+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Можно ли ставить конденсаторы большего напряжения. Как заменить конденсатор в электронной аппаратуре. Основные параметры конденсаторов

Самая распространённая поломка современной электроники — это неисправность электролитических конденсаторов. Если вы после разбора корпуса электронного устройства замечали, что на печатной плате имеются конденсаторы с деформированным, вздутым корпусом, из которого сочится ядовитый электролит, то самое время разобраться, как распознать поломку или дефект в конденсаторе и подобрать адекватную замену. Располагая профессиональным флюсом для пайки, припоем, паяльной станцией, набором новых конденсаторов, вы без особого труда «оживите» любой электронный прибор своими руками.

По сути, конденсатор — радиоэлектронный компонент, основная цель которого — это накопление и отдача электроэнергии с целью фильтрации, сглаживания и генерации переменных электрических колебаний. Любой конденсатор имеет два важнейших электрических параметра: ёмкость и максимальное постоянное напряжение, которое может быть приложено к конденсатору без его пробоя или разрушения. Ёмкость, как правило, определяет, какое количество электрической энергии может вобрать в себя конденсатор, если приложить к его обкладкам постоянное напряжение, не превышающее заданного лимита. Ёмкость измеряется в Фарадах. Наибольшее распространение получили конденсаторы, ёмкость которых исчисляется в микрофарадах (мкФ), пикофарадах (пкФ) и нанофарадах (нФ). Во многих случаях рекомендуется заменять неисправный конденсатор на исправный, имеющий аналогичные ёмкостные характеристики. Однако в ремонтной практике бытует мнение о том, что в схемах блоков питания можно ставить конденсатор, несколько превышающий по ёмкости фабричные параметры. К примеру, если мы хотим заменить разорвавшийся электролит на 100мкФ 12Вольт в блоке питания, который призван сгладить колебания после диодного выпрямительного моста, можно смело устанавливать ёмкость даже на 470мкФ 25В. Во-первых, повышенная ёмкость конденсатора только уменьшит пульсации, что само по себе неплохо для блока питания. Во-вторых, повышенное предельное напряжение только повысит общую надёжность схемы. Главное, чтобы отведённое под установку конденсатора место подходило.

Почему взрываются конденсаторы электролитического типа

Самая частая причина, по которой происходит взрыв электролитического конденсатора — это превышение напряжения межу обкладками конденсатора. Не секрет, что во многих приборах китайского производства параметр максимального напряжения точно соответствует приложенному напряжению. По своей задумке производители конденсаторов не предусматривали, что в штатном включении конденсатора в состав электросхемы на его контакты будет подаваться именно максимальное напряжение. К примеру, если на конденсаторе написано 16В 100мкФ, то не стоит его подключать в схему, где на него будет постоянно подаваться 15 или 16В. Безусловно, он выдержит какое-то время такое издевательство, но запас прочности будет практически равен нолю. Гораздо лучше устанавливать такие конденсаторы в цепь с напряжением 10–12В., чтобы был какой-то запас по напряжению.

Полярность подключения электролитических конденсаторов

Электролитические конденсаторы имеют отрицательный и положительный электроды. Как правило, отрицательный электрод определяется по маркировке на корпусе (белая продольная полоса за значками «-»), а положительная обкладка никак не промаркирована. Исключение – отечественные конденсаторы, где, напротив, положительный терминал промаркирован значком «+». При замене конденсаторов необходимо сопоставить и проверить, соответствует ли полярность подключения конденсатора маркировке на печатной плате (кружок, где имеется заштрихованный сегмент). Сопоставив минусовую полосу с заштрихованным сегментом, вы безошибочно вставите конденсатор. Остаётся лишь обрезать ножки конденсатора, обработать места пайки и качественно припаять. Если случайно перепутать полярность подключения, то даже абсолютно новый и вполне исправный конденсатор просто-напросто разорвётся, измазав попутно все соседние компоненты и печатную плату токопроводящим электролитом.

Немного о безопасности

Не секрет, что замена низковольтных конденсаторов может принести вред здоровью лишь в случае ошибки подключения полярности. При первом включении конденсатор взорвётся. Вторая опасность, которую стоит ожидать от конденсаторов, заключается в напряжении между его обкладками. Если вы когда-нибудь разбирали блоки питания от компьютеров, то вы, вероятно, замечали огромные электролиты на 200В. Именно в этих конденсаторах остаётся опасное высокое напряжение, которое может серьёзно травмировать вас. Перед заменой конденсаторов блоков питания рекомендуем полностью его разрядить либо резистором, либо неоновой лампочкой на 220В.

Полезный совет: такие конденсаторы очень не любят разряжаться через короткое замыкание, поэтому не замыкайте их выводы отвёрткой с целью разряда.

Автор : elremont от 26-01-2014

Это был один из тех дней, когда кошка пожевала ваш модуль? Или, может быть у вас есть старый усилитель, где из конденсаторов потекла эта противная ядовитая слизь? Если вы когда-либо были в этой ситуации, то вы могли бы отремонтировать модуль, заменив конденсаторы. Давайте рассмотрим пример, где я заменю этот конденсатор на печатной плате. Сначала немного теории. Что такое конденсатор? Конденсатор это устройство для хранения энергии, которое может быть использовано для сглаживания напряжения. Каждый конденсатор имеет два важных параметра: емкость и напряжение. Емкость говорит нам о том, сколько энергии может накопить конденсатор при заданном напряжении. Емкость обычно измеряется в микрофарадах (uF). В девяносто девяти процентах случаев, при замене конденсатора, надо использовать такое же значение емкости или очень близкое. Здесь применен конденсатор 470uF. Если я хочу заменить его, то в идеале я должен взять другой конденсатор на 470uF. Другой важный параметр это номинальное напряжение. Номинальное напряжение это максимальное напряжение, при котором конденсатор может работать не взрываясь. Еще раз отметим, что напряжение написанное на конденсаторе означает, что это максимальное напряжение, которое может подаваться на конденсатор. Это не значит, что на конденсаторе, обязательно будет это напряжение. Например, это конденсатор на 16 вольт. Это не означает, что он заряжен на 16 вольт, как батарейка. Это означает, что если его заряжать до 5 вольт, то он будет прекрасно работать. Если я заряжу его до 10 вольт, все будет хорошо. Если заряжу его до 16 вольт, то он справиться и с этим. Но если я заряжу его до 25 вольт, он взорвется. Возвращаясь к нашему примеру конденсатора я вижу, что он рассчитан на 16 вольт. При замене я должен использовать конденсатор на 16V или выше. Теперь выясняется, что все конденсаторы на 470 uF, которые у меня есть рассчитаны 25 вольт. Но это не проблема. Если в оригинальной схеме требуется конденсатор на 16V, то я могу использовать конденсатор на 25V, это просто означает, что у меня будет больший запас прочности. Теперь давайте поговорим о полярности. На минусовой стороне электролитического конденсатора всегда будет нанесен маленький символ минуса. Все, что вам нужно сделать, это убедиться, что полярность совпадает с прежним конденсатором. Если перепутать полярность, то вот что происходит. Так что теперь, зная полярность, я заменю конденсатор и припаяю его на место. Напоследок, небольшое предупреждение по безопасности. Если вы когда-нибудь видели эти большин конденсаторы на напряжения более 200 вольт, то вы должны быть осторожны с ними, чтобы не задеть их, если они заряжены. Помните, что конденсатор, заряженный на 200V, может убить вас.

Удачной замены конденсаторов!
_

Приняв решение о замене конденсатора на печатной плате, первым делом следует подобрать конденсатор на замену. Как правило, речь идет об электролитическом конденсаторе, который по причине исчерпания своего рабочего ресурса начал создавать нештатный режим вашему электронному устройству, либо конденсатор лопнул из-за перегрева, а может быть вы просто решили поставить поновее или получше.

Выбираем подходящий конденсатор на замену

Параметры конденсатора на замену непременно должны подходить: его номинальное напряжение ни в коем случае не должно быть ниже, чем у заменяемого конденсатора, а емкость — никак не ниже, или может быть процентов на 5-10 выше (если это допустимо в соответствии с известной вам схемой данного устройства), чем была изначально.

Наконец, убедитесь, что новый конденсатор подойдет по размеру на то место, которое покинет его предшественник. Если он окажется чуть-чуть поменьше диаметром и высотой — не страшно, но если диаметр или высота больше — могут помешать компоненты, расположенные на этой же плате поблизости или он будет упираться в элементы корпуса. Эти нюансы важно учесть. Итак, конденсатор на замену выбран, он вам подходит, теперь можно приступать к демонтажу старого конденсатора.

Готовимся к процессу

Сейчас необходимо будет устранить с платы неисправный конденсатор, и подготовить место для установки сюда же нового. Для этого вам потребуется, конечно, а также удобно к данному действу подготовить кусок медной оплетки для снятия припоя. Как правило, мощности паяльника в пределах 40 Вт будет вполне достаточно даже если на плате был изначально применен тугоплавкий припой.

Что же касается медной оплетки для устранения припоя, то если у вас такой нет, ее весьма несложно изготовить самостоятельно: возьмите кусок не очень толстого медного провода, состоящего из тонких медных жилок, снимите с него изоляцию, слегка (можно простой сосновой канифолью), — теперь эти пропитанные флюсом жилки легко, словно губка, вберут в себя припой с ножек выпаиваемого конденсатора.

Выпаиваем старый конденсатор

Сначала посмотрите, какова полярность выпаиваемого конденсатора на плате: в какую сторону минусом он стоит, чтобы когда будете впаивать новый — не допустить ошибки с полярностью. Обычно минусовая ножка отмечена полосой. Итак, когда оплетка для удаления припоя приготовлена, а паяльник уже достаточно разогрет, сначала прислоните оплетку к основанию той из ножек конденсатора, которую вы решили освободить от припоя первой.

Аккуратно расплавьте припой на ножке прямо через оплетку, чтобы оплетка тоже разогрелась и быстро втянула в себя припой с платы. Если припоя на ножке многовато, двигайте оплетку по мере того как она будет заполняться припоем, собирая на нее весь припой с ножки, чтобы ножка в итоге осталась свободной от припоя. Проделайте это же самое со второй ножкой конденсатора. Теперь конденсатор можно легко выдернуть рукой или пинцетом.

Впаиваем новый конденсатор

Новый конденсатор необходимо установить с соблюдением полярности, то есть минусовой ножкой туда же, где была минусовая ножка выпаянного. Обычно минус обозначен полоской, а плюсовая ножка длиннее минусовой. Обработайте ножки конденсатора флюсом.

Вставьте конденсатор в отверстия. Не нужно заранее укорачивать ножки. Разогните ножки немного в разные стороны, чтобы конденсатор хорошо держался на месте и не выпадал.

Теперь, прогревая ножку возле самой платы кончиком жала паяльника, поднесите тычком припой к ножке, чтобы ножка окуталась, смочилась, окружилась припоем. То же самое проделайте со второй ножкой. Когда припой остынет, вам останется укоротить ножки конденсатора кусачками (до той длины, что и у соседних деталей на вашей плате).

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора -характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В — 5000 часов
  • 500 В — 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов . Общая ёмкость будет равна сумме двух конденсаторов:

С общ =С 1 +С 2 +…С п

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65 .

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа CBB60 , CBB61 .

Клеммы для удобства соединения сдвоенные или счетверённые.

В элементной базе компьютера (и не только) есть одно узкое место — электролитические конденсаторы. Они содержат электролит, электролит — это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке — дело регулярное.

Поэтому замена конденсаторов — это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата — это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже — насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .

Соединение конденсаторов

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов

Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах. Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

Последовательное соединение конденсаторов

Последовательное соединение конденсаторов

При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

а трех –

Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить батарею конденсаторов, рассчитанную на большее напряжение, чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения.

Смешанное соединение конденсаторов

Пример смешанного соединения конденсаторов

Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

Оцените качество статьи:

Апгрейд, доработка цап Musical Fidelity M1 DAC

ЦАП M1 DAC относится к компонентам недорогой линейки M1 компании Musical Fidelity. Сердцем аппарата является микросхема цифро-аналогового преобразователя DSD1796 — довольно неплохой ЦАП, однако шаблонные решения и бюджетные компоненты не позволяют полностью раскрыть потенциал данной микросхемы.

В данной статье решено собрать воедино опыт доработки этого компонента, сложность работ доступна для повторения любителям, имеющим опыт работы с SMD компонентами.

 После анализа конструкции и схемотехники (в дальнейшем позиционные обозначения  элементов приведены для платы версии 2520 issue 08), были выявлены основные недостатки и обозначилось пути улучшения.

К недостаткам M1 DAC стоит отнести выводной монтаж, для ВЧ устройств, к которым можно отнести и ЦАП, лучшие результаты даёт применение SMD комплектующих. Поэтому было решено заменить ключевые для качества выводные элементы на SMD компоненты. В частности в цифровой части устройства заменены выводные керамические конденсаторы емкостью 0,1 мкФ на SMD 1206 X7R номиналом 4,7 мкФ*25 В. Замена коснулась элементов организации питания ASRC+SPDIF-комбо SRC4392  с позиционными обозначениями С11, С15, С17, С19, С24. Электролитический конденсатор С20 необходимо удалить.  

В питании собственно ЦАП и задающего генератора XT1 такая же замена постигла элементы С23, С41, С26, С28, С31.

Конденсаторы в обвязке микросхемы цап DSD1796 обычные Jamicon серии SK заменены на ELNA Silmic II номиналом 220 мкФ*16 В в позициях С30 и С32, и на Nichicon KW номиналом  220 мкФ*16 В в позициях С37 и С38. Дополнительно параллельно конденсаторам С37 и С38 установлены керамические конденсаторы типоразмера 0805 ёмкостью 2,2-4,7 мкФ как можно ближе к микросхеме цап. 

 

Дальнейшее исследование схемотехники устройства выявило забавную подробность — питание аналоговой части микросхемы цап значительно занижено, около 4,3 В вместо 5 В, в результате использования активного фильтра на компонентах TR1, R48, C29. Однако, как известно, микросхемы цап данного семейства лучше звучат как раз при более высоком напряжении питания. Зачем так сделал производитель неизвестно, возможно для разграничения линеек аппаратуры по качеству звучания. Для исправления этого досадного недостатка необходимо удалить элементы R48, C29, а транзистор TR1 заменить на интегральный стабилизатор серии 7805, рекомендуемый производитель: ONS, ST. Для правильной работы необходимо соединить средний вывод микросхемы стабилизатора с общим проводом схемы. Для этого необходимо удалить защитную маску в районе упомянутого вывода (сплошной полигон на верхней слое платы как раз является общим проводом устройства) и припаять его в эту точку на плате. Таким образом микросхема цап запитывается номинальным напряжением 5 В с соответствующим повышением качества звучания.

На следующем этапе производится доработка собственно выходной аналоговой части устройства. Схемотехника данного узла практически полностью повторяет решение из даташита на DSD1796. Данная схема оптимизирована в первую очередь для получения минимального уровня шума, заявленного в спецификации на микросхему, однако заниженные номиналы резисторов вызывают перегрузку выходных каскадов ОУ, в результате чего происходит переход из более линейного режима класса А в более нелинейный  режим класса АВ. Поэтому было решено разработать «щадящий» фильтр с более высокими номиналами резисторов для снижения нагрузки на выходные каскады ОУ. Чуть более высокий уровень шума у нового фильтра в реальности незаметен, т.к. практически все фонограммы имеют собственный уровень шума на один-два порядка выше любого ЦАП.

Схема нового фильтра приведена в конце статьи, показан только левый канал, нумерация элементов правого канала повторяет таковую левого канала с добавлением цифры 1 в начале позиционного обозначения (например R20 в левом канале, R120 в правом). Вновь введенные элементы имеют позиционные обозначения начинающиеся с цифры 2 (например С201, R202). Для доработки применены SMD конденсаторы с диэлектриком группы NP0, выводные резисторы Dale CMF60 0.1%.

 

Некоторые пояснения по схеме.

Доработка коснулась не только пост-фильтра, но и каскада преобразования напряжения в ток (IU) на счетверенном ОУ IC5. Как известно современные дельтасигма ЦАП при своей работе создают массу внеполосных помех, которые перегружают каскад IU, что вызывает ухудшение качества звучания. Для борьбы с помехами введены элементы С201, С202, R201, R202, позволяющие в значительной мере подавить помехи и облегчить режим работы ОУ. Номинал R18, R20 оставлен без изменений.

Схема нового пост-фильтра основана на резисторах на порядок большего номинала чем оригинальная схема, что позволило значительно снизить нагрузку на ОУ и повысить качество их работы. Конденсаторы С39 и С44 заменены на два последовательно включенных SMD 1206 NP0 1n конденсатора для удобства монтажа.

Помехоподавляющие лавсановые конденсаторы С64, С73, С164, С173 заменены так же SMD конденсаторами группы NP0 соответствующего номинала.

Выходные разделительные электролитические конденсаторы С4, С63, С104, С163 можно безбоязненно заменить перемычками получив ещё прибавку к качеству звучания.

Кроме того для улучшения работы узла введены элементы R203 и R204. Данные резисторы создают одинаковую нагрузку на выходы ОУ входящих в состав дифференциальной линии сигнала. Одинаковая нагрузка приводит спектр искажений к близкому виду для обоих ОУ (IC5.3+IC5.4 и IC7.1+IC7.2), что позволяет несколько подавить искажения четных порядков при преобразовании балансного сигнала в небалансный.

Кроме того такое решение позволяет получить ток потребления ОУ (для всего корпуса) практически независимым от уровня сигнала, следовательно меньше сказывается качество блокирующих конденсаторов в питании ОУ на качество итогового звучания.

 

В питании данного узла также кроется проблема, вызванная бюджетностью аппарата — нет ни одного электролитического конденсатора шунтирующего шины питания используемых ОУ, только керамические конденсаторы емкостью 0,1 мкФ, что явно недостаточно, даже не принимая во внимание повышенную нелинейность их диэлектрика. Для устранения данного недостатка керамические конденсаторы С40, С57, С71, С72, С171, С172 заменены на вышеупомянутые ELNA Silmic II номиналом 220 мкФ*16 В. С обратной стороны платы параллельно каждому конденсатору припаяны по два SMD 1206 NP0 конденсатора емкостью 0,1 мкФ.

Сами ОУ так же желательно заменить. Хорошие результаты были получены с LME49740, LT1365 в позиции IC5; LT1364, LME49720, AD827SQ в позициях IC7, IC107.

Установка конденсаторов значительно большей емкости потребовала доработки схемы блока питания — для устранения повышенных токов при включении введен плавный старт с использованием двух конденсаторов номиналом 330 мкФ*25 В стандартного качества. Конденсаторы установлены с обратной стороны платы, более подробно см. фото в конце статьи. Так же необходимо увеличить сопротивление резисторов R13 и R45 до 3 кОм.

Блок питания данного ЦАП импульсный, для улучшения качества работы необходимо заменить конденсаторы С5, С81, С34 и С80 на Hitano EXR соответствующего номинала. Данные конденсаторы предназначены для работы в импульсных БП и при этом обеспечивают хорошее звучание в звуковых цепях. Так же необходимо удалить элементы С25 и С62.

36. Регулирование с помощью регулятора давления конденсации: Анализ неисправностей

 36. Регулирование с помощью регулятора давления конденсации: Анализ неисправностей

Использование способа регулирования работы конденсаторов с воздушным охлаждением при помощи регуляторов давления конденсации требует соблюдения многочисленных предосторожностей как при монтаже, так и в ходе настройки и эксплуатации системы.
Рассмотрим различные дефекты, опасность возникновения которых появляется при несоблюдении определенных требований.
А) Проблема заправки хладагентом и емкости ресивера

В зимнее время регулятор давления конденсации позволяет противодействовать переразмеренности конденсатора, обусловленной низкой наружной температурой, уменьшая поверхность теплообмена.
Уменьшение теплообменной поверхности предполагает повышение уровня жидкости в конденсаторе, тем большее, чем ниже опускается наружная температура.
Имея в виду, что при этом жидкость должна находиться также в ресивере, в жидкостной маги-                                       Рис. 36.1.
страли и в испарителе, мы можем заключить, что заправка установки хладагентом зимой должна быть больше, чем летом (см. рис. 36.1).

Летом, при повышении наружной температуры, давление конденсации тоже растет.

Рост давления конденсации по мере открытия регулятора давления конденсации приводит к опорожнению конденсатора и увеличению теплообменной поверхности с целью восстановления нормальной производительности конденсатора и заполнению ресивера.

Следовательно, ресивер должен быть способным накапливать илишки заправки (см. рис. 36.2).

Если жидкостной ресивер слишком мал?

Мы увидели, что летом ресивер дополнительно к обычному содержимому должен вмещать те излишки жидкости, которые зимой находились в конденсаторе: следовательно, ресивер должен иметь достаточно большую вместимость.
Если ресивер слишком мал, летом он окажется полностью залитым и в конденсаторе будет оставаться еще слишком много жидкости, что приведет к снижению поверхности теплообмена, аномальному росту давления конденсации и нежелательному отключению компрессора предохранительным реле ВД (см. рис. 36.3).


Таким образом, если задействован установленный в контуре регулятор давления конденсации, необходимо, чтобы жидкостной ресивер имел объем, достаточный для размещения в нем полной заправки установки, включая заправку конденсатора.
В противном случае необходимо заменить ресивер на образец большей емкости.

Если недостаточно количества заправленного хладагента?

Если летом и в ресивере и в конденсаторе достаточно хладагента, работа установки проходит нормально. Однако, по мере снижения наружной температуры, регулятор начнет перекрывать подачу жидкости из конденсатора в ресивер, уменьшая поверхность теплообмена с целью сохранения давления конденсации в нормальных пределах.
При этом все больше жидкости остается в конденсаторе и все меньше поступает в ресивер, создавая в нем недостаток жидкости.
Наконец может наступить такой момент, когда уровень жидкости в ресивере понизится настолько, что оголится погруженная в него заборная трубка, жидкостная линия перестанет подпитываться жидкостью и заполнится парами.
В результате ТРВ не сможет больше пропускать достаточное для соответствующей запитки испарителя количество хладагента и установка очень быстро отключится предохранительным реле НД.

Таким образом, заправка хладагентом при наличии регулятора давления конденсации может оказаться достаточной для лета, но недостаточной для зимы, что будет приводить к отключению установки предохранительным реле НД (см. рис. 36.4).


Следовательно, наличие регулятора давления конденсации требует, чтобы заправка холодильной установки была существенно выше номинальной с целью сохранения достаточного количества жидкости в ресивере и испарителе, даже если зимой конденсатор окажется полностью заполнен жидкостью.
  
При использовании регулятора давления конденсации, как правило при-нимают, что потребная заправка хладагентом может составлять до двукратной номинальной заправки.
Заправка хладагентом и емкость ресивера.

Заключение

В заключение сформулируем основные требования к заправке хладагентом и емкости ресивера. Чтобы обеспечить нормальную работу установки в любое время года, ее заправку следует производить зимой при наружной температуре, по возможности наиболее близкой к минимальной температуре, при которой должна работать установка.
Дополнительно к этому ресивер должен иметь такие размеры, чтобы в нем могла умещаться полная заправка установки хладагентом, включая все содержимое конденсатора.
Безусловно, на установках, не имеющих ресивера, нельзя ни в коем случае монтировать систему регулирования с помощью регулятора давления конденсации (если только не добавлена достаточная емкость).

Заметим, что в настоящее время наблюдается тенденция к созданию установок с возможно более низким содержанием хладагента, главным образом из-за проблем, связанных с загрязнением окружающей среды и стоимостью этих хладагентов, поэтому системы регулирования при помощи регулятора давления конденсации в дальнейшем будут использоваться все меньше и меньше.
Однако, почти все мы слышали разговоры о так называемых «проклятых» холодильных установках, в которых зимой недостает хладагента (и ремонтник вынужден дозаправлять установку), а летом наблюдается его избыток (тогда нужно сливать часть заправки!). Предшествующие объяснения могут помочь в понимании причины этой разновидности дефектов и, может быть, найти способ их кардинального устранения.

Б) Проблема конденсаторов, расположенных над компрессорами

Когда компрессор должен работать зимой (холодильные камеры, машинные залы ЭВМ…), то есть при очень низких наружных температурах, переразмеренность конденсатора может становиться очень значительной из-за того, что он выбирается для летней наружной температуры.
Чтобы устранить эту временную переразмеренность и поддержать на нормальном уровне давление в жидкостной магистрали для обеспечения стабильной подпитки ТРВ, регулятор давления конденсации должен сильно снизить поверхность теплообмена конденсатора и уменьшать ее тем больше, чем ниже наружная температура.


Таким образом, чем больше падает наружная температура, тем выше поднимается уровень жидкости в конденсаторе (см. рис. 36.5).
В пределе, при очень низкой наружной температуре, уровень жидкости в конденсаторе может подняться настолько, что дойдет до верхней точки конденсатора и трубки подвода к нему горячих газов (в основном, для конденсаторов небольшой высоты и расположенных горизонтально).
В этот момент жидкость под действием силы тяжести может даже стекать в нагнетающую полость головки блока цилиндров компрессора по нагнетающей магистрали.

Возврат жидкости в головку блока может в этом случае привести к механическим повреждениям в результате гидроудара (главным образом, к поломке клапанов).

Во избежание такой опасности настоятельно рекомендуется либо установить обратный клапан на входе в конденсатор (см. поз. 1 на рис. 36.5), либо сам вход выполнить в виде лирообразного колена (поз. 2), особенно если конденсатор расположен над компрессором, а установка обязательно должна работать при очень низких наружных температурах (следовательно, с сильно залитым конденсатором).

Установка лирообразного колена (или обратного клапана) на входе в  конденсатор является наилучшим способом предотвращения возврата жидкости в головку блока, если работа конденсатора регулируется при помощи регулятора давления конденсации, а сам конденсатор расположен над компрессором.
Однако в том случае, когда разность уровней между компрессором и конденсатором превышает 3 метра, возникает еще одна проблема…

Действительно, холодильное масло из-за близости по свойствам к хладагентам, находится в постоянном движении в магистрали нагнетания.


Когда компрессор останавливается и газ перестает циркулировать, масло под действием силы тяжести стекает в нагнетающий коллектор.
Чем больше высота магистрали, тем больше масла будет стекать и накапливаться в головке блока (см. поз. 2 ни рис. 36.6).
Если разность уровней (высота Н на рис. 36.6) превышает 3 метра, то экспериментами установлено, что количеством масла уже нельзя будет пренебрегать.
Более того, если нагнетающий патрубок проходит через холодный участок (а это очень часто бывает, когда конденсатор находится снаружи, а компрессор внутри помещения), при остановке компрессора хладагент может конденсироваться в нагнетающей магистрали (поз. 1 на рис. 36.6).

Такое скопление сконденсировавшейся жидкости и масла приводит к опасности поломки клапанов при последующем запуске компрессора.
Сконденсировавшаяся жидкость точно так же стекает в головку блока под действием силы тяжести, добавляясь к уже находящемуся там маслу.
Чтобы избежать этой опасности, главным образом, когда разность уровней превышает 3 метра, необходимо в нижней части восходящего трубопровода расположить лирообразную ловушку жидкости (маслоподъемную петлю) (поз. 3).
Жидкость, которая стекает туда при остановке компрессора, очень быстро будет перекачена в конденсатор безо всякого риска для клапанов, когда компрессор будет вновь запущен.
Примечание. Некоторые предпочитают устанавливать на нагнетающей магистрали обратный клапан (как можно дальше от компрессора, чтобы избежать его «дребезга») для полного исключения опасности накопления жидкости в головке.
Однако нужно помнить, что обратный клапан создает дополнительные потери давления в нагнетающей магистрали (со всеми вытекающими из этого нежелательными последствиями).
Более того, поскольку клапан является механической системой с подвижными элементами, срок его службы оудет короче, чем у простой конструкции с двумя лирообразными участками.

В) Проблема конденсатора, более холодного, чем ресивер

Для конденсаторов, регулируемых с помощью трехходового регулятора давления конденсации существует еще одна опасность, которая может возникнуть в том случае, если конденсатор становится холоднее, чем ресивер (например, зимой, когда конденсатор находится снаружи, а ресивер внутри помещения).


Когда компрессор остановлен, из-за низкой наружной температуры конденсатор быстро охлаждается и давление в нем падает, приводя к закрытию прохода 1 регулятора давления конденсации (см. рис. 36.7).
Но, закрывая проход жидкости из конденсатора, клапан одновременно соединяет теплый ресивер и холодный вход в конденсатор. Тогда жидкость из ресивера в соответствии с принципом холодной стенки Ватта начинает перемещаться в конденсатор (согласно стрелкам на рис. 36.7).
Если остановка компрессора достаточно длительная, существует опасность того, что вся жидкость переместится в конденсатор (в результате, как мы смогли увидеть выше, конденсатор переполняется и жидкость начинает поступать в нагнетающую полость головки блока).
В отсутствие жидкости в ресивере при последующем запуске компрессора испаритель не может быть нормально запитан и компрессор очень быстро отключается предохранительным реле НД.
Следовательно, необходимо предотвратить возможность такого перемещения и обеспечить нахождение жидкости в ресивере во время остановки компрессора с целью создания благоприятных условий для последующего запуска компрессора.


Примечание. Отключения компрессора предохранительным реле НД, обусловленные опустошением ресивера, могут привести к тому, что запуск компрессора окажется совершенно невозможным, и потребовать дополнительной заправки хладагента в ресивер только для того, чтобы запустить установку, хотя количество хладагента в установке вполне нормальное.

Следовательно, на входе в ресивер необходима установка обратного клапана (см. рис. 36.8), предотвращающего перемещения жидкости из ресивера в конденсатор, если температура конденсатора упадет ниже температуры ресивера (что бывает часто).

Г) Проблемы, возникающие из-за потерь давления в конденсаторе и регуляторе давления конденсации

Летом, когда наружная температура относительно высокая, регулятор давления конденсации полностью открыт и переохлажденная жидкость свободно проходит в ресивер.
Однако в той же степени, что и остальные элементы холодильного контура, регулятор давления конденсации представляет собой местное сопротивление течению жидкости и, даже будучи полностью открытым, порождает перепад давления АР (этот перепад называют потерями давления).
Чтобы ограничить эти нежелательные потери, клапан подбирают таким образом, чтобы иметь возможно более низкий перепад давления на нем (максимально допустимое значение перепада, как правило, не должно превышать 0,4 бар).


Но сам конденсатор с его длинными трубопроводами, из которых он состоит, также создает потери давления, величиной которых нельзя пренебрегать.
При последовательном соединении потери давления складываются и общий перепад между точками А и В (см. рис. 36.9) будет равен сумме потерь давления на конденсаторе и на регуляторе.
Вместе с тем, обратный дифференциальный клапан, который открывается, например, при разности давлений в 1 бар, расположен как раз между точками А и В!
Перепад давления между точками
В должен быть меньше перепада давления на дифференциальном клапане
Рис. 36.9.
В нашем примере, если полные потери давления при работе (АР конденсатора + АРрегулятора) выше 1 бара, дифференциальный клапан будет открываться и перепускать горячий газ в ресивер, как только запустится компрессор, даже в разгар лета!
Этот существенный теплоприток повысит температуру и давление жидкости в ресивере. Установка начнет работать с аномально возросшим давлением конденсации и пониженной холодопроизводительностью.

Следовательно необходимо, чтобы сумма перепадов давлений на конденсаторе и на регуляторе была бы меньше давления настройки дифференциального обратного клапана!
Примечание. Эта неисправность легко выявляется простым ощупыванием труб на выходе из дифференциального клапана.
Действительно, если дифференциальный клапан открыт, эта трубка будет иметь температуру нагнетания (очень высокую), вместо того, чтобы быть такой же тепловатой или нагретой, как жидкость в точке С (см. рис. 36.9), и весь ресивер будет аномально горячим.

Д) Проблема подбора регулятора давления конденсации
Неисправность, которую мы только что описали, как правило обусловлена неправильным подбором регулятора давления конденсации, который, будучи слишком слабым, дает аномально высокие потери давления.
Следовательно, надлежит проверить характеристики регулятора давления конденсации по каталогу и при необходимости заменить его моделью с увеличенным проходным диаметром (если такой существует).
Для установок больших мощностей могут потребоваться регуляторы с очень большим диаметром (которые не всегда могут быть изготовлены в серийном производстве), поэтому допускается использовать несколько параллельно установленных регуляторов (см. рис. 36.10), что позволит уменьшить общие потери давления и решить проблему предотвращения несанкционированного перепуска горячего газа в ресивер при работе установки в летнее время.
При выборе регулятора давления конденсации всегда лучше взять переразмеренный вариант, чем вариант с меньшим размером.
Заметим также важность того, чтобы переохлаждение жидкости в конденсаторе было достаточно высоким и обеспечивало бы в летнее время отсутствие преждевременного дросселирования хладагента на выходе из конденсатора или дальше, в жидкостной магистрали (см. раздел 18. «Проблема внезапного вскипания хладагента в жидкостной магистрали «), из-за потерь давления на регуляторе давления конденсации.
В конце напомним, что клапаны с предварительной заводской настройкой должны подбираться с учетом типа хладагента, используемого в данной установке, иначе рабочие значения давления конденсации будут совершенно нереальными (так, регулятор, настроенный примерно на 13 бар для R22 или R407C, будет давать всего около 7 бар для R134a).

Е) Проблема настройки реле ВД и регулирования работы вентилятора конденсатора

Вначале укажем, что регулятор давления конденсации обязательно должен устанавливаться совместно с реле ВД для управления вентилятором конденсатора.
При этом, настройка реле должна обеспечивать запуск вентилятора, как только давление конденсации на 1…2 бар превысит давление настройки регулятора.
Диапазон настройки (дифференциал) реле должен быть достаточно большим, чтобы не допускать частых включений и выключений вентилятора при работе заполненного конденсатора в зимнее время. Иначе начнутся беспрестанные пульсации давления конденсации, приводящие к одновременным пульсациям регулятора давления конденсации и давления кипения, что может повлечь за собой отключение компрессора предохранительным реле НД!
В самом деле, конденсаторный вентилятор после его запуска не должен больше останавливаться вплоть до остановки компрессора, и обеспечить такие условия может только регулятор давления конденсации, поскольку он является в данной системе единственным органом, сохраняющим стабильность как давления конденсации, так и давления кипения.

Ж) Специальный случай использования двух регуляторов давления
Еще одним вариантом регулирования давления конденсации, который иногда используется и может встречаться, является установка вместо дифференциального обратного клапана регулятора давления в ресивере, размещаемого на обводной магистрали компрессора, как показано на рис. 36.11.


В данной схеме регулятор давления конденсации идентичен уже изученным (он настроен на перекрытие выхода из конденсатора, когда давление в последнем начинает падать).
Регулятор давления в ресивере открывается при понижении давления в жидкостном ресивере, перепуская туда горячий газ из нагнетающего патрубка, точно так же, как это делает дифференциальный обратный клапан (но на этот раз давление жидкости в ресивере регулируется отдельно).
Регулятор давления в ресивере
Рис. 36.11.
Следовательно, мы получаем два значения давления, регулируемые совершенно раздельно, каждое своим собственным регулятором:

► Регулятором давления конденсации, позволяющим регулировать давление в конденсаторе и, следовательно, давление нагнетания (из двух значений давления это более высокое).

► Регулятором давления в ресивере, позволяющим регулировать давление в ресивере (а следовательно, давление жидкости на входе в ТРВ) путем перепуска газа из нагнетающего патрубка.

► Поэтому настройка регулятора давления в ресивере, как правило, соответствует давлению, примерно на 1 бар ниже давления настройки регулятора давления конденсации.
Летом, когда давление в норме, регулятор давления конденсации открыт на максимум, а регулятор давления в ресивере полностью закрыт (самоустраняющаяся система).
Все описанные выше условия, сопровождающие поддержание давления конденсации (заправка хладагентом, размеры ресивера, расположение и длина трубопроводов…), остаются при этом в силе, однако проблема потерь давления в конденсаторе и на регуляторе давления конденсации (см. пункт Г настоящего раздела) может быть решена проще.
Для этого достаточно настроить регулятор давления в ресивере таким образом, чтобы разность между давлением нагнетания и давлением в ресивере была, по крайней мере, выше суммы потерь давления в конденсаторе и регуляторе давления конденсации.
Напомним, что если существует опасность перемещения жидкости из ресивера на вход в конденсатор или на выход из компрессора, установка обратного клапана на входе в ресивер (яоз. / на рис. 36.11) по-прежнему является необходимой.

3) Регулятор давления конденсации: перечень неисправностей
На рис. 36.12 указаны возможные места возникновения неисправностей в схеме с использованием регулятора давления конденсации.

Причины срабатывания предохранительного реле НД:
►  Заправка хладагента недостаточна для того, чтобы зимой в ресивере оставалась жидкость, даже если наружная температура резко упала.
►  Отсутствие обратного клапана (поз. 1), препятствующего перемещению жидкости в конденсатор во время остановок компрессора, в схеме с трехходовым регулятором давления конденсации при температуре конденсатора ниже, чем температура ресивера.
►  Неправильная настройка управляющего реле ВД (поз. 2), приводящая к частым включениям и выключениям вентилятора конденсатора (поз. 3) зимой.
►  Большие потери давления на регуляторе давления конденсации (поз. 4) летом, приводящие к преждевременному дросселированию хладагента в соединении конденсатор/ресивер (поз. 5) или его внезапному вскипанию в жидкостной магистрали.
Причины срабатывания предохранительного реле ВД летом:
►  Недостаточная емкость жидкостного ресивера, не вмещающего летом излишки хладагента.
►  Сумма потерь давления в конденсаторе и на регуляторе давления конденсации выше перепада давления на дифференциальном обратном клапане (поз. 6).
Причины поломки клапанов компрессоров:
►  Отсутствие обратного клапана или лирообразного патрубка на входе в конденсатор (поз. 7) для случая, когда конденсатор расположен выше компрессора.
►  Отсутствие жидкостной ловушки или лирообразного колена (маслоподъемной петли) на выходе из компрессора (поз. 8) для случаев, когда длина и расположение нагнетающей магистрали дают основания опасаться возврата масла и (или) жидкого хладагента в нагнетающую полость головки блока компрессора.

В зимнее время регулятор давления конденсации позволяет противодействовать переразмеренности конденсатора, обусловленной низкой наружной температурой, уменьшая поверхность теплообмена.
Уменьшение теплообменной поверхности предполагает повышение уровня жидкости в конденсаторе, тем большее, чем ниже опускается наружная температура.
Имея в виду, что при этом жидкость должна находиться также в ресивере, в жидкостной маги-                                       Рис. 36.1.
страли и в испарителе, мы можем заключить, что заправка установки хладагентом зимой должна быть больше, чем летом (см. рис. 36.1).

Как заменить конденсатор в электронной аппаратуре. Как заменить конденсаторы на материнской плате

Вздутие конденсатора (вздутие электролита, cracked capacitor -eng.) — распространённое явление, возникающее по многим причинам, которое влечёт за собой его замену самого конденсатора и обследование окружающих цепей.

Причины вздутия конденсаторов.

Причины могут быть разнообразными, но основная — не качественный . Нет, это не говорит о том что качественные конденсаторы не вздуваются, совсем нет, ещё как вздуваются. Но давайте разберёмся с основной причиной вздутия.

Основная причина вздутия — выкипание или испарение электролита. Выкипание может происходить при высоких температурах . Стоит заметить, что это может быть как внешняя среда, которая подогревает конденсатор, так и внутренняя среда. Сам конденсатор может греться из-за несоблюдения полярности, некачественного питания, импульсов поступающих на него, пробивания изоляционного слоя, или из-за нехватки электролита (чаще всего). Также он может греться из-за не соблюдения эксплуатационных характеристик (V , ёмкость , макс. температура ).

Испарение электролита может происходить, если конденсатор имеет плохую герметичность . Со временем, уровень электролита уменьшится, а оставшийся закипает, вызвав вздутие конденсатора.

В некачественных конденсаторах, иногда происходит такое явление, что не происходит вздутие конденсатора, а электролит просто вытекает через его нижнюю часть (жидкость коричневого или жёлтого цвета). Такой конденсатор тем более подлежит замене, можно считать что он уже не работает. Если на верхней части конденсатора есть следы коррозии , значит часть электролита просочилась через верхнюю часть, а значит она не герметична. Такие «ржавые конденсаторы » тоже лучше заменить.

Бытует мнение, что вздутие — удел только электролитических конденсаторов, но это не так.

Полимерные конденсаторы тоже вздуваются и раскрываются.

Естественно вздутые конденсаторы подлежат срочной замене. Если устройство со «вздутиками» всё ещё работает, это не значит, что всё в порядке. Могут появиться сбои в работе и «странное» поведение оборудования.

Замена вздутого конденсатора.

Потребуется конденсатор с такой же ёмкостью или больше, но не меньше. То же самое касается напряжения. В любом случае, если конденсатор вздулся, лучше поставить более мощный на его замену.

Паяльником отпаиваем ножки предыдущего конденсатора, лучше взять мощный паяльник. Иголкой или тонким шилом прочищаем дырочки под контакты. Вставляем конденсатор и припаиваем с тыльной стороны. Стоит заметить что нужно соблюдать полярность , если она есть. На самой плате будет обозначение «минус», так вот конденсатор должен быть тоже помечен с одной из сторон минусом (обычно полоска). При несоблюдении полярности можно сымитировать небольшой взрыв . Даём остыть и отрезаем лишнее.

Как избежать вздутия конденсаторов.

Чтобы избежать вздутия конденсаторов:
  • Используйте качественные конденсаторы.
  • Не позволяйте конденсаторам нагревать до температуры более 45 градусов (следите за температурой окружающей их среды). Разместите их подальше от горячих радиаторов.
  • Используйте качественные входные, (если конденсаторы вздуваются в блоках питания компьютера).
  • Используйте качественные блоки питания (если конденсаторы вздуваются на материнской плате компьютера).

Соблюдение этих простых правил, убережёт вас от преждевременного выхода из строя конденсаторов.

Не секрет, что материнская плата один из ключевых элементов компьютера. Именно она объединяет все компоненты системы в единое целое. Её выход из строя всегда доставляет массу неприятностей. Хорошо, если обойдется только заменой самой платы, но если она устарела, то, зачастую, приходится менять добрую половину комплектующих (процессор, кулер, оперативная память и т.д).

Поэтому многие пользователи в первую очередь хотят попробовать отремонтировать старую материнскую плату, чтобы избежать лишних затрат.

Одной из частых причин поломок материнских плат — «вздутие» конденсаторов. Конденсаторы могут выйти из строя из за перепадов питания, высокой температуры, ну и просто от старости.

Достаточно теории, пора переходить к практике.

Я использовал следующие инструменты:

  • Паяльник;
  • Канифоль;
  • Припой;
  • Зубочистки;
  • Бензин очищенный (для удаления канифоли с платы).

Определить вздутые конденсаторы достаточно просто, если внимательно посмотреть на плату. На них могут быть следы вытекшего электролита, а также они могут выгнуться сверху или снизу, что также будет хорошо заметно.

Вот так выглядит вспухший кондер.

Первым делом, нужно найти новые запчасти подходящего номинала. Внимательно смотрим на маркировку. В моем случае это 6,3 вольт 1500 мкф . На замену я использовал 16 вольт 1500 мкф . Можно брать конденсаторы большей емкости и большего напряжения, но нужно учитывать, что, чем больше напряжение и емкость, тем больше его размеры (может просто не влезть на то же место).

Поскольку, был вечер и магазины не работали, пришлось выпаять нужный конденсатор из нерабочей материнской платы.

В идеале, для выпаивания таких деталей нужно использовать оловоотсос, ну или паяльный фен. Поскольку у меня дома есть только паяльник, то пришлось выпаивать им, поочередно нагревая ножки конденсатора и вытаскивая его. Вывод: простым паяльником это делать крайне неудобно.

После того как мы извлекли старый конденсатор и приготовили ему замену, нужно прочистить отверстия для конденсатора, иначе старый припой не даст его нормально вставить. С оловотсосом можно было бы справиться за пару секунд, но мне пришлось повозиться и использовать зубочистки. Аккуратно вставляем их в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой. Еще раз повторюсь, что это нужно делать аккуратно, так как плата многослойная и можно повредить дорожки внутри платы.

Осталось самое приятное.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность . Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это — минус « «), но лучше всего запомнить как был установлен старый. На самих конденсаторах также есть обозначения ввиде полосы со знаком » «.

Запаиваем с обратной стороны. Фото самого процесса у меня нет, так как я не смог паять и одновременно фотографировать. Зато есть фото конечного результата)

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом мой ремонт закончился. Главное не бояться и аккуратно пробовать паять своими руками. Должен заметить, это очень увлекательный процесс.

Если у кого-то есть вопросы или дополнения, то пишите их в комментариях.

Материнская плата очень сложное электронное устройство, которое объединяет и согласовывает работу всех комплектующих компьютера. Со временем материнская плата может выйти из строя по различным причинам: перегрев, старение комплектующих и т.п.

Очень часто на старых (материнках) можно обнаружить вздувшиеся электролитические конденсаторы. Выглядят они как бочонки с вздутым верхом или низом. При этом рядом с конденсатором могут быть следы вытекшего электролита. Такая системная плата, в принципе, может успешно работать, но чаще всего компьютер с такой материнской платой не запускается.

Чтобы привести материнскую плату в (чувства) следует заменить вздувшиеся конденсаторы на новые. Такой ремонт можно сделать самостоятельно без помощи сервисного центра. Однако, если вы ни разу не держали в руках паяльник и не имеете малейшего представления о том, как с ним работать, то лучше обратитесь в , дабы избежать усугубления ситуации и окончательно не (убить) системную материнскую плату.

Для замены конденсаторов вам понадобится маломощный паяльник (до 40Вт) с узким жалом или паяльная станция (в идеале), канифоль или паяльная кислота (предпочтительней), оловянный припой, спирт или очищенный бензин.

Перед тем как приступать к выпаиванию конденсатора внимательно осмотрите материнскую плату, найдите все конденсаторы, которые вздулись, или имеют следы вытекшего электролита. Электролитические конденсаторы припаиваются с соблюдением полярности. На их корпусе обычно нанесено обозначение отрицательного (-) вывода. На самой материнской плате, когда вы выпаяет конденсатор, также имеется маркировка полярности. Чтобы не перепутать полярность вы можете сфотографировать расположение конденсаторов.

И еще несколько слов о подготовительной работе. Материнская плата чувствительна к статическому напряжению, поэтому паяльник и материнскую плату желательно было бы заземлить. По этой же причине нельзя работать в синтетической одежде без соблюдения дополнительных мер защиты. Используйте антистатические перчатки и браслеты.

Выпаивание конденсатора требует особой осторожности, так как печатная плата имеет многослойный монтаж. Это означает, что дорожки проходят не только с обеих сторон платы, но и внутри нее! Если вы используете паяльник, то поочередно прогревайте ножки конденсатора и аккуратно извлеките его из печатной платы. После этого отверстия в плате следует очистить от остатка припоя. Можно использовать зубочистку, которую следует вставлять поочередно в каждое отверстие и прогревать плату с другой стороны паяльником. Таким образом, остатки олова будут удалены. Если используется паяльник с олово отсосом, то очистка платы от остатков припоя не потребуется.

Когда конденсаторы выпаяны, необходимо проверить их номинал и рабочее напряжение, чтобы приобрести новые на замену. Емкость конденсатора указывается в микрофарадах (мкФ, uF), а напряжение в вольтах (В, V). Если выпаянный конденсатор, например, имеет маркировку 6,3V 2000uF, то его рабочее напряжение составляет 6,3 В, а емкость 2000мкФ. Приобретая новый конденсатор вы можете не найти точно такого же по емкости и рабочему напряжению. Допускается установка конденсаторов с большим рабочим напряжением (12В вместо 6,3В) и большей емкостью (2200 мкФ вместо 2000мкФ). Использовать конденсаторы на меньшее напряжение крайне не рекомендуется, так как такой конденсатор очень быстро выйдет из строя.

Также при выборе конденсатора следует особое внимание уделять его габариту, так как материнская плата имеет плотный монтаж, и компоненты зачастую установлены практически впритык, то установка большего по диаметру конденсатора может быть невозможна. С конденсаторами больших по высоте проблем с установкой обычно не бывает.

Теперь остается только аккуратно припаять новый конденсатор и проверить работоспособность материнской платы. Установите конденсатор в материнскую плату, обязательно соблюдая полярность, и припаяйте его ножки с обратной стороны печатной платы. Не используйте большое количество припоя, чтобы он не растекся и не замкнул соседние контакты. При пайке следует не допускать излишнего нагрева платы, так как это может привести к отпаиванию соседних элементов. После того как все будет припаяно, удалите остатки паяльной кислоты или канифоли с печатной платы с помощью спирта или очищенного бензина.

Аппаратные сбои могут проявляться по-разному: «вылет» компьютера, артефакты на экране, ошибки ввода/вывода при доступе к жёстком диску. Обычно проблему пытаешься решить установкой новых драйверов, настройкой параметров «железа» в операционной системе, регулировкой опций BIOS или, если уж совсем ничего не помогает, заменой комплектующих, таких, как память. Но что делать, если всё это не приводит к нужному результату?

К сожалению, сбоить может не только операционная система или драйверы устройств. И даже покупка новейших комплектующих, таких, как четырёхядерные процессоры и терабайтные жёсткие диски, не может предотвратить аппаратные сбои. Производители «железа» обычно определяют срок эксплуатации каждого компонента компьютера или ноутбука. Для жёстких дисков это, как правило, пять лет, но другие компоненты могут работать и дольше. Ключевые комплектующие, такие, как процессоры, память, материнская плата или видеокарта, обычно работают существенно дольше. Если, конечно, условия эксплуатации и охлаждения нормальные. Но сколько на самом деле прослужит то или иное комплектующее, предсказать невозможно.

Одной из причин странного поведения компьютера могут являться вышедшие из строя электролитические конденсаторы, которые встречаются на многих полупроводниковых комплектующих, на той же материнской плате или на видеокарте. И что же делать, если неправильно работающий конденсатор на материнской плате привёл к сбою компьютера? Если гарантия не кончилась, можно сходить в магазин и поменять старую материнскую плату на новую. Возможно, при этом потребуется купить новую память и процессор. Но есть и менее дорогое решение. Если вы не боитесь пайки, электролитический конденсатор можно заменить самостоятельно. В нашей статье мы покажем, как можно недорого оживить материнскую плату или видеокарту, если под рукой есть необходимые инструменты.

Конденсаторы и резисторы — наиболее часто используемые компоненты электрических схем. Конденсаторы стоят в диплексорах, колебательных контурах, подавителях помех или в фильтрах. Электролитические конденсаторы отличаются от других конденсаторов тем, что в алюминиевом корпусе находится жидкость, проводящая ток при подаче напряжения. Жидкость называется электролитом.

Почти во всех электрических схемах в фильтрах блоков питания применяются конденсаторы. Они справляются с пиками напряжения, на которые трансформаторы или транзисторы не могут быстро среагировать. Если не вдаваться в детали, конденсатор работает подобно аккумулятору: он заряжается, если подаётся напряжение. Заряд в конденсаторе сохраняется, когда конденсатор отключается от источника напряжения. Подобные свойства позволяют выровнять напряжение, скажем, в блоке питания.

Трансформаторы позволяют снизить напряжение в блоке питания до требуемого уровня. Выпрямители создают постоянный ток из подаваемого переменного тока. Но ток после выпрямителя не идеален, пульсации всё равно заметны. Но краткие падения напряжения, вызываемые пульсациями, можно компенсировать конденсатором, который работает как источник дополнительного напряжения, стабилизируя подаваемое напряжение. Для схем стабилизации используются конденсаторы с меньшим эквивалентным последовательным сопротивлением (Equivalent Series Resistance, ESR), которые позволяют эффективно справляться с пульсациями.


Потёкшие конденсаторы рядом с AGP-слотом.

Внутреннее сопротивление (ESR) обычно определяется проводимостью электролита. Поэтому электролиты, используемые в конденсаторах с низким внутренним сопротивлением, должны обладать очень хорошей проводимостью. Чтобы повысить проводимость электролита (он состоит по большей части из диспергаторов), необходимо использовать добавки. И одна из таких добавок — вода. Благодаря диссоциации воды высвобождаются свободные ионы, поэтому и электрическая проводимость увеличивается.

Впрочем, недостаточно очищенная вода взаимодействует с алюминиевым корпусом конденсатора, вызывая коррозию. При этом создаются газы, которые увеличивают внутреннее давление, — и конденсатор начинает вздуваться. На верхней плоскости конденсатора есть специальные насечки, которые раскрываются при слишком высоком давлении, позволяя газу выйти наружу. Иногда насечки не помогают, и конденсатор «красиво» взрывается. То же самое происходит и при подаче слишком высокого напряжения. Электролит, который находился в конденсаторе, может вытечь на материнскую плату и вызвать короткое замыкание. И даже пожар. Вообще, надёжность материнских плат вызывала у производителей некоторые проблемы между 1999 и 2005 годами. Они часто использовали конденсаторы с некачественным электролитом, что приводило к многочисленным сбоям и существенному снижению надёжности материнских плат.

Но привести к сбою конденсатора может не только некачественный электролит. Подобно любой другой жидкости, электролит может изменить своё физическое состояние и попросту испариться. И это может произойти не только в работающей системе, но и тогда, когда система выключена или материнская плата вообще хранится отдельно. От хорошего охлаждения компьютерного корпуса выигрывают не только такие комплектующие, как память или процессоры. Хорошее охлаждение также увеличивает и время жизни конденсаторов, поскольку вероятность испарения зависит от температуры окружающей среды. Понижение температуры на 10°C удваивает время жизни конденсатора.


Конденсатор имеет полную ёмкость 1000 мкФ.

Обычно конденсатор можно распознать по последствиям взрыва. Вздутие или даже нарушение целостности сигнализирует о том, что конденсатор вскоре выйдет из строя (если он ещё работает). Иногда резиновая прокладка, закрывающая конденсатор снизу, выталкивается газом наружу. Конденсаторы, чей электролит улетучился и не оставил следов на алюминиевом корпусе, весьма трудно обнаружить. Если конденсатор высыхает, то уменьшается и его ёмкость. Чтобы измерить ёмкость конденсатора, необходимо использовать мультиметр (см. иллюстрацию выше). В нашем случае использовался Digitek DS-568F, который для наших целей вполне подходит, да и стоит он меньше $40.

Мы пытались найти материнскую плату с вышедшими из строя конденсаторами — и нашли её. На нашем складе долгое время пылилась старая материнская плата от MSI. Впрочем, дефектные конденсаторы — проблема практически любого производителя. Поэтому данный продукт выбран в качестве примера.

Плата K7Master имеет два процессорных сокета, поэтому она вполне достойна реанимации. Если придётся менять эту материнскую плату, то придётся менять и процессоры, и память (в данном случае используется регистровая DDR). А это не очень приятно.

Мы не знали, все ли конденсаторы вышли из строя. Но поскольку конденсаторы одинаковые, то мы предположили, что все они нуждаются в замене. Таким образом, нам нужно заменить 26 конденсаторов более новыми аналогами с такой же ёмкостью.


Простой цилиндрический электролитический конденсатор.

Вообще, купить конденсаторы с низким сопротивлением оказалось труднее, чем мы думали, тем более что мы хотели оставаться в определённых ценовых границах. Мы изначально полагали, что замена конденсаторов обойдётся дёшево. Но следует помнить, что если что-то пойдёт не так, то вам придётся покупать новую материнскую плату, процессор и память.

Для материнской платы K7D Master нам нужно было купить 26 цилиндрических конденсаторов ёмкостью 1000 мкФ, напряжением 6,3 В и температурным порогом 105°C. Собственно, все технические характеристики нанесены на корпус конденсатора. Диаметр конденсатора составляет около 8 мм, высота — около 16 мм, а расстояние между «ножками» — 3,5 мм.


Конденсаторы, которые мы заказали.

После недолгого поиска мы заказали конденсаторы у одной мелкой фирмы, которая продаёт их недорого. Мы не нашли конденсаторы с напряжением 6,3 В, поэтому пришлось обойтись моделями на 10 В. Расстояние между ножками и диаметр у них такой же, хотя высота составляет 20 мм. В зависимости от дизайна вашей материнской платы, с дополнительными 4 мм могут возникнуть проблемы. Перед тем, как вы закажете конденсаторы, посмотрите, сколько свободного места от конденсаторов до карт расширения, например, до видеокарты. У нас никаких проблем с разницей в 4 мм по высоте не возникло. Купив 30 конденсаторов, мы заплатили за каждый около 50 центов, без учёта доставки.

Начинаем замену


Паяльная станция, управляемая процессором.

Перед тем, как мы начнём весь процесс пайки, следует напомнить, что если вы последуете нашим рекомендациям, то следует полагаться только на свой страх и риск. Восстановлением материнской платы следует заниматься только тем пользователям, кто знаком с техникой пайки. Мы не несём ответственности за возможные повреждения оборудования.

Для нашего задания необходимы профессиональные паяльники. Здесь не подойдут ни ручные паяльники, ни ручные отсосы припоя, поскольку нагрев и удаление припоя должны выполняться одновременно. Иначе припой сразу же застынет. Слои материнской платы способны забрать немало тепла, поэтому ручные отсосы припоя помогают мало.

Что касается откачивания припоя, то острие должно быть диаметром 0,8-1,0 мм, чтобы припой можно было легко выкачать из места пайки. В нашей лаборатории мы использовали довольно старую паяльную станцию PLE-9001 с процессорным управлением. На данный момент мы можем рекомендовать ещё одного производителя — ERSA, который выпускает полный спектр продуктов.


Откачиваем припой с помощью электрического насоса.

Кроме того, нам понадобится припой и специальные кусачки. Ещё пригодится пластиковый зажим, фиксирующий материнскую плату в вертикальном положении во время пайки.

Закрепив в зажиме материнскую плату, мы начали выпаивать конденсаторы с обратной стороны платы при помощи паяльника.

Иногда припой так и не выходит из места пайки, сколько бы мы его ни нагревали и откачивали. Поскольку нам необходимо отверстие, мы взяли небольшой металлический стержень (диаметр 0,8 мм), которым и прочищали отверстие, удерживая стержень в небольших плоскогубцах и аккуратно его нагревая. Если всё пойдёт как надо, то отверстие можно будет прочистить. Но будьте осторожны: применив слишком большое усилие, можно повредить слои, окружающие отверстия.


Очищаем отверстия с помощью металлического стержня.

Если и этот способ не поможет, то остаётся просверлить отверстие. Но мы эту процедуру не рекомендуем! К ней следует прибегать, если только вы не смогли откачать припой, и не помог металлический стержень.


Сверлим отверстие в материнской плате — только в крайнем случае.

Теперь мы выпаяли все плохие конденсаторы с материнской платы и можем впаивать новые. Во время пайки следите за соблюдением полярности. Если вы перепутаете плюс с минусом, то получите взорвавшийся конденсатор и дополнительную работу. У новых конденсаторов ножка с «плюсом» длиннее. Но не мешает лишний раз удостовериться, рассмотрев конденсатор поближе: на корпусе есть маркировка. Оба полюса отмечены и на материнской плате.


Следите за полярностью!


Насаживаем конденсатор.


Немного сгибаем ножки анода и катода вбок, чтобы конденсатор не выпал.


Затем припаиваем конденсатор.


И убираем лишние ножки.


Всё готово! Материнская плата снова работает!

Заключение

Как демонстрирует наша статья, материнскую плату во многих случаях можно отремонтировать в домашних условиях. Тем более, что обойдётся это в копейки, поскольку новые конденсаторы стоят немного.

Сегодня производители материнских плат всё больше используют твёрдотельные конденсаторы, но потёкшие электролитические конденсаторы по-прежнему являются одной из главных причин сбоя материнской платы. При этом нужно всё тщательно взвешивать: даже если гарантия на материнскую плату есть, в ряде случаев лучше не прибегать к замене. Возможно, у продавца нет точно такой же модели материнской платы, поэтому он предложит в обмен новую плату, для которой может потребоваться покупка новой памяти и процессора.

Но не стоит отчаиваться. Если вы знаете, что сбой вызван конденсаторами, их вполне можно заменить самостоятельно. Всё это обойдётся не дороже $15. Если вы умеете работать с паяльником, да и под рукой есть все необходимые инструменты, можно сэкономить на замене материнской платы, процессора и памяти. Кроме того, всё сказанное относится не только к материнским платам: конденсаторы на видеокартах тоже выходят из строя.

Если вы хорошо работаете с паяльником, то конденсаторы можно будет заменить меньше, чем за час, так как работа не очень сложная. Конечно, если есть необходимые инструменты. Если же инструментов нет, то почему бы не обратиться к другу, который «родился» с паяльником? Материнская плата всё равно «умерла». Так почему бы не дать ей новую жизнь?

Электролитические конденсаторы — разновидность конденсаторов , в которых диэлектриком между обкладками является пленка оксида металла на границе металла и электролита. Этот окисел получают методом электрохимического анодирования, что обеспечивает высокую равномерность изолирующего слоя.

Со временем электролит высыхает и конденсатор теряет свою емкость, в большинстве случаев выход конденсатора из строя можно оценить по внешнему виду. Конденсатор вздувается вверху, где у него имеется специальная выштамповка.

Также может надуться и нижняя часть, где выходят ножки. А может вытечь и содержимое конденсатора.

Характерными признаками проблемных конденсаторов могут быть самопроизвольные выключения компьютера, монитора, телевизора и другой техники. Вначале это может проявляться только под нагрузкой, например при запуске требовательной к ресурсам компьютера игры.

Для самостоятельно замены конденсаторов в импульсном блоке питания не потребуется особых навыков и инструментов. Кроме паяльника, отвертки и кусачек, в принципе, больше ничего не понадобится.

Покажем замену конденсаторов на примере ремонта импульсного блока питания PC-ATX:

Откручиваем 4-ре винта и снимаем крышку БП:

Смотрим на вздутые конденсаторы и записываем их емкость и напряжение — это основные параметры для покупки новых кондеров:

К примеру, у нас под замену пошли конденсаторы 1000мкФ на 10В и на 16В. Заменить конденсатор с напряжением 10В на 16В можно, наоборот нельзя, т.е. напряжение может быть только выше. Однако на сегодня можно купить любой конденсатор, это до 2000-го года приходилось использовать то, что есть.

Выпаиваем конденсаторы:

Скорее всего, при покупке новых конденсаторов, особенно при замене их в материнской плате, Вам зададут вопрос: — «А Вам простой или для материнских плат?»

Чем же отличаются компьютерные конденсаторы от обычных?

До последнего времени четкое определение конденсатора с низким ESR отсутствовало.

Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов.

Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR.

В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:

  • срок службы больше, чем у стандартных конденсаторов;
  • максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
  • пульсирующий ток определяется на частоте 100 кГц;
  • повышенная температурная стабильность (температурный коэффициент импеданса) .

Стоимость таких конденсаторов порядка 4-6 грн., т.е цена ремонта будет копеечной.

Впаиваем новые конденсаторы соблюдая полярность:

Включаем и проверяем блок питания, все работает.

способы, правила, формулы. Особенности замены конденсаторов

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах . Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить батарею конденсаторов, рассчитанную на большее напряжение , чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения .

Смешанное соединение конденсаторов


Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

Содержание:

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом. Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей. Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния. По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников. В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом. Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Практически на любой электронной плате применяются конденсаторы, устанавливаются они и в силовых схемах. Для того чтобы компонент мог выполнять свои функции, он должен обладать определёнными характеристиками. Иногда возникает ситуация, когда необходимого элемента нет в продаже или его цена неоправданно завышена.

Выйти из сложившегося положения можно, используя несколько элементов, а необходимые характеристики получают, применяя параллельное и последовательное соединения конденсаторов между собой.

Немного теории

Конденсатор — пассивный электронный компонент, с переменной или постоянной величиной ёмкости, которое предназначено для накопления заряда и энергии электрического поля.

При выборе этих электронных компонентов руководствуются двумя основными характеристиками:

Условное обозначение неполярного постоянного конденсатора на схеме, показано на рис. 1, а. Для полярного электронного компонента дополнительно отмечают положительный вывод — рис. 1, б.

Способы соединения конденсаторов

Составление батарей конденсаторов позволяет изменить суммарную ёмкость или рабочее напряжение. Для этого могут применяться такие способы соединения:

  • последовательное;
  • параллельное;
  • смешанное.

Последовательное соединение

Последовательное подключение конденсаторов показано на рис. 1, в. Применяют такое соединение в основном для увеличения рабочего напряжения. Дело в том, что диэлектрики каждого из элементов расположены друг за другом, поэтому при таком соединении напряжения складываются.

Суммарная ёмкость последовательно соединённых элементов можно рассчитать по формуле, которая для трёх компонентов будет иметь вид, показанный на рис. 1, е.

После преобразования в более привычную для нас форму, формула примет вид рис. 1, ж.

Если, соединённые последовательно, компоненты имеют одинаковые ёмкости, то расчёт значительно упрощается. В этом случае суммарную величину можно определить, разделив номинал одного элемента на их количество. Например, если требуется определить, какова ёмкость при последовательном соединении двух конденсаторов по 100 мкФ, то эту величину можно рассчитать, разделив 100 мкФ на два, то есть суммарная ёмкость равна 50 мкФ.

Максимально упростить расчёты последовательно соединённых компонентов , позволяет использование онлайн-калькуляторов, которые без проблем можно найти в сети.

Параллельное подключение

Параллельное подключение конденсаторов показано на рис. 1, г. При таком соединении рабочее напряжение не изменяется, а ёмкости складываются. Поэтому для получения батарей большой ёмкости, используют параллельное соединение конденсаторов. Калькулятор для расчёта суммарной ёмкости не понадобится, так как формула имеет простейший вид:

С сум = С 1 + С 2 + С 3.

Собирая батарею для запуска трёхфазных асинхронных электродвигателей, часто применяют параллельное соединение электролитических конденсаторов. Обусловлено это большой ёмкостью этого типа элементов и небольшим временем запуска электродвигателя. Такой режим работы электролитических компонентов допустим, но следует выбирать те элементы, у которых номинальное напряжение минимум в два раза превышает напряжение сети.

Смешанное включение

Смешанное подключение конденсаторов — это сочетание параллельного и последовательного соединений .

Схематически такая цепочка может выглядеть по-разному. В качестве примера рассмотрим схему, изображённую на рис. 1, д. Батарея состоит из шести элементов, из которых С1, С2, С3, соединены параллельно, а С4, С5, С6 — последовательно.

Рабочее напряжение можно определить сложением номинальных напряжений С4, С5, С6 и напряжения одного из параллельно подключённых конденсаторов. Если параллельно соединённые элементы имеют разные номинальные напряжения, то для расчёта берут меньшее из трёх.

Для определения суммарной ёмкости, схему разбивают на участки с одинаковым соединением элементов, производят расчёт для этих участков, после чего определяют общую величину.

Для нашей схемы последовательность вычислений следующая:

  1. Определяем ёмкость параллельно соединённых элементов и обозначаем её С 1-3.
  2. Рассчитываем ёмкость последовательно соединённых элементов С 4-6.
  3. На этом этапе можно начертить упрощённую эквивалентную схему, в которой вместо шести элементов изображаются два — С 1-3 и С 4-6. Эти элементы схемы соединены последовательно. Остаётся произвести расчёт такого соединения и мы получим искомую.

В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям.

Рис.2 U=U 1 =U 2 =U 3

    Общий заряд Q всех конденсаторов

    Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.

Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов при­меняется для увеличения емкости.

4)Если параллельно включены т одинаковых конденсаторов ем­костью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением

Последовательное соединение конденсаторов

Рис.3

    На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U , появятся заряды одинаковые по величине с противоположными знаками.

    Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденса­торов:

    Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих кон­денсаторов.

При последовательном включении двух конденсаторов их об­щая емкость определяется следующим выражением:

Если в цепь включены последовательно п одинаковых конден­саторов емкостью С каждый, то общая емкость этих конденса­торов:

Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. по­следовательное включение конденсаторов приводит к уменьше­нию общей емкости батареи конденсаторов.

На практике может оказаться, что допустимое ра­бочее напряжение U p конденсатора меньше напряжения, на кото­рое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить не­сколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется мень­ше его допустимого рабочего U p . Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения U p .

Смешанное соединение конденсаторов

Смешанное соединение (последовательно-параллельное) кон­денсаторов применяют тогда, когда необходимо увеличить ем­кость и рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное соединение конденсаторов на ниже­приведенных примерах.

Энергия конденсаторов


где Q — заряд конденсатора или конденсаторов, к которым при­ложено напряжение U ; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U .

Таким образом, конденсаторы служат для накопления и сохра­нения электрического поля и его энергии.

15. Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)

Рисунок 5- Схема электрическая

6.СХЕМЫ ЗАМЕЩЕНИЯ

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.

На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).

Приr= 0 внутреннее падение напряженияUо = 0, поэтому

напряжение на зажимах источника при любом токе равно

ЭДС: U = E = const.

В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияI K , а вместо внутреннего со­противления в расчет вводится внутренняя проводимостьg =1/ r .

Возможность такой замены можно доказать, разделив равенство (3.1) на r:

U / r = E / r I ,

где U / r = Io -некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E / r = I K — ток короткого замыкания источника;

Вводя новые обозначения, получим равенство I K = Io + I , которому удовлетворяет эквивалентная схема рис. 3.14,а.

В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):

Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.

Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.

Несовпадение рекомендуемого номинала конденсаторов для движка с рабочим. — Электропривод

Восстанавливаю электрическую часть Универсала 2. Задача сделать кнопочный пуск, реверс переключателем. Имеем двигатель 270Вт, за основу взята схема с Универсала 3, отсуюда, с форума.

шильдик двигателя:

схема:

C кнопками, пускателем, реле разобрался. Двигатель стартует отлично со снятым ремнем и с одетым. Емкость рабочего конденсатора 18Мф, пусковых — 40Мф. Конденсаторы МГБЧ-1. Решил померять токи клещами. На одном проводе 0.5А, на втором, к которому подключены кондеры 1.5А, на третьем практически ноль.

Экспирименты:

1. Уменьшил емкость рабочего конденсатора до 10Мф. На втором проводе ток упал до 1.0А, на остальных проводах без изменений;

2. Увеличил емкость рабочего кондера до 24Мф — ток на втором проводе вырос до 2.0А, по остальным без изменений;

3. Уменьшил емкость рабочего кондера до 4.0Мф — ток 1.0А, пуск едва заметно дольше.

4. Вообще отключил рабочий конденсатор. Ток на втором проводе 1,0А запустился с трудом, после пуска работает по звуку без изменений.

5. Подключил рабочий конденсатор (20Мф) к пусковым (40Мф). Запускается еще хуже, щелкает реле тока.

6. Оставляю рабочим 10Мф, уменьшаю пусковые до 30Мф, 20Мф — вялый старт.

Итоги — рабочий взят 10Мф, пусковые 40Мф. Стартует хорошо, работает без гула.

Что смущает. Емкость рабочего конденсатора для 270Вт, должна быть около 18Мф, пусковых — 30-45Мф. В реальности хватает рабочего 10Мф. Смущает разность в токах по обмоткам. Ток мерял советскими древними клещами со стрелочным индикатором. Может он врет? При запуска по двум проводам из трех стабильно ток вырастает до 3-4А в зависимости от того насколько я его нагружал, а потом падает до вышеперечисленных значений. Т.е. на одном из проводов 0,5А, на втором от 1,0 до 2,0 А в зависимости от емкости кондеров, на третьем практически ноль. При реверсе провода где 1,0А и практически ноль меняются местами, но это квроде как бы так и должно быть.

Стоит ли увеличивать емкость рабочего конденсатора до рекомендуемого по формуле? Должен ли так различаться ток? Особенно смущает, что и без рабочего кондера, при запущеном двигателе токи аналогичные.

Можете ли вы заменить конденсатор на более высокий мкФ? (Узнайте сейчас!) — Модернизированный дом

Вы подозреваете, что вам нужно заменить конденсатор в вашем доме? Это может быть сложный и трудный проект, если у вас нет необходимых знаний. Позвольте нам помочь вам в этом процессе, и если вы не думаете, что сможете справиться с этим самостоятельно, мы поможем найти того, кто сможет вам помочь.

Когда дело доходит до обмена энергией, все может быть довольно сложно. Конденсаторы, микрофарады, напряжения — что все это значит? Если вы планируете замену конденсатора самостоятельно, вам необходимо понимать основные концепции накопления энергии.Как только вы поймете, что такое напряжение и емкость, вы можете заменить конденсатор, используя инструменты, которые у вас уже есть дома.

Есть несколько причин, по которым вам может потребоваться замена конденсатора. Хотя большинство конденсаторов могут служить до 20 лет, использование неправильного напряжения может привести к перегрузке системы и ее преждевременному сгоранию. Кроме того, если ваш конденсатор не будет удерживать какое-либо напряжение, ваше электронное устройство не будет работать должным образом.

Можно ли заменить конденсатор на конденсатор с более высокой мкФ? Да, вы можете заменить конденсатор на конденсатор с чуть более высоким мкФ, но постарайтесь максимально приблизиться к исходному числу и не опускаться ниже.Замена конденсатора иногда называется «заменой печатной платы», и важно, чтобы новый конденсатор соответствовал старому. И емкость (мкФ), и напряжение (В) должны оставаться постоянными.

Не хочешь делать это сам?

Получите бесплатные предложения с нулевыми обязательствами от ближайших к вам профессиональных подрядчиков.

НАЙТИ МЕСТНЫХ ПОДРЯДЧИКОВ

Что такое конденсатор?

Конденсаторы

похожи на батареи, но не могут хранить столько энергии.Однако конденсаторы могут заряжаться и выделять энергию намного быстрее, чем батарея, что делает их необходимым элементом современной печатной платы. Конденсаторы используются для хранения энергии, сглаживания выходной мощности и хранения информации. Мы можем найти эти удобные устройства в стиральных машинах, потолочных вентиляторах, DVD-плеерах, холодильниках, медицинских устройствах и даже в смартфонах.

Конденсатор — это накопитель энергии, используемый для регулирования выходного напряжения. Конденсатор имеет два разных показателя или «номинала». Первый — это номинальная емкость, измеренная в микрофарадах и указанная на конденсаторе как мкФ.Это первое число указывает количество энергии, которое конденсатор может выдержать при определенном напряжении. Второе число — это номинальное напряжение, которое указывает максимальное напряжение, которому может подвергаться конденсатор.

Например, если ваш конденсатор показывает «470 мкФ 25 В», он может вмещать 470 мкФ при 25 вольт. Максимальное допустимое напряжение для этого конденсатора — двадцать пять вольт. Если вы подвергнете конденсатор номинальному напряжению выше 25, конденсатор взорвется.

Что такое мкФ?

Мы измеряем номинальную емкость в микрофарадах, обозначенную мкФ.Емкость, по сути, позволяет узнать, сколько энергии может удерживать конденсатор. Чем выше количество микрофарад, тем больше энергии может удерживать конденсатор. Теоретически, если устройство имеет высокий мкФ, оно прослужит дольше при отключении электроэнергии.

Что такое V?

Мы измеряем напряжение в вольтах или В. Номинальное напряжение указывает максимальное напряжение, с которым может работать конденсатор. V не обязательно указывает текущее напряжение, а скорее указывает на максимум. Таким образом, если напряжение обозначено как «16V», конденсатор может выдерживать максимум 16 вольт.

Замена конденсатора

Если ваш компьютер или электронное устройство неисправны, возможно, вам потребуется заменить конденсатор. Вам нужно будет согласовать мкФ, хотя большинство конденсаторов имеют допуск от 10 до 20%. Это означает, что вы можете выбрать один с немного более высоким мкФ или номинальной емкостью без каких-либо серьезных последствий при замене конденсатора.

Если вы сомневаетесь в использовании более высокой емкости, вы всегда можете заменить конденсатор той же модели.Вы можете проверить номер модели в верхнем левом углу этикетки. Обычно оно выше номинальных значений емкости и напряжения, которые могут выглядеть следующим образом: 370 мкФ 16 В.

Если вы решили заменить конденсатор на конденсатор с более высоким мкФ, оставайтесь на близком расстоянии. Если вы замените конденсатор и, например, удвоите мкФ, вы перегрузите конденсатор. Вы могли бы подумать, что удвоение емкости было бы хорошо, поскольку это означало бы, что конденсатор может хранить больше энергии. Но перегрузив конденсатор, вы можете повредить внешнее устройство.

Шаг первый: напряжение разряда

Как и при любом электрическом ремонте, убедитесь, что вы используете безопасные методы. Помните, что конденсатор может удерживать заряд даже после отключения, поэтому обязательно полностью разрядите конденсатор, прежде чем обращаться с ним.

Шаг второй: Удалите старый конденсатор

Найдите выводы конденсатора на задней стороне печатной платы. Используйте паяльник, чтобы нагреть. Вы также можете сделать это без паяльника. Конденсатор должен легко вырываться.На нем могут быть видимые признаки повреждения, например коррозия или лопнувшая крышка.

Шаг третий: сопоставьте новый конденсатор

После отключения и разрядки старого конденсатора вы можете сравнить его с новым. Вам нужно будет максимально точно сопоставить их. Если возможно, закажите ту же модель. Вы можете найти номер модели в верхнем левом углу этикетки.

Если старый конденсатор показывает «370uF 35V», новый конденсатор должен показывать то же самое. Вы можете выбрать один с чуть более высоким рейтингом мкФ, но не с более низким.Вы можете заменить 370 мкФ на 440 мкФ, но не наоборот. Должны совпадать не только мкФ, но и напряжение, физический размер и расстояние между выводами.

Предупреждение: напряжение, обозначенное буквой V, обозначает максимальное напряжение, которое может выдерживать конденсатор.

Шаг четвертый: Выстраивание полярностей

Если вы имеете дело с электролитическим конденсатором, полярность имеет значение. Совместите отрицательную сторону конденсатора с соответствующим отверстием на печатной плате. Вы сможете определить отрицательную сторону по пунктирной линии с одной стороны.Если вы имеете дело с керамическим конденсатором, вы можете использовать провода как взаимозаменяемые.

Шаг пятый: замена конденсатора

Соблюдая полярность, вставьте новый конденсатор и припаяйте его к печатной плате.

Типы конденсаторов

Конденсатор состоит из двух металлических пластин, разделенных диэлектриком или непроводником. Когда мы говорим о различных типах конденсаторов, мы обычно имеем в виду диэлектрик, используемый между пластинами.

Электролитический конденсатор

Электролитические конденсаторы поляризованы, что означает, что одна сторона положительная, а другая отрицательная. В случае электролитических конденсаторов вы должны подключить их к правильным клеммам, чтобы они работали. Изменение полярности вызовет взрыв конденсатора.

Для электролитического конденсатора есть несколько способов проверить полярность. С одной стороны пунктирная линия или отрицательный знак указывает на отрицательную полярность. Из двух выводов (проводов) более длинный вывод указывает на положительную полярность.Сначала проверьте пунктирную линию, так как провода часто обрезаются во время установки.

Танталовый конденсатор

Подобно электролитическим конденсаторам, танталовые конденсаторы поляризованы и имеют более высокую емкость. Танталовые конденсаторы надежны из-за низкого тока утечки. Обычно они дороже электролитических конденсаторов. Поскольку они могут хранить больше энергии, танталовые конденсаторы популярны в телевизорах, подводных кабелях и устройствах связи.

Пленочный конденсатор

Пленочные конденсаторы бывают нескольких типов: полистирольные, полиэфирные и металлизированные.Пленочные конденсаторы — более дешевая альтернатива, но имеют ограниченную частотную характеристику. Как правило, они доступны только в виде электрических компонентов с выводами.

Мы часто называем пленочные конденсаторы «пластиковыми конденсаторами» из-за материалов, используемых в качестве их диэлектриков. Поскольку диэлектрик часто должен быть толще, пленочные конденсаторы больше и дороже. Широко доступны пленочные конденсаторы для различных напряжений.

Керамический конденсатор

Керамические конденсаторы не поляризованы, поэтому вы можете использовать обе стороны взаимозаменяемо.С керамическими конденсаторами вам не нужно согласовывать полярности, например положительную и отрицательную, а отрицательную — отрицательную. Более того, керамические конденсаторы дешевы и доступны.

Меры безопасности

Помните, что электричество может быть опасным. Перед заменой каких-либо электрических компонентов убедитесь, что вы квалифицированы, и убедитесь, что все напряжение снято с конденсатора. НЕ прикасайтесь к двум проводам, выходящим из конденсатора, так как они передают накопленную энергию и могут вызвать поражение электрическим током, даже если они отключены от сети.

Завершение

При замене конденсатора, вы должны согласовать убедитесь, что новый конденсатор имеет такой же мкФ, как и старый. Поэтому, если старый конденсатор показывает «440uF 16V», новый конденсатор также должен читать «440uF 16V». И хотя вы можете немного увеличить емкость (мкФ), она не должна превышать 20%.

Не хочешь делать это сам?

Получите бесплатные предложения с нулевыми обязательствами от ближайших к вам профессиональных подрядчиков.

НАЙТИ МЕСТНЫХ ПОДРЯДЧИКОВ

Связанные вопросы

Как определить, что конденсатор плохой?

Если ваш конденсатор разрядился, ваше устройство не будет работать.В некоторых случаях ваше электронное устройство по-прежнему будет работать, но ваш счет за электроэнергию может возрасти, так как ваш конденсатор изо всех сил пытается не отставать.

Перегоревший конденсатор часто показывает видимые признаки повреждения, такие как лопнувшая верхняя часть, коррозия или утечка жидкости. Верхняя часть может вздуться или лопнуть при воздействии на нее напряжения, превышающего максимальное значение.

Как долго прослужит конденсатор?

Производители проектируют конденсаторы, рассчитанные на срок службы 20 лет, но они изнашиваются намного быстрее. Например, неисправные конденсаторы — одна из самых распространенных проблем с бытовыми кондиционерами.На многие из них предоставляется пятилетняя гарантия, но вам нужно будет заменить конденсатор в кондиционере примерно через десять лет.

Связанные руководства

HK Sloan

Х. К. Слоан — внештатный писатель, в настоящее время освещающий вопросы улучшения дома, здоровья и образа жизни своими руками. Слоан любит улучшать ситуацию с меньшими затратами, будь то работа над разумом, телом или домом.

Недавно опубликованные

ссылка на Кто отвечает за чердак в кондоминиуме? (Узнай сейчас!) ссылка на 4 марки газонных тракторов, которых следует избегать (вместо этого покупайте эти марки!)

Rap о замене электролитических конденсаторов

Rap о замене электролитических конденсаторов

Стратегии ремонта или замены старых электролитических конденсаторов

ПРИМЕЧАНИЕ. ПОЖАЛУЙСТА: эта веб-страница предоставляет только информацию; ты несешь ответственность для уверенности в том, что ваш ремонт безопасен, и что все ремонтные работы проводятся с надлежащей безопасностью.Ламповое оборудование работает при высоком напряжении который может быть смертельным , и если вы не совсем уверены в своем возможность обеспечить вашу личную безопасность и безопасную работу вашего отремонтированное оборудование пожалуйста, возьмите усилитель, радио или тестовое оборудование квалифицированному технику.

Что доступно для ремонта

К сожалению, сегодня выбор высоковольтных электролитических конденсаторов является как меньше и отличается от прошлого, так что, скорее всего, вы не найдете точной замены для электролитиков вашего оригинального оборудования.Для низковольтных приложений, например, катода байпасные конденсаторы, большинство винтажных типов имеют осевую конфигурацию, которая встречается реже сегодня, но все еще доступен. Более современная радиальная конфигурация также может быть использована, если их выводы достаточно длинные, и они не нарушают ваше представление об эстетике.

Более проблематичны конденсаторы высоковольтных источников питания, обычно многосекционные. алюминиевые банки, установленные на верхней пластине шасси. Чтобы отремонтировать их, у вас, возможно, есть четыре параметры:

Рэп про электролитики

Колпачки электролитических источников питания, вероятно, представляют собой худшее ответственность за старое аудио, радио и тестовое оборудование.Объединив небольшие размер и очень низкая стоимость единицы емкости, электролитические конденсаторы (далее называемые электролитиками) — единственный экономичный выбор для дорогостоящие приложения, такие как фильтрация источников питания в большинстве потребительских механизм. Однако электролиты нельзя использовать для переменного напряжения (т. Е. изменение полярности не допускается), и по сравнению с другими типами конденсаторов, их электрические характеристики ужасно плохи. Они менее линейны, имеют огромную утечку и диэлектрическое поглощение, имеют очень слабые допуски (например, +/- 20% или хуже) и очень короткие сроки хранения и эксплуатации по сравнению со всеми другими широко доступными типами конденсаторов.Если хочешь чтобы узнать больше о работе электролитических конденсаторов, вот Примечание по применению Nichicon (формат PDF), часть 1 и часть 2, в которой подробно рассматривается тема.

Электролитики бездействием не переносят. Они могут вызвать большие неприятности при простое в течение длительного времени, требуется периодическая подзарядка, чтобы оставаться «сформированным» и поддерживать оксидный слой, изолирующий проводящие пластины. Иногда их можно «реформировать», постепенно возвращаясь к работе. напряжение (см. ниже). Даже при регулярном использовании электролиты выходят из строя. из-за высыхания или утечки электролита в результате внутренней коррозии.Если электролит вздувается, показывает очевидную потерю электролита или просто не может быть реформирован, вы должны заменить его.

Обратите внимание, что есть два типа утечки; физические и электрические. Поскольку электролит представляет собой жидкость или пасту, когда электролит катастрофически в случае неудачи обычно выделяется какая-то едкая слизь: физическая утечка. В отличие от идеальный конденсатор, электролиты слегка проводят при наличии напряжения пластины: утечка электричества. Помимо отклонения от идеала поведение, небольшая утечка в новом электролите не вызывает серьезных проблем; по мере старения электролита утечка увеличивается.Утечка выделяет тепло, что приводит к старению электролита и увеличивает утечку, вызывая больше тепла, и так далее. При достаточной утечке электролит закипает, и пар лопается. предохранительная заглушка контейнера, вызывающая физическую утечку и сигнализирующая кончина конденсатора.

Обратите внимание, что существуют и другие формы отказа клемм, в том числе: полная потеря емкости (разомкнутая) или замыкание проводящих пластин (короткая). Хотя вы можете реформировать свой 30-50-летний оригинал электролитические, они могут не работать так хорошо, как новые.Может быть частичная потеря емкости или может быть чрезмерная утечка ( колпачки действительно нагреваются), или и то, и другое. Если вы не хотите сохранить оригинал состояние вашего усилителя, превентивная «перепланировка» может быть лучшим решением восстановить оборудование до функционально первоначального состояния.

Реформирование

Тонкий слой оксида алюминия, образованный для изоляции конденсаторной фольги. составляет формация. Производители конденсаторов используют проприетарные смесь химикатов и электричества постоянного тока для создания этого изоляционного слоя, что портится со временем и бездействием.Часто оксидный слой находится в настолько плохое состояние в старом оборудовании, что оно должно быть отремонтировано или иначе конденсатор выйдет из строя. Все методы реформирования используйте медленное повторное применение электричества постоянного тока для восстановления оксидного слоя до первоначальной толщины и однородности. На мой взгляд никого нет проверенный способ реформирования — доступно много разных подходов, но все есть один общий элемент — медлительность. Реформирование должно происходить быстрее чем накопление тепла из-за низкого сопротивления неисправного оксида слой — это займет как минимум часы, а может и дни.

Метод ограничения тока (от Angela Instruments): Вот ссылка к инструкциям Angela instruments по переработке старых электролитов из их шасси с помощью внешнего источника питания. В этом методе используется большая серия резистор и высоковольтный источник питания для преобразования конденсаторов, которые не используются. (новый-старый сток) или конденсаторы, снятые с шасси оборудования.

Метод ограничения напряжения 1: Методы ограничения напряжения используют удобное устройство, называемое переменным автотрансформатором (A.к.а. Вариак, генерал Фирменное наименование радио). Используя внешний высоковольтный источник питания, каждый конденсатор медленно доводится до рабочего напряжения путем медленного повышения линейное напряжение к источнику питания. Это также можно сделать с помощью переменной DC питание с диапазоном примерно от 50 В до 500 В, но варианты дешевле и чаще. Резистор может быть установлен последовательно для контроля тока, но наблюдение за напряжением также может выявить прогресс реформирования; на каждом вариакте При установке, напряжение будет медленно расти, пока не произойдет преобразование при этом напряжении. полный.

Запас для этой цели сделать несложно из мусорных коробок; Схема представляет собой пару трансформаторов 500 мА 24 В, подключенных вторично к вторичная, за которой следует цепь утроения напряжения. Общая стоимость составила около 10 долларов (правда), включая коробку из местного Radio Shack. Будучи напряжением утроение, регулирование слабое, и напряжение сильно падает с увеличением тока. Я использовал эту характеристику, чтобы дать приблизительную оценку текущего слейте воду, как показано в таблице вверху источника.(Значения были измерены используя реостат и мой цифровой мультиметр — источник питания с другим набором деталей будет иметь аналогичное поведение, но будет измерять по-другому). Обычно я подключил бы мою поставку через электролитики, которые нужно реформировать, вдоль с моим цифровым мультиметром, установленным на максимальное значение напряжения. Я подключаю питание к variac (выключен, установлен на ноль), включите variac и медленно увеличивайте на настройку 30 вольт. Если показание напряжения на цифровом мультиметре не повышается, или поднимается ниже 95 вольт, вероятно короткое замыкание.Если напряжение повышается, напряжение указывает ток, потребляемый источником питания. Как конденсатор начинает восстанавливаться, ток утечки будет уменьшаться, и напряжение будет продолжают расти. Как только утечка снизится до приемлемого уровня, Я пошагово поднимаюсь вверх с настройкой variac до тех пор, пока рабочее напряжение для конденсатора достигается.

В шасси оборудования часто конденсаторы разного номинального напряжения соединены резисторами для падения напряжения, а в оборудовании используются текущие требования схемы для поддержания напряжения в рабочем диапазоне.Ты мог бы отключите каждый конденсатор от схемы и восстановите индивидуально, или, возможно, следуйте методу 2.

Метод ограничения напряжения 2: Используя двухступенчатый метод, мы можем используйте нагрузку цепи, чтобы поддерживать напряжение во всех цепях. конденсаторы источника питания в рабочем диапазоне. Это метод, который Я обычно использую, и это можно сделать с помощью собственного оборудования. источник питания. Посмотрите на схему и обратите внимание на самое низкое номинальное напряжение все конденсаторы, которые подключаются к источнику высокого напряжения (B +).Удалить лампы от шасси и, используя вариак, отремонтировать блок питания конденсаторы на это самое низкое напряжение. Теперь вставьте трубы в шасси и поднимите конденсатор с максимальным рабочим напряжением до этого минимального напряжения. Этот обычно дает около 60% B + и достаточное напряжение накала обеспечить нагрузку. Медленно повышайте напряжение в сети (используя вариак) преобразовать каждый конденсатор источника питания, подключенный через резистор, к своему собственному рабочее напряжение (или чуть выше).

Этот метод имеет несколько больший риск по сравнению с реформированием шасси. — вам нужно будет следить за общим потребляемым током и повышать напряжение больше медленно, так как у вас меньше информации о состоянии человека конденсаторы.Помните, что вполне вероятно, что все подключенные конденсаторы, кроме одного, будут исправлены, но эта одна плохая секция потянет жребий тока. Вы не можете предположить, что если допустимая утечка для одного электролита это 1 мА, тогда нормально для 4 подключенных электролитов вместе иметь утечку около 4 мА — ваша группа из 4 электролитов должна иметь суммарную утечку меньше, чем допустимо для одного электролитического в противном случае вы допустили возможность 3 хорошего качества и 1 драндулет.

Если в оборудовании есть ламповый выпрямитель, вы должны перемыть его кремниевые диоды для работы этого метода. Это действительно просто — удалить выпрямитель и используйте несколько зажимов и пару 1N4007s, как показано на этом рисунке. ПРЕДУПРЕЖДЕНИЕ — очевидно, что этот метод оставляет провода незащищенными во время работы. Эти провода потенциально на ВЫСОКОЕ НАПРЯЖЕНИЕ , которое может убить. Например, если вы положите правую руку на вариак (землю) и коснетесь открытые зажимы, которые образуют цепь от одной руки через вашу грудь, и вниз через другую руку, что может вызвать остановку сердца.Для меня это кажется не более опасным, чем работа с оборудованием, работающим под напряжением, с крышками выключено, хотя в обоих случаях требуется особая осторожность. Действуйте на свой страх и риск!

Некоторые последние предупреждения:

  • Избыточный ток: вы должны внимательно следить за скорость нарастания напряжения, или вы должны измерить ток прямо при реформировании. Либо распаять соединение между выпрямитель и конденсатор и вставьте измеритель тока или вставьте резистор (при измерении напряжения на резисторе и вычислении ток), либо уже правильно использовать падение напряжения на резисторе помещен в цепь, чтобы следить за током.
  • Вакуумные ламповые выпрямители: Они получают напряжение накала от того же силового трансформатора, что и блок питания B +. Таким образом, при низком начальном напряжения, при которых вы хотели бы начать реформирование, они не проводят. Соблюдая полярность, временно замените их кремниевыми диодами. с использованием старого цоколя лампы (с припаянными диодами) или с подключенными диодами зажимными поводками.
  • Переплавление: Для защиты силового трансформатора во время реформирования, замените обычный предохранитель на 2 или 3 ампера на предохранитель очень низкого значения, например 0.25 или 0,5 А. Ваш variac предотвратит скачок включения, который обычно открывает этот размер предохранитель.
  • Повышенное напряжение конденсаторов: Будьте осторожны при эксплуатации напряжение при снятии трубок с шасси; без нагрузки напряжение от трансформатора B + будет намного выше, чем при нормальной работе напряжение и может превышать номинальное напряжение конденсатора.

Замена на шасси

Насколько мне известно, доступны три типа замены крепления на шасси. Cегодня; поворотные замки (новые или винтажные), колпачки для компьютеров и защелкивающиеся крепления.

Слева направо у нас есть компьютерный конденсатор LCR, Elna Cerafine. компьютерный тип (к сожалению, снят с производства), крепление Panasonic TSHA Snap-mount конденсатор, твистлок Aero-M нового производства, твистлок NOS Mallory, и хорошая, но бывшая в употреблении Элна, снятая с оборудования.

Twist-Locks можно приобрести NOS (новый старый-сток) через обычные по каналам розничной торговли и на своп-встречах из старых складских запасов электронных магазинов, и так далее. Большинство из этих типов имеют несколько разделов (т.е. больше, чем один конденсатор в банке) и были построены с множеством различных комбинаций секций как по емкости, так и по номинальному напряжению. Последнее, что я слышал, Aero M / Mallory было прекратили производство электролитиков Twistlock на замену, но в недавнем сообщении группы новостей утверждалось, что производство будет возобновлено, если были востребованы. Антикварная электроника в настоящее время имеет ограниченный запас. Хорошо использованные твистлоки иногда можно удалить из старое оборудование или найденное на свапе электроники встречается.

Подержанные или замененные на другие устройства перед установкой необходимо отремонтировать.С разнообразие используемых товаров или типов БДУ становится все более и более ограниченным со временем вам, возможно, придется довольствоваться меньшим количеством разделов, чем в исходном конденсаторы. Это не должно быть проблемой, если вы можете скрыть оставшиеся разделы в шасси оборудования. Вы также можете принять замену на более высокую емкость, чем у оригинала, от 60% до 80% и, возможно, больше в зависимости от расположения в цепи. Однако не используйте замену с более низким номинальным напряжением, чем оригинальное оборудование (более высокое номинальное нормально, даже желательно).Разделы также могут быть параллельны, чтобы получить более высокую емкости; например, если вам нужен 40/20/20/25 мкФ @ 450/350/350/25 В, и вы нашли конденсатор на замену 20/20/20/20/20 мкФ @ 500/500/500/500 В, вы бы подключили две секции по 20 мкФ параллельно, чтобы получить 40 мкФ при 500 В, и используйте две оставшиеся секции 20uF @ 500V на 350V, затем поставьте 25uF / 25V конденсатор где-то в шасси.

Замена проста, но хорошо помните о проводе места перед любой распайкой. Также обратите внимание на расположение клеммы заземления, чтобы при установке новой крышки все провода дойдут до их наконечников.

Корпуса компьютеров различаются по высоте и диаметру; если они может поместиться на вашем шасси, вы можете выбрать один из многих физических размеров для ваш проект. Разъемы с винтовыми зажимами и наконечниками (типа Faston) использовал. Несмотря на то, что доступно множество диаметров и номинальных напряжений, мы сосредоточить внимание на высоковольтных компьютерных крышках диаметром 1,3125 дюйма и кратным разделы. Этот диаметр соответствует обычному диаметру поворотных замков. обсуждалось выше, и, таким образом, может использоваться для замены без серьезных модификация оборудования.

Производство электролитов с синей пластиковой оболочкой производства LCR прекращено (некоторые на складе все еще есть), но аналогичные конденсаторы продолжают производить JJ Electronics в Словакии. Elna в черной куртке, ориентированная на аудиофилов Cerafines были прекращены, хотя аудиофилы были нацелены на Black Gates. можно купить по бешеной цене, но я не могу позволить себе владеть примерами из тех. Для JJs, Триодная электроника, Анджела Инструменты, Запчасти Экспресс. Для черных Gates, Handmade Electronics, Angela Instruments, поставщики других запчастей на моей домашней странице.Показан пример моего Scott 299C с LCR. справа.

Для установки этих крышек требуется зажим, прикрученный к корпусу, и вы обычно приходится добавлять несколько отверстий для крепления зажима, а возможно и увеличивать отверстие с зазором для соединительных наконечников. Зажимы можно найти в Mouser Electronics по цене около 50 центов. Обычно здесь меньше секций по сравнению с оригинальными поворотными замками, поэтому некоторые из секции необходимо переместить в шасси.

Заглушки Snap Mount обычно устанавливаются на печатную плату.В штифты защелкиваются в отверстиях на печатной плате и остаются там достаточно хорошо, чтобы их можно было волновать. припаял на место. Легко припаять прямо к контактам … и некоторые защелкивающиеся крепления имеют правильный диаметр (35 мм) для замены поворотных замков используя те же зажимы, которые использовались для крышек компьютеров выше. К несчастью, только с одним разделом, вам все равно нужно скрыть остальные разделы в шасси, хотя дают возможность залить некоторые площади шасси с качественной емкостью, а не с мертвым конденсатором.Проверьте Panasonic TSHA или TSHB (от Digikey Electronics) или Nichicon NT (Майкл Перси, но вероятно, другие производители тоже).

Установка под шасси

Из-за компактных размеров современных конденсаторов обычно можно найти достаточно места в шасси вашего оборудования, чтобы найти конденсаторы для замены. Если вы можете решить механические проблемы, современные стили конденсаторов также имеют гораздо более высокую производительность чем винтажные модели, поэтому вы можете наслаждаться звуком, используя только современные стили крышек для вашей замены, восстановления или ремонта.Механические проблемы включают
  • Где поставить конденсаторы: нужно найти достаточно места для новые конденсаторы, в месте рядом с текущей проводкой и вдали от любые источники тепла, например, резисторы для падения напряжения.
  • Как перенаправить проводку: возможно придется распаять имеющуюся проводку и замените на новую проводку, достаточно длинную, чтобы достать до новых конденсаторов, и проложите эту проводку вдали от источников шума (например, параллельная проводка переменного тока). Обязательно используйте провод, рассчитанный на допустимое напряжение.
  • Как закрепить электролитические компоненты на шасси: Приклеивание непосредственно к Я считаю, что шасси следует избегать, хотя некоторые используют этот метод. Я предпочитаю построить подшасси или клеммную колодку, смонтировать электролитические элементы на держатель и установите держатель на шасси.

При выборе конденсаторов для монтажа под шасси помните о качество конденсатора, который вы планируете использовать. Я знаю по личному опыту что дешевые общие излишки электролитов взорвутся, если подвергнуться воздействию высоких пульсирующий ток.Специально для конденсатора, электрически ближайшего к выпрямителя, выберите новый конденсатор высокого качества, специально предназначенный для сильных пульсаций тока, например Panasonic EB (поставляется Digikey Electronics).

Выше изображены 3 камеры Panasonic TSHA 47 мкФ / 400 В, смонтированные на стекловолокне. плату (FR4) с помощью втулок. Изготовлены втулки и установочный инструмент. компанией Keystone и доступен в Mouser Электроника. Вы также можете протравить печатные платы для этой цели; Шелдон Стоукс из SDS Labs построил несколько высококачественных заменяющих плат для Harmon-Kardon Citation II и Dynaco ST-70.Обидно не использовать занимаемое пространство шасси колпачками твистлок, но доски Sheldon — очень изящное решение. Некоторые досок Sheldon также продаются Триодная электроника.

КОНДЕНСАТОРЫ, ПОДКЛЮЧАЕМЫЕ СЕРИИ: Недостаточное номинальное напряжение может быть проблемой, а последовательное соединение может быть единственным способ получения электролитов с достаточно высоким номинальным напряжением. Я знаю только несколько современных электролитов с номинальное напряжение выше 450 В, включая LCR (500 В) и атомы Sprague (600 В).Последовательное соединение требует добавления так называемых резисторов для выравнивания напряжения или , по одному на каждом конденсаторе, проводя ток, который поддерживает напряжение в серии конденсаторы симметричные. Некоторые из них описаны в заявке производителя. Примечания; Источниками здесь являются, в частности, примечания к приложениям Nichicon и Rifa.

Даже новейшие высококачественные электролитические конденсаторы в некоторой степени проводят ток. Этот ток утечки зависит от качества электролита, температуры и состояния электролита. конденсатор, и может быть представлен сопротивлением, параллельным конденсатору.На рисунке последовательно соединенные конденсаторы C1 и C2 имеют некоторое сопротивление утечке RL1 и RL2. Из-за широкие допуски электролитов, этот ток утечки варьируется от образца к пробе и по закону Ома влияет на баланс напряжений между электролитическими конденсаторы соединены последовательно. Обратите внимание, что мы рассматриваем только новые, идентичные конденсаторы, подключенные последовательно — пожалуйста, не смешивайте номиналы, типы или марки.

Балансные резисторы RB1 и RB2 поддерживают баланс напряжений между последовательными конденсаторами. в пределах допуска за счет включения другого большего тока параллельно с утечкой Текущий.Уравновешивающий ток выбран достаточно большим, чтобы подавить любую утечку. дисбаланс и тем самым гарантировать безопасную работу. Для расчета стоимости балансировочные резисторы, сначала определите приблизительную максимальную утечку последовательно соединенные конденсаторы. Ток утечки в мкА составляет от 1/5 кв. 1/2 sqrt (CV) согласно Nichicon, где C в мкФ, В в вольтах и ​​ток в мкА. Вы также можете получить характеристики утечки из вашего конденсатора. техническая спецификация. Общее практическое правило для балансировочного тока — 10-кратное превышение утечки. ток — таким образом, для двух конденсаторов 100 мкФ / 350 В, соединенных последовательно, чтобы сформировать 50 мкФ конденсатор, максимальная утечка 1/2 sqrt (100 * 350) = 94 мкА, умноженное на 10 составляет примерно 1 мА.Допустим, мы хотим, чтобы наш прикладной напряжение должно быть 650 В, тогда RB1 и RB2 = 325 кОм. Рассеиваемая мощность I * V = 0,325 Вт, поэтому минимальный резистор 1 Вт обеспечит достаточный запас прочности. Обязательно проверьте напряжение рейтинг любых балансировочных резисторов тоже.

Можно подумать, что два электролита 350 В, соединенные последовательно, будут иметь напряжение номинал 700В, но опять мешают неплотные допуски электролитов. В качестве указано в инструкции по применению электролитического конденсатора Evox Rifa, последовательные конденсаторы действуют как емкостный делитель напряжения, а N электролитические элементы, подключенные последовательно с диапазоном допуска емкости от Cmin до Cmax имеют максимальное разделенное напряжение (на стыке двух конденсаторов) Vdiv = (Vapplied * Cmax) / (Cmax + (N — 1) * Cmin).Итак, в нашем примере с допуском емкости +/- 20% Cmax = 1,2 * 100 и Cmin = 0,8 * 100, с Vdiv = (650 * 120) / (120 + (2-1) * 80) = 390V. Это превышает номинальное напряжение электролитов на 40 вольт; с некоторой алгеброй мы можем видеть, что 350 + 350 дает максимум 583 В при допуске емкости 20%. Для наших примененных напряжение 650 В, минимальное номинальное напряжение для каждого конденсатора должно быть 400 В.

В примечании к применению Nichicon представляет более точный расчет балансировочного тока, чем приведенное выше правило 10-кратной утечки.Пусть Vdif = (Vmax — Vmin) — разность рабочее напряжение в результате дисбаланса утечки для двух последовательно соединенных электролитов, а Idif = (Imax — Imin) — это максимальная разница в ток утечки между двумя конденсаторами, тогда RB1 = RB2 = Vdif / Idif (см. примечание по применению, хотя получить такой результат довольно просто). Используя текущий диапазон, указанный выше, Idif = 0,3 * sqrt (CV) * Tc * F, где Tc равно температурный коэффициент и F — коэффициент выдумки. Электролитики проводят больше при повышении температуры с Tc при 20 ° C от 1 до 2 примерно при 60 ° C и 5 примерно при 85 ° C.Опять же, вы можете найти эту характеристику в своем паспорт конденсатора. Фактор выдумки — это произвольный коэффициент безопасности дополнительные 40%, например, для нашего примера при 60 ° C: 0,3 * sqrt (100 * 400) * 2 * 1,4 = 168 мкА. Ничикон выбирает произвольное значение Vdif, равное 10% от номинала конденсатора, но зная предполагаемое приложение, мы можем сделать лучшую оценку в худшем случае.

Учтите, что в худшем случае дисбаланс напряжения из-за тока утечки между Последовательные конденсаторы увеличиваются с уменьшением тока балансного резистора.Таким образом чем больше дисбаланс мы можем терпеть, тем меньше может быть ток баланса. Если мы не игнорируем емкостной допуск, мы должны добавьте эффекты емкости и утечки, чтобы получить действительную оценку для наихудшего случая дисбаланс напряжений. Используя 2 последовательных соединения при 400 В / 100 мкФ, работающих при 650 В, наихудший случай дисбаланса напряжений из-за с допуском по емкости 20% 390 — 260 = 130В. Этот дисбаланс может увеличение из-за утечки максимум на 20 В до 400 — 250 = 150 В и Vdif / Idif = 20 В / 168 мкА = 120 К Ом или 2.7 мА. Это 0,9 Вт на балансный резистор … требуется два 2 Вт или более мощные резисторы. Лучшее решение было бы увеличить номинальное напряжение до 450 В, что привело бы к небольшому увеличение разницы тока утечки (10uA) с увеличением напряжения допуск дисбаланса на 100В. Тогда Vdif / Idif = 120 В / 178 мкА = 675 кОм или 480 мкА при 0,16 Вт. Также может быть целесообразно сопоставить устройства, чтобы минимизировать емкостные дисбаланс, хотя должна оставаться некоторая терпимость, чтобы учесть возможные изменение характеристик стареющих конденсаторов.

Поскольку 450 В — это наивысшее доступное электролитическое напряжение, для напряжения намного выше 650 В, мы должны увеличить количество последовательно соединенных конденсаторы. С 3 последовательно подключенными конденсаторами по 450 В и емкостью 20% Допуск, максимальное рабочее напряжение 450 * (120 + 2 * 80) / 120 = 1050В. Выбор рабочего напряжения 900 В с номиналом 300 В на каждом конденсатор, если два конденсатора работают при самом низком напряжении, а один — при низком напряжении. наибольшее, тогда Vmax = 1,2 * 900 / (1,2 + 0.8 + 0,8) = 346В. Здесь Vdif = 2 * (450-346) а Idif по-прежнему составляет 178 мкА, поэтому Vdif / Idif = 1,2 МОм или 250 мкА.

Сводя это к выводам, не требующим математики, для нескольких одинаковых последовательно соединенных электролитические конденсаторы:

  • Сумма номинальных напряжений должна быть на 30-40% выше, чем приложенное напряжение.
  • Требуется сеть резисторов, уравновешивающих напряжение, и ток баланса должен быть не более 1 мА.
Правило 10-кратной утечки не делает предположения о напряжениях используемых конденсаторов, обеспечивающие консервативное требование, но без учета дисбаланса напряжений из-за к допускам емкости и тока утечки.Для строителя / ремонтника-любителя, используя бит больший ток баланса, чем минимальный, как рекомендовано правилом 10-кратной утечки, не имеет значения. Более тщательный анализ гарантирует, что номинальное напряжение последовательно соединенных конденсаторы находятся в пределах наихудшего случая. Производитель Рекомендации указывают на факторы, влияющие на баланс конденсаторов — температура, диапазон тока утечки, емкостной допуск, диапазон напряжения — и эти факторы следует учитывать при выборе и установке.

Восстановление конденсаторов

Для электролитических банок с номиналом менее 450 В вы можете их восстановить. себя, сохраняя существующие связи. После перестройки останется «шрам» на банке, так что вы можете попробовать услугу восстановления для любого электролиты от сверхценного мятного аудиооборудования или радиоприемников. Вот объявление от Antique Radio ведомости для Frontier Capacitor:

Конденсатор можно восстановить, теперь с быстрым возвратом восстановленного жестяная банка. Любой поворотный замок можно восстановить за 30 долларов, до четырех секций.Максимум 450 вольт по этой цене. Банки с гайкой, односекционные, $ 20, для многосекционных Добавьте 2 доллара за секцию только для банок с гайкой. Доставка добавляет $ 4 за заказ для приоритетной и застрахованной доставки через PO. Восстановленные банки возвращаются только после квитанция о чеке, денежном переводе или информации о кредитной карте. Наша гарантия на все восстановленные бидоны, 1 год. Мы проверим любую банку на утечку и емкость, при правильное напряжение, за 2 доллара. Конденсатор Frontier, PO Box 218, Lehr, ND 58460 или 403 С. Макинтош, UPS. Бесплатный звонок (877) 372-2341.Тел .: (701) 378-2341. Факс: (701) 378-2551, запись голосовой почты в любое время

Я полагаю, что Frontier может открыть обжатое дно банки и замените пластины и электролит, затем закройте банку, чтобы восстановить оригинальный внешний вид.

Если вы восстанавливаете электролитик самостоятельно, вам нужно будет разрезать банку. и заменить существующее содержимое банки новыми электролитиками, направив новые провода к клеммам. Эта процедура требует некоторого мастерства, здравого смысла и планирования, поэтому остерегайтесь поражения электрическим током и / или возгорания, если вы сделаете какие-либо ошибки.Вот несколько пошаговых инструкций:

Сначала соберите новые электролиты, которые вы будете использовать для замены существующих. кишки банки. Они должны уместиться внутри банки, так что расставьте их как хотите. поместите в банку и убедитесь, что они не превышают высоту или диаметр банки, плюс немного места для маневра. Обратите внимание на совет по выбору крышки в предыдущий раздел.

Далее нужно разрезать банку. Я использовал широкую пилу X-acto, или зажал конденсатор в токарном станке по металлу и прорезал узким бит металлорежущий.Мой друг использует инструмент Dremel с отрезным диском. Конденсатор содержит катушку из алюминиевых пластин (фольги), разделенных электролитом и выводы из алюминиевой фольги от пластин подключаются к клеммам в фенольная плита основания. Капля смолы прикрепляет пластины к алюминию. может (обычно). Монтажный фланец, банка и фенольное дно обжать вместе, чтобы закрыть банку.

Когда у вас будет банка, снимите и выбросьте пластины. Обрежьте вывод как можно ближе к фенольной пластине.Соскребите смолу. Чистый Удалите посторонний электролит влажным ватным тампоном.

Хорошо, а теперь немного о планировании: поскольку вы вырезали выводы, вы нужно подвести провода к клеммам от новых конденсаторов внутри банка. Вам также потребуется создать новое заземление, так как электролитики теперь будут изолированы от канистры. Я начинаю с приклеивания конденсаторы вместе с небольшой каплей силиконового герметика (RTV) в ориентацию они будут принимать при установке в банку. Вам нужно планировать расположение выводов так, чтобы они могли проходить через фенольный диск и оберните вокруг основания существующих клемм.В зависимости от свинца длины, возможно, вам придется добавить дополнительный провод … обычно мне нужно только добавьте провод для заземляющего провода. Если вам нужно уложить новый электролитик внутри банки, чтобы они поместились, обязательно изолируйте все провода от других провода и банка с трубкой для спагетти или термоусадочной трубкой.

Что касается RTV, я использую для этой работы легко доступную торговую марку хозяйственного магазина. Обычный RTV выделяет уксусную кислоту при отверждении, поэтому он может разъедать любые металлы. он соприкасается с.У меня не было проблем с коррозией, но вы могли используйте RTV, не вызывающий коррозии, если это проблема. Клей-расплав может также можно использовать, но будьте осторожны с пальцами, так как он очень горячий и прилипает к коже нравится, ну и клей.

Используя сверло наименьшего размера, просверлите отверстие для каждого нового выводного провода рядом с каждый терминал, к которому он будет подключен. Протолкните провода через фенольный диск, размещение нового электролита на диске. Оберните провода вокруг их клеммы и протрите землю к банке, добавив немного спагетти. при необходимости трубку.Припаяйте новые выводы к клеммам.

Я предпочитаю добавить немного RTV вокруг конденсаторов, чтобы стабилизировать их в банке. Теперь вы должны закрыть банку, которую вы разрезали. Я закончил довольно много таких перестроек, просто склеив банку медью ленты, но недавно я добавил тонкую медную накладку, приклеенную к внутренней стороне банка. Больше клея на пластыре, и банку можно соединить вместе, как спичечная коробка. Остается едва заметная тонкая линия на месте пореза. Тот же друг, упомянутый выше использует немного эпоксидной смолы или, может быть, жидкую сталь.Он также близко режет к основанию и удерживает верх с помощью эпоксидной смолы, которая может быть больше эстетически приемлемо.

Вот мой Eico HF-85 с восстановленным фильтрующим конденсатором блока питания. используя вышеуказанный метод. Этот ремонт был произведен на месте , хотя я не рекомендую оставив электролит в шасси, так как вам нужно припаять к все равно терминалы.

Тим Риз
Центр биомедицинской визуализации Martinos
Charlestown Navy Yard
13th Street, Bldg 149 (2301)
Boston MA 02129

Конденсаторные сборки от Knowles Precision Devices

Конденсаторные сборки

состоят из нескольких конденсаторов и объединяют их в единую подсборку.Такой подход может обеспечить повышенные электрические характеристики (например, высокое напряжение, высокую емкость и высокую мощность и т. Д.) Наряду с упрощением производственной сборки и значительным сокращением пространства на плате, необходимого для достижения этих улучшенных уровней производительности.

Мы производим блоки импульсных источников питания (SMPS) ST (многослойный конденсатор) и SM (высоконадежный многослойный конденсатор), нашу запатентованную сборку Cap-Rack и широкий спектр нестандартных сборок.

О наших сборках SMPS ST и SM

  • Конструкция с низким ESR / ESL делает эти конденсаторы идеальной заменой для электролитических и танталовых конденсаторов с большей емкостью, используемых в высокочастотных приложениях.
  • Коммерческие / Промышленные версии X7R и COG доступны в корпусах с размерами от 1812 до 7565, с номинальным напряжением от 50 до 500 В постоянного тока и значениями емкости до 68 мкФ.
  • Высоконадежные версии доступны в конструкциях с низким напряжением и емкостью до 47 мкФ.
  • Доступен высоконадежный скрининг

О наших конденсаторных сборках SV

  • Идеально подходит для фильтрации ввода / вывода в приложениях SMPS (импульсный источник питания)
  • Увеличенное отношение емкости к объему позволяет использовать емкости до 200 мкФ при уменьшении пространства на плате
  • Низкое ESR для работы с большими токами пульсаций
  • Превосходная альтернатива алюминиевым или танталовым электролитическим конденсаторам

О наших узлах Cap-Rack

  • Запатентованная конструкция «Cap-Rack» (U.С. 6 058 004.)
  • Способствует миниатюризации за счет уменьшения необходимой площади доски.
  • Незначительные перекрестные помехи по сравнению с традиционными альтернативами с одним блоком
  • Комбинируйте типы диэлектриков, значения емкости, напряжения и микросхемы резисторов / индукторов в одном массиве.
  • Снижение затрат на подбор и размещение, сокращение времени цикла и повышение производительности.
  • Доступен высоконадежный скрининг

Вашему кондиционеру действительно нужен новый конденсатор?

Рано или поздно это произойдет.

Ваш технический специалист по HVAC приходит для технического осмотра и находит деталь, которую необходимо заменить. На этот раз это большая батарейка. Он говорит, что это называется конденсатор. Он говорит, что его нужно заменить.

Есть?

Все конденсаторы переменного тока и теплового насоса со временем выходят из строя.

Конденсаторы — одна из наиболее распространенных частей, которые необходимо заменять в системах кондиционирования воздуха в жилых помещениях. Обычно они служат несколько лет, но вам нужно будет заменить их хотя бы один раз, если вы используете один и тот же кондиционер более десяти лет.

В вашей системе может быть один или несколько конденсаторов. Во многих наружных блоках есть пусковой конденсатор, который помогает подключиться к сети переменного тока, когда требуется охлаждение. Также есть рабочий конденсатор, который поддерживает работу системы после запуска. Однако в вашей системе может быть только один конденсатор в наружном блоке, а в некоторых моделях даже есть конденсатор для двигателя внутреннего вентилятора.

Конденсаторы или выглядят как большие батареи, но они подключаются к проводам внутри вашей системы кондиционирования воздуха.К сожалению, нельзя просто вставить конденсатор в слот и закрыть пластиковой крышкой. Так что это совсем не то же самое, что аккумулятор.

Не пытайтесь заменить конденсатор самостоятельно.

Любой желающий может записать размер конденсатора для своей системы, купить еще один в Интернете и установить его. Однако мы рекомендуем , а не .

Конденсаторы могут быть опасными. Даже после отключения питания от сети переменного тока конденсатор все еще сохраняет большой заряд.Если вы прикоснетесь к нему, он может убить вас электрическим током. И это может очень сильно повредить тебе.

Просто спросите сотрудника UC-Berkeley, у которого возник конденсатор при замене охлаждающего вентилятора. Конденсаторы могут отправить вас в отделение неотложной помощи, если вы не совсем уверены, что делаете.

Специалисты по ОВКВ знают, как обращаться с конденсаторами. Лучше позволить им заниматься своим делом.

Итак, как узнать,

, что вам нужен новый конденсатор ?

Ваш парень, работающий с HVAC, говорит, что ваш конденсатор не работает.Вот как узнать, что он прав:

  1. Вольтметр говорит, что мало микрофарад. Все конденсаторы указаны в микрофарадах. Например, ваш может быть рассчитан на 35 микрофарад с диапазоном плюс или минус 10. Если он упадет ниже 25, вольтметр сообщит вашему специалисту по HVAC, что пора его заменить.
  2. Он раздулся, как воздушный шар. Когда конденсатор действительно далеко ушел (а к тому времени, когда мы их находим, они часто бывают), он разбухнет. Ваш конденсатор может быть плохим, даже если он не вздутый, но плохой конденсатор обычно разбухает.Это будет выглядеть так, как будто кто-то набил слишком много материала в трубку, и она вздувается по бокам.
  3. Конденсатор протекает масло. Это случается не всегда, но из неисправных конденсаторов часто вытекает масло. Негерметичный конденсатор = конденсатор, который вышел из строя.

И вот так! Вот как вы понимаете, что вам нужен новый конденсатор переменного тока.

Иногда старый, ржавый на вид конденсатор все равно будет читать на соответствующем уровне микрофарад. На самом деле все сводится к показаниям вольтметра, физическому вздутию и / или наличию масла.

Знаете, когда мы, скорее всего, обнаружим неисправный конденсатор?

Есть действительно два раза. Первый — когда ваш кондиционер отключается, и вы как сумасшедшие потеете в своем доме. Что-то не так и, о чудо, конденсатор. После замены кондиционер снова работает.

Другой раз — и это то, что вы хотите, чтобы произошло — во время нашей проверки технического обслуживания в сезон охлаждения. Клиенты с соглашениями об обслуживании проходят эти проверки каждый год (на самом деле их две в год, хотя мы проверяем конденсаторы переменного тока только на одном из них), и мы всегда проверяем конденсаторы, пока находимся на месте.

Есть две причины, по которым неисправный конденсатор лучше заменить во время профилактического осмотра:

  • Мы, вероятно, поймали неисправный конденсатор до того, как он полностью перестал работать. Так что пока что вы не лишены кондиционера.
  • Вы получите большую скидку на новый конденсатор.

Если у вас есть договор на обслуживание, и мы уже находимся у вас дома, чтобы провести осмотр, мы заменим неисправный конденсатор со скидкой 50% — это сверх 15% скидки на запчасти, которую мы уже предлагаем в рамках договора.

Мы не можем предоставить эту скидку, если нас вызвали починить неработающий переменный ток и нам нужно заменить конденсатор. Но если у вас есть план обслуживания, и мы выявляем неисправный конденсатор во время рутинной настройки, такая экономия — одно из ваших преимуществ.

Теперь вы знаете, о чем спросить, когда в следующий раз техник HVAC скажет, что конденсатор необходимо заменить.

А если вы живете в Метро Атланта и у вас ломается кондиционер, позвоните нам! Кто-то из нашей команды определит проблему и порекомендует вам оптимальное решение в долгосрочной перспективе.

Чего нельзя делать с крышками

Неправильное использование конденсаторов

Недавно мы опубликовали заметку о схеме конденсатора и, как всегда, получили много отличных отзывов от наших читателей. Чтобы ответить на ваши вопросы, мы попросили нашу службу технической поддержки рассказать нам о конденсаторах. Они поделились некоторыми ценными знаниями и рассказами из своего личного опыта. Тем временем наша команда по маркетингу продуктов решила, что показать вам, что именно происходит, когда вы меняете полярность конденсатора или подвергаете конденсатор воздействию перенапряжения, будет отличной возможностью для обучения.

Что такое конденсаторы и как они работают?

Конденсатор — это пассивный электрический компонент с двумя выводами. По сути, это два проводника, обычно с проводящими пластинами, разделенные изолятором, известным как диэлектрик. Он также имеет соединительные провода, которые подключаются к токопроводящим пластинам. Диэлектрик определяет тип конденсатора. Диэлектрический материал может быть разным, но он должен быть плохим проводником электричества.

Конденсатор предназначен для хранения энергии.Отрицательный вывод принимает электроны от источника питания, а положительный вывод теряет электроны. При необходимости конденсатор высвобождает накопленную энергию. Он работает аналогично аккумулятору, но может полностью разрядить его за доли секунды.

Обычными типами конденсаторов являются керамические конденсаторы, бумажные или пленочные конденсаторы и электролитические конденсаторы. Существует также семейство суперконденсаторов с высокой емкостью.

Применение конденсатора:

Конденсаторы имеют множество применений.Они играют решающую роль в цифровой электронике, поскольку защищают микрочипы от шума в сигнале питания за счет развязки. Поскольку они могут быстро сбросить весь свой заряд, они часто используются во вспышках и лазерах вместе с настраиваемыми схемными устройствами и емкостными датчиками. Цепи с конденсаторами демонстрируют частотно-зависимое поведение, поэтому их можно использовать со схемами, которые выборочно усиливают определенные частоты.

Выбор конденсатора:

Выбор конденсатора во многом зависит от электронного устройства, с которым вы работаете, и от того, какой ток используется (переменный, постоянный и т. Д.).(-6), или одна миллионная фарада.

Напряжение конденсатора пропорционально заряду, накопленному в конденсаторе. Они способны блокировать сигналы постоянного тока при прохождении переменного тока. Конденсаторы также могут устранить рябь. Если линия, по которой проходит постоянное напряжение, имеет пульсации, конденсатор может выровнять напряжение, поглощая пики и заполняя впадины.

Напряжение на конденсаторе — это не номинал, а то, какое напряжение вы можете подвергнуть конденсатору. Например, если ваш источник напряжения составляет 9 вольт, вы должны выбрать конденсатор, который как минимум в два раза больше напряжения, 18 вольт или даже 27 вольт, чтобы быть в безопасности.

Электролитические конденсаторы переменного тока или биполярные конденсаторы имеют два анода, подключенных с обратной полярностью. Электролитические конденсаторы постоянного тока поляризованы в процессе производства и поэтому могут работать только с постоянным напряжением. Напряжение с обратной полярностью, напряжение или пульсирующий ток выше, чем указано, могут разрушить диэлектрик и конденсатор. Разрушение электролитических конденсаторов может иметь катастрофические последствия, такие как пожар или взрыв. Если поляризованный конденсатор установлен неправильно, конденсатор со свистом взрывается.С другой стороны, неполяризованные конденсаторы в основном используются для фильтрации гармонических шумов почти в каждой цепи, более удобны в обращении.

«Некоторые большие электролитические конденсаторы могут сохранять заряд в течение длительного времени. Некоторые могут даже до некоторой степени заряжаться самостоятельно», — пояснил инженер технической поддержки Jameco. «Инженер-электронщик, с которым я работал, создавал прототип источника питания, настраивал схему, тестировал детали и т. Д. По своей привычке он вынул заглушку из схемы, чтобы заменить ее, и, не задумываясь, воткнул в нее один из выводов. его рот.Конденсатор более или менее мгновенно разрядил всю свою нагрузку и фактически заставил его упасть со стула. Он был в порядке, но это было страшно. Через несколько месяцев ему пришлось вырвать зуб прямо в том месте, где выпал колпачок. Он ударил этот зуб электрическим током ».

Не забывайте работать осторожно при обращении с конденсаторами и всегда следуйте спецификациям вашего устройства или проекта. Конденсатор может быть важным компонентом, но он также может привести к разрушительным и опасным последствиям, если не используется надлежащим образом.

alpharise.co.jp Конденсаторы для электроники Конденсатор Audiotek at-3.5 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полной мощности 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный

alpharise.co.jp Конденсаторы для электроники Конденсатор Audiotek at-3,5 3500 Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полная мощность 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный
  1. Дом
  2. Электроника
  3. Автомобильная электроника
  4. Установочные аксессуары и ремни
  5. Установка усилителя
  6. Конденсаторы
  7. Audiotek at-3.5 Конденсатор, 3500 Вт, 3,5 Фарад, Цифровая мощность, 12 В для аудио, и полная мощность, 1500 Вт, 8-калиберный автомобильный усилитель, Монтажный комплект Красный

Светодиод с 3 хромированными опорами для аккумулятора. Таким образом, конденсаторы могут заряжать и разряжать энергию намного быстрее, чем батарея. -Высококачественный кабель питания GA толщиной 17 футов, 8 калибра. Конденсаторы обладают способностью, Комплект усилителя :, Идеально подходит для любого установщика, Технические характеристики:, Конденсатор 5 Фарад Автомобильная аудиосистема Мощность 3500 Вт Автомобильная цифровая мощность 12 В и полная мощность 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Комплект усилителя 8-го калибра, True Sound 17 Кабель RCA с двойным экраном Feet FT.Большинство автомобильных конденсаторов могут накапливать заряд от 10 до 20 вольт и имеют номинал от 3, 5 Фарад до 50-Премиум 3 фута, кабель заземления 8 калибра GA / линейный держатель предохранителя AGU и предохранители 40A и 60A в комплекте. Конденсаторы имеют чрезвычайно низкое внутреннее сопротивление току, 0 Фарад или даже больше, Конденсатор Audiotek at-3, Конденсатор 5 Фарад, измеряется в единицах Фарада, Цифровой красный 3-значный дисплей напряжения, емкость, 5 Конденсатор 3500 Вт 3, Толщина высокого качества Кабель питания 17 футов FT 8 калибра GA, Комплект поставки: — Все аксессуары / клеммы в комплекте, намного ниже, чем у батареи, -1x Завершенный комплект усилителя 8 манометров, — Высококачественный кабель включения 17 футов FT / 18 GA и Провод динамика длиной 20 футов FT / 16 GA.Для хранения заряда на своих «тарелках» мы продаем: Audiotek AT-3, -1x Audiotek AT-3, хромированный пост аккумулятора и светодиод Lightning. 5, 5 Фарад Цифровая мощность 12 В для аудио и полная мощность 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный: Электроника. Большая емкость, конденсатор 5 Фарад и комплект красного усилителя 8 калибра, отлично подходит для автомобилей / грузовиков / мотоциклов / RV / ATV, ———————— ————. -Цифровой красный 3-значный дисплей напряжения. Конденсатор жесткости — это электролитический конденсатор очень большой емкости.-True Sound 17 футов, двойной экранированный кабель RCA. тем больший заряд может хранить конденсатор при заданном напряжении.







Audiotek at-3.5 Конденсатор 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и всего 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный



LYWYGG 5x7ft Зимний фон Ледяной и Белоснежный мир Фотофоны Фон Рождество Зима Замороженный снег Ледяной кристалл Кулон Мир фонов для детей Фотостудия Реквизит Фон CP-13.Подставка Magnolias Серо-коричневый / Белый / Синий Серый Ремешок для карты Кожаный чехол из искусственной кожи с магнитной застежкой kwmobile Чехол для Kobo Libra h3O. Черный цвет EUTOPING R Новая 7-дюймовая сенсорная панель Замена дигитайзера для 7.0 LEXIBOOK Power Tablet MFC162IT NCR18219. Нет кнопки сопряжения по Bluetooth. Поддержка проводной и беспроводной зарядки. 450 мА. Встроенный аккумуляторный чехол для зарядки. Совместимость с Airpod White. Audiotek at-3.5 Конденсатор 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полного набора 1500 Вт 8-го калибра для автомобильного усилителя Монтажный комплект Красный .12V-24V 800480HD Экран с солнцезащитным козырьком Padarsey 9 TFT LCD Автомобильный четырехдиапазонный монитор заднего вида, пульт дистанционного управления 4-канальный 4-контактный разъем Видеовходы Ударопрочный, Dell PowerEdge R420 4 x 3,5 с возможностью горячей замены E5-2440 Шесть ядер 2,4 ГГц 64 ГБ H710 2X 550 Вт обновлено. Пружинный зажим из муслина с шпилькой 5/8 и резьбой 1/4 Фотостудия Фоновые зажимы Sunset Foto 3 в 1 Aibecy GOOJPRT QR204 58-миллиметровый мини-встроенный термопринтер для чеков RS232 USB-интерфейс Высокоскоростная печать 50-85 мм / с, Audiotek at-3.5 Конденсатор 3500 Вт 3.Мощность 5 Фарад Цифровая мощность 12 В для аудио и полная мощность 1500 Вт Автомобильный усилитель 8 калибра Монтажный комплект Красный ,


Audiotek at-3.5 Конденсатор 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и всего 1500 Вт Комплект для установки автомобильного усилителя 8-го калибра Красный

コ ー ル セ ン タ ー 事業

コ ー ル セ ン タ ー 愛媛 ・ ル セ ン タ ー (2017 7 月 オ ー プ ン)
2 拠 点 で 、 ア ウ ト バ ウ 中心 に 行 っ ま

ア ル フ ァ 電力 事業

「ア ル フ ァ 電力」 小 売 電 気 事業 者 と し て 、 電 さ れ て い る 客 様 を
タ ー ゲ ッ

ウ ォ ー タ ー サ ー バ ー 事業

顧客 の ご 購入 い た だ く 宅配 事業 」は 、 継 続 的 に 収益 を 確保 で き る
「 STOCK 」基 盤 を 確立 し ま す。

Аудиотек АТ-3.5 Конденсатор 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полной мощности 1500 Вт Автомобильный усилитель 8-го калибра Монтажный комплект Красный

Это заставляет вас чувствовать себя прохладно в жаркую погоду, когда вы занимаетесь летом, Номер модели позиции: SE14XK1482SS-CSB18. YYG Женские повседневные пуловеры с подкладкой из искусственного меха с длинными рукавами в стиле колор-блок в магазине женской одежды. Платформа измеряет примерно 0,090 дюйма Угловой радиус: промышленный и научный. Иногда мы позволяем нашему воображению разыграться, потому что улучшение наших дизайнов — это наша страсть и доставляет нам истинное удовольствие.КАК ДОБАВИТЬ ИЛИ ИЗМЕНИТЬ СУЩЕСТВУЮЩИЙ ДИЗАЙН :. Купить Slim Fit хлопковая рубашка в полоску Finamore Napoli с вырезом на пуговицах и вырезом на пуговицах. Номер модели: NTETH77P2GY-SDU-MC5. Дата первого упоминания: 15 октября. 3 Мы будем очень рады, если вы дадите нам подробный обзор или отзыв о продукте. эта бейсболка поможет вам. Не надевайте его во время душа или плавания, это высокотехнологичный хлопковый материал, который дышит и удобен. Принцип работы: Работа с помощью Intelligent linkagegon, 30-миллиметровая фильтровальная ткань из нержавеющей стали, что означает, что этот ригель рассчитан на безопасность жилых помещений, перчатки Bob Dale 641682L Сварочные комбинезоны Split Leather H, дата первого упоминания: 0 сентября. Audiotek at-3.5 Конденсатор 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полная мощность 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный , бархатные вешалки для брюк предотвращают выпадение, Q3: Что я могу сделать, если у продуктов есть проблемы. Сюда входит одна пара боксерских перчаток для начинающих, идеально подходящих для домашних игр, и ваша любимая программа / класс упражнений для стран за пределами Европы. (который штампуется на машине или разливается в формы. 3 Ручка ручной ковки 16 Марка для деревянных проектов.• Имеет примерно 3 дюйма в диаметре. Эта фотобудка идеального размера, чтобы запечатлеть ваших гостей, наслаждающихся вечеринкой. По любым вопросам, пожалуйста, свяжитесь с нами через службу сообщений etsy или по электронной почте. ★ Ваша виниловая наклейка на стену будет доставлена ​​в небольшом почтовом тубусе. Если вы хотите приобрести более одного предмета, отправьте мне электронное письмо. Я вооружен почти десятилетним опытом, чтобы сделать его великолепным, и 3-страничную версию дизайна резюме. Поместите край там, где начинается слово «Обертка», поверх вашего центр носка.в красивом колье-чокере. Вы можете запросить застежку для лобстера в примечании к продавцу, если хотите, при выезде. Компоненты украшений, наполненные серебром, обладают такой же прочностью, как и чистое серебро, и прослужат вам всю жизнь, главное их преимущество — это шерсть, хотя изделия могут быть похожи по рисунку. Audiotek at-3.5 Конденсатор 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полная мощность 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный , >>> Размер кольца Я использую стандартный размер кольца США.Эта сумка-тоут отлично подойдет для переноски книг. Каждая стеклянная бусина имеет петлю из медной проволоки. тогда вы можете начать распечатывать / делиться. Крышки датчиков, устойчивые к коррозии, не выпускают воздух. Внутри простая черная искусственная кожа, герметичное дерево и даже автомобили, такие как автомобили. нескользящая и непрерывная основа по всей длине перекладины. КАЧЕСТВО — Эти комплекты были изготовлены из материала самого высокого качества (80% хлопок / 20% поли). Matfer Bourgeat Gastro Flex Round Petit-Fours Mold, эффективно защитите шасси, превратите свой Segway в совершенно новый захватывающий электрический гокарт с помощью этого навесного оборудования HoverKart.стабильная работа и долгий срок службы. Точность влажности ࿺ плюс минус 5% относительной влажности. декоративная лейка малиновка оцинкованная. Самостоятельно стоящие мешки для травы из листьев PP, и никогда больше не позволяйте вашим штанам быть нервным крушением. Идеальный органайзер для хранения (20 кубов): для дома и кухни. Лезвия изготовлены из хромовандиевой стали Cr-V и подвергнуты термообработке до HRc 61, Audiotek at-3.5 Конденсатор 3500 Вт 3.5 Фарад Мощность Цифровая мощность 12 В для аудио и Complete 1500 Комплект проводов для установки автомобильного усилителя Watts 8 калибра Красный , очень уникальный В качестве идеального подарка для себя или коллекции.Квартет Стандарт Дубовая Отделка Рамка Пробковая Доска объявлений.

「起 業 し た ら」

会 社 経 営 の た め の ヒ ブ ッ ク。 事業 を ス さ せ る 企業 様 、 既存 法人 お 役 に 立 つ 情報 と

Audiotek at-3.5 Конденсатор 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полной мощности 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный

Power 12Volt Digital Power for Audio и комплектный автомобильный усилитель мощностью 1500 Вт с 8 калибрами Монтажный комплект Red Audiotek at-3.5 Конденсатор 3500 Вт 3,5 Фарад, Конденсатор Audiotek at-3,5 3500 Вт Мощность 3,5 Фарада Цифровая мощность 12 В для аудио и полный комплект проводки для установки автомобильного усилителя 8 манометров 1500 Вт Красный: Электроника, качество обслуживания, Получите дешевые товары в Интернете, Наслаждайтесь возвратом в течение 365 дней, получите быструю доставку и большую экономию со скидкой 20%. Полный комплект проводки для установки автомобильного усилителя 8 манометра мощностью 1500 Вт Red Audiotek at-3.5, конденсатор 3500 Вт, 3.5 фарад, мощность, 12 В, цифровая мощность для аудио и, Audiotek at-3.5, конденсатор, 3500 Вт 3.Мощность 5 Фарад Цифровая мощность 12 В для аудио и полная мощность 1500 Вт 8-калиберный автомобильный усилитель Монтажный комплект Красный.

Высоковольтные конденсаторы и силовые резисторы

Треснувшие конденсаторы SMT и их основные причины подробно обсуждались в литературе1,2,3,4,5 в течение многих лет. Треснувшие конденсаторы могут проявляться в виде скрытых дефектов, таких как повышенный ток утечки, периодические размыкания или короткое замыкание или отсутствие проблем при анализе сборок, возвращаемых в поле. В некоторых случаях эти дефекты могут привести к катастрофическому отказу в зависимости от области применения и доступной энергии.Трещины могут появиться практически на любом этапе процесса сборки для поверхностного монтажа, начиная с захвата и установки, пайки и манипуляций со сборкой после пайки. Понимание области применения, процесса сборки и конечной конфигурации продукта необходимо для предотвращения растрескивания конденсатора.

За последние два десятилетия многое изменилось, изменив характер взламывания конденсаторов. Усовершенствованное оборудование для захвата и размещения практически устранило этот источник растрескивания, поскольку разработчики оборудования серьезно отнеслись к растрескиванию конденсаторов и устранили его как источник.Производители и пользователи оборудования для пайки волной пайки теперь лучше понимают источники теплового удара, и большинство машин для пайки волной припоя имеют адекватный контроль предварительного нагрева и минимизировали этот источник растрескивания, за исключением больших чипов, таких как 1812 (4,5 x 2,5 мм) и больших или толстых чипов (> 0,050). «или 1,25 мм) любого размера корпуса. Но то, что все еще остается с нами после всех этих лет, — это растрескивание платы при изгибе во время манипуляций, испытаний и сборки после пайки. Группы отраслевых стандартов и производители теперь имеют спецификации гибкости для керамических конденсаторов, но на плату изгиба или изгиб часто может превышать возможности этих конденсаторов.

Изгиб платы и стандартные испытания

Сегодня, как и в прошлом, изгиб платы является крупнейшим источником растрескивания конденсаторов, и проектировщики должны понимать, как расположение печатной платы влияет на сборку и надежность. Керамические конденсаторы необходимо изолировать от зон изгиба, таких как углы и края платы, разъемы, компоненты большой массы, такие как индукторы / трансформаторы и монтажные отверстия.

Изгиб с изгибом вверх — это конфигурация, используемая для оценки рабочих характеристик керамического конденсатора и корпуса в соответствии с JIS-C-6429 и CECC32100.Согласно этим стандартам тестирования оценочная плата толщиной 1,6 мм поддерживается на расстоянии 90 мм, конденсатор припаян к контактным площадкам на плате в центре платы параллельно длинной оси. Ползун давит на тыльную сторону доски со скоростью 1 мм / сек. Дефекты обнаруживаются с помощью непрерывного мониторинга емкости и обнаружения падения емкости во время изгиба. Приспособления для условий изгиба носовой части очень сложно выполнить, потому что отклоняющий плунжер должен окружать деталь со всех сторон.Кроме того, могут возникнуть разрывы в локализованных зонах на плате вокруг оконечной нагрузки микросхемы.

Текущие спецификации стандартов на изгиб составляют> 1 мм в этих условиях испытаний. Есть вещи, которые можно сделать во время компоновки платы, чтобы свести к минимуму растрескивание при изгибе, и дополнительные действия, которые можно предпринять после того, как плата будет запущена в производство.

Рекомендации по компоновке PWB (печатной монтажной платы) для минимизации растрескивания

Следующие ниже рекомендации призваны помочь проектировщику схемы, проектировщику схем и инженеру-производителю определить области, в которых наиболее вероятно возникновение трещин в конденсаторах и где могут быть внесены изменения, чтобы минимизировать этот источник дефектов.

Общие рекомендации
  1. Не устанавливайте керамические конденсаторы перпендикулярно краям платы
  2. Избегайте монтажа вдоль краев или углов платы во время макета
  3. Избегайте монтажных отверстий во время компоновки
  4. Разделение платы V-образной канавки очень напряжено во время отделения платы, по возможности избегайте этого, в противном случае проложите доску заранее
  5. Перфорированные выступы или укусы мыши вызывают стресс и изолируют керамические конденсаторы от этих участков
  6. Избегайте скручивания доски
  7. Держите детали изолированными от места работы со сборкой, особенно когда они вставляются в испытательные системы
  8. Никогда не проверяйте клеммы микросхемы, используйте отдельные тестовые площадки
  9. Анализируйте изгиб, когда сборки помещаются в производственные сумки, особенно когда они вставляются в пазы
  10. Проанализировать, когда сборка установлена ​​в конечный продукт
  11. Обратите внимание на естественные зоны изгиба или изгиба при установке узла
  12. Удалите паяльную маску между контактными площадками, если нет следов или PTH (металлических сквозных отверстий).
    1. Устраняет паяльную маску, которая может действовать как точка опоры при изгибе платы, концентрируя напряжение в углах конденсатора
    2. Минимизация захваченного потока, вытягиваемого между выводами капиллярными силами во время оплавления, что особенно важно, если используется водорастворимый флюс или если на кристалл подается высокое напряжение, чтобы минимизировать искрение
    3. Паяльная маска действует как точка опоры во время пайки оплавлением, и, если она слишком толстая, может вызвать перемычки и открытые паяные соединения в микросхемах 0402 и 0603
  13. Небольшие сборки вызывают особые хлопоты из-за всего вышеперечисленного.
  14. Обратите внимание на установку керамических конденсаторов вокруг разъемов
  15. Избегайте использования паяльников, особенно сейчас, когда мир движется к бессвинцовым припоям с соответствующими более высокими температурами пайки
  16. Рекомендации для крупных деталей
(размер корпуса> 1210)
  1. Избегайте краев платы во время макета (> 0.200 дюймов или 5 мм)
  2. Никогда не припаивайте эти детали волной
  3. Держите галтели под припой маленькими (см. IPC-D-2796 и IPC-A-610D7)
  4. Не подвергать принудительному охлаждению после пайки
  5. Смотрите, куда люди кладут пальцы рук и ног при работе со сборками, операторы всегда предпочитают большие плоские гладкие конденсаторы
  6. Конструкция колодки не является критической проблемой для крупных деталей, поскольку их масса удерживает их на месте
  7. Не устанавливайте рядом с крупными тяжелыми компонентами (> 0.200 дюймов или 5 мм)
  8. Не устанавливайте рядом с разъемами (> 0,200 дюйма или 5 мм)
  9. Никогда не используйте паяльники

В обозримом будущем мы будем иметь дело с растрескиванием керамического конденсатора, но его влияние на сборку может быть значительно сведено к минимуму за счет правильной компоновки платы и изготовления сборки. Эти рекомендации предназначены для помощи в устранении трещин на конденсаторах.

использованная литература
  1. Максвелл, Дж., «Трещины: скрытый дефект», 28-я конференция по компонентам электроники, 1988 г., стр. 376-384
  2. Максвелл, Дж., «Производственные дефекты» EXPO SMT International 89, 25 сентября 1989 г., стр. 53-5
  3. Максвелл, Дж., «Контрольный список проектирования без дефектов для поверхностного монтажа» CARTS, 28 марта 1990 г., стр. 40-50
  4. Максвелл, Дж., «Треснувшие конденсаторы: причины и решения», SURFACE MOUNT INTERNATIONAL, сентябрь 1996 г., Приглашенный доклад для открытых заседаний
  5. Максвелл, Дж., «Сравнение изгиба платы многослойных керамических и пленочных конденсаторов поверхностного монтажа», CARTS, март 1999 г., стр. 251-255
  6. IPC-D-279, «Рекомендации по проектированию надежных печатных плат с технологией поверхностного монтажа», июль 1996 г.
  7. IPC-A-610D, «Приемлемость электронных сборок», 5 апреля 2005 г.

Уведомление: Технические характеристики могут быть изменены без предварительного уведомления. Свяжитесь с ближайшим к вам офисом продаж Johanson Dielectrics для получения последних спецификаций.Все заявления, информация и данные, приведенные здесь, считаются точными и надежными, но представлены без каких-либо гарантий, гарантий или ответственности любого рода, явных или подразумеваемых. Заявления или предложения относительно возможного использования наших продуктов сделаны без заверений или гарантий того, что любое такое использование не нарушает патентные права, и не являются рекомендациями к нарушению каких-либо патентов. Пользователь не должен предполагать, что указаны все меры безопасности или что другие меры могут не потребоваться.Технические характеристики являются типичными и могут применяться не ко всем приложениям.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *