+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Электрическое напряжение — Википедия

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробного электрического заряда из точки A в точку B[1][2].

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). Напряжение в общем случае формируется из вкладов двух работ: работы электрических сил AABel{\displaystyle A_{AB}^{el}} и работы сторонних сил AABex{\displaystyle A_{AB}^{ex}}. Если на участке цепи не действуют сторонние силы (то есть AABex=0{\displaystyle A_{AB}^{ex}=0}), работа по перемещению включает только работу потенциального электрического поля AABel{\displaystyle A_{AB}^{el}} (которая не зависит от пути, по которому перемещается заряд), и электрическое напряжение UAB{\displaystyle U_{AB}} между точками A и B совпадает с разностью потенциалов между этими точками (поскольку φA−φB=AABel/q{\displaystyle \varphi _{A}-\varphi _{B}=A_{AB}^{el}/q}). В общем случае напряжение UAB{\displaystyle U_{AB}} между точками A и B отличается от разницы потенциалов между этими точками[3] на работу сторонних сил по перемещению единичного положительного заряда. Эту работу называют электродвижущей силой EAB{\displaystyle {\mathcal {E}}_{AB}} на данном участке цепи: EAB=AABex/q.{\displaystyle {\mathcal {E}}_{AB}=A_{AB}^{ex}/q.}

UAB=φA−φB+EAB.{\displaystyle U_{AB}=\varphi _{A}-\varphi _{B}+{\mathcal {E}}_{AB}.}

Определение электрического напряжения можно записать в другой форме. Для этого нужно представить работу AABef{\displaystyle A_{AB}^{ef}} как интеграл вдоль траектории L, проложенной из точки A в точку B.

UAB=∫LE→efdl→{\displaystyle U_{AB}=\int \limits _{L}{\vec {E}}_{ef}d{\vec {l}}} — интеграл от проекции эффективной напряжённости поля E→ef{\displaystyle {\vec {E}}_{ef}} (включающего сторонние поля) на касательную к траектории L, направление которой в каждой точке траектории совпадает с направлением вектора dl→{\displaystyle d{\vec {l}}} в данной точке. В электростатическом поле, когда сторонних сил нет, значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Размерность электрического напряжения в Международной системе величин (англ. International System of Quantities, ISQ), на которой основана Международная система единиц (СИ), — L2MT-3I-1. Единицей измерения напряжения в СИ является вольт (русское обозначение: В; международное: V).

Понятие напряжение ввёл Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 году эмпирического закона Ома: U=IR{\displaystyle U\!=IR}.

Напряжение в цепи постоянного тока между точками A и B — работа, которую совершает электрическое поле при переносе пробного положительного заряда из точки A в точку B.

Для описания цепей переменного тока применяются следующие напряжения:

  • мгновенное напряжение;
  • амплитудное значение напряжения;
  • среднее значение напряжения;
  • среднеквадратическое значение напряжения;
  • средневыпрямленное значение напряжения.

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Зависит от времени (является функцией времени):

u=u(t).{\displaystyle u=u(t).}

Амплитудное значение напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM=max(|u(t)|).{\displaystyle U_{M}=\max(|u(t)|).}

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t)=UMsin⁡(ωt+ϕ).{\displaystyle u(t)=U_{M}\sin(\omega t+\phi ).}

Для сети переменного синусоидального напряжения со среднеквадратическим значением 220 В амплитудное напряжение равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения (постоянная составляющая напряжения) есть напряжение, определяемое за весь период колебаний, как:

Um=1T∫0Tu(t)dt.{\displaystyle U_{m}={\frac {1}{T}}\int _{0}^{T}u(t)dt.}

Для синусоиды среднее значение напряжения равно нулю.

Среднеквадратическое значение напряжения (устаревшие наименования: действующее, эффективное) есть напряжение, определяемое за весь период колебаний, как:

Uq=1T∫0Tu2(t)dt.{\displaystyle U_{q}={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}.}

Среднеквадратическое значение напряжения наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение.

Для синусоидального напряжения справедливо равенство:

Uq=12UM≈0,707UM;UM=2Uq≈1,414Uq.{\displaystyle U_{q}={1 \over {\sqrt {2}}}U_{M}\approx 0,707U_{M};\qquad U_{M}={\sqrt {2}}U_{q}\approx 1,414U_{q}.}

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно среднеквадратическое значение напряжения, и все вольтметры проградуированы, исходя из его определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратическое, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения есть среднее значение модуля напряжения:

Um=1T∫0T|u(t)|dt.{\displaystyle U_{m}={\frac {1}{T}}\int \limits _{0}^{T}|u(t)|dt.}

Для синусоидального напряжения справедливо равенство:

Um=2πUM(≈0,637UM)=22πUq(≈0,9Uq).{\displaystyle U_{m}={2 \over \pi }U_{M}(\approx 0,637U_{M})={2{\sqrt {2}} \over \pi }U_{q}(\approx 0,9U_{q}).}

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратическим значениям.

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки относительно нейтрали, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в 3{\displaystyle {\sqrt {3}}} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в числителе которой стоит фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли), а в знаменателе — линейное напряжение. Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

ОбъектТип напряженияЗначение (на вводе потребителя)Значение (на выходе источника)
ЭлектрокардиограммаИмпульсное1—2 мВ
Телевизионная антеннаПеременное высокочастотное1—100 мВ
Гальванический цинковый элемент типа АА («пальчиковый»)Постоянное1,5 В
Литиевый гальванический элементПостоянное3—3,5 В (в исполнении пальчикового элемента, на примере Varta Professional Lithium, AA)
Логические сигналы компьютерных компонентовИмпульсное3,3 В; 5 В
Батарейка типа 6F22 («Крона»)Постоянное9 В
Силовое питание компьютерных компонентовПостоянное5 В, 12 В
Электрооборудование автомобилейПостоянное12/24 В
Блок питания ноутбука и жидкокристаллических мониторовПостоянное19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условияхПеременное36—42 В
Напряжение наиболее стабильного горения свечи ЯблочковаПостоянное55 В
Напряжение в телефонной линии (при опущенной трубке)Постоянное60 В
Напряжение в электросети ЯпонииПеременное трёхфазное100/172 В
Напряжение в домашних электросетях СШАПеременное трёхфазное120 В / 240 В (сплит-фаза)
Напряжение в бытовых электросетях РоссииПеременное трёхфазное220/380 В230/400 В
Разряд электрического скатаПостоянноедо 200—250 В
Контактная сеть трамвая и троллейбусаПостоянное550 В600 В
Разряд электрического угряПостоянноедо 650 В
Контактная сеть метрополитенаПостоянное750 В825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток)Постоянное3 кВ3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощностиПеременное трёхфазное6—20 кВ6,6—22 кВ
Генераторы электростанций, мощные электродвигателиПеременное трёхфазное10—35 кВ
На аноде кинескопаПостоянное7—30 кВ
Статическое электричествоПостоянное1—100 кВ
На свече зажигания автомобиляИмпульсное10—25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток)Переменное25 кВ27,5 кВ
Пробой воздуха на расстоянии 1 см10—20 кВ
Катушка РумкорфаИмпульсноедо 50 кВ
Пробой слоя трансформаторного масла толщиной 1 см100—200 кВ
Воздушная линия электропередачи большой мощностиПеременное трёхфазное35 кВ, 110 кВ, 220 кВ, 330 кВ38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машинаПостоянное50—500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные)Переменное трёхфазное500 кВ, 750 кВ, 1150 кВ545 кВ, 800 кВ, 1250 кВ
Трансформатор ТеслаИмпульсное высокочастотноедо нескольких МВ
Генератор Ван де Граафа
Постоянноедо 7 МВ
Грозовое облакоПостоянноеОт 2 до 10 ГВ

ru.wikipedia.org

Основные величины и меры электрического тока

На этой страничке кратко излагаются основные величины электрического тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами.


Сила тока – количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения — Ампер (А). Сила тока обозначается буквой – I.

Следует добавить, что постоянный и переменный ток низкой частоты, течёт через всё сечение проводника. Высокочастотный переменный ток течёт только по поверхности проводника – скин-слою. Чем выше частота тока, тем тоньше скин-слой проводника, по которому течёт высокочастотный ток. Это касается любых высокочастотных элементов — проводников, катушек индуктивности, волноводов. Поэтому, для уменьшения активного сопротивления проводника высокочастотному току, выбирают проводник с большим диаметром, кроме того, его серебрят (как известно, серебро имеет очень малое удельное сопротивление).


Напряжение (падение напряжения) – количественная мера разности потенциалов (электрической энергии) между двумя точками электрической цепи. Напряжение источника тока – разность потенциалов на выводах источника тока. Измеряется напряжение вольтметром. Единица измерения — Вольт (В). Напряжение обозначается буквой – U, напряжение источника питания (синоним — электродвижущая сила) может обозначаться буквой – Е.

Узнайте больше о напряжение в нашей статье.


Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт). Мощность электрического тока обозначается буквой – Р. Мощность определяется зависимостью:

Коснусь практического применения этой формулы на примере: Представьте, что у Вас есть электронагревательный прибор, мощность которого Вам не известна. Чтобы узнать потребляемую прибором мощность, измерьте ток и умножьте его значение на напряжение. Либо наоборот, имеется прибор мощностью 2 кВт (киловатт), на напряжение сети 220 вольт. Как узнать силу тока в кабеле питающего этот прибор? Мощность делим на напряжение, получаем ток: I = P / U = 2000 Вт/220 В = 9,1 А.


Потребляемая электроэнергия – суммарное значение потребляемой мощности от источника электрической сети за единицу времени. Измеряется потребляемая электроэнергия счётчиком (обыкновенным квартирным). Единица измерения – киловатт*час (кВт*ч).


Сопротивление элемента цепи – количественная мера, характеризующая способность элемента электрической цепи сопротивляться электрическому току. В простом виде, сопротивление это обыкновенный резистор. Резистор может использоваться: как ограничитель тока – добавочный резистор, как потребитель тока – нагрузочный резистор. Источник электрического тока так же обладает внутренним сопротивлением. Измеряется сопротивление прибором называемым Омметром. Единица измерения — Ом (Ом). Сопротивление обозначается буквой – R. Связано с током и напряжением законом Ома (формулой):

где U – падение напряжения на элементе электрической цепи, I – ток, протекающий через элемент цепи.


Рассеиваемая (поглощаемая) мощность элемента электрической цепи – значение мощности рассеиваемой на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя). Рассеиваемая мощность резисторов обозначается в его названии (например: двух ваттный резистор — ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой рассеиваемой мощности элемента цепи рассчитывается по формулам:

Для надёжной работы, определённое по формулам значение рассеиваемой мощности элемента умножается на коэффициент 1,5 , учитывающий то, что должен быть обеспечен запас по мощности.


Проводимость элемента цепи – способность элемента цепи проводить электрический ток. Единица измерения проводимости – сименс (См). Обозначается проводимость буквой — σ. Проводимость — величина обратная сопротивлению, и связана с ним формулой:

Если сопротивление проводника равно 0,25 Ом (или 1/4 Ом), то проводимость будет 4 сименс.


Частота электрического тока – количественная мера, характеризующая скорость изменения направления электрического тока. Имеют место понятия — круговая (или циклическая) частота — ω, определяющая скорость изменения вектора фазы электрического (магнитного) поля и частота электрического тока — f, характеризующая скорость изменения направления электрического тока (раз, или колебаний) в одну секунду. Измеряется частота прибором, называемым Частотомером. Единица измерения — Герц (Гц). Обе частоты связаны друг с другом через выражение:


Период электрического тока – величина обратная частоте, показывающая, в течение, какого времени электрический ток совершает одно циклическое колебание. Измеряется период, как правило, с помощью осциллографа. Единица измерения периода — секунда (с). Период колебания электрического тока обозначается буквой – Т. Период связан с частотой электрического тока выражением:


Длина волны высокочастотного электромагнитного поля – размерная величина, характеризующая один период колебания электромагнитного поля в пространстве. Измеряется длина волны в метрах (м). Длина волны обозначается буквой – λ. Длина волны связана с частотой и определяется через скорость распространения света:


Электрическая ёмкость – количественная мера, характеризующая способность накапливать энергию электрического тока в виде электрического заряда на обкладках конденсатора. Обозначается электрическая ёмкость буквой – С. Единица измерения электрической ёмкости — Фарада (Ф).


Магнитная индуктивность – количественная мера, характеризующая способность накапливать энергию электрического тока в магнитном поле катушки индуктивности (дросселя). Обозначается магнитная индуктивность буквой – L. Единица измерения индуктивности — Генри (Гн).


Реактивное сопротивление конденсатора (ёмкости) – значение внутреннего сопротивления конденсатора переменному гармоническому току на определённой его частоте. Реактивное сопротивление конденсатора обозначается — ХС и определяется по формуле:


Реактивное сопротивление катушки индуктивности (дросселя) – значение внутреннего сопротивления катушки индуктивности переменному гармоническому току на определённой его частоте. Реактивное сопротивление катушки индуктивности обозначается ХL и определяется по формуле:


Резонансная частота колебательного контура – частота гармонического переменного тока, на которой колебательный контур имеет выраженную амплитудно-частотную характеристику (АЧХ). Резонансная частота колебательного контура определяется по формуле:

, или


Добротность колебательного контура — характеристика, определяющая ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки. Добротность обозначается буквой – Q.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:


Скважность импульсов – это отношение периода следования импульсов к их длительности. Скважность импульсов определяется по формуле:

meanders.ru

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока.
  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение, которое выражается в определенный момент времени;
    — действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока:
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока:
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Похожие темы:

electrosam.ru

Список параметров напряжения и силы электрического тока — Википедия

В связи с тем, что электрические сигналы представляют собой изменяющиеся во времени величины, в электротехнике и радиоэлектронике используются по необходимости разные способы представлений напряжения и силы электрического тока

Значения переменного напряжения (тока)[править | править код]

Далее для определенности будем говорить большей частью о параметрах напряжения, хотя они справедливы и для токов.

Мгновенное значение[править | править код]

Мгновенное значение — это значение сигнала в определённый момент времени, функцией которого является (  u(t) ,i(t){\displaystyle u(t)~,\quad i(t)}    ). Мгновенные значения медленно изменяющегося сигнала можно определить с помощью малоинерционного вольтметра постоянного тока, самописца или шлейфового осциллографа, для периодических быстротекущих процессов используется электронно-лучевой или цифровой осциллограф.

Амплитудное значение[править | править код]

  • Амплитудное (пиковое) значение, иногда называемое просто «амплитуда» — наибольшее мгновенное значение напряжения или силы тока за период (без учёта знака):
UM=max(|u(t)|) ,IM=max(|i(t)|){\displaystyle U_{M}=\max(|u(t)|)~,\qquad I_{M}=\max(|i(t)|)}

Пиковое значение напряжения измеряется с помощью импульсного вольтметра или осциллографа.

Среднеквадратичное значение[править | править код]

Среднеквадратичное значение (устар. действующее, эффективное) — корень квадратный из среднего значения квадрата напряжения или тока.

U=1T∫0Tu2(t)dt ,I=1T∫0Ti2(t)dt{\displaystyle U={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}~,\qquad I={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}i^{2}(t)dt}}}

Среднеквадратичные значения являются самыми распространёнными, так как они наиболее удобны для практических расчётов, поскольку в линейных цепях с чисто активной нагрузкой переменный ток с действующими значениями I{\displaystyle I} и U{\displaystyle U} совершает ту же работу, что и постоянный ток с теми же значениями тока и напряжения. Например, лампа накаливания или кипятильник, включённые в сеть с переменным напряжением с действующим значением 220 В, работают (светят, греют) точно так же, как и будучи подключенными к источнику постоянного напряжения с тем же значением напряжения.

Когда не оговаривают особо, то обычно имеют в виду именно среднеквадратичные значения величины напряжения или силы тока.

В среднеквадратичных значениях проградуированы показывающие устройства большинства вольтметров и амперметров переменного тока, за исключением специальных приборов, однако эти обычные приборы дают правильные показания для среднеквадратических значений только при форме сигнала синусоидальной формы. Некритичны к форме сигнала приборы с термопреобразователем, в которых измеряемый ток или напряжение с помощью нагревателя, представляющим собой активное сопротивление, преобразуется в далее измеряемую температуру, которая и характеризует величину электрического сигнала. Также нечувствительны к форме сигнала специальные устройства, возводящие мгновенное значение сигнала в квадрат с последующим усреднением во времени (с квадратичным детектором) или АЦП, возводящие в входной сигнал в квадрат тоже с усреднением по времени. Квадратный корень из выходного сигнала таких устройств как раз и является среднеквадратическим значением.

Квадрат среднеквадратичного значения напряжения, выраженного в вольтах, численно равен средней рассеиваемой мощности в ваттах на резисторе с сопротивлением 1 Ом.

Среднее значение[править | править код]

Среднее значение (смещение) — постоянная составляющая напряжения или силы тока

U=1T∫0Tu(t)dt ,I=1T∫0Ti(t)dt{\displaystyle U={\frac {1}{T}}\int \limits _{0}^{T}u(t)dt~,\qquad I={\frac {1}{T}}\int \limits _{0}^{T}i(t)dt}

В электротехнике используется редко, но сравнительно часто используется в радиотехнике (ток смещения и напряжение смещения). Геометрически это разность площадей под и над осью времени, делённая на период. Для синусоидального сигнала смещение равно нулю.

Средневыпрямленное значение[править | править код]

Средневыпрямленное значение — среднее значение модуля сигнала

U=1T∫0T∣u(t)∣dt ,I=1T∫0T∣i(t)∣dt{\displaystyle U={\frac {1}{T}}\int \limits _{0}^{T}\mid u(t)\mid dt~,\qquad I={\frac {1}{T}}\int \limits _{0}^{T}\mid i(t)\mid dt}

На практике используется редко, однако большинство измерительных приборов переменного тока — магнитоэлектрической системы (т. е., в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала проградуирована по среднеквадратичным значениям для синусоидальной формы сигнала. Если сигнал заметно отличается от синусоидального, показания приборов магнитоэлектрической системы имеют систематическую ошибку. В отличие от приборов магнитоэлектрической системы, приборы электромагнитной, электродинамической и тепловой систем измерения всегда реагируют на действующее значение, независимо от формы электрического тока.

Геометрически это сумма площадей, ограниченная кривой над и под осью времени за время измерения. При однополярном измеряемом напряжении среднее и средневыпрямленное значения равны между собой.

  • Коэффициент формы кривой переменного напряжения (тока) — величина, равная отношению действующего значения периодического напряжения (тока) к его средневыпрямленному значению. Для синусоидального напряжения (тока) равен π/22≈1.11{\displaystyle {\frac {{\pi }/2}{\sqrt {2}}}\approx 1.11}.
  • Коэффициент амплитуды кривой переменного напряжения (тока) — величина, равная отношению максимального по модулю за период значения напряжения (тока) к действующему значению периодического напряжения (тока). Для синусоидального напряжения (тока) равен 2{\displaystyle {\sqrt {2}}}.
  • Размах пульсации напряжения (тока) — величина, равная разности между наибольшим и наименьшим значениями пульсирующего напряжения (тока) за определенный интервал времени
  • Коэффициент пульсации напряжения (тока) — величина, равная отношению наибольшего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей.
    • Коэффициент пульсации напряжения (тока) по действующему значению — величина, равная отношению действующего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей
    • Коэффициент пульсации напряжения (тока) пo среднему значению — величина, равная отношению среднего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей

Параметры пульсации определяются по осциллографу, либо с помощью двух вольтметров или амперметров (постоянного и переменного тока)

Литература[править | править код]

Нормативно-техническая документация[править | править код]

ru.wikipedia.org

Сила тока — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка.

Сила тока — физическая величина I{\displaystyle I}, равная отношению количества заряда ΔQ{\displaystyle \Delta Q}, прошедшего через некоторую поверхность за некоторое время Δt{\displaystyle \Delta t}, к величине этого промежутка времени[1]:

I=ΔQΔt.{\displaystyle I={\frac {\Delta Q}{\Delta t}}.}

В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.

Обычно обозначается символом I{\displaystyle I}, от фр. intensité du courant.

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A), ампер является одной из семи основных единиц СИ. 1 А = 1 Кл/с.

По закону Ома сила тока I{\displaystyle I} для участка цепи прямо пропорциональна приложенному напряжению U{\displaystyle U} к участку цепи и обратно пропорциональна сопротивлению R{\displaystyle R} проводника этого участка цепи:

I=UR.{\displaystyle I={\frac {U}{R}}.}

По закону Ома для полной цепи

I=εR+r{\displaystyle I={\frac {\varepsilon }{R+r}}}

Носителями заряда, движение которых приводит к возникновению тока, являются заряженные частицы, в роли которых обычно выступают электроны, ионы или дырки. Сила тока зависит от заряда q{\displaystyle q} этих частиц, их концентрации n{\displaystyle n}, средней скорости упорядоченного движения частиц vcp→{\displaystyle {\vec {v_{cp}}}}, а также площади S{\displaystyle S} и формы поверхности, через которую течёт ток.

Если n{\displaystyle n} и vcp→{\displaystyle {\vec {v_{cp}}}} постоянны по объёму проводника, а интересующая поверхность плоская, то выражение для силы тока можно представить в виде

I=qnvcpcos⁡αS,{\displaystyle I=qnv_{cp}\cos \alpha S,}

где α{\displaystyle \alpha } — угол между скоростью частиц и вектором нормали к поверхности.

В более общем случае, когда сформулированные выше ограничения не выполняются, аналогичное выражение можно записать только для силы тока dI{\displaystyle dI}, протекающего через малый элемент поверхности площадью dS{\displaystyle dS}:

dI=qnvcpcos⁡αdS.{\displaystyle dI=qnv_{cp}\cos \alpha dS.}

Тогда выражение для силы тока, протекающего через всю поверхность, записывается в виде интеграла по поверхности

I=∫Sqnvcpcos⁡αdS.{\displaystyle I=\int \limits _{S}qnv_{cp}\cos \alpha dS.}

В металлах заряд переносят электроны, соответственно в этом случае выражение для силы тока имеет вид

I=∫Senvcpcos⁡αdS.{\displaystyle I=\int \limits _{S}env_{cp}\cos \alpha dS.}

где e{\displaystyle e} — элементарный электрический заряд.

Вектор qnvcp→{\displaystyle qn{\vec {v_{cp}}}} называют плотностью электрического тока. Как следует из сказанного выше, его величина равна силе тока, протекающей через малый элемент поверхности единичной площади, расположенный перпендикулярно скорости vcp→{\displaystyle {\vec {v_{cp}}}}, а направление совпадает с направлением упорядоченного движения заряженных частиц[2].

Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи[3] в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).

ru.wikipedia.org

определение, формулы и как измеряется

В данной статье мы подробно разберем что такое напряжение, как просто его представить и измерить.

Определение

Напряжение — это электродвижущая сила, которая толкает свободные электроны от одного атома к другому в том же направлении.

В первые дни электричества напряжение было известно как электродвижущая сила (ЭДС). Именно поэтому в уравнениях, таких как закон Ома, напряжение представлено символом Е.

Алессандро Вольта

Единицей электрического потенциала является вольт, названный в честь Алессандро Вольта, итальянского физика, жившего между 1745 и 1827 годами.

Алессандро Вольта был одним из пионеров динамического электричества. Исследуя основные свойства электричества, он изобрел первую батарею и углубил понимание электричества.

Представление напряжения

Легче всего понять напряжении, представив давлении в трубе. При более высоком напряжении (давлении) будет течь более сильный ток. Хотя важно понимать, что напряжение (давление) может существовать без тока (потока), но ток не может существовать без напряжения (давления).

Напряжение часто называют разностью потенциалов, потому что между любыми двумя точками в цепи будет существовать разница в потенциальной энергии электронов. Когда электроны протекают через батарею, их потенциальная энергия увеличивается, но когда они протекают через лампочку, их потенциальная энергия будет уменьшаться, эта энергия покинет цепь в виде света и тепла.

Возьмите, например, обычную 1,5-вольтовую батарею AA, между двумя клеммами (+ и -) есть разность потенциалов 1,5 Вольт.

Напряжение или разность потенциалов — это просто измерение количества энергии (в джоулях) на единицу заряда (кулона). Например, в 1,5-вольтовой батарее AA каждый кулон (заряд) будет получать 1,5 вольт или джоулей энергии.

Напряжение = [Джоуль ÷ Кулон]

1 вольт = 1 джоуль на кулон

100 вольт = 100 джоулей на кулон

1 кулон = 6 200 000 000 000 000 000 электронов (6,2 × 10 18 )

В чем измеряется напряжение

Мы измеряем напряжение в единицах «Вольт», которые обычно обозначаются просто буквой «V» на чертежах и технической литературе. Часто необходимо количественно определить величину напряжения, это делается в соответствии с единицами СИ, наиболее распространенные величины напряжения, которые вы увидите:

  • мегавольт (мВ)
  • киловольт (кВ)
  • вольт (В)
  • милливольт (мВ)
  • микровольт (мкВ)

Напряжение всегда измеряется в двух точках с помощью устройства, называемого вольтметром. Вольтметры являются либо цифровыми, либо аналоговыми, причем последний является наиболее точным. Вольтметры обычно встроены в портативные цифровые мультиметровые устройства, как показано ниже, они являются распространенным и часто важным инструментом для любого электрика или инженера-электрика. Обычно вы найдете аналоговые вольтметры на старых электрических панелях, таких как распределительные щиты и генераторы, но почти все новое оборудование будет поставляться с цифровыми счетчиками в качестве стандарта.


Портативный цифровой мультиметр с функцией вольтметра

На электрических схемах вы увидите устройства вольтметра, обозначенные буквой V внутри круга, как показано ниже:

Расчет напряжения

В электрических цепях напряжение может быть рассчитано в соответствии с треугольником Ома. Чтобы найти напряжение (V), просто умножьте ток (I) на сопротивление (R).

Напряжение (V) = ток (I) * сопротивление (R)

V = I *R

Пример

Ток в цепи (I) = 10 А
Сопротивление цепи (R) = 2 Ом

Напряжение (V) = 10 А * 2 Ом

Ответ: V = 20В

Резюме

  • Напряжение — это сила, которая перемещает электроны от одного атома к другому
  • Напряжение также известно как разность потенциалов
  • Напряжение измеряется в единицах «вольт» (В)
  • Батареи увеличивают потенциальную энергию электронов
  • Лампочки и другие нагрузки уменьшают потенциальную энергию электронов
  • Напряжение измеряется с помощью вольтметра
  • Напряжение цепи можно рассчитать путем умножения тока и сопротивления

meanders.ru

Величина тока и напряжения

Основным фактором, влияющим на исход поражения человека электрическим током, является величина тока, которая согласно закону Ома зависит от величины приложенного напряжения и сопротивления тела человека. Эта зависимость не является линейной, так как при напряжениях около 100 В и выше наступает пробой верхнего рогового слоя кожи, вследствие чего электрическое сопротивление человека резко уменьшается (становится равным rвн), а ток возрастает. При этом степень отрицательного воздействия электрического тока на организм человека увеличивается с ростом величины тока. Напряжение, приложенное к телу человека, также влияет на исход поражения, но лишь постольку, поскольку оно определяет значение тока, проходящего через человека.

Обычно человек начинает ощущать раздражающее действие переменного тока промышленной частоты 50 Гц при величине 0,6-1,5 мА и постоянного тока 5-7 мА. Эти токи называются ощутимыми пороговыми токами. Они не представляют опасности для человека, и человек может самостоятельно отключиться от цепи.

При переменных токах 5-10 мА раздражающее действие электрического тока становится более сильным, появляется боль в мышцах и непроизвольное их сокращение. При токах 10-15 мА боль в мышцах становится такой сильной, что человек уже не в состоянии самостоятельно освободиться от действия тока (не может разжать руку, отбросить от себя провод и т.д.). Переменные токи 10-15 мА и выше и постоянные токи 50-80 мА и выше называются неотпускающими токами.

Переменный ток 25 мА и выше (в зависимости от того где человек прикоснулся к токоведущим частям – в зависимости от пути прохождения тока) воздействует на мышцы грудной клетки, что может привести к параличу дыхания и вызвать смерть человека.

Электрический ток около 100 мА и более при частоте 50 Гц и 300 мА и более при постоянном напряжении за короткое время (1-2 с) поражает мышцу сердца человека и вызывает его фибрилляцию. Эти токи называются

фибрилляционными.

Токи более 5 А вызывают паралич сердца и дыхания, минуя стадию фибрилляции сердца. Если действие электрического тока было кратковременным (1-2 с) и не вызвало повреждения сердца, то после отключения тока оно, как правило, самостоятельно возобновляет свою нормальную деятельность. При длительном (несколько секунд) протекании тока более 5 А – происходят тяжелые ожоги, разрушение тканей организма человека.

При больших токах, даже в случае их кратковременного воздействия, наряду с остановкой сердца, происходит паралич дыхания, причём после отключения тока дыхание, как правило, самостоятельно не восстанавливается и требуется немедленная помощь пострадавшему в виде искусственного дыхания.

Ощутимый ток – электрический ток, вызывающий при прохождении через тело человека ощутимые раздражения.

Неотпускающий ток – электрический ток, вызывающий при прохождении через тело человека непреодолимые судорожные сокращения мышц руки, в которой зажат провод.

Фибрилляционный ток

– электрический ток, вызывающий при прохождении через тело человека фибрилляцию сердца.

Наименьшие значения этих токов называются пороговыми.

Пороговые значения ощутимого, неотпускающего, фибрилляционного токов, полученные в результате экспериментальных исследований, приведены в таблице 1.1.

 

 

Таблица 1.1.


Похожие статьи:

poznayka.org

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *