+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Вертикальный ветрогенератор своими руками — пошаговые инструкции по сборке

Здесь вы узнаете:

Вертикальный ветрогенератор своими руками — это метод преобразования энергии ветра в электрическую энергию. Альтернативная энергия, получаемая от ветра — экологичный и экономичный способ.

Законность установки ветрогенератора

Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.

Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.


Ветрогенератор – отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом

Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?

Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно малой ветроэнергетической установки, мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.


Для того чтобы определиться с целесообразностью устройства ветрогенератора, необходимо выяснить ветроэнергетический потенциал конкретной местности (кликните для увеличения)

Никакого налогообложения производства электроэнергии, которая расходуется на обеспечение собственных бытовых нужд, не предусмотрено. Поэтому маломощный ветряк можно смело устанавливать, вырабатывать с его помощью бесплатную электроэнергию, не уплачивая при этом государству никаких налогов.

Впрочем, на всякий случай следует поинтересоваться, нет ли каких-либо местных нормативных актов, касающиеся индивидуального энергоснабжения, которые могли бы создать препятствия в установке и эксплуатации этого устройства.

Претензии могут возникнуть у ваших соседей, если они будут испытывать неудобства, связанные с эксплуатацией ветряка. Не забывайте, что наши права заканчиваются там, где начинаются права других людей.

Поэтому при покупке или самостоятельном изготовлении ветрогенератора для дома нужно обратить серьёзное внимание на следующие параметры:

  • Высота мачты. При сборке ветрогенератора нужно учитывать ограничения на высоту индивидуальных построек, которые существуют в ряде стран мира, а также местонахождение собственного участка. Знайте, что поблизости от мостов, аэропортов и тоннелей строения, высота которых превышает 15 метров, запрещены.
  • Шум от редуктора и лопастей. Параметры создаваемого шума можно установить при помощи специального прибора, после чего зафиксировать результаты замеров документально. Важно, чтобы они не превышали установленные шумовые нормы.
  • Эфирные помехи. В идеале при создании ветряка должна быть предусмотрена защита от создания телепомех там, где ваше устройство может такие неприятности обеспечить.
  • Претензии экологических служб. Эта организация может препятствовать вам в эксплуатации установки только в том случае, если она мешает миграции перелетных птиц. Но это маловероятно.

При самостоятельном создании и монтаже устройства учите эти моменты, а при покупке готового изделия обратите внимание на параметры, которые стоят в его паспорте. Лучше заранее обезопасит себя, чем впоследствии расстраиваться.

  • Целесообразность устройства ветряка обосновывается в первую очередь достаточно высоким и стабильным ветряным напором в местности;
  • Необходимо располагать достаточно большим участком, полезная площадь которого не будет существенно сокращена из за установки системы;
  • Из-за сопровождающего работу ветряка шума желательно, чтобы между жильем соседей и установкой было не менее 200 м;
  • Убедительно аргументирует в пользу устройства ветрогенератора неуклонно повышающаяся стоимость электроэнергии;
  • Устройство ветрогенератора возможно только в местностях, власти которых не препятствуют, а лучше еще и поощряют использование зеленых видов энергии;
  • Если в регионе сооружения мини электростанции, перерабатывающей энергию ветра, случаются частые перебои, установка минимизирует неудобства;
  • Владелец системы должен быть готов к тому, что вложенные в готовое изделие средства не окупятся сразу. Экономический эффект может стать ощутимым через 10 — 15 лет;
  • Если окупаемость системы — не последний момент, стоит задуматься об сооружении мини электростанции собственными руками.

Преимущества и принцип работы ветряков

Современный вертикальный генератор – один из вариантов альтернативной энергии для дома. Агрегат способен преобразовать порывы ветра в энергетический ресурс. Для корректной работы он не нуждается в дополнительных устройствах, определяющих направление ветра.


Ветряной генератор роторного типа очень легко изготовить своими руками. Конечно, полностью взять на себя обеспечение частного крупногабаритного коттеджа энергией он не сможет, но с освещением хозяйственных построек, садовых дорожек и придомовой территории справится на отлично

Прибор вертикального типа функционирует на низкой высоте. Для его обслуживания не нужны различные приспособления, обеспечивающие безопасное проведение высотных ремонтных и обслуживающих работ.

Минимум движущихся деталей делает ветряную установку более надежной и эксплуатационно устойчивой. Оптимальный профиль лопастей и оригинальной формы ротор обеспечивают агрегату высокий уровень КПД независимо от того, в каком направлении дует ветер в каждый отдельный момент.


Малые бытовые модели состоят из трех и более легких лопастей, моментально улавливают самый слабый порыв и начинают вращаться, как только сила ветра превышает 1,5 м/с. Благодаря этой способности их эффективность часто превышает КПД крупных установок, нуждающихся в более сильном ветре

Генератор работает абсолютно бесшумно, не мешает хозяевам и соседям, не создает вредных выбросов в атмосферу и надежно служит в течение многих лет, аккуратно поставляя энергию в жилые помещения.

Вертикальный генератор ветрового типа работает по принципу магнитной левитации. В процессе вращения турбин образуются импульсная и подъемная силы, а также сила фактического торможения. Первые две заставляют крутиться лопасти агрегата. Это действие активирует ротор и он создает магнитное поле, вырабатывающее электричество.


Ветряк, имеющий вертикальную ось вращения, по эффективности уступает своим горизонтальным аналогам. Зато не предъявляет претензий к территориальному расположению и полноценно работает практически в любом удобном для домовладельцев месте

Прибор функционирует полностью самостоятельно и не требует вмешательства хозяев в процесс.

Ветрогенератор с вертикальной осью вращения

В ветряных генераторах данного вида вращающаяся ось генератора расположена вертикально по отношению к поверхности земли.

За годы использования устройств данного вида появились разнообразные конструкции которые объединены в группы, это:

С ротором Дарье — агрегаты оснащаются двумя или тремя лопастями, изогнутыми в форме овала.

К положительным особенностям данной конструкции можно отнести:

  • Самостоятельную ориентацию по отношению к воздушным потокам;
  • Удобное обслуживание установки.
  • Простота схемы агрегата.

К отрицательным относятся:

  • Нет возможности в самостоятельной раскрутке лопастей;
  • Значительная нагрузка на элементы конструкции;
  • Лопасти должны быть идентичны и соответствовать заданному профилю;
  • Повышенный уровень шума в процессе работы.
  • С ротором Савониуса – агрегаты оснащены лопастями в виде цилиндрических поверхностей.

Достоинствами данной группы являются:

  • Для запуска в работу требуются незначительные потоки ветра;
  • Способность быстрого набора крутящего момента;
  • Надёжность конструкции;
  • Низкая стоимость.

К недостаткам можно отнести:

  • Низкий КПД устройств этой группы.

Устройства с ротором Савониуса применяют при монтаже комбинированных ветровых генераторов, их используют для разгона агрегатов с ротором Дарье.

С вертикально-осевой конструкций ротора — у агрегатов этой группы лопасти напоминают форму крыла самолета и расположены вертикально, ось ротора расположена параллельна валу.

По внешнему виду агрегаты данной группы похожи на устройства с ротором Дарье.

К положительным качествам устройств относятся:

  1. Простота в изготовлении;
  2. Способность быстрого набора скорости вращения;
  3. Низкий уровень шума.
  4. Надежность в работе.
  5. С геликоидным ротором – агрегаты этой группы являются более развитым вариантом устройств с вертикально-осевым ротором. Лопасти имеют форму геликоидной кривой.

Положительные качества:

  1. Более низкие нагрузки на элементы конструкции;
  2. Быстрый набор скорости вращения.

Недостатки:

  • Повышенный уровень шума;
  • Высокая стоимость.
  • Многолопастный ротор – в основу агрегатов этого типа положена вертикально-осевая конструкция с устройством дополнительного внешнего кольца неподвижных лопастей.

Достоинства агрегатов данной группы:

  • Более высокий КПД установок;
  • Чувствительность к потокам ветра.

Недостатки:

  • Высокая стоимость;
  • Повышенный уровень шума.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

Карусельный и ортогональный роторы

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50%. В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

Вертикальный ротор с направляющим аппаратом

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

Как изготовить ветрогенератор с вертикальной осью вращения своими руками

Составные элементы:

  • Осевая мачта — это несущая конструкция в форме пирамиды, треноги или шеста высотой около пяти метров. На ней закрепляют лопасти и генератор.
  • Лопасти улавливают потоки ветра.
  • Статор вмещает в себя фазы из катушек.
  • Ротор — это подвижная часть ветряка.
  • Контроллер включает замедление ветрогенератора, когда тот развивает мощность, выше его базовых метрик.
  • Инвертор дает переменный ток.
  • Аккумулятор накапливает сгенерированную энергию.

Подготовка элементов

Чтобы сделать лопасти для вертикального ветрогенератора, понадобится качественный пластик и/или жесть. Например, лопастную конструкцию можно сделать из пластиковых труб, Тогда к каждой стороне трубы крепятся полукруглые жестяные фрагменты. Высота и радиус вращения должны достигать 70 см. Или же можно изготовить лопастную конструкцию из запчастей.

Для ротора нужны 2 ферритовых диска диаметром 32 см, 6 неодимовых магнитов и клей. Роторная система состоит из двух дисков. Схема каждого диска следующая: нужно так расположить магниты, чтобы их полярность чередовалась, угол между ними составлял 60 градусов, а диаметр размещения равнялся 16,5 см. После правильного размещения магниты заливаются клеем.

Для статора нужно сделать девять катушек с 60 витками медной проволоки диаметром 0,1 см. Чтобы сделать три фазы, катушки необходимо спаять между собой в следующем порядке:

  1. Для первой фазы начало 1-ой катушки соединяем с концом 4-ой, а начало 4-ой с концом 7-ой;
  2. Для второй фазы делаем то же самое, но начинаем со 2-ой катушки;
  3. Для изготовления третьей фазы начинаем с 3-ей катушки.

Форму для катушек делают из фанеры и выкладывают стекловолокном. После размещения фаз их нужно залить клеем и оставить сохнуть на несколько дней.

Монтаж конструкции

Когда с изготовлением составных элементов покончено, можно приступать к их соединению между собой. Сначала нужно соединить ротор и статор:

  • В верхнем диске ротора сделайте отверстия для четырех шпилек.
  • В статоре сделайте отверстия для крепления к подставке.
  • Положите нижний диск ротора на подставку магнитами вверх.
  • На нижнем роторе разместите статор и уприте шпильки в алюминиевую пластину.
  • Накройте конструкцию вторым роторным диском (магниты расположены внизу).
  • При помощи вращения шпилек добейтесь равномерного сближения верхнего и нижнего роторных дисков, после этого шпильки и пластину аккуратно убирают.
  • Зафиксируйте генератор гайками.

Готовый генератор прикрутите к осевой мачте. После этого к генератору можно прикреплять лопастную конструкцию. Теперь ваш ветряк готов к установке! Для установки ветряка подготовьте армированный фундамент и зафиксируйте конструкцию растяжкой.

В последнюю очередь подключается электросеть в следующем порядке: энергия от генератора попадает на контроллер, затем собирается на аккумуляторе, а потом преобразуется в переменный ток при помощи инвертора.

Ветрогенераторы своими руками на 220 в

Для того, чтобы собрать ветроуловитель нам понадобятся: генератор на 12 вольт, аккумуляторные батареи, преобразователь с 12 v на 220 в, вольтметр, медные провода, крепежи (хомуты, болты, гайки).


Чтобы ветрогенератор получился практичным и качественным, перед его изготовлением лучше дополнительно ознакомиться с подробной инструкцией

Изготовление любого ветряка предполагает наличие таких этапов как:

  1. Изготовление лопастей. Лопасти вертикального ветрогенератора можно сделать из бочки. Нарезать детали можно при помощи болгарки. Винт для небольшого ветряка можно изготовить из трубы ПВХ с сечением в 160 мм.
  2. Изготовление мачты. Мачта должна быть высотой не менее 6 метров. При этом, для того, чтобы крутящее усилие не сорвало мачту, ее необходимо закрепить ее на 4 растяжки. Каждую растяжку, при этом, нужно намотать на бревно, которое следует закопать глубоко в землю.
  3. Установка неодимовых магнитов. Магниты наклеиваются на диск ротора. Лучше выбирать прямоугольные магниты, магнитные поля в которых сосредотачиваются по всей поверхности.
  4. Намотка катушек генератора. Намотка выполняется медной нитью с диаметром не менее двух мм. При этом, мотков должно быть не более 1200.
  5. Фиксация лопастей к трубе при помощи гаек.

При наличии мощных аккумуляторных батарей и инвертора, полученное устройство сможет выработать такое количество электричества, которого будет достаточно для использования бытовой техники (например, холодильника и телевизора). Отлично подойдет такой генератор для поддержания работы систем освещения, отопления и вентиляции небольшого дачного домика, теплицы.

Сборка аксиальной ВЭУ на неодимовых магнитах

Поскольку неодимовые магниты в России появились относительно недавно, то и аксиальные ветрогенераторы с безжелезными статорами стали делать не так давно.

Появление магнитов вызвало ажиотажный спрос, но постепенно рынок насытился, и стоимость этого товара стала снижаться. Он стал доступен для умельцев, которые тут же приспособили его для своих разнообразных нужд.


Аксиальная ВЭУ на неодимовых магнитах с горизонтальной осью вращения – более сложная конструкция, требующая не только умения, но и определенных знаний

Если у вас имеется ступица от старого авто с тормозными дисками, то её и возьмем в качестве основы будущего аксиального генератора.

Предполагается, что эта деталь не новая, а уже эксплуатировавшаяся. В этом случае её необходимо разобрать, проверить и смазать подшипники, тщательно вычистить прочь осадочные наслоения и всю ржавчину. Готовый генератор не забудьте покрасить.


Ступица с тормозными дисками, как правило, достаётся умельцам в качестве одного из узлов старого автомобиля, отправившегося в утиль, поэтому нуждается в тщательной чистке

Распределение и закрепление магнитов

Неодимовые магниты должны быть наклеены на диски ротора. Для нашей работы возьмем 20 магнитов 25х8мм.

Конечно, можно использовать и другое количество полюсов, но при этом необходимо соблюдать следующие правила: количество магнитов и полюсов в однофазном генераторе должно совпадать, но, если речь идёт о трехфазной модели, то соотношение полюсов к катушкам должно составлять 2/3 или 4/3.

При размещении магнитов полюса чередуются. Важно не ошибиться. Если вы не уверены, что расположите элементы правильно, сделайте шаблон-подсказку или нанесите сектора прямо на сам диск.

Если у вас есть выбор, купите лучше не круглые, а прямоугольные магниты. В прямоугольных моделях магнитное поле сосредоточено по всей длине, а в круглых – в центре.

У противостоящих магнитов должны быть разные полюса. Вы ничего не перепутаете, если с помощью маркера пометите их знаками минус или плюс. Чтобы определить полюса, возьмите магниты и поднесите их друг к другу.

Если поверхности притягиваются, поставьте на них плюс, если отталкиваются, то пометьте их минусами. При размещении магнитов на дисках чередуйте полюса.


Магниты установлены с соблюдением правила чередования полисов, по наружному и внутреннему периметрам расположены бортики из пластилина: изделие готово к заливке эпоксидной смолой

Для надежности закрепления магнита нужно применять качественный и максимально сильный клей.

Чтобы усилить надежность фиксации, можно воспользоваться эпоксидной смолой. Её следует развести так, как это указано в инструкции, и залить ею диск. Смола должна покрыть диск целиком, но не стекать с него. Предотвратить вероятность стекания можно, если обмотать диск скотчем или сделать по его периметру временные пластилиновые ограждения из полимерной полосы.

Генераторы однофазного и трехфазного вида

Если сравнивать однофазный и трехфазный статоры, то последний окажется лучше. Однофазный генератор при нагрузке вибрирует. Причиной вибрации становится разница в амплитуде тока, возникающая из-за непостоянной его отдачи за момент времени.

Такого недостатка у трехфазной модели нет. Она отличается постоянной мощностью из-за компенсирующих друг друга фаз: когда в одной происходит нарастание тока, в другой он падает.

По итогам тестирования отдача трехфазной модели почти на 50% больше, чем аналогичный показатель однофазной. Ещё одним достоинством этой модели является то, что в отсутствии лишней вибрации повышается акустический комфорт при функционировании устройства под нагрузкой.

То есть, трехфазный генератор практически не гудит в процессе его эксплуатации. Когда вибрация снижается, срок службы устройства логично повышается.


В борьбе между трехфазными и однофазными устройствами неизменно побеждает трехфазное, потому что оно не так сильно гудит в процессе работы и служит дольше однофазного

Правила наматывания катушки

Если спросить специалиста, то он скажет, что перед тем, как наматывать катушки, нужно выполнить тщательный расчет. Практик в этом вопросе положится на свою интуицию.

Мы выбрали не слишком скоростной вариант генератор. У нас процедура зарядки двенадцативольтового аккумулятора должна начаться при 100-150 оборотах за минуту. Такие исходные данные требуют, чтобы общее количество витков всех катушек составило 1000-1200 штук. Эту цифру нам осталось поделить между всеми катушками и определить, сколько же витков будет на каждой.

Ветряк на низких оборотах может быть мощнее, если увеличится количество полюсов. Частота колебаний тока в катушках при этом увеличится. Если для намотки катушек применять провод большего сечения, сопротивление уменьшится, а сила тока увеличится. Не упустите из виду тот факт, что большее напряжение может «съедать» ток из-за сопротивления обмотки.

Процесс намотки можно облегчить и сделать эффективнее, если использовать для этой цели специальный станочек.


Совсем необязательно такой рутинный процесс как наматывание катушек делать вручную. Немного смекалки и отличный станочек, который легко справляется с намоткой, уже есть

На рабочие характеристики самодельных генераторов большое влияние оказывают толщина и количество магнитов, которые расположены на дисках. Совокупную итоговую мощность можно рассчитать, если намотать одну катушку, а затем прокрутить её в генераторе. Будущая мощность генератора определяется путем измерения напряжения на конкретных оборотах без нагрузки.

Приведем пример. При сопротивлении 3 Ом и 200 оборотах в минуту выходит 30 вольт. Если отнять от этого результата 12 вольт напряжения аккумулятора, получится 18 вольт. Делим этот результат на 3 Ом и получаем 6 ампер. Объём в 6 ампер и отправится на аккумулятор. Конечно, в расчете мы не учли потери в проводах и на диодном мосту: фактический результат окажется меньше расчетного.

Обычно катушки делают круглыми. Но, если их немного вытянуть, то получится больше меди в секторе и витки окажутся прямее. Если сравнивать размер магнита и диаметр внутреннего отверстия катушек, то они должны соответствовать друг другу или размер магнита может быть немного меньше.

Толщина статора, который мы делаем, должна правильно соотноситься с толщиной магнитов. Если статор сделать больше за счет увеличения количества витков в катушках, междисковое пространство возрастет, а магнитопоток уменьшится. Результат же может оказаться таким: образуется такое же напряжение, но, из-за увеличившегося сопротивления катушек, мы получим меньший ток.

Для изготовления формы для статора применяют фанеру. Впрочем, сектора для катушек можно разметить на бумаге, используя в качестве бордюров пластилин.

Если поверх катушек на дно формы поместить стеклоткань, прочность изделия повысится. Перед нанесением эпоксидной смолы нужно форму смазать вазелином или воском, тогда смола не прилипнет к форме. Некоторые используют вместо смазки скотч или пленку.

Между собой катушки закрепляются неподвижно. При этом концы фаз выводятся наружу. Шесть выведенных наружу проводов следует соединить звездой или треугольником. Вращая собранный генератор рукой, производят его тестирование. Если напряжение будет 40 V, то сила тока составит примерно 10 ампер.

Окончательная сборка устройства

Длина готовой мачты должна составлять примерно 6-12 метров. При таких параметрах её основание должно быть забетонированным. Сам ветряк будет закреплен на верхней части мачты.

Чтобы до него можно было добраться в случае поломки, нужно предусмотреть в основании мачты специальное крепление, которое позволит поднимать и опускать трубу, используя при этом ручную лебедку.


Высоко вздымается мачта с прикрепленным к ней ветрогенератором, но предусмотрительный мастер сделал специальное устройство, которое позволяет при необходимости опустить конструкцию на землю

Чтобы изготовить винт, можно использовать трубу ПВХ диаметром 160 мм. Она будет использоваться для вырезания из её поверхности двухметрового винта, состоящего из шести лопастей. Форму лопастей лучше разработать самостоятельно опытным путем. Цель – усилить крутящий момент при низких оборотах.

Винт-пропеллер следует беречь от слишком сильного ветра. Для решения этой задачи используют складной хвост. Выработанная энергия накапливается в аккумуляторах.

Вниманию наших читателей мы предоставили два варианта ветрогенераторов, сделанных своими руками на 220 в, которые пользуются повышенным вниманием не только владельцев загородной недвижимости, но и простых дачников.

Обе модели ВЭУ эффективны по-своему. Особенно хорошие результаты эти устройства способны продемонстрировать в степной местности с частыми и сильными ветрами. Они достаточно эффективны, чтобы использоваться в организации альтернативного отопления дома и в поставке электроэнергии. И их не так уж сложно соорудить своими руками.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора — достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Результат работы ветряка: расчет эффективности

Тестовые испытания ветрогенератора при разной скорости ветра показали следующие результаты:

  • при скорости ветра 5 м/с получаем 60 об/мин — 7 В и 2,3 А = 16 Вт;
  • при скорости ветра 10,6 м/с получаем около 120 об/мин — 13 В и 3,4 А = 44 Вт;
  • при скорости 15,3 м/с примерно 180 об/мин — 15 В и 5,1 А = 76,5 Вт;
  • при скорости ветра 18 м/с получаем 240 об/мин — 18 В и 9 А = 162 Вт.

В основном ветряк выдает 16–45 Вт, так как ветер более 15 м/с бывает редко. Однако, если поставить скоростной винт, тогда можно получить более высокие результаты.

Самодельный вертикальный ветрогенератор: чертежи, размеры, описание изготовления

Вертикальный ветрогенератор своими руками, чертежи, фото, видео ветряка с вертикальной осью.

Ветрогенераторы подразделяются по типу размещения вращающейся оси (ротора) на вертикальные и горизонтальные. Конструкцию ветрогенератора с горизонтальным ротором мы рассматривали в прошлой статье, теперь поговорим о ветрогенераторе с вертикальным ротором.

Рассмотрим преимущества и недостатки вертикального ветряка

Преимущества:

  • Низкий уровень шума – ветровое, колесо практически не издаёт шум и не мешает, нет характерного свиста винта.
  • Простота конструкции – сделать такой ветрогенератор и установить не составит особой сложности.
  • Надёжная конструкция – все узлы компактны, удобны в обслуживании.

Недостатки:

  • Основным недостатком конструкции ветрогенератора с вертикальным ротором являются его низкие обороты, такой ветряк нужно устанавливать в местности с преобладающей скоростью ветра более 4 м/с.
  • Практически нет защиты от ураганного ветра – если в горизонтальном ветряке при урагане автоматически срабатывает складывающийся хвостовик который поворачивает ветроколесо, то в такой конструкции нужно вручную заклинивать ротор, как вариант замыкать контакты на выходе из катушек.

Изготовление вертикального ветрогенератора

Прежде всего, ели вы решили изготовить ветряк с вертикальной осью нужно определиться с генератором. Поскольку вертикальный ветрогенератор низкооборотный, то соответственно понадобится генератор способный выдавать зарядку на аккумулятор при достаточно низких оборотах.

Автомобильный генератор для этой конструкции не совсем подходит, так как он выдаёт зарядный ток при оборотах более 1000 об/мин. Для автомобильного генератора нужно использовать шкив с передаточным числом 4 – 5 и доработать сам генератор.

В качестве генератора практичней использовать аксиальный генератор, его можно изготовить самостоятельно, процесс изготовления описан в этой статье.

Схема аксиального генератора для ветрогенератора.

Аксиальный генератор.

Изготовление ветроколеса

Ветроколесо (турбина) вертикального ветрогенератора состоит из двух опор верхней и нижней, а также из лопастей.

Ветроколесо изготовляется из листов алюминия или нержавейки, также ветроколесо можно вырезать из тонкостенной бочки. Высота ветроколеса должна быть не менее 1 метра.

В этом ветроколесе угол изгиба лопастей задаёт скорость вращения ротора, чем больше изгиб, тем больше скорость вращения.

Ветроколесо крепится болтами сразу к шкиву генератора.

Для установки вертикального ветрогенератора можно использовать любую мачту, изготовление мачты подробно описано в этой статье.

Схема подключения ветогенератора

Генератор подключается к контроллеру, тот в свою очередь к аккумулятору. В качестве накопителя энергии практичней использовать автомобильный аккумулятор. Поскольку бытовые приборы работают от переменного тока, нам понадобится инвертор для преобразования постоянного тока 12 V в переменный 220V.

Для подключения используется медный провод сечением до 2,5 квадрата. Схема подключения подробно описана тут.

Видео где показан ветрогенератор в работе.

Как самостоятельно изготовить ветрогенератор вертикального типа

Что такое ветрогенератор

Ветрогенератор — это механическое устройство, предназначенное для выработки (генерирования) электрического тока. Поток ветра вращает рабочее колесо, взаимодействуя с его лопастями. Вращение передается на генератор, который начинает вырабатывать электрический ток. Такова схема действия ветрогенератора. На практике все намного сложнее, так как возникает масса трудностей технического и эксплуатационного характера, но в целом возможности этих устройств сильно недооценены.

Россия считается энергоизбыточной страной, имеющей большое количество мощных электростанций, но, тем не менее, имеются районы, где сетевого электричества нет до сих пор. Использование энергии ветра для выработки энергии для подобных районов является хорошей альтернативой, позволяющей решить вопрос если не полностью, то в достаточной степени.

Количество полученной энергии прямо пропорционально мощности генератора и скорости вращения ветряка, что позволяет в теории использовать несколько устройств для получения необходимого количества электроэнергии. Практика пока недостаточно иллюстрирует ситуацию, так как на сегодня для сбора статистических данных не имеется достаточного количества генераторов. Поэтому приходится пока довольствоваться расчетными данными, которые в большинстве случаев подтверждаются на практике.

Существуют две основные разновидности ветрогенераторов:

Виды ветрогенераторов с вертикальной осью вращения

Вертикальный ветрогенератор — это устройство, ось вращения которого расположена перпендикулярно направлению потока ветра и ориентирована в вертикальном направлении. Продольные оси лопастей параллельны оси вращения.

Если горизонтальные генераторы по внешнему виду напоминают пропеллер, то вертикальные ближе к барабану центробежного вентилятора, установленному вертикально и оборудованному малым числом лопаток (обычно их 2 штуки, но бывают и другие варианты). Такое расположение позволяет лопастям одинаково реагировать на потоки ветра с любой стороны без необходимости ориентирования оси вращения на встречном направлении к движению воздуха.

Существуют различные виды вертикальных ветрогенераторов. Разница между ними заключается лишь в типе вращающейся части — ротора, поскольку конструкция неподвижного статора принципиальных изменений не имеет. Известны такие виды, как:

  • ортогональный ротор. Его лопасти расположены по касательной к окружности вращения и имеют сечение как у крыла самолета. Способен начинать вращаться даже при относительно слабом ветре, увеличивая скорость за счет разрежения воздуха над поверхностью лопастей и уплотнения под ней (возникновения подъемной силы). Не имеет высокой парусности лопастей, что позволяет стабилизировать скорость вращения и исключить резкие изменения динамики, способные вывести из строя подшипники
  • ротор Савониуса. Представляет собой две изогнутые в виде половинок трубы лопасти. При большой площади уравновешивания сил, воздействующих на лопасти, не происходит, так как поток, действующий на внутреннюю часть лопасти, отражается от ее изгиба и частично попадает в изгиб второй лопасти, усиливая ее вращение. Обратная сторона разбивает поток на равные части, одна из которых обтекает изгиб и попадает на рабочую часть, увеличивая вращающий момент, а другая уходит в сторону. Эффективность такого ротора невелика, всего 15%, но по сочетанию характеристик он вполне достоин внимания
  • ротор Дарье. Это один из вариантов ортогональной конструкции. Имеет вантовый вид лопастей, концы которых присоединены к валу вращения, а центральные части, плавно изгибаясь, отходят от вала таким образом, что при взгляде со стороны лопасти образуют своими очертаниями овал или круг. Ротор имеет малую мощность, высокий уровень шума и вибраций, что делает его требовательным к постоянному наблюдению и обслуживанию.
  • геликоидный ротор. Конструкция имеет лопасти сложной формы, закрученной вокруг вертикальной оси. Это позволяет стабилизировать скорость вращения и устранить шум, создаваемый лопастями при вращении. Равномерность работы делает конструкцию более удобной, обеспечивающей ровный результат при разных режимах вращения. Для самостоятельного изготовления этот вариант конструкции наиболее сложен, но, в целом, доступен.
  • многолопастной ротор. Имеет несколько лопастей, что позволяет получить ровное и мощное вращение ротора при относительно слабом ветровом давлении. Обычно используется несколько узких полос на некотором расстоянии от вала вращения, передающих поток с возрастанием скорости и плотности на второй ряд лопастей, расположенный внутри первого.  Также существуют варианты с двумя уровнями (пара лопаток, а под ней — другая с разворотом на 90°. Все варианты конструкции имеют неплохие эксплуатационные характеристики, что позволяет считать такую конструкцию одной из наиболее перспективных.

Существуют конструкции, которые предусматривают защиту от уравновешивающего давления потока на обратную сторону крыла. Делается щит по форме части окружности, закрывающий от ветра участок с обратной стороной лопастей таким образом, что ветер воздействует только на рабочую сторону. Для наведения ротора на ветер, т.е. поворота системы при изменении направления потока, делается устройство типа флюгера, поворачивающее защиту в нужную сторону по ветру.

Эффективность всех этих видов примерно одинакова. Принципиальной разницы в характеристиках также не имеется, основные различия лежат в области уменьшения шума, снижения нагрузок на вал, выравнивания режимов вращения.

Преимущества и недостатки ветрогенераторов с вертикальной осью

Вертикальный ветрогенератор — конструкция, удачная для создания своими руками. При всем разнообразии вариантов исполнения, на многие из них до сих пор нет математической модели вращения, что не позволяет создать корректную методику расчета. При этом, такая ситуация способствует активному развитию моделирования всех разновидностей ветрогенераторов и отработке их технических параметров.

Основными преимуществами ветрогенераторов с вертикальной осью принято считать:

  • простота конструкции, возможность изготовления практически любого типа своими руками
  • стабильность, устойчивость режимов работы, вызванная способностью одинаково реагировать на потоки ветра любого направления
  • отсутствует нужда в механизме наведения оси вращения на поток, без чего не могут функционировать генераторы с горизонтальным вращением
  • для того, чтобы изготовить вертикальный ветрогенератор своими руками, требуются относительно малые затраты денег, времени и труда. Основная статья расходов — непосредственно генератор, а вращающиеся части могут быть изготовлены буквально из подручных средств

Недостатками вертикального ветрогенератора считаются:

  • эффективность работы ниже, чем у горизонтальных конструкций
  • при работе устройства издают шум, который сложно устранить, так как он происходит из-за контакта потока воздуха и материала лопасти
  • высокий уровень вибраций и резких изменений режимов вращения создают сильную нагрузку на подшипники, способствуя быстрому выходу подвижных деталей и узлов из строя
  • для создания вертикального генератора требуется большее количество материалов, чем для горизонтальных образцов

Место установки ветрогенератора

Для монтажа ветрогенератора потребуется открытая площадка, не имеющая вблизи препятствий, способных закрыть устройство от ветровых потоков. Высота подъема мачты над уровнем грунта может быть относительно мала, около 3 метров. Примечательно, что с точки зрения эффективности контакта лопастей с ветром, подъем устройства на большую высоту мало влияет на рост производительности генератора, так как поднять ротор на значительную высоту нереально, а изменения в 2-3 метра никаких существенных выгод не приносят.

При этом, необходимо помнить о длине кабеля и его сопротивлении. Большая длина вызовет падение напряжения и потребует значительных расходов на дорогостоящий кабель, поэтому слишком большого удаления от дома делать не рекомендуется, так же, как и чрезмерно приближать ветряк. Вибрации и шум от вращающегося ротора будут очень докучать жителям дома, вызовут нарушения сна и потребуют перемены места установки устройства.

Как самостоятельно изготовить ветрогенератор вертикального типа

Самостоятельное изготовление ветрогенератора вполне возможно, хотя и не так просто, как может показаться на первый взгляд. Понадобится либо собрать весь комплект оборудования, что весьма сложно, либо некоторые его элементы приобрести, что довольно дорого. В состав комплекта могут входить:

  • ветрогенератор
  • инвертор
  • контроллер
  • комплект аккумуляторов
  • провода, кабели, вспомогательное оборудование

Оптимальным вариантом станет частичное приобретение готового оборудования, частичное изготовление своими руками. Дело в том, что цены на узлы и элементы очень высоки, доступны не для всех. Кроме того, высокие единовременные вложения заставляют задуматься, нельзя ли эти средства реализовать более эффективным образом.

Система работает следующим образом:

  • ветряк вращается и передает момент на генератор
  • возникает электрический ток, который заряжает аккумулятор
  • аккумулятор присоединяется к инвертору, преобразующему постоянный ток в 220 В 50Гц переменного тока.

Сборку обычно начинают с генератора. Наиболее удачным вариантом является сборка 3-фазной конструкции на неодимовых магнитах, позволяющей вырабатывать соответствующий ток.

Вращающиеся части делаются на основе одной из систем, наиболее доступной для воссоздания своими руками. Лопасти изготавливаются из отрезков труб, распиленных пополам металлических бочек или согнутого определенным образом листового металла.

Мачта сваривается на земле и устанавливается в вертикальное положение уже в готовом виде. Как вариант, делается из дерева сразу на месте установки генератора. Для прочной и надежной установки следует сделать для опор фундамент и закрепить мачту анкерами. При большой высоте ее следует дополнительно закрепить растяжками.

Все узлы и детали системы требуют подгонки друг к другу по мощности, настройки работоспособности. Заранее сказать, насколько эффективным будет ветрогенератор, невозможно, так как слишком много неизвестных параметров не позволят вычислить характеристики системы. При этом, если изначально закладывать систему под определенную мощность, то на выходе всегда получаются довольно близкие значения. Основным требованием становится прочность и аккуратность изготовления узлов, чтобы работа генератора была достаточно стабильной и надежной.

Рекомендуемые товары

Вертикальный ветрогенератор своими руками. Турбина

Представленный ниже материал является свободным переводом англоязычной интернет-страницы об изготовлении своими руками турбины вертикального ветрогенератора.

Изготовление турбины

Вертикальный ветрогенератор. Инструменты и детали

При изготовлении такого ветрогенератора своими руками используются некоторые электроинструменты и детали.

Инструменты:

  • ножовка или ленточная пила
  • лобзик
  • токарный станок
  • ручная дрель
  • сверла
  • отвертка
  • 2 зажима
  • некоторые другие.

Детали и материалы:

  • труба ПВХ
  • водонепроницаемая древесина, лучше водонепроницаемая фанера (если нет, придется защищать ее покрытием краской)
  • 2 подшипники (нижний будет работать под нагрузкой)
  • масленка
  • катанка — стержень (2 размеров) (1 большой и 4 малых) (из нержавеющей стали, если это возможно)
  • болты и шайбы (2 размеров) (из нержавеющей стали, если это возможно)
  • кусок 40 мм круглого алюминия (сплав, будет содержать нижний подшипник)
  • 3 винта.
Вертикальный ветрогенератор. Изготовление лопастей

Первое, что нужно сделать — это измерить трубу ПВХ и порезать ее на 4 равные части (моя малая 2 метра, после разреза было 50 см в одной части).

Когда это сделано, полученные части разрезаются по длине.

Теперь есть 8 лопастей (они должны быть точно одного и того же размера!)

Изображения, представленные ниже, показывают последовательность работы.

Изготовление двух дисков турбины вертикального ветрогенератора

Берутся 2 куска водостойкой фанеры (12 мм), на каждом из кусков обозначается круг диаметром 40 см, лобзиком вырезаются эти круги.

Опять изображения, представленные ниже, показывают последовательность работы.

Делим изготовленный круг на 8 частей.

Изображение, приведенное ниже, показывает, как нужно разделить круг на 8 частей. Сделать это нужно только на одном куске, на следующем этапе я объясню почему.

Нарезка слотов (пазов) для лопастей турбины ветрогенератора

Итак, лучше все обозначить только на одном куске.

Дуги рисуются так: берется одна половинка трубы и накладывается на одну из 8 линий, предварительно нарисованных на куске фанеры. Карандашом отмечается линия и внутренней и внешней поверхности трубы. Тот кусок фанеры, где отмечены дуги, кладется сверху на неразмеченную кусок, а затем они затискиваються вместе. Когда порезы будут сделаны, они будут точно такими же. Я использовал пилы, обычно предназначенные для резки металла, полотно такой пилы чуть тоньше лопасти.

На сторонах обоих дисков сделаются метки, чтобы потом можно было точно наложить один на другой (например, указывается дуга 1 — дуга 1, дуга 2 — дуга 2 и т. д.). Таким образом, когда турбина будет собираться, диски будут точно соответствовать друг другу.

Еще одно нужно сделать, когда оба диска зажаты, — это просверлить центральное отверстие в соответствии с размером большого стержня (болта) и 4 отверстия для маленьких стержней. Распределите 4 стержни на одинаковом расстоянии (как вы видите на картинке), приблизительно на расстоянии 2 см от дуг. Таким образом, можно будет ставить шайбы на стержне, не касаясь лопастей. Теперь нужно закрепить лопасти турбины и 4 небольшие стержни, как показано на последней картинке. Они должны плотно прилегать!

Изображения показывают, как нужно нарезать слоты (пазы) для лопастей турбины ветрогенератора.

Установка центрального стержня

Сначала устанавливаем верхнюю часть турбины ветрогенератора, аналогично тому, как это сделано в предыдущем шаге. Обращаем внимание на метки, сделанные по бокам дисков, когда они были еще зажаты.

Таким образом, одни и те же разрезы будут соответствовать друг другу и турбина НЕ БУДЕТ шаткой. Возможно, лучше использовать молоток и маленький кусочек дерева, чтобы не повредить лопасти или диск, когда нужно будет нажать на них. Убеждаемся, что лопасти плотно вошли в пазы и 4 маленькие стержни попали в нужное место. Это непростая работа. Удачи!

Теперь следует сделать большой центральный стержень с необходимыми болтами и шайбами.

На дисках центр уже отмечен.

Изображения показывают последовательность установки центрального стержня.

Первое изображение показывает вид диска снизу. Я дал там 2 гайки, и они будут нижней опорой.

Я оставил там часть стержня, поэтому я смогу потом подключить какой-то генератор.

Верхний диск показан на втором изображении, а стержень с этой стороны будет обрезан короче. На этой стороне будет только подшипник, чтобы сбалансировать турбину, когда она будет установлена ​​в рамку крепления.

Обрезка центрального стержня до нужного размера

Если у вас есть станок, это довольно легко сделать. Я сделал толстый стержень, по 10 мм с обеих сторон.

Фотография показывает нижнюю сторону стержня.

Убедитесь, что он хорошо вписывается, потому что это будет определять, насколько легко ваш ветрогенератор будет работать.

Изготовление держателя нижней опоры вертикального ветрогенератора

Я использовал подшипник, сделанный из 3-х частей, как показано на первом изображении. Этот подшипник выполнен так, чтобы справиться с вертикальной нагрузкой.

Если вы посмотрите внимательно, то увидите, что в 2 дисках не один и тот же внутренний размер отверстия.

Диск с наибольшим отверстием (он справа) — это верхняя часть подшипника, на нем будет турбина ветрогенератора.

Я сделал на токарном станке отверстие, соответствующее диаметру подшипника, который будет использоваться. Не делайте его глубоким! Убедитесь, что верхняя часть подшипника просто торчит из держателя. Это нужно потому, что верхнее кольцо будет вращаться вместе с турбиной (если этого не сделать, он будет тереться с внутренней стороной держателя, замедлять турбину и быстро изнашиваться).

Вы также можете просверлить дырку в нижней части держателя таким образом, чтобы через нее проходил стержень. Сделайте эту дырку чуть больше, чем диаметр стержня, чтобы она не была слишком узкой и не давила на стержень.

Дальнейшие объяснения будут непонятны без просмотра изображений, иллюстрирующих последовательность работы.

Вы видели, что у этого подшипника нет смазки, поэтому мы должны будем установить смазочный ниппель.

Используйте резьбонарезные инструмент, чтобы это сделать. Сначала просверлите отверстие в соответствии размера резьбы и ниппеля, который вы будете использовать. Мой был M6.

Используйте немного масла при нарезке, потому что вы нарезаете в алюминии (в противном случае внутри все будет грубо, шершаво).

Поверните ваш инструмент, используемый для нарезки, примерно на один оборот, а затем на половину оборота назад. Таким образом металл режется внутри, и вы не сломаете свой инструмент. Используйте такую ​​последовательность нарезки, пока не получите правильную резьбу.

Для продолжения нажмите на кнопку с цифрой 2.

Изготовление крепления и монтаж турбины вертикального ветрогенератора

Изготовление крепления турбины вертикального ветрогенератора

Сначала найдите два куска дерева одинаковой длины. Убедитесь, что они достаточно широкие для изготовления сильной конструкции.

Найдите центр их обоих и сделайте отверстие по размеру держателя подшипника для дна на одном куске и отверстие по размеру верхнего подшипника на втором куске.

Мне повезло, у меня была большая дрель, чтобы сделать это. Если у вас нет большого сверла — высверлите отверстие, а затем вырежьте все остальное круглой фрезой или лобзиком.

Для дна нужно просверлить в центре дрелькой дырку на один размер больше, чем размер стержня, который впишется в подшипник. Для дна вам придется вырезать небольшую щель (слот), чтобы ниппель смог поместиться внутри и чтобы у вас было достаточно места разместить насос смазки. На фотографиях вы можете увидеть, как это должно выглядеть.

Возьмите также два ровных куска дерева для сторон крепления (у меня была фанера, так что я использовал ее).

Возьмите нижнюю часть с держателем подшипника внутри и положить его на ровную поверхность.

Возьмите одну боковину и прикрепите ее к нижней части. Сначала просверлите несколько отверстий сбоку так, чтобы винты лучше вошли. Убедитесь, что поверхности точно перпендикулярны (угол 90 градусов).

Сделайте то же самое для другой стороны.

Теперь возьмите полностью собранную вашу турбину и опустите ее в нижний подшипник.

Теперь берите верхнюю часть крепления и надвиньте подшипник на большой стержень. Измерьте с обеих сторон турбины и убедитесь, что расстояния одинаковые и ваша конструкция будет точно квадратной.

Изготовление крепления к опоре (башне) турбины вертикального ветрогенератора

То, что я показываю ниже, на самом деле я не измерял. Я убедился, что все точно совпадает с осью турбины. Значит просто сделайте так, как видите на фотографиях.

Обязательно убедитесь в прочности конструкции, ведь она будет выдерживать большие нагрузки.

Я еще не подсоединял к ней генератор. Думаю, это должен быть сильный генератор с катушками на неодимовых магнитах.

Демонстрация работы вертикального ветрогенератора

Ниже показана фотография установленного вертикального ветрогенератора.

Я использовал несколько канатов, чтобы стабилизировать турбину.

Также я воспользовался старыми кронштейнами от палатки для крепления канатов на землю, а на стороне турбины я использовал винты. Работает хорошо.

Когда вы будете монтировать вашу турбину, найдите помощника, который сможет удерживать турбину в то время, как вы будете крепить канаты на землю.

Небольшой фильм показывает (перейдите по ссылке), как работает турбина вертикального ветрогенератора.

Оригинальная англоязычная страница, находится здесь.

Ветрогенератор своими руками | Как сделать самому?

Сергей Васильевич, вложив в дело всего 300 долларов, качает электричество из ветра.

Мы познакомились с Сергеем Васильевичем, когда его ветроэлектростанция была только в проекте.

Ветрогенератор своими руками

«Линия электропередач рядом, – говорит Сергей Васильевич, – но «свободной мощности» нет. Предложили ставить свой трансформатор по цене легкового автомобиля».

«Незачем тратить такие деньги», – резонно решил хозяин. Задачу для себя Сергей Васильевич поставил так: получать достаточное количество энергии в доме площадью 80 квадратных метров зимой и летом.

Вначале хозяин приобрел солнечную батарею общей мощностью 120Вт. Через импульсную схему она заряжает кислотную аккумуляторную батарею на 200 Ампер-часов.  Летом этого хватает, однако зимой одной лишь солнечной энергии недостаточно.

На хозяйстве есть бензиновый генератор мощностью 2 киловатта. Но он предназначен для особых случаев: работы болгаркой, дрелью или аварийной подзарядки аккумуляторной батареи. Зимой использовать бензин невыгодно.

Решению сделать ветрогенератор самому альтернативы не было.

Участок Сергея Васильевича расположен в Киево-Святошинском районе. Здесь, по данным Укргидрометцентра среднегодовая скорость ветра меньше 4,5 метров в секунду. Достаточно ли такого слабого ветра для того, чтобы покрыть нужды хозяйства изобретателя?

Инженер по образованию и профессии, Сергей Васильевич подошел к процессу постройки ветряка с особой тщательностью. Вначале сделал уменьшенный макет, на котором тестировал силу ветра, действующую на лопасти. Остановился на вертикальной схеме ветрогенератора. Ее основное преимущество –ветрогенератор будет давать ток уже при скорости ветра от 1-2 метров в секунду. Кроме того, вертикальный ветрогенератор значительно менее малошумный, чем ветряк, построенный по горизонтальной схеме.

«Фундамент построил со значительным запасом, – говорит Сергей Васильевич, – для обустройства опор вполне достаточно 2-4 мешков цемента, 10 ведер песка и 30 ведер щебня. Каждый «куб» фундамента, в который помещается опора, получится размером почти с кухонную плиту. Этого более чем достаточно».

Крутящий момент лопастей ветряка передает на редуктор шестерня от болгарки:

Конечно, копать фундамент нужно на глубину, большую, чем глубина промерзания для вашего региона (в Украине это 80 сантиметров – округленно метр).

В цементный раствор замурованы уголки-сороковка. Изобретатель советует вначале собрать основу конструкции – прямоугольник на болтах – а затем уже заливать опоры бетоном. Так удастся избежать перекосов.

Итак, основание ветрогенератора – металлическая конструкция из уголка-сороковки, скрепленная болтами, высотой 5 метров. Лопасти ветрогенератора занимают в ней 2 метра высоты.

Через месяц на этом надежном основании изобретатель установил самодельные лопасти ветряка и подключенный к ним через планетарный редуктор от старой болгарки генератор мощностью 370 Ватт.

Редуктор с генератором в сборе:

Верхнее крепление лопастей:

Датчик ветра из донышек пивных жестянок (впоследствии Сергей Васильевич усовершенствовал его, добавив еще пару лопастей):

На данном этапе стоимость всех материалов конструкции ветрогенератора составила:

  1. Цемент – 4 мешка по 50 грн – 200 грн ($25 ).
  2. Песок, щебень – бесплатно.
  3. Редуктор – бесплатно, запчасть от старой болгарки.
  4. Генератор – около 250 грн ($30), это обычный б/у электродвигатель во всепогодном исполнении мощностью 370 ватт.
  5. Металлический уголок – 50 м. х 20 грн/м – около 1000 грн ($125).
  6. Болты с шайбами и гайками – 200 грн ($25).
  7. Доски (50-ка), 0,5 м. куб (идут на настил и на создание козырька) – 200 грн ($25).
  8. Бляха (4 листа) – 400 грн ($50).
  9. Электрокабель – 50 грн ($6).
  10. Краска – 30 грн ($4).

Итого: 2300 грн  (приблизительно $290).

Продолжительность работ для одного человека: 

  1. выкапывание ям фундамента — 1 день;
  2. создание конструкции опоры (порезка уголков, сверление отверстий под болты) – 2 дня;
  3. покраска – 0,5 дня;
  4. заливка четырех блоков фундамента – 0,5 дня;
  5. создание лопастей ветрогенератора (каркас, порезка оцинкованной бляхи, укрепление дисков и редуктора) – 4 дня;
  6. создание деревянного настила на высоте 3 метра – 0,5 дня;
  7. монтаж конструкции ветряка (заносится на высоту в разобранном состоянии) – 1 день;

Однако, ветряк и генератор – далеко не полный комплект устройства для превращения в электричество энергии ветра. Как эффективно снимать с ветрогенератора мощность? Ответ на этот вопрос читайте в продолжении НАМТЕПЛО.

Про интересную конструкцию самодельного ветрогенератора, созданного британскими энтузиастами, можно узнать в следующем материале НАМТЕПЛО.

Чем лучше и чем хуже вертикальный ветрогенератор в плане эксплуатации



Использование энергии ветра для выработки электричества – одна из перспективных форм развития альтернативной энергетики. Вертикальный ветрогенератор является перспективным направлением развития отрасли, т.к. имеет ряд преимуществ по сравнению с горизонтальными аналогами.

Принцип работы

Вертикальный ветряк представляет собой цилиндр, устанавливаемый на основание. Благодаря своей форме, работает вне зависимости от направления ветра. Вне зависимости от вида вертикального ветрогенератора,  он устроен таким образом, чтобы давление потока воздуха на одну из его сторон было выше, чем на другую.

Благодаря такой разнице в давлении происходит вращение оси генератора и выработка электричества. Из-за того, что сила ветра направлена на обе стороны ветрогенератора, показатель стартовой скорости ветра немного больше, чем у горизонтальных ветряков, но при должном качестве деталей, существует самораскрутка – т.е. значительное увеличение оборотов генератора даже при небольшом (от 3,5 м/с) ветре.

Какая конструкция лучше



Существует несколько принципиально разных конструкций вертикальных ветрогенераторов, каждая из них обладает своими достоинствами и недостатками.

  1. Ветряк Савониуса — полукруглые лопасти

    Ротор Савониуса. Модель такого вертикального ветряка включает в себя две или более лопасти, выполненные в форме полукруга. При этом давление, оказываемое на «открытую» часть круга значительно превышает то, которое воздействует на противоположную сторону. Конструкция достаточно проста в изготовлении, поэтому пользуется наибольшей популярностью среди самодельных вертикальных ветрогенераторов. Недостатки:
    • Большая «парусность». Воздействие ветра кренит всю конструкцию, создавая напряжение в оси и выводя из строя подшипник, на котором вращается весь ротор.
    • Конструкция не способна начать вращаться самостоятельно при наличии двух или трех лопастей, поэтому два таких ротора необходимо закреплять на одной оси одну под другой под углом в 90°
  2. На ортогональный ротор устанавливают дополнительные статические экраны для увеличения производительности

    Ротор Дарье или ортогональный. Существует множество модификаций такого вертикального ветрогенератора, но принцип работы остается неизменным. Вращение происходит за счет крылообразной формы лопасти генератора. При воздействии потока воздуха создается подъемная сила, за счет которой и вращается ось. Недостатки:
    • Низкая, даже по меркам ветрогенераторов, эффективность.
    • Скорость ветра для полной раскрутки такого генератора должна быть не менее 4 м/с. При этом до набора полной скорости вращения такого ротора, нагрузку к ветряку подключать нельзя – остановится.
    • Шумность. Если в остальных моделях шум издают только подвижные части (подшипники), то вертикальный ветрогенератор такого типа шумит лопастями. Очень сильно.
    • Из-за вибрации быстро выводит из строя подшипники и все несущие элементы конструкции.
  3. Геликоидный ротор имеет сложную конструкцию

    Геликоидный ротор. Этот вертикальный ветрогенератор имеет замысловатую форму, но по — сути это ортогональный ветрогенератор с вертикальной осью, только лопасти у него закручены вдоль несущей оси, что значительно повышает срок службы всей конструкции, т.к. обеспечивает равномерную нагрузку на подшипник и мачту со всех сторон. Недостатки:
    • Сложность в изготовлении, отсюда высокая стоимость вертикального ветряка.
  4. Многолопастной ветряк

    Многолопастной вертикальный ветрогенератор. Если рассматривать только коммерческие образцы – этот тип ротора является наиболее производительным и дает наименьшую нагрузку на несущие детали. Внутри такого вертикального ветряка содержится дополнительный ряд статичных лопастей, которые направляют поток воздуха таким образом, чтобы максимально увеличить эффективность ротора. Недостатки:
    • Высокая стоимость устройства из-за большого количества деталей.

Плюсы вертикальной оси

Положительные качества всех вертикальных ветрогенераторов:

  1. Не направляются по ветру, работают при любой его направленности.
  2. В отличие от ветрогенераторов с горизонтальной осью, имеет только одну ось вращения, следовательно бо́льший срок службы.
  3. Возможна установка на небольшой высоте — от 1,5м, в зависимости от модели.
  4. Все важные подвижные элементы находятся в нижней части генератора, что позволяет удобно его обслуживать.

    Важно. При необходимости вал ротора увеличивается до необходимой длины для удобства доступа к статору, без существенной потери КПД.

  5. Возможность собрать действующий ветрогенератор своими руками из подручных материалов.
  6. Благодаря возможности создания жесткой конструкции с несколькими точками опоры, вертикальные ветрогенераторы работают при бо́льшей максимальной скорости ветра.
  7. Более высокая устойчивость к разрушающему воздействию ветра.
  8. В этих ветряках возможно создание собственной циркуляции воздуха, за счет чего образуется быстроходный эффект, когда линейная скорость лопастей в 20 и более раз превышает скорость ветра.

Минусы

  1. Громоздкость конструкции. Самые легкие вертикальные ветряки весят не менее 300 кг вместе со стойкой.
  2. Низкая эффективность по сравнению с горизонтальным.
  3. Шумность. Ветряк издает шум от лопастей во время работы.

Видео. Геликоидный ветрогенератор

В ролике наглядно показана работа геликоидного ветряка, установленного на специальной мачте



Бестопливный генератор — способ заработать на безграмотности Выгодно ли покупать комплектом солнечные батареи для дачи Окупаются ли солнечные батареи для частного дома Виды садовых светильников и фонарей на солнечных батареях, как и где использовать.

фото и видео. Изготовление ветрогенератора своими руками. Вертикальный ветрогенератор своими руками

Правовые аспекты установки ветряного электрогенератора

Ветрогенератор является необычной собственностью, обладание этим устройством связано с соблюдением определённых правил и законов.  Если устройство устанавливается недалеко от мостов, аэропортов и тоннелей, то высота мачты не должна превышать 15 м. Уровень создаваемого шума не должен превышать 70 дБ днём и 60 дБ ночью. Необходима защита от создания телепомех. Экологические службы не должны предъявлять претензии по поводу создания препятствий для миграции перелётных птиц. Желательно перед началом строительства по каждому параметру провести юридическую консультацию и иметь официальные документы. Никакого налогообложения за производство электроэнергии для собственных бытовых нужд законами не предусмотрено.

Разновидности генераторов

Прежде чем решить, как сделать ветрогенератор своими руками, рассмотрим особенности конструкции:

По расположению генератора устройство может быть горизонтальным или вертикальным

  • Классическая конструкция — ось вращения расположена параллельно земле, плоскость лопастей — перпендикулярно. Такая схема предусматривает свободное вращение вокруг вертикальной оси, для позиционирования «по ветру».

    Чтобы плоскость вращения всегда занимала эффективное положения перпендикулярно направлению ветра, требуется хвостовое оперение, которое работает по принципу флюгера. Принцип действия простой: ветер меняет направление, воздействует на хвостовую плоскость, ось вращения генератора всегда расположена вдоль движения потока воздуха. Единственная сложность — подключение силовых кабелей. Если корпус генератора совершит несколько оборотов вокруг вертикальной оси, провода намотаются на мачту, и оборвутся. Поэтому требуется установка ограничителя. Он не позволяет совершить полный оборот, но приводит к зависанию) корпуса в мертвых зонах.Промышленные образцы имеют электронный регулятор слежения за направлением, и поворачивает корпус с помощью встроенного электромотора.Решить проблему можно с помощью цилиндрического пропеллера, который принимает воздушный поток как поперек, так и вдоль оси вращения. Правда, эффективность зависит от угла атаки. Чем больше ветер отклоняется от угла 90°, тем ниже КПД.

    Но такую конструкцию трудно сделать своими руками, из-за сложностей в аэродинамике движителя.
  • Оптимальный вариант — вертикальные генераторы (то есть, ось вращения вала располагается перпендикулярно земле). При таком расположении аэродинамического движителя, вы вообще не зависите от направления ветра. Вращение одинаково эффективно, и зависит только от силы потока воздуха.

    Форма лопастей может быть самой разной, есть простор для инженерной мысли. Существует множество интересных аэродинамических проектов, разработанных научными учреждениями. Причем чертежи большинства их них представлены в свободном доступе. Причем конструкции, опубликованные в литературе технической направленности времен СССР, порой оказываются наиболее рациональными.

    Роторные винты имеют неоспоримое преимущество: вертикальный генератор закреплен статично, что упрощает электрическое подключение. Нет необходимости устанавливать ограничители вращения, как в горизонтальных схемах.

По номиналу генерируемого напряжения

  • Ветрогенераторы, изготовленные своими руками на 220 вольт, не требуют дополнительных преобразователей величины напряжения, и являются конструкциями прямого применения. Однако их работа зависит от силы ветра. Как минимум, необходим стабилизатор на выходе, выполняющий функцию регулятора при разных оборотах вала. При отсутствии ветра, система просто не работает.Преимущества неоспоримы: как правило, используется мощный электродвигатель, на который можно устанавливать винт, непосредственно закрепив его к валу ротора. Переделки минимальны по трудозатратам, такие моторы уже имеют удобный постамент, остается лишь изготовить опорную площадку.

    Электродвигатели можно найти с минимальными финансовыми затратами: от любой списанной электроустановки. Например, промышленного вентилятора. Подходят и моторы от бытовой техники: стиральные машины, пылесосы.
  • 12 вольт (реже 24 вольта). Наиболее популярная конструкция — ветрогенератор своими руками из автомобильного генератора. Причем он демонтируется из автомобиля-донора в комплекте с преобразователем напряжения. Переделка схемы не требуется: на выходе мы получаем либо 14 вольт (в автомобиле таким напряжением заряжается аккумулятор), либо требуемые для питания вашей энергосистемы 12 вольт. Наличие шкива позволяет сконструировать ременную передачу с требуемым соотношением оборотов. Ответную часть также можно снять с автомобиля донора.

    При желании, лопасти крепятся непосредственно на вал.Такие ветрогенераторы можно использовать как для непосредственного подключения к потребителю, так и в автомобильном режиме, воспроизведя систему зарядки в комплекте с аккумулятором. Если для организации энергоснабжения требуется 12 вольт, питание берется напрямую с клемм аккумулятора. Для получения 220 вольт, используется преобразователь. Подходящий вариант — источник бесперебойного питания.

    Система работает следующим образом: если отбираемая мощность ниже, чем может обеспечить генератор — аккумуляторные батареи заряжаются. Если порог превышен — мощность генерируется от АКБ.

Типовые примеры самодельных ветрогенераторов

Устройство ветрогенератора одинаковое, вне зависимости от выбранной схемы.

  • Пропеллер, который может быть установлен как непосредственно на вал генератора, так и с помощью ременной (цепной, шестеренной передачи).
  • Собственно генератор. Это может быть готовое устройство (например, с автомобиля), либо обычный электродвигатель, который при вращении вырабатывает электроток.
  • Инвертор, регулятор напряжения, стабилизатор — в зависимости от выбранного напряжения.
  • Буферный элемент — аккумуляторные батареи, обеспечивающие непрерывность генерации, вне зависимости от наличия ветра.
  • Установочная конструкция: мачта, кронштейн для монтажа на крыше.

Пропеллер

Можно изготовить из любого материала: хоть из пластиковых бутылок. Правда гибкие лопасти существенно ограничивают мощность.

Достаточно вырезать в них полости, для забора ветра.

Неплохой вариант — ветряк бытового из кулера. Вы получаете готовую конструкцию с профессионально выполненными лопастями и сбалансированным электродвигателем.

Аналогичная конструкция изготавливается из охладителя компьютерных блоков питания. Правда мощность такого генератора мизерная — разве что зажечь лампу на светодиодах, или зарядить мобильный телефон.

Тем не менее, система вполне работоспособна.

Неплохие лопасти получаются из алюминиевых листов. Материал доступен, его несложно отформовать, пропеллер получается достаточно легким.

Если вы создаете роторный пропеллер для вертикального генератора, можно воспользоваться жестяными банкам, разрезанными вдоль. Для мощных систем применяются половинки стальных бочек (вплоть до объема 200 литров).

Разумеется, придется с особой тщательностью подойти к вопросу надежности. Мощный каркас, вал на подшипниках.

Генератор

Как говорилось выше, можно использовать готовый автомобильный, или электродвигатель от промышленных электроустановок (бытовой техники). В качестве примера: ветрогенератор из шуруповерта. Используется вся конструкция: двигатель, редуктор, патрон для крепления лопастей.

Компактный генератор получается из шагового двигателя принтера. Опять же, мощности хватает лишь на питание светодиодного светильника или зарядного устройства смартфона. На природе — незаменимая вещь.

Если вы с паяльником «на ты», и неплохо разбираетесь в радиотехнике — генератор можно собрать самостоятельно. Популярная схема: ветрогенератор на неодимовых магнитах. Преимущества конструкции — можно самостоятельно рассчитать мощность под ветровую нагрузку в вашей местности. Почему неодимовые магниты? Компактность при высокой мощности.

Можно переделать ротор имеющегося генератора.

Либо создать собственную конструкцию, с изготовлением обмоток.

Эффективность такого ветряка на порядок выше, чем при использовании схемы с электродвигателем. Еще одно неоспоримое преимущество — компактность. Неодимовый генератор плоский, и его можно разместить непосредственно в центральной муфте пропеллера.

Мачта

Изготовление этого элемента не требует познаний в электронике, но от его прочности зависит жизнеспособность всего ветрогенератора.

Например, мачта высотой 10–15 метров требует грамотно рассчитанных растяжек и противовесов. Иначе сильный порыв ветра может завалить конструкцию.

Если мощность генератора не превышает 1 кВт, вес конструкции не такой большой, и вопросы прочности мачты отходят на второй план.

Классификация ветровых электростанций для частного дома

Агрегат, преобразующий кинетическую энергию направленного потока воздуха (ветра) сначала в механическую энергию вращающегося ротора, а затем в электрическую энергию, имеет несколько названий – «ветрогенератор», «ветроэлектрическая установка» (ВЭУ), бытовое название – «ветряк». Их классификация предлагает три категории – промышленные для работы на производственных предприятиях; коммерческие, вырабатывающие электричество на продажу; бытовые для индивидуального использования.

В зависимости от расположения оси основного ротора в классификации имеются два типа устройств – вертикальный и горизонтальный. В устройствах вертикального типа ось турбины расположена вертикально по отношению к плоскости земли. Она может работать при небольшом ветре.


ФОТО: tcip.ruВетрогенераторы вертикального типа с ротором Савониуса


ФОТО: tcip.ru


ФОТО: tcip.ruВетряк с многолопастным ротором

У машин горизонтального типа ось ротора вращается параллельно поверхности земли. Такие ветрогенераторы имеют большую мощность преобразования энергии ветра в электрический ток. Их предшественники электричество не вырабатывали, но мололи муку, качали воду и делали много других полезных дел.


ФОТО: YouTube.comПредшественник ветрогенераторов
ФОТО: sovet-ingenera.comВариант реализации ветряного двигателя горизонтального типа

Ветрогенератор является отличным решением задачи обеспечения загородного дома электроэнергией. В некоторых ситуациях другого решения и не существует.

Базовое устройство и принцип действия ветряков-генераторов

Любой ветрогенератор превращает энергию потока воздуха в электроэнергию. Под действием ветра крыльчатка любой конструкции начинает вращаться, через трансмиссию передаёт вращение ротору электрической машины, а в ней уже происходит выработка электрического тока. При этом электрические машины могут быть разных типов. Можно скомпоновать ветрогенератор с мотором от стиральной машины, можно построить самодельный генератор на неодимовых магнитах.

Основные конструктивные элементы

В схему устройства ветрогенераторов включают:

  • генератор;
  • инвертор;
  • аккумулятор;
  • ось крепления ротора;
  • ветровое колесо;
  • электроконтроллер;
  • провода, электрощиток;
  • крепежная мачта, ее запрещено устанавливать вблизи от высотных зданий, мостов, других строений свыше 15 метров.

Генератор

Чтобы сделать ветрогенератор своими руками, понадобится двигатель с рабочим напряжением от 30 до 100 вольт. Проверить, в рабочем ли он состоянии, поможет подключенная 12-вольтовая лампочка.






Если от вращения мотора она загорится, все в порядке. Мотор переделывают в генератор. Для этого:

  • перематывают обмотку статора;
  • добавляют на ротор неодимовые магниты, их крепят в высверленные отверстия в полюсах или по диаметру станины,
  • эпоксидной смолой или другим двухкомпонентным клеящим составом заливают пустоты между магнитами;
  • оборачивают ротор плотной бумагой.

Трехфазная обмотка предпочтительнее, она снижает амплитуду изменения тока, повышает КПД генератора.

Фазы попеременно заменяют друг друга. Снижается уровень вибрации, уменьшается шумовой эффект. Повышается срок службы, дольше не вырабатывается крепежный вал.

Лопастной винт

Разработано несколько видов конструкций этого элемента. Чертежи и размеры для изготовления ветрового колеса ветрогенератора легко найти в свободном доступе.

Для изготовления лопастей используют несколько видов материалов:

  • листовое оцинкованное железо;
  • нержавеющую сталь;
  • дюралевые сплавы;
  • тонкостенные трубы;
  • твердый стеклопластик, имеющий запас прочности на изгиб;
  • полипропилен;.

Алгоритм изготовления лопастей из трубы со стенкой 2-3 мм:

  • необходимый диаметр трубы задается расчетной длиной элемента 20% расчетной длины;
  • труба раскраивается на 4 равных продольных полосы;
  • концы скругляются по заготовленному шаблону, лопасти нужны идентичные;
  • они привариваются или клепаются к крепежному колесу, который одевается на ось генератора.

Особенности моделей

В зависимости от конструкции, допускаются жестко фиксированные или парусные виды лопастей.

Для вертикального типа ветрогенераторов лучше использовать парусные, они чутко реагируют на каждый порыв ветра, но их приходится менять чаще, чем жесткие.

Шаг винтового колеса выбирается произвольно, обычно делают от 2 до 6 лопастей.






Что еще нужно для изготовления ветрогенератора?

Для баланса в противовес по оси колеса устанавливают флюгер – стержень до 30 см с деревянной или металлической пластиной. Генератор крепят так, чтобы при порыве ветра они не задевали мачту, минимальное расстояние 25 мм.

Поворотная ось представляет собой кусок тонкой трубы с двумя подшипниками. Для финальной сборки делают раму, для этого лучше использовать полый металлический профиль или толстый металлический уголок.

Подключение

На двухэтажных домах допустима установка ветряков вертикального типа на крыши, горизонтальные с большим махом лопастей монтируют на мачту, удаленную от дома на 3-5 метров.

В электросхеме подключения последовательно подсоединены:

  • емкостные элементы, лучше приобрести готовые аккумуляторы, их оснащают контроллерами;
  • инвертор, преобразующий постоянный ток, поступающий от ветрогенератора, в переменный напряжением 220 В.

Лучше приобрести готовые аккумуляторы, их выбирают по вырабатываемой мощности, оснащают контроллерами, регулирующими уровень зарядки.

Эксплуатация

В процессе работы ветрогенератор периодически смазывают. Щетки при длительной работе подгорают, их чистят, тщательно смазывают не реже двух раз в месяц.

Если появился люфт ветряного колеса, он выявляется по дребезжанию, усиленной вибрации, генератор необходимо ревизировать.

Периодически уровнем проверяют угол наклона мачты. Раз в полгода восстанавливают антикоррозионную защиту на металлических деталях, незащищенных от осадков.

Как сделать своими руками роторную ветряную установку

Самодельное изготовление любой ветроэнергетической установки является довольно сложной работой. Многие детали и узлы требуют использования станков и специального оборудования и умения на них работать. Поэтому гораздо разумнее подобрать готовые детали и узлы, а своими руками их при необходимости доработать и выполнить полную сборку.

Одно из серьёзных достоинств ВЭУ роторного типа в том, что она небольшой высоты. При её изготовлении и обслуживании не потребуется высотных работ.

Инструменты и материалы

Если решено сделать своими руками ветроэнергетическую установку роторного типа, то первые шаги на пути к результату должны быть такие:

  1. Выбрать вид ротора.
  2. Изучить различные конструкции этого вида.
  3. Подобрать материалы и готовые узлы для его изготовления.
  4. Подготовить соответствующий будущей работе инструмент.

В качестве примера приводится изготовление простейшего маломощного ветряка из готовых деталей с вертикальным ротором для зарядки телефонного аккумулятора. Он делается в порядке, указанном в таблице.

Иллюстрация Описание действия
Подготовка комплектующих
Сборка ротора
Сборка всего устройства

Чертежи и схемы

Для более мощного и сложного ветрогенератора требуются готовые детали и устройства. Лопасти можно сделать из стандартной 200-литровой металлической бочки. Ротор генератора изготавливается из ступицы тормозного диска от списанного автомобиля и неодимовых магнитов. Чертежи и схемы следует подобрать готовые.

Инструкция по изготовлению

Иллюстрация Описание действия
Изготовление лопастей
Схемы однофазного и трёхфазного генераторов
Изготовление ротора генератора из ступицы автомобильного колеса
Генератор из двигателя от стиральной машины

Тестирование устройства

Тестирование электрогенератора заключается в проверке его работы под нагрузкой. На его выход надо подключить электролампу, к выходным клеммам − вольтметр, а в разрыв любого участка цепи включить амперметр.

Фото ветрогенераторов своими руками

Главные плюсы стандартных решений

В информационном поле имеется большое количество рекомендаций по разработке моделей разной мощности, с учетом предполагаемых затрат, окупаемости и планируемой нагрузки.

Фирменная ветросиловая установка среднего мощностного ценового ассортимента при номинальной скорости ветра 5-6 м/сек, вырабатывает за год до 250 киловатт бесплатной энергии.

Если создать вертикальный ветрогенератор самостоятельно, в том числе из подручных материалов, средств потребуется в несколько раз меньше, что положительно скажется на окупаемости проекта в целом.

С другой стороны, желание реализовать масштабный проект строительства мощного ветрогенератора для обогрева дома и работы энергоемкой бытовой техники, потребует значительных затрат. Давайте разбираться.

Проблемы создания мощных ветросиловых установок

Станция мощностью всего 2 кВт представляет собой установленную в массивный бетонный фундамент прочную ветростойкую конструкцию высотой от 8 метров с 3-х метровым металлическим ротором. Кроме основных затрат, для установки такого сооружения потребуются расходы на аренду строительной и подъемно-крановой техники.

Попытки собрать более мощный вертикальный ветрогенератор своими руками без должного опыта и основательной материальной базы чаще всего оборачиваются дополнительными затратами на доводку конструкции до рабочего состояния. Для бытового пользования, хотя бы на начальном этапе целесообразно сосредоточить усилия на создании ветрогенератора мощностью до 500 ватт.

Свойства бюджетных моделей

Для самодельной ветровой электростанции рекомендуется взять за основу конструкцию с горизонтальной осью вращения и лопастной крыльчаткой. Такие схемы выгодно отличаются небольшой материалоемкостью и высоким КПД. Наиболее доступные по стоимости и простые по конструкции высокооборотные двух- и трехлопастные ветроколеса.

Конструктивные особенности высокооборотных систем

Аэродинамические свойства высокооборотных роторов во многом зависят от конфигурации лопаток. На КПД отражаются внешне незаметные погрешности, поэтому без отсутствия должных навыков лучше отдать предпочтение тихоходному варианту рабочего колеса.

  • Чем меньше лопастей, тем больше проблем с балансировкой ротора. Оптимальный по сложности и трудоемкости вариант ветрового колеса диаметром от 2-х метров должен иметь не менее 5-6 лопастей.
  • Высокооборотные конструкции характеризуются повышенной шумностью, которая усиливается с увеличением диаметра и скорости оборотов. Такая особенность мощного быстроходного ветросилового агрегата исключает его установку в местности с плотной застройкой или на крыше городской многоэтажки.

На заметку: двукратное увеличение количества лопастей при скорости ветра 8 м/сек. поможет повысить мощность генератора до 450-500 ватт, но такая доработка неизбежно потребует установки дорогостоящего редуктора.

Как защитить ветряк от ураганного ветра?

На практике с наилучшей стороны зарекомендовало себя простое по конструкции и эффективное в работе устройство, известное под названием боковой лопаты.

  • При скорости набегающего потока до 8 м/сек. ротор устанавливается по его оси посредством оперения.
  • При усилении ветра давление потока преодолевает жесткость пружины и ветрогенератор складывается, что приводит к изменению угла подачи воздуха на лопасти и снижению уровня воспринимаемых нагрузок.

Рекомендации по изготовлению лопастей

Для самостоятельного изготовления лопастей рабочего колеса больше подходит более стойкая к нагрузкам на растяжение древесина. В бюджетном и менее затратном по времени варианте, в качестве исходного сырья можно использовать ПВХ-трубы диаметром 160 мм.

В лучшем решении — это трубопроводные элементы для напорных водопроводных и канализационных систем марки SDR PN 6,3 с толщиной стенок не менее 4-х мм. Пластиковые лопасти менее сложные в изготовлении, в меньшей степени подвержены температурным и влажностным факторам.

Вырезанные по шаблону заготовки следует тщательно отшлифовать и закруглить острые края.

Обустройство штатного оборудования

Для крепления лопастей необходимо использовать головку. Стандартная конструкция представляет собой стальной диск толщиной 6-8 мм, к которому по количеству лопастей с равными интервалами привариваются металлические кронштейны толщиной 10-12 мм и длиной 300 мм с отверстиями для установки резьбового крепежа.

Головка крепится к корпусу генератора болтами с контрагайками. Для рамы конструкции потребуется сталь толщиной 6-8 мм, или достаточно широкий отрезок швеллера.

Токоприемник и подвижное соединение

Конструкция тандема подвижный контакт-токоприемник стандартная. В самом простом варианте — это диэлектрическая втулка, контактная группа и подпружиненные графитные щетки от автомобильного стартера. Для предохранения от атмосферных осадков узел оборудуется защитным кожухом.

Для разворота ротора по направлению воздушного потока монтируется подвижное соединение рамы ветрогенератора по отношению к мачте. Специалисты рекомендуют использовать преимущества максимально стойких к осевым нагрузкам роликовых подшипников с посадочным диаметром не менее 60 мм.

Аккумуляторно – конверторное оборудование

Стандартное напряжение веломоторного генератора составляет 25-26 вольт, поэтому для хранения выработанной электроэнергии можно использовать два последовательно соединенных 12-ти вольтовых аккумулятора суммарной емкостью от 100 а/ч.

Для преобразования постоянного тока в переменный 220 вольт в схему вводится инвертор напряжения мощностью от 600 ватт.

Даже если вам легко удастся создать вертикальный ветрогенератор своими руками, помните, что безотказная работа такого устройства гарантируется при условии своевременного и квалифицированного обслуживания.

Изготовление турбины

1. Соединяющий элемент — предназначен для соединения ротора к лопастям ветрогенератора.
2. Схема расположения лопастей — два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве «тестера полярности» можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора — электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.
160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.
60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки — это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление — намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособление для намотки катушек

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.
После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Схема соединения катушек статора

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
    А. Конфигурация «звезда«. Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
    B. Конфигурация «треугольник». Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
    C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше — места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).
На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:
1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора — достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Итог

Ветряные генераторы хоть и сложны в устройстве и требуют постоянного внимания, незаменимы в отдаленных от линии ЛЭП местах, как альтернативный источник электроэнергии. Совершенно безопасный с экологической точки зрения. Следовательно, мы надеемся, что, прочитав эту статью и просмотрев видео-инструкцию, вы сможете сделать ветрогенератор на 220В своими руками как вертикальный, так и горизонтальный и обеспечить свое жилье альтернативным источником электроэнергии.

Источники

  • https://homius.ru/vetrogenerator-svoimi-rukami.html
  • https://ProFazu.ru/elektrooborudovanie/samodelki-oborud/vetrogenerator-svoimi-rukami.html
  • https://stroitelcentr.ru/prostoj-vetrogenerator-svoimi-rukami/
  • https://dom-i-remont.info/posts/elektrika/byitovyie-hitrosti-vertikalnyiy-vetrogenerator-svoimi-rukami/
  • https://eurosamodelki.ru/katalog-samodelok/alternativnaja-energetika/vertikalnyi-vetrogenerator-svoimi-rukami
  • https://aquatic-home.ru/kak-sdelat-vetrogeneratorna-220v-svoimi-rukami.html

[свернуть]

Самодельная ветряная турбина с вертикальной осью, сделанная из бытового лома

Вы хотели попробовать собрать энергию ветра для питания своего дома, но вас оттолкнула чрезмерная цена имеющихся в продаже ветряных турбин? Вот руководство по созданию собственной ветряной турбины с вертикальной осью из отходов, которые большинство из нас хранит дома. Если у вас нет материалов, их можно недорого купить в местном хозяйственном магазине. Преимущество ветряной турбины с вертикальной осью заключается в том, что ее не нужно выравнивать по направлению ветра, она использует энергию ветра независимо от того, в каком направлении дует ветер.

Вы не думали о отключении от сети? Вот несколько советов и приемов по снижению энергопотребления в вашем доме, а также шаги, которые необходимо предпринять, чтобы начать отключение от сети. Также ознакомьтесь с нашим руководством по правильному подбору инвертора.

Если в вашем районе недостаточно ветра, почему бы не попробовать построить собственную солнечную батарею?

Что нужно для создания ветряной турбины с вертикальной осью

  • Листы фанеры 6 x 30 см x 120 см x 4 мм (12 ″ x 50 ″ x 1/6 ″)
  • Гибкая труба диаметром 3 x 1 м x 60 мм (40 ″ x 2 1/3 ″) — Купить здесь
  • Длинные шурупы по дереву, 36 x 10 мм (1/2 ″) — Купить здесь
  • Длинная оцинкованная труба 6 x 50 см (24 ″) — Купить здесь
  • 5 тройников из оцинкованной трубы — Купить здесь
  • 1 х оцинкованный колено для трубы — Купить здесь
  • Длинная оцинкованная труба 1 x 30 см (12 ″) — Купить здесь
  • 5 оцинкованных резьбовых ниппелей — Купить здесь
  • 1 штанга с резьбой M12 (1/2 ″) — Купить здесь
  • Гайки 18 x M12 (1/2 ″) — Купить здесь
  • Шайба 30 x 12 мм (1/2 ″) — Купить здесь
  • Контактный клей — Купить здесь
  • Expansion Foam — Купить здесь
  • Шлифованная шпатлевка для дерева или шпатлевка — Купить здесь
  • Серия наждачной бумаги — зернистость от 80 до 240 — Купить здесь
  • Automotive Spray On Primer — Купить здесь
  • УФ-стойкая аэрозольная краска — Купить здесь
  • Силиконовый герметик
  • — Купить здесь
  • Старая рама подшипника стиральной машины — или упорный подшипник для вращения на
  • Динамо или электрический генератор / генератор — Основное руководство по созданию собственного показано ниже
  • Около 10 м (30 футов) шнура или веревки — Купить здесь

Как сделать ветряную турбину с вертикальной осью

Мы разделили руководство по созданию турбины на четыре части: изготовление лопаток турбины, изготовление конструкции, монтаж лопастей и, наконец, добавление генератора.Вы начинаете работу над рамой, пока ждете, пока лезвия впитаются и высохнут на разных этапах.

Формирование лопаток турбины

Для начала вам нужно придать форму лопаткам турбины. Для этого нужно сделать фанеру работоспособной, замочив на ночь в холодной воде. Вы можете разместить их на ступеньках в бассейне, в пруду или в ванне. Убедитесь, что они полностью покрыты и вода может проникать между отдельными листами.

На следующий день, когда фанера пропитается на ночь, она должна быть готова к формованию.Чтобы сформировать фанеру, свяжите два листа вместе вокруг ствола дерева большого диаметра. Ствол дерева должен быть около 60-80 см (24-30 ″) в диаметре. Убедитесь, что листы плотно прилегают к стволу, и дайте им высохнуть в течение примерно суток. Выровняйте углы досок так, чтобы все они были на одинаковой высоте и шаге, чтобы все три имели одинаковую форму.

Когда древесина почти высохнет, с помощью спиртового уровня проведите линию по вершине и основанию лезвий и обрежьте углы, чтобы придать им дополнительную форму.Обрежьте углы пилой по дереву.

Теперь вы готовы сформировать лопасти в форме крыла.

Вставьте отрезки трубы между двумя листами фанеры, прикрутите фанеру к трубе, используя 6 шурупов на каждой длине. Вы также можете добавить немного прочного клея, такого как контактный клей, для улучшения сцепления.

Склейте заднюю кромку листов фанеры и склейте их.

Обрежьте концы гибкой трубы заподлицо с фанерой, затем вырежьте несколько картонных торцевых крышек и закрепите их липкой лентой на концах лезвий, чтобы удерживать пену.Оставьте зазор возле задней кромки для добавления пены.

Теперь заполните лезвия пеной, убедившись, что она идет полностью вперед и назад. Пена помогает удерживать лезвия жесткими и сохранять форму. Важно убедиться, что каждая лопасть получает одинаковое количество пены, чтобы все они имели одинаковый вес, в противном случае ваша конечная турбина будет разбалансирована и будет трястись или повреждаться на высокой скорости.

На следующий день снимите шурупы и заглушки и отшлифуйте пену до гладкости, чтобы придать лезвиям окончательную форму.

Заполнить зазоры и выступы шпатлевкой для дерева или шлифуемой шпатлевкой.

После затвердевания шпатлевки отшлифуйте лезвия до гладкой поверхности, начиная с крупной (зернистостью 80) наждачной бумаги и заканчивая мелкой (зернистостью 240).

Наконец, обработайте лезвия слоем автомобильной грунтовки, а затем слоем аэрозольной краски, устойчивой к ультрафиолетовому излучению.

Изготовление опорной конструкции для лезвия

Конструкция трубопровода изготавливается из оцинкованных труб и фитингов.Основа конструкции, на которой вращается турбина, представляет собой старую раму стиральной машины с системой двойных подшипников.

Начните со сборки удерживающих рычагов с 6 лезвиями. На конце каждой длины шести оцинкованных труб длиной 50 см (20 дюймов) вам нужно завинтить винт на секции. Разрежьте стержень с резьбой на 6 частей, а затем используйте наполнитель для корпуса, чтобы плотно вставить стержень с резьбой в центр оцинкованной трубы. Поместите гайку и шайбу в основание стержня с резьбой для дополнительной поддержки. Из трубы должно выходить достаточно стержня с резьбой, чтобы пройти через самую толстую часть лопастей, а также места для двух шайб и двух гаек, примерно 70 см (28 дюймов) должно быть достаточно.

Затем соберите оцинкованные трубы и соединители, как показано ниже. Три рычага вверху соединены резьбовыми ниппелями, а затем три рычага внизу, разделенные короткой гальванизированной трубкой.

Завершите раму, добавив опорную раму стиральной машины.

Поставьте раму вертикально и разнесите руки попарно так, чтобы три пары находились на одинаковом расстоянии друг от друга.

Как только вы закончите правильно расставлять рычаги, заблокируйте все оцинкованные фитинги с помощью фиксатора для резьбы или клея, а затем вы можете распылить на раму, чтобы она соответствовала лопастям турбины.

Монтаж лопаток турбины

Начните с того, что с помощью спиртового уровня убедитесь, что рама выровнена, и добавляйте или удаляя набивку по мере необходимости.

Отметьте монтажные отверстия для резьбовых стержней, чтобы они проходили через лезвия на каждом лезвии, а затем просверлите отверстия немного больше, чем резьбовые стержни, чтобы было место для регулировки.

Поместите гайку и шайбу на внутреннюю и внешнюю стороны каждого резьбового стержня так, чтобы лопатка турбины находилась между ними.Перед затяжкой гаек используйте спиртовой уровень, чтобы убедиться, что лезвия выровнены.

После установки на раму все лезвия должны иметь одинаковое пространство и одинаковую высоту.

Добавьте силиконовый герметик внутри и снаружи гаек и болтов, чтобы вода не попала в отверстие в лопатке турбины и не ржавела.

Теперь вы готовы к установке генератора.

Монтаж генератора

Последним шагом является установка генератора, который преобразует вращение турбины в электрическую энергию.Генератор просто соединяется с основанием турбины, так что при вращении турбины вращается ротор генератора. Вы можете использовать коммерчески купленный генератор или генератор переменного тока для достижения максимальной эффективности или просто сделать свой собственный, как описано ниже.

В этом руководстве мы делаем простой генератор, используя старый струйный водяной насос.

Снимите крышку старого водяного насоса и приклейте на его ротор магниты на равном расстоянии друг от друга. Используйте пару катушек стиральной машины и приклейте их к корпусу так, чтобы они совпали с магнитами.Магниты должны проходить по катушкам при вращении насоса.

Затем насос-генератор должен быть установлен под турбиной с валом турбины, соединенным с лопастью насоса.

Для повышения эффективности выхода разместите диоды в конфигурации, показанной ниже, поперек каждой катушки. Диоды помогают поддерживать поток электричества в одном направлении, а не в обратном направлении.

Теперь ваша ветряная турбина с вертикальной осью завершена и готова к подключению к контроллеру заряда для питания вашего дома или кемпингового оборудования.

Вы сделали свой собственный ветряк с вертикальной осью? Дайте нам знать в разделе комментариев ниже или отправьте нам свои фотографии для включения в этот пост, мы будем рады услышать от вас.

DIY VAWT — Ветряная турбина с вертикальной осью

В этом проекте мы построим небольшую ветряную турбину с вертикальной осью, сделай сам VAWT. Мы не ожидаем получить более 50 ватт производимой мощности, хотя было бы довольно просто удвоить размер лопасти для увеличения мощности.

Это устройство VAWT «сделай сам» основано на использовании 4-дюймовых труб из ПВХ, разрезанных пополам, для лезвий. Лезвия устанавливаются на обода велосипеда. Затем эта конструкция монтируется с помощью 2х4, и двигатель беговой дорожки постоянного тока подключается снизу через ремень. Ременное соединение позволяет увеличить число оборотов двигателя беговой дорожки.

Мы только начали этот проект и нас беспокоит следующее:

  • Требуется начальная скорость ветра — зубчатая передача, необходимая для увеличения оборотов двигателя беговой дорожки, может препятствовать запуску ветряной турбины, пока не будет достигнута очень высокая скорость ветра.
  • Передаточное число
  • — даст ли система ременной передачи число оборотов в минуту (об / мин), необходимое для выработки полезной мощности?
  • Общая мощность
  • — выходная мощность 50 Вт является предположением, основанным на аналогичных конструкциях VAWT.

ОБНОВЛЕНИЕ: наша забота о зубчатой ​​передаче и скорости стартового ветра осталась верной. Зверь мог бегать только при сильном ветре. Нам нужен шкив побольше для двигателя беговой дорожки, и нам нужно будет провести повторные испытания.

Материалы:

  • 2 велосипедных обода — 22 дюйма
  • 3 трубы ПВХ — 4 дюйма на 10 футов
  • 1 мотор беговой дорожки — ebay — $ 20
  • 18 шурупов для крепления лезвий к ободам
  • 2×4, необходимые для сборки каркаса (длина 4-8 футов)
  • 2×6 — для крепления мотора беговой дорожки
  • 6-дюймовый опорный кронштейн — обод велосипеда с подвесом
  • Клиновой ремень — длина зависит от настройки (79 дюймов)
  • Крышка двигателя (пластиковое ведро 2 галлона)

Сборка:

Лезвия

  1. снимите все остальные спицы велосипедных дисков.Затем затяните оставшиеся спицы.
  2. осмотреть и смазать подшипники обода — при необходимости заменить
  3. разрезать ПВХ трубу пополам, чтобы получился полумесяц, длина 10 футов
  4. измерить 10-футовые трубы и разрезать точно пополам — у меня были 10 футов 1 дюйм. ПРИМЕЧАНИЕ: Вы можете попробовать VAWT с полными 10-футовыми длинами, так как эти укороченные 5-футовые отрезки не будут производить достаточно энергии для запуска. наша беговая дорожка с высоким передаточным числом.
  5. вставьте один конец лезвия в пространство между спицами и просверлите отверстие 1/8 дюйма.Используйте винт по металлу, чтобы прикрепить лезвие из ПВХ к ободу.
  6. Сделайте то же самое с противоположным концом этого лезвия — удерживайте на месте и просверлите отверстие. Затем прикрепите винтом.
  7. Таким же образом прикрепите второй нож на противоположной стороне.
  8. 3-я и 4-я лопасти равномерно расположены на ободе, чтобы придать ему структуру.
  9. ПРИМЕЧАНИЕ: Я оставил все остальные отверстия (места на спицах) пустыми. Я обнаружил, что использование каждого доступного слота, похоже, блокирует ветер — это будет проверено позже, чтобы определить эффект от добавления дополнительных лезвий, так как обода вмещают 18 лезвий, а у меня на данный момент только 9 лезвий.
  10. установите остальные лезвия. С 22-дюймовым ободом велосипеда я использовал всего 9 лезвий.

Рамка

Я прикрепил лезвия к ободам велосипеда, чтобы «лучшие» подшипники выдерживали большую часть веса. Идея рамы состоит в том, чтобы «подвесить» VAWT на верхнем ободе, чтобы вес распределялся между верхним и нижним подшипниками обода. Точная длина вашей рамы может отличаться, если ваши 10-футовые лезвия из ПВХ были немного длиннее или короче моих.

Мы сделаем раму вокруг VAWT, оставив пару дюймов по бокам и точные размеры сверху и снизу. Для дополнительной поддержки мы также построим раму под углом 90 градусов, в которой будет размещаться двигатель беговой дорожки.

  1. Отрежьте 3 части 2х4, 32 дюйма в длину. С 22-дюймовыми ободами остается много места по обе стороны от рамы. Одна часть войдет в нижнюю часть рамы, а две — в верхней части рамы.
  2. Отрежьте 2 части 2×4, примерно 72 дюйма длиной, для боковых перил.Длина может варьироваться, так как мы разместим верхние горизонтальные балки в соответствии с высотой лопастей.
  3. Прикрутите нижнюю балку (32 дюйма 2×4) к обеим боковым направляющим. Поместите 32-дюймовую доску ПОД боковыми направляющими и прикрутите к направляющим. Вам необходимо это перекрытие, так как верхние балки также будут размещены «вдоль» направляющих. ВНУТРЕННИЙ размер между рельсами будет около 29 дюймов.
  4. Просверлите отверстие глубиной примерно 1/2 дюйма в центре нижней балки. Нижний обод колеса войдет в это отверстие.
  5. Измерьте расстояние от низа обода колеса до верха противоположного обода колеса. Прикрутите верхние балки к направляющим на высоте, превышающей эту длину на 1 дюйм. Это позволит нам отрегулировать болт на ободе велосипеда, чтобы снять большую часть веса с нижнего ступичного подшипника.
  6. Отрежьте кусок 2×6, длиной 24 дюйма. Эта доска поможет стабилизировать ветряную турбину, а также будет использоваться для крепления двигателя беговой дорожки.
  7. Используя кусок фанеры Т-образной формы, прикрепите 2×6 к нижней балке (2×4).2×6 должен быть в центре нижней балки. Я поместил фанеру «под» рамой и прикрутил ее как к 2×6, так и к балке. Мы прикрепим мотор беговой дорожки позже.
  8. Вставьте обода и лезвия в отверстие в нижней балке. Поместите 6-дюймовый опорный кронштейн на верхний обод. Переместите верхнюю часть узла обода / лезвия на место (в центре). Вкрутите 6-дюймовый опорный кронштейн в две верхние балки. Убедитесь, что кронштейн отцентрован над нижней балкой. Также убедитесь, что 6-дюймовый опорный кронштейн находится на такой высоте, чтобы можно было затянуть верхнюю гайку на ободе колеса, сняв вес с подшипника нижнего обода.
  9. Отрегулируйте гайку верхнего обода, чтобы снять большую часть веса с нижнего ступичного подшипника, но все же оставьте колесо сидящим в отверстии, которое мы просверлили в нижней балке.

Беговая дорожка в сборе

Я использую довольно большой двигатель беговой дорожки, которому требуется больше оборотов в минуту для получения полезной мощности, чем может дать простой VAWT, такой как этот. Таким образом, мы попробуем использовать нижний обод велосипеда и клиновой ремень, чтобы разогнать двигатель.

  1. Отрежьте кусок 2×6, длиной 20 дюймов. И другой кусок 2х6,4 дюйма длиной.
  2. Присоедините более короткий кусок 2×6 к 20-дюймовому элементу, как показано на этом рисунке. Эта деталь будет использоваться для прикручивания опоры двигателя беговой дорожки к нижней части 2×6, которую мы прикрепили к нижней части рамы в сборе.
  3. Установите двигатель беговой дорожки на 20-дюймовую доску шкивом вниз.
  4. Совместите шкив с нижним ободом велосипеда и отметьте 20-дюймовую доску.Присоедините беговую дорожку к этой доске.
  5. Проденьте клиновой ремень под узел лезвия и вставьте его в обод велосипеда. Проденьте клиновой ремень через шкив беговой дорожки. Установите двигатель беговой дорожки так, чтобы было некоторое натяжение клинового ремня. Я оставил это немного «свободным». Прикрутите узел двигателя беговой дорожки к нижней доске 2×6.
  6. Я также прикрепил стальную ленту к верхней и нижней части опоры двигателя беговой дорожки, чтобы удерживать эту доску на месте.
  7. КРЫШКА: следуя принципу «повторного использования», я поставил на двигатель ведро «для кошачьих туалетов» на 2 галлона.Пластиковое ведро полностью закрывает двигатель, но не касается движущихся частей.
  8. ПРИМЕЧАНИЕ: наши первые тесты с использованием 2-дюймового шкива на двигателе беговой дорожки не были обнадеживающими. Сейчас мы ищем шкив большего размера для беговой дорожки, чтобы он не был настроен так высоко.

Как построить собственную ветряную турбину всего за 30 евро

Дата выдачи: Изменено:

Графический дизайнер Дэниел Коннелл считает, что использовать энергию ветра может каждый.Коннелл разработал план дешевой турбины, сделанной своими руками, которая позволяет домашним хозяйствам подключаться к источнику экологически чистой энергии с помощью всего лишь дрели, гаечного ключа, нескольких винтов и велосипедного колеса.

Коннелл, который родом из Новой Зеландии, но сейчас живет между Германией и Шотландией, начал работу над своим проектом вертикальной ветряной турбины еще в 2013 году. Изобретатель получил возможность усовершенствовать свой проект в октябре этого года, когда сотни изобретателей и дизайнеров и инженеры собрались во французском замке для «Poc 21».Организаторы мероприятия описывают его как инновационный лагерь, нацеленный на продвижение идеи «общества без отходов», а также на создание продуктов с открытым исходным кодом, которые может создать каждый. Ветряк Коннелла состоит из деревянной рамы, которая поддерживает колесо велосипеда с тремя прикрепленными к нему лопастями. Он также сделал прототип с шестью лопастями.

Коннелл держит часть одной из своих ветряных турбин. Фото любезно предоставлено Дэниелом Коннеллом.

Чтобы показать другим, как это делается, Коннелл создал подробное 52-шаговое руководство, доступное как в письменном, так и в видеоформате, в котором подробно описывается, как построить турбину. Следуя инструкциям, команда из двух человек может установить и запустить ветряную турбину примерно за шесть часов. Более того, это обойдется вам всего в 30 евро, которых достаточно, чтобы заплатить за инструменты и материалы. Сравните это с ценой на обычную домашнюю ветряную турбину, которая может стоить более 30 000 долларов (28 000 евро).

Самодельная турбина

Коннелла не позволит домашним хозяйствам удовлетворить все свои потребности в энергии только с помощью ветра. Но он мог, например, производить несколько десятков киловатт электроэнергии или приводить в действие домашний водяной насос. Однако изобретатель говорит, что достаточно всего нескольких прототипов, чтобы начать значительную экономию энергии, что, по его мнению, может помочь в борьбе с изменением климата.

«С несколькими ветряными турбинами и достаточным количеством ветра дом может стать самодостаточным»

Меня вдохновила уже существующая модель. Полтора года я работал, пытаясь сделать этот тип ветряной турбины для дома более простым в сборке и более экономичным. В конце концов, я разработал прототип, который стоит примерно в пять раз меньше, чем исходная модель, и может быть построен кем угодно за довольно короткое время.

Я не инженер — я вообще-то по образованию дизайнер 3D-графики.Я уверен, что опытные мастера построят мой ветряк быстрее, чем другие, но это может сделать каждый. Если вы посмотрите на список необходимых инструментов, то самым сложным, без сомнения, является электродрель. Это действительно не сложно!

Я думаю, что эта ветряная турбина имеет несколько преимуществ, наряду с низкой ценой и простотой сборки. Работает даже тогда, когда вы сами почти не чувствуете ветер. Он также довольно прочен: у него есть три лопасти, которые выдерживают ветер до 80 км / ч.А модель с шестью лопастями выдерживает ветер со скоростью до 105 км / ч, что очень мощно.

«Это может помочь сократить дефицит энергии во всем мире»

При средней скорости ветра 60 км / ч шестилопастная ветряная турбина может производить около 100 Вт энергии за короткое время. Этого достаточно, например, для зарядки четырех ноутбуков.Если предположить, что скорость ветра остается постоянной в течение нескольких часов, он может даже произвести киловатт энергии, достаточный для удовлетворения энергетических потребностей дома в течение одного дня. Конечно, это всего лишь теория. На практике постоянная скорость ветра 60 км / ч довольно сильная, и все зависит от того, сколько энергии потребляет дом. Западное домохозяйство потребляет гораздо больше, чем одно в развивающейся стране. Но с несколькими ветряными турбинами и достаточным количеством ветра дом может быть самодостаточным. Вы также можете хранить электроэнергию, производимую в автомобильных аккумуляторах, которые не слишком дороги.

Двигаясь вперед, я стремлюсь разработать другие проекты с открытым исходным кодом, которые легко построить и которые ограничивают потребление энергии, например, неэлектрический холодильник или энергоэффективный кондиционер. Я уже разработал прототип последнего.

Ветряная турбина своими руками | 14 самых крутых генераторов для жизни вне сети

Ищете ветряную турбину своими руками? Вам понравятся эти электрические генераторы!

Научитесь делать ветряную турбину своими руками! Независимо от того, живете ли вы вне сети или просто хотите генерировать дополнительную энергию для дома, эти идеи ветряных турбин своими руками позволят вам в кратчайшие сроки вырабатывать собственное электричество.Продолжайте читать, чтобы узнать, как построить ветряные турбины всех форм и размеров. Все, от классической ветряной мельницы до турбины с вертикальной матрицей и даже турбины Tesla.

Специальное предложение: Вот как можно перестать тратить сотни долларов на аккумуляторы каждый год

Научитесь генерировать собственную энергию дома с помощью самых крутых ветряных турбин своими руками! Здесь у нас есть 14 удивительных ветряных турбин, которые вы можете сделать дома с ограниченным бюджетом.

14 самых крутых генераторов, чтобы заработать себе на жизнь вне сети

1.Сделай сам Тесла Турбина

Турбина Тесла — это метод выработки энергии, которому уже 100 лет. Эта турбина Tesla своими руками — самая зеленая турбина в мире! Следуйте пошаговым инструкциям, чтобы создать свой собственный здесь, на Instructables.

2. Ветряная турбина своими руками | Выработайте 1000 Вт на заднем дворе

Эта ветряная турбина своими руками будет генерировать 1000 Вт, и ее достаточно просто собрать дома. Инструкции здесь

3. Ветряная турбина своими руками | Турбина с открытым исходным кодом будет построена всего за 30

долларов

Ознакомьтесь с этим руководством по очень крутой, очень практичной и очень недорогой ветряной турбине.Инструкции здесь

4. Ветряная турбина своими руками | Создайте свою собственную турбину с вертикальной осью

Ветряк с вертикальной осью вращения отлично подходит для экономии места и денег! Инструкции здесь.

5. Ветряная турбина своими руками | Миниатюрная ветряная турбина

Эта миниатюра такая веселая, яркая и компактная — почти игрушка! … Идеи подарков ко Дню отца, кому-нибудь? Научитесь делать это здесь.

6. Ветряная турбина своими руками | Создайте свой генератор из генератора для грузовиков

Отличное применение для старого грузовика GM, ржавого на стене дома… Инструкции здесь.

7. Ветряная турбина своими руками | Сделано из старых деталей велосипеда

Стильно сокращайте повторное использование и переработку и генерируйте энергию для создания ветряного водяного насоса. Инструкции здесь.

8. Ветряк своими руками | Построить ветряную турбину с потолочным вентилятором

Это превосходное использование бывшего в употреблении оборудования. Всегда полезно повторно использовать все, что можно, чтобы максимально использовать ресурсы Земли. Инструкции здесь.

9. Ветряная турбина своими руками | Построить ветряную турбину с диффузором сопла

Диффузор помогает направлять энергию на эту ветряную турбину для максимальной эффективности.Инструкции здесь

10. Ветряная турбина своими руками | Постройте удивительную турбину Tesla CD

Возьмите нашу старую коллекцию компакт-дисков и немного суперклея, этот урок поможет вам в мгновение ока раскрутить все виды новой энергии. Инструкции можно найти здесь.

11. Ветряная турбина своими руками | Построить турбину «Оса»

Завезли двоих вас двое учеников — будущих гениев. Инструкции здесь.

12. Ветряная турбина своими руками | Постройте картонную турбину Tesla

Эта турбина Tesla полностью сделана из картона, что делает ее дешевле и экономичнее.Бонусные баллы за красоту. Инструкции здесь.

13. Постройте больше ветряных турбин своими руками

Ищете другие отличные способы построить ветряную турбину? Мы нашли для вас этот сайт, который оказался отличным источником. Нажмите сюда, чтобы проверить это.

Эта последняя ветряная турбина, вероятно, слишком сложна для изготовления дома, но разве она не красива !?

Источник: pioneersettler

Ветрогенератор Ветрогенератор Вертикальный ветряк DIY

Здесь я предлагаю свою ПЕРЕСМОТРЕННУЮ ветряную турбину (VAWT) с 10 лопастями (регулируемую), готовую к резке в DXF.и SVG. формат файла.

РАЗМЕР VAWT

18 x 24 дюйма в собранном виде
Собранная турбина будет весить прибл. 8,2 фунта. если материал используется в соответствии с инструкциями.

*** ПОЖАЛУЙСТА, ПРОЧИТАЙТЕ ВЕСЬ СПИСОК ПЕРЕД ПОКУПКОЙ ***

Экономьте деньги и сокращайте их самостоятельно, если у вас есть возможность.

Это только готовые файлы нарезки. Никаких физических частей. вы НЕ получите ничего по почте.
Таким образом, вам необходимо обладать знаниями в области изготовления, сборки и иметь склонность к механике
, чтобы собрать его после того, как вы его разрежете.

Вы получите готовые пилки для верхнего и нижнего держателя лезвия и лезвия.

Эта ветряная турбина была нарисована и смонтирована в соответствии с размерами, указанными в примечаниях к покупке. если используется другой тип материала
и другой толщины, он не будет правильно собран. вам нужно будет учесть другие материалы и толщину.

Несмотря на то, что во всемирной паутине существует множество различных конструкций и идей, все они предлагают полезную информацию.
Это эффективный и простой дизайн, который поможет вам приступить к работе без головной боли, связанной с попытками
разрезать трубу из ПВХ, замачивать и сгибать и сухое дерево, клей, сварка и т. д..
Просто вырежьте или сделайте резку для деталей, согните их и скрепите болтами.

Есть много источников для остальной части генератора ветровой турбины, просто Google ..
Моя ветряная турбина предлагает открытую платформу для установки ступиц подшипников и шкивов. файлы
предлагают общий шаблон отверстий, если вы хотите использовать или не хотите вырезать отверстия.
В настоящее время я работаю над системным пакетом или исходным кодом для генератора. но пока нечего предложить.
McMaster-carr предлагает широкий выбор типов подшипников и конфигураций шкивов, из которых вы можете выбирать.

Моя турбина (сделай сам) проект для энтузиастов домашних ветрогенераторов. не предназначен для профессионального использования.
Я уверен, что вы видели много дизайнов и идей в Интернете, чтобы знать, что вы ищете. На самом деле,
не так уж сложен в том, что нужно ветру, чтобы заставить что-то двигаться, используя только очевидные основы.
Имея это в виду. Я сконструировал эту ветряную турбину с регулируемыми лопастями. таким образом вы можете настроить угол атаки
(угол атаки) для лучшего соответствия различным местоположениям и / или средней скорости ветра.

Что отличает мой турбинный комплект от других самодельных агрегатов.

1. Изготовить
недорого. 2. Я использую коррозионно-стойкий материал (алюминий), который имеет легкий вес
3. Экономит ваше время и деньги
4. Все детали подвергаются плазменной резке на станке с ЧПУ (что позволяет добиться согласованного расположения отверстий и минимизировать их форму. проблемы с дисбалансом).

Включенные файлы (в zip-архиве)

* Word doc с инструкциями и фотографиями для сборки
* DXF. файл (готовый к нарезке)
* SVG.файл

Поскольку это ЦИФРОВЫЕ загружаемые ФАЙЛЫ. Я не предлагаю возврат средств или гарантию.
Если у вас есть вопросы по моим файлам. пожалуйста, напишите мне, и я помогу чем смогу.

***** ТОЛЬКО ДЛЯ ЛИЧНОГО ИСПОЛЬЗОВАНИЯ *****

Вы можете использовать эти файлы и дизайн ТОЛЬКО для личного использования. Оригиналы или изменения этих файлов
не могут быть переданы, проданы или распространены иным образом.

Выставка проектов и экспериментов по ветряным турбинам с вертикальной осью

На все телескопы, микроскопы, бинокли и другую оптическую продукцию, за исключением аксессуаров, произведенных Levenhuk, предоставляется пожизненная гарантия от дефектов материалов и изготовления.Пожизненная гарантия — это гарантия на весь срок службы продукта на рынке.

На все аксессуары Levenhuk дается гарантия на отсутствие дефектов материалов и изготовления в течение шести месяцев с даты розничной покупки. Levenhuk отремонтирует или заменит такое изделие или его часть, которые при осмотре Levenhuk будут признаны дефектными по материалам или изготовлению. В качестве условия обязательства Levenhuk по ремонту или замене такого продукта продукт должен быть возвращен Levenhuk вместе с подтверждением покупки, удовлетворяющим Levenhuk.

Настоящая гарантия не распространяется на расходные материалы, такие как лампы (электрические, светодиодные, галогенные, энергосберегающие и другие типы ламп), батареи (аккумуляторные и неперезаряжаемые), электрические расходные материалы и т. Д.

Номер разрешения на возврат (RA) должен быть получен до возврата. Свяжитесь с [email protected], чтобы получить номер RA. Покажите его снаружи транспортной тары. Все возвраты должны сопровождаться письменным заявлением с указанием имени, адреса и номера телефона владельца, включая описание любых заявленных дефектов.Детали или продукты, заменяемые на них, становятся собственностью Levenhuk.

Заказчик несет ответственность за все расходы по транспортировке и страхованию до и от Levenhuk и должен будет предоплатить такие расходы.

Levenhuk приложит разумные усилия для ремонта или замены любого продукта, на который распространяется данная гарантия, в течение тридцати дней с момента получения. Если на ремонт или замену потребуется более тридцати дней, Levenhuk уведомит об этом клиента. Levenhuk оставляет за собой право заменить любой продукт, производство которого прекращено, на новый продукт сопоставимой стоимости и функциональности.

Настоящая гарантия не распространяется на какие-либо дефекты или повреждения, возникшие в результате изменения, модификации, небрежного обращения, неправильного использования, использования ненадлежащих источников питания, повреждения при транспортировке, неправильного обращения или любой другой причины, кроме нормальной эксплуатации, или неисправности или ухудшения работы из-за нормального износа. . Эта гарантия не распространяется на продукт, который был утерян, украден, уронен, разбит, а также на любой другой вид повреждения или модификации оригинального продукта по вине покупателя.

Levenhuk отказывается от всех гарантий, явных или подразумеваемых, относительно коммерческой пригодности или пригодности для конкретного использования, за исключением случаев, прямо изложенных в данном документе.Единственным обязательством Levenhuk по данной ограниченной гарантии будет ремонт или замена покрываемого продукта в соответствии с условиями, изложенными в настоящем документе.

M-ZAN Solutions, Inc (DBA as Super Science Fair Projects) и Levenhuk отказываются от ответственности за упущенную выгоду, потерю информации или за любые общие, особые, прямые, косвенные или косвенные убытки, которые могут возникнуть в результате нарушения каких-либо гарантий. , или возникшие в результате использования или невозможности использования какого-либо продукта Levenhuk. Срок действия любых подразумеваемых гарантий, от которых нельзя отказаться, будет ограничен шестью месяцами для аксессуаров с даты розничной покупки.

В некоторых штатах / провинциях не допускается исключение или ограничение случайных или косвенных убытков, поэтому указанные выше ограничения и исключения могут к вам не относиться. Эта гарантия дает вам определенные юридические права, и вы можете иметь другие права, которые варьируются от штата к штату или от провинции к провинции.

Levenhuk оставляет за собой право изменять любой продукт или прекращать его выпуск без предварительного уведомления.

ПРИМЕЧАНИЕ. Данная гарантия действительна для клиентов из США и Канады, которые приобрели этот продукт у авторизованного дилера Levenhuk (M-ZAN Solutions, Inc) в США или Канаде.

Гарантия за пределами США или Канады действительна только для клиентов, которые приобрели продукцию у официального дилера Levenhuk в конкретной стране или у международного дистрибьютора. Пожалуйста, свяжитесь с ними для любого гарантийного обслуживания.

В случае возникновения проблем по гарантии или если вам нужна помощь в использовании продукта, обратитесь в местное отделение Levenhuk:
USA: www.levenhuk.com

9 проектов для выработки собственного электричества (и экономии денег!)

0

Предпринять более экологически сознательные шаги в направлении более зеленого будущего сейчас необходимо больше, чем когда-либо.Хотя мы не полагаемся на сжигание ископаемого топлива так сильно, как в прошлом, с появлением ядерной энергии, эти типы искусственных источников электричества по-прежнему влияют на нашу окружающую среду. Поэтому проекты «сделай сам» по уменьшению ущерба и внесению собственного вклада в более чистый воздух — отличный вариант для каждого из нас. А пока достаточно начать с малого.

Для сегодняшней статьи мы выбрали 9 конструкций ветряных турбин своими руками, которые не оставят больших вмятин в ваших карманах. Просто установите его на лужайке и получайте прибыль от всей этой чистой энергии.

Связанные : Ветровые турбины: как работает энергия ветра?

Ветрогенератор с вертикальной осью v1.0

Для этого самодельного проекта вам понадобятся только подручные материалы и обычные инструменты, такие как дрель, нож для резки коробок и заклепочник. Эта конструкция была разработана Дэниелом Коннеллом и основана на конструкции подъемника + сопротивления Lenz2. Коннелл пишет, что вы можете построить версию с тремя или шестью лопастями. Версия с тремя лопастями выдерживает сильный ветер со скоростью 80 км / ч. Шестилопастная версия до 105 км / ч.Подробное руководство Коннелла не должно содержать для вас секретов. В нем также есть шаблоны для печати, которые сделают вашу работу еще проще.

Миниатюрная ветряная турбина

Нет причин не привлекать к этому проекту молодого инженера. Майкл Аркуин, основатель проекта KidWind, разработал эту турбину из ПВХ. Его можно модифицировать в соответствии с возрастом и навыками молодежи. Дизайн также может быть стартовым проектом для взрослого, который хочет проверить свои способности и не хочет вкладывать слишком много средств в более крупный проект.Выньте сверло, кусачки и пистолет для горячего клея и подготовьте трубы и фитинги из ПВХ. В руководстве есть список всех необходимых инструментов и материалов, а также изображения, чтобы показать вам, где все подходит.

Связано: Откуда берется энергия ветра: Основы

Ветряная турбина с соплом / диффузором

Это ветряная турбина, созданная своими руками, в которой используются обычные пластиковые ведра, чтобы использовать как можно больше энергии ветра. Однако для этого вам понадобится электрическая ручная дрель, ножовка и муфта, поэтому она предназначена только для ответственных взрослых.Полный список инструментов и всего остального можно найти в руководстве с пошаговыми изображениями.

Самодельная ветряная турбина с генератором переменного тока

Этот проект немного сложнее, так как требует некоторых предыдущих инженерных навыков. Хотя руководство поможет вам в этом, оно адресовано читателю, который немного знает, как это сделать. Кроме того, вместо того, чтобы покупать пропеллеры, вы можете создать их самостоятельно, чтобы сэкономить дополнительные деньги. В руководстве нет вспомогательных изображений, кроме конечного результата, поэтому начинайте работу над этим проектом только в том случае, если вы уверены в своих технических способностях.

Самодельная ветряная турбина для производства электроэнергии

Эта ветряная турбина была построена астрономом, у которого не было доступа к электричеству в его удаленной резиденции в Аризоне. Итак, воспользовавшись ветреной погодой, он построил собственную ветряную турбину, вырабатывающую электричество. Имейте в виду, что конструкция предназначена для питания всей собственности, поэтому вы знаете, что усилия того стоят. Что еще более удивительно, так это то, что стоимость всего проекта составила чуть более 140 долларов. Учебное пособие очень обширное, со всеми подробностями и картинками, которые можно показать.Есть даже раздел часто задаваемых вопросов, который поможет вам с каждой проблемой.

Ветряк от мотора стиральной машины своими руками

Это еще один сделай сам, который перепрофилирует старые машины из вашего дома, которые больше не работают. Если ваша стиральная машина сломалась, просто снимите катушку и магнит в сборе и удерживайте болты, удерживающие их на месте. Вам нужно будет купить несколько труб из ПВХ, которые будут служить лопатками в проекте. В пошаговом руководстве показано все, что вам нужно сделать, с изображениями, размерами и деталями стиральной машины, которые использовал пользователь.

Самодельная ветряная турбина мощностью 1000 Вт

Еще один блестящий проект DIY, разработанный экспертом, который обязательно обеспечит питание вашего дома от электросети. Хотя в руководстве подробно и показано изображение за изображением, как действовать, вам все же потребуются некоторые инженерные навыки. Вам нужно будет построить катушки и работать с ними в определенных сериях согласно схемам. Если вам нужен сложный проект, не сомневайтесь, берите его. Результаты того стоят.

Связанные : Взвешивание плюсов и минусов ветроэнергетики

Старая 17-футовая ветряная турбина

Эта гигантская ветряная турбина, сделанная своими руками, потребует много работы, так как вы будете строить все с нуля.Но если это будет ваш главный источник энергии, не нужно сомневаться. Учебник настолько подробен, насколько это возможно, и команда, стоящая за проектом, даже предлагает новые и последние дизайны, которые они разрабатывали на протяжении многих лет. В конце концов, вы можете выбрать дизайн поменьше или еще больше, высотой 20 футов.

Самодельная ветряная турбина с минимальным дизайном

По словам Кевина Харриса, человека, который разработал турбину, общая стоимость проекта достигает 150 долларов или меньше, если вы будете экономны.Он попробовал несколько конструкций, включающих шесть лопастей и широкие лопатки, но самый простой по-прежнему был наиболее эффективным. Трехлопастной ветрогенератор регулярно выдает 50-250 Вт. Харрис пишет, что весь проект можно завершить за один уик-энд. Некоторые материалы тоже можно заменить, если их нет рядом. Следуйте инструкциям Харриса и без проблем создайте свой собственный ветряк.

Заключительные слова

В целом, мы надеемся, что этот список предоставил вам как можно больше информации, чтобы вы начали создавать свою собственную ветряную турбину.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *