Устройство и принцип работы трансформатора
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.
Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.
Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.
В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.
Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.
1. Принцип работы трансформатора.
Принцип работы трансформатора основан на явлении электромагнитной индукции.
Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток
При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток
В результате размагничивающего действия потока Ф2
Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток
Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.
Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1
Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.
Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.
Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют
Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.
Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.
Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.
2. Устройство трансформатора.
2.1. Магнитопровод. Магнитные материалы.
Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.
Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.
Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.
Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.
Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.
Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.
Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.
Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.
Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.
2.2. Типы магнитопроводов.
Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.
Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.
Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.
В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.
Стержневые.
В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.
Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.
Броневые.
В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.
Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.
Тороидальные.
Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.
Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.
Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.
За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.
На этом пока закончим. Продолжим во второй части.
Удачи!
Литература:
1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
sesaga.ru
Устройство трансформатора, из чего состоит трансформатор
Трансформатором называется электромагнитное устройство которое служит для преобразования входного напряжения. Трансформатор работает на увеличение или уменьшение электрической энергии (увеличивающий или уменьшающий). Вид трансформатора для эксплуатации выбирается в зависимости от области его дальнейшего использования.
В одном из понятий трансформатора есть такое определение как величины. Величины бывают первичные и вторичные. Это зависит от принадлежности величины к обмотке. Первичные величины относятся к первичной обмотке, вторичные к вторичной.
По сути, трансформатор не имеет сложного внутреннего строения. Он состоит из основных составляющих таких как: сердечник, обмоток, в случае если трансформатор масляного типа то в нем расположен бак с трансформаторным маслом с размещенными на нем вводов (иначе проходных изоляторов) и расширителя. Остальное оборудование которым может комплектоваться состав трансформатора является дополнительный или вспомогательным.
К вспомогательному оборудованию трансформатора относится: бачок с масло указателем расширительного типа, переключатель для регулировки напряжения, реле газовое, элемент для заправки и слива из трансформатора масла, термометр и выхлопная труба.
Сердечники
Сердечник трансформатора состоит из стержней с размещенными на нем катушек обмоток. Название и вид сердечника в основном соответствует названию трансформатора. Сердечники как правило делятся на два вида: стержневые и броневые. Материалом для изготовления сердечника является спрессованная электротехническая сталь толщиной примерно 0,35; 0,28 мм.
Сердечники трансформатора делятся на стыковые и шихтованные, название сердечника зависит от способа соединения стержня с ярмом.
Стыковые сердечники как правило состоят из стержня и ярма, их отличительная особенность заключается в том что эти два элемента собираются отдельно и объединяются в один сердечник после укладки катушек.
Шихтованные сердечники состоящие также из стержня и ярма которые собираются в переплет (в отличие от стыкового), только в этом случае производится выемка полос верхнего ярма, которые снова укладываются на место после того как установлены катушки.
Стержнем называется часть сердечника на котором расположены обмотки, в случае если данные части не содержат обмотки, то они называются ярмом.
Составляющие элементы трехфазного масляного трансформатора:
- активная часть
- специальная деревянная планка
- верхняя ярмовая балка
- регулировочные ответвления
- магнитопровод
- маслопровод
- ввод высшего напряжения
- ввод низшего напряжения
- линейный отвод высшего напряжения
- переключатель
- выхлопная труба
- охладительные трубы
- расширитель
- обмотки высшего напряжения
- газовое реле
- бачок
- указатель уровня масла
- каток тележки
Активная часть трансформатора включает в себя:
- переключатель
- привод переключателя
- крышку с расширителем и охлаждающей трубкой
- регулировочные ответвления
- ввод низшего напряжения
- ввод низшего напряжения
- трубки которые крепят отводы из бумажно-бакелитового материала
Активная часть трансформатора в данной сборке помещается в бачок с трансформаторным маслом.
Составляющие элементы сухого трансформатора:
- обмотка высшего напряжения
- стальное прессующее кольцо
- регулировочные ответвления обмотки высшего напряжения
- вертикальные стяжные шпильки
- фарфоровые прокладки
- прокладки для крепления отводов в исполнении из фарфора
- опорные изоляторы отводов высшего напряжения
- отводы высшего напряжения
- доска зажимов
tr-ktp.ru
принцип работы и типы приборов
Трансформатор — незаменимое устройство в электротехнике.
Без него энергосистема в ее нынешнем виде не могла бы существовать.
Присутствуют эти элементы и во многих электроприборах.
Желающим познакомиться с ними поближе предлагается данная статья, тема которой — трансформатор: принцип работы и виды приборов, а также их назначение.
Что такое трансформатор
Так называют устройство, изменяющее величину переменного электрического напряжения. Существуют разновидности, способные менять и его частоту.Таким аппаратами оснащают многие приборы, также они применяются в самостоятельном виде.
Например, установки, повышающие напряжение для передачи тока по электромагистралям.
Генерируемое электростанцией напряжение они поднимают до 35 – 750 кВ, что дает двойную выгоду:
- уменьшаются потери в проводах;
- требуются провода меньшего сечения.
Принцип работы
Работа трансформаторного устройства основана на явлении электромагнитной индукции, состоящей в следующем: при изменении параметров магнитного поля, пересекающего проводник, в последнем возникает ЭДС (электродвижущая сила). Проводник в трансформаторе присутствует в форме катушки или обмотки, и общая ЭДС равна сумме ЭДС каждого витка.
Для нормальной работы требуется исключить электрический контакт между витками, потому используют провод в изолирующей оболочке. Эту катушку называют вторичной.
Магнитное поле, необходимое для генерации во вторичной катушке ЭДС, создается другой катушкой. Она подключается к источнику тока и называется первичной. Работа первичной катушки основана на том факте, что при протекании через проводник тока, вокруг него формируется электромагнитное поле, а если он смотан в катушку, оно усиливается.
Как работает трансформатор
При протекании через катушку постоянного тока параметры электромагнитного поля не меняются и оно неспособно вызвать ЭДС во вторичной катушке. Поэтому трансформаторы работают только с переменным напряжением.
На характер преобразования напряжения влияет соотношение количества витков в обмотках – первичной и вторичной. Его обозначают «Кт» – коэффициент трансформации. Действует закон:
Кт = W1 / W2 = U1 / U2,
где,
- W1 и W2 — количество витков в первичной и вторичной обмотках;
- U1 и U2 — напряжение на их выводах.
Следовательно, если в первичной катушке витков больше, то напряжение на выводах вторичной ниже. Такой аппарат называют понижающим, Кт у него больше единицы. Если витков больше во вторичной катушке — трансформатор напряжение повышает и называется повышающим. Его Кт меньше единицы.
Большой силовой трансформатор
Если пренебречь потерями (идеальный трансформатор), то из закона сохранения энергии следует:
P1 = P2,
где Р1 и Р2 — мощность тока в обмотках.
Поскольку P = U * I, получим:
- U1 * I1 = U2 * I2;
- I1 = I2 * (U2 / U1) = I2 / Кт.
Это означает:
- в первичной катушке понижающего устройства (Кт > 1) протекает ток меньшей силы, чем в цепи вторичной;
- с повышающими трансформаторами (Кт < 1) все наоборот: сила тока в первичной катушке выше, чем в цепи вторичной.
Данное обстоятельство учитывают при подборе сечения проводов для обмоток аппаратов.
Конструкция
Трансформаторные обмотки надевают на магнитопровод — деталь из ферромагнитной, трансформаторной или иной магнитомягкой стали. Он служит проводником электромагнитного поля от первичной катушки ко вторичной.
Под действием переменного магнитного поля в магнитопроводе также генерируются токи — они называются вихревыми. Эти токи приводят к потерям энергии и нагреву магнитопровода. Последний, с целью свести данное явление к минимуму, набирают из множества изолированных друг от друга пластин.
На магнитопроводе катушки располагают двояко:
- рядом;
- наматывают одну поверх другой.
Обмотки для микротрансформаторов изготавливают из фольги толщиной 20 – 30 мкм. Ее поверхность в результате окисления становится диэлектриком и играет роль изоляции.
Конструкция трансформатора
На практике добиться соотношения Р1 = Р2 невозможно из-за потерь трех видов:
- рассеивание магнитного поля;
- нагрев проводов и магнитопровода;
- гистерезис.
Потери на гистерезис — это затраты энергии на перемагничивание магнитопровода. Направление силовых линий электромагнитного поля постоянно меняется. Каждый раз приходится преодолевать сопротивление диполей в структуре магнитопровода, выстроившихся определенным образом в предыдущей фазе.
Потери на гистерезис стремятся уменьшить, применяя разные конструкции магнитопроводов.
Итак, в реальности величины Р1 и Р2 отличаются и соотношение Р2 / Р1 называют КПД устройства. Для его измерения используются следующие режимы работы трансформатора:
- холостого хода;
- короткозамкнутый;
- с нагрузкой.
В некоторых разновидностях трансформаторов, работающих с напряжением высокой частоты, магнитопровод отсутствует.
Режим холостого хода
Первичная обмотка подключена к источнику тока, а цепь вторичной разомкнута. При таком подключении в катушке течет ток холостого хода, в основном представляющий реактивный ток намагничивания.
Такой режим позволяет определить:
- КПД устройства;
- коэффициент трансформации;
- потери в магнитопроводе (на языке профессионалов — потери в стали).
Схема трансформатора в режиме холостого хода
Короткозамкнутый режим
Выводы вторичной обмотки замыкают без нагрузки (накоротко), так что ток в цепи ограничивается лишь ее сопротивлением. На контакты первичной подают такое напряжение, чтобы ток в цепи вторичной обмотки не превышал номинального.
Такое подключение позволяет определить потери на нагрев обмоток (потери в меди). Это необходимо при реализации схем с применением вместо реального трансформатора активного сопротивления.
Режим с нагрузкой
В этом состоянии к выводам вторичной обмотки подключен потребитель.
Охлаждение
В процессе работы трансформатор греется.
Применяют три способа охлаждения:
- естественное: для маломощных моделей;
- принудительное воздушное (обдув вентилятором): модели средней мощности;
- мощные трансформаторы охлаждаются при помощи жидкости (в основном используют масло).
Прибор с масляным охлаждением
Виды трансформаторов
Аппараты классифицируются по назначению, типу магнитопровода и мощности.
Силовые трансформаторы
Наиболее многочисленная группа. К ней относятся все трансформаторы, работающие в энергосети.
Автотрансформатор
У этой разновидности между первичной и вторичной обмотками имеется электрический контакт. При намотке провода делают несколько выводов — при переключении между ними задействуется разное число витков, отчего меняется коэффициент трансформации.Достоинства автотрансформатора:
- Повышенный КПД. Объясняется тем, что преобразованию подвергается только часть мощности. Это особенно важно при незначительной разнице между напряжением на входе и выходе.
- Низкая стоимость. Это обусловлено меньшим расходом стали и меди (автотрансформатор имеет компактные размеры).
Эти устройства выгодно применять в сетях напряжением 110 кВ и более с эффективным заземлением при Кт не выше 3-4.
Трансформатор тока
Используется для снижения силы тока в подключенной к источнику питания первичной обмотке. Устройство находит применение в защитных, измерительных, сигнальных и управляющих системах. Преимущество в сравнении с шунтовыми схемами измерения, состоит в наличии гальванической развязки (отсутствие электроконтакта между обмотками).
Первичная катушка включается в цепь переменного тока – исследуемую или контролируемую – с нагрузкой последовательно. К выводам вторичной обмотки подключают исполнительное индикаторное устройство, к примеру, реле, или прибор измерения.
Трансформатор тока
Допустимое сопротивление в цепи вторичной катушки ограничено мизерными значениями — почти короткое замыкание. У большинства токовых трансформаторов величина номинального тока в этой катушке составляет 1 или 5 А. При размыкании цепи в ней формируется высокое напряжение, способное пробить изоляцию и повредить подключенные приборы.
Импульсный трансформатор
Работает с короткими импульсами, продолжительность которых измеряется десятками микросекунд. Форма импульса практически не искажается. В основном используются в видеосистемах.
Сварочный трансформатор
Данное устройство:
- понижает напряжение;
- рассчитано на номинальный ток в цепи вторичной обмотки до тысяч ампер.
Регулировать сварочный ток можно изменением числа витков обмоток, задействованных в процессе (они имеют по нескольку выводов). При этом изменяется величина индуктивного сопротивления или вторичное напряжение холостого хода. Посредством дополнительных выводов обмотки разбиты на секции, потому регулировка сварочного тока осуществляется ступенчато.
Габариты трансформатора во многом зависят от частоты переменного тока. Чем она выше, тем более компактным получится устройство.
Сварочный трансформатор ТДМ 70-460
На этом принципе основано устройство современных инверторных сварочных аппаратов. В них переменный ток перед подачей на трансформатор подвергается обработке:
- выпрямляется посредством диодного моста;
- в инверторе — управляемом микропроцессором электронном узле с быстро переключающимися ключевыми транзисторами — снова становится переменным, но уже с частотой 60 – 80 кГц.
Потому эти сварочные аппараты такие легкие и небольшие.
Также устроены блоки питания импульсного типа, например, в ПК.
Разделительный трансформатор
В этом устройстве обязательно присутствует гальваническая развязка (нет электрического контакта между первичной и вторичной обмотками), а Кт равен единице. То есть разделительный трансформатор напряжение оставляет неизменным. Он необходим для повышения безопасности подключения.
Прикосновение к токоведущим элементам оборудования, подключенного к сети через такой трансформатор, к сильному удару током не приведет.
В быту такой способ подключения электроприборов уместен во влажных помещениях— в ванных и пр.
Кроме силовых трансформаторов, существуют сигнальные разделительные. Они устанавливаются в электроцепи для гальванической развязки.
Магнитопроводы
Бывают трех видов:
- Стержневые. Выполнены в виде стержня ступенчатого сечения. Характеристики оставляют желать лучшего, но зато просты в исполнении.
- Броневые. Лучше стержневых проводят магнитное поле и вдобавок защищают обмотки от механических воздействий. Недостаток: высокая стоимость (требуется много стали).
- Тороидальные. Наиболее эффективная разновидность: создают однородное сконцентрированное магнитное поле, чем способствуют уменьшению потерь. Трансформаторы с тороидальным магнитопроводом имеют наибольший КПД, но они дороги из-за сложности изготовления.
Мощность
Мощность трансформатора принято обозначать в вольт-амперах (ВА). По данному признаку устройства классифицируются так:- маломощные: менее 100 ВА;
- средней мощности: несколько сотен ВА;
Существуют установки большой мощности, измеряемой в тысячах ВА.
Трансформаторы отличаются назначением и характеристиками, но принцип действия у них одинаков: переменное магнитное поле, генерируемое одной обмоткой, возбуждает во второй ЭДС, величина которого зависит от числа витков.
Необходимость в преобразовании напряжения возникает очень часто, потому трансформаторы получили самое широкое распространение. Данное устройство можно изготовить самостоятельно.
proprovoda.ru
устройство и принципы работы, назначение и область применения прибора
Название «трансформатор» произошло от латинского слова «transforмare», что значит «превращать, преобразовывать». Именно в этом и заключается его суть — преобразование путем магнитной индукции переменного тока одного напряжения в переменный ток другого напряжения, но аналогичной частоты. Главное назначение трансформатора — использование в электросетях и источниках питания разнообразных приборов.
Устройство и принцип действия
Трансформатор — это прибор для преобразования переменного тока и напряжения, не имеющий подвижных частей.
Устройство трансформаторов состоит из одной или нескольких обособленных проволочных, иногда ленточных катушек (обмоток), которые охвачены единым магнитным потоком. Катушки, как правило, наматывают на сердечник (магнитопровод). Обычно он изготавливается из ферромагнитного материала.
На рисунке схематично представлен принцип работы трансформатора.
На рисунке видно, что первичная обмотка подсоединена к источнику переменного тока, а другая (вторичная) — к нагрузке. В витках первичной обмотки при этом проистекает переменный ток, его величина I1. А обе катушки охватывает магнитный поток Ф, производящий в них электродвижущую силу.
Если вторичная обмотка находится без нагрузки, то такой режим работы преобразователя называется «холостой ход». Когда вторичная катушка под нагрузкой, в ней под действием электродвижущей силы возникает ток I2.
Выходное напряжение при этом зависит напрямую от того, сколько витков на катушках, а сила тока — от диаметра (сечения) провода. Другими словами, если обе катушки имеют равное количество витков, то напряжение на выходе будет равно напряжению на входе. А если на вторичную катушку намотать в 2 раза больше витков, то и напряжение на выходе станет в 2 раза выше входного.
Итоговый ток зависит также и от диаметра провода обмотки. Например, при большой нагрузке и маленьком диаметре провода может произойти перегрев обмотки, нарушение целостности изоляции и даже полный выход из строя трансформатора.
Во избежание таких ситуаций составлены таблицы для расчета преобразователя и выбора диаметра провода под заданное выходное напряжение.
Классификация по видам
Трансформаторы принято классифицировать по нескольким признакам: по назначению, по способу установки, по типу изоляции, по используемому напряжению и т. д. Рассмотрим самые распространенные виды приборов.
Силовые преобразователи
Такой вид приборов применяется для подачи и приема электрической энергии на ЛЭП и с ЛЭП с напряжением до 1150 квт. Отсюда и название — силовой. Эти приборы функционируют на низких частотах — порядка 50−60 Гц. Их конструктивными особенностями является то, что они могут содержать несколько обмоток, которые располагаются на броневом сердечнике, изготовленном из электротехнической стали. Причем катушки низкого напряжения могут быть запитаны параллельно.
Такой прибор носит название трансформатор с расщепленными обмотками. Обычно силовые трансформаторы помещают в емкость с трансформаторным маслом, а самые мощные агрегаты охлаждают активной системой. Для установки на подстанциях и электростанциях используют трехфазные приборы мощностью до 4 тыс. кВА. Они получили наибольшее распространение, так как потери в них уменьшены на 15% по сравнению с однофазными.
Автотрансформаторы (ЛАТР)
Это особая разновидность низкочастотного прибора. В нем вторичная обмотка одновременно является частью первичной и наоборот. То есть катушки связываются не только магнитно, но и электрически. Разное напряжение получается и с одной обмотки, если сделано несколько выводов. За счет использования меньшего количества проводов достигается удешевление прибора. Однако при этом отсутствует гальваническая развязка обмоток, а это уже существенный недочет.
Автотрансформаторы нашли применение в высоковольтных сетях и в установках автоматического управления, для запуска двигателей переменного тока. Целесообразно их использование при невысоких коэффициентах трансформации. ЛАТР применяют для регулировки напряжения в лабораторных условиях.
Трансформаторы тока
В таких приборах первичная обмотка подсоединяется непосредственно к источнику тока, а вторичная — к приборам с небольшим внутренним сопротивлением. Это могут быть защитные или измерительные устройства. Самым распространенным видом трансформатора тока считается измерительный.
Он состоит из сердечника, выполненного из шихтованной кремнистой холоднокатаной электротехнической стали, с намотанной на него одной или несколькими обособленными вторичными обмотками. В то время как первичная может представлять собой просто шину или же провод с измеряемым током, пропущенным при этом сквозь окошко магнитопровода. По такому принципу функционируют, к примеру, токоизмерительные клещи. Главной характеристикой трансформаторного тока является коэффициент трансформации.
Такие преобразователи безопасны и поэтому нашли применение при измерении тока и в схемах релейной защиты.
Импульсные преобразователи
В современном мире импульсные системы практически полностью заменили тяжелые низкочастотные трансформаторы. Обычно импульсный прибор выполняется на ферритовом сердечнике разнообразных форм и размеров:
- кольцо;
- стержень;
- чашечка;
- в виде буквы Ш;
- П-образный.
Превосходство таких приборов сомнениям не подлежит — они способны функционировать на частотах до 500 и более кГц.
Так как это прибор высокочастотный, то его размеры существенно снижаются с ростом частоты. На обмотку расходуется меньшее количество провода, а для получения высокочастотного тока в первой цепи достаточно лишь подключения полевого или биполярного транзистора.
Существуют еще много разновидностей трансформаторов: разделительные, согласующие, пик-трансформаторы, сдвоенный дроссель и т. д. Все они широко применяются в современной промышленности.
Область применения приборов
Сегодня, пожалуй, трудно себе представить область науки и техники, где не применяются трансформаторы. Их широко используются для следующих целей:
- Для передачи и раздачи электроэнергии.
- Для создания допустимой схемы включения вентилей. Применяется в преобразовательных устройствах с одновременным согласованием входного и выходного напряжения.
- В производстве: в сварке, для снабжения электротермических установок и т. д. Мощность таких приборов достигает порой десятков тысяч кВА и напряжения до 10 кВ, а рабочий диапазон — 50 Гц.
- Преобразователи малой мощности и невысокого напряжения применяют для радио- и телеаппаратуры, устройств связи, бытовых приборов, для согласования напряжений и т. д.
- При включении электроизмерительных приборов и реле в электроцепи высокого напряжения с целью расширения диапазонов измерений и обеспечения электробезопасности.
Исходя из многообразия устройств и видов назначения трансформаторов, можно утверждать, что сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения как гражданских сетей, так и сетей предприятий промышленности.
220v.guru
назначение, устройство и принцип действия
Силовые трансформаторы представляют собой устройства, работа которых основана на принципе электромагнитной индукции. Агрегат способен преобразовать напряжение переменного тока, сохранив при этом значение его частоты. Особенности прибора позволяют сохранить мощность, а также поменять систему сети (однофазная, трехфазная). Чтобы понять, что такое силовые трансформаторы, необходимо рассмотреть их устройство и принцип действия.
Область применения
Устройство трансформатора силового позволяет транспортировать электричество на большие расстояния. От объекта, который его вырабатывает, до конечного потребителя расстояние может насчитывать тысячи километров. Рассказать кратко о силовых трансформаторах позволяет схема перемещения электричества. Чтобы избежать его искажений и потерь применяется принцип трансформации. Генераторы вырабатывают электричество и передают его на подстанцию. Здесь повышается напряжение, и ток с требуемыми характеристиками передается в линии электропередач.
На другой стороне ЛЭП подводится к удаленной подстанции. Через этот объект осуществляется распределение тока между всеми потребителями. Для этого напряжение понижается. Чтобы преобразовывать электричество большой мощности на обеих подстанциях функционируют представленные устройства. Это трансформаторы и автотрансформаторы. Технические характеристики этих устройств практически идентичны. Отличается их принцип функционирования.
Первый повышающий силовой трансформатор находится непосредственно возле ЛЭП электростанции. Последующие первичные агрегаты в сети также работают для повышения напряжения. Это позволяет избежать потери в линии. На пути к потребителю устанавливается определенное количество понижающей аппаратуры. В обеспечении полноценного функционирования всей системы заключается назначение всех силовых трансформаторов.
Функционирование системы
Принцип работы силового трансформатора основан на электродвижущей силе, которая движется по обмоткам. Данные устройства функционируют исключительно на переменном токе. Если его подключить к обмотке, будет создаваться магнитный поток. Он замыкается в магнитоприводе. В этот момент возникает электродвижущая сила во второй обмотке. Все катушки связаны в системе магнитной связью. Показатель ЭДС будет пропорционален количеству витков в обмотке.
Принцип действия понижающего или повышающего силового трансформатора включает в себя несколько режимов. Для каждого из них предусмотрены свои особенности.
В рабочем режиме к первичной обмотке подводится напряжение, а к вторичной – нагрузка. В таком положении установка способна длительное время обеспечивать подключенные к нему потребители электричеством. Рабочий режим может осуществляться при холостом ходе и опыте короткого замыкания.
Холостой ход наступает при размыкании вторичной обмотки. В этот период исключается протекание по ней тока. Этот режим позволяет определить КПД прибора, потери при намагничивании сердечника и коэффициент трансформации.
Опыт короткого замыкания происходит при коротком шунтировании выводов вторичной катушки. При этом сила тока на входе должна быть занижена на входе. На этом уровне создается вторичный ток без превышения. Представленную методику применяют для определения уровня потерь в меди.
Аварийный режим определяется при нарушениях в работе системы. Рабочие параметры отклоняются от допустимых значений. Наиболее опасным состоянием считается короткое замыкание внутри обмоток. При этом возможно возникновение пожара, причинение большого ущерба системе энергоснабжения. Чтобы предупредить возникновение аварии, применяются различные автоматические системы защиты, сигнализации и отключения оборудования.
Разновидности
Производство конструкций силовых трансформаторов предполагает применение различных технологий. В процессе создания представленной аппаратуры применяются разные диэлектрические компоненты. Определенные части оборудования способствуют охлаждению и обеспечивают электрическую защиту.
Для маломощных разновидностей применяется диэлектрический компаунд или специальная бумага, электротехническое лаковое покрытие. Средние и мощные агрегаты имеют в своем составе такие основные части, как масло, элегаз. Производство подобного оборудования предполагает выполнять особую изоляцию обмоток.
Помимо вышеприведенной классификации выделяют еще несколько основных категорий объектов:
- Количество фаз. Бывает трёхфазный и однофазный тип приборов.
- Тип исполнения. Применяются масляные, сухие и приборы с жидким диэлектрическим веществом.
- Климатическое исполнение. Наружные и внутренние установки.
- Число обмоток. Встречаются конструкции с двумя и более катушками.
- Предназначение. Для понижения или повышения напряжения.
- Возможность регулировки напряжения. Применяются аппараты с регулировкой и без нее.
Производство подобной аппаратуры позволяет создавать установки мощностью от 4 кВА до 200 тыс. кВА (и выше). При этом достигается уровень напряжения на обмотках более 330 кВ.
Всего существует девять групп оборудования. В первую из них входят приборы с напряжением не выше 35 кВ и мощностью 4-100 кВА. К восьмой отнесены аппараты с мощностью выше 200 тыс. кВА и напряжением 35-330 кВ. Существуют и более мощное оборудование. Оно относится к девятой категории.
Особенности и основные параметры
Устройство и монтаж силовых трансформаторов предполагает размещение станции на стационарной, специально подготовленной площадке. Фундамент сооружения должен быть прочным. На грунте при этом могут монтироваться катки и рельсы.
Внутри металлического корпуса располагаются электрические установки. Он выполнен в виде герметичного бака. Внутренние системы закрывает крышка. Чаще всего применяются масляные разновидности. Они имеют особые технические характеристики. Внутри короба такого агрегата находится масло специального типа. Оно обладает особыми диэлектрическими качествами. Масло отводит излишнее тепло от деталей системы в процессе повышенной токовой нагрузки. Однако есть и другие варианты охладительных систем.
Основными характеристиками, влияющими на функционирование установки, являются:
- Количество катушек и тип их соединения.
- Мощность.
- Значение напряжения обмоток.
Сегодня в системах обеспечения электричеством различных объектов чаще встречаются агрегаты с двумя трехфазными обмотки. Только для бытовой сети применяются однофазные установки. Трехфазный силовой трансформатор распространен больше в сетях электрокоммуникаций.
Система регулировки бывает двух типов. В первом случае необходимо отключать питание перед проведением настройки, а во втором – нет. Регулировка выполняется со стороны обмотки высоковольтного типа. По ней движется меньший ток. Такой тип регулировки позволяет выполнять точную настройку.
Конструкция, предполагающая отключение нагрузки, проще. Однако ее предел изменения небольшой. Регулировка требует полного отключения прибора от сети.
Схема
Схема силового трансформатора включает в себя несколько основных элементов. К ним относятся:
- Сердечник (магнитопривод).
- Остов с балками (нижняя и верхняя).
- Низковольтная и высоковольтная обмотки.
- Отводы.
- Регулировочные ответвления.
- Нижняя часть вводов.
На основе с балками закрепляются все составные детали. Магнитопривод необходим для снижения потерь при прохождении магнитного потока через контуры. Он изготавливается из электротехнической стали.
В сердечнике магнитопривода листы металла собирают по определенной схеме. Стержни с обмотками должны приближаться по форме к кругу. Подобная конфигурация позволяет облегчить намотку проводников. Стыки между отдельными пластинами сердечника перекрываются цельными листами.
Обмотка выполняется из проводов круглой или прямоугольной формы сечения. Между слоями и самими обмотками оставляются зазоры для циркуляции охладительного компонента.
Особенности выбора
Силовые трансформаторы требуют при выборе учитывать требования потребителей электроэнергии. При монтаже оборудования энергоснабжения, необходимо рассчитать правильно мощность оборудования. Если применяется несколько агрегатов, при аварийном отключении один из них должен полностью компенсировать работу другого прибора.
Также важно уделять внимание качеству системы защиты. Она должна срабатывать при перегрузках, внутренних повреждений элементов конструкции. К их числу относятся приборы по контролю уровня давления масла, температуры сердечника, обмотки, образование газов.
Обслуживание и ремонт
Работа аппаратов связана с высокими значениями мощностей. Поэтому их обслуживанию уделяется повышенное внимание. Ежедневно обслуживающий персонал совершает осмотры, контролирует показания измерительных приборов.
В процессе техобслуживания оцениваются следующие показатели:
- Степень истощения прибора, поглощающего влагу.
- Количество масла.
- Износ механизмов регенерации масла.
- Наличие подтекания, механических повреждений трубопроводов радиаторов, корпуса.
Если на объекте не предусмотрено круглосуточное дежурство персонала, периодическая ревизия производится раз в месяц. На трансформаторных пунктах осмотр выполняют раз в 6 месяцев.
При необходимости меняют или доливают масло. Его цвет контролируется при визуальном осмотре. Если оно стало темным, его меняют. Раз в год и при проведении капитального ремонта выполняют лабораторное исследование состава масла.
Для разрушения пленки окислов на медных и латунных элементах раз в 6 месяцев отключают установку от питания. Переключатель переводят через все положения несколько раз. Такую процедуру проводят перед сезонными колебаниями нагрузки.
Силовая аппаратура является важным элементом сети энергоснабжения. Они функционируют круглосуточно, поэтому важно уделять внимание особенностям их выбора и обслуживанию. Это одно из сложнейших, но крайне важных устройств.
protransformatory.ru
Принцип работы силового трансформатора
Трансформаторные будки есть практически на каждой улице любого города вне зависимости от размеров. Вся планета подвержена власти электричества. Что такое силовой трансформатор? Для чего они? Принцип работы силового трансформатора? При должном объяснении все станет понятно любому школьнику.
Зачем это нужно?
Трансформатор служит для повышения или понижения подаваемой электроэнергии. Зачем нужно преобразовывать ток? Смысл в том, что согласно закону Джоуля-Ленца тепло, которое выделяет проводник при прохождении по нему электрического тока выделяется в зависимости от силы тока. Причем зависимость эта квадратичная, так как сила тока в формуле имеет вторую степень.
На практике это означает, что увеличение силы тока в 2 раза приведет к увеличению тепловыделений в 4 раза. Все бы ничего, но закон сохранения энергии пока никто не отменял. На нагрев проводника расходуется электроэнергия, которую с таким трудом добывает человечество. Единственный выход: повысить напряжение до максимум.
Согласно закону Ома всегда сохраняется некое равенство: произведение силы тока на сопротивление равняется напряжению в сети. Предположим, что сопротивление не изменяется, так как оно зависит от свойств проводящего материала. Тогда единственным выходом будет максимально задрать напряжение, чтобы уменьшить силу тока в сети.
Высоковольтные линии придумали не ради развлечения. Единственная цель столь сложной системы с трансформаторами: максимальное сокращение потерь.
Принцип работы силового трансформатора
Чтобы говорить о принципе работы силового трансформатора требуется вспомнить некоторые понятия из школьного курса физики. В итоге будет проще понять объяснения рабочей схемы устройства.
Индукция
Чтобы понять, как работает силовой трансформатор, надо разбираться в понятии индукции. Именно на ней основана львиная доля современной электроники. Суть этого явления в том, что при прохождении через проводник ток создает переменное электрическое поле. Движение электронов в свою очередь порождает переменное магнитное поле, которое при попадании в другой проводник породит так переменное электрическое поле.
То есть, если поставить рядом два проводника, причем один из них подключить к источнику тока, а другое не подключать – электричество будет течь в обоих проводниках. Причем во втором проводнике направление тока будет противоположным таковому в исходном варианте.
Свойство индукции используется достаточно часто: в усилителях, передатчиках и, конечно, школьных опытах
Устройство трансформатора
Корпус аппарата представляет собой бак, в который заливается масло. Масло насыщается минералами, чтобы лучше отводить тепло. Выбросы тепловой энергии при работе трансформатора огромны. Однако даже такие потери в тысячи раз меньше возможных утечек энергии при транспортировке.
Масло циркулирует по внутреннему и внешнему контуру трансформатора. Отдельно отметим, что внешний контур часто представляет собой оребренный радиатор. Увеличение площади теплоотдачи приводит к улучшению отдачи тепла. Проще говоря, чем больше площадь соприкосновения масла из внутреннего контура и внешнего радиатора – тем лучше будет отводится тепло, тем меньше вероятность аварии на трансформаторной подстанции.
Само устройство силового трансформатора представляет собой квадратного сечения сердечник, набранный из тонких электростальных пластинок. Используются именно наборные сердечники, чтобы свести к минимум появление самоиндукционных токов, которые приводят к перегреву и увеличению потерь энергии.
На противоположные стороны квадрата наносят обмотку. Обмотка, на которую поддается ток, называется первичной, обмотка, отдающая преобразованную энергию, вторичной.
Принцип работы
Схема работы силового трансформатора выглядит так:
- Ток подается на первичную обмотку.
- Первичная обмотка в результате прохождения электрического тока начинает генерировать переменное магнитное поле.
- Магнитное поле, проходящее сквозь вторичную обмотку, вызывает в ней электрический ток.
Вес секрет процесса в количестве витков. Отношение принятого напряжения к отданному равняется отношению количества витков первичной обмотки к количеству витков вторичного обмотки. Это же отношение называют коэффициентом трансформации. То есть коэффициент показывает, во сколько раз уменьшится или увеличится выходное напряжение на подстанции.
Схема простейшего трансформатора
Почему трансформатор называют силовым
Как мы уже сказали, силовые трансформаторы используют для понижения высоковольного тока до приемлемых для города параметров, то есть 220/360 В – в зависимости от местности и прочих условий. Но нужно отметить, что напряжение высоковольтных линий ненамного больше 1000 к В, а это больше миллиона вольт. Именно за трансформацию столь сильного напряжения, устройство и назвали таким красивым именем.
Установленный силовой трансформатор
Именно силовые трансформаторы используются для преобразования электричества городских и квартальных сетей. Получается многоступенчатая система снабжения страны электроэнергией:
- Сначала повышающие трансформаторы увеличивают напряжение до огромных значений
- По проводам ток течет в города и села
- Понижающие трансформаторы понижают напряжение сначала до общегородских, а потом и до квартальных значений.
Отдельно нужно сказать, что иногда приходится понижать значение напряжения до 360 В в городе, потому что высоковольтные линии проводить в городской черте запрещено.
Виды трансформаторов
Уже были названы повышающие и понижающие трансформаторы. В зависимости от места использования можно выделить сетевые и силовые аппараты. Сетевые трансформаторы используются в устройствах, поскольку даже квартальные параметры тока слишком высоки для простого телевизора или ноутбука. Поэтому используется трансформатор, чтобы преобразовать ток в подходящий для конкретного предмета бытовой техники.
Сразу использовать маленькие параметры в городе нельзя из тех же соображений экономии. К тому же, разные приборы требуют разных параметров – всем производителям электроники не угодишь, а потому проще каждому встраивать в свой прибор трансформатор.
Отдельной строкой идут автомобильные трансформаторы, которые позволяют заводить машину с использованием небольшого электрического импульса. Выделяют и импульсные и многие другие трансформаторы, но всех их объединяет одно: принцип работы. Отличия кроются только в рабочих параметрах тока и предназначении трансформатора.
Сетевой трансформатор
Контроль работы устройства
Во время сервисных работ строго запрещается заглядывать внутрь бака, сливать полностью масла и проводить какие-либо манипуляции с содержимым корпуса трансформатора. Работоспособность изделия проверяется путем химической оценки пробы масла и холостого подключения аппарата. В результате удается узнать, насколько трансформатор работоспособен в данный момент времени.
Даже к месту монтажа привозят уже готовую конструкцию, которую остается только подключить к сети. Заливка маслом производится на заводе, не говоря уже о более сложных процедурах. Для доставки оборудования используется специализированная техника.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
principraboty.ru
Вопрос 1. Устройство и принцип действия трансформатора.
Ответ1. Трансформатор – это статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения, но той же частоты.
Основными конструктивными элементами трансформатора являются магнитопровод и обмотки. Магнитопровод служит для усиления основного магнитного потока и обеспечения магнитной связи между обмотками.
В работе рассматривается двухобмоточный силовой трансформатор.(рис5.1)
К первичной обмотке W1подводится электрическая энергия от источника. От вторичной обмоткиW2энергия отводится к приемнику( потребителю).
Под действием переменного напряжения u1 (t) в первичной обмотке возникает ток i1 (t) и в сердечнике возбуждается изменяющийся магнитный поток w1·ф(t) . Этот поток индуцирует эдс е1(t) и е2(t) в обеих обмотках трансформатора. ЭДС е1 уравновешивает основную часть напряжения u1 , а е2 создает напряжение u2 на выходных клеммах трансформатора . При включении нагрузки во вторичной обмотке в цепи нагрузки возникает ток i2(t), который создает собственный магнитный поток, накладывающийся на магнитный поток от первичной обмотки. В результате создается общий магнитный поток сердечника Ψ, сцепленный с витками обеих обмоток трансформатора и определяющий в них результирующие ЭДС е1 и е2 с действующими значениями: и, где— амплитуда магнитного потока:— частота переменного тока; , — число витков обмоток.
На щитке тр-ра указываются его номинальные напряжения -высшее (ВН) и низшее НН) . Так же указываются номинальная полная мощность S (ВА), токи (А) , число фаз, схема соединения, режим работы, и способ охлаждения.
Вопрос 2. Записать и объяснить формулы эдс и уравнения электрического и магнитного состояний трансформатора
Ответ2-1 ЭДС определяется скоростью изменения магнитного потока сердечника и числом витков w1 , w2 обмоток трансформатора
В первичной обмотке под действием напряжения U1 возникает ток I1. Он создает магнитный поток катушки с сердечником. Поток переменный, он наводит в первичной обмотке ЭДС самоиндукции e1 =- w1dФ/dt, а во вторичной обмотке
ЭДС взаимоиндукции е 2 =- w2dФ/dt. Магнитный поток для обеих обмоток один и тот же.
В режиме холостого хода катушка — чистая индуктивность, поэтому, если напряжение изменяется по закону u1(t) =U1m Sinωt , то ток отстает от напряжения на 90°:
i(t) =I1m Sin(ωt-90°), при этом магнитный поток совпадает по фазе с током Ф(t) =Ф1m Sin(ωt-90°). Тогда ЭДС будут равны
е1 = — w1dФ/dt = -w1ω Ф1m Sinωt= -E1m Sinωt
е2 = — w2dФ/dt =- w2ω Ф1m Sinωt= -E2m Sin ωt
Векторная диаграмма идеального (без потерь) трансформатора в режиме холостого хода представлена на рис 5.2 :
Ответ2-2. Уравнения электрического состояния реального трансформатора для первичной и вторичной цепей имеют вид:
;
,
где и – активные сопротивления обмоток; и– индуктивные сопротивления рассеяния обмоток.
Ответ2-3.Уравнения магнитного состояния трансформатора можно получить, исходя из анализа МДС в трансформаторе. ЭДС обеих обмоток возникают благодаря изменению одного и того же магнитного потока Ф с индукцией В. Индукция В и напряженность магнитного поля H связаны зависимостью B=μ·H. Пусть μ= const. Напряженность магнитного поля H по закону полного тока связана с суммарной МДС обеих обмоток соотношением :
Н·l = I1 ·w1+(-I2) ·w2 (5-2)
где l-длина средней линии магнитопровода;
I1 ·w1 — МДС первичной обмотки ;
-I2 ·w2 — МДС вторичной обмотки. Знак минус МДС вторичной обмотки отрицательный в силу закона ЭМИ( правило Ленца –ток возникающий в обмотке 2 всегда будет иметь направление, при котором магнитный поток, создаваемый током I2, будет препятствовать изменению основного потока ).
ЭДС Е1=const*Ф= const*В·S= const* μ ·H·S, с учетом (5-2) :
Е1 = const* μ ·( I1 ·w1-I2 ·w2) ·S/ l (5-3)
В режиме холостого хода I2=0, соответственно уравнение (5-3) будет иметь вид :
Е1= const* μ · I10 ·w1 ·S/ l (5-4)
где I10 ток первичной обмотки трансформатора в режиме холостого хода.
Из уравнений (5-3) и (5-4) получим уравнение магнитного состояния трансформатора:
(5-5)
Определим ток I1:
I1= I10 — Iי2
где I10 – ток холостого хода или намагничивающий ток (ток создающий магнитный поток ),
Iי2 = — w2/ w1 ·I2 — компенсирующий ток . Tок Iי2 компенсирует действие тока вторичной обмотки на основной магнитный поток.
Магнитный поток в сердечнике всегда постоянный. !!!
studfile.net