+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как подключить трехфазное УЗО? Инструкция по подключению 3-х фазного УЗО

УЗО – это коммутационный электротехнический аппарат, служащий для совершения отключения питающей сети, в момент превышения показателей дифференциального тока.

3-х фазное УЗО предназначено для защиты человека от воздействия электрического тока при касании к токоведущим частям системы питания либо при пробое изоляции проводников. Помимо этого оно обеспечивает защиту в случае:


  • смены проводов «нуля» и «земли»;
  • перемены «фазы» и «нуля» и прикосновении к частям, которые не являются токоведущими, но оказавшимся под напряжением;
  • при обрыве «нуля» на линии, в которой установлено УЗО и касании человека.

Устройство трехфазного УЗО

Схема устройства УЗО трехфазного состоит из следующих элементов:

контактов для подключения питающей сети;

кнопки включения УЗО;

кнопки «Тест;

контактов для подключения приемника.

Инструкция по подключению 3 фазного УЗО:

  • Самым главным правилом при подключении устройства защитного отключения, да и собственно любого электротехнического оборудования, является первичное отключение напряжения питающей сети. Снятие нагрузки производится при помощи вводного автоматического выключателя;
  • Затем необходимо убедиться в отсутствии напряжения. Для этого необходимо воспользоваться тестером;
  • Далее производится установка трехфазного устройства защитного отключения на монтажную DIN-рейку. Для этого необходимо зацепить «хвост» расположенный на задней стенке УЗО за один из выступов рейки, затем потянуть его вниз и толкнуть назад.

Теперь УЗО установлено на место своей постоянной дислокации и можно приступать к подключению.

Схема подключения трехфазного УЗО

Подключение трехфазного УЗО осуществляется путем присоединения кабельных линий сети к контактам устройства:

  • при помощи отвертки соответствующего типа ослабить контактные зажимы, обозначенные 2,4,6, N и подключить к ним проводники, идущие от приемников электрической энергии;
  • после этого необходимо таким же образом подключить провода идущие от счетчика к контактам 1,3,5,N;
  • произведение действий в таком порядке регламентировано «правилом подключения от приемника к источнику электроэнергии». Оно помогает избежать ситуаций с непреднамеренной подачей напряжения на линию.

Схема подключения узо в трехфазной сети с заземлением

Главная » Разное » Схема подключения узо в трехфазной сети с заземлением

Как подключить УЗО правильно: 7 схем с фото

В своей практике я не раз сталкивался с тем, что дорогая защита, на установку которой затрачено много сил и средств, не срабатывала при аварийной ситуации. Это приводило к очень серьезным повреждениям оборудования.

Для таких случаев энергетики страхуются резервными устройствами, сразу планируя их действие проектом. В домашней проводке так не поступают: слишком дорого.

Поэтому надо хорошо представлять, как подключить УЗО правильно в действующую схему, что я и рассматриваю ниже для типовых случаев безопасного питания электричеством оборудования квартиры либо дома.

Содержание статьи

Назначение и принцип работы УЗО в картинках

Устройство защитного отключения относится к токовым защитам и занимает второе место за автоматическим выключателем по обеспечению безопасности. Оно уже спасло здоровье многим людям, предотвратило электрические травмы.

Необходимость использования УЗО подтверждена требованиями времени, диктуется правилами электрической безопасности.

Как работает защитное отключение при образовании тока утечки

Орган сравнения фаз контролирует величину векторов входящего и выходящего токов по проводникам потенциалов фазы и нуля, постоянно сравнения их магнитные потоки.

Если величина второго вектора уменьшилась больше допустимого значения уставки, то делается вывод о возникновении неисправности. От появившегося тока утечки автоматически отключаются силовые контакты.

УЗО предотвращает прохождение тока через человеческое тело при случайном касании оголенных токоведущих частей или повреждении изоляции проводки, когда появляется опасный потенциал на корпусе электрического прибора.

Дополнительное назначение устройства: предотвращение пожара здания вследствие нарушения диэлектрических свойств изоляции, создающего случайные пути аварийных токов.

Дифференциальный орган работает во всех системах заземления здания. Однако наиболее корректная и безопасная ситуация создается в схемах TN-S и TN-C-S, ТТ с дополнительной заземляющей магистралью РЕ.

Здания со старой системой заземления TN-C загрубляют чувствительность органа сравнения.

Электрические схемы УЗО: 2 варианта для квартиры и дома

Защита выпускается готовыми модулями для установки на Din рейку с возможностью монтажа в однофазной или трехфазной проводке.

Схема подключения однофазного УЗО

В сеть 220 вольт включают модуль на две магистрали тока с потенциалами фазы и нуля.

Схема внутренней конструкции защиты печатается прямо на корпусе, приводится в документации. Провод приходящей фазы подключается сверху на клемму №1, а с клеммы №2 идет к потребителям.

Потенциал нуля подводится на верхнюю клемму N, а снимается с нижней. Менять эти правила подключения нельзя: иначе орган сравнения фаз не сможет работать правильно, произойдут ложные срабатывания.

Схема подключения трехфазного УЗО

Три входных фазных проводника монтируют поочередно к верхним клеммам №1, 2 и 3. Снизу модуля с клемм №2, 4 и 6 их снимают и направляют к потребителю. Потенциал нуля подводят сверху к клемме “N”, снимают с нижней.

Различные производители конструктивно располагают магистраль рабочего нуля справа или слева от магистралей фаз. Все эти вариации показаны схемой-картинкой на корпусе защиты.

Магистрали фаз допустимо менять между собой местами, но их нельзя путать с линией тока нуля. К ней подключена обмотка кнопки проверки “Тест”. При ее нажатии защита станет работать не правильно.

Схемы подключения однофазного УЗО: 3 варианта использования в квартире

Модуль защиты в квартирном щитке может монтироваться на:

  • вводе для контроля всего рабочего оборудования, подключенного к проводке;
  • одной проблемной линии, например, для ванной комнаты или кухни, обладающих повышенной степенью влажности;
  • несколько магистралей с розеточными группами.
Вводное УЗО: защита всей проводки в квартирном щитке

Устройство защитного отключения на вводе в квартиру устанавливают непосредственно за счетчиком и вводным автоматическим выключателем.

Пример расположения модулей защит, показанных на фотографии электрического щитка, дополняет поясняющая схема. Для ее ввода используется обычный автоматический выключатель однофазного исполнения.

Он разрывает только потенциал фазы аварийного тока. Это вполне приемлемо для обеспечения большинства задач, которые стоят в вопросах безопасности бытовой проводки.

Схема с двухполюсным автоматом ввода создается по такому же принципу за исключением того, что потенциал нуля проходит через его вторую магистраль на вход вводного УЗО.

После выхода с устройства защитного отключения потенциал нуля подключают к отдельной изолированной шинке N. С нее выполняют разводку по жилам кабелей к потребителям.

Защитные магистрали РЕ проводника монтируются с помощью собственной шинки PE. На нее подключается соответствующая жила от вводного кабеля и собираются отходящие магистрали ко всем потребителям без каких-либо разрывов.

Технические характеристики УЗО: номинальный ток и величина утечки — как правильно выбрать для вводного модуля

2 перечисленных параметра заложены заводом в конструкцию любого модуля. Изменить их после его приобретения мы не сможем. Поэтому важно их правильно выбирать до покупки.

Номинальный ток и уставка срабатывания утечки маркируются прямо на корпусе защиты.

Как выбрать УЗО по номинальному току

Эта величина характеризует силу тока, которую способны нормально выдерживать внутренние цепи блока без повреждения, например, со значением 40 ампер, как показано на картинке.

Если через внутреннюю схему защиты пойдет больший ток, то он просто спалит обмотки, провода, изоляцию. Это допускать нельзя.

Каждое устройство защитного отключения подключают через индивидуальный автомат с меньшим номинальным током на одну ступень стандартного ряда.

Модуль защитного отключения ставят за автоматическим выключателем. Тогда он полностью обесточивается после разрыва силовых контактов автомата.

По этому принципу для верхней схемы выбран автомат с током 32 А для вводного УЗО на 40 ампер. Его уставка по нагрузке короткого замыкания и перегрузу спасает наш модуль от выгорания при любой аварии.

Универсальными возможностями обладает дифференциальный автомат. Он объединяет в своей конструкции возможности УЗО и автоматического выключателя со сбалансированными электрическими параметрами номинального тока.

Стоимость дифавтомата несколько выше, чем составляющих УЗО и автомата вместе, но его применение экономит место в квартирном щитке, что часто бывает вполне обоснованно.

Как выбрать УЗО по току утечки

Практически через любой слой изоляции протекают токи. Просто у материалов с высокими диэлектрическими свойствами они очень малы из-за высокого электрического сопротивления.

Поврежденная изоляция обладает низкой ограничивающей способностью. Через нее протекают токи повышенной величины.

ПУЭ регламентирует суммарный ток утечки (дифференциальный) сквозь изоляцию. Он никогда не должен превышать безопасную для человека величину.

Существуют специальные лабораторные приборы, которые позволяют измерить ток утечки через изоляцию электропроводки. Когда они отсутствуют, то выполняют приблизительный расчет по предложенной методике.

Для обычных помещений выбирают устройство защитного отключения с безопасным дифференциальным током 30 мА. Во влажной среде, характерной для ванной комнаты или кухни во время приготовления пищи, его величина снижается до 10 или 6 мА.

На вводе в здание допустимо ставить устройство защитного отключения с номиналом 100 мА.

Если суммарный ток утечки электропроводки превышает допустимый уровень дифференциального тока для УЗО более чем 33%, то необходимо рассматривать вопрос полной замены устаревших проводов и кабелей.

Вводное УЗО на 100, 300 или 500 мА не способно спасти человека от получения электрической травмы. Его задача: предотвратить пожар из-за возгорания электрической проводки.

Схема использования одной защиты с органом сравнения фаз токов на вводе отличается простотой и экономичностью, но значительно затрудняет поиск неисправности после ее отключения.

УЗО для ванной: пример выбора модуля защиты на один потребитель

Вариант размещения защитного отключения внутри квартирного щитка показан фотографией ниже.

Схема подключения модуля защиты для одной отдельной линии (ванная комната) с расположением магистралей фазы и нуля показана более подробно на общей картинке для квартирной проводки.

Автоматический выключатель этой магистрали, как и остальных, запитан от сборки за вводным автоматом.

Обращаю внимание, как здесь подключена шинка рабочего нуля и ее отличия от способа, выбранного для схемы с вводным модулем.

Рабочий ноль подводится от вводного кабеля непосредственно к счетчику, а с него отводится на шинку N. С нее выполняется разводка ко всем потребителям кабелями отходящих линий.

К розеткам ванной комнаты рабочий ноль подается через отдельный силовой контакт нашей защиты.

Монтаж шинки PE выполняется по предыдущему варианту без изменений.

В этой схеме внутренняя конструкция модуля защищена от превышения номинального тока (16 ампер) собственным автоматическим выключателем (номинал 10 А).

При срабатывании защиты поиск неисправности упрощается проверкой состояния изоляции на магистрали от силовых контактов модуля до рабочего органа подключенного потребителя.

Групповое УЗО: экономная защита нескольких отходящих линий

Устанавливать индивидуальный модуль к каждому отдельному потребителю — наиболее оправданное решение в вопросах обеспечения безопасности и поиска места возникшей неисправности.

Однако такая схема монтажа самая затратная и дорогая. Она требует использования довольно вместительного квартирного щитка и большого количества модулей УЗО или дифференциальных автоматов. На их покупку уходит много денег.

Групповое УЗО позволяет их экономить. Его просто подключают к нескольким отходящим линиям, располагая отдельным блоком перед индивидуальными автоматическими выключателями.

Внутри квартирного щитка их удобно монтировать отдельными группами. Этот прием обеспечивает наглядность при эксплуатации и ремонте.

Схема подключения группового УЗО к нескольким отходящим линиям изображена ниже.

Здесь защиту группового модуля по величине номинального тока 50 ампер выполняет автомат ввода 40А.

У подобной схемы начинающие электрики выполняют ошибочный расчет, подбирая номинальный ток группового УЗО как сумму номиналов подключенных нагрузок.

Например, на схеме все потребители запитаны через автоматы на 32, 25 и 16 ампер. Общая их сумма составляет 32+25+16=73. Искать защиту с таким номиналом или большим бессмысленно.

Этот вопрос решается проще: вводной автомат в этой квартирной проводке уже выбран на 40 ампер. Большие токи он обязан отключать, одновременно защищая групповое УЗО.

Поэтому его номинал вполне достаточно выбрать на одну ступень больше из стандартного токового ряда: 50 ампер.

Отличия конфигурации цепей рабочего нуля для схемы группового УЗО

Рассматриваемая схема объединила оба рассмотренных выше варианта формирования цепочек для подключения к шинке N:

  1. до группового УЗО работает вторая разработка,
    используемая для одиночной линии;
  2. после него создается своя дополнительная шинка
    N1, отделяемая от общей цепочки контактами группового модуля.

Использование дополнительной шинки N1 значительно облегчает поиск токов утечек в отходящих линиях, возникших при повреждении изоляции проводов нулевых потенциалов после отключения защиты.

Монтаж шинки РЕ и проводов к ней не меняется.

Схема подключения трехфазного УЗО: 4 варианта для частного дома

Ниже рассматриваю случаи использования противопожарного и обычного модуля в разных ситуациях.

Противопожарное УЗО для частного дома: как правильно выбрать и установить

Фрагмент схемы подключения четырехполюсного противопожарного УЗО на вводе в частный дом поясняет главный принцип его выбора по дифференциальному току.

Его ставят на вводе в здание для защиты:

  • входного кабеля;
  • линий к потребителям, на которых не используются
    индивидуальные устройства защитного отключения;
  • выполняющей роль резерва в случае отказа
    основного модуля.

Противопожарное УЗО подключают в схему электропитания дома с обязательным соблюдением селективности его срабатывания. Она достигается комплексно двумя настройками:

  • троекратным запасом уставки по дифференциальному
    току в сравнении с любым групповым или индивидуальным модулем, расположенным
    ниже;
  • замедлением на срабатывание по времени минимум в
    3 раза.

Фрагмент приведенной выше схемы включения показывает, что дифференциальный ток противопожарного модуля IΔns трижды превышает уставку утечки IΔn1 или IΔn2 у любой группы потребителей.

Противопожарные УЗО создаются для срабатывания от токов утечки на 100, 300 либо 500 мА, а модули защиты человека от дифференциального тока производятся на уставки 30, 10 или 6 миллиампер.

Возможность выставления уставки времени для селективного срабатывания обозначается на корпусе модуля латинской буквой “S”.

Правильный выбор уставок противопожарного, группового и индивидуального УЗО по дифференциальному току и времени отключения возникшей аварии — обязательный принцип надежной ликвидации защитой поврежденного участка с оставлением под напряжением исправного оборудования.

Подключение трехфазного УЗО: схема на 4 полюса с использованием нейтрали

Упрощенно схему подключения четырехполюсного УЗО в трехфазную сеть можно представить следующим образом: на выходе рабочего нуля используется шинка для разводки потенциалов нейтрали N по подключенным потребителям (схема с нейтралью).

Потребители могут питаться от всех 3 фаз или какой-то одной. Эта же схема позволяет выполнять защиту одновременно трех разных однофазных цепей при условии использования общей нейтрали.

При этом стараются построить работу оборудования с соблюдением равномерного распределения токов нагрузок по всем фазам.

Подключение трехфазного УЗО: схема на 4 полюса без использования нейтрали

Отказаться от работы нейтрального провода и упростить конструкцию позволяет случай использования симметричной нагрузки, у которой все токи в фазах всегда равны.

Пример такого подключения — защита трехфазного асинхронного электродвигателя. Обмотки его статора могут быть собраны по схеме звезды или треугольника, которые обеспечивают одинаковые сопротивления между фазами.

Потенциал рабочего нуля заводится на вводной контакт четырехполюсного УЗО, а на выходной ничего не подключается. Выходная клемма потенциала N остается пустой.

Этот прием позволяет экономить средства за счет подключения двигателя к цепям питания кабелем с четырьмя, а не пятью жилами: три для фазных потенциалов и одна — защитного РЕ проводника.

Его монтируют на специальный болт заземления корпуса.

Подключение трехфазного УЗО: схема для однофазной сети

Предлагаемый вариант не является типичным.

Он используется как исключение в трех случаях:

  • У владельца имеется лишний модуль защиты, который необходимо пристроить в работу. Иначе оно просто пылится без дела.
  • Собираемую однофазную проводку планируется в ближайшем времени переводить на три фазы.
  • Временная замена модуля, вышедшего из строя при возникновении аварии.

Во всех трех случаях необходимо потенциал фазы пускать через те клеммы, к которым подключена обмотка кнопки “Тест”. Иначе она не станет срабатывать при ручных проверках.

В этой короткой статье я постарался дать самый необходимый материал. Видеоролик владельца Заметки электрика наглядно дополняет, как подключить УЗО правильно и выбрать его по номинальному току и току утечки. Рекомендую посмотреть.

Ожидаю, что у вас еще возникли вопросы по этой теме. Задавайте в комментариях. Я отвечу.

Как подключить трехфазную электрическую

Как для подключения трехфазных розеток и защиты от перенапряжения

Торговые точки марки Cooper
Устройства защиты от перенапряжения марки Intermatic
Цветовые коды проводов в Википедии
Трехфазная проводка
Форум электриков
Набор инструментов для инженеров
Оценить линейное напряжение
Трехфазные электрические счетчики
Схемы подключения трехфазного двигателя
Формулы для 3 -фаз
Линейное напряжение = линейное нейтраль x √3
3-фазная имеет 2 разновидности: 3-проводная: три провода под напряжением и без нейтрали, и 4-проводный: три провода под напряжением и нейтраль

Виды фазной разводки

Изображение большего размера
277 480 Три Фаза WYE

480 В между фазой

277 В между фазой

Все соединения звездой обеспечивают два напряжения из-за подключения к общей точке или нейтрали.

Линейное напряжение = 480 В
Линейное напряжение = 277 В
277 В x √3 = 479,778 В

√3 = 1,7320

Напряжения выше или ниже в зависимости от обмоток внутри трансформатора.
Мощность генерируется на заводе вращением 3 катушек в магнитном поле => мощность передается по 3 линиям => мощность передается по проводам к местным площадь => линии питания подключены к трансформатору => мощность изменяется на определенное напряжение в зависимости от того, какой трансформатор установлен, и как трансформатор подключен.Конфигурация
WYE или Delta определяет способ подключения катушек 3-фазного трансформатора.
Внутри у каждого трансформатора две катушки: первичная катушка подключена к источнику питания сторона поколения. Вторичная катушка подключена к служебным проводам, которые питают панель обслуживания и автоматические выключатели.
Если вторичная катушка намотана по схеме «звезда», то питание сервисной панели всегда будет иметь нейтраль и два напряжения.
Читать

Изображение большего размера
277 480 Три Фаза WYE

480 В между фазой

277 В между фазой

Показывает заземление оборудования


Используйте сетевой фильтр AG4803CE

Изображение большего размера
Три Фаза 480 В

480 В между линиями

Нет заземления системы

Показывает заземление оборудования


Используйте сетевой фильтр AG4803D3
Три Фаза 480 В, треугольник, угол заземления

480 В между фазами


Изображение большего размера
120 208 В, трехфазная звезда

Линия-звезда 208 В

Линия-нейтраль 120 В


Изображение большего размера
120 208 В, трехфазная звезда
3 фазы, 4 провода

208 В между фазой

Линия – нейтраль 120 В

Показывает заземление оборудования


Используйте сетевой фильтр AG2083C3
120 208 В, трехфазная звезда
Intermatic AG208C3 Скачок
208 В, трехпроводной, треугольник
, 3 фазы, 3 провода 208 Нет нейтрали

Между фазами 208 В


Изображение большего размера
347 600 В трехфазная звезда

600 В между фазами

347 В между фазами


Изображение большего размера
347 600 В, трехфазная звезда

600 В между фазой

347 В между фазой

Показывает заземление оборудования


Используйте сетевой фильтр AG65033
347 Трехфазная звезда, 600 В
Intermatic AG65033 Защита от перенапряжения

Изображение большего размера
Три Фаза 600 В

600 В между фазами

Нет заземления системы

Показывает заземление оборудования


Изображение большего размера
Три фаза 250 В

250 В по каждой линии

Нет заземления


Используйте сетевой фильтр AG2403D3
120–240 Высокая ножка Delta
Intermatic AG2403C3 Защита от перенапряжения

Черная линия на черную линию 240 В

Черная линия на нейтраль 120 В

Красная или оранжевая линия на нейтраль 208 В


Используйте сетевой фильтр AG2403C3
240-480 Дельта верхнего плеча

Фаза к фазе 480 В

Фаза A Фаза C к нейтрали 240 В

Фаза B верхнего плеча к нейтрали 415 В

Напряжения удвоены по сравнению с высоковольтным плечом 120-240

На изображении показаны первичная обмотка треугольником и вторичная обмотка треугольником с высоким плечом внутри трансформатора
Прочтите о трансформаторах
Первичная обмотка (или обмотка) подключена к стороне выработки электроэнергии.
Вторичная катушка подключена к сервисным проводам, которые питают сервис щитовые и автоматические выключатели.
Конфигурация показывает первичную обмотку треугольником. И вторичная обмотка треугольника с высокой опорой.

Если вторичная обмотка внутри трансформатора намотана треугольником, нет точки, где можно сделать равный потенциал между линией и нейтральный.
Средняя обмотка S3 отводится, что дает 120 В или 208 В на линию.
S1 и S2 не могут выдерживать нагрузки 120 Вольт.
как в результате катушка S3 используется для всех нагрузок 120 В, плюс 1/3 всех Трехфазные нагрузки, вызывающие потенциальный дисбаланс.
120В нагрузки не должны превышает 5% КВА
дикая нога, или нога B, или фаза B, обозначена как вторичная ветвь B и отмечена оранжевой точкой. поскольку оранжевый провод подключается к этой ножке

Прочитать


Изображение большего размера
277 480 В Однофазный

С заземлением


Используйте устройство защиты от перенапряжения AG48013
277 480 В однофазный
Intermatic AG48013 Скачок
Домашнее хозяйство электропроводка
Однофазное напряжение 120 В и двухфазное напряжение 240 В


Всего Помехи для дома
Изображение большего размера
Intermatic IG1240RC3 Вспышка для всего дома протектор / pdf
Protect твой бизнес / Защита панели выключателя и цепей на 120 и 240 В / защитите ваш безрезервуарный водонагреватель и любой водонагреватель с электроника
Устанавливается непосредственно в панель автоматического выключателя / заменяется после каждого события
Защищает автоматические выключатели, главную панель, электрическую проводку, электронику, бытовая техника
Не защищает телевизоры, подключенные к спутниковой антенне / для телевизоров используют скачки напряжения протектор с коаксиальным ТВ разъемом

Электропроводка бытовая Электропроводка бытовая
.

Простая схема трехфазного инвертора

В статье обсуждается, как сделать схему трехфазного инвертора, которую можно использовать в сочетании с любой обычной однофазной схемой инвертора прямоугольной формы. Схема была запрошена одним из заинтересованных читателей этого блога.


ОБНОВЛЕНИЕ : Ищете дизайн на базе Arduino? Вы можете найти это полезным:

3-фазный инвертор Arduino


Принципиальная схема

3-х фазная нагрузка может работать от однофазного инвертора, используя следующие поясненные этапы схемы.

В основном задействованные каскады можно разделить на три группы:

На первой диаграмме ниже показан каскад генератора ШИМ, его можно понять по следующим пунктам:

Осциллятор и каскад ШИМ

Схема подключения микросхемы IC 4047 стандартный триггерный выходной генератор со скоростью желаемой частоты сети, установленной VR1 и C1.

Двухтактный ШИМ с заданными размерами теперь доступен на переходе E / C двух транзисторов BC547.
Этот ШИМ подается на вход трехфазного генератора, описанного в следующем разделе.

Следующая схема показывает простую схему трехфазного генератора, которая преобразует указанный выше входной двухтактный сигнал в 3 дискретных выхода, сдвинутых по фазе на 120 градусов.

Эти выходы дополнительно делятся на отдельные двухтактные каскады, сделанные из каскадов НЕ-ворот. Эти 3 дискретных, сдвинутых по фазе на 120 градусов, двухтактных ШИМ теперь становятся питающими входными сигналами (HIN, LIN) для заключительного 3-фазного каскада драйвера, описанного ниже.

В этом генераторе сигналов используется один источник питания 12 В, а не двойной.

Полное объяснение можно найти в этой статье о генераторе трехфазных сигналов.

Схема ниже показывает каскад схемы с трехфазным инвертором, использующий конфигурацию H-мостовых МОП-транзисторов, которая принимает ШИМ с фазовым сдвигом из вышеуказанного каскада и преобразует их в соответствующий высокий Выходы переменного тока для работы с подключенной трехфазной нагрузкой, обычно это трехфазный двигатель.

Высокое напряжение 330 Ом на отдельных секциях драйверов МОП-транзисторов получается от любого стандартного однофазного инвертора, встроенного в показанные стоки МОП-транзисторов для питания желаемой трехфазной нагрузки.

Трехфазный полномостовой каскад драйвера

В приведенной выше схеме трехфазного генератора (вторая последняя диаграмма) использование синусоидальной волны не имеет смысла, потому что 4049 в конечном итоге преобразует ее в прямоугольные волны, и, более того, драйвер ИС в последней конструкции используют цифровые ИС, которые не реагируют на синусоидальные волны.

Таким образом, лучше использовать трехфазный генератор прямоугольных сигналов для питания последнего каскада драйвера.

Вы можете обратиться к статье, в которой объясняется, как сделать схему 3-фазного солнечного инвертора, чтобы понять работу ступени генератора 3-фазных сигналов и детали реализации.

Использование IC IR2103

Относительно более простая версия вышеупомянутой схемы трехфазного инвертора может быть изучена ниже с использованием ICS драйвера полумоста IC IR2103. В этой версии отсутствует функция выключения, поэтому, если вы не хотите включать функцию выключения, вы можете попробовать следующий более простой дизайн.

Упрощение вышеуказанных схем

В описанной выше схеме 3-фазного инвертора каскад 3-фазного генератора выглядит излишне сложным, и поэтому я решил поискать альтернативный более простой вариант для замены этой конкретной секции.

После некоторых поисков я нашел следующую интересную схему 3-фазного генератора, которая выглядит довольно простой и понятной с ее настройками.

Поэтому теперь вы можете просто полностью заменить описанную ранее микросхему IC 4047 и секцию операционного усилителя и интегрировать эту конструкцию с входами HIN, LIN в схему 3-фазного драйвера.

Но помните, что вам все равно придется использовать вентили N1 —- N6 между этой новой схемой и полной мостовой схемой драйвера.

Создание схемы солнечного трехфазного инвертора

До сих пор мы узнали, как сделать базовую схему трехфазного инвертора, теперь мы увидим, как солнечный инвертор с трехфазным выходом может быть построен с использованием очень обычных ИС и пассивных компонентов. .

Концепция в основном та же, я только что изменил каскад трехфазного генератора для приложения.

Основное требование к инвертору

Для получения трехфазного выхода переменного тока от любой однофазной или постоянного тока нам потребуются три основных каскада схемы:

  1. Трехфазная схема генератора или процессора
  2. Трехфазная схема силового каскада драйвера.
  3. Схема повышающего преобразователя
  4. Панель солнечных батарей (соответствующая номинальная мощность)

Чтобы узнать, как согласовать солнечную панель с батареей и инвертором, вы можете прочитать следующее руководство:

Расчет солнечных панелей для инверторов


В этой статье можно изучить один хороший пример, который объясняет простую схему трехфазного инвертора

В настоящий проект мы также включаем эти три основных этапа, давайте сначала узнаем о схеме процессора трехфазного генератора из следующего обсуждения:

Как Работает

На схеме выше показана базовая схема процессора, которая выглядит сложной, но на самом деле это не так.Схема состоит из трех частей: IC 555, который определяет 3-фазную частоту (50 Гц или 60 Гц), IC 4035, который разделяет частоту на необходимые 3 фазы, разделенные фазовым углом 120 градусов.

R1, R2 и C должны быть соответственно выбраны для получения частоты 50 Гц или 60 Гц при рабочем цикле 50%.

8 номеров НЕ вентилей от N3 до N8 можно увидеть включенными просто для разделения сгенерированных трех фаз на пары высоких и низких логических выходов.

Эти шлюзы НЕ могут быть получены от двух ИС 4049.

Эти пары высоких и низких выходов на показанных вентилях НЕ становятся важными для питания нашего следующего трехфазного силового каскада драйвера.

В следующем объяснении подробно описывается схема драйвера трехфазного МОП-транзистора от солнечной батареи.

Примечание. Вывод выключения должен быть подключен к линии заземления, если он не используется, иначе схема не будет работать.

Как можно увидеть на На приведенном выше рисунке эта секция построена на трех отдельных микросхемах драйверов полумоста, использующих IRS2608, которые предназначены для управления парами МОП-транзисторов с высокой и низкой стороны.

Конфигурация выглядит довольно простой, благодаря этой сложной микросхеме драйвера от International Rectifier.

Каждый каскад ИС имеет свои собственные входные контакты HIN (высокий вход) и LIN (низкий вход), а также соответствующие контакты питания Vcc / заземления.

Все Vcc должны быть соединены вместе и подключены к линии питания 12 В первой цепи (контакты 4/8 IC555), чтобы все каскады схемы стали доступны для источника питания 12 В от солнечной панели.

Точно так же все контакты заземления и провода должны быть объединены в общую шину.

HIN и LIN должны быть объединены с выходами, генерируемыми вентилями NOT, как указано на второй диаграмме.

Вышеупомянутая схема обеспечивает трехфазную обработку и усиление, однако, поскольку трехфазный выход должен быть на уровне сети, а солнечная панель может быть рассчитана максимум на 60 В, мы должны иметь схему, которая позволила бы повысить это низкое напряжение 60 вольт солнечной панели до необходимого уровня 220 или 120 В.

Использование понижающего / повышающего преобразователя на базе микросхемы IC 555

Это может быть легко реализовано с помощью простой схемы повышающего преобразователя на базе микросхемы 555, как может быть изучено ниже:

Опять же, показанная конфигурация повышающего преобразователя с 60 В на 220 В не выглядит так сложно, и может быть построен с использованием самых обычных компонентов.

IC 555 сконфигурирован как нестабильный с частотой приблизительно от 20 до 50 кГц. Эта частота подается на затвор переключающего МОП-транзистора через двухтактный биполярный транзистор.

Сердце схемы повышения напряжения сформировано с помощью компактного трансформатора с ферритовым сердечником, который принимает частоту возбуждения от МОП-транзистора и преобразует входное напряжение 60 В в требуемый выход 220 В.

Этот 220 В постоянного тока, наконец, подключен к ранее объясненному каскаду драйвера МОП-транзистора на стоках трехфазных МОП-транзисторов для достижения трехфазного выходного сигнала 220 В.

Трансформатор повышающего преобразователя может быть построен на любом подходящем узле EE сердечник / катушка с использованием первичной обмотки 1 мм 50 витков (два 0.5-миллиметровый бифилярный магнитный провод параллельно) и вторичный с использованием магнитного провода диаметром 0,5 мм с 200 витками

О Swagatam

Я инженер-электронщик (dipIETE),

.

Схема подключения громкоговорителей и руководство по подключению — основы, которые вам нужно знать

Нам всем нравится музыка, и динамики делают это возможным, но это сбивает с толку, если вы не знаете, как правильно подключить .

В этом посте вы найдете четкие и подробные схемы подключения динамиков, которые помогут (и которые вы тоже можете распечатать, если хотите!).

Я подробно расскажу о том, как правильно и неправильно подключить динамики и правильно подключить их к стереосистеме или усилителю.На самом деле это довольно просто, если вы изучите основы.

Схема подключения громкоговорителей для печати

Щелкните изображение, чтобы увеличить его, или щелкните здесь, чтобы просмотреть версию Adobe .pdf, которую можно загрузить и распечатать.

Основные сведения о громкоговорителе и объяснение его подключения

1. Что такое импеданс громкоговорителя? (рейтинг «Ом»)

Динамики, как и другие электромеханические устройства, имеют электрическое сопротивление потоку электрического тока, как стандартный резистор, лампочка или многие обычные предметы, с которыми вы знакомы.

Разница в том, как они ведут себя при прослушивании музыки, когда они подключены к какому-либо музыкальному усилителю.

Значение сопротивления определяется длинной катушкой провода внутри каждого динамика, называемой звуковой катушкой . Звуковая катушка — это катушка из проволоки, которая, будучи помещена в магнитное поле, заставляет динамик двигаться и воспроизводить звук при управлении от усилителя.

Динамики содержат длинную проволочную петлю, называемую звуковой катушкой. Проволочные петли имеют свойство, называемое индуктивностью, которое влияет на значение сопротивления динамика в зависимости от воспроизводимой частоты (звукового диапазона).

Поскольку они обладают электрическими свойствами, включая индуктивность и емкость, их «общее сопротивление» может незначительно изменяться в зависимости от музыки. Из-за этого требуется дополнительная математика, чтобы вычислить общее сопротивление.

Слово, используемое для описания, называется импеданс .

Импеданс динамика — это просто более продвинутый способ определения общего сопротивления, и по традиции он измеряется в единицах, называемых «Ом».

Хорошая новость заключается в том, что вам не нужно слишком беспокоиться о деталях — это не имеет значения для базового использования динамика, и пока вы понимаете основные правила, все будет в порядке!

2.Минимальные значения импеданса стереосистемы и усилителя

Все усилители любого типа, включая автомобильный стереоусилитель, домашний стереоресивер, усилитель домашнего кинотеатра и т. Д., Имеют минимальное сопротивление (сопротивление). Важно, чтобы вы обращали внимание и не превышали минимальный рейтинг импеданса динамиков.

Это связано с тем, что при понижении импеданса увеличивается электрический ток, и стереосистеме приходится выполнять больше работы. Это увеличивает количество стресса и тепла, с которым ему приходится справляться.

Если ваша стереосистема помечена производителем как «совместимая с 8-омными динамиками» или аналогичная, это означает, что подключение динамиков с более низким импедансом может очень быстро вызвать чрезмерное нагревание и возможное повреждение.

Например, подключение динамика с сопротивлением 4 Ом к усилителю, который помечено как работающий с динамиками с сопротивлением 8 Ом, будет означать, что он должен подавать на динамик двойной электрический ток!

Изображение задней панели домашнего стерео ресивера / усилителя.Рекомендуемые значения импеданса динамиков обычно указаны над выводами проводов динамиков. Домашняя стереосистема, например, может часто указывать 6-16 Ом как приемлемые для использования.

Кроме того, попытка подключить два динамика на 8 Ом параллельно к стереосистеме на 8 Ом будет иметь такой же эффект. (Два 8-омных динамика, подключенных параллельно, равны 4 Ом, которые увидит усилитель)

Я видел много попыток людей, у которых были друзья, которые утверждали, что они могут «увеличить мощность» или «получить больше мощности». трюк, но не работает. У них получился сгоревший усилитель.

Усилитель может выдержать только определенное количество тепла и стресса, прежде чем он выйдет из строя, поэтому обязательно соблюдайте эти правила. Убедитесь, что вы подключили громкоговорители в соответствии с необходимым минимальным сопротивлением.

Помните: не используйте импеданс динамика ниже номинального, указанного производителем. Это может привести к перегреву или необратимому повреждению. Я видела это!

3. Какая полярность динамика?

Динамики отличаются от других устройств тем, что они работают с использованием переменного тока (AC) вместо постоянного (DC).Это хорошие новости! Это означает, что в большинстве случаев вы не можете повредить динамики, поменяв местами положительную («+») и отрицательную («-») проводку.

К сожалению, немного усложняется, когда мы используем более 1 динамика.

Полярность разговора и почему вы должны согласовывать подключения громкоговорителей

Как я уже упоминал, громкоговорители работают путем перемещения конуса вперед и назад для воспроизведения звука. Если вы подключаете 2 динамика к стереосистеме с разной полярностью (например, один имеет положительную и отрицательную полярность, как указано, а второй динамик — противоположное), происходит интересная вещь: они не совпадают по фазе, и некоторые звуки гаснут из .

Результат — странное и плохо звучащее стерео. В большинстве случаев вы заметите отсутствие басов, и они не будут звучать так, как ожидалось.

Когда громкоговорители подключены противоположно друг другу, звуковые волны гасятся. При одинаковом подключении звуковые волны складываются для большего звука.

Громкоговорители с другим подключением плохо звучат, так как большая часть звука прерывается. По сути, это просто потому, что звуковые волны из одного динамика движутся в противоположном направлении от другого динамика — и если они близки к тому же временному и частотному диапазону, они часто гасятся.

Вот почему, когда 2 низкочастотных динамика помещены в коробку и подключены параллельно, но с противоположным подключением друг к другу, они «не совпадают по фазе» и почти не имеют басов! Это потому, что они выполняют противоположную работу, а не работают вместе, чтобы произвести больше звука.

Пока один движется вверх, другой движется в противоположном направлении и так далее.

Итак, самое важное, что здесь нужно запомнить, — это подключить громкоговорители таким же образом, как и друг к другу .

4. Подключение 2-полосных и 3-полосных динамиков

Двухполосные динамики, такие как домашняя стереосистема или компонентные автомобильные аудиосистемы, поставляются в виде предварительно спроектированного набора динамиков и используют кроссовер. Задача кроссовера (также называемого пассивным кроссовером , потому что он использует основные конденсаторы и катушки индуктивности, а не электронику) заключается в ограничении воспроизведения музыки, которую пытается воспроизвести каждый динамик.

Например, твитеры не могут воспроизводить низкие частоты (и фактически могут быть ими повреждены), поэтому для предотвращения этого используется кроссовер двухполосных динамиков.Точно так же низкочастотный динамик не может хорошо воспроизводить высокие звуки, и ему это мешает.

В отличие от стандартных отдельных динамиков, двух- и трехполосные динамики с кроссовером можно использовать только параллельно, а не последовательно .

Это потому, что, в отличие от отдельных динамиков без кроссоверов, в этом случае многие звуки будут отфильтрованы. Это означает, что при последовательном подключении еще одной двухполосной колонки звук будет практически отсутствовать.

Поэтому, если у вас есть домашняя стереосистема или автомобильная стереосистема, в которой используются 2-полосные динамики, вам придется добавить дополнительные 2-полосные динамики (если общий импеданс может поддерживаться усилителем) или добавить еще каналы усилителя для большего звука.

5. Удвоение количества динамиков или мощности не приводит к удвоению громкости

В некоторых случаях можно добавить больше динамиков для увеличения громкости, которую вы можете получить, или для размещения динамиков в большем количестве комнат, большего количества мест в вашем автомобиль и так далее. Вы также, возможно, задавались вопросом, что бы произошло, если бы вы купили усилитель с мощностью в два раза большей, чем ваш нынешний.

Следует понять одну важную вещь: , имеющий 2 или 3 динамика вместо одного, не увеличивает звук в два или три раза.Он увеличивает на несколько децибел (дБ) для каждого добавленного динамика.

Удвоение мощности также не приводит к удвоению громкости.

Это связано с принципом работы человеческого уха и физикой звука, а также с тем, как работают динамики и какую громкость они могут производить при заданной мощности.

Вообще говоря, человеческое ухо будет слышать очень небольшое увеличение громкости при каждом удвоении акустической мощности: около 3 децибел (дБ). Для большинства людей небольшое увеличение громкости, которое вы замечаете при повороте ручки громкости на 1 ступень, составляет где-то около 3 дБ.

Пример громкости обычного динамика при разных уровнях мощности:

  • 1 Вт = 89 дБ
  • 2 Вт = 92 дБ
  • 4 Вт = 95 дБ
  • 8 Вт = 98 дБ
  • 16 Вт = 101 дБ
  • 32 Вт = 104 дБ
  • 64 Вт = 107 дБ
  • 128 Вт = 110 дБ

Итак, как видите, удвоение мощности, на которую вы можете управлять динамиком, не означает, что вы удвоите громкость. Увеличивает его очень незначительно (насколько это касается ваших ушей).

Сверху также видно, что для увеличения громкости требуется много энергии!

Как добиться большей громкости от динамиков

В большинстве случаев лучшие способы увеличения громкости:

  • Используйте более эффективные динамики (динамики, которые производят более высокий уровень громкости в дБ при мощности 1 Вт — чем выше, тем лучше)
  • Добавить больше громкоговорителей, если у вас есть усилитель, который может его поддерживать
  • Используйте громкоговорители с более высокой мощностью и усилитель мощности большего размера, если ваша цель намного больше

Большинству людей нужен усилитель, который может производить достаточную громкость, чтобы заполнить комнату или автомобиль и время от времени увеличивайте громкость. Мне нравится использовать 50 Вт или выше на канал, как хорошее практическое правило при покупке усилителя.

Как читать положительные и отрицательные метки динамиков (+ и -)

Домашние стереосистемы и автомобильные динамики обычно часто используют красный знак или знак плюса «+» для обозначения полярности клемм проводки динамиков, к которым вы подключаете проводку.

Здесь также нужно знать несколько вещей:

  • В некоторых случаях черная точка или красная или черная полоса используются для обозначения положительного вывода
  • Если динамик имеет выводы 2 разных размеров, больший из двух обычно является положительным
  • Для динамиков с уже подключенным проводом, как правило, медный или золотистый провод является положительным
  • Для динамиков с подключенным проводом, но с проводами того же цвета, на большинстве из них есть небольшие надписи положительный провод — обязательно внимательно проверьте

Сводка

Здесь я предоставил вам схему громкоговорителей, показывающую основные подключения, я объяснил несколько важных вещей, которые вам нужно знать о громкоговорителях и проводке громкоговорителей.Надеюсь, я дал вам больше понимания о том, как подключить динамики и получить от вашей системы максимум удовольствия.

Есть вопросы, комментарии или предложения? Обязательно оставьте комментарий ниже или отправьте мне сообщение.

Не знаете, как насчет твитеров? Вот полезное руководство, объясняющее, что такое твитеры и для чего они используются.

Заинтересованы в шунтировании автомобильного усилителя? Узнайте, как подключить автомобильный усилитель в этом посте.

.

Подключение УЗО — однофазная и трехфазная схема подключения . Электропара

Позаботившись о подключении УЗО, вы будете спать гораздо спокойнее, ведь бытовая и электротехника теперь надежно защищена. Мы расскажем, чем отличается УЗО от диффавтомата, по какому принципу оно работает, как подключается.

Как работает УЗО

УЗО предохраняет человека от поражения током в случае неисправности оборудования, если он случайно или намеренно прикоснется к токопроводящим частям. Также УЗО защищает электропроводку при замыкании.

УЗО выполняет роль выключателя цепи. В нормальных условиях взаимодействие встречно магнитных полей, образованных течением тока через первичные обмотки трансформатора, приводит к нулевому значению тока вторичной обмотки, и УЗО не срабатывает. Если же в цепи появилась утечка тока (она может случиться и из-за соприкосновения открытых частей тела с токоведущими частями), во вторичной обмотке появится электрический заряд, вызванный нарушением баланса в первичной обмотке. Это приведет к срабатыванию УЗО, вызвав обесточивание сети.

При подключении УЗО следует учитывать, что этот прибор устанавливается сверху вниз во избежание нарушения работы бытовой и электротехники. Заземление является обязательным.

Способы подключения УЗО

Подключение устройства защитного отключения возможно в однофазной и трехфазной сети.

Если вы никогда не занимались электромонтажными работами и смутно представляете себе схему работы УЗО, лучше прибегнуть к помощи профессионального электрика.

Производители информируют о методах подключения информационной маркировкой, на которой указано, как соединять провода. Ноль всегда обозначается буквой N. Перед началом работ следует обесточить помещение.

 

Для подключения в трехфазную сеть нужно выбирать четырехполюсное УЗО, способное выдержать высокое напряжение сети. Подключается по такому же принципу, что и в трехфазной сети, меняется только количество проводов.

Если в трехфазной сети нет провода N нейтраль, обмотка не используется, применяются только фазные провода.

Как выбрать УЗО

 

Выбираем УЗО в зависимости от потребности сети. В большом многоквартирном доме можно установить один общий УЗО, в этом случае нужно выбирать трехфазный прибор с соответствующими характеристиками. Если вы подключаете УЗО к сети частного дома, можно взять устройство меньшей мощности.

 

 

Четырехполюсное узо в трехфазной сети — Портал о стройке

14 марта, 2014. Прочитано 14774 раз(а)

Специалисты рекомендуют подбирать схему подключения УЗО индивидуально для отдельно взятой электрической сети. Правильней всего монтаж УЗО в любом доме или частной квартире выполнять рядом с электрическим счетчиком или на небольшом удаленном расстоянии от него. Наиболее зарекомендованным на сегодняшний день остается УЗО компании  Legrand или ABB.

Как правило, монтаж УЗО нужно выполнять совместно с автоматическим защитным выключателем. К примеру, на одной линией с УЗО можно смонтировать несколько защитных автоматов. Сегодня существует две основные схемы подключения автоматов в щитке и УЗО.

Самый простой метод заключается в монтаже всего одного УЗО полностью на действующую электрическую сеть. Данная схема имеет ряд недостатков:

  1. В случае авариивыяснить конкретный участок поврежденной сети будет затруднительно;
  2. В случае сбоя УЗО произойдет отключение питание всей сети.

Если рассматривать второй случай, то здесь потребуется ставить УЗО в отдельности на каждую линию. В случае сбоя на одном из участков, остальная сеть будет функционировать. Но этот метод наиболее затратный, нежели первый, а также потребует значительно больше свободногоместа в щитке.

Схема подключения УЗО трехфазного типа

Вышеприведенная схема подключения УЗО в щиткегарантирует защиту как трехфазных, так и всех однофазных потребителей. Как правило, нулевая или «земляная» шины в этом случае совмещены. Электрический счетчик необходимо смонтировать между защитным автоматом и УЗО.

Схема подключения УЗО однофазного типа

Правила применения схемы

Одним из основных правил в случае применения данной схемы монтажа УЗО  — использование защитного предохранителя, который выступит надежной защитой непосредственно для электрического счетчика и для устройства защитного отключения. Также потребуется установить защитный выключатель, обесточивающий потребителей в случае подачи повышенного тока. В этом случае следует учесть, что, ток отсечки защитного автомата не должен быть выше, чем ток рабочий устройства защитного отключения.

Одним из главных элементов выступаетмонтаж к УЗО нейтрального провода. Для правильного монтажа нейтрального провода предусмотрена схема на корпусе УЗО. Будьте особенно внимательны при монтаже нейтрального провода, так как это может вызвать поломку УЗО. Правильней всего выполнить монтаж непосредственно к «земле», а не на контакт, который находится под напряжением. Будьте внимательны и осторожны.

Рекомендуем вам еще:

Source: o-builder.ru

Читайте также

4 Схемы подключения к трехфазной, однофазной сети.-Энциклопе…

 Обычно квартиры запитываются от одно- или трехфазных внешних сетей. Тут, как говорится, кому как повезло. Разумеется, трехфазные сети, как правило, обеспечивают возможность получения большей нагрузки. 

     Самый тонкий вопрос — организация заземления и зануления. Мы все привыкли, что в розетках и вилках (однофазных сетей) у нас присутствуют 3 контакта: фаза, ноль и земля. Очень хорошо, если к Вашему дому приходят все эти три провода (при однофазном подключении), либо 5 проводов при трехфазном (3 провода 3 фаз, ноль и земля). 

     Сложнее, когда Вы имеете 2 провода при однофазном или 4 провода при трехфазном подключении. В этом случае, если к Вам приходит один провод зануления/заземления (т.н. называемый PEN, Вы можете выделить из него PE (т.е. заземление) и N (т.е. нейтраль или нулевой провод). 

     Конечно это будет несколько условно, но достаточно безопасно. А если Вы оборудуете Ваш щиток специальными приборами УЗО (устройство защитного отключения), то Вы можете считать себя в безопасности.Устройства защитного отключения (УЗО) реагируют на ненормативные токи утечки, являющиеся следствием прямого или косвенного касания человеком токоведущих частей, нарушения целостности или возгорания проводки. УЗО в первую очередь спасает человеку жизнь и защищает оборудование от возгорания.

подробнее об УЗО


 

     Общая рекомендация следующая. На входе коттеджа или квартиры должно стоять так называемое «пожарное УЗО» с током срабатывания 100 или 300 мА. Оно предназначено для отключения сети при возникновении пожара, что очень важно для деревянных домов. Ставить на входе УЗО с токами 30мА не рекомендуется — будут постоянные отключения. 

     Итак, через УЗО в 300 мА мы завязываем всю электрическую сеть в доме. А вот, через УЗО 30 мА или 10 мА мы подключаем тех потребителей, где возможны утечки. Прежде всего это помещения, связанные с водою (ванная, туалет, кухня, бойлерная, насосная станция и т.д.). Не помешает вывести на УЗО все розетки — хуже не будет. А вот освещение выводить на УЗО смысла нет, вероятность поражения током мала, наоборот, может получиться только хуже. Представьте, темным вечером у Вас срабатывает УЗО на кухне. Если при этом еще и погаснет свет, то это только усугубит ситуацию. 
     Обратите внимание на тот факт, что, в отличие от автоматов, на УЗО замыкаются и нулевые провода. Но самое главное — нулевые провода вышедшие из разных УЗО нельзя соединять вместе — сработают эти УЗО, сигнализируя об утечке. 

     Так как же работает наше УЗО. Очень просто. Оно представляет собою трансформатор тока: две обмотки, через одну протекает входящий в УЗО ток, а через вторую — ток, прошедший через нагрузку, т.е. выходящий. 


     Если все нормально и утечки тока «на сторону» на нагрузке не было, то входящий и выходящий токи равны и УЗО работает в штатном режиме. Если же произошла утечка (например, нулевой кабель замкнут на корпус стиральной машины, а Вы к ней прикоснулись), то часть тока уйдет через Ваше тело и УЗО моментально сработает.

 

      Схемы подключения к трехфазной, однофазной сети.     


 

     В интернете можно найти несколько десятков схем подключения домов. 

     Приводим три наиболее удачных варианта подключения к трехфазной сети: два варианта для режима раздельного подвода PE и N, и один вариант объединенного подвода PEN (самый дешевый и поэтому самый распространенный вариант). Порядок подключения к однофазной сети аналогичен.


 

Схемы распределительных щитов 3ф сети.


 

Вариант 1. Схема группового распределительного щита коттеджа (PE и N раздельны)

В приведенной ниже схеме все группы защищены УЗО с чувствительностью не менее 30 мА.
Электрооборудование санузлов, влажных помещений, где ток утечки наиболее опасен, защищается УЗО с отключающим дифференциальным током 10 мА для обеспечения полной безопасности.
1 — Пластиковый или металлический корпус щита.
2 — Соединительные элементы нулевых рабочих проводников.
3 — Соединительный элемент зажимов РЕ проводника, а также проводника уравнивания потенциалов.
4 — Соединительный элемент фазных проводников групповых цепей.
5 — Выключатель дифференциального тока.
6 — Автоматические выключатели.
7 — Линии групповых цепей.
8 – Счетчик.

 

Вариант 2. Схема группового распределительного щита индивидуального здания (дома или дачи) — (PE и N раздельны)

В приведенной схеме все основные устройства выделены в отдельные группы. Предназначенные для защиты людей устройства дифференциальной защиты с чувствительностью 30 мА установлены на все основные группы потребителей, кроме освещения комнат, где маловероятен контакт человека с токоведущими частями, и климатизатора, который должен быть дополнительно заземлен.
1 — Пластиковый или металлический корпус щита.
2 — Соединительные элементы нулевых рабочих проводников.
3 — Соединительный элемент РЕ проводника, а также проводника уравнивания потенциалов.
4 — Соединительный элемент фазных проводников групповх сетей.
5 — Выключатель дифференциального тока.
6 — Автоматические выключатели.
7 — Линии групповых цепей.
8 — Дифференциальный автоматический выключатель.
9 – Счетчик.

 

Вариант 3. Схема группового распределительного щита для индивидуального жилого дома (PEN: т.е. PE и N объединены)

На вводе в коттедж устанавливается УЗО с дифференциальным током 300 мА (при установке УЗО с меньшим током утечки возможны ложные срабатывания вследствие большой протяженности электропроводки и высокого естественного фона утечки электрооборудования). Первые три автоматических выключателя предназначены для защиты осветительных цепей от перегрузки,короткого замыкания и токов утечки. Группа из УЗО и трех автоматических выключателей предназначена для защиты розеток. Трехфазный автоматический выключатель и УЗО защищают мощные потребители (например, электроплита). Последняя лини, состоящая из одного УЗО и двух автоматических выключателей предназначена для защиты цепей отдельно стоящего здания (например, подсобного помещения).
1 — Пластиковый корпус щита.
2 — Соединительный элемент нулевых рабочих проводников .
3 — Соединительный элемент зажимов нулевых рабочих проводников, а так же проводника уравнивания потенциалов .
4 — Соединительный элемент входных выводов защитных аппаратов групповых цепей.
5 — Автоматический выключатель дифференциального тока.
6 — Выключатель дифференциального тока.
7 — Автоматические выключатели.
8 — Линии групповых цепей.
9 – Счетчик.

 

Схемы распределительных щитов 1ф сети.


 

Вариант 1. Схема группового распределительного щита (PE и N раздельны)

 

Московские городские строительные нормы МГСН 3.01-01 «Жилые здания»


 

Схема электроснабжения квартир II категории комфорта:


Схема электроснабжения квартир I категории комфорта:


Работа электромеханического УЗО при обрыве нуля

По конструктивному исполнению УЗО бывают электромеханические или электронные. Основная разница между ними состоит в том, что электромеханическое УЗО способно выполнить свою защитную функцию при часто встречающемся обрыве нулевого провода, а электронное в данной ситуации неработоспособно, так как нуждается в питании для работы платы усилителя, а при обрыве нуля это питание не поступает.

Рассмотрим как себя будет вести электромеханическое УЗО при обрыве нуля со стороны питающей сети.

В обычном режиме, когда и фаза и ноль подключены к УЗО и нет утечки тока сети и в нагрузке после УЗО токи фазным и нулевом проводах равны и направлены встречно, наводимые ими магнитные потоки взаимокомпенсируют друг друга и ток в обмотке управления равен нулю.

Предположим, что со стороны питающей сети произошёл обрыв нулевого провода. В данном случае, если нет пробоя изоляции на корпус и человек не касается токоведущих частей прибора — ничего не произойдёт. Ток в цепи нагрузки протекать не будет, так как нулевой провод оборван и цепь разомкнута, в сердечники дифференциального трансформатора тока магнитный поток наводится не будет, УЗО останется включенным, как и в обычном режиме. Те есть внешне ничего не изменится, но через фазный провод к нагрузке будет поступать опасный для жизни потенциал.

В случае пробоя изоляции на корпус прибора произойдёт вынос фазного потенциала на корпус прибора, возникнет ток утечки по фазному проводу через корпус прибора и защитный провод PE на землю. Через полюс УЗО, к которому подключён фазный провод, потечёт ток утечки, который будет наводить сердечники дифференциального трансформатора тока и компенсированный магнитный поток, поскольку ток во втором полюсе к которому подключен нулевой провод отсутствует. Под действием некомпенсированного магнитного потока в обмотке управления будет наводится ток, если величина этого тока превысит порог срабатывания, от половины до одного значения уставки, сработает электромагнитное реле, которое воздействуя на механизм расцепителя отключит силовые контакты УЗО от питающей сети. Аналогичным образом если человек случайным образом коснётся фазного провода, через его тело потечёт ток утечки на землю, в полюсе УЗО, через который подключен фазный провод, потечёт ток утечки, который будет наводить магнитный поток в сердечнике. В обмотке управления возникнет ток, приводящий к отключению контактов УЗО от питающей сети.

Подведём итог

Электромеханическое УЗО не защищает от обрыва нуля в однофазной сети, однако оно сохраняет свою работоспособность и продолжает выполнять свои защитные функции. Важно понимать, что если нет утечки тока с фазы на землю или защитный PE проводник, при пробое изоляции или касанием человеком фазного провода, то при обрыве нулевого провода УЗО не сработает.

Об уставках устройств защитного отключения в трехфазных сетях с изолированной нейтралью Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

СЕМИНАР 21

ДОКЛАД НА СИМПОЗИУМЕ «НЕДЕЛЯ ГОРНЯКА -2001»

МОСКВА, МГГУ, 29 января — 2 февраля 2001 г.

© Ю.Е. Бабичев, 2001

УДК 621.3

Ю.Е. Бабичев

ОБ УСТАВКАХ УСТРОЙСТВ ЗАЩИТНОГО ОТКЛЮЧЕНИЯ В ТРЕХФАЗНЫХ СЕТЯХ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

К

ак известно, устройства защитного отключения (УЗО) предназначены главным образом, для защиты людей от поражений электрическим током, которые могут привести к смертельному исходу, и, кроме того, для снижения вероятности опасности взрыва от утечек тока [1, 2, 3, 4].

В настоящей работе рассматриваются УЗО в трехфазных сетях с изолированной нейтралью, реагирующие на ток утечки в соответствии с классификацией по ГОСТ 12.4.155-85 или аппараты общесетевой защиты от токов утечки в соответствии с ГОСТ 22929-78 (СТ СЭВ 230980).

К таким аппаратам в России [2] предъявляются требования непрерывного контроля активного сопротивления изоляции и утечек всей находящейся под рабочим напряжением сети, а также обеспечение возможности её отключения коммутационным аппаратом при снижении указанных сопротивлений ниже нормированных значений. При этом сопротивления срабатывания защиты ‘сраб при симметричной трехфазной утечке должно соответствовать значениям, приведенным в стандарте [2]. Например, для сетей с напряжением 220/380 В оно должно быть не менее 10 кОм на фазу, а для сетей 660 В — не менее 30 кОм на фазу. Эти сопротивления получены из условия ограничения наибольшего тока утечки допустимым значением, оговоренным в стандарте [2] — 25 мА. При симметричной утечке в любой из трех фаз при активном сопротивлении изоляции относительно земли, равным

R,

сраб,

и.

ф

ток

220

3

утечки

равен

= 22 -10 , А, то есть не пре-

Rсраб 10 -10

вышает допустимого. Однако в реальных условиях эксплуатации активные сопротивления изоляции фаз

относительно земли не симметричны [5]. При этом возможны случаи, когда общее сопротивление изоляции всех фаз не меньше сопротивления срабатывания и УЗО при этом не срабатывает, однако ток утечки превышает допустимый. Объясняется это тем, что все УЗО и аппараты защиты от токов утечки (реле утечки) не измеряют собственно токи, но реагируют на суммарное активное сопротивление изоляции всех фаз относительно земли [3]. Суммарное сопротивление определяется параллельным соединением активных сопротивлений изоляции отдельных фаз или, что одно и то же, суммарная активная проводимость равна сумме активных проводимостей изоляции отдельных фаз. Например, возможен случай, когда активная изоляция двух фаз «идеальная»: ———> 0, ——-> 0, утечка происходит в фазе

‘в ‘с

«А», а суммарное сопротивление изоляции равно Rсраб. Тогда активное сопротивление утечки в фазе

«А» определяется по формуле:

1 3 1 1 3

. При этом ток утечки

R а Rс

‘А Rсраб ‘в ‘с Rсраб может в три раза превышать допустимый! Поэтому для ограничения токов утечки в реальных сетях необходимо увеличить уставки существующих УЗО. Становится актуальной задачей определить зависимости токов утечки отдельных фаз от активных сопротивлений изоляции сети. Ее решение позволит обосновать уставки для срабатывания УЗО.

Теоретические предпосылки. Сеть с изолированной нейтралью представляется эквивалентной схемой замещения с сосредоточенными параметрами [4, 5], которая приведена на рис. 1.

Каждая фаза сети соединена с землей комплексной проводимостью изоляции (У_= g + ] ОС). В дальнейшем будем считать реактивные проводимости изоляции фаз одинаковыми (СА =СВ = СС) и сопротивления линейных проводников сети пренебрежимо малыми.

На схеме обозначено:

Ца, Ц и ЦС— комплексные напряжения фаз относительно земли; Ц- комплексное напряжение земли относительно нейтрали питающей сети; ЦФА, ЦФВ, и ЦФС— комплексные фазные напряжения сети; 1уА, 1уВ и 1ус~ комплексные токи утечек; 1СА, 1СВ и 1СС- комплексные емкостные токи отдельных фаз сети на землю; gA, gB и gC— активные проводимости изоляции отдельных фаз относительно земли.

‘с

Моделирование возникновения утечки показано для фазы В. В результате внезапного нарушения изоляции, активная проводимость этой фазы скачкообразно увеличивается от значения gB = gB» до значения gB = 8в + gB». При этом изменяются и распределенные токи утечки других фаз, суммарные значения которых 1уА и/уС обозначены на рис. 1. Ток утечки поврежденной фазы В 1уВ в худшем случае определяется значением gB” = 0. Очевидно, что в этом случае он будет наибольшим при прочих равных условиях. Если повреждения изоляции происходят в других фазах, то принимаем ту же самую модель, что и рассмотренная в фазе

врежденных) определяются соотношениями:

1ул

■8л

-В —

1ус — 8с ■!

Здесь 2

I—ж п-р 3 -_

1ф _ ф

1 . л/з

——+ |——фазовый множитель;

2

2

2

иы — иф •

8л + 8в ■ П + 8с • П

(2)

8 л + 8В + 8с +1 •

Из (1) и (2) следует, что для определения токов утечки отдельных фаз нужно знать:

• активные проводимости изоляции фаз;

• суммарную реактивную проводимость изоляции;

• фазное (или линейное) напряжение сети. Предполагая все эти величины известными, будем

считать, что суммарная активная проводимость после повреждения изоляции точно равна предельно допустимой по ГОСТ 22929-78, то есть

8Е — 8л + 8В + 8с — 3 •

1

удоп

Поскольку активные

ф

проводимости изоляции отдельных фаз на практике всегда не равны друг другу [5], то (для упрощения анализа) можно принять, что они связаны между собой линейной зависимостью, например, такой:

этом, зная допустимый ток утечки, можно найти соответствующее значение проводимости 8л из (3):

1

8л —

Удоп

иф

(4)

С учетом (3) из (2) получим:

иы — иф

1 + (1 _ k) • п 2 + (1 + k) • п

Цф_

л/3

1 +1 •

I•иф•k

процесса и непо- дем:

1УЛ

1 1Удоп

■ы) *1) 1УВ

-ы ^ 1Удоп

1УС 1Удоп

-1 _

V3 •(1 +} • {88)

Подставив (5) в (1), с учетом (4) най] •k

— п2 .(1 _к )_-1 •к (1_к)

— п • (1 + к ) _

(6)

Эти соотношения положены в основу расчетов.

Расчетная часть. Для расчетов по (6) необходимо задавать емкость фаз относительно земли или, что одно и то же, /88 . Как показано в работе [5], для шахтных сетей параметры изоляции соответствуют значениям ¡88 в диапазоне от 0.3 до 3.0. Поэтому токи утечки отдельных фаз можно определять в зависимости от коэффициента к (характеризующего степень несимметрии параметров изоляции) при различных /%8 . Полученные результаты расчетов приведены в виде графиков модулей токов в функции к на рис. 2. Здесь по оси ординат отложены кратности токов утечки в отдельных фазах по отношению к предельно допустимому току утечки.

3

Ф

2

п

8Е — 8Л + 8В + 8С — 8Л + (1 _ к) • 8Л + (1 + к) • 8Л —

3• 8Л — 3• 1уд0П (3)’

иф

При к = 0 изоляция симметрична. Варьируя коэффициент к в пределах от -1 (изоляция фазы «В» идеальна) до +1(изоляция фазы «С» идеальна), можно рассчитать токи утечки для любой фазы по (1). При

Легко видеть, что токи в фазах В и С могут превышать допустимый ток в 1,5 и более раз. Причем емкость фаз относительно земли существенно влия-

ет на эти значения. Так с увеличением емкостной проводимости ¿2 (или ¡88 ) токи утечки растут, особенно сильно в фазе В.

Выводы. Неравенство активных проводимостей изоляции отдельных фаз может приводить к возникновению токов утечки, которые превышают предельно допустимый по условиям безопасности ток в 1,5 и более раз, несмотря на то, что активное суммарное сопротивление изоляции сети больше сопротивления срабатывания существующих УЗО.

Отсюда следует, что для ограничения токов утечки отдельных фаз величиной 25 мА необходимо, по крайней мере, в 1.5 раза увеличить сопротивление срабатывания УЗО (реле утечки) по сравнению с приведенным в ГОСТ 2292978.

1. Система стандартов безопасности труда. ГОСТ 12.4.155-85 Устройства защитного отключения. / Классификация. Общие технические требования. — М.: Издательство стандартов, 1987.

2. ГОСТ 22929-78 (СТ СЭВ 230980) Аппараты защиты от токов утечки рудничные для сетей напряжением до

1200 В. / Общие технические условия.

— М.: Издательство стандартов, 1982.

3. ГОСТ Р 50571.3_94 (МЭК 3644-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током. — М.: Издательство стандартов, 1995.

СПИСОК ЛИТЕРАТУРЫ

4. Колосюк В.П., Ихно С.А. Взры-вобезопасность горного оборудования.

— М.: Недра, 1994.

5. Изоляция подземных электроустановок и электробезопасность. А.В. Гладилин, Б.Г. Меньшов, В.И. Щуцкий и др. — М.: Недра, 1966.

КОРОТКО ОБ АВТОРАХ

Бабичев Юрий Егорович — кандидат технических наук, доцент кафедры электротехники, Московский государственный горный университет.

и

В метастабильной области Узо, иллюстрация богатой растворителем …

Контекст 1

… «внутренняя» структура в богатой нефтью области, которая исчезает без полного исчезновения — в богатой водой области. Вероятно, это связано с тем фактом, что спонтанный эффект эмульгирования «узо» никогда не описывался в богатых нефтью областях, поскольку растущие капли масла в воде нестабильны, так как образуются с высокими энтропийными затратами [48]. На рис. S7 показаны параметры вклада широких пиков из данных SAXS, т.е.е. выделяя полярные и аполярные домены, и показывает, что эволюция между полидисперсными глобулярными агрегатами и трехмерными случайными сетями при переходе от воды к нефти является плавной и ориентирована только на интуицию: это происходит без какой-либо термодинамики первого порядка …

Контекст 2

… линии равновесия соединяют точку в богатом водой углу в районе до Узо и точку в богатой нефтью стороне. Фаза, богатая н-октанолом, демонстрирует широкий пик: поэтому маслянистые капли микрометрового размера, которые образуются в результате спонтанной эмульгирования «Узо», состоят из структурированной динамической сети, схематически изображенной нитями на рис….

Контекст 3

… «внешняя» синяя фаза — это богатая водой фаза, расположенная близко к границе фаз, и содержит агрегаты до Узо, представленные на рис. 7 реалистичным образом, полученным из статистических данных. Расчет. Другая функция от a — объемная доля н-октанола в воду + н-октанол. На стороне, богатой н-октанолом (a> 0,5), увеличивается вклад Широкого пика из-за обратной сети спиртов. Орнштейн-Цернике вклад прямых скоплений в воде сильно зависит от…

Context 4

… поблагодарить Stjepan Marčelja за полезные обсуждения, реалистичный снимок богатой водой фазы, использованный на рис. 7, и аналогию с гетерофазными флуктуациями. Авторы выражают признательность Institut LaueLangevin ILL (Гренобль, Франция) за выделенное время луча (DOI: 10.5291 / ILL-DATA.9-10-1452) [22], а также Тинчери Нараянану, команде ID02 и ESRF — European Synchrotron (Гренобль, США). Франция) для использования внутреннего времени луча; все данные SAS доступны на…

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Комбинированный молекулярно-динамический (MD) и малоугловой анализ (SAS) анализ организации в нанометровом масштабе в тройных растворах растворителей, содержащих гидротроп. — сольвотроп, может проявлять структурирование. Мы исследуем фазовую диаграмму

n -октанол / этанол / вода, где этанол является гидротропом, меняющийся состав от стороны, богатой водой, к стороне, богатой n, -октанол при постоянной доле этанола.Мы разрешаем структуры нанометрового размера экспериментально с помощью четырех контрастов : трех от малоуглового рассеяния нейтронов (МУРН) и одного от малоуглового рассеяния рентгеновских лучей (МУРР). На стороне, богатой водой, мы подтверждаем существование капель, связанных с критической точкой, стабилизированной избыточной адсорбцией гидротропа: домен сверхгибкой микроэмульсии (UFME). Сторона, богатая октанолом n , лучше описывается как динамическая случайная сеть цепочечных ассоциаций гидроксильных групп.Непрерывная эволюция от масляных кластеров к динамической сети гидроксильных групп демонстрируется особенностями диаграмм рассеяния, успешно сравниваемых по всем контрастам с моделированием молекулярной динамики (МД), что позволяет проиллюстрировать моментальными снимками структурирование растворителей. Свободная энергия переноса гидротропа, полученного из МД, мала (∼1k B T / молекула). Это исследование предполагает, что спонтанные эмульсии узо могут находиться в динамическом равновесии с предузо, аналогично наноэмульсиям, кинетически стабилизируемым сосуществованием микроэмульсии.

Ключевые слова

Сверхгибкая микроэмульсия

Микроэмульсия без поверхностно-активных веществ

Микроэмульсия без детергентов

Малоугловое рассеяние

Молекулярная динамика

Pre-Ouzo

Тройные смеси

SANS2000 Тройные смеси

SANS2000 малых угловых сокращений

-угловое рассеяние рентгеновских лучей

SLD

Длина рассеяния Плотность

UFME

сверхгибкая микроэмульсия

Рекомендуемые статьиЦитирующие статьи (0)

Просмотреть аннотацию

© 2019 АвторыОпубликовано Elsevier Inc.

Рекомендуемые статьи

Цитирование статей

Узо: увеличение экспорта стимулирует производство

Узо — самый известный из греческих спиртных напитков, сочетающий уникальные травы Средиземноморья с традиционным процессом, уходящим корнями в прошлое. После того, как его попробовали, его особый вкус редко забывается. Узо может быть самым общительным напитком из когда-либо рожденных; Это напиток греческого образа жизни!

Узо — это алкогольный напиток с анисом, который традиционно и исключительно производится в Греции.25 октября 2006 года Греция получила право маркировать узо как исключительно греческий продукт. Европейский Союз теперь признает узо как продукт ЗОП, запрещая производителям за пределами Греции использовать это название.
Разница между узо и другими спиртными напитками со вкусом аниса заключается в способе его приготовления: обычно в напитках «Средиземноморье анис » ароматные семена погружают в воду, а затем добавляют в спиртовой раствор. Однако для приготовления узо ароматизаторы естественным образом получают путем дистилляции семян вместе с водой и спиртовым раствором.

Согласно греческому закону о производстве узо, всемирно известный напиток должен производиться путем дистилляции 96-процентного спирта-ректификата сельскохозяйственного происхождения и семян аниса или, возможно, фенхеля. Алкоголь, ароматизированный дистилляцией, должен составлять не менее 20 процентов крепости узо.
Помимо аниса, иногда используются другие ароматизаторы, такие как звездчатый анис, фенхель, мастика, кардамон, кориандр, гвоздика, мята и корица. И хотя качество, разнообразие и особая смесь этих ингредиентов отличает одно узо от другого, именно размер, форма и материал котлов, качество спирта, различные методы экстракции, а также скорость дистилляции определяют качество и аромат каждой марки узо.

Производство узо — это традиционный процесс, который начинается с дистилляции в медных кубах ручной работы. Смесь спирта, семян и других ароматических веществ оставляют на определенное время, от одного до трех дней — это начальная фаза, когда травы выделяют свой вкус и аромат. Затем смесь дистиллируется при равномерной температуре, в то время как вкусы и ароматы развиваются внутри перегонного куба. Первая перегонка называется предварительной перегонкой, но полные вкусы и ароматы узо развиваются в сердце, средней части процесса.Затем сердце снова медленно перегоняется, и, наконец, эссенция хранится в больших резервуарах для осаждения. Эта фаза созревания называется «адолото», и именно в этот момент ингредиенты окончательно связываются. Перед розливом в бутылки узо смешивают с чистой родниковой водой для достижения необходимого уровня алкоголя (от 37,5 до 48 процентов).
Когда в узо прозрачного цвета добавляют воду или лед, он становится молочно-белым и выделяет больше своих ароматов; Это происходит потому, что анетол, эфирное масло аниса, растворяется в спирте, но не в воде.Разбавление спирта приводит к его разделению, образуя эмульсию отчетливого цвета, похожего на молоко.

История узо начинается где-то в конце 11 -х годов века в Малой Азии, тогда входившей в состав Византийской империи. Космополитические греческие купцы и морские пехотинцы того времени освоили у арабских и османских создателей спиртных напитков искусство создания напитков со вкусом аниса и унесли эти знания с собой на Эгейские острова, начиная с Митилини, а затем из Македонии и Фессалии. Большинство историков сходятся во мнении, что название «узо» происходит от турецкого слова «üzüm», что означает «виноград» и «виноградный сок».Согласно другому распространенному мнению, термин «узо» родился в Тирнавосе, в Фессалии, от находчивого греческого торговца, который вывозил свою продукцию в Марсель в деревянных ящиках с надписью «uso Marsiglia» («для использования в Марселе»).
После 1922 года и окончания греко-турецкой войны, которая привела к обмену населением, особенно из Анатолии, производство узо было доставлено в Грецию через остров Митилини (а также с других островов Эгейского моря, таких как Хиос, Самос и Икария). , но в меньшем масштабе) и Македонии.Митилини утверждает, что является создателем напитка и остается основным производителем, но в настоящее время спирт производится по всей Греции.

Узо — особо крепкий напиток; Это тоже приобретенный вкус, но его можно быстро освоить. Его лучше всего подавать с кислым, пикантным и острым мезе (закуски, подаваемые в небольших блюдах или греческие закуски), всегда в зависимости от личного вкуса и места, где проходит этот «ритуал узо». В прибрежных районах предпочитают рыбу и морепродукты, например жареные или маринованные анчоусы, скумбрию, сардины и т. Д., тогда как в греческих горах подают колбасы, соленья, сыр и т. д. Однако самый классический мезе состоит из оливок, хлеба, сыра, помидора и огурца.
Узо всегда лучше подавать с водой, чем простой: одна часть узо и две части воды. Вода придает узо правильный вкус, усиливает его аромат и помогает достичь лучшей гастрономической гармонии с мезе. Следует избегать кубиков льда — они «притупляют» вкус и изменяют послевкусие напитка. Правильный способ пить узо — смешать его с ледяной водой.
Фирменное узо вкусно и совершенно безопасно. При умеренном употреблении и с правильным количеством мезе узо может стать изысканным переживанием, связанным с солнцем, морем и радостью жизни!

Каждая этикетка на каждой бутылке узо указывает местонахождение конкретного ликеро-водочного завода, а также процесс дистилляции, которого придерживается производитель.
Когда на этикетке указано «100% дистиллированное узо», это означает, что данный конкретный продукт представляет собой чистое узо, смешанное с чистой родниковой водой в соответствии с вышеупомянутым процессом.Эти виды узо считаются чрезвычайно ароматными и самого высокого качества.
Если на этикетке ничего конкретного не указано, это означает, что бутылка содержит не менее 20% чистого дистиллированного узо. Остальные 80 процентов напитка состоят из алкоголя, воды, ароматизаторов, в основном анетола (анисовая камфора), а иногда и сахара. Следовательно, это узо является побочным продуктом смешанных ингредиентов.

Особая благодарность Греческой федерации производителей спиртных напитков (SEAOP), регион Северного Эгейского моря и Узо Пломари Исидорос Арванитис

Конфигурации распределения электроэнергии с тремя 3-фазными линиями электропередачи

Местное распределение

Электроэнергия покидает подстанцию ​​по трем трехфазным «горячим» линиям электропередачи , которые проложены рядом с автомагистралями или вдоль местных дорог к точкам использования.Все три фазы имеют общую нейтральную линию и имеют одинаковое напряжение, но они на 120 электрических градусов не совпадают по фазе друг с другом.

Конфигурации распределения электроэнергии с тремя трехфазными линиями горячего питания (фото предоставлено Мэттом Алсупом через Flickr)

Местная электрическая компания обычно решает, где должны быть расположены трехфазные и однофазные сети в обслуживаемой зоне.

Первоначально поставляемые в виде трех фаз, фазовые линии разделены для подачи питания на разные участки.Трехфазное обслуживание для промышленных и крупных коммерческих клиентов отделено от однофазных линий для обслуживания жилых домов, малых предприятий и сельских клиентов.

Номинальное напряжение 120/240 В обеспечивается трансформаторами, стратегически расположенными на опорах для надземного обслуживания и над землей на бетонных площадках или в подземных защитных сводах для подземных работ.

Для больших электроприборов, таких как плиты, водонагреватели, сушилки для белья и кондиционеры , как правило, требуется 240 В , а 120 В удовлетворяет потребности в освещении, мелкой бытовой технике, телевизорах, персональных компьютерах и розетках.

Распределительный трансформатор на опоре 240 В (фото предоставлено Википедией)

Однако, когда жилые дома расположены в зоне, обслуживаемой распределенной вторичной сетью 208Y / 120 В , большие приборы получают питание от 208 В , а освещение — маленькое. бытовая техника, развлекательная электроника и розетки поставляются с напряжением 120 В .


Общее энергоснабжение

Вторичные цепи обеспечивают электроэнергию в различных формах для удовлетворения потребностей потребителей.К ним относятся следующие:


Однофазный, трехпроводной, 120/240 В

Наиболее распространенная конфигурация распределительной проводки для домов, малых предприятий и ферм — 120/240 В , однофазное обслуживание.

Рисунок 1 — Вторичная обмотка однофазного трансформатора обеспечивает 240 В через A и B и 120 В через A или B и нейтраль.

На рисунке 1 схематическая диаграмма распределительного трансформатора для однофазной сети 120/240 В . 240 В получается подключением двух незаземленных «горячих» проводов, а 120 В — подключением любого из двух «горячих» незаземленных проводов и нейтрального (заземленного) проводника.

Вернуться к Конфигурации ↑


Трехфазное, четырехпроводное, соединение звездой 120/208 В

Различные напряжения могут быть получены при трехфазном, четырехпроводном соединении звездой 120/208 В , как показано на рисунке 2.

Рисунок 2 — Трехфазный четырехпроводной вторичный трансформатор, соединенный звездой, может обеспечивать питание переменного тока напряжением 120 и 208 В

Клеммы трех обмоток трансформатора, соединенного звездой обозначены A , B и C .Напряжение между любой из точек A, B и C и нейтральным (заземленным) проводником составляет 120 В , а напряжение между любыми двумя точками A — B, B — C или C — A — 208. В .

Эти 208 В являются произведением напряжения между любой фазой и нейтралью (120 В) и квадратного корня из 3 или 1,732 ( 120 В x 1,732 = 208 В ).

Следовательно, следующие напряжения могут быть получены из системы, соединенной звездой:

  • 120 В , однофазный, двухпроводной (A к нейтрали, B к нейтрали и C к нейтрали)
  • 208 В , однофазный, двухпроводной (от A к B, от B к C и от C к A)
  • 208 В , трехфазный, трехпроводной
  • 120/208 В , трех -фазная, четырехпроводная

Другая популярная трехфазная четырехпроводная система, соединенная звездой, рассчитана на 277/489 В .Фидерные и ответвительные цепи, подключенные к этому источнику питания, могут обеспечивать:

  • 277 В , однофазный, двухпроводный
  • 480 В , однофазный, двухпроводный
  • 480 В , трехфазный, трехпроводной
  • 277/480 В , трехфазный, четырехпроводной

Вернуться к конфигурациям ↑


Трехфазный, четырехпроводной, 120/240 В, треугольник

Другой набор выходное напряжение может быть получено с помощью трехфазной четырехпроводной вторичной обмотки трансформатора, соединенной треугольником, как показано на схематическом рисунке 2.

Три обмотки соединены последовательно, образуя равносторонний треугольник или греческую букву ∆ . Каждая из вершин треугольника обозначается буквой A , B или C , представляющей одну из трех фаз, питающих сеть. Середина обмотки между вершинами B и C заземлена в нейтральной точке N .

Напряжение между любыми двумя вершинами от A до B, от B до C и от C до A составляет 240 В .Однако напряжение между B и нейтралью и C и нейтралью составляет 120 В , а напряжение между A и нейтралью составляет 208 В .

Это 208 В получается путем умножения 120 В между C или B и нейтралью на квадратный корень из 3 или 1,732 (120 В x 1,732 = 207,84, округленное до 208 В) .

Таким образом, следующие напряжения могут быть получены из системы, соединенной треугольником:

  • 120 В , однофазный, двухпроводный (B к нейтрали и C к нейтрали)
  • 240 В , однофазный, двухпроводный (от A к B, от B к C и C к A)
  • 240 В , трехфазный, трехпроводный
  • 120/208 В , трехфазный, четырехфазный провод
Рисунок 3 — Трехфазный четырехпроводной вторичный трансформатор, соединенный треугольником, может обеспечивать три выходных напряжения: 120, 208 и 240 В переменного тока.

При подключении к трехфазной четырехпроводной сети необходимо соблюдать осторожность. Вторичная обмотка трансформатора из-за потенциального повреждения , которое может быть вызвано случайным подключением «верхней ветви» .Напряжение от А до нейтрали, где желательно более низкое напряжение.

NEC, Раздел 110.15, « Средства идентификации проводника с более высоким напряжением относительно земли », гласит:

«На 4-проводной вторичной обмотке , соединенной треугольником, , где средняя точка одной фазной обмотки заземлена для питания освещения. и аналогичных нагрузок, фазный провод, имеющий более высокое напряжение относительно земли, должен быть идентифицирован по внешней (изоляционной) отделке оранжевого цвета, маркировке (или изолентой) или другим эффективным средствам.”

Целью этого предупредительного требования NEC является предотвращение случайного подключения любых соединений между A и землей и получения 208 В, когда предполагалось получить 120 В от B или C к земле. Таким образом, провод от A до земли будет иметь оранжевую изоляцию или быть помечен оранжевой лентой или оранжевой биркой.

Вернуться к Конфигурации ↑

Ссылка: Справочник по деталям электрического проектирования // Второе издание — Нил Склейтер; Джон Э.Traister (Купить электронную книгу)

На линии питания машины есть выключатель. Автоматические выключатели, узо и дифавтоматы

Состав:

Во всех электрических сетях используется большое количество устройств, основной функцией которых является защита линий и оборудования от сверхтоков и коротких замыканий. Среди них широкое распространение получил автоматический выключатель защиты сети, выполняющий не только защиту, но и коммутацию цепей. Таким образом, автоматические выключатели обеспечивают включение и выключение определенных секций, защищают их от токовых перегрузок путем отключения защищаемых цепей в случае возникновения аварийных ситуаций.

Виды электрических машин

Автоматические выключатели

широко применяются в системах электроснабжения, обеспечивая надежную защиту электрических цепей и сетей, бытовых приборов и электрооборудования. Их основная задача — обесточить схему в нужный момент, отключив подачу электрического тока. Автоматический выключатель срабатывает при коротких замыканиях, а также при нагреве проводов из-за перегрузок в сети.

Выключатели

могут работать как на постоянном, так и на переменном токе, а универсальные конструкции способны работать при наличии любого электрического тока в сети.По своей конструкции они делятся на три типа, которые служат основой для других типов автоматических выключателей:

  • Пневматические машины. Они используются в промышленном производстве, где токи в цепях могут достигать нескольких тысяч ампер.
  • Машины в литом корпусе. У них широкий рабочий диапазон от 16 до 1000 А.
  • Модульные машины. Их широко используют в квартирах и частных домах. Их название связано со стандартной шириной 17.5 мм, в зависимости от количества полюсов. То есть в одном блоке можно использовать сразу несколько переключателей.

Все автоматические выключатели делятся по номинальному току и напряжению, так как большинство защитных устройств устанавливаются в сетях 220 или 380 В.

Автоматические выключатели могут быть токоограничивающими и не токоограничивающими. В первом случае автоматический выключатель представляет собой выключатель, в котором время срабатывания установлено на крайне малое значение, в течение которого токи короткого замыкания не успевают достичь своего максимума.


Машины классифицируются по количеству полюсов и могут быть одно-, двух-, трех- и четырехполюсными. Они оборудованы расцепителями максимального, минимального и минимального напряжения. Скорость отклика имеет большое значение, когда устройства могут быть нормальными, быстродействующими и избирательными. Некоторые устройства допускают совмещение технических характеристик … Некоторые модели оснащены свободными контактами, и проводники к ним подключаются по-разному.

Существует разделение на разные типы в зависимости от конструкции расцепителя или автоматического выключателя, установленного в машине. Эти элементы играют важную роль и делятся на магнитные и тепловые. В первом случае выключатель быстродействующий и обеспечивает защиту от короткого замыкания. Время отклика составляет от 0,005 до 3-4 секунд. Тепловой расцепитель работает намного медленнее, поэтому в основном используется для защиты от перегрузки. В основе элемента лежит биметаллическая пластина, которая нагревается при увеличении нагрузки.Время ответа колеблется от 3-4 секунд до нескольких минут.


Кроме того, машины делятся по типу поездки или по. Каждый тип — это A, B, C, D, K, Z. Например, тип A используется при размыкании цепей со значительной длиной проводки, он хорошо защищает полупроводниковые устройства. Предел срабатывания составляет 2–3 номинальных тока. Тип B используется в системах освещения общего назначения и имеет порог срабатывания 3-5 номинальных токов. Более подробную информацию о каждом типе машин можно найти в таблице.

Типы расцепителей автоматического выключателя

Все расцепители автоматических выключателей условно можно разделить на две группы. В первую группу входят устройства, защищающие электрические цепи и способные распознавать наступление критической ситуации при появлении сверхтоков. В результате срабатывания сдерживается дальнейшее развитие аварии из-за расхождения основных рабочих контактов.

Вторая группа расцепителей представлена ​​дополнительными устройствами, не входящими в базовую комплектацию выключателей.По запросу могут быть установлены:

  • Независимые расцепители, способные дистанционно отключать выключатели при поступлении сигнала от вспомогательной цепи.
  • Расцепитель минимального напряжения. Он отключает автомат при падении напряжения ниже допустимых пределов.
  • Расцепитель нулевого напряжения. Его контакты размыкаются при значительном падении напряжения.

Тепловой расцепитель

Образец теплового расцепителя, изображенный на рисунке, выполнен в виде биметаллической пластины.В процессе нагрева он изгибается, меняет форму и воздействует на спусковой механизм. Для изготовления пластины между собой механически соединяются две металлические полосы. Материал каждой ленты имеет разный коэффициент теплового расширения. Соединение производится пайкой, сваркой или клепкой. Изгиб пластины образуется из-за разного изменения длины при нагреве. Тепловые расцепители обеспечивают защиту от перегрузки по току и могут быть установлены в заранее определенный режим отключения.


Основным преимуществом теплового расцепителя является его высокая устойчивость к вибрации, отсутствие трущихся деталей и возможность работы в загрязненном виде.Они отличаются простотой конструкции и невысокой стоимостью. Из недостатков следует отметить постоянное потребление электроэнергии, чувствительность к перепадам температур, возможность ложных срабатываний при нагреве посторонними источниками.

Такое же широкое распространение получили электромагнитные расцепители мгновенного действия. Конструктивно они выполнены в виде соленоида с сердечником, действующим на спусковой механизм. Когда через катушку соленоида протекает сверхток, он создает магнитное поле, которое перемещает сердечник и одновременно преодолевает сопротивление возвратной пружины.


Электромагнитный расцепитель настроен на срабатывание при коротком замыкании, величина которого составляет 2-20 ln. В свою очередь, значение ln = 200 А. Погрешность настройки может составлять 20% в ту или иную сторону от установленного значения. Поэтому уставки срабатывания силовых выключателей указываются в амперах или кратных номинальному току. Модульные автоматические выключатели имеют защитные характеристики, обозначенные B (3-5), C (5-10) и D (10-50), где цифровые значения соответствуют предельному номинальному току ln, при котором контакт расходится.

Расцепитель электромагнитный

Основными преимуществами электромагнитных расцепителей являются устойчивость к вибрации, ударам и другим механическим воздействиям, а также простота конструкции, облегчающая ремонт и обслуживание устройства. К недостаткам можно отнести мгновенный отклик без задержек по времени, а также создание магнитного поля во время работы.


Время задержки очень важно, так как обеспечивает селективность. При наличии селективности или селективности входной автомат распознает наличие короткого замыкания, но пропускает его на определенное заданное время.За этот промежуток времени последующее защитное устройство должно успеть сработать, отключив не весь объект, а только поврежденный участок.

Довольно часто тепловые и электромагнитные расцепители используются вместе, соединяя оба элемента последовательно. Такой пучок называется комбинированным или термомагнитным расцепителем.

Выпуск полупроводников

Более сложные устройства включают выпуски полупроводников. Каждый из них включает в себя блок управления, измерительные трансформаторы переменного тока или магнитные усилители постоянного тока, а также рабочий электромагнит, который действует как независимый расцепитель.С помощью блока управления устанавливается определяемая пользователем программа, под управлением которой будут отключены главные контакты.

Во время настройки выполняются следующие действия:

  • Номинальный ток станка регулируется
  • Время задержки в зонах перегрузки и короткого замыкания регулируется.
  • Определяется настройка срабатывания датчика короткого замыкания.
  • Настройка предохранительных выключателей на работу от однофазной сети.
  • Настройка переключателя, отключающего временную задержку, когда в случае короткого замыкания режим селективности переходит в режим мгновенного действия.

Электронный расцепитель

Конструкция электронного расцепителя напоминает аналогичный полупроводниковый прибор. Он также состоит из электромагнита, измерительных приборов и блока управления. Значение рабочего тока и время выдержки устанавливаются ступенчато, что обеспечивает гарантированную работу в случае короткого замыкания и пусковых токов.


Достоинства этих устройств — разнообразие настроек и возможность выбора, работа установленной программы с высокой точностью, наличие индикаторов работоспособности и причин срабатывания, логическая выборочная связь с переключателями, расположенными над и под станком. .

К недостаткам можно отнести высокую цену, хрупкость блока управления и чувствительность к воздействию электромагнитных полей.

Автоматические выключатели

Автоматические выключатели (ВА) Они совсем не похожи на обычные, которые устанавливаются в каждой комнате для включения и выключения света.Их задача несколько иная. Автоматические выключатели устанавливаются в распределительные щиты и служат для защиты схемы от скачков напряжения и непериодических отключений электроэнергии на определенных участках электросети. Торговые автоматы, как их чаще называют, устанавливаются на входе в дом или квартиру и располагаются в специальных ящиках, металлических или пластиковых.

Существует много типов автоматических выключателей ВА. Некоторые из них служат только автоматическими выключателями и защитой от перегрузки. Таковы, например, старые ВА типа АЕ в черном карболитовом кожухе.В большинстве старых панелей в подъездах жилых домов есть именно такие. Однако они достаточно надежны и до сих пор находятся в эксплуатации. Современные варианты допускают дополнительные функции, такие как защита от токов недогрузки.

Машины делятся на 3 типа по времени отклика на недопустимое напряжение: автоматов селективных, нормальных автоматов и быстродействующих автоматов … Время отклика нормальной машины колеблется от 0,02 до 0,1 с. В селективном ВА это время то же самое.Быстрые ВА работают быстрее — у них это значение всего 0,005 с. Все ВА заключены в небьющийся пластиковый корпус со специальным креплением (планкой или рейкой) на задней панели.

Установить станок на такое крепление очень просто — достаточно вставить его на рейку до щелчка. Его можно удалить отверткой, слегка потянув за специальный язычок в верхней части БА. Это значительно облегчает задачу установки станка в шкафу.


Внутри корпуса находится «начинка» автомата, его основных предохранительных устройств, которых может быть 2.Речь идет об электромагнитных и тепловых расцепителях — разновидностях автоматических выключателей. Биметаллическая пластина при нагреве проходящим через нее недопустимо большим током распрямляется и размыкает контакты — это тепловой расцепитель.

По времени отклика он самый медленный. Электромагнитный расцепитель работает по правилу «мертвой руки». Катушка, расположенная в центре машины, постоянно поддерживается стабильным напряжением.Как только он выскакивает за номинальные пределы, катушка буквально выскакивает со своего места, разрывая цепь. Это самый быстрый способ разорвать цепь. Все ВА имеют контакты для подключения подводящего и отходящего проводов.


Машины различаются степенью чувствительности к срабатыванию отключения. В стандартных, наиболее распространенных моделях чаще всего используется ВА с пороговым значением тока приблизительно 140% от номинального. При повышении напряжения в полтора раза срабатывает электромагнитный (быстрый) расцепитель.При незначительном превышении номинального напряжения срабатывает тепловой расцепитель. В этом случае процесс отключения может занять несколько часов, что во многом зависит от температуры окружающей среды. Однако автомат в любом случае отреагирует на изменение напряжения. ВА различают по количеству полюсов. Что это значит? Одна машина может иметь несколько независимых электрических линий, которые связаны между собой общим механизмом отключения.


Автоматы бывают одно-, двух-, трех- и четырехполюсными (это касается бытового использования).VA имеет отличия по другим показателям. Они различаются пороговой силой тока, который пропускают через себя. Чтобы машина работала и в экстренном случае отключила электросеть, в ней должен быть установлен определенный порог чувствительности. Эта настройка производится производителем, поэтому числовое значение этого порога сразу записывается на автомате.

Для бытовых нужд используются станки с показателями 6, 3, 10, 16, 25, 32, 40, 63, 100 и 160 А. Есть станки на номиналы 1000 и 2600 А, но их нет. используется в быту.Эти цифры означают суммарную мощность всех потребителей электрического тока, которые будут подключены к цепи, «охраняемой» машиной. Чувствительность машины нужно рассчитывать не только по суммарной мощности предполагаемых потребителей энергии, но и по электромонтажным и электромонтажным изделиям — розеткам и выключателям.

Типы станков:

  • А — для размыкания цепей с большой протяженностью электропроводки и защиты полупроводниковых приборов
  • Б — для сетей общего освещения
  • С — для цепей освещения и электроустановок с умеренными пусковыми токами (двигатели и трансформаторы)
  • Д — для цепей с активно-индуктивной нагрузкой, а также защиты электродвигателей с большими пусковыми токами
  • К — для индуктивных нагрузок
  • Z — для электронных устройств

Далее рассмотрим соответствие сечения кабеля и машины, которая защищает этот провод.Максимальный длительный ток кабеля принимается при температуре жилы +65 и воздуха +25 ° С. Количество одновременно проложенных жил — до 4. Диапазон автоматов: 0,5 А, 1 А, 2 А, 3 А, 4. A, 6 A, 10 A, 13 A, 16 A, 20 A, 25 A, 32 A, 40 A, 50 A и 63 A. Данные также действительны для трехжильного кабеля. В этом случае третий провод должен быть защитным заземлением или нулевым проводом.


Например, для отдельной площади в квартире, например кухни, у нас одна машина на 6.3 А (бывает, — шутили электрики). По известной формуле Ватт = Вольт x Ампер вычисляем, сколько устройств (и какие) можно запитать от нашей сети. Получается, что это значение 1386 Вт, так как по умолчанию напряжение 220 В. Значит, на такой кухне нельзя включить даже мощный чайник, не говоря уже о холодильнике или электроплитке — автомат сработает моментально и не позволит недопустимому, по его мнению, току проходить через контролируемую территорию.В этом случае необходимо срочно поменять ВА на 25 или даже 32 А.



Устройство защитного отключения (УЗО) по внешнему виду очень похоже на обычный автомат: такой же корпус и рычаг отключения. Фактически, УЗО может действовать как ВА, то есть как переключатель для определенного участка цепи. Помимо этого, у него есть еще несколько функций. Главный из них — защитить человека от электрического тока и случайной утечки из сети.УЗО не может защитить от короткого замыкания, просто не среагирует на него. Принцип работы УЗО заключается в сравнении тока, идущего из сети, с показателями, на которые настроено устройство. Например, если человек схватился рукой за провод и по нему прошел ток, УЗО мгновенно размыкает цепь, так как сигнал из сети не будет совпадать с нормальными показателями.

То же самое произойдет при обрыве провода.В любом распределительном щите обязательно устанавливается УЗО, иногда их несколько. Особенно это актуально для помещений с повышенным уровнем влажности — ванной и кухни.

Важно помнить, что УЗО реагирует только на утечку тока из цепи. … Любое другое нарушение работы, даже такой случай, когда человек подбирает фазный и нейтральный провода, то есть сам становится частью цепи, оставляет его равнодушным. Так что не стоит рассчитывать только на одно УЗО, а лучше оборудовать коммутатор дополнительными устройствами защиты от всех видов нарушений работы сети.На передней панели любого УЗО есть кнопка «Тест», нажав на которую, можно узнать, исправен ли механизм. Если он в исправном рабочем состоянии, то он разорвет цепь (отломится), если нет изменений, устройство не работает.


Как и ВА, УЗО различаются по чувствительности к значению силы тока и могут иметь несколько полюсов для подключения независимых проводников. Ряд числовых значений для них совпадает с автоматами: 6, 3, 10, 16, 25 А и т. Д.Однако у них есть и второй показатель — это отклонение силы тока по входящему проводнику. В бытовом УЗО, которое в основном предназначено для защиты человека, порог чувствительности к отклонению от номинала составляет 30 мА.

УЗО срабатывает очень быстро, в течение 0,05 с. В идеале это должно означать, что человек даже не успевает почувствовать текущий укол, так как сеть обесточена. Менее чувствительные УЗО используются в электротехнике, в которой порог опасного отклонения намного выше, чем в случае травмы человека.Показания такого УЗО — 300 и 500 мА.

Примечание

Если номинальный ток превышает ток в УЗО, то он не выключится как автомат, а просто сгорит, поэтому устанавливать прибор нужно с запасом.

Дифференциальный автомат или дифавтомат (АД) — это гибридное устройство, сочетающее в себе УЗО и механизм максимальной токовой защиты, то есть обычный автоматический выключатель. Дифавтоматы, как их часто называют, во многом различаются.Например, регулирование номинального порогового тока, выдержки времени и т. Д. Дифавтомат заменяет сразу два устройства: автоматический выключатель и УЗО.

Это сокращает время установки и упрощает техническое обслуживание. Многие AD имеют специальную индикацию, которая при срабатывании показывает, от чего именно была разорвана цепь: короткое замыкание или утечка. По внешнему виду артериальное давление практически не отличается от УЗО, только маркировка на нем другая.


Продукция российского производства имеет надпись на лицевой панели «AD» и другие числовые значения.

Все наши электрические сети и схемы, а также бытовые электроприборы и электрооборудование надежно защищены автоматическими выключателями. Их основная задача — в нужный момент обесточить электрическую цепь, т.е. отключить блок питания. Автомат (АБ) работает, т.е. отключается при коротком замыкании и перегрузке в сети (нагрев проводов). Для различных электрических цепей существуют различные типы и типы автоматических выключателей .

Типы автоматических выключателей (АВ)

Все можно разделить на выключатели переменного тока, постоянного тока и универсальные, работающие с любым электрическим током онлайн.

По своей конструкции АБ бывают: воздушные, модульные, а также в литом корпусе.

Автоматические выключатели классифицируются по номинальному току.

Еще одним отличием является номинальное напряжение. В большинстве случаев АКБ работают в сетях с напряжением 220 или 380 вольт.

Машины электрические бывают токоограничивающие и токоограничивающие.Токоограничивающий выключатель — это выключатель с очень коротким временем отключения, в течение которого ток не успевает достичь своего максимального значения.

Все модели электрических выключателей классифицируются по количеству полюсов. Они делятся на однополюсные, двухполюсные, трехполюсные и четырехполюсные выключатели.

AB подразделяются по типу расцепителя — расцепитель максимального тока, независимый расцепитель, расцепитель минимального напряжения или расцепитель нулевого напряжения.

По скорости отклика. Различают быстродействующие, нормальные и селективные автоматы. Они поставляются с задержкой по времени, без нее, независимо или обратно зависимой от тока, времени отклика. Возможности можно комбинировать.

AB также различаются степенью защиты от окружающей среды — IP, механической нагрузкой, проводимостью материала. По типу привода — ручной, моторный, пружинный.

Также автоматы отличаются наличием свободных контактов и способом подключения проводов.

Типы автоматических выключателей

Что означает «тип» электрическая машина? Автоматические выключатели содержат внутри выключатели двух типов — тепловые и магнитные.

Магнитный быстродействующий выключатель предназначен для защиты от короткого замыкания. Выключатель может сработать за время от 0,005 до нескольких секунд.

Тепловой выключатель намного медленнее, предназначен для защиты от перегрузки. Он работает с биметаллической пластиной, которая нагревается при перегрузке цепи.Время отклика — от нескольких секунд до минут.

Комбинированная характеристика срабатывания срабатывания зависит от типа подключенной нагрузки.

Существует несколько типов отключения АБ. Их еще называют — типы срабатывания времени-токовых характеристик. Они обозначаются так — A, B, C, D, K, Z.

A — используется для размыкания цепей с длинной проводкой, служит хорошей защитой для полупроводниковых приборов. Они работают на 2-3 номинальных токах.

Б — для сетей общего освещения.Они работают на номинальных токах 3-5.

С — цепи освещения, электроустановки с умеренными пусковыми токами. Это могут быть двигатели. Перегрузочная способность магнитного выключателя выше, чем у автоматических выключателей типа B. Они работают при 5-10 номинальных токах.

D — применяется в цепях с активно-индуктивной нагрузкой. Например, для электродвигателей с высокими пусковыми токами. На номинальные токи 10-20.

К — индуктивные нагрузки.

Z — для электронных устройств.

Данные о работе выключателей типов К, Z лучше смотреть в таблицах конкретно для каждого производителя.

Какое узо поставить на квартиру. Как выбрать узо для установки в квартиру

УЗО типа А сложнее и соответственно дороже. Необходимость их использования обычно рекомендуют производители электрооборудования, в котором есть пульсации постоянного напряжения.Это стиральные и посудомоечные машины, телевизоры, компьютеры и много другой бытовой техники.

Чтобы обезопасить электропроводку в доме и защитить человека от поражения электрическим током, нужно знать. Для этого необходимо изучить возможные схемы установки, уметь проверить реле дифференциального тока на работоспособность и выявить возможные ошибки подключения.

Помимо УЗО широко применяется дифавтомат для поддержания высокого уровня безопасности в электрических сетях.Чтобы облегчить выбор наиболее оптимального устройства в вашей квартире или частном доме, он предназначен для этого.

Помимо модульных, устанавливаемых в щиты, существуют специальные типы УЗО в виде розетки или даже электрической вилки. Такое применение оправдано в тех случаях, когда электропроводка в квартире или доме ветхая, имеющая низкое сопротивление изоляции и, соответственно, большие токи утечки. Установленные в щитах УЗО в таких случаях будут иметь частые ложные срабатывания, что сделает невозможной работу электроприборов.

Правильный выбор УЗО для квартиры должен быть обоснован специалистами, составляющими проект электроснабжения помещения или всего дома, ведь необходимо учитывать множество технических нюансов, которые могут быть известны только инженерам-электрикам. Проект лучше всего делать при строительстве нового дома или при капитальном ремонте жилья, который обязательно должен включать в себя ремонт или полную замену проводки.

УЗО подбираются по номинальному току В, , который может пропускать устройство в непрерывных режимах работы.
Это значение может быть от 6 до 125 Ампер. Еще одна важная характеристика — это номинальный остаточный ток IΔn , при котором срабатывает УЗО (подробнее о принципах работы этих устройств можно прочитать). Этот параметр имеет фиксированные значения: 10 мА, 30 мА, 100 мА, 300 мА, 500 мА, 1 А и выбирается исходя из требований безопасности.


Например, если УЗО имеет дифференциальный рабочий ток 30 мА, то это делается для безопасности людей и животных, поскольку такой ток не приводит к тяжелым травмам.Выключатели с дифференциальным рабочим током 100 мА и выше обычно относят к специалистам противопожарные УЗО , которые отключат всю электропроводку в случае токов утечки, уже смертельных для человека.

  • Высокие токи утечки, сосредоточенные локально в одном месте, могут привести к выделению большого количества тепла, которое может вызвать пожар.
  • Очень часто не все электрические цепи защищены УЗО, например цепи освещения.Наличие надежного противопожарного УЗО избавит вас от больших токов утечки, которые также могут стать причиной возгорания.

Электрооборудование, установленное в ванных комнатах, требует защиты УЗО с дифференциальным током 10 мА.

Полезная видео-инструкция как правильно выбрать аппарат какой мощности

Устройство защитного отключения предотвращает возгорание из-за утечки тока и устраняет риск поражения электрическим током. Поэтому многие заинтересованы в установке этого устройства.Правда, УЗО нельзя купить наугад, его выбор должен быть внимательным — с учетом конструкции, типа и других критериев.

Важность покупки качественного УЗО

Безответственный подход к выбору УЗО, то есть покупка устройства, не подходящего по характеристикам дому или квартире, может вызвать определенные проблемы:

  • ложное срабатывание автоматики, так как небольшие утечки электрического тока — естественная ситуация для проводки, которая была проложена сравнительно давно;
  • несвоевременное получение информации об опасном происшествии, если выбрано слишком мощное УЗО, что может привести к поражению электрическим током;
  • Невозможность работы УЗО с существующей проводкой из алюминиевых жил, т.к. практически все устройства работают только на медных проводах.

Чтобы не ошибиться при выборе УЗО, не мешает внимательно прочитать параметры прибора перед покупкой.

Таблица: основные параметры УЗО

Измерение параметров устройства

Перед покупкой УЗО определите максимальный ток и ток утечки. При проведении расчетов необходимо учитывать, что сетевое напряжение на всех проводах разводки обычно составляет 220 В.

Чтобы найти подходящее устройство защитного отключения на максимальный ток, достаточно определить, какой будет максимальный уровень потребляемой мощности. быть и разделить на напряжение в электрической сети. Иными словами, расчет ведется по формуле I = P / U. Например, если определено, что всего бытовая техника в квартире поглощает 6000 Вт электроэнергии, то максимальное значение тока будет 27 А. В такой ситуации лучше выбрать УЗО на 32 А, так как это значение стандартизировано и максимально приближено к 27 А.

УЗО 32 Ампер подходит для оборудования, потребляющего 6 кВт электроэнергии

Вторая характеристика — ток утечки — определяется несложным методом.Они учитывают зависимость различных типов УЗО от индивидуальных особенностей квартиры или дома, где необходимо установить дифференциальный выключатель тока.

Таблица: ток утечки в зависимости от типа помещения

Критерии выбора УЗО

При поиске подходящего защитного отключения первое, на что следует обратить внимание, — это номинальный и дифференциальный ток. После этого внимание акцентируется на типе и конструкции устройства, а также выясняется, какая компания произвела УЗО.

Номинальный ток

Мастера, специализирующиеся на работе с электричеством, советуют покупать УЗО с номинальным током на порядок выше расчетного. Благодаря этому удастся добиться надежности в работе реле дифференциального тока и не ремонтировать и не заменять его долгое время. Например, для автомата на 40 А целесообразнее выбрать УЗО на 63 А.

Ток утечки

Номинальный дифференциальный ток отключения УЗО должен иметь значение не менее 3-кратного тока утечки цепи электрооборудования, защищенного от аварий, то есть должно выполняться условие IDn> = 3 * ID. быть встреченным.

Общий ток утечки идентификатора электроустановки определяется с помощью специального устройства или рассчитывается с использованием определенных данных. При невозможности проведения измерений рекомендуется определять ток утечки из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки в цепи из расчета 10 мкА на 1 м длины фазный провод.

Допустимые значения номинального тока отключения можно найти в специальной таблице.

Таблица: зависимость рекомендуемого значения тока утечки УЗО от номинального тока нагрузки

Разновидности УЗО

УЗО может быть одного из следующих типов:


УЗО типа В вполне редко, на его корпусе можно увидеть значок в виде сплошных и пунктирных прямых линий

Конструкция УЗО

Если рассматривать конструкцию УЗО, то они делятся на следующие типы:

  • УЗО электронные с встроенная плата, мгновенно реагирующая на любые изменения заданных показателей и отключающая питание от сети, но не способная работать без питания от внешнего источника;
  • электромеханические УЗО, которые отличаются своей надежностью, так как не требуют питания и легко срабатывают при появлении дифференциального тока.

Производители УЗО

Как отмечают электрики, самые долговечные и надежные устройства УЗО выпускаются под следующими наименованиями:


Особенности работы УЗО

  • в областях, которые в принципе должны быть безопасными;
  • в зонах, где перебои в подаче электроэнергии могут привести к несчастным случаям средней тяжести.

При подключении УЗО принципиально важно изолировать нулевой провод от заземления и нулевой провод других подобных устройств.

В большинстве случаев электрики допускают использование заземляющего устройства.Главное правильно его подключить. УЗО срабатывает только под действием тока утечки, превышающего стандартное значение. А искусственно созданное, как естественное или самодельное заземление, отличается сопротивлением, уровень которого не позволяет появиться току с требуемым значением. Получается, что в этой ситуации УЗО не сможет сработать.

Другой вариант неправильного подключения УЗО — плохая изоляция выходного нулевого провода относительно «массы».Если нулевой провод подключен к цепи заземления, УЗО будет постоянно давать ложные срабатывания.

Проверка работоспособности УЗО

Чтобы убедиться, что УЗО выполняет свою задачу, можно воспользоваться кнопкой «Тест», расположенной на передней панели устройства. Когда кнопка нажата, внутри устройства должна быть создана электрическая цепь, которая копирует ситуацию утечки.

Если нет отключения, то возможны следующие ситуации:

  • устройство неправильно подключено к сети;
  • сломана кнопка или не работает ее электрическая цепь;
  • Защита устройства неисправна.

Убедиться, что причина выхода из строя УЗО — поломка кнопки или защитного механизма, можно другими методами.

Точные результаты демонстрируются проверкой выключателя дифференциального тока с помощью простой батарейки типа ручка. Устройство типа А работает независимо от полярности батареи. А устройство типа AC работает только с определенной полярностью. Это связано с тем, что УЗО типа А реагируют на любой электрический ток.


С помощью аккумулятора можно точно проверить, работает ли УЗО.

Для моделирования реальной аварии для оценки работы устройства позволяет метод, в котором используются лампа накаливания и резистор.Этот метод отличается от проверки кнопкой «Тест» тем, что создает цепь утечки тока не внутри, а снаружи устройства.

Для проверки УЗО таким способом необходимо подготовить:

  • лампу накаливания мощностью 10 Вт;
  • резистор 2,3-2,5 кОм мощностью 5-10 Вт;
  • патрон лампы;
  • изолированный провод.

Проверка лампой и резистором выполняется поэтапно:


При срабатывании защиты розетка моментально отключится от сети.

Видео: проверка УЗО

УЗО и автомат

Так как устройство защитного отключения не оснащено собственным «щитом», защищающим от коротких замыканий и перегрузок сети, обязательно вместе с ним устанавливается автомат. Спаренные устройства работают по-особенному: при обнаружении течи на ситуацию реагирует УЗО, а при появлении сверхтоков срабатывает автомат.

Дифференциальный выключатель тока должен быть защищен от несчастных случаев с автоматом, номинал которого равен номинальному току УЗО.Место установки машины (перед или после защитного устройства) особой роли не играет. Также не так важно, сколько защитных устройств подключено к УЗО.

Подключение УЗО к нескольким машинам

В качестве примера рассмотрим схему, состоящую из двух УЗО на 25 А и вводной машины на 40 А, к которой подключены их собственные группы машин.

Устройство защитного отключения должно быть защищено автоматическим устройством, имеющим такой же или более низкий номинальный ток отключения.

В этом случае к первому устройству дополнительно подключаются две машины с номиналом 6 А и 16 А, а три машины с Ко второму дополнительно подключаются номинал 16 А и один автомат на 10 А.Вводный автомат не может служить щитом для первого УЗО, так как 40 А> 25 А. Поэтому впереди ставятся дополнительные автоматы номиналом не более 25 А (6 А + 16 А = 22 А) из этого.

Второе УЗО (40 А) подключается к машинам с общим номиналом 58 А. Они не защищают УЗО от слишком высокого тока, поэтому оно может выйти из строя до того, как входная машина отключит этот участок цепи от напряжения. Поэтому здесь рекомендуется заменить второе УЗО на более мощное, например, номиналом 63 А, либо защитить имеющееся отдельным автоматическим выключателем на 32 А, установленным на ступеньку выше, чем эксплуатируемые машины.

В частном доме можно установить одно УЗО на светильники и розетки. В квартире, помимо вводного пульта, следует защитить стиральную машину от аварийных ситуаций, установив УЗО на 16 А.

Твердо решив с помощью УЗО защитить свою семью от электрического тока, а свой дом от пожаров, нужно правильно рассчитать характерные показатели защиты и потребления, чтобы выбрать подходящий номинал.

Трехфазное и однофазное УЗО

Прежде всего, нужно четко понимать и различать как параметры самого защитного устройства, так и характеристики подключаемых потребителей электроэнергии.

Параметры и примеры УЗО

На корпусе УЗО указать:

  • Ikzmax — предельный ток короткого замыкания (КЗ) не более 0,25 с. -зависит от сечения жил и их длины, примерно равной расстоянию до питающей трансформаторной подстанции. Чем ближе он будет, тем больше будет Ikzmax. Этот параметр обозначается числом в рамке;

Пояснение. на практике они используются: для частных жилых домов Ikzmax = 4500A, для многоквартирных домов Ikzmax = 6000A, для промышленных установок Ikzmax = 10000A.

  • Un — напряжение номинальное, 220В для однофазной, 380В для трехфазной сети;
  • В — номинальный (рабочий) ток. Этот параметр выбирается на одно значение больше, чем у автоматического выключателя. То есть сначала нужно рассчитать нагрузку на сеть, просуммировав токи, потребляемые всеми устройствами.

Пояснение. если вводный автомат регламентирован техническими условиями, то считать больше не нужно, достаточно выбрать из диапазона следующее значение: 16, 20, 25, 32, 40, 63, 80, 100.
Например, если на входе автомат 25А, то УЗО должно быть 32А;

  • I∆n — дифференциальный ток утечки, отличительный параметр, присущий только устройствам защитного отключения и дифавтоматам (УЗО + автомат). Имеет диапазон значений: 10, 30, 100, 300, 500 мА;
  1. I∆n = 10mA — для индивидуальных бытовых приборов или групп: электроплита, холодильник, стиральная машина, бойлер; электроснабжение в ванной, бане, подвале — то есть для питания электроприборов с металлическим корпусом в местах с повышенной влажностью;
  2. I∆n = 30mA — самый популярный параметр для установки на вводе для защиты всего дома или квартиры;
  3. IΔn = 100мА и более — используются для обеспечения пожарной безопасности разветвленных электрических сетей.Ниже представлена ​​процедура расчета I∆n для таких нужд.

Таблица некоторых параметров УЗО

Тип дифференциального тока утечки, вызывающий срабатывание устройства, обозначается буквами или символами:

  • AC — переменная I∆n. Обозначение — синусоида. Применяется для электронагревательных приборов, систем освещения, электродвигателей;
  • A — I∆n переменная и пульсирующая постоянная. Его предпочтительно использовать для подключения холодильников, стиральных машин и другого оборудования, в котором на корпусе может появиться опасное напряжение постоянного тока.Самый популярный вид в повседневной жизни;
  • B — переменная и сглаженная постоянная I∆n — используется в основном в промышленных установках;
  • S — обеспечивает избирательность (селективность) срабатывания устройств защиты. Имеет выдержку времени 0,1-0,5 с. Применяется для установки на входе на крупные объекты с большим количеством потребителей и повышенными требованиями к электробезопасности. Например, если в отеле гость роняет фен в ванную комнату, выключится не весь отель или этаж, а только устройство для этого потребителя.
  • G — также используется для селективной защиты с повышенной устойчивостью к ложным срабатываниям, имеет задержку 0,05-0,09 с;
  • Степень защиты IP20 (наиболее распространенная) означает, что устройство имеет второй класс защиты от прикосновения и нулевой класс (не имеет) влагостойкости. Если работа устройств требуется во влажных местах, нужно интересоваться второй цифрой этого параметра;
  • Логотип производителя — важная характеристика, которая требует особого рассмотрения, выходящего за рамки данной статьи.Следует обратить внимание на репутацию компании, отзывы покупателей, а также внешний вид самого товара — неряшливые обозначения, некачественная сборка, неровные стыки должны насторожить покупателя. Отличительная особенность производителей — износостойкость изделия.

УЗО крупным планом. Можно рассматривать параметры

Температурный режим … У обычных устройств он находится в диапазоне -5 + 40 ° С, но на постсоветском пространстве особую популярность приобрели устройства особой конструкции: -25 + 40 ° С;

Электрическая схема … Для неспециалиста она сказать особо не о чем, но нужно обратить внимание на наличие треугольника, обозначающего усилитель, а значит, УЗО относится к электронному типу.

Они дешевле, но менее надежны, особенно в условиях нестабильного сетевого напряжения — они питают схемы усиления, которые в этих условиях подвержены выходу из строя. При обрыве нуля и одновременной утечке фазного напряжения эта система работать не будет.

Описание параметров УЗО на корпусе

Стоит еще раз напомнить, что УЗО используются только совместно с устройствами автоматической защиты.

С учетом вышеперечисленных характеристик, зная номинал своего выключателя отключения, вы можете выбрать УЗО для загородного дома или квартиры, оперируя только этими данными, не вникая в сложность электрических расчетов.

Пример выбора УЗО без расчета

Допустим на входе автомат В = 20А. Подходящим значением для номинала защитного устройства будет 25 А, тип А (это требование часто встречается во многих бытовых электроприборах).Для устройства ввода I∆n = 30 мА, для отдельных электрических устройств I∆n = 10 мА. (в этом случае также необходимо последовательно установить автоматический выключатель, В который подбирается по нагрузке).

Входное значение УЗО также должно быть на одно большее значение.
Чтобы выбрать подходящее УЗО для противопожарной защиты для больших разветвленных сетей, сначала необходимо узнать суммарный ток потребления IΣ всех устройств.

IΣ = IP1 + IP2 + IP3 +… IPn

В случае расчета мощности IΣ можно рассчитать по формуле:

где PΣ — полная мощность.

Затем следует рассчитать полный ток утечки IΔΣ. Согласно требованию ПУЭ 7.1.83, если невозможно узнать ток утечки I∆P от конкретного электроприемника, он выбирается равным 0,4 мА для каждого Ампера нагрузки, а для проводника значение I∆ L = 10мкА = 0,01мА берется на каждый метр длины L фазного провода.

примечание

Уже рассчитав значение IΣ, можно вычислить I∆Σ = 0,4 * IΣ + 0.01 * L. Также упомянутый параграф ПУЭ требует, чтобы номинальный остаточный ток устройства был в три раза больше общего тока утечки.

Окончательная формула расчета принимает вид:

I∆n = 3 * (0,4 * IΣ + 0,01 * L) = 3 * I∆Σ

Конкретный пример с расчетом

Имеются в виду низкие температуры (специальный температурный вариант, -25 ° C), отсутствие газа (отопление и приготовление пищи только за счет электроприборов), наличие холодильников, стиральных машин, бойлеров и различной бытовой техники.Считаем, что расчеты для отдельных групп пользователей уже выполнены, требуется рассчитать общее устройство защиты входа (тип S).

Узнать потребление тока для каждого устройства можно из паспорта на электроустройство, произвести расчеты с помощью калькулятора. Принимаем условное расчетное значение IΣ = 52А. Ближайшее значение выключателя — 63А, соответственно In УЗО будет 80А. С помощью линейки, рулетки измерьте длину всего токоведущего кабеля, независимо от подключенной к нему нагрузки.

Предположим, что общая длина проводов составляет 280 м. Подставляем данные в формулу: I∆n = 3 * (0,4 * IΣ + 0,01 * L) = 3 * (0,4 * 52 + 0,01 * 280 ) = 70, 8 (мА).

Ближайшего значения I∆n = 100 мА будет достаточно для обеспечения надежной защиты без ложных срабатываний.

Конечное УЗО:
80А, тип S, I∆n = 100мА, t -25 ° С.

Как правильно выбрать УЗО

Содержание:

Одним из важнейших устройств в электротехнике является устройство защитного отключения.Основное его предназначение — отключить от источника питания всю электрическую сеть или ее отдельный участок путем размыкания контактов. Таким образом обеспечивается защита от поражения электрическим током и предотвращение возгорания.

В современной электротехнике использование этих устройств во многих случаях становится обязательным, поэтому часто возникает вопрос, как правильно выбрать УЗО.

Данные защитные устройства используются не только в однофазных, но и в трехфазных сетях при различных нагрузках, поэтому их выбор осуществляется в зависимости от конкретных условий эксплуатации.

Назначение УЗО и принцип работы

Основная задача УЗО — нейтрализация токов при различных повреждениях электроустановок. Устройство защитного отключения — наиболее эффективное защитное устройство. В отличие от предохранителей или автоматических выключателей, УЗО способны за доли секунды отключить цепь и спасти человеческую жизнь.

Опасность заключается не только в возможности прямого поражения электрическим током. Иногда достаточно просто прикоснуться к частям устройств и устройств, находящихся под напряжением.Поэтому необходимо своевременно срабатывать защитные устройства. Чтобы правильно решить вопрос, как выбрать УЗО для дома, необходимо учитывать условия, в которых оно будет функционировать.

В работе защитных устройств используется явление электромагнетизма. В связи с этим в конструкцию УЗО включены катушки с магнитопроводом, подключенные к токоведущим проводам, передающим электричество потребителю.

В то же время возникает магнитный поток, который представляет собой арифметическую сумму токов, протекающих по этим проводникам.В этом случае входящие токи положительные, а исходящие — отрицательные. При отсутствии протечек и коротких замыканий они будут равны и в сумме равны нулю.

Это состояние цепи указывает на исправность установленного оборудования.

В случае утечки через заземляющие проводники протекает частичный обратный ток, что приводит к дисбалансу. Разница в дифференциальных токах вызывает возбуждение магнитного потока в сердечнике. Его значение будет пропорционально разнице электрического тока.При достижении определенного порога устройство срабатывает и отключает питание потребителей.

Как правильно выбрать УЗО

Для того, чтобы выбрать оптимальный вариант устройства защитного отключения, необходимо знать его основные параметры. Устройства с разными характеристиками используются в определенных условиях, которые необходимо учитывать при выборе.

Характер токов утечки позволяет разделить их на разные типы. Это деление зависит от плавного или внезапного повышения тока.

УЗО

с такими характеристиками получили наибольшее распространение как наиболее подходящие для самых широких условий эксплуатации.

Технология срабатывания позволяет разделить УЗО на электромеханическое и электронное. В первом случае срабатывают высокоточные механизмы в результате действия токов утечки. Это самые надежные и дорогие устройства, способные работать в любых условиях.

Электронные устройства дешевле, однако для нормальной работы электроники требуется внешний источник питания.Их эффективность значительно снижается при скачках напряжения. Скорость срабатывания УЗО позволяет использовать их в многоуровневых системах защиты.

Это позволяет отключать все аварийные секции по отдельности.

Есть и другие параметры, требующие знаний в области электротехники. Поэтому при выборе УЗО лучше всего обратиться за помощью к квалифицированным специалистам. Однако если заранее известны точные характеристики электрической сети, можно самостоятельно подобрать наиболее подходящее защитное устройство.Среди них наиболее важными являются следующие:

  • Напряжение. УЗО может быть рассчитано на однофазную сеть напряжением 220 В или трехфазную сеть на 380 В. Первый вариант обычно используется в квартирах, а второй — в частных домах, дачных участках и коттеджах. Если в трехфазной разводке есть участки с одной фазой, то для них применяют защитные устройства, рассчитанные на 220 вольт.
  • Количество полюсов. В однофазных сетях используются двухполюсные УЗО, рассчитанные на одну фазу и ноль, а в трехфазных — четырехполюсные устройства, к которым подключены три фазы и ноль.
  • Номинальный ток. Это также пропускной ток УЗО, который зависит от количества и мощности подключенных электроприборов и оборудования. Следовательно, этот показатель для общего (входного) защитного устройства необходимо рассчитывать для всех установленных потребителей. Для линейных УЗО общая мощность рассчитывается исходя из количества устройств на конкретной линии. Номиналы УЗО, установленные производителями, составляют 16, 20, 25, 32, 40, 63, 80, 100 А.
  • Ток утечки УЗО. Значение, при котором он выключается.Он также различается номиналами 10, 30, 100, 300 и 500 мА. Для обычных квартир лучше всего подойдет прибор на 30 мА. При более низком номинальном токе устройство будет постоянно реагировать даже на незначительные колебания в сети и отключать питание.
  • Тип тока утечки. На корпусе прибора нанесены символы АС, А, В, S и G. Например, АС реагирует только на переменный ток утечки, а В — на постоянный и переменный токи. Остальная маркировка также соответствует определенным параметрам, в том числе времени задержки отключения устройства.

Что такое УЗО

Основная классификация устройств защитного отключения основана на токе их срабатывания. Например, устройства противопожарной защиты реагируют на токи 100, 300 и 500 мА. Они защищают проводку от возгорания при нарушении изоляции и коротком замыкании.

Обычно вводное УЗО устанавливается за счетчиком электроэнергии и обеспечивает защиту всего объекта. Для человека электрический ток становится опасным при 50 мА. Поэтому устройства, защищающие от огня, не способны защитить человека от поражения электрическим током.

Для этих целей используются устройства, отключающие сеть, когда ток достигает значения 10 или 30 мА.

Защитные устройства различаются количеством полюсов и могут использоваться в одно- или трехфазных сетях. Каждый тип устройства отличается по принципу работы. Маркировка, нанесенная на корпус устройства, должна быть правильно расшифрована и означает, что именно она означает:

  • AC — категория УЗО, применяемая только в сетях переменного тока. Соответственно, устройство реагирует только на переменный ток.
  • А — защитные устройства этой категории срабатывают не только переменным, но и постоянным током.
  • B — имеет более продвинутые функции и реагирует на три типа тока. Помимо постоянного и переменного тока, устройство отключается при выпрямленном дифференциальном токе.
  • S — селективные устройства с возможностью выдержки времени при отключении.
  • G — тоже селективные устройства, но с меньшей задержкой по времени.

УЗО классифицируются по их техническому исполнению.Это позволяет лучше выбрать УЗО. Чаще всего используются электромеханические устройства, не имеющие собственного источника питания. Они срабатывают и срабатывают при возникновении дифференциального тока.

Другой тип относится к электронным устройствам безопасности, которым требуется внешний источник питания. В связи с этим снижается надежность защиты, поэтому такие УЗО используются реже.

При отключении вспомогательного питания они автоматически отключают сеть, при восстановлении питания сеть также включается автоматически.

Некоторые конструкции приборов не включают автоматическое включение цепи при восстановлении питания.

Как выбрать УЗО по мощности

В отличие от автоматических выключателей, защищающих от перегрузок и коротких замыканий, устройства защитного отключения предназначены для защиты от утечек тока. Причина — неправильная изоляция электроприборов или контакт токоведущих частей с телом. В этих случаях происходит мгновенное отключение УЗО, линия обесточивается, а потребители защищены от поражения электрическим током.

Для расчета мощности УЗО необходимо знать общее количество потребителей, подключенных к этой линии.

В том случае, если решается вопрос, как выбрать УЗО и автомат по мощности, оба защитных устройства должны иметь соответствующие значения, чтобы обеспечить их нормальную работу.

Если установка автоматических выключателей не предусмотрена проектом, в этом случае рассчитывается общая мощность, потребляемая электроприборами.Как правило, это значение в стандартной квартире многоэтажного дома не превышает 25А.

При установке УЗО в частных домах рекомендуется разделить всех потребителей на группы, которые подключаются к отдельным линиям, протянутым на каждый этаж, хозяйственные постройки, наружное освещение и т. Д.

Если УЗО имеет меньшую мощность, чем существующие потребители, оно будет постоянно отключаться из-за перегрузок. То есть устройство фактически не будет нормально работать и не сможет защитить линию.

Частично решить эту проблему помогут розетки

со встроенными УЗО, рассчитанные на ток потребления 5А.

Как рассчитать УЗО

Для того, чтобы рассчитать защитное устройство и решить вопрос, как выбрать УЗО по мощности, таблица параметров поможет сделать это максимально быстро и точно. Для получения желаемого результата необходимо использовать две технические характеристики — ток утечки и максимальный ток. В расчетах используется сетевое напряжение 220 В с частотой 50 Гц.

Расчет и выбор номинала УЗО по максимальному току довольно прост. Необходимо установить значение суммарной электрической мощности одновременно включаемых устройств и оборудования.

Например, если этот показатель 6000 Вт, то значение расчетного тока будет: I = P / U. Подставляя в формулу требуемые значения, получаем результат: 6000Вт / 220В = 27А. .

примечание

Ближайшим УЗО из стандартного диапазона номинальных токов будет 32А.

Если УЗО рассчитывается по току утечки, в этом случае используется упрощенная схема, по которой выбираются различные типы защитных устройств в соответствии с условиями эксплуатации объектов:

  • В обычном жилом помещении — на 30мА.
  • В ванных комнатах, кухнях и других помещениях с повышенной влажностью и повышенными требованиями по электробезопасности — на 10 мА.
  • На крупных объектах с протяженностью электрических сетей более 1000 м или на вводе — 100мА.

Довольно часто возникает необходимость подбора УЗО для группы машин, расчет которых выполняется по определенным правилам. Установка этих устройств в схему осуществляется последовательно, автоматы могут быть установлены как до, так и после УЗО.

Значения тока автоматических выключателей должны быть ниже, чем в УЗО, но не меньше фактического потребляемого тока.

Правильный расчет УЗО и автоматов показывает, что в случае перегрузок и коротких замыканий автомат защитит не только саму линию, но и установленное на ней устройство защитного отключения.

Номинальные параметры УЗО для тока

Номинальные токи основных типов УЗО — 16, 25, 40 и 63 А. Это значение соответствует значению тока, который устройство может пропускать через себя без ограничений по времени. В рамках этой линейки производится выбор УЗО для электрощита квартиры или частного дома.

Значение номинального тока необходимо при решении, как рассчитать УЗО для группы машин. В этом случае для защиты нужно выбирать автомат с номинальным током меньше или равным номинальному току дифференциального выключателя.

Специалисты рекомендуют выбирать номинал на ступень выше, чем у автомата, так как он может длительное время пропускать через себя ток, превышающий номинальный. Если токи равны, в этот период УЗО может просто сгореть.

Какое УЗО поставить при входе в квартиру

В современных многоэтажках запрещено использовать трехфазную проводку, поэтому многие хозяева задаются вопросом, как выбрать УЗО для квартиры.

Между тем здесь нет ничего сложного, так как для однофазной разводки используется двухполюсный прибор с маркировкой AC.Ток утечки УЗО для квартиры выбирается из расчета 30 мА.

Устройства с более низким порогом отключения могут вызывать ложные срабатывания.

Сколько УЗО необходимо установить в квартире? Все зависит от суммарной мощности потребителей. Если она слишком велика, рекомендуется разбить домашнюю сеть на отдельные линии и поставить на каждую из них защитное устройство. Дополнительно на входе в квартиру устанавливается общее УЗО для защиты от пожара при повреждении изоляции.

Часто ложные срабатывания сигнализации возникают из-за старой проводки. Если эти процессы происходят систематически, может потребоваться полная замена.

Узо у входа в дом

В отличие от типовой квартиры, частный дом имеет индивидуальную планировку с разным количеством комнат.

Поэтому часто возникает вопрос, какое УЗО поставить в частном доме? На таких объектах могут использоваться не только однофазные, но и трехфазные электрические сети напряжением 220 или 380 вольт.

Поэтому в первом случае используются те же УЗО, что и в квартирах, а во втором — четырехполюсные, где предусмотрены клеммы для трех фаз и нулевого провода.

Кроме того, выбор УЗО для частного дома осуществляется по роду тока. Однако следует учитывать, что в частных домах часто запускаются мощные электродвигатели, потребляющие на короткое время мощный пусковой ток. Рекомендуется заранее определить порог срабатывания УЗО, а затем выбрать необходимое устройство, которое остается работоспособным в этих условиях.

Большое значение имеет вопрос, как выбрать УЗО для деревянного дома, чтобы защитить не только от токов утечки, но и от возгораний.

Для этого используется многоступенчатая система защиты, в которой мощные устройства предотвращают возгорание, а устройства с более низким порогом срабатывания защищают от токов утечки.

Однако не стоит устанавливать УЗО с минимальным током отключения 10А, особенно если линии электропередачи длинные. Чуткое устройство отреагирует на малейшие изменения и вызовет ложные срабатывания.

Как выбрать УЗО

Как и любое другое устройство, УЗО, или, как их еще называют, выключатели дифференциального тока, имеет другие технические характеристики.

Основные параметры, на которые следует обращать внимание при выборе УЗО :

  • — напряжение сети 220/380 В;
  • — количество полюсов, для однофазной сети — двухполюсной, для трехфазной — четырехполюсной;
  • — номинальный ток, на который рассчитано УЗО.Выпускается на номинальный ток нагрузки 16, 20, 25, 32, 40, 63, 80, 100 А;
  • — дифференциальный ток, на который реагирует УЗО (ток утечки) — 10, 30, 100, 300, 500 мА;
  • — по роду дифференциального тока:

AC — реагирует на переменный ток утечки;

А — реагирует на пульсирующие утечки переменного и постоянного тока;

Б — реагирует на постоянное и переменное;

S — имеет выдержку времени отключения для обеспечения селективности;

G — то же самое, что и S, но имеет более короткую временную задержку.

Ошибки при выборе УЗО

С точки зрения изоляции абсолютно совершенных устройств не существует; в каждом электрическом устройстве есть естественная утечка, хотя и очень небольшая.

При выборе УЗО необходимо понимать, что сумма естественных токов утечки может вызвать ложное срабатывание устройства. Исходя из этого, существует правило, согласно которому сумма естественных токов утечки устройств, подключенных к этому устройству защитного отключения, не должна превышать 1/3 номинального тока утечки.

Например, если устройство защитного отключения имеет номинальный ток утечки 10 мА, то сумма собственных токов утечки не должна превышать 3,3 мА, для 30 мА — 10 мА и т. Д.

Поэтому, чтобы выбранное УЗО не сработало ложно, необходимо учитывать естественные утечки подключенных к нему электроприборов (качественные производители указывают ток утечки в паспорте или на корпусе устройства) .

Какое устройство защитного отключения выбрать?

По линиям электропередачи к потребителям электроэнергии течет синусоидальный ток, поэтому утечка в этом случае также будет синусоидальной.Поэтому по типу следует выбирать выключатели дифференциального тока — переменного тока.

УЗО квартиры

Для защиты в обычной квартире дифференциальные токовые выключатели обычно выбирают однофазного (двухполюсного) типа — переменного тока, с номинальным напряжением 230 В и номинальным током до 32 А.

Минимальный ток утечки, который может определить УЗО, составляет 10 мА. Однако совсем не обязательно выбирать УЗО с таким током утечки.Дело в том, что величина тока 10 мА может быть полной утечкой для электроприборов и аппаратов квартиры в целом, особенно со старой электропроводкой.

Устройство защитного отключения (УЗО) обнаруживает эту утечку и ложно срабатывает. Для защиты людей от поражения электрическим током будет достаточно выбора УЗО с током утечки 30 мА .

Устройство остаточного тока для дома

В больших домах и коттеджах устанавливаются трехфазные (четырехполюсные) дифференциальные токовые выключатели.Чтобы защита таких конструкций была надежной, то в этом случае требуется устанавливать не один выключатель дифференциального тока, а несколько. Схема электроснабжения дома обычно каскадная, с множеством ответвлений (особенно если здание многоэтажное).

В этом случае УЗО необходимо установить на каждом ответвлении. Как правило, это вводный электрощит, первый этаж, второй этаж, отдельные пристройки и т. Д.

Для установки в вводной электрической панели выбирается реле остаточного тока с током утечки 100 мА и выше.По типу возможна установка ВДТ типа S. Этот тип ВДТ является селективным и имеет время задержки отключения.

Для отдельных групп помещений подходят такие же, как для квартиры, с током утечки 30 мА, типа А или АС.

Если УЗО планируется установить в помещении со старой, ненадежной электропроводкой, то в этом случае выбор и дальнейшая установка УЗО для таких помещений неуместна.

Как известно, УЗО реагирует на ток утечки, и при разводке проводов, у которых есть старая ненадежная изоляция (особенно в старых домах), небольшие токи утечки возникают постоянно.УЗО в таких случаях могут срабатывать часто и, как правило, без видимых причин.

Как правильно выбрать УЗО: расчет рабочего тока и мощности автомата

Несмотря на все преимущества, которыми обладает электрическая энергия, у нее есть и недостатки. Основная из них — опасность поражения электрическим током.

Для защиты людей от действия электричества создано множество устройств, и одно из них называется УЗО — Residual Current Device.

Но чтобы организовать эффективную защиту с помощью этих устройств, необходимо хорошо представлять, как выбрать УЗО и как его подключить.

Устройство представляет собой автоматическое устройство, отключающее напряжение в случае возникновения дифференциального тока (дифференциальный ток, ток утечки).

Это он, возникающий при той или иной неисправности электрооборудования, в большинстве случаев является результатом несчастных случаев. Хуже всего то, что неисправность, вызвавшая утечку, никак себя не проявляет.

Стиральная машина делает стирку, компьютер просчитывает задание, бойлер старательно нагревает воду. Но как только человек прикоснется к корпусу такого устройства или примет душ, произойдет непоправимое.

Как работает защита

Известно, что электрическое оборудование получает энергию по проводам. При этом в бытовой технике используются два проводника — фазный и нулевой. Если оборудование промышленное или просто мощное, то оно может использовать три фазы, но сути проблемы это не меняет.

Итак, грубо говоря, ток идет в фазе (ах), активирует электрооборудование и проходит через ноль *. При этом входящие и исходящие значения токов всегда равны — сколько энергии поступило в устройство по фазному проводу, столько же вышло по нулевому.

Допустим, возникла нештатная ситуация — протек сальник в стиральной машине и залил плату управления, в электрическую мясорубку попала вода, из-за вибрации изношена изоляция провода, либо произошел термический пробой электродвигателя.По этой причине на металлических частях агрегата появилось напряжение.

Если прибор заземлен, это напряжение от шасси или корпуса будет стекать в контур заземления, вызывая дифференциальный удар. В незаземленном оборудовании утечки не будет, но она произойдет, если человек, стоящий на проводящей поверхности (бетонный пол, металлический или деревянный пол, но влажный и т. Д.), Коснется корпуса.

Возникновение дифференциального тока через контур заземления или тело человека

В этой ситуации ток, проходящий через фазовый провод, больше не будет равен исходящему току в нуле.К нему будет добавлено значение протечки, текущей в землю: Iphase = Izero + Ileakage.

Задача УЗО — точно определить этот дисбаланс. В процессе работы прибор постоянно сравнивает значение токов, проходящих по фазе и нулю. Пока они равны, все в порядке. Как только фазный ток превысит ноль, устройство отключит напряжение.

Характеристики устройства остаточного тока

От того, насколько правильно вы выберете защитное устройство, будет зависеть ваше здоровье, а возможно, и жизнь.Поэтому к этому вопросу нужно подойти со всей ответственностью. Каковы характеристики УЗО , у которых есть еще одно название — дифференциальные выключатели (не путать с автоматами)?

  • Дифференциальный ток. Основной параметр устройства. По сути, это чувствительность системы защиты. Например, дифференциальный переключатель, изображенный ниже, сработает с утечкой 30 мА (позиция 3 на фотографии).
  • Рабочий ток или мощность.Текущая нагрузка в амперах, которую устройство может выдерживать длительное время без повреждений и перегрева (позиция 1).
  • Рабочее напряжение. Максимальное напряжение сети, в которую будет встроено УЗО (позиция 2).
  • Этакое напряжение. Тип сетевого напряжения, в котором будет встроено устройство защиты. Может быть переменной, постоянной или переменной + постоянной (позиция 5).

Как выбрать УЗО

Очевидно, что каждый из вышеперечисленных параметров одинаково важен при выборе УЗО.Устройство с низким рабочим напряжением и мощностью просто сгорит, а неправильный выбор величины дифференциального тока и вида напряжения сделает устройство абсолютно бесполезным — оно либо сработает ложно, либо не сработает совсем.

Выбор дифференциала

Это главный и самый важный критерий выбора. Посмотрим, , как рассчитать УЗО для конкретного объекта … Согласно ПЭС, допустимая величина утечки в электроустановках принимается из расчета 0.4 мА на 1 А тока нагрузки.

Дополнительно нужно знать длину электрической цепи и прибавить еще 0,01 мА к результату, полученному на каждый метр питающего провода. Согласитесь, такой расчет УЗО, скажем, домашней электропроводки достаточно сложен и трудоемок.

Но можно все сделать намного проще, и уровень защиты при этом не пострадает.

Если устройство планируется устанавливать не в целях пожарной безопасности, а для защиты людей (обычно это основная задача в домашних сетях), то он должен уверенно реагировать на утечку не более 50-80 мА.

Именно эта величина считается максимально допустимой для человеческого организма.

С другой стороны, если домашняя сеть очень длинная и разветвленная и даже с влажными помещениями (та же ванная комната), то величина естественной утечки, распределенной по всей линии, может оказаться выше тех же 50 мА.

примечание

Как здесь оказаться? Установить более мощный аппарат, как рекомендуют некоторые «знатоки»? Ни в коем случае! Ведь если вы, не дай бог, попадете под напряжение, мощная автоматика не сможет вас спасти — либо сработает после того, как по телу пройдет смертельный ток, либо вообще не выключится.В любом случае, самому человеку все равно.

Выход из ситуации — не выбирать более грубое УЗО, а установить несколько чувствительных устройств, каждое из которых будет контролировать отдельный участок цепи. Например, одно устройство для ванной и кухни, другое для розеток, третье для освещения.

Мощность и напряжение

По этим критериям сделать выбор УЗО намного проще. Величина напряжения в сетях вам известна: с однофазной линией оно составляет 220 В, с трехфазной линией — 380 или 660 В.Тип напряжения в обоих случаях переменный. Если ваша сеть однофазная, то устройство также можно выбрать однофазное. Если есть три фазы, то необходим трехфазный дифференциальный выключатель.

Однофазные и трехфазные дифференциальные выключатели

Теперь о том, как выбрать УЗО и автомат по мощности. Почему автомат? Дело в том, что дифференциальный выключатель не срабатывает от перегрузки или короткого замыкания, а реагирует только на дифференциальный ток.Если в доме произошло короткое замыкание, дифавтомат благополучно сгорит от перегрузки вместе с проводкой. Поэтому установка УЗО в паре с автоматом обязательна.

Что касается рабочего тока дифференциального выключателя, то он должен быть не меньше того, на который рассчитан входной автоматический выключатель. Если у вас уже есть автоматический выключатель, просто посмотрите, на какой ток он рассчитан. Если нет, то надо ставить.

Для обычной квартиры без особо мощных потребителей обычно достаточно автомата мощностью до 32 А, выдерживающего нагрузку в 7 кВт.

Здесь следует отметить, что напряжение и номинальный ток, указанные на корпусе переключателя и машины, могут быть больше, чем необходимо, но ни в коем случае не меньше.

Как подключить УЗО

Для того, чтобы дифференциальный выключатель работал долго и надежно, должен быть правильно установлен в доме схема … Вот несколько предварительных условий, которые необходимо выполнить при установке УЗО:

  1. Правильная фазировка. Чтобы дифференциальный переключатель мог управлять разницей между фазным и нулевым токами, он должен уметь различать их.Поэтому фазный и нейтральный провода необходимо подключать к строго определенным клеммам, соответствующим маркировкой на корпусе устройства. Если перепутать ноль и фазу, то прибор либо будет работать постоянно, либо вообще не будет включать защиту, что еще хуже. В многофазных устройствах порядок фаз можно игнорировать, но ноль должен быть строго на своем месте.
  2. Обязательная защита от короткого замыкания. Как было сказано выше, УЗО не имеет собственной защиты от короткого замыкания, поэтому его необходимо устанавливать последовательно с автоматом.Где будет стоять машина — до или после УЗО — значения не имеет. Допускается установка одной машины на несколько УЗО и наоборот — выход дифференциального выключателя может быть загружен на несколько машин, обслуживающих разные линии.
  3. Защита от внешних воздействий. Практически все УЗО не защищены от влаги, поэтому их нужно размещать в сухих помещениях или в специальных закрытых шкафах. В противном случае устройство может выйти из строя в самый неподходящий момент со всеми вытекающими отсюда последствиями.

Вариант подключения УЗО к домашней сети

Проверка подключения

После установки устройства защиты необходимо обязательно проверить правильность его работы, чтобы не узнавать о проблемах в подключении постфактум — после попадания под напряжение.

Проверка осуществляется двумя методами — тестовой кнопкой и искусственным созданием тока утечки. Первый предельно простой — нажать кнопку, расположенную на корпусе УЗО и подписанную соответствующим образом.

Схема, встроенная в устройство, будет имитировать ток утечки, и защита сработает, отключив питание линии.

Если вы не доверяете этой кнопке (мало ли что и что там имитирует), то можете проверить прибор, искусственно создав ток утечки. Подключите электрический прибор — настольную лампу, паяльник и т. Д. Между фазным контактом розетки и ее заземляющим выводом.

Схема проверки правильности работы дифференциального выключателя

УЗО немедленно заметит утечку и немедленно отключит цепь.Все в порядке. Если ваши розетки не подключены к заземляющему контуру, что очень и очень плохо, то полуметровый штырь, воткнутый в землю, можно использовать в качестве заземляющего контакта. Это, конечно, не полноценное заземление, но тока через него более чем достаточно, чтобы УЗО зафиксировало утечку.

Дифавтомат как вариант двойной защиты

Есть еще одно устройство, способное работать от тока утечки. Он называется дифференциальным автоматом.

Его отличие от обычного УЗО состоит в том, что устройство дополнительно содержит автоматический выключатель, реагирующий на короткое замыкание.

Установка дифавтомата имеет смысл, если вы делаете установку с нуля или в вашей проводке вообще нет автомата. Покупая дифавтомат, вы получаете сразу два устройства в одном корпусе — УЗО и автомат. Это и дешевле, и проще в установке.

Дифавтомат выглядит как устройство защитного отключения, но имеет встроенный автомат

Выбор дифференциального автомата производится по критериям:

  1. Дифференциальный ток.
  2. Номинальный ток.
  3. Рабочее напряжение.
  4. Вид тока.
  5. Ток отключения.

Вам наверняка знаком почти весь список — вы использовали его для выбора УЗО. Также он подходит для выбора дифавтомата. Дополнительным критерием является только ток отключения — ток, при котором срабатывает встроенный в устройство автомат. Обычно он равен трехкратному рабочему току, поэтому, если вы правильно выберете рабочий ток, то ток отсечки также будет оптимальным.

Как выбрать УЗО для квартиры или частного дома?

Назначение УЗО уже неоднократно упоминалось, и однозначно его установка в современной бытовой электросети — важнейшая защита человека от поражения электрическим током. Но как выбрать УЗО? По каким параметрам? Как рассчитать устройство для конкретного защищенного потребителя? Попробуем разобраться.

Чтобы сделать правильный выбор УЗО, необходимо разобраться в его назначении, основных характеристиках и параметрах.Покупая устройство, обратите внимание на его корпус, он содержит всю важную информацию. Чтобы эти цифры и буквы вам что-то говорили, разберем каждую из них отдельно.

Назначение

Самое главное понять, что автоматический выключатель защищает электрическую сеть от сверхтоков, а УЗО защищает человека.

Если в результате пробоя изоляции на корпусе электроприбора появится потенциал, при прикосновении к нему существует вероятность поражения электрическим током.

Чтобы этого не произошло, сразу же при возникновении тока утечки устройство защитного отключения отреагирует и отключит поврежденный участок цепи.

Важно знать! УЗО не защищает от перегрузок и коротких замыканий, поэтому автоматические выключатели необходимо включать в цепь последовательно с ними.

Товарный знак

Говоря о бренде, мы, по сути, собираемся проанализировать соотношение цены и качества. Дело в том, что существует негласная классификация всех производителей УЗО по территориальному расположению — европейские модели, азиатские и российские.

Один из способов обнаружить поддельное видео:

Каждый из них имеет свои особенности:

  1. И противопожарное УЗО, и устройство для защиты людей от поражения электрическим током европейского производства будут стоить на порядок дороже, чем модели в России и Китае. Но такая цена гарантирует качество и надежность. Не будет лишним узнать, что некоторые европейские компании, помимо основного качественного ассортимента, производят УЗО для рынков других стран с такой же надежностью, но с заниженными техническими характеристиками.
  2. Отечественные производители предлагают УЗО по более низкой цене, чем их аналоги из Европы, однако они соответствуют всем нормативным требованиям российских стандартов. Пока что розничная сеть российских производителей не так сильна, да и сами устройства не в состоянии конкурировать с азиатами по цене, с Европой по качеству.
  1. УЗО азиатских производителей пользуются наибольшим спросом в мире. Некоторые производители из Азии заключают контракты с поставщиком продукции на российский рынок, и в этом случае они выпускают устройства под российской торговой маркой.

Перед тем, как выбрать торговую марку УЗО, определитесь, какие средства у вас есть для оснащения квартиры или частного дома защитной автоматикой. Наиболее предпочитаемые фирмы:

  • швейцарская «ABB»;
  • французских «Legrand» и «Schneider Electric»;
  • немецких «Сименс» и «Мёллер».

Среди отечественных производителей наибольшее распространение получили:

  • Курский завод «КЭАЗ», средняя цена и качество, компания дает двухлетнюю гарантию на выпускаемые УЗО, что свидетельствует о надежности продукции;
  • Московская фирма «Интерэлектрокомплект» («ИЭК»), продукция не всегда получает положительные отзывы, тем не менее, спрос на нее большой из-за невысокой стоимости;
  • Ульяновский завод «Контакт», он входит в группу компаний «Легранд», что влияет на качество продукции и, соответственно, на цену;
  • относительно молодой св.Петербургская фирма «ДЕКРАФТ», на российском рынке представляет всемирно известную компанию «Шнайдер Электрик».

Что касается китайских производителей, то производимые ими УЗО являются прямым конкурентом устройств российской компании IEK. Цена и качество примерно на одном уровне, при этом срок гарантии на китайский товар составляет пять лет.

Основные настройки

После товарного знака на корпусе указываются основные номиналы и рабочие характеристики УЗО.

  1. Название модели и серия. Обратите внимание, что здесь вы не всегда увидите буквы RCD, некоторые производители обозначают это устройство как RCD (выключатель дифференциального тока).
  2. Величина номинального напряжения и частоты. В российской энергосистеме рабочая частота 50 Гц. Что касается напряжения, то для однофазной сети в квартире оно составляет 220-230 В. Для частного дома иногда нужна трехфазная сеть и рабочее напряжение будет 380 В.

Характеристики УЗО на видео:

  1. Номинальный рабочий ток — это максимальное значение, которое может переключить УЗО.
  2. Номинальный дифференциальный ток отключения. Это сумма, при которой устройство срабатывает.
  3. Также здесь указаны температурные пределы срабатывания УЗО (минимум — 25 градусов, максимум + 40).
  1. Другое значение тока — это номинальный условный ток короткого замыкания. Это максимальный ток короткого замыкания, который устройство выдержит и не выключится, но при условии, что в цепи последовательно с ним установлен подходящий автомат.
  2. Номинальное время отклика. Это временной интервал с момента, когда внезапно произошла утечка тока, и до того, как она должна быть погашена всеми полюсами УЗО. Максимально допустимое значение 0,03 с.
  3. Обязательно начертите на корпусе схему УЗО.

Форма тока утечки

По этому параметру все устройства защитного отключения подразделяются на три типа:

  1. «И». Такое устройство срабатывает мгновенными или плавно увеличивающимися токами утечки, которые имеют синусоидальную переменную или пульсирующую постоянную форму.Это самый распространенный вид УЗО. Из-за того, что он контролирует как переменный, так и постоянный ток, он более дорогой.
  2. «АС». Тоже распространенное и более доступное устройство. Работает только при возникновении утечки переменного синусоидального тока.
  3. «В». В основном это устройство используется для защиты производственных помещений. Помимо синусоидальной переменной, УЗО реагирует на выпрямленную и пульсирующую форму утечки постоянного тока.

Возникает вполне закономерный вопрос, в бытовых сетях протекает переменный ток синусоидальной формы, может ли хватить везде устанавливать устройства типа «АС»? Но если присмотреться к характеристикам современной бытовой техники, то в большинстве из них есть блоки питания с электронными полупроводниковыми компонентами, при достижении которых синусоида преобразуется в полупериоды импульса.А если течь не синусоидальная, то УЗО типа «АС» ее не исправит и не отключит.

Именно поэтому в паспортах на многие бытовые приборы производитель указывает, через какое УЗО необходимо подключать.

Советы по выбору УЗО в видео:

Принцип действия

Есть электронные и электромеханические УЗО.

Второй дороже, но не зависит от сети. Он заработает, как только в цепи возникнет утечка тока.

Электронное устройство в своей работе зависит от усилителя, встроенного в электрическую цепь. А чтобы этот усилитель всегда был в рабочем состоянии, ему нужен внешний блок питания. В связи с этим снижается надежность срабатывания.

Избирательность

По селективности срабатывания устройства защитного отключения бывают двух типов — «G» и «S».

Эти УЗО срабатывают после определенного периода времени, называемого задержкой. Они используются при последовательном включении в цепь нескольких устройств.

Для защиты отходящих ответвлений потребителей устанавливаются устройства без выдержки времени и на входе УЗО типа «G» и «S».

Если произошла утечка тока, а исходящее УЗО не сработало, то через определенное время устройство на входе должно выключиться.

Для УЗО типа «S» выдержка регулируется в диапазоне от 0,15 до 0,5 с, типа «G» — от 0,06 до 0,08 с.

Двухуровневая противопожарная защита

Для деревянного частного дома особенно важна гарантия пожарной безопасности.Поэтому в данной ситуации необходимо выбирать УЗО при планировании двухуровневой системы дифференциальной защиты. Его основное назначение — разделение защитной функции:

  • УЗО пожаротушения обеспечивает срабатывание при больших утечках тока, способствующих возникновению пожара;
  • Обычные устройства
  • предотвратят поражение людей электрическим током при низкой скорости утечки.

Поскольку УЗО для пожаротушения имеет большое значение для номинального тока утечки, оно само по себе не может обеспечить защиту человека.Поэтому его всегда устанавливают вместе с УЗО, которое имеет меньший ток утечки.

Вне зависимости от того, какое значение имеет номинальный рабочий ток и сколько полюсов имеет УЗО пожаротушения, параметр тока утечки для такого устройства составляет 100 мА и 300 мА, в остальном он ничем не отличается от обычного.

Схема подключения выполняется последовательно, ближе к источнику питания (на вводе) ставим УЗО пожаротушения, а на отходящих ответвлениях защищенной проводки универсальное.

Подробно о противопожарном УЗО на видео:

Например, это выглядит так: входное УЗО выбирается параметрами 63 А (номинальный рабочий ток) и 300 мА (ток утечки), остальные устройства соответственно 40 А и 30 мА для группы розеток, 25 А и 10 мА для ванной, 16 А и 10 мА для группы освещения.

В квартире также рекомендуется использование противопожарных устройств. Группа освещения часто остается незащищенной от токов утечки.С минимальной вероятностью, но в этой ветви могут возникнуть сильноточные утечки, а если на вводе установить такое УЗО, то это будет своеобразной подстраховкой.

Выполнение расчетов

На практике не всегда можно точно рассчитать полный ток утечки. Поэтому примерно определяется по следующей методике: на 1 А потребляемой нагрузки берется ток утечки 0,4 мА. Также следует произвести расчет исходя из длины фазного провода — на 1 м берется 10 мкА.

Допустим, вам нужно правильно выбрать УЗО по мощности электроплиты (3 кВт). Для начала рассчитаем его нагрузку: 3000 Вт / 220 В = 13,64 А. Ток утечки для пластины: 13,64 А х 0,4 мА = 5,46 мА. Аналогично делаем расчет для проложенного проводника, например, 10 м: 10 мкА х 10 м = 100 мкА = 0,1 мА. Итого ток утечки составляет 5,46 мА + 0,1 мА = 5,56 мА.

примечание

Результирующее значение суммы утечек тока не должно превышать 33% дифференциального номинального тока УЗО.А потом расчет со школьных уроков математики составляем элементарную пропорцию и получаем: 5,56 мА х 100% / 33% = 16,85 мА.

Существует специальная таблица нормативных значений номинальных токов утечки, исходя из нее, на электроплиту подойдет прибор на 25 мА.

Теперь вы знаете, как выбрать УЗО для квартиры или дома, и сможете самостоятельно определить общий расчетный ток утечки. Если вы сомневаетесь в своих знаниях и способностях, пригласите для работы профессионального электрика.Помните, что устройство защитного отключения — ваша гарантия вашей безопасности.

Выбор УЗО по характеристикам различных типов устройств

Дифференциальный выключатель тока (УЗО) снижает вероятность поражения электрическим током в помещениях, возникновения пожаров за счет защиты от токов утечки. Поэтому в наше время этот вид защитного электрооборудования пользуется повышенным спросом. Статья поможет выбрать УЗО по мощности с учетом конструкции и различных типов классификации устройств.

Классификация устройств защитного отключения по разным критериям

По количеству полюсов УЗО делятся на несколько групп, из которых нас интересуют:

  • УЗО двухполюсное — предназначено для работы в однофазных сетях. Чаще всего они выпускаются в виде модульного оборудования и занимают два места по стандарту DIN (35 мм) в стандартных распределительных щитах.
  • Четырехполюсные УЗО работают в трехфазных сетях и занимают 4 места по стандарту DIN (70 мм).

По конструкции УЗО бывают:

  • УЗО электромеханические , в которых механизм измерения дифференциальных токов работает независимо от потери напряжения в сети из-за обрыва нуля, поскольку дифференциальный трансформатор реагирует только на разницу токов. Такие УЗО имеют очень тонкую механику, что объясняет их более высокую стоимость.
  • Электронные УЗО — в которых сравнение токов происходит в электронных компараторах, затем разностный сигнал усиливается для управления разветвителем.Эти УЗО имеют электронные схемы, требующие стабильного напряжения питания.

Надежность электронных УЗО меньше, но более низкая цена оправдывает их широкое применение.

В зависимости от условий эксплуатации, когда возникает постоянная составляющая дифференциального тока, УЗО:

  • Тип переменного тока, которые реагируют на переменный синусоидальный дифференциальный ток, который может медленно возрастать или возникать внезапно.
  • Тип A , реагирующий на синусоидальный ток, а также на выпрямленный пульсирующий постоянный ток, который также может медленно возрастать или появляться внезапно.

УЗО типа А сложнее и, следовательно, дороже.

Помимо модульных, устанавливаемых в щиты, существуют специальные типы УЗО, которые имеют форму розетки или даже электрической вилки.

Такое применение оправдано в случаях, когда электропроводка в квартире или доме ветхая, имеющая низкое сопротивление изоляции и, соответственно, большие токи утечки.

Установленные в щитах УЗО

в таких случаях будут иметь частые ложные срабатывания, что сделает невозможной работу электроприборов.

Правильный выбор УЗО для квартиры должен быть обоснован специалистами, составляющими проект электроснабжения помещения или всего дома, ведь необходимо учитывать множество технических нюансов, которые могут быть известны только инженерам-электрикам. Проект лучше всего делать при строительстве нового дома или при капитальном ремонте жилья, который обязательно должен включать в себя ремонт или полную замену проводки.

УЗО подбираются по номинальному току В, , который может пропускать устройство в непрерывных режимах работы.

Это значение может быть от 6 до 125 Ампер. Еще одна важная характеристика — это номинальный остаточный ток IΔn , при котором срабатывает УЗО (подробнее о принципах работы этих устройств можно прочитать здесь).

Этот параметр имеет фиксированные значения: 10 мА, 30 мА, 100 мА, 300 мА, 500 мА, 1 А и выбирается исходя из требований безопасности.

Например, если УЗО имеет дифференциальный рабочий ток 30 мА, то это сделано для безопасности людей и животных, поскольку такой ток не приводит к тяжелым травмам.

Выключатели

с дифференциальным рабочим током 100 мА и выше обычно называют среди специалистов УЗО пожаротушения , которые отключают всю электропроводку в случае токов утечки, которые уже являются фатальными для человека.

  • Высокие токи утечки, сосредоточенные локально в одном месте, могут привести к выделению большого количества тепла, которое может вызвать пожар.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *