрузки должен быть комплексно сопряженным внутреннему импедансу источника.
- Согласование по волновому сопротивлению — получение максимального коэффициента бегущей волны в линии передачи (в СВЧ технике и теории длинных линий). То же самое, что и согласование по мощности, но применительно к длинным линиям. Волновое сопротивление нагрузки должно быть равно внутреннему сопротивлению r. В СВЧ технике применяется практически всегда. Чаще всего термин согласованная нагрузка используется именно в этом смысле.
Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.
Понижение высоких напряжений
Иногда к источнику электропитания искусственно добавляют внешнее балластное сопротивление, соединённое последовательно с нагрузкой (оно суммируется с внутренним сопротивлением источника) для того, чтобы понизить получаемое от него напряжение, либо ограничить величину тока, отдаваемого в нагрузку. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) во многих случаях неприемлемо, так как ведёт к бесполезному выделению значительной мощности на нём[8]. Чтобы не расходовать энергию впустую и не решать проблему охлаждения дополнительного сопротивления, в системах переменного тока используют реактивные гасящие импедансы. На основе гасящего конденсатора может быть построен конденсаторный блок питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств. Индуктивный балласт широко применяется для ограничения тока в цепи газоразрядных люминесцентных ламп.
Минимизация шума
При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители, которые могут быть как низкоомные, например, на биполярных транзисторах, так и высокоомными на полевых транзисторах, однако спроектированы они таким образом, что наименьший коэффициент шума достигается лишь при полном согласовании выходного сопротивления источника сигнала и входного сопротивления самого усилителя. Например, если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор, который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.
Ограничения
Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем.
Примеры
Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r. Тривиальные случаи двухполюсников без источников оговорены особо.
Малое внутреннее сопротивление
- Нулевым внутренним сопротивлением обладает только идеальный генератор напряжения. Если также рассматривать двухполюсники без источников, то сверхпроводящее короткое соединение тоже имеет нулевое внутреннее сопротивление (до величины токов, вызывающих потерю сверхпроводимости). Генератор со сверхпроводящей обмоткой при не слишком больших частотах и небольших токах также имеет активное внутреннее сопротивление, весьма близкое к нулю (индуктивный импеданс при определенных условиях может быть тоже довольно невелик).
- Автомобильная свинцово-кислотная стартёрная аккумуляторная батарея имеет r около 0,01 Ом. Благодаря столь низкому внутреннему сопротивлению ток, отдаваемый батареей при запуске двигателя, достигает 250 ампер и более (для легковых автомобилей).
- Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от десятых долей Ом до 1 Ом и более (зависит от качества электропроводки). Высокое сопротивление соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. Повышается пожароопасность, поскольку на сопротивлении проводов выделяется значительная мощность. И наоборот, в хорошей сети с низким сопротивлением напряжение падает от допустимых нагрузок лишь незначительно. Ток при коротком замыкании в хорошей бытовой электросети достигает нескольких сотен ампер.
- Используя отрицательную обратную связь в электронных схемах, можно искусственно создавать источники, обладающие (при определённых условиях) очень низким внутренним сопротивлением. Такими свойствами обладают современные электронные стабилизаторы напряжения. Например, интегральный стабилизатор напряжения 7805 (выходное напряжение 5 В) имеет типичное выходное сопротивление менее 0,0009 Ома[9]. Однако это вовсе не означает, что такой стабилизатор может отдать в нагрузку ток до 5500 А или мощность до 13 кВт при правильном согласовании. Характеристики стабилизатора нормированы только для рабочего диапазона токов, то есть в данном примере до 1,5 А. При превышении этого значения сработает защита, и стабилизатор отключится (при других конструкциях защиты ток ограничивается, а не отключается полностью).
Большое внутреннее сопротивление
Обычно двухполюсники с большим внутренним сопротивлением — это различного рода датчики, источники сигналов и т. п. Типичная задача при работе с такими устройствами — снятие с них сигнала без потерь из-за неправильного согласования. Для достижения хорошего согласования по напряжению сигнал с такого двухполюсника должен сниматься устройством, имеющим ещё большее входное сопротивление (как правило, сигнал с высокоомного источника снимается при помощи буферного усилителя).
- Бесконечным внутренним сопротивлением обладает только идеальный источник тока. Если также рассматривать двухполюсники без источников, то простой разрыв цепи (два вывода, ничем не соединённые) тоже имеет бесконечное внутреннее сопротивление.
- Конденсаторные микрофоны, пьезоэлектрические и пироэлектрические датчики, а также все остальные «конденсаторо-подобные» устройства имеют реактивное внутреннее сопротивление, модуль которого может достигать[10] десятков и сотен мегаом. Поэтому такие источники требуют обязательного использования буферного усилителя для достижения согласования по напряжению. Конденсаторные микрофоны, как правило, уже содержат встроенный буферный усилитель, собранный на полевом транзисторе.
- Для измерения электрических потенциалов внутри живых клеток применяются электроды, представляющие собой стеклянный капилляр, заполненный проводящей жидкостью. Толщина такого проводника может быть порядка сотен ангстрем. Вследствие чрезвычайно малой толщины проводника такой «двухполюсник» (клетка с присоединёнными электродами) имеет внутреннее сопротивление порядка 100 мегаом. Высокое сопротивление и малое напряжение делают измерение напряжений внутри клетки непростой задачей.
Отрицательное внутреннее сопротивление
Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:
Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов.
См. также
Входной импеданс антенны
Ссылки
Литература
- Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
- Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5
- Tildon H. Glisson. Introduction to Circuit Analysis and Design. — Springer, 2011. — P. 768. — ISBN 9789048194421.
Примечания
- ↑ Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
- ↑ Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
- ↑ Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
- ↑ Реза Ф., Сили С.Современный анализ электрических цепей Энергия, M.-Л., 1964 г., 480 с. с черт.
- ↑ Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
- ↑ То же самое, что и напряжение
- ↑ 7.6. ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ В ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА. Проверено 6 апреля 2014.
- ↑ Тем не менее, гасящие резисторы широко применяются для ограничения пускового тока тяговых электродвигателей постоянного тока на электротранспорте.
- ↑ Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
- ↑ В рабочем диапазоне частот
Внутреннее сопротивление — Википедия. Что такое Внутреннее сопротивление

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.
Введение
Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:
Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартёр потребляет ток порядка 250 А), а от батареи элементов стартёр вообще не станет вращаться, так как напряжение батареи при подключении к зажимам стартёра упадёт до долей вольта. Дело не в относительно небольшой электрической ёмкости батареек: запасённой в ней энергии и заряде в один ампер-час хватило бы для того, чтобы вращать стартёр в течение 14 секунд (при токе 250 А).
В соответствии с законом Ома в источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведённом примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.
Эквивалентная схема активного двухполюсника
Реальные активные двухполюсники хорошо описываются математически, если их рассматривать как эквивалентную схему, состоящую из (см. рисунок) последовательно включённых генератора напряжения и сопротивления (в общем случае — импеданса). Генератор напряжения представляет собственно источник энергии, находящийся в этом двухполюснике. Идеальный генератор мог бы отдать в нагрузку сколь угодно большие мощность и ток. Однако сопротивление, включённое последовательно с генератором, ограничивает мощность, которую данный двухполюсник может отдать в нагрузку. Это эквивалентное сопротивление и называется внутренним сопротивлением. Оно является лишь параметром абстрактной модели двухполюсника, то есть физического «резистора» как электронного компонента внутри двухполюсников обычно нет.
Формально, в реальных гальванических элементах это внутреннее сопротивление можно идентифицировать физически. Это суммарное сопротивление плюсового стержня (углерода, стали), самого корпуса (цинка и никеля), а также самого электролита (соли) и поглотителя водорода (в солевых элементах). Все эти материалы, как и поверхности раздела между ними, имеют конечное сопротивление, отличное от нуля.
В иных источниках это омическое сопротивление обусловлено сопротивлением обмоток и контактов, которое включено последовательно с собственно внутренним сопротивлением источника и снижают характеристики источников напряжения.
Контактные разности потенциалов имеют иную природу возникновения напряжения и являются неомическими, то есть здесь затраты энергии идут на работу выхода носителей заряда.
Сопротивление и внутреннее сопротивление
Основной характеристикой абстрактного двухполюсника является его внутреннее сопротивление (или, иначе, импеданс[1]). Однако, описать двухполюсник одним только сопротивлением не всегда возможно. Дело в том, что термин сопротивление примени́м только для чисто пассивных элементов, то есть, не содержащих в себе источников энергии. Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, поскольку закон Ома в формулировке U=I·r не выполняется[2].
Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников[3], то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».
Родственные термины
Если в какой-либо системе можно выделить вход и/или выход (пара электрических контактов), то часто употребляют следующие термины:
- Входное сопротивление, часто входной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является вход системы [4]
- Выходное сопротивление, часто выходной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является выход системы.
Физические принципы
Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление, то есть резистор в нём присутствует обязательно), внутреннее сопротивление не обязательно сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности же, внутреннее сопротивление является внешним проявлением совокупности физических эффектов:
- Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление носит чисто активный характер (в низкочастотных цепях), и оно обусловлено физическими эффектами, которые не позволяют мощности, отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в химическом источнике мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
- В случае двухполюсника, содержащего внутри электрическую схему, внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).
Отсюда также следуют некоторые особенности внутреннего сопротивления:
- Внутреннее сопротивление невозможно убрать из двухполюсника[5]
- Внутреннее сопротивление не является стабильной величиной: оно может изменяться при изменении каких-либо внешних (нагрузка, ток) и внутренних (нагрев, истощение реагентов) условий.
Влияние внутреннего сопротивления на свойства двухполюсника
Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.
Если к источнику с ЭДС[6] генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:
I = E r + R , U R = E r + R R , P R = E 2 ( r + R ) 2 R . {\displaystyle I={\frac {E}{r+R}},\quad U_{R}={\frac {E}{r+R}}{R},\quad P_{R}={\frac {E^{2}}{(r+R)^{2}}}{R}.} |
Нахождение внутреннего сопротивления
Расчёт
Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).
Примечание: Строго говоря, любой реальный импеданс (в том числе и внутреннее сопротивление) обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства (например, при рассмотрении системы на высоких частотах), то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».
Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:
- ЭДС генератора напряжения U
- Внутреннее сопротивление r
В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:
U o u t 1 = U − r I 1 U o u t 2 = U − r I 2 {\displaystyle {\begin{matrix}U_{out1}=U-rI_{1}\\U_{out2}=U-rI_{2}\end{matrix}}} | (Напряжения) |
где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:
r = U o u t 1 − U o u t 2 I 2 − I 1 , U = U o u t 1 + I 1 U o u t 1 − U o u t 2 I 2 − I 1 = U o u t 1 + I 1 r {\displaystyle r={\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}},\quad U=U_{out1}+I_{1}{\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}}=U_{out1}+I_{1}r} | (ОбщийСлучай) |
Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (Напряжения) записывается следующим образом:
U o c = U − 0 0 = U − r I s c {\displaystyle {\begin{matrix}U_{oc}=U-0\\0=U-rI_{sc}\end{matrix}}} |
где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:
r = U o c I s c , U = U o c {\displaystyle r={\frac {U_{oc}}{I_{sc}}},\quad U=U_{oc}} | (ВнутрСопр) |
Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:
- Рассчитать выходное напряжение двухполюсника в режиме холостого хода
- Рассчитать выходной ток двухполюсника в режиме короткого замыкания
- На основании полученных значений найти r и U по формуле (ВнутрСопр).
Измерение
Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.
Иногда применяется следующий простой способ измерения, не требующий вычислений:
- Измеряется напряжение холостого хода
- В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.
После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.
Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.
Реактивное внутреннее сопротивление
Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.
Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:
- Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
- Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путём измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.
Измерение сопротивления петли фаза-нуль
Результат измерения сопротивления петли фаза-нуль в розетке бытовой электросетиЧастным случаем измерения внутреннего сопротивления является измерение сопротивления петли фаза-нуль в электроустановках. Двухполюсником в этом случае является пара проводников электроустановки: фазный и рабочий нулевой проводники или два фазных проводника. На фотографии показан результат такого измерения в розетке бытовой электросети напряжением 220 вольт:
- активная составляющая: 0,49 Ом
- реактивная составляющая: 0,09 Ом
- модуль полного сопротивления: 0,5 Ом
- ожидаемый ток короткого замыкания: 440 А
Прибор находит внутреннее сопротивление путём косвенного измерения методом падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию в приложении D ГОСТ Р 50571.16-99. Метод описывается приведённой выше формулой (ОбщийСлучай) при I1=0.
Результат измерения считается удовлетворительным, если ожидаемый ток короткого замыкания достаточно велик для надежного срабатывания аппарата, защищающего эту цепь от сверхтока.
Применение
В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.
Упрощение эквивалентных схем
Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.
Согласование источника и нагрузки
Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:
- Согласование по напряжению — получение в нагрузке максимального напряжения. Для этого сопротивление нагрузки должно быть как можно бо́льшим, по крайней мере, много больше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме холостого хода. При этом максимально достижимое в нагрузке напряжение равно ЭДС генератора напряжения E. Данный тип согласования применяется в электронных системах, когда носителем сигнала является напряжение, и его необходимо передать от источника к нагрузке с минимальными потерями.
- Согласование по току — получение в нагрузке максимального тока. Для этого сопротивление нагрузки должно быть как можно меньшим, по крайней мере, много меньше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме короткого замыкания. При этом максимально достижимый в нагрузке ток равен Imax=E/r. Применяется в электронных системах, когда носителем сигнала является ток. Например, при съеме сигнала с быстродействующего фотодиода целесообразно применять преобразователь ток-напряжение с минимальным входным сопротивлением. Малое входное сопротивление также решает проблему заужения полосы из-за паразитного RC-фильтра.
- Согласование по мощности — обеспечивает получение в нагрузке (что эквивалентно отбору от источника) максимально возможной мощности, равной Pmax=E²/(4r)[7]. В цепях постоянного тока: сопротивление нагрузки должно быть равно внутреннему сопротивлению r источника. В цепях переменного тока (в общем случае): импеданс нагрузки должен быть комплексно сопряженным внутреннему импедансу источника.
- Согласование по волновому сопротивлению — получение максимального коэффициента бегущей волны в линии передачи (в СВЧ технике и теории длинных линий). То же самое, что и согласование по мощности, но применительно к длинным линиям. Волновое сопротивление нагрузки должно быть равно внутреннему сопротивлению r. В СВЧ технике применяется практически всегда. Чаще всего термин согласованная нагрузка используется именно в этом смысле.
Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.
Понижение высоких напряжений
Иногда к источнику электропитания искусственно добавляют внешнее балластное сопротивление, соединённое последовательно с нагрузкой (оно суммируется с внутренним сопротивлением источника) для того, чтобы понизить получаемое от него напряжение, либо ограничить величину тока, отдаваемого в нагрузку. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) во многих случаях неприемлемо, так как ведёт к бесполезному выделению значительной мощности на нём[8]. Чтобы не расходовать энергию впустую и не решать проблему охлаждения дополнительного сопротивления, в системах переменного тока используют реактивные гасящие импедансы. На основе гасящего конденсатора может быть построен конденсаторный блок питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств. Индуктивный балласт широко применяется для ограничения тока в цепи газоразрядных люминесцентных ламп.
Минимизация шума
При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители, которые могут быть как низкоомные, например, на биполярных транзисторах, так и высокоомными на полевых транзисторах, однако спроектированы они таким образом, что наименьший коэффициент шума достигается лишь при полном согласовании выходного сопротивления источника сигнала и входного сопротивления самого усилителя. Например, если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор, который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.
Ограничения
Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем.
Примеры
Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r. Тривиальные случаи двухполюсников без источников оговорены особо.
Малое внутреннее сопротивление
- Нулевым внутренним сопротивлением обладает только идеальный генератор напряжения. Если также рассматривать двухполюсники без источников, то сверхпроводящее короткое соединение тоже имеет нулевое внутреннее сопротивление (до величины токов, вызывающих потерю сверхпроводимости). Генератор со сверхпроводящей обмоткой при не слишком больших частотах и небольших токах также имеет активное внутреннее сопротивление, весьма близкое к нулю (индуктивный импеданс при определенных условиях может быть тоже довольно невелик).
- Автомобильная свинцово-кислотная стартёрная аккумуляторная батарея имеет r около 0,01 Ом. Благодаря столь низкому внутреннему сопротивлению ток, отдаваемый батареей при запуске двигателя, достигает 250 ампер и более (для легковых автомобилей).
- Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от десятых долей Ом до 1 Ом и более (зависит от качества электропроводки). Высокое сопротивление соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. Повышается пожароопасность, поскольку на сопротивлении проводов выделяется значительная мощность. И наоборот, в хорошей сети с низким сопротивлением напряжение падает от допустимых нагрузок лишь незначительно. Ток при коротком замыкании в хорошей бытовой электросети достигает нескольких сотен ампер.
- Используя отрицательную обратную связь в электронных схемах, можно искусственно создавать источники, обладающие (при определённых условиях) очень низким внутренним сопротивлением. Такими свойствами обладают современные электронные стабилизаторы напряжения. Например, интегральный стабилизатор напряжения 7805 (выходное напряжение 5 В) имеет типичное выходное сопротивление менее 0,0009 Ома[9]. Однако это вовсе не означает, что такой стабилизатор может отдать в нагрузку ток до 5500 А или мощность до 13 кВт при правильном согласовании. Характеристики стабилизатора нормированы только для рабочего диапазона токов, то есть в данном примере до 1,5 А. При превышении этого значения сработает защита, и стабилизатор отключится (при других конструкциях защиты ток ограничивается, а не отключается полностью).
Большое внутреннее сопротивление
Обычно двухполюсники с большим внутренним сопротивлением — это различного рода датчики, источники сигналов и т. п. Типичная задача при работе с такими устройствами — снятие с них сигнала без потерь из-за неправильного согласования. Для достижения хорошего согласования по напряжению сигнал с такого двухполюсника должен сниматься устройством, имеющим ещё большее входное сопротивление (как правило, сигнал с высокоомного источника снимается при помощи буферного усилителя).
- Бесконечным внутренним сопротивлением обладает только идеальный источник тока. Если также рассматривать двухполюсники без источников, то простой разрыв цепи (два вывода, ничем не соединённые) тоже имеет бесконечное внутреннее сопротивление.
- Конденсаторные микрофоны, пьезоэлектрические и пироэлектрические датчики, а также все остальные «конденсаторо-подобные» устройства имеют реактивное внутреннее сопротивление, модуль которого может достигать[10] десятков и сотен мегаом. Поэтому такие источники требуют обязательного использования буферного усилителя для достижения согласования по напряжению. Конденсаторные микрофоны, как правило, уже содержат встроенный буферный усилитель, собранный на полевом транзисторе.
- Для измерения электрических потенциалов внутри живых клеток применяются электроды, представляющие собой стеклянный капилляр, заполненный проводящей жидкостью. Толщина такого проводника может быть порядка сотен ангстрем. Вследствие чрезвычайно малой толщины проводника такой «двухполюсник» (клетка с присоединёнными электродами) имеет внутреннее сопротивление порядка 100 мегаом. Высокое сопротивление и малое напряжение делают измерение напряжений внутри клетки непростой задачей.
Отрицательное внутреннее сопротивление
Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:
Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов.
См. также
Входной импеданс антенны
Ссылки
Литература
- Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
- Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5
- Tildon H. Glisson. Introduction to Circuit Analysis and Design. — Springer, 2011. — P. 768. — ISBN 9789048194421.
Примечания
- ↑ Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
- ↑ Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
- ↑ Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
- ↑ Реза Ф., Сили С.Современный анализ электрических цепей Энергия, M.-Л., 1964 г., 480 с. с черт.
- ↑ Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
- ↑ То же самое, что и напряжение
- ↑ 7.6. ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ В ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА. Проверено 6 апреля 2014.
- ↑ Тем не менее, гасящие резисторы широко применяются для ограничения пускового тока тяговых электродвигателей постоянного тока на электротранспорте.
- ↑ Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
- ↑ В рабочем диапазоне частот
Внутреннее сопротивление — Википедия. Что такое Внутреннее сопротивление

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.
Введение
Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:
Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартёр потребляет ток порядка 250 А), а от батареи элементов стартёр вообще не станет вращаться, так как напряжение батареи при подключении к зажимам стартёра упадёт до долей вольта. Дело не в относительно небольшой электрической ёмкости батареек: запасённой в ней энергии и заряде в один ампер-час хватило бы для того, чтобы вращать стартёр в течение 14 секунд (при токе 250 А).
В соответствии с законом Ома в источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведённом примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.
Эквивалентная схема активного двухполюсника
Реальные активные двухполюсники хорошо описываются математически, если их рассматривать как эквивалентную схему, состоящую из (см. рисунок) последовательно включённых генератора напряжения и сопротивления (в общем случае — импеданса). Генератор напряжения представляет собственно источник энергии, находящийся в этом двухполюснике. Идеальный генератор мог бы отдать в нагрузку сколь угодно большие мощность и ток. Однако сопротивление, включённое последовательно с генератором, ограничивает мощность, которую данный двухполюсник может отдать в нагрузку. Это эквивалентное сопротивление и называется внутренним сопротивлением. Оно является лишь параметром абстрактной модели двухполюсника, то есть физического «резистора» как электронного компонента внутри двухполюсников обычно нет.
Формально, в реальных гальванических элементах это внутреннее сопротивление можно идентифицировать физически. Это суммарное сопротивление плюсового стержня (углерода, стали), самого корпуса (цинка и никеля), а также самого электролита (соли) и поглотителя водорода (в солевых элементах). Все эти материалы, как и поверхности раздела между ними, имеют конечное сопротивление, отличное от нуля.
В иных источниках это омическое сопротивление обусловлено сопротивлением обмоток и контактов, которое включено последовательно с собственно внутренним сопротивлением источника и снижают характеристики источников напряжения.
Контактные разности потенциалов имеют иную природу возникновения напряжения и являются неомическими, то есть здесь затраты энергии идут на работу выхода носителей заряда.
Сопротивление и внутреннее сопротивление
Основной характеристикой абстрактного двухполюсника является его внутреннее сопротивление (или, иначе, импеданс[1]). Однако, описать двухполюсник одним только сопротивлением не всегда возможно. Дело в том, что термин сопротивление примени́м только для чисто пассивных элементов, то есть, не содержащих в себе источников энергии. Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, поскольку закон Ома в формулировке U=I·r не выполняется[2].
Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников[3], то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».
Родственные термины
Если в какой-либо системе можно выделить вход и/или выход (пара электрических контактов), то часто употребляют следующие термины:
- Входное сопротивление, часто входной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является вход системы [4]
- Выходное сопротивление, часто выходной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является выход системы.
Физические принципы
Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление, то есть резистор в нём присутствует обязательно), внутреннее сопротивление не обязательно сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности же, внутреннее сопротивление является внешним проявлением совокупности физических эффектов:
- Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление носит чисто активный характер (в низкочастотных цепях), и оно обусловлено физическими эффектами, которые не позволяют мощности, отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в химическом источнике мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
- В случае двухполюсника, содержащего внутри электрическую схему, внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).
Отсюда также следуют некоторые особенности внутреннего сопротивления:
- Внутреннее сопротивление невозможно убрать из двухполюсника[5]
- Внутреннее сопротивление не является стабильной величиной: оно может изменяться при изменении каких-либо внешних (нагрузка, ток) и внутренних (нагрев, истощение реагентов) условий.
Влияние внутреннего сопротивления на свойства двухполюсника
Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.
Если к источнику с ЭДС[6] генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:
I = E r + R , U R = E r + R R , P R = E 2 ( r + R ) 2 R . {\displaystyle I={\frac {E}{r+R}},\quad U_{R}={\frac {E}{r+R}}{R},\quad P_{R}={\frac {E^{2}}{(r+R)^{2}}}{R}.} |
Нахождение внутреннего сопротивления
Расчёт
Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).
Примечание: Строго говоря, любой реальный импеданс (в том числе и внутреннее сопротивление) обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства (например, при рассмотрении системы на высоких частотах), то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».
Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:
- ЭДС генератора напряжения U
- Внутреннее сопротивление r
В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:
U o u t 1 = U − r I 1 U o u t 2 = U − r I 2 {\displaystyle {\begin{matrix}U_{out1}=U-rI_{1}\\U_{out2}=U-rI_{2}\end{matrix}}} | (Напряжения) |
где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:
r = U o u t 1 − U o u t 2 I 2 − I 1 , U = U o u t 1 + I 1 U o u t 1 − U o u t 2 I 2 − I 1 = U o u t 1 + I 1 r {\displaystyle r={\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}},\quad U=U_{out1}+I_{1}{\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}}=U_{out1}+I_{1}r} | (ОбщийСлучай) |
Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (Напряжения) записывается следующим образом:
U o c = U − 0 0 = U − r I s c {\displaystyle {\begin{matrix}U_{oc}=U-0\\0=U-rI_{sc}\end{matrix}}} |
где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:
r = U o c I s c , U = U o c {\displaystyle r={\frac {U_{oc}}{I_{sc}}},\quad U=U_{oc}} | (ВнутрСопр) |
Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:
- Рассчитать выходное напряжение двухполюсника в режиме холостого хода
- Рассчитать выходной ток двухполюсника в режиме короткого замыкания
- На основании полученных значений найти r и U по формуле (ВнутрСопр).
Измерение
Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.
Иногда применяется следующий простой способ измерения, не требующий вычислений:
- Измеряется напряжение холостого хода
- В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.
После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.
Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.
Реактивное внутреннее сопротивление
Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.
Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:
- Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
- Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путём измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.
Измерение сопротивления петли фаза-нуль
Результат измерения сопротивления петли фаза-нуль в розетке бытовой электросетиЧастным случаем измерения внутреннего сопротивления является измерение сопротивления петли фаза-нуль в электроустановках. Двухполюсником в этом случае является пара проводников электроустановки: фазный и рабочий нулевой проводники или два фазных проводника. На фотографии показан результат такого измерения в розетке бытовой электросети напряжением 220 вольт:
- активная составляющая: 0,49 Ом
- реактивная составляющая: 0,09 Ом
- модуль полного сопротивления: 0,5 Ом
- ожидаемый ток короткого замыкания: 440 А
Прибор находит внутреннее сопротивление путём косвенного измерения методом падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию в приложении D ГОСТ Р 50571.16-99. Метод описывается приведённой выше формулой (ОбщийСлучай) при I1=0.
Результат измерения считается удовлетворительным, если ожидаемый ток короткого замыкания достаточно велик для надежного срабатывания аппарата, защищающего эту цепь от сверхтока.
Применение
В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.
Упрощение эквивалентных схем
Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.
Согласование источника и нагрузки
Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:
- Согласование по напряжению — получение в нагрузке максимального напряжения. Для этого сопротивление нагрузки должно быть как можно бо́льшим, по крайней мере, много больше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме холостого хода. При этом максимально достижимое в нагрузке напряжение равно ЭДС генератора напряжения E. Данный тип согласования применяется в электронных системах, когда носителем сигнала является напряжение, и его необходимо передать от источника к нагрузке с минимальными потерями.
- Согласование по току — получение в нагрузке максимального тока. Для этого сопротивление нагрузки должно быть как можно меньшим, по крайней мере, много меньше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме короткого замыкания. При этом максимально достижимый в нагрузке ток равен Imax=E/r. Применяется в электронных системах, когда носителем сигнала является ток. Например, при съеме сигнала с быстродействующего фотодиода целесообразно применять преобразователь ток-напряжение с минимальным входным сопротивлением. Малое входное сопротивление также решает проблему заужения полосы из-за паразитного RC-фильтра.
- Согласование по мощности — обеспечивает получение в нагрузке (что эквивалентно отбору от источника) максимально возможной мощности, равной Pmax=E²/(4r)[7]. В цепях постоянного тока: сопротивление нагрузки должно быть равно внутреннему сопротивлению r источника. В цепях переменного тока (в общем случае): импеданс нагрузки должен быть комплексно сопряженным внутреннему импедансу источника.
- Согласование по волновому сопротивлению — получение максимального коэффициента бегущей волны в линии передачи (в СВЧ технике и теории длинных линий). То же самое, что и согласование по мощности, но применительно к длинным линиям. Волновое сопротивление нагрузки должно быть равно внутреннему сопротивлению r. В СВЧ технике применяется практически всегда. Чаще всего термин согласованная нагрузка используется именно в этом смысле.
Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.
Понижение высоких напряжений
Иногда к источнику электропитания искусственно добавляют внешнее балластное сопротивление, соединённое последовательно с нагрузкой (оно суммируется с внутренним сопротивлением источника) для того, чтобы понизить получаемое от него напряжение, либо ограничить величину тока, отдаваемого в нагрузку. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) во многих случаях неприемлемо, так как ведёт к бесполезному выделению значительной мощности на нём[8]. Чтобы не расходовать энергию впустую и не решать проблему охлаждения дополнительного сопротивления, в системах переменного тока используют реактивные гасящие импедансы. На основе гасящего конденсатора может быть построен конденсаторный блок питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств. Индуктивный балласт широко применяется для ограничения тока в цепи газоразрядных люминесцентных ламп.
Минимизация шума
При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители, которые могут быть как низкоомные, например, на биполярных транзисторах, так и высокоомными на полевых транзисторах, однако спроектированы они таким образом, что наименьший коэффициент шума достигается лишь при полном согласовании выходного сопротивления источника сигнала и входного сопротивления самого усилителя. Например, если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор, который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.
Ограничения
Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем.
Примеры
Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r. Тривиальные случаи двухполюсников без источников оговорены особо.
Малое внутреннее сопротивление
- Нулевым внутренним сопротивлением обладает только идеальный генератор напряжения. Если также рассматривать двухполюсники без источников, то сверхпроводящее короткое соединение тоже имеет нулевое внутреннее сопротивление (до величины токов, вызывающих потерю сверхпроводимости). Генератор со сверхпроводящей обмоткой при не слишком больших частотах и небольших токах также имеет активное внутреннее сопротивление, весьма близкое к нулю (индуктивный импеданс при определенных условиях может быть тоже довольно невелик).
- Автомобильная свинцово-кислотная стартёрная аккумуляторная батарея имеет r около 0,01 Ом. Благодаря столь низкому внутреннему сопротивлению ток, отдаваемый батареей при запуске двигателя, достигает 250 ампер и более (для легковых автомобилей).
- Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от десятых долей Ом до 1 Ом и более (зависит от качества электропроводки). Высокое сопротивление соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. Повышается пожароопасность, поскольку на сопротивлении проводов выделяется значительная мощность. И наоборот, в хорошей сети с низким сопротивлением напряжение падает от допустимых нагрузок лишь незначительно. Ток при коротком замыкании в хорошей бытовой электросети достигает нескольких сотен ампер.
- Используя отрицательную обратную связь в электронных схемах, можно искусственно создавать источники, обладающие (при определённых условиях) очень низким внутренним сопротивлением. Такими свойствами обладают современные электронные стабилизаторы напряжения. Например, интегральный стабилизатор напряжения 7805 (выходное напряжение 5 В) имеет типичное выходное сопротивление менее 0,0009 Ома[9]. Однако это вовсе не означает, что такой стабилизатор может отдать в нагрузку ток до 5500 А или мощность до 13 кВт при правильном согласовании. Характеристики стабилизатора нормированы только для рабочего диапазона токов, то есть в данном примере до 1,5 А. При превышении этого значения сработает защита, и стабилизатор отключится (при других конструкциях защиты ток ограничивается, а не отключается полностью).
Большое внутреннее сопротивление
Обычно двухполюсники с большим внутренним сопротивлением — это различного рода датчики, источники сигналов и т. п. Типичная задача при работе с такими устройствами — снятие с них сигнала без потерь из-за неправильного согласования. Для достижения хорошего согласования по напряжению сигнал с такого двухполюсника должен сниматься устройством, имеющим ещё большее входное сопротивление (как правило, сигнал с высокоомного источника снимается при помощи буферного усилителя).
- Бесконечным внутренним сопротивлением обладает только идеальный источник тока. Если также рассматривать двухполюсники без источников, то простой разрыв цепи (два вывода, ничем не соединённые) тоже имеет бесконечное внутреннее сопротивление.
- Конденсаторные микрофоны, пьезоэлектрические и пироэлектрические датчики, а также все остальные «конденсаторо-подобные» устройства имеют реактивное внутреннее сопротивление, модуль которого может достигать[10] десятков и сотен мегаом. Поэтому такие источники требуют обязательного использования буферного усилителя для достижения согласования по напряжению. Конденсаторные микрофоны, как правило, уже содержат встроенный буферный усилитель, собранный на полевом транзисторе.
- Для измерения электрических потенциалов внутри живых клеток применяются электроды, представляющие собой стеклянный капилляр, заполненный проводящей жидкостью. Толщина такого проводника может быть порядка сотен ангстрем. Вследствие чрезвычайно малой толщины проводника такой «двухполюсник» (клетка с присоединёнными электродами) имеет внутреннее сопротивление порядка 100 мегаом. Высокое сопротивление и малое напряжение делают измерение напряжений внутри клетки непростой задачей.
Отрицательное внутреннее сопротивление
Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:
Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов.
См. также
Входной импеданс антенны
Ссылки
Литература
- Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
- Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5
- Tildon H. Glisson. Introduction to Circuit Analysis and Design. — Springer, 2011. — P. 768. — ISBN 9789048194421.
Примечания
- ↑ Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
- ↑ Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
- ↑ Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
- ↑ Реза Ф., Сили С.Современный анализ электрических цепей Энергия, M.-Л., 1964 г., 480 с. с черт.
- ↑ Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
- ↑ То же самое, что и напряжение
- ↑ 7.6. ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ В ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА. Проверено 6 апреля 2014.
- ↑ Тем не менее, гасящие резисторы широко применяются для ограничения пускового тока тяговых электродвигателей постоянного тока на электротранспорте.
- ↑ Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
- ↑ В рабочем диапазоне частот
Внутреннее сопротивление — Википедия. Что такое Внутреннее сопротивление

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.
Введение
Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:
Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартёр потребляет ток порядка 250 А), а от батареи элементов стартёр вообще не станет вращаться, так как напряжение батареи при подключении к зажимам стартёра упадёт до долей вольта. Дело не в относительно небольшой электрической ёмкости батареек: запасённой в ней энергии и заряде в один ампер-час хватило бы для того, чтобы вращать стартёр в течение 14 секунд (при токе 250 А).
В соответствии с законом Ома в источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведённом примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.
Эквивалентная схема активного двухполюсника
Реальные активные двухполюсники хорошо описываются математически, если их рассматривать как эквивалентную схему, состоящую из (см. рисунок) последовательно включённых генератора напряжения и сопротивления (в общем случае — импеданса). Генератор напряжения представляет собственно источник энергии, находящийся в этом двухполюснике. Идеальный генератор мог бы отдать в нагрузку сколь угодно большие мощность и ток. Однако сопротивление, включённое последовательно с генератором, ограничивает мощность, которую данный двухполюсник может отдать в нагрузку. Это эквивалентное сопротивление и называется внутренним сопротивлением. Оно является лишь параметром абстрактной модели двухполюсника, то есть физического «резистора» как электронного компонента внутри двухполюсников обычно нет.
Формально, в реальных гальванических элементах это внутреннее сопротивление можно идентифицировать физически. Это суммарное сопротивление плюсового стержня (углерода, стали), самого корпуса (цинка и никеля), а также самого электролита (соли) и поглотителя водорода (в солевых элементах). Все эти материалы, как и поверхности раздела между ними, имеют конечное сопротивление, отличное от нуля.
В иных источниках это омическое сопротивление обусловлено сопротивлением обмоток и контактов, которое включено последовательно с собственно внутренним сопротивлением источника и снижают характеристики источников напряжения.
Контактные разности потенциалов имеют иную природу возникновения напряжения и являются неомическими, то есть здесь затраты энергии идут на работу выхода носителей заряда.
Сопротивление и внутреннее сопротивление
Основной характеристикой абстрактного двухполюсника является его внутреннее сопротивление (или, иначе, импеданс[1]). Однако, описать двухполюсник одним только сопротивлением не всегда возможно. Дело в том, что термин сопротивление примени́м только для чисто пассивных элементов, то есть, не содержащих в себе источников энергии. Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, поскольку закон Ома в формулировке U=I·r не выполняется[2].
Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников[3], то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».
Родственные термины
Если в какой-либо системе можно выделить вход и/или выход (пара электрических контактов), то часто употребляют следующие термины:
- Входное сопротивление, часто входной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является вход системы [4]
- Выходное сопротивление, часто выходной импеданс, — внутреннее сопротивление, проявляемое этой парой контактов как двухполюсника, которым является выход системы.
Физические принципы
Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление, то есть резистор в нём присутствует обязательно), внутреннее сопротивление не обязательно сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности же, внутреннее сопротивление является внешним проявлением совокупности физических эффектов:
- Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление носит чисто активный характер (в низкочастотных цепях), и оно обусловлено физическими эффектами, которые не позволяют мощности, отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в химическом источнике мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
- В случае двухполюсника, содержащего внутри электрическую схему, внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).
Отсюда также следуют некоторые особенности внутреннего сопротивления:
- Внутреннее сопротивление невозможно убрать из двухполюсника[5]
- Внутреннее сопротивление не является стабильной величиной: оно может изменяться при изменении каких-либо внешних (нагрузка, ток) и внутренних (нагрев, истощение реагентов) условий.
Влияние внутреннего сопротивления на свойства двухполюсника
Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.
Если к источнику с ЭДС[6] генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:
I = E r + R , U R = E r + R R , P R = E 2 ( r + R ) 2 R . {\displaystyle I={\frac {E}{r+R}},\quad U_{R}={\frac {E}{r+R}}{R},\quad P_{R}={\frac {E^{2}}{(r+R)^{2}}}{R}.} |
Нахождение внутреннего сопротивления
Расчёт
Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).
Примечание: Строго говоря, любой реальный импеданс (в том числе и внутреннее сопротивление) обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства (например, при рассмотрении системы на высоких частотах), то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».
Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:
- ЭДС генератора напряжения U
- Внутреннее сопротивление r
В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:
U o u t 1 = U − r I 1 U o u t 2 = U − r I 2 {\displaystyle {\begin{matrix}U_{out1}=U-rI_{1}\\U_{out2}=U-rI_{2}\end{matrix}}} | (Напряжения) |
где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:
r = U o u t 1 − U o u t 2 I 2 − I 1 , U = U o u t 1 + I 1 U o u t 1 − U o u t 2 I 2 − I 1 = U o u t 1 + I 1 r {\displaystyle r={\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}},\quad U=U_{out1}+I_{1}{\frac {U_{out1}-U_{out2}}{I_{2}-I_{1}}}=U_{out1}+I_{1}r} | (ОбщийСлучай) |
Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (Напряжения) записывается следующим образом:
U o c = U − 0 0 = U − r I s c {\displaystyle {\begin{matrix}U_{oc}=U-0\\0=U-rI_{sc}\end{matrix}}} |
где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:
r = U o c I s c , U = U o c {\displaystyle r={\frac {U_{oc}}{I_{sc}}},\quad U=U_{oc}} | (ВнутрСопр) |
Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:
- Рассчитать выходное напряжение двухполюсника в режиме холостого хода
- Рассчитать выходной ток двухполюсника в режиме короткого замыкания
- На основании полученных значений найти r и U по формуле (ВнутрСопр).
Измерение
Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.
Иногда применяется следующий простой способ измерения, не требующий вычислений:
- Измеряется напряжение холостого хода
- В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.
После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.
Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.
Реактивное внутреннее сопротивление
Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.
Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:
- Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
- Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путём измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.
Измерение сопротивления петли фаза-нуль
Результат измерения сопротивления петли фаза-нуль в розетке бытовой электросетиЧастным случаем измерения внутреннего сопротивления является измерение сопротивления петли фаза-нуль в электроустановках. Двухполюсником в этом случае является пара проводников электроустановки: фазный и рабочий нулевой проводники или два фазных проводника. На фотографии показан результат такого измерения в розетке бытовой электросети напряжением 220 вольт:
- активная составляющая: 0,49 Ом
- реактивная составляющая: 0,09 Ом
- модуль полного сопротивления: 0,5 Ом
- ожидаемый ток короткого замыкания: 440 А
Прибор находит внутреннее сопротивление путём косвенного измерения методом падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию в приложении D ГОСТ Р 50571.16-99. Метод описывается приведённой выше формулой (ОбщийСлучай) при I1=0.
Результат измерения считается удовлетворительным, если ожидаемый ток короткого замыкания достаточно велик для надежного срабатывания аппарата, защищающего эту цепь от сверхтока.
Применение
В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.
Упрощение эквивалентных схем
Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.
Согласование источника и нагрузки
Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:
- Согласование по напряжению — получение в нагрузке максимального напряжения. Для этого сопротивление нагрузки должно быть как можно бо́льшим, по крайней мере, много больше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме холостого хода. При этом максимально достижимое в нагрузке напряжение равно ЭДС генератора напряжения E. Данный тип согласования применяется в электронных системах, когда носителем сигнала является напряжение, и его необходимо передать от источника к нагрузке с минимальными потерями.
- Согласование по току — получение в нагрузке максимального тока. Для этого сопротивление нагрузки должно быть как можно меньшим, по крайней мере, много меньше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме короткого замыкания. При этом максимально достижимый в нагрузке ток равен Imax=E/r. Применяется в электронных системах, когда носителем сигнала является ток. Например, при съеме сигнала с быстродействующего фотодиода целесообразно применять преобразователь ток-напряжение с минимальным входным сопротивлением. Малое входное сопротивление также решает проблему заужения полосы из-за паразитного RC-фильтра.
- Согласование по мощности — обеспечивает получение в нагрузке (что эквивалентно отбору от источника) максимально возможной мощности, равной Pmax=E²/(4r)[7]. В цепях постоянного тока: сопротивление нагрузки должно быть равно внутреннему сопротивлению r источника. В цепях переменного тока (в общем случае): импеданс нагрузки должен быть комплексно сопряженным внутреннему импедансу источника.
- Согласование по волновому сопротивлению — получение максимального коэффициента бегущей волны в линии передачи (в СВЧ технике и теории длинных линий). То же самое, что и согласование по мощности, но применительно к длинным линиям. Волновое сопротивление нагрузки должно быть равно внутреннему сопротивлению r. В СВЧ технике применяется практически всегда. Чаще всего термин согласованная нагрузка используется именно в этом смысле.
Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.
Понижение высоких напряжений
Иногда к источнику электропитания искусственно добавляют внешнее балластное сопротивление, соединённое последовательно с нагрузкой (оно суммируется с внутренним сопротивлением источника) для того, чтобы понизить получаемое от него напряжение, либо ограничить величину тока, отдаваемого в нагрузку. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) во многих случаях неприемлемо, так как ведёт к бесполезному выделению значительной мощности на нём[8]. Чтобы не расходовать энергию впустую и не решать проблему охлаждения дополнительного сопротивления, в системах переменного тока используют реактивные гасящие импедансы. На основе гасящего конденсатора может быть построен конденсаторный блок питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств. Индуктивный балласт широко применяется для ограничения тока в цепи газоразрядных люминесцентных ламп.
Минимизация шума
При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители, которые могут быть как низкоомные, например, на биполярных транзисторах, так и высокоомными на полевых транзисторах, однако спроектированы они таким образом, что наименьший коэффициент шума достигается лишь при полном согласовании выходного сопротивления источника сигнала и входного сопротивления самого усилителя. Например, если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор, который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.
Ограничения
Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем.
Примеры
Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r. Тривиальные случаи двухполюсников без источников оговорены особо.
Малое внутреннее сопротивление
- Нулевым внутренним сопротивлением обладает только идеальный генератор напряжения. Если также рассматривать двухполюсники без источников, то сверхпроводящее короткое соединение тоже имеет нулевое внутреннее сопротивление (до величины токов, вызывающих потерю сверхпроводимости). Генератор со сверхпроводящей обмоткой при не слишком больших частотах и небольших токах также имеет активное внутреннее сопротивление, весьма близкое к нулю (индуктивный импеданс при определенных условиях может быть тоже довольно невелик).
- Автомобильная свинцово-кислотная стартёрная аккумуляторная батарея имеет r около 0,01 Ом. Благодаря столь низкому внутреннему сопротивлению ток, отдаваемый батареей при запуске двигателя, достигает 250 ампер и более (для легковых автомобилей).
- Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от десятых долей Ом до 1 Ом и более (зависит от качества электропроводки). Высокое сопротивление соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. Повышается пожароопасность, поскольку на сопротивлении проводов выделяется значительная мощность. И наоборот, в хорошей сети с низким сопротивлением напряжение падает от допустимых нагрузок лишь незначительно. Ток при коротком замыкании в хорошей бытовой электросети достигает нескольких сотен ампер.
- Используя отрицательную обратную связь в электронных схемах, можно искусственно создавать источники, обладающие (при определённых условиях) очень низким внутренним сопротивлением. Такими свойствами обладают современные электронные стабилизаторы напряжения. Например, интегральный стабилизатор напряжения 7805 (выходное напряжение 5 В) имеет типичное выходное сопротивление менее 0,0009 Ома[9]. Однако это вовсе не означает, что такой стабилизатор может отдать в нагрузку ток до 5500 А или мощность до 13 кВт при правильном согласовании. Характеристики стабилизатора нормированы только для рабочего диапазона токов, то есть в данном примере до 1,5 А. При превышении этого значения сработает защита, и стабилизатор отключится (при других конструкциях защиты ток ограничивается, а не отключается полностью).
Большое внутреннее сопротивление
Обычно двухполюсники с большим внутренним сопротивлением — это различного рода датчики, источники сигналов и т. п. Типичная задача при работе с такими устройствами — снятие с них сигнала без потерь из-за неправильного согласования. Для достижения хорошего согласования по напряжению сигнал с такого двухполюсника должен сниматься устройством, имеющим ещё большее входное сопротивление (как правило, сигнал с высокоомного источника снимается при помощи буферного усилителя).
- Бесконечным внутренним сопротивлением обладает только идеальный источник тока. Если также рассматривать двухполюсники без источников, то простой разрыв цепи (два вывода, ничем не соединённые) тоже имеет бесконечное внутреннее сопротивление.
- Конденсаторные микрофоны, пьезоэлектрические и пироэлектрические датчики, а также все остальные «конденсаторо-подобные» устройства имеют реактивное внутреннее сопротивление, модуль которого может достигать[10] десятков и сотен мегаом. Поэтому такие источники требуют обязательного использования буферного усилителя для достижения согласования по напряжению. Конденсаторные микрофоны, как правило, уже содержат встроенный буферный усилитель, собранный на полевом транзисторе.
- Для измерения электрических потенциалов внутри живых клеток применяются электроды, представляющие собой стеклянный капилляр, заполненный проводящей жидкостью. Толщина такого проводника может быть порядка сотен ангстрем. Вследствие чрезвычайно малой толщины проводника такой «двухполюсник» (клетка с присоединёнными электродами) имеет внутреннее сопротивление порядка 100 мегаом. Высокое сопротивление и малое напряжение делают измерение напряжений внутри клетки непростой задачей.
Отрицательное внутреннее сопротивление
Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:
Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов.
См. также
Входной импеданс антенны
Ссылки
Литература
- Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
- Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5
- Tildon H. Glisson. Introduction to Circuit Analysis and Design. — Springer, 2011. — P. 768. — ISBN 9789048194421.
Примечания
- ↑ Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
- ↑ Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
- ↑ Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
- ↑ Реза Ф., Сили С.Современный анализ электрических цепей Энергия, M.-Л., 1964 г., 480 с. с черт.
- ↑ Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
- ↑ То же самое, что и напряжение
- ↑ 7.6. ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ В ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА. Проверено 6 апреля 2014.
- ↑ Тем не менее, гасящие резисторы широко применяются для ограничения пускового тока тяговых электродвигателей постоянного тока на электротранспорте.
- ↑ Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
- ↑ В рабочем диапазоне частот
разница с выражением для участка контура, определение, формула
Среди известных широкой общественности физических формул лидирует E=mc2. По популярности с ней может соперничать только U=IR. Это простое выражение имеет фундаментальное значение для электротехники и описывает математически соотношение между параметрами участка электрической цепи. Менее известен закон Ома для полной цепи, который рассматривает нагрузку неотделимо от источника напряжения.
Основные понятия
Электрический ток течёт, когда замкнутый контур позволяет электронам перемещаться от высокого потенциала к более низкому в цепи. Иначе говоря, ток требует источника электронов, обладающего энергией для приведения их в движение, а также точки их возвращения отрицательных зарядов, для которой характерен их дефицит. Как физическое явление ток в цепи характеризуется тремя фундаментальными величинами:
- напряжение;
- сила тока;
- сопротивление проводника, по которому движутся электроны.
Сила и напряжение
Сила тока (I, измеряется в Амперах) есть объём электронов (заряд), перемещающихся через место в цепи за единицу времени. Иными словами, измерение I — это определение количества электронов, находящихся в движении. Важно понимать, что термин относится только к движению: статические заряды, например, на клеммах неподсоединённой батареи, не имеют измеряемого значения I. Ток, который протекает в одном направлении, называется постоянным (DC), а периодически изменяющий направление — переменным (AC).
Вольт — единица измерения, применяемая для электрической разницы потенциалов, самого потенциала и электродвижущей силы. Термин напряжение (U) относится к электрической разности потенциалов между точками. Любые статические заряды имеют значение в Вольтах, а величина их разности определяется как U.
Напряжение можно проиллюстрировать таким явлением, как давление, или как разность потенциальной энергии предметов под воздействием гравитации. Для того чтобы создать этот дисбаланс, нужно затратить предварительно энергию, которая и будет реализована в движении при соответствующих обстоятельствах. Например, в падении груза с высоты реализуется работа по его подъёму, в гальванических батареях разность потенциалов на клеммах образуется за счёт преобразования химической энергии, в генераторах — в результате воздействия электромагнитного поля.
Сопротивление проводников
Независимо от того, насколько хорош обычный проводник, он никогда не будет пропускать сквозь себя электроны без какого-либо сопротивления их движению. Можно рассматривать сопротивление как аналог механического трения, хотя это сравнение не будет совершенным. Когда ток протекает через проводник, некоторая разность потенциалов преобразуется в тепло, поэтому всегда будет падение напряжения на резисторе. Электрические обогреватели, фены и другие подобные устройства предназначены исключительно для рассеивания электрической энергии в виде тепла.
Упрощённо сопротивление (обозначается как R) является мерой того, насколько поток электронов тормозится в цепи. Оно измеряется в Омах. Проводимость резистора или другого элемента определяется двумя свойствами:
- геометрией;
- материалом.
Форма имеет важнейшее значение, это очевидно на гидравлической аналогии: протолкнуть воду через длинную и узкую трубу гораздо тяжелее, чем через короткую и широкую. Материалы играют определяющую роль. Например, электроны могут свободно перемещаться в медном проводе, но не способны протекать вообще через такие изоляторы, как каучук, независимо от их формы. Кроме геометрии и материала, существуют и другие факторы, влияющие на проводимость.
Закон для участка цепи
Существует фундаментальная связь между напряжением, током и проводимостью. Это знаменитое уравнение называется законом Ома, и его можно отобразить тремя эквивалентными способами:
Выраженный в словах он звучит так: ток, протекающий через проводник между двумя контактами, прямо пропорционален напряжению на этих контактах. Первые два выражения фиксируют константу пропорциональности между током и напряжением. Последнее можно рассматривать как определение для единичного резистора — элемента, позволяющего протекать единице тока под единичным напряжением.
Приведённые математические соотношения — основа для электротехники и электроники. Закон был назван в честь немецкого физика Георга Симона Ома, который в монографии, опубликованной в 1827 г., описал измерения приложенного напряжения и тока с помощью простых электрических цепей, состоящих из проводов различной длины.
Исследователь объяснил свои экспериментальные результаты несколько сложнее, чем отражено в приведённых уравнениях, известных в современной физике как неполный закон Ома. Для того чтобы сформулировать закон Ома для полной электрической цепи, необходимо оперировать понятиями внутреннего сопротивления источника тока и электродвижущей силы.
Электродвижущая сила
Перемещение электронов в любом источнике создаётся с помощью сторонних сил. Их природа может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов. В генераторах тока они появляются как результат движения проводников в магнитном поле. Источник тока в электрической схеме играет ту же роль, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.
Под воздействием внешних сил заряды двигаются внутри источника тока против сил электростатического поля. Это позволяет поддерживать постоянный ток в замкнутом контуре до тех пор, пока работают внешние силы. Физическая величина, равная отношению затраченной энергии сторонних сил на перемещение заряда, называется электродвижущей силой источника тока. Она может быть представлена формулой ℰ = A/q. В этом выражении:
- ℰ — ЭДС в вольтах;
- A — работа в джоулях;
- q — заряд в кулонах.
По аналогии с замкнутой гидравлической системой и насосом, электрические заряды протекают непрерывно по всему контуру, и привести их в движение могут только внешние силы. Это означает, что работу по перемещению заряда любым источником можно рассматривать как ЭДС и измерять в вольтах. Вывод о модели цепи с источником, в которой протекает ток, как о замкнутом контуре крайне важен для понимания закона Ома для полного участка цепи.
Внешнее и внутреннее сопротивление
Все батареи и генераторы обладают внутренним сопротивлением: электроды и электролиты неабсолютные проводники, как и провода обмоток электрических машин. Оно может варьироваться от тысячных долей ома до нескольких ом. Этот физический параметр является ключевым в законе Ома для всей цепи. В качестве математических моделей для рассмотрения и иллюстрации электрических процессов различают:
Идеальный источник тока (ИИТ). Генерирует электрический ток, не зависящий от изменений напряжения. Внутреннее сопротивление ИИТ бесконечно, напряжение полностью определяется подключённой схемой. Ни один физический источник тока не может работать в условиях разрыва цепи, поэтому ИИТ возможен только в качестве абстрактной модели.
- Идеальный источник напряжения (ИИН). Представляет собой устройство, поддерживающее постоянное выходное напряжение независимо от тока, протекающего по контуру. Обладает нулевым внутренним сопротивлением. ИИН удобен для моделирования практических источников, которые можно представить как ИНН с подключённым резистором.
Внутренне сопротивление источника электрической энергии является фактором обеспечения максимальной мощности для подключённой к нему нагрузки. Наиболее эффективный перенос энергии происходит, когда внешнее сопротивление значительно превышает внутреннее у источника.
Например, свинцово-кислотные аккумуляторы автомобиля, благодаря низкому внутреннему сопротивлению, способны создавать относительно высокие токи при сравнительно низком напряжении. Однако, с другой стороны, высоковольтные источники должны иметь высокое внутренне сопротивление, чтобы ограничить количество тока, протекающего в результате случайного короткого замыкания.
Полный закон
Выражение U=IR описывает явления во фрагменте электрической цепи, через которую протекает ток. В этом уравнении не принимается во внимание наличие источников. Если исправить такое упрощение, то можно получить формулу закона Ома для полной цепи: ℰ =I (R+r).
В этом уравнении предусмотрено наличие в контуре источника питания электродвижущей силы ℰ c внутренним сопротивлением r. Поскольку ЭДС — практически величина, зависящая от внешних сил, то физический смысл имеет расчёт силы тока для полной цепи при помощи выражения: I=ℰ/(R+r).
Таким образом, полный постулат Ома гласит о зависимости силы тока в замкнутом контуре от внутреннего сопротивления его источника, то есть учитывает сопротивление электролита и электродов для гальванических элементов и проводимость обмоток генераторов. Основное практическое применение — расчёт силы тока в линейных электрических цепях DC, определение мощности и импеданса любых элементов цепи.
Расчет внутреннего сопротивления источника тока
Есть несколько вариантов замера внутреннего сопротивления.
- Зная сопротивление нагрузки и просадку напряжения при ней.
- Замерять ток и напряжение при двух разных сопротивлениях.
В двух примерах расчёта ниже внутреннее сопротивление будет определятся у двух последовательно соединённых батареек по 1.5 вольта
Теория о внутреннем сопротивлении.
Первый вариант:
- Измерьте сопротивление нагрузки и ЭДС.
- Измерьте напряжение при подключенной нагрузке.
- Рассчитаем падение напряжения на источнике тока. U2=E-U1 U2=3.145-3.015=0.13 Вольта проседает на внутреннем сопротивлении.
- Теперь ЭДС разделим на падение напряжения. разница напряжений = E/U2 разница напряжений = 3.145/0.13 =24.19.
- Зная что ЭДС распределяется по участкам цепи в зависимости от сопротивлений на них делаем вывод, что r в 24.19 раза меньше чем R нагрузки. r = R/разница напряжений r=24.3/24.19 ≈ 1 Om Внутреннее сопротивление.
Второй вариант:
Для расчета нам понадобится сделать два замера тока и напряжения при разных нагрузках.
И рассчитать внутреннее сопротивление по формуле:
r = U1-U2 / I1-I2
- r — Внутреннее сопротивление
- U — Напряжение
- I — ток
Вот пример:
Замеряем ток и напряжение при разном сопротивлении.
Внутреннее сопротивление — когда оно незначительно, а когда нет
Батарейки потеют, если заставлять их работать слишком много
Батарея преобразует химическую энергию в электрическую. Это преобразование вызвано химическими реакциями внутри батареи. Чем быстрее батарея вырабатывает энергию, тем быстрее должны происходить химические реакции.
Если вы заставляете аккумулятор работать интенсивно, то часть химической энергии преобразуется в электрическую, а часть — в тепловую.Тепловая энергия нагревает аккумулятор.
Чем сложнее вы заставляете аккумулятор работать, тем больше химической энергии преобразуется в тепловую и тем сильнее нагревается аккумулятор.


Как заставить аккумулятор работать
Если вы заставляете батарею работать с одним компонентом, который очень быстро требует энергии, например очень яркой лампочкой, или с множеством компонентов, включенных параллельно, тогда батарея должна работать очень тяжело, потому что она должна очень быстро подавать энергию.
Помните, что батареи являются (или стараются быть) поставщиками постоянного напряжения. Сила тока зависит от выполняемой ими работы. Когда они много работают, они дают большой ток. Но, как мы увидим, если они выдают очень большой ток, то напряжение упадет.
Меньше электроэнергии означает меньшее напряжение
Вы можете думать о напряжении как об энергии на заряд.
Если доступно меньше электроэнергии (потому что часть химической энергии превращается в тепло в батарее), то напряжение на клеммах батареи упадет.Это означает, что напряжение в цепи также падает.
Практический результат состоит в том, что если вы сделаете аккумуляторную батарею большим током к
- заставляет его запускать что-то, что требует большого тока, например очень яркую (с низким сопротивлением) лампочку
- , позволяющий запускать множество вещей одновременно (подключены параллельно)
- закорачивая аккумулятор (соединив проводом одну клемму с другой)
напряжение упадет.
Если электрическая энергия преобразуется в тепловую, это должен быть резистор
Батареи не имеют внутри резистора, который можно вынуть и посмотреть. Но у них действительно есть источники сопротивления, например продукты химических реакций и металлические части со всеми их соединениями.
Таким образом, батареи часто моделируют как идеальный источник питания (напряжение которого никогда не падает), включенный последовательно с воображаемым резистором.
Очевидно, батареи используются для работы чего-то вроде лампочки.Сопротивление цепи, в которой они работают, называется сопротивлением нагрузки R L .
Внутреннее сопротивление обычно обозначается символом r. Это не значит, что он всегда маленький. Сопротивление батарейки для миниатюрных часов может составлять 100 Ом или около того. Батарея фонаря имеет внутреннее сопротивление около 0,1 Ом, а автомобильный аккумулятор — около 0,001 Ом.
Наш воображаемый внутренний резистор подчиняется закону Ома, как и любой другой резистор. Единственное отличие в том, что он спрятан внутри аккумулятора.
Почему важно внутреннее сопротивление?
Автомобильный аккумулятор на 12 В имеет такое же напряжение, как и восемь аккумуляторов 1,5 В. AA. Могли бы вы использовать эти батареи, чтобы завести машину?
Ответ — решительное нет. На это можно взглянуть двумя способами.
- Батарейки типа AA не могут обеспечивать энергию очень быстро, в то время как вашему стартеру требуется энергия очень быстро.
- Внутреннее сопротивление ваших батарей AA слишком велико, поэтому напряжение падает с 12 В до почти 0 В, как только вы пытаетесь запустить двигатель.
Если вы знаете, что вам нужно очень быстро подавать энергию, вам нужно очень низкое внутреннее сопротивление. Как и толстый кусок провода, большая батарея имеет меньшее сопротивление. Поэтому аккумуляторные батареи высокой мощности должны быть большими, как автомобильные.
Если вам не нужна энергия очень быстро, другими словами, ваше устройство потребляет только крошечный ток, как цифровые часы, тогда внутреннее сопротивление менее важно, поэтому вы можете позволить себе уменьшить размер батареи. Это полезно, если вы хотите поместить его в часы!
Что такое «незначительное внутреннее сопротивление»?
Это выражение часто встречается в экзаменационных вопросах.
Это не значит, что сопротивление должно быть маленьким. как таковой . Это просто означает, что аккумулятор недостаточно усердно работает, чтобы его напряжение сильно упало.
Электродвижущая сила — это напряжение аккумулятора, когда на нем ничего не работает
Максимальное напряжение, которое вы можете получить от батареи, называется электродвижущей силой или ЭДС. Это называется так по историческим причинам, но в этом нет ничего особенного. Это просто напряжение. Обычно ему присваивается символ ε.
Если внутренним сопротивлением нельзя пренебречь и аккумулятор работает, например, от лампочки, то фактически измеренное напряжение на выводах аккумулятора (а также на лампе) будет ниже, чем ЭДС. Мы называем это более низкое напряжение напряжением нагрузки, V L .
Определение внутреннего сопротивления и э.д.с. батареи
Вы можете измерить ЭДС. батареи, просто измерив напряжение на клеммах, когда она ни к чему не подключена.Это называется измерением напряжения в «разомкнутой цепи».
Вы не можете просто измерить внутреннее сопротивление напрямую, потому что вы не можете попасть внутрь батареи. Итак, вам нужно провести эксперимент, в котором вы изменяете ток, потребляемый от батареи (путем изменения сопротивления нагрузки) и измеряя p.d. через терминалы.
Закон Кирхгофа по напряжению гласит, что если сложить напряжения на всех компонентах в последовательной цепи, они должны точно равняться напряжению батареи.
e.m.f. = напряжение на внутреннем сопротивлении + напряжение на нагрузке (например, лампочке)
В символах это уравнение
ε = V внутренний + V L
Мы знаем, что V = IR, или используя соответствующие термины для внутреннего сопротивления V внутреннее = Ir, поэтому
ε = Ir + V L
Мы можем изменить это уравнение, чтобы получить
В L = -rI + ε
Если вы настроили схему с переменным резистором для нагрузки, вы можете изменить ток I, потребляемый от батареи, и измерить напряжение на выводах, V L .
График V L относительно I дает прямую линию с величиной градиента, равной внутреннему сопротивлению r. Э.д.с. это точка пересечения на оси напряжения, другими словами, напряжение, когда ток равен нулю.
назад к Уроку 7: Сопротивление и закон Ома
,Влияет ли внутреннее сопротивление на производительность?
С переходом от аналогового к цифровому, к батарее предъявляются новые требования. В отличие от аналоговых портативных устройств, которые потребляют постоянный ток, цифровое оборудование нагружает аккумулятор короткими сильными всплесками тока.
Одним из актуальных требований к батареям для цифровых приложений является низкое внутреннее сопротивление. Измеряемое в миллиомах внутреннее сопротивление — это привратник, который в значительной степени определяет время работы.Чем ниже сопротивление, тем меньше ограничений, с которыми сталкивается батарея при доставке необходимых скачков мощности. Высокое значение мОм может вызвать раннюю индикацию « разряда батареи » на кажущейся исправной батарее, потому что доступная энергия не может быть доставлена требуемым образом и остается в батарее
Рисунок 1 демонстрирует характер напряжения и соответствующее время работы батареи с низким уровнем заряда. , среднее и высокое внутреннее сопротивление при подключении к цифровой нагрузке. Подобно мягкому мячу, который легко деформируется при сжатии, напряжение батареи с высоким внутренним сопротивлением модулирует напряжение питания и оставляет провалы, отражая импульсы нагрузки.Эти импульсы подталкивают напряжение к линии конца разряда, что приводит к преждевременному отключению. Как видно на графике, внутреннее сопротивление определяет большую часть времени работы.
| Рисунок 1: Кривая разряда при импульсной нагрузке с различным внутренним сопротивлением. На этой диаграмме показано время работы 3 батарей одинаковой емкости, но с разными уровнями внутреннего сопротивления. |
Время разговора в зависимости от внутреннего сопротивления
В рамках продолжающегося исследования по измерению времени работы батарей с различными уровнями внутреннего сопротивления компания Cadex Electronics проверила несколько батарей для сотовых телефонов, которые некоторое время находились в эксплуатации. Все батареи были одинакового размера и показали хорошие показания емкости при проверке анализатором аккумуляторов при постоянной разрядке нагрузки. Никель-кадмиевый пакет обеспечил емкость 113%, никель-металлогидридный блок — 107%, а литий-ионный — 94%.Внутреннее сопротивление варьировалось в широких пределах и составляло 155 мОм для никель-кадмиевого сплава, высокое 778 мОм для никель-металлогидрида и умеренное 320 мОм для литий-ионного. Эти показания внутреннего сопротивления типичны для стареющих батарей с таким химическим составом.
Давайте теперь проверим, как тестовые батареи работают на сотовом телефоне. Максимальный импульсный ток сотовых телефонов GSM (Глобальная система мобильной связи) составляет 2,5 ампера. Это представляет собой большой ток от относительно небольшой батареи около 800 миллиампер (мАч) часов.Например, импульс тока 2,4 ампера от батареи емкостью 800 мАч соответствует показателю C 3C. Это в три раза больше, чем у аккумулятора. Такие сильноточные импульсы могут быть доставлены только при низком внутреннем сопротивлении батареи.
На рисунках 2, 3 и 4 показано время разговора трех аккумуляторов при моделированном токе GSM 1С, 2С и 3С. Видно прямую зависимость между внутренним сопротивлением батареи и временем разговора. Никель-кадмиевый аккумулятор показал наилучшие результаты в данных обстоятельствах и обеспечил время разговора 120 минут при разряде 3C (оранжевая линия).никель-металлогидридные характеристики работают только при 1 ° C (синяя линия) и не работают при 3 ° C. литий-ионный обеспечивает умеренное время разговора 50 минут при температуре 3 ° C.
Рисунок 2: Разрядка никель-кадмиевого заряда и результирующее время разговора на 1С, 2С и 3С в соответствии с графиком нагрузки GSM.Тестируемая батарея имеет емкость 113%, внутреннее сопротивление — 155 мОм.
Рисунок 3: Разрядка и результирующее время разговора никель-металлогидрида при 1С, 2С и 3С в соответствии с графиком нагрузки GSM.Тестируемая батарея имеет емкость 107%, внутреннее сопротивление — 778 мОм.
Рисунок 4: Разряд и время разговора литий-ионной батареи при 1С, 2С и 3С в соответствии с графиком нагрузки GSM. Тестируемая батарея имеет емкость 94%, внутреннее сопротивление — 320 мОм.
Внутреннее сопротивление как функция заряда
Внутреннее сопротивление зависит от уровня заряда аккумулятора. Наибольшие изменения заметны на никелевых батареях.На рисунке 5 мы наблюдаем внутреннее сопротивление никель-металлогидрида в пустом состоянии, во время зарядки, при полной зарядке и после 4-часового периода отдыха.Уровни сопротивления самые высокие при низком уровне заряда и сразу после зарядки. Вопреки распространенному мнению, наилучшая производительность аккумулятора достигается не сразу после полной зарядки, а после нескольких часов отдыха. Во время разрядки внутреннее сопротивление аккумулятора уменьшается, достигает минимального значения при половинном заряде и снова начинает расти (пунктирная линия).
Рисунок 5: Внутреннее сопротивление в металлогидридном никеле. Обратите внимание на более высокие показания сразу после полной разрядки и полной зарядки. Отдыхать аккумулятор перед использованием дает наилучшие результаты. Ссылки: Shukla et al. 1998. Rodrigues et al. 1999. |
Внутреннее сопротивление литий-ионных аккумуляторов достаточно стабильно от разряженного до полного заряда.Батарея асимптотически уменьшается с 270 мВт при 0% до 250 мВт при 70% -ном состоянии заряда. Наибольшие изменения происходят между 0% и 30% SoC.
Сопротивление свинцово-кислотной кислоты повышается с разрядом. Это изменение вызвано уменьшением удельного веса, истощением электролита, поскольку он становится более водянистым. Увеличение сопротивления почти линейно с уменьшением удельного веса. Остальные несколько часов частично восстановят аккумулятор, так как ионы сульфата могут восполнить себя.Изменение сопротивления между полной зарядкой и разрядкой составляет около 40%. Низкая температура увеличивает внутреннее сопротивление всех аккумуляторов и добавляет около 50% в интервале от + 30 ° C до -18 ° C к свинцово-кислотным аккумуляторам. На рис. 6 показано увеличение внутреннего сопротивления гелевой свинцово-кислотной батареи, используемой для инвалидных колясок.
| Рисунок 6: Типичные показания внутреннего сопротивления свинцово-кислотного аккумулятора для инвалидных колясок.Аккумулятор разряжен от полного заряда до 10,50В. Показания были сняты при напряжении холостого хода (OCV). Аккумуляторные лаборатории Cadex. |
*** Пожалуйста, прочтите комментарии ***
Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.
Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «Связаться с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев для Battery University Group (BUG).
Или перейти к другому архиву
,Как измерить внутреннее сопротивление — Battery University
Узнайте, что показания сопротивления говорят о батарее.
Внутреннее сопротивление дает ценную информацию об аккумуляторе, так как высокие показания указывают на окончание срока службы. Это особенно верно в отношении систем на основе никеля. Измерение сопротивления — не единственный показатель эффективности, поскольку значение между партиями свинцово-кислотных аккумуляторов может варьироваться на 5–10 процентов, особенно для стационарных устройств.Из-за такой большой погрешности метод сопротивления лучше всего работает при сравнении показаний данной батареи от рождения до выхода на пенсию. Бригаду технического обслуживания предлагается сделать снимок каждой ячейки или моноблока во время установки, а затем измерить тонкие изменения по мере старения ячеек.
Есть мнение, что внутреннее сопротивление связано с емкостью, но это неверно. Сопротивление современных свинцово-кислотных и литий-ионных аккумуляторов остается неизменным на протяжении большей части срока службы. Более качественные добавки к электролиту уменьшили внутреннюю коррозию, которая влияет на сопротивление.Эта коррозия также известна как паразитные реакции на электролите и электродах. На рисунке 1 показано уменьшение емкости при циклическом изменении в зависимости от внутреннего сопротивления литий-ионных элементов.
Рис. 1: Взаимосвязь между емкостью и сопротивлением при езде на велосипеде. Resistance не показывает состояние батареи и часто остается разряженным по мере использования и старения. Циклическое испытание литий-ионных аккумуляторов при 1С: Предоставлено Cadex |
Что такое импеданс?
Прежде чем изучать различные методы измерения внутреннего сопротивления батареи, давайте посмотрим, что означает электрическое сопротивление, и поймем разницу между чистым сопротивлением (R) и импедансом (Z).R — чистое сопротивление, а Z включает реактивные элементы, такие как катушки и конденсаторы. Оба значения получены в омах (Ом). Это измерение восходит к немецкому физику Георгу Симону Ому, жившему с 1798 по 1854 год. (Один Ом дает падение напряжения на 1 В при токе 1 А). Электропроводность. также измеряется в сименсах, что обратно пропорционально омическим значениям.
Электрическое сопротивление чистой нагрузки, такой как нагревательный элемент, не имеет реактивного сопротивления. Напряжение и ток протекают синхронно, без фазы опережения или спада.Омическое сопротивление одинаково для постоянного (DC) и переменного (AC) тока. Коэффициент мощности (pf) равен 1, что обеспечивает наиболее точный учет потребляемой мощности.
Большинство электрических нагрузок являются реактивными и состоят из емкостного реактивного сопротивления (конденсатор) и индуктивного реактивного сопротивления (катушка). Емкостное реактивное сопротивление уменьшается с увеличением частоты, а индуктивное реактивное сопротивление увеличивается. Аналог индуктивного реактивного сопротивления — масляный демпфер, который становится жестким при быстром возвратно-поступательном движении.
Батарея имеет сопротивление, емкость и индуктивность, а термин «импеданс» включает все три в одной модели. Импеданс лучше всего можно проиллюстрировать с помощью модели Рэндлса (рис. 2), которая включает резисторы R1 и R2, а также конденсатор C. Индуктивное реактивное сопротивление обычно не учитывается, поскольку оно играет незначительную роль в батарее, особенно на низкой частоте.
Рис. 2: Модель Рэндлса свинцово-кислотной батареи. Общее сопротивление батареи состоит из омического сопротивления, а также индуктивного и емкостного сопротивления. Схема и электрические параметры различаются для каждой батареи. |
Измерять батарею по сопротивлению почти столько же лет, сколько и самой батарее, и с течением времени было разработано несколько методов, и все они все еще используются.
Метод нагрузки постоянного тока
Омическое измерение — один из самых старых и надежных методов тестирования.Аккумулятор кратковременно разряжается на секунду или дольше. Ток нагрузки для небольшой батареи составляет 1 А или меньше; для стартерной батареи это может быть 50А и более. Вольтметр измеряет обрыв
.Растущее внутреннее сопротивление — Battery University
Понимание важности низкой проводимости
Емкость сама по себе имеет ограниченное использование, если батарея не может эффективно передавать накопленную энергию; аккумулятор также нуждается в низком внутреннем сопротивлении. Измеренное в миллиомах (мОм) сопротивление является привратником батареи; чем ниже сопротивление, тем меньше ограничений для пакета. Это особенно важно при тяжелых нагрузках, таких как электроинструменты и электрические трансмиссии.Высокое сопротивление вызывает нагрев батареи и падение напряжения под нагрузкой, вызывая преждевременное отключение. На рис. 1 показана батарея с низким внутренним сопротивлением в виде свободно протекающего отвода по сравнению с батареей с повышенным сопротивлением, в которой отвод ограничен.
Низкое сопротивление, подает высокий ток по запросу; батарея остается прохладной. | Высокое сопротивление, ток ограничен, напряжение падает под нагрузкой; аккумулятор нагревается. | Рис. 1: Влияние внутреннего сопротивления батареи. Батарея с низким внутренним сопротивлением обеспечивает высокий ток по запросу. Высокое сопротивление вызывает нагрев батареи и падение напряжения. Оборудование отключается, оставляя энергию позади. Предоставлено Cadex |
Свинцово-кислотный имеет очень низкое внутреннее сопротивление, и батарея хорошо реагирует на сильные всплески тока, которые длятся несколько секунд.Однако из-за присущей медлительности свинцово-кислотная кислота неэффективна при длительном сильноточном разряде; аккумулятор быстро утомляется и ему требуется отдых для восстановления. Некоторая медлительность проявляется во всех батареях в разной степени, но особенно ярко она проявляется у свинцово-кислотных. Это намекает на то, что подача энергии основана не только на внутреннем сопротивлении, но и на чувствительности химического состава, а также на температуре. В этом отношении технологии на основе никеля и лития более чувствительны, чем свинцово-кислотные.
Сульфатирование и коррозия решетки являются основными факторами повышения внутреннего сопротивления свинцово-кислотной кислоты. Температура также влияет на сопротивление; тепло понижает его, а холод повышает. Нагрев батареи на мгновение снизит внутреннее сопротивление, чтобы обеспечить дополнительное время работы. Однако это не восстанавливает батарею и добавляет кратковременное напряжение.
Кристаллическое образование, также известное как «память», способствует внутреннему сопротивлению в никелевых батареях. Это часто можно исправить с помощью глубокого цикла.Внутреннее сопротивление литий-ионных аккумуляторов также увеличивается по мере использования и старения, но были внесены улучшения с добавлением электролитных добавок, чтобы держать под контролем образование пленок на электродах. (См. BU-808b: Почему литий-ионные аккумуляторы умирают?) Со всеми батареями SoC влияет на внутреннее сопротивление. Литий-ионный аккумулятор имеет более высокое сопротивление при полной зарядке и в конце разряда с большой плоской областью низкого сопротивления посередине.
Щелочные, углеродно-цинковые и большинство первичных батарей имеют относительно высокое внутреннее сопротивление, и это ограничивает их использование в слаботочных приложениях, таких как фонарики, пульты дистанционного управления, портативные развлекательные устройства и кухонные часы.Когда эти батареи разряжаются, сопротивление увеличивается. Этим объясняется относительно короткое время работы при использовании обычных щелочных элементов в цифровых камерах.
Для считывания внутреннего сопротивления батареи используются два метода: постоянный ток (DC) путем измерения падения напряжения при заданном токе и переменный ток (AC), который учитывает реактивное сопротивление. При измерении реактивного устройства, такого как аккумулятор, значения сопротивления сильно различаются между методами тестирования постоянного и переменного тока, но ни одно из показаний не является правильным или неправильным.Показания постоянного тока смотрят на чистое сопротивление (R) и дают истинные результаты для нагрузки постоянного тока, такой как нагревательный элемент. Показания переменного тока включают реактивные компоненты и обеспечивают полное сопротивление (Z). Импеданс обеспечивает реалистичные результаты на цифровой нагрузке, такой как мобильный телефон или асинхронный двигатель. (См. BU-902: Как измерить внутреннее сопротивление)
На рис. 2 показано внутреннее сопротивление литий-ионного элемента 18650 после 1000 полных циклов при 40 ° C (104 ° F). Показания переменного тока в зеленой рамке не отражают истинное резистивное состояние батареи; Метод постоянного тока обеспечивает более надежные данные о производительности при загрузке.
Рис. 2: Повышение внутреннего сопротивления литий-ионного элемента 18650, измеренное методами переменного и постоянного тока при включении и выключении.
Показания сопротивления переменного тока в зеленой рамке остаются низкими; Метод постоянного тока дает истинное состояние.
Источник: Technische Universität München (TUM)
Сопротивление упаковки
Внутреннее сопротивление батареи состоит не только из элементов, но также включает межсоединение
.