+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как работает частотник? Принцип работы преобразователя.

Частотник служит для изменения характеристик энергии, поступающей от электросети к производственному оборудованию. Речь идёт о требуемом выборе частоты тока, вида напряжения. Технические возможности изменения этих понятий лежат в определённом диапазоне. Их показатели могут отличаться и быть выше данных, получаемых от первичного энергоисточника, так и гораздо ниже его.

Состав, конструкция схема

Оборудование преобразования частоты (ПЧ) компонуют из двух секций. Первая — с управляющими функциями, состоит из микропроцессоров. Их задача: регулировать коммутацию ключей, контролировать работу, выполнять диагностику и защиту. Вторая — силовая секция. Её комплектуют на транзисторах (тиристорах), выполняющих функцию переключателей.

Характеристика

Большинство распространённых электрорегулируемых приводов используют преобразователей частоты ПЧ двух классов. Основными признаками их разделения являются структурное отличие и принцип работы силовой части устройства. Свои функции ПЧ выполняет с промежуточным узлом, действующим с постоянным током, или осуществляется прямая связь с источником.

Положительной особенностью является высокая эффективность. Отдача достигает 98,5% и более. Используется для управления мощными высоковольтными приводами. Частотник значится относительно дешёвым, несмотря на дополнительную комплектацию схем регулирования. Эффективный способ его применения оценивают, рассматривая класс, преимущества или недостатки. Сначала использовались преобразователи с прямым, непосредственным подсоединением к сети. (рисунок 1).

То есть, источник питания подключается к статорным обмоткам двигателя через открытые вентили. Конструкция силовой части состояла из выпрямителей, выполненных на полупроводниковых приборах — тиристорах.

Обладающих свойствами электровентиля. И системы управления (СУ). Которая, попеременно их открывая, подключала к сети обмотки электродвигателя. Напряжение поступает на тиристоры, имея трёхфазный вид синусоиды Ua, Uв, Uс. На выходе преобразователя сформировано напряжение U вых.

Это показано на одной фазе с вырезанной полосой (рисунок 1). Увеличенный, он имеет зазубренный вид, который аппроксимирует линия синего цвета. Выходная частота устройства значится в границах 0—30 Гц.
Этот короткий диапазон лимитирует возможность привода регулировать скорость асинхронного электродвигателя. Такое подключение на практике даёт результат один к десяти. Хотя технологические процессы диктуют значительного увеличения этого соотношения.


Применение неуправляемых тиристоров считается недостатком конструкции, так как их использование требует усовершенствовать систему регулирования. Она становится более сложной. Кроме того, «зазубренная» форма напряжения на выходе (рис. 2), приводит к появлению высших гармоник. Их наличие сопровождается дополнительными потерями. Которые наблюдаются, в увеличении перегрева электродвигателя, уменьшение крутящего усилия (момент) на валу и появление помех в сети. Поэтому дополнительный монтаж деталей и узлов для устранения этих недостатков, повышает стоимость устройства. Увеличивают его габариты, вес и уменьшают эффективность привода.

В настоящее время преобразователи с прямой (непосредственной) связью не применяют. Сейчас в системах дополнительно включён узел с функцией постоянного тока. При этом задействовано удвоенное трансформирование электроэнергии. Напряжение на входе, с неизменной амплитудой, частотой и формой синусоиды, поступает на клеммы выпрямительного блока (B). Дальше проходит фильтр (Ф), уменьшающий пульсацию высших гармоник. Назначение (И) инвертора — преобразовать постоянное напряжение в переменное варьируемой частоты и амплитуды. При этом используются отдельные внутренние блоки.
Функции электронных ключей, в составе инверторов, выполняют запираемые GTO тиристоры. Или заменяемые его типы: GCT, IGCT, SGCT, а также трёхэлектродным полупроводниковым элементом с изолированным затвором IGBT.

Преимуществом частотника на тиристорах обоих классов является возможность использовать их при повышенных показателях напряжения и тока. Они выдерживают длительную работу, электроимпульсные скачки. Устойчивое функционирование преобразователи частоты поддерживают в широком диапазоне мощностей. С вилкой от сотни кВт до десятка мВт. На выходе ПЧ напряжение составляет от 3 до 10 кв. Однако, сравнивая цену по отношению к мощности, она остаётся завышенной.

Устройства регулируемого привода, в состав которого входили запираемые тиристоры, занимали преобладающее место. Но, потом их сменил транзистор IGBT с изолированным затвором.
Применение тиристора усложняет средство управления. Являясь полупроводниковым элементом, он подключается подачей импульса на регулируемый контакт, достаточно сменить полярность напряжение или понизить величину тока близкую к нулю. Сложность процесса и дополнительные элементы делают систему регулировки более громоздкой.

Транзисторы IGBT отличаются простым способом управления с незначительной затратой расхода энергии. Большой рабочий диапазон частот расширяет границы выбора оборотов электромотора и увеличивает скоростную характеристику. Совместное действие транзистора с микропроцессорным управлением влияет на степень высших гармоник. Кроме того, отмечаются следующие особенности.

  • В обмотках и магнитопроводе электродвигателя уменьшаются потери.
  • Снижается тепло подогрев.
  • Минимум проявлений пульсаций момента.
  • Исключаются рывки ротора в зоне небольших частот.
  • Сокращаются потери в конденсаторах, трансформаторах, проводах тем самым увеличиваются сроки их эксплуатационной пригодности.
  • Приборы измерений и защиты (особенно индукционные) допускают меньшее неточностей, искажённых срабатываний.

Сравнивая ПЧ одинаковой выходной мощности с другими схемами, устройства на транзисторах IGBT отличаются надёжностью, меньшими габаритами, массой. Достигается это за счёт модульной конструкции аппаратных средств. Минимальным набора элементов, составляющих устройство. Защитой от резких колебаний тока и напряжения. Снижением количества отказов и остановок электропривода. Лучшим теплоотводом

Высокая цена низковольтных преобразователей (IGBT) на единицу выходной мощности объясняется трудностью изготовления транзисторных модулей. Рассматривая цену и качество, они предпочтительнее тиристорных. И также надо учитывать постоянную динамику сокращения стоимости производства устройств. Тенденцию к её снижению.

Затруднение в применении высоковольтного привода с прямым изменением частоты является ограничение по мощности свыше двух мВт. Так как увеличение напряжения и рабочего тока укрупняют габариты транзисторного модуля, необходим более высокоэффективный теплоотвод от полупроводника. И как выход, до появления новейших биполярных элементов, модули в преобразователях соединяют последовательно по несколько штук.

Низковольтный ПЧ на IGB транзисторах. Устройство, особенности

Рисунок 3 показывает блочную схему и функции основных узлов. После каждого из них, отображены линии выходных параметров электроэнергии. Подаваемая энергия (Uвх.), в форме синусоиды, неизменной амплитуды, частоты. Дальше — узел постоянного тока, состоящий из неуправляемого или регулируемого выпрямителя 1. Емкостного фильтра 2, с функциями сглаживания пульсации (U выпр.). Потом, сигнал Ud поступает на независимый, автономный инвертор 3, работающий с нагрузкой, которая потребляет ту же частоту.

Он преобразует одно или 3-фазный ток постоянной величины в переменный, имеет приемлемый уровень гармоник, добавленных к выходному напряжению. Собранный на полностью регулируемых полупроводниковых приборах IGBT. Сигналы СУ подсоединяют обмотку электродвигателя к соответствующим полюсам, используя силовые транзисторы. Подключение происходит в период импульсов, моделируемых по синусоиде амплитудой и частотой. Управляемые выпрямители (1) регулируют величину Ud. Функцию сглаживания выполняет электрофильтр (4).

Вывод

В результате работы частотника получают переменное напряжение с варьируемыми показателями. Подавая энергию с такими параметрами на обмотки электродвигателя, выбирают требуемую скорость вращения вала. Статические ПЧ являются наиболее применяемыми в регулировке исполнительных механизмов. Установка управляемого электропривода экономически обоснована в энергосберегающих технологиях.

chistotnik.ru

Частотные преобразователи, принцип работы частотного преобразователя

Частотные преобразователи предназначены для плавного регулирования скорости асинхронного двигателя за счет создания на выходе преобразователя трехфазного напряжения переменной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f, в наиболее совершенных преобразователях реализовано так называемое векторное управление.
Принцип работы частотного преобразователя или как его часто называют — инвертора: переменное напряжение промышленной сети выпрямляется блоком выпрямительных диодов и фильтруется батареей конденсаторов большой емкости для минимизации пульсаций полученного напряжения. Это напряжение подается на мостовую схему, включающую шесть управляемых IGBT или MOSFET транзисторов с диодами, включенными антипараллельно для защиты транзисторов от пробоя напряжением обратной полярности, возникающем при работе с обмотками двигателя. Кроме того, в схему иногда включают цепь «слива» энергии — транзистор с резистором большой мощности рассеивания. Эту схему используют в режиме торможения, чтобы гасить генерируемое напряжение двигателем и обезопасить конденсаторы от перезарядки и выхода из строя.
Блок-схема инвертора показана ниже.
Частотный преобразователь в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.
Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.
Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).
Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.
Регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.
Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.
Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.
Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.
Закон изменения напряжения зависит от характера момента нагрузки Mс. При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статорной обмотке асинхронного двигателя.
Преимущества использования регулируемого электропривода в технологических процессах
Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.
Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора. При использовании частотных регуляторов обеспечивается плавная регулировка скорости вращения позволяет в большинстве случаев отказаться от использования редукторов, вариаторов, дросселей и другой регулирующей аппаратуры.
При подключении через частотный преобразователь пуск двигателя происходит плавно, без пусковых токов и ударов, что снижает нагрузку на двигатель и механизмы, тем самым увеличивает срок их службы.
Перспективность частотного регулирования наглядно видна из рисунка

Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.
Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.
Принцип работы преобразователя частоты
Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.
Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3).
Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодулирована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.
Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.
Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.
Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.
Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.
За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

Вариант схемы подключения частотного преобразователя фирмы Omron.

 

Подключение частотных преобразователей с соблюдением требований ЭМС

Монтаж и подключение с соблюдением требований ЭМС подробно описаны в соответствующих руководствах на устройства.

Техническая информация преобразователи частоты , Optdrive английское качество.

www.110volt.ru

Частотный преобразователь для электродвигателя — устройство, принцип работы

Для несведущего человека словосочетание «частотный преобразователь для электродвигателя» звучит совершенно непонятно. Что это такое, какие частоты и во что он преобразовывает — даже и не хочется задумываться. А ведь подобные устройства занимают не последнее место по важности практически на любом производстве.

Да что промышленность, некоторые приборы и в быту не смогли бы так облегчать жизнь, как они это делают, не будь изобретен частотный преобразователь. Самый яркий тому пример — стиральная машина-автомат. Ведь все изменения скорости вращения барабана при стирке, полоскании или отжиме — это заслуга подобного устройства.

А электромоторы современных автомобилей — ведь и в них за скорость вращения отвечают преобразователи частоты. Кстати, тем, кто ездит на работу на таком виде транспорта, как трамвай и троллейбус, наверное, тоже будет интересно понять, как развивает обороты подобная техника. А значит, необходимо разобраться, что же такое частотный преобразователь, как он устроен и по какому принципу работает, и как сделать подобное устройство так, чтобы оно было понятно даже для чайников.

Внешний вид частотного преобразователя

Что такое частотник?

Под этим термином подразумевается частотный преобразователь для двигателя, то есть сложное техническое устройство, которое обладает возможностью преобразовывать входной переменный ток 50 Гц, меняя на выходе частоту. Если брать характеристики современных преобразователей, то параметры их работы могут колебаться в диапазоне от 1 до 800 Гц.

Многие могут спросить, для чего нужно такое преобразование частоты. Все просто — для плавного запуска и изменения оборотов любого электродвигателя. Как раз по этой причине и появляется разница в скорости вращения барабана современных стиральных машин.

Все преобразователи можно разделить на три основных типа – это однофазный аппарат, трехфазный и высоковольтный. Схема частотника любого из этих типов схожа, за исключением небольших нюансов.

Принцип работы высокочастотного преобразователя заключается в создании экономичного режима, при помощи которого появляется возможность управлять такими характеристиками, как привод, скорость и крутящий момент агрегата, согласовываясь с заданными параметрами и характером циклов.

Вместе с выполняемой основной работой, на жидкокристаллический экран, которым снабжен современный частотный преобразователь для асинхронного двигателя, выводится информация о параметрах; выходное значение частот, скоростей, мощностей, а так же крутящих моментов. Так же на нем отображается и информация о продолжительности функционирования.

Схема, отображающая принцип частотного преобразователя

Преобразователь частоты для асинхронных двигателей по назначению, которое может быть:

  • Промышленным, с мощностями, не превышающими 315 кВт, с тремя фазами;
  • Частотники векторного управления, с мощностями, не превышающими 500 кВт, так же с тремя фазами;
  • С управлением аппаратами насосно-вентиляторного типа, с нагрузкой до 315 кВт;
  • Для работы с кранами и другими механизмами подъемного типа;
  • Применяемые во взрывоопасных областях;
  • Частотные преобразователи, монтируемые непосредственно на двигатели.

Строение современного преобразователя

Общая схема частотного преобразователя состоит из двух составляющих — это управляющая и силовая. Обычно вторая выполнена с использованием транзисторов или тиристоров. Основную работу по контролю выполняют микропроцессоры, которые посредством работы ключа, который замыкает, либо размыкает цепь, работая как привод. Он решает многие задачи, связанные не только с контролем работы двигателя, но и с защитой при возникновении внештатной ситуации, и с диагностикой оборудования.

Так же преобразователи частоты можно разделить на два типа по принципам их работы — с промежуточным звеном или без него.

Область применения каждого из типов и видов частотных преобразователей как раз и обусловлена преимуществами и недостатками, которыми они обладают.

Теперь, когда в общих чертах стал понятен принцип действия частотного преобразователя, имеет смысл разобраться с вопросом выбора подобного электропривода для частных целей.

Конечно, если известна электрическая схема преобразователя частоты, то вполне реально собрать подобный частотник своими руками, но это очень трудоемкий процесс, который под силу только профессионалу. Любитель, не знакомый со спецификой подобной работы не соберет самодельный инвертор.

Полная схема частотного преобразователя

Конечно, производитель заинтересован в снижении себестоимости изготавливаемой продукции, так сохраняется его конкурентоспособность и увеличивается прибыль. А потому он старается минимизировать затраты за счет уменьшения возможностей частотных преобразователей, в результате чего производятся агрегаты с минимальным функционалом, но по меньшей цене.

Как раз набор встроенных функций и может играть главную роль при выборе подобных устройств, так как от этого может зависеть и долговечность приобретаемого частотного преобразователя. А потому необходимо понять, какие функции будут важны, а какими можно поступиться в угоду кошельку.

Способ управления

По этому параметру асинхронный преобразователь частоты может быть скалярным или векторным. Вторые в наше время более распространены, но и стоимость их выше. Главное достоинство векторных частотных преобразователей в их регулировке, которая очень точна. У скалярных частотников простейшее управление, не способное к изменению частот в процессе работы двигателя, а, следовательно, и его скорости. Поэтому оптимальной станет установка подобных устройств на маломощные двигатели, например, вентиляторы. Он вполне обеспечит плавный пуск, минимизирует расход электроэнергии и продлит срок службы двигателя, но это все, на что он способен.

По мощности

Не возникает вопросов в том, что лучше агрегаты с большей мощностью. Хотя для бытового использования подобный показатель не слишком важен, главное, чтобы хватило для двигателя, на который будет устанавливаться приобретаемый частотный преобразователь.

Основное внимание следует обратить на марку агрегата. Идеальным будет вариант приобретения устройства, сделанного именно тем производителем, который выпустил и двигатель. От этого будет зависеть эффективность рабочего тандема. Да и присутствие поблизости фирменного центра обслуживания играет немаловажную роль.

Схема блока питания для частотного преобразователя.

Напряжение в сети

Здесь, конечно же, главный критерий — широта рабочего диапазона напряжений. Все знают, как работает наша электросеть, где перепады временами бывают очень существенными, а потому подумать о безопасности оборудования при подобных неприятностях стоит заранее. Конечно, понижение в сети не доставит больших неприятностей, максимум – отключится частотник для трехфазного электродвигателя, а вот резкое повышение может привести к очень серьезным последствиям. Электролитические конденсаторы, скорее всего, не выдержат и взорвутся, что, естественно, приведет к выходу из строя устройства на долгое время.

Частотная регулировка

В этом вопросе решать придется каждому самому, исходя из области применения частотного преобразователя. К примеру, если частотник пойдет на шлифовальную машину, то, скорее всего, необходимый диапазон регулируемых частот составит 10–100 Гц. Особенность этого параметра в том, что если требуется действительно широкодиапазонный агрегат, то необходимо устройство векторного типа.

Дискретные входы

Для обеспечения формирования необходимой команды с блока управления в частотниках имеются специальные входы, называемые дискретными. Посредством их происходят все рабочие процессы в двигателе, то есть именно они управляют запуском, остановкой, разгоном и торможением, реверсом и т.п. Обратная связь, при помощи которой происходят операции контроля за состоянием и настройки, производится посредством аналоговых входов. По сути, большее количество подобных функций улучшает качество устройства, но в то же время и усложняет его настройки, и увеличивает ценовую категорию.

Варианты подключения электродвигателя

Соотношение цены и количества выводов

Конечно, необходимо присутствие выводов, как аналоговых, так и дискретных, без них невозможна работа частотного преобразователя и взаимодействие его с двигателем. К тому же большее их количество обеспечивает и лучшее взаимодействие агрегатов, но ведь и ценовую политику никто не отменял. Сложности в вопросе, как настроить инвертор, не столь существенны, так как при неспособности одного человека их произвести, всегда может найтись тот, кто выполнит подобную работу.

В общем, в этом вопросе каждый сам решает по мере своих финансовых возможностей.

Перегрузки и ШУ

ШУ или шина управления выбирается согласно схеме подключения устройства. Необходимо понимать, что входы и выходы должны быть в равных количествах, но, при этом, оптимальным будет небольшой запас, ведь оборудование, возможно, будет совершенствоваться.

При подборке частотного преобразователя желательно наличие документов по техническим характеристикам двигателя. Агрегат по номиналу должен быть мощнее двигателя как минимум на 10 %. Ну при отсутствии документации, если gпоказатели не известны, конечно, придется «угадывать» параметры приемлемого частотного преобразователя.

Области применения

Благодаря тому, что множество моделей современных частотников выполнены с применением высоких технологий, с внедрением в их схему микроконтроллеров увеличилось и количество выполняемых ими функций, практически вся работа по управлению и безопасности легла на них, с чем они вполне успешно справляются.

И тому подтверждение — практически во всех отраслях производств задействован именно векторный частотник для трехфазного электродвигателя на микроконтроллерах. Область применения подобных агрегатов:

  • Водоснабжение, теплоснабжение с изменением темпов передачи воды, как горячей, так и холодной. Теперь не требуется постоянное участие человека в регулировании этих процессов, так как встроенный микроконтроллер справляется со всем сам. Человеку остается лишь контроль.
  • Заводские условия машиностроения. Станки с числовым программным управлением прекрасно себя зарекомендовали.
  • Легкая текстильная промышленность так же постепенно наращивает количество станков, контролируемых подобными устройствами.
  • Энергетика и производство топлива.
  • Технологические процессы управленческой автоматики.
  • Насосы для водоотведения.

Для управления частотным преобразователем существуют специально созданные программы, которые поддерживают непрерывную связь с основным компьютером через беспроводные сети. Здесь же, на монитор, работающий с ними в связке, выводятся и все показатели, которые касаются состояния агрегата, проделанную работу и так далее, отсюда и осуществляется полное управление циклами, будь то запуск или остановка двигателя, ускорение, замедление или реверс. Естественно, что все данные архивируются и сохраняются на сервере и могут быть использованы по мере надобности.

Подобный обмен производится поэтапно, следуя алгоритму «идентификация – инициализация – управление». Такой принцип работы частотных преобразователей и обеспечивает им популярность.

И даже цены на устройства, обеспечивающие бесперебойное питание в наше время, зависят от наличия или отсутствия в них таких устройств, а потому, скорее всего и экономика, и энергетика должны показать более высокий и быстрый рост именно благодаря новейшим и высокотехнологичным разработкам частотных преобразователей.

Похожие статьи:

domelectrik.ru

Принцип работы преобразователя частоты для электродвигателя

Главной технологической задачей является повышение скорости любого производственного процесса.

Сначала в промышленности для форсирования использовались коробки передач, редукторы, вариаторы. Однако эти механизмы не обеспечивали плавный пуск оборудования и требуемое убыстрение. Используя электромашины постоянного тока, которые уже позволяли гибко регулировать вращение. Но они имели недостатки: высокая стоимость и эксплуатационная сложность.

Потом, для передачи движения большинству механизмов и машин начали применять асинхронные двигатели. Простые по конструкции, надёжные в управлении и низкой стоимости. Это определило их преимущество в электрорегулируемых приводах.

Однако, для его использования в технологических процессах необходимо было создать дополнительное устройство, позволяющее исполнять плавный пуск, остановку, то есть, управление скоростью двигателя. Эта функцию выполняет преобразователь частоты ПЧ, решающий главную задачу — регулирование скоростью привода.

Внедрение полупроводниковых материалов, использование тиристорных преобразователей началось в середине двадцатого века. Потом появились транзисторные устройства, отличающиеся надёжностью, компактностью, простыми в эксплуатации и недорогой ценой.

Их применение в конструкциях преобразователей частоты обеспечивает приводам выполнять многие технологических задач в промышленности, перерабатывающей отрасли, объектов ЖКХ, в автоматизации технологических процессов.

Состав частотника

Компоновка частотно-управляемого привода включает в себя: двигатель синхронного или асинхронного типа и преобразователя частоты ПЧ. Первые, превращают энергию в механическое движение технологического узла. А функции управления осуществляет электронное статическое устройство, которое на своём выходе формирует напряжение с варьируемой амплитудой и частотой.

Назначение

Преобразователь частоты преобразует переменное напряжение (ток) одной частоты в другую, отличающуюся от источника питания более широким диапазоном. Эти характеристики устройства регулируют вращение двигателя, выполняют плавный пуск и остановку. Они обладают электромагнитной совместимостью с источником питания от сети.

Есть два вида управления преобразователя частоты. Векторный и скалярный. Первый работает так, чтобы момент вращения двигателя был постоянен к нагрузке и не изменялся на всём диапазоне управления скоростью. Контролируется не только напряжение и частота, но и ток (момент).

Второй — более простой. Особенность работы заключается в сохранении и контроле постоянства отношения напряжения и частоты.

Характеристики, понятия, глоссарий ПЧ

Диапазон величин наладки

Его расширение позволяет гибко подстраивать устройство под требуемые цели и задачи.

Выходная частота

Это границы или линейка её изменений. Можно продемонстрировать на таком примере. Двигатель, подключённый к сети 50 Гц, показывает скорость вращения 1,5 тыс. об/мин, то при подаче 100 Гц он повысит её в два раза до 3 тыс.

Векторное управление

Метод регулировки электродвигателя, превосходящий точность простого частотного корректирования.

Области применения

Там, где необходимо поддерживать неизменную скорость при импульсной загрузке: станки, транспортёры, лифты, мельницы. А также при необходимости на малых оборотах электродвигателя поддерживать момент.

Напряжение источника питания

Некоторые модели преобразователей частоты предназначены для однофазной энергии переменного тока 200—240 вольт (2,2 кВт). Более мощные типы преобразователей обеспечиваются трёхфазным током 380—480 В. Колебание величин от номинального, стандартного напряжения составляет от — 15 + 10 процентов.

ПИД-регулятор

Прибор, работающий по алгоритму, поддерживающий величины производственного процесса в пределах, установленных датчиком. Это температура, скорость, давление. Он упрощает систему, и не требует комплектации дополнительными устройствами.Наличие сигнальных входов/выходов, аналоговых/дискретных, необходимые для связи преобразователя частоты с системой управления. Достаточное их количество упрощает соединение с другими средствами регулирования.

Юстировка скорости

Такая подгонка необходима при подключении к работающему двигателю преобразователя частоты, который, как правило, свой запуск начинает со стартовой частоты и за время разгона достигает номинального режима. Во вращающимся двигателе может произойти недопустимый рывок. Оснащённый преобразователь функцией юстировки учитывает данные машины и согласовывает с частотой, на которой она находилась в текущий момент. Это необходимо для подхвата работающего электродвигателя при отключении или смене сетевого питания.

Динамическое торможение

Этот процесс выполняется подачей постоянного тока на одну фазу электродвигателя. Взаимодействие её магнитного поля и ротора останавливает вращение быстрее, чем это можно сделать другими способами. Например, понижением напряжения (управляемый выбег) или механическим торможением.

Режим использования многих скоростей

Возможность их установки, выбирают путём подключения сигнальных входов частотного преобразователя, что соответствует значительному числу потребителей. Которым заранее определены фиксированные скорости. В производственных процессах эту функцию используют повсеместно.

Опции

В конструкцию преобразователя включены добавочные модули, расширяющие его возможности управления электроприводом.

Пример: линейка преобразователей частоты Веспер

  1. EI-7011.  Используется для общепромышленных процессов.
  2. EI-P 7012.  Устанавливается в приводах насосного оборудования.
  3. EI-9011 векторного исполнения. Гибкий выбор требуемой скорости до 0,02% с диапазоном 1:1000.Регулируемый максимальный момент. Монтируется в производственных линиях, кранах, лифтах. В них увеличен изменяемый диапазон нагрузки начиная от запуска и до остановки.
  4. E3—9100. Является многофункциональным, векторным преобразователем. Компактный, недорогой заменяет ПЧ марки EI-7011, 9011. Точность регулировки 0,2%. При частоте в один Гц стартовый момент достигает 150%. Применяют в подъемных кранах, транспортёрах экструдерах, насосах, вентиляторах.
  5. EI — 7011, P 7012, 9011 в исполнении IP 54. Устанавливают во влажной среде, запылённости. Брызгозащитная конструкция предохраняет от влияния неблагоприятных внешних условий.
  6. E2—8300. Векторный малогабаритный с логическим контроллером. Применяют в приводах с быстро меняющейся или постоянной (вентиляторной) нагрузкой. В транспортёрах, конвейерах, мельницах, компрессорах, насосах.
  7. E3—8100. Общепромышленного назначения. Используется в маломощных приводах. Компактный, небольшие габариты.
  8. E2 — mini Корпус IP 20. Оборудован пультом управления, фильтром для уменьшения электромагнитных помех и рядом других функций. Применяется в регулировании вентиляторов, швейных машин, насосов, транспортёров.
  9. E2 — mini выполненный IP 65 Повышенная защита. Герметическая конструкция ограждает от попадания воды, пыли. Естественная система охлаждения. На лицевой панели расположены дополнительные ручки управления. Применяется в металлургической, химической, пищевой и перерабатывающей отрасли.


Устройство плавного запуска Софт-стартер Отличается снижением на машину и источник питания предельных колебаний нагрузок. Исключено повреждение ходовых узлов, продлевающих сроки службы оборудования.

Преимущества частотного преобразователя

  1. Расширенный диапазон регулировки оборотов.
  2. Удержание необходимой скорости с минимальными отклонениями от номинальной.
  3. Пуск и остановка привода без перегрузок.
  4. Управляемый момент вращения двигателя.
  5. Вероятность дистанционного регулирования.
  6. Доступ подключения с другим контроллером.
  7. Простота монтажа электропривода с АСУ.
  8. Понижение шума работающих двигателей.
  9. Исключение пиковой нагрузки на электросеть.
  10. Защита двигателя от короткого замыкания при скачках напряжения.
  11. Эффективность применения преобразователя частоты как фактор оптимизации затрат
  12. Экономия энергоресурсов за счёт исключения непроизводительных потерь может составить до 50%. В системе теплоснабжения она достигает 10%. Водопотребление снижается на 20 процентов.
  13. Ограничение пусковых токов, исключение, динамических нагрузок повышает эксплуатационный срок оборудования.
  14. Снижение себестоимости продукта изготовителя за счёт внедрения энергосберегающей технологии.
  15. Уменьшение вероятности аварийных обстоятельств.

Рекомендуемый выбор частотного преобразователя

Учитывают задачи, стоящие перед использованием электропривода. Для их решения определяют:

  • Мощность и тип двигателя, который может быть стандартным, асинхронным или специальным.
  • Электрическая совместимость с нагрузкой.
  • Применение преобразователя частоты с одной машиной или с несколькими.
  • Границы регулируемой скорости.
  • Точность выполнения команд по удержанию момента вращения.

Особенности конструкции преобразователя частоты:

  • Габариты устройства.
  • Внешний вид.
  •  Вероятность подключения дополнительного пульта регулирования.

Преобразователь частоты подходящей мощности должен соответствовать данным асинхронного двигателя. Для большого пускового момента, укороченного разгона или быстрой остановки преобразователя частоты заказывают уровнем выше стандартного. Используя синхронные, высокоскоростные, и другие типы электромашин, руководствуются номинальным током ПЧ. Его величина должна быть выше потребляемого уровня. А также учитывают тонкости наладки данных электропривода.

Полезно знать покупателю

С особенностями выбора можно ознакомиться в поставщика. Там же квалифицированно обсуждают специальные требования заказчика в том числе:

Предпродажная оценка состояния объекта покупателя, обеспечивающая правильный подбор преобразователя частоты. В него входит уточнение технических условий для внедрения решения. Выявление рисков и их минимизации. Составление оптимальной схемы монтажа оборудования в производственный процесс.

Выделение отдельного консультанта, обеспечивающего сотрудничество с продавцом начиная с подбора преобразователя частоты, оформление заказа, до отгрузки со склада на площадку монтажа. Он поможет решить вопрос по обслуживанию и в дальнейшем устранять возникающие проблемы эксплуатации.

Замена ПЧ устаревшего образца или импортного производства.

Компания может оказать услугу по передаче персоналу покупателя навыков и опыт использования частотных преобразователей.

chistotnik.ru

Принцип работы частотного преобразователя. Схема частотного привода.

Переити в каталог продукции: Частотные преобразователи

Электроприводы постоянного тока являются очень простыми с точки зрения организации системы регулирования скорости вращения двигателя, но сам электродвигатель является слабым звеном системы, ведь он достаточно дорогой и при этом не отличается особой надежностью. К тому же область применения данных двигателей ограничена из-за излишнего искрения щеток и, следовательно, повышенной электроэрозии и износа коллектора, что к общем не позволяет использовать двигатели постоянного тока в пыльных условиях и в средах с опасностью взрыва. Альтернативой электроприводам постоянного тока является комплексное применение асинхронных двигателей переменного тока с частотными преобразователями.

Асинхронные двигатели повсеместно используются в виду очень простого устройства и надежности, при меньших габаритах и массе они обеспечивают такую же мощность, как и двигатели постоянного тока. Главным минусом их является сложность организации системы регулирования скорости двигателя традиционными для двигателей постоянного тока методами. Теоретическая база для разработки первых частотных преобразователей, которые могли уже тогда стать решением вопроса регуляции скорости, была заложена еще в 30-е годы двадцатого века. Отсутствие микропроцессоров и транзисторов не позволяло воплотить теорию в практику, но с появлением транзисторных схем и управляющих микропроцессоров в Японии, США и Европе примерно в одно время были разработаны варианты частотных преобразователей.

При наличии других способов управления скорости вращения исполняющих механизмов (речь идет о механических вариаторах, резисторных группах, вводимыми в ротор/статор, электромеханических частотных преобразователях, гидравлике) наиболее эффективным является использование статических частотных преобразователей, который экономическим выгоднее других вариантов в виду дешевизны монтажа, эксплуатации и высокого КПД. Неприхотливость преобразователей также обусловлена отсутствием подвижных частей в виду того, что регуляция осуществляется на этапе подачи тока и основана на изменении параметров питания, а не на контроле за скоростью вращения при помощи средств механического управления.

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Из выражения видно, что путем изменения частоты входного питающего напряжения (f1) изменяется угловая скорость статора, точнее его магнитного поля, но этом взаимозависимые характеристики. Эффект достигается при постоянном числе пар полюсов (p). Что это дает? В первую очередь, плавность регулирования (в особенности при пиковых нагрузках в момент пуска двигателя) скорости при очень высокой жесткости механических характеристик. Также достигается повышенное скольжение асинхронного двигателя, что существенно снижает потери мощности и увеличивает коэффициент полезного действия.

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

      Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Интеграция систем регулирования качественно изменяет технические характеристики всех участников технологического процесса, нуждающегося в регуляции. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения. Конечно же, максимальная эффективность достигается на объектах, предназначенных для перемещения жидких масс. До сих пор популярным способом регулирования скорости потока и мощности является применение заслонок и заглушек, в частных случаях различных регулирующих механических клапанов, но эти методы менее эффективны чем изменение скорости самого исполнительного механизма и чреваты потерями транспортируемой жидкости.

       Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

— Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

— Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

— Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

На схеме отображены основные структурные части преобразователя, а именно: инвертор, диодный силовой выпрямитель, модуль управления широтно-импульсной модуляцией, система управления, дроссель и конденсатор фильтра. Регуляция выходной частоты и напряжения (fвых. и Uвых., соответственно) осуществляется путем широтно-импульсного управления высокой частоты. Управление зависит от периодичности модуляции. Это период, в течение которого статор по очереди получает сигнал от положительного и отрицательного полюса напряжения. Длительность периода модулируется согласно синусоидальному закону гармонических частот, дополнительное преобразование происходит уже в обмотках двигателя, где после фильтрации ток имеет уже строго синусоидальную форму.

      Сама кривая выходного напряжения – это двуполярная последовательность высокой частоты, созданная прямоугольными импульсами. Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Изменение характеристик выходного напряжения осуществляется одним из двух способов: изменение AP (амплитуды) путем регуляции значения входного напряжения Uвх.; при Uвх., имеющим постоянное значение, путем внесения изменений в программу, контролирующую периодичность переключения переключателей V1-V6. Наличие современных IBGT-транзисторов на микропроцессорном управлении применение второго способа является более продуктивным и широко используемым. ШИМ также позволяет добиться формы кривой тока близкой к синусоиде, но уже благодаря свойствам обмоток, выполняющих функции фильтра.

Данный метод управления также позволяет существенно увеличить коэффициент полезного действия преобразователя и по своим характеристикам полностью аналогично методике управления путем изменения амплитуды и частоты тока. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором. С примером можно ознакомиться на следующем рисунке. (рисунок 2) Здесь изображена мостовая трехфазная схема с использованием IGBT-транзисторов. Инвертор автономный. В данной схеме используется комплекс из 6 транзисторных ключей (на схеме V1-V6), емкостного фильтра тока. Транзисторы включены при помощи диодов обратного тока (на схеме D1-D6) по встречно-параллельной схеме.

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;

Сф – конденсатор фильтра;

Переити в каталог продукции: Частотные преобразователи

www.maxprofi.su

Преобразователи частоты для асинхронных двигателей

До появления частотных преобразователей на рынке современной энергетики, электромонтёрам приходилось применять для подключения асинхронного двигателя стартовый или фазосдвигающий конденсатор большой ёмкости.

Двигатель при этом работал, но существенно терял мощность. Также, применение конденсаторов сильно разогревало обмотки двигателя, что сильно снижало его ресурс работы, и двигатели часто приходилось «перематывать». Учитывая, что обмотки асинхронного двигателя делаются из медной проволоки, то такие ремонты приносили большой ущерб.

Так как асинхронный двигатель является составной частью почти каждого современного привода, то вопрос создания частотного регулирования вставал на особый уровень. И вот, частотники уже повсеместно применяются для подключения электрического двигателя к сети и его управление.

По сути, частотный инвертор, это прибор, изменяющий частоту поданного на обмотки напряжения с ШИМ-регулированием. Благодаря частотнику, получилось подключить асинхронный двигатель к сети без ущерба его ресурсу, без перегрева, и ещё дать массу возможностей по управлению скоростью вращения вала.

Также, применяя различные интерфейсы передачи данных и команд, применение частотников позволило объединить все приводы большого предприятия в одно диспетчерскую систему управления и контроля параметров.

В мир современной автоматизации технологических процессов, это весомый аргумент.

Устройство частотных преобразователей

Современный частотный инвертер состоит из двух принципиальных блоков. Первый блок полностью сглаживает напряжение и на выходе выдаёт постоянное. Постоянное напряжение подаётся на силовой блок генерации частоты. После преобразования, на выходе из второго блока частота напряжения уже будет такая, какая задана настройкой.

За возможность изменять частоту напряжения отвечает микропроцессор, который встроен в частотник. Используя заданную программу, процессор следит за выходной частотой напряжения, а также за параметрами работы электрического двигателя.

По сути, частотные преобразователи для асинхронных двигателей принцип работы которых заключён в простом вырабатывании нужной частоты переменного тока, это модуляторы нужной природы напряжения, которая необходима для того или иного оборудования. Именно это и снизило негативное влияние на работу электрического двигателя, которое имело место быть при использовании конденсатов.

Электрический двигатель получает именно такое напряжение, которое положено ему для нормальной и полноценной работы.

Считаем нужным отметить, что и при наличии линии трёхфазного напряжения, не всегда рационально подключать электрический двигатель к сети просто через выключатель. В таком случае, двигатель будет работать, но регулировать его работу не получится. Не получится и следить за состоянием обмоток.

В промышленном исполнении можно встретить два основных типа частотных преобразователей:

  • Специальные.
  • Универсальные.

Специальный частотный преобразователь для асинхронного двигателя, схема которого несколько отличается от универсального, изготавливается под конкретное оборудование по конкретным потребностям. Как правило, это очень урезанные версии, не способные на работу с любым оборудованием.

Универсальные частотные инвертера могут работать, как и в специальном оборудовании, так и во всех остальных вариантах применения. На то они и универсальные, что их можно настраивать и программировать под любые нужды.

Поэтому, выбор частотного преобразователя для асинхронного двигателя должен быть не столько продиктован конкретными необходимостями производства, но и возможностью модернизации оборудования.

Практически во всех частотниках сегодня реализована возможность установки и контроля режима работы электрического двигателя с пульта управления. Первый интерфейс управления встроен в сам корпус частотника. Там же есть и ручка регулирования скорости вращения двигателя.

Но можно и применять выносные пульты управления. Которые можно располагать как в диспетчерской, так и непосредственно на станке, который приводится в движение электрическим двигателем.
Такое чаще встречается в ситуациях, когда станок с двигателем находится в помещении, где не рекомендуется установка частотного инвертора. И его устанавливают вдали от оборудования.

Большая часть инвертеров частоты позволяют программировать работу оборудования. Но, задать программу просто с пульта управления не получится. Для этого используется интерфейс передачи данных и настройки, который, при помощи компьютера позволяет задать нужную программу работы.

Разница типов сигналов управления

При проектировании цеха очень важно учитывать, что общение частотных преобразователей с диспетчерским пультом будет происходить при помощи электрических импульсов по проводам связи. Пи этом, не стоит забывать, что разные стандарты связи по-разному влияют друг на друга. Посему, переда данных одним способом, может существенно снижать качество передачи данных другим способом.
Поэтому, расчет частотного преобразователя для асинхронного двигателя должен производиться не только по его электротехническим показателям, но и по показателям совместимости с сетью.

Выбор мощности частотного преобразователя

Вопрос мощности частотника, скорее всего, стоит на первом плане, при расчете привода для любого станка или агрегата. Дело в том, что большинство частотных инвертеров способны выдерживать большие перегрузки до 200 – 300 %. Но, это совсем не означает, что для питания электрического двигателя можно смело покупать частотник сегментом ниже, чем требуется по планированию.

Выбор мощности частотного преобразователя осуществляется с обязательным запасом в 20 – 30%. Игнорирование этого правила может повлечь за собой выход из строя частотного преобразователя и простой оборудования.

Также важно учитывать пиковые нагрузки, которые может выдерживать частотник. Дело в том, что при старте электрического двигателя его пусковые токи могут сильно превышать номинальные. В некоторых случаях, пусковой ток превышает номинальный в шесть раз! Частотик должен быть рассчитан на такие изменения.

Каждый электрический двигатель оборудован вентилятором охлаждения. Это лопасти, которые установлены в задней части двигателя и по мере вращения вала прогоняют через корпус мотора воздух.

Если электрический двигатель работает на пониженных оборотах, то мощности потока воздуха может не хватить для охлаждения.

В этом случае, нужно выбирать частотник с датчиками температуры двигателя. Или организовать дополнительное охлаждение.

Электромагнитная совместимость преобразователей частоты

При расчёте и подключении частотника к сети и электрическому двигателю, следует помнить, что он очень подвержен помехам. Также, преобразователь частоты может и сам стать источником помех для другого оборудования. Именно поэтому, все подключения к частотнику и от него выполняются экранированными кабелями и выдерживанием дистанции в 10 см друг от друга.

По своей сути, применение частного преобразователя для питания асинхронного электрического двигателя позволило существенно продлить жизнь электрического двигателя, дало возможность регулировать работу двигателя и хорошо экономить на расходе электрической энергии.

Частотник, частотный преобразователь1ф 220 — 3ф220 для асинхронного электродвигателя


Watch this video on YouTube

chistotnik.ru

Для чего нужен преобразователь частоты

Асинхронный двигатель достаточно сложный аппарат, несмотря на то, что по конструкции он состоит всего из двух компонентов — статора и ротора. Какими способами можно им управлять? Наиболее популярный способ управления — это частотный. Так для чего нужен преобразователь частоты? В каких случаях и где их используют? Мы рассмотрим в этой статье.

Из этой статьи вы узнаете:

Общие принципы работы преобразователя частоты
Основные функции преобразователя частоты
Примеры применений ПЧ

Приветствую вас, дорогие друзья, на связи Гридин Семён. Сегодня мы с вами поговорим о преобразователях частоты (ПЧ), о принципе работы данного устройства. Поговорим о множестве полезных функций, облегчающие жизнь пользователю. О схемных решениях с устройством. О том, где и как можно применять ПЧ. Эти устройства часто используются во многих задачах автоматизации.

Общие принципы работы ПЧ

Преобразователи частоты — это устройства предназначенные для передачи сигнала из одного частотного спектра в другой. То есть преобразует ток(напряжение) одной частоты в ток(напряжение) другой частоты.

У преобразователя частоты схема состоит из двух частей:

  • Силовая;
  • Управляющая;

Силовая часть стандартно выполнена на тиристорах, но чаще всего на транзисторах, которые работают в режиме ключей. А управляющая часть сделана в виде процессора и микросхем, которые управляют силовыми ключами и совершают вспомогательные функции(защита, контроль и диагностика).

Я не буду влазить в глубинные дебри схемотехники и электроники. Скажу лишь, что силовая часть представляет собой управляемый выпрямитель, сделанный из нескольких не запираемых транзисторов.

Система управления поочередно открывает группы транзисторов и подключает питание к статорным обмоткам. Представляю схему для наглядности системы:

На картинке слева отображен выпрямитель, который преобразует переменное напряжение в постоянное, а с правой стороны управляемый инвертор, преобразующий напряжение в обратную сторону (постоянное в переменное). Настраиваемая плата управления открывает транзисторы в нужной последовательности.

Основные функции преобразователя частоты

В нашем регионе на практике применяют преобразователи частоты для того чтобы вручную регулировать скорость двигатель. Я хочу сказать, что используют всего лишь 2 % функционала ПЧ. Многие не знают о других функциях. Устройство достаточно сложное, много параметров, тяжело с ходу разобраться во всех этих настройках.

Для того чтобы сэкономить вам время, я подобрал список наиболее удобных и простых функций. В принципе по настройкам частотники всех фирм однотипные. В качестве примера я покажу настройки китайского ПЧ Innovert.

1.Запуск и регулирование частоты на дистанции — что делать, если например нужно управлять частотником с пульта, или допустим, прибор находится в неудобном месте. Для этого есть такое решение — подключаем к нему переключатель(либо кнопки пуск-стоп) и потенциометр. И производим соответствующие настройки:

2.Многоскоростной режим — этот режим позволяет регулировать скорость по дискретным входным сигналам. Допустим при замыкании 1-ого входа срабатывает одна предустановленная скорость, при срабатывании второго входа, срабатывает другая и т.д.

3.Применение встроенного ПЛК — в наиболее навороченных и дорогих частотниках есть возможность программирования встроенного ПЛК. Очень практично, если нет возможности связать с ОВЕН ПЛК на CoDeSyS. В встроенных «мозгах» можно построить свою логику работы ПЧ. В системе существуют таймеры, счетчики, взаимодействие с оперативными параметрами. Можно собрать алгоритм каскадного включения насосов например.

4.ПИД-регулятор — Ну и наконец-то самое интересное. Использование встроенного ПИД-регулятора устройства в технологическом процессе. По моему мнению, это самая лучшая и основная функция. Она позволяет очень точно поддерживать определённый параметр в системе.

Например в насосных станциях ПЧ автоматически поддерживает давление в системе, в зависимости от разбора воды. Есть ещё пример, поддержание температуры в экструдере, который плавит полиэтиленовую крошку. Вообще двигатель с обратной связью — это крутая штука.

Напишите, пожалуйста, в комментариях, о каких интересных функциях знаете вы? Этим вы поможете дополнить список статьи…

Примеры применений преобразователя частоты

Еще мне бы хотелось отметить несколько моментов, ПЧ бывают двух видов:

  • Скалярный
  • Векторный

Принцип действия скалярного управления — амплитуда и частота двигателя действует по закону U/f=const. Иными словами, в качестве независимого воздействия оказывается частота, а напряжение определяется механической характеристикой двигателя. Благодаря скалярному принципу обеспечивается перегрузочная способность асинхроника.

Единственный недостаток в скалярном способе то, что при низких частотах теряется механический момент двигателя. Тогда в таких случаях используется векторный режим.

Векторный режим содержит в себе математический аппарат с учетом всех параметров двигателя (ток, напряжение, кол-во оборотов). Это позволяет точнее регулировать скорость на валу и поддерживать момент во всем диапазоне частот.

Прежде чем  вводить в эксплуатацию векторный преобразователь частоты НЕОБХОДИМО ввести все параметры двигателя и осуществить автонастройку. Это делается для того, чтобы мат. расчёты совпадали с физическими величинами.

Приведу несколько примеров применений ПЧ:

1.Управление насосом — как раз практическое применение ПИД-регулятора для поддержания давления городской воды. Чем больше разбор воды, тем больше обороты двигателя. И ещё один момент, чаще всего используются однофазные насосы.

2.Станок гибки рамки для матрасов — здесь использовался многоскоростной режим двигателя. Мотор осуществлял подачу рамки сначала быстро, потом медленно, чтобы позволить гибке согнуть рамку под углом 90 градусов.

Кстати говоря многие частотники поддерживают протокол modbus, так что подружить ПЧ со SCADA вообще не проблема.

На этом я заканчиваю. Если у вас есть вопросы,  пишите в комментариях. Подписывайтесь, чтобы не пропустить интересные публикации. До встречи в следующих статьях. Пока, пока!

С уважением, Гридин Семён.

kip-world.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *