+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Заземление и уравнивание потенциалов — в чём разница? Инженерная хитрость для безопасности! | Электрика для всех

В любой проводке есть как бы два уровня: уровень питания, который снабжает приборы энергией и уровень защиты, который служит только для защиты нас с вами от опасных случайностей, например утечки тока в холодильнике.

В нашей статье мы расскажем о малоизвестном дополнении к известному всем заземлению — об уравнивании потенциалов. Оно есть в каждом многоквартирном доме, но далеко не в каждой квартире и не в каждом частном жилье — а жаль!

Уравнивание потенциалов — когда 220 Вольт не бьётся током

Удар током или протекание электричества через тело человека может появиться при одном условии — если имеется две точки электропроводки разного потенциала, подключенные к телу. Если вы дотронетесь до фазы 220 Вольт, но при этом не будете стоять на земле, либо встанете на резиновый коврик, то ничего не почувствуете.

То же случится, если вдруг пол, на котором мы стоим, окажется подключен, через сетку в бетонной стяжке, к напряжению сети. 220 Вольт на проводе, 220 Вольт на полу: разницы потенциалов нет и опасности тоже. Так и устроено уравнивание потенциалов.

Основная СУП и дополнительная СУП — в чём различие?

Многоэтажный дом, который снабжается электричеством через подземный кабель, обязательно имеет уравнивание потенциалов в подвале: с шиной заземления соединены трубы с газом, водой, а также фундамент и стены здания. Так здание оказывается в единой «капсуле защиты». Это называется «основная система уравнивания потенциалов» (ПУЭ 7 1.7.82) или коротко «СУП».

Однако, в ванных комнатах квартир, где бывает высокая влажность, основной СУП недостаточно: опасным может оказаться даже небольшой потенциал, возникающий, например при утечке на трубы воды. Для гарантированной защиты в таких местах сооружают дополнительную СУП (ПУЭ 7 1. 7.83). Она повторяет основную, но в миниатюре: в специальной коробке соединяются трубы воды, чаша ванной, металлические корпуса электроприборов и, при соединении смесителей стальными трубами — и смесители. Что называется, защита для настоящих параноиков. Однако, много безопасности не бывает.

Важное уточнение — о старых домах

В старых домах, например хрущёвках, заземления как такового нет: трубы и прочие железяки в подвале соединены с нулевым проводом — как и корпуса щитков на каждом этаже. Эта система ненадёжна и подключать к ней СУП ванной не стоит — вы рискуете получить ванную и трубы бьющиеся током.

В таких зданиях лучшая защита это УЗО, подключенное к проводам всех розеток, с током утечки не больше 30 мА.

Резюме

Итак, что делает система уравнивания потенциалов (СУП)? Это:

  • соединение всех железок, труб и бетонных конструкций с заземлением;
  • выравнивание всех напряжений, которые попадут на проводящие детали для того, чтобы они «не бились»;
  • защита в санузлах многоэтажек на случай халатности соседей сверху, «заземляющихся» на трубу воды.

Позаботьтесь о своей защите и не ставьте СУП, если у вас старый дом — до полной реконструкции его электрики.

Спасибо за просмотр!

Уравнивание и выравнивание потенциалов в чем отличие. Дополнительное уравнивание потенциалов Система выравнивания потенциалов в ванной

Учитывая повышенную влажность и перепад температур, свойственные ванным и душевым комнатам вполне очевидна обоснованность довольно жестких требований действующих нормативных документов в отношении электрооборудования и электропроводки этих помещений.

Так, помимо необходимости прокладки в в ванных и душевых помещениях только скрытой электропроводки — требование ПУЭ (7.1.40), согласно тех-же Правил (7.1.47) устанавливаемое электрооборудование каждой зоны должно иметь соответствующую ей степень защиты от попаданий воды.

Кроме того, в качестве меры повышения уровня электробезопасности в отношении защиты человека от поражения электрическим током также является обязательность применения для групповых линий питания ванных и душевых комнат устройств защитного отключения (УЗО, дифавтоматов) с отключающим дифференциальным током до 30 мА (7. 1.82).

Не менее важным требованием является и наличие дополнительной системы уравнивания потенциалов (ДСУП), к которой должны быть подключены все доступные прикосновению человеком открытые токопроводящие части стационарных ЭУ.

ДСУП в ванной

Электрические потенциалы доступных прикосновению открытых токопроводящих частей ванных комнат имеют определенные величины. Причинами их возникновения могут быть блуждающие токи, статическое электричество, разные структуры токопроводящих материалов.

Разница потенциалов токопроводящих частей (собственно, напряжение) — труб водоснабжения, канализации, ванн, умывальников и пр. может достигать опасных для человека значений — когда одновременное прикосновение к ним может вызвать удар электрическим током.

Если раньше в подобных ситуациях потенциал уравнивался теми-же электрически связанными и заземленными (!) металлическими трубами, то в наше время зачастую может иметь место частичная замена труб канализации, ГВС и ХВС на пластиковые.

То есть, говорить о каком-то гарантированном уравнивании потенциалов и заземлении этих труб в отдельно взятой квартире, учитывая что этажом ниже не исключена их замена на пластиковые, не проводящие ток, разумеется не приходится.

Принципиально ДСУП представляет объединение — создание электрической связи всех токопроводящих доступных для прикосновения частей коммуникаций и сантехнического оборудования и их соединение с главной заземляющей шиной.

Правила монтажа ДСУП

Основным элементом ДСУП являет коробка уравнивания потенциалов (сокр. КУП), шина которой соединяет провода от заземляемых объектов между собой и с ГЗШ. Коробка может быть как открыто установлена, так и спрятана в полости стены или нише — при этом не стоит забывать о необходимости доступа к ней для возможности ее дальнейшего обслуживания.


Как и при монтаже электропроводки, на начальном этапе следует определиться с местами прокладки проводов ДСУП от заземляемых объектов до КУП — рекомендуется проложить кратчайшим путем.

Присоединение проводников к заземляемым частям может быть выполнено любым способом, обеспечивающим качественный и надежный контакт — сваркой, болтовым соединением, для присоединения к трубам могут быть использованы хомуты.


Присоединения необходимо выполнять отдельными ответвлениями, избегая последовательных соединений (иначе говоря, «шлейфы» недопустимы). Рекомендуемое сечение проводников : 4-6 мм2 для провода от КУП до ГЗШ, 2,5-4 мм2 для проводов от коробки до заземляемых объектов. Рекомендуемые и наиболее часто используемые марки провода ПВ-1 и ПВ3.

Или здание помимо электрического оборудования имеет множество других инженерных узлов, которые в нормальном режиме не находятся под напряжением. Это такие элементы как металлические трубопроводы горячего и холодного водоснабжения, канализации, металлические короба вентиляции, металлорукава, строительные конструкции и т.д. Иными словами, любое здание имеет множество элементов и конструкций, способных проводить электрический ток, но зачастую не предназначенных для этого.

Каждая металлическая часть коммуникаций обладает электрическим потенциалом. В силу законов физики эти потенциалы для каждого металлического элемента могут отличаться, образуя разность потенциалов т.е. электрическое напряжение.

Электрическое напряжение между неизолированными металлическими элементами создает опасность для человека. Также причиной возникновения напряжения между нетоковедущими элементами могут быть выход из строя изоляции фазных жил кабелей системы электроснабжения, атмосферные перенапряжения (молния), статическое электричество, блуждающие токи и так далее.

Для того что бы потенциалы всех металлических элементов были одинаковы и создается система уравнивания потенциалов . Если токоведущие части имеют непосредственное электрическое соединение, то потенциал их всегда одинаков, и напряжение между ними не возникнет.

В соответствии с действующими нормативными документами в каждом здании (сооружении) должна быть выполнена основная система уравнивания потенциалов, которую следует реализовать путем присоединения к

главной заземляющей шине (ГЗШ) электроустановки следующих проводящих частей:

— защитных проводников;

— заземляющих проводников устройств защитного, функционального и молниезащитного заземлений, если такие устройства в электроустановке здания (сооружения) предусмотрены;

— металлических труб коммуникаций, входящих в здание (сооружение) извне: холодного и горячего водоснабжения, канализации, отопления, газоснабжения (в случае наличия изолирующей вставки на вводе в здание присоединение осуществляется после неё со стороны здания) и т.

п.;

— металлических частей каркаса здания (сооружения) и металлических конструкций производственного назначения;

— металлических частей систем вентиляции и кондиционирования;

— основных металлических частей для усиления строительных конструкций, таких как стальная арматура железобетона, если это возможно;

— металлических покрытий (оболочек, экранов, брони) телекоммуникационных кабелей (при этом следует принять во внимание требования собственника указанных кабелей или организации, обслуживающей эти кабели, относительно такого присоединения).

Проводящие части, которые входят в здание (сооружение) извне, должны быть соединены с проводниками основной системы уравнивания потенциалов как можно ближе к точке ввода этих частей в здание (сооружение).

Пример построения схемы системы уравнивания потенциалов в нашиш проектах приведен в статье ««.

Иногда для обеспечения безопасности помимо основной системы уравнивания потенциалов необходимо создание .

Дополнительная система уравнивания потенциалов выполняется в дополнение к основной системе уравнивания потенциалов, когда защитное устройство не может обеспечить выполнение требований к времени автоматического отключения питания.

В некоторых специальных электроустановках с повышенной опасностью поражения электрическим током, например, расположенных в ванных и душевых помещениях , нормативные документы, в которых рассматриваются эти электроустановки, могут требовать выполнение дополнительной системы уравнивания потенциалов при любых обстоятельствах.

Дополнительная система уравнивания потенциалов может охватывать всю электроустановку, ее часть или отдельные аппараты электроустановки.

Дополнительная система уравнивания потенциалов должна объединять (путем соединения защитными проводниками) все доступные одновременному прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, в том числе, если это возможно, основные металлические части для укрепления строительных конструкций, такие как стальная арматура железобетона.

К дополнительной системе уравнивания потенциалов должны быть также присоединены защитные проводники всего электрооборудования, в том числе штепсельных розеток.

Для выполнения функций проводников основной и дополнительной систем уравнивания потенциалов следует применять, как правило, специально проложенные стационарные проводники.

Величины сечения проводников основной системы уравнивания потенциалов должны быть не меньшими 6 мм 2 по меди, 16 мм 2 по алюминию и 50 мм 2 по стали.

Сечение проводника дополнительной системы уравнивания потенциалов должно быть не меньшим 4 мм 2 по меди (при наличии механической защиты допускается 2,5 мм 2) и 16 мм 2 по алюминию.

Уравнивание потенциалов — снижение разности потенциалов между доступными одновременному прикосновению открытыми проводящими частями — ОПЧ , сторонними проводящими частями — СПЧ , заземляющими и защитными проводниками (РЕ — проводниками), а также РЕN — проводниками путем электрического соединения этих частей между собой.

Назначение уравнивания потенциалов с помощью эквипотенциальных связей — сделать среду обитания человека свободной от появления разности потенциалов и обезопасить человека от поражения электрическим током. Это означает, что все проводящие части электротехнического (ОПЧ) и неэлектротехнического оборудования, строительных конструкций (СПЧ) должны быть соединены между собой.

Части, которые не могут сохранить общий потенциал (не могут быть присоединены к общей системе уравнивания потенциалов), должны быть отделены от остального оборудования таким образом, чтобы они не были доступны для одновременного прикосновения. Если в результате повреждения изоляции или индукции возникает импульс напряжения на одной из доступных проводящих частей, то все доступные одновременному прикосновению проводящие части должны приобрести то же самое напряжение для исключения появления разности напряжений , опасной для человека. В случае, когда одна из доступных частей является землей, все окружающее оборудование должно быть соединено с землей через возможно более низкое сопротивление.

Выравнивание потенциалов — снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу (или на поверхности) и присоединенных к заземляющему устройству , либо путем применения специальных покрытий. При распределенном заземляющем устройстве безопасность обеспечивается не только уменьшением потенциала заземлителя, но и выравниванием потенциалов на защищаемой территории до такого значения, чтобы максимальные напряжения прикосновения и шага не превышали допустимых.

Изменение потенциала в пределах площадки, на которой размещены электроды заземлителя, происходит плавно . При этом напряжение прикосновения U пр и напряжение шага U ш имеют небольшие значения по сравнению с потенциалом заземлителя. Однако за пределами контура по его краям наблюдается крутой спад потенциала. Чтобы исключить в этих местах опасные напряжения шага, которые особенно высоки при больших токах замыкания на землю, по краям контура за его пределами (в первую очередь в местах проходов и проездов ) укладывают в землю на различной глубине дополнительные стальные полосы , соединенные с заземлителем. Тогда спад потенциала в этих местах происходит по пологой кривой.

Внутри помещений выравнивание потенциалов происходит благодаря металлическим конструкциям, трубопроводам, кабелям и подобным им проводящим предметам, связанным с разветвленной сетью заземления. Арматура железобетонных зданий также способствует выравнивание потенциалов.

Уравнивание потенциалов — электрическое соединение проводящих частей для достижения равенства их потенциалов. ПУЭ, п. 1.7.32. Защита от косвенного прикосновения.

Так как защитное заземление (ЗУ) имеет сопротивление, и в случае протекания через него тока оказывается под напряжением, его одного недостаточно для защиты людей от поражения током.

Правильная защита создается путём организации системы уравнивания потенциалов (СУП), то есть электрического соединения и PE проводки, и всех доступных для прикосновения металлических частей здания (в первую очередь водопроводы и отопительные трубопроводы).

В этом случае, даже если ЗУ окажется под напряжением, под ним же оказывается всё металлическое и доступное для прикосновения,т. е. происходит растекание тока по значительной поверхности, что снижает напряжение, и как следствие — риск поражения током.

В кирпичных домах советского периода, как правило, СУП не организовывалась, в панельных же (1970-е и позже) — организовывалась путем соединения в подвале дома и рамы электрощитков (PEN ) и водопроводов.

Определения:

Защитное заземление -заземление, выполняемое в целях электробезопасности — ПУЭ п.1.7.29.

Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) — ПУЭ п. 1.7.30.

Определение FE для сетей питания информационного оборудования и систем связи дано в следующих пунктах:

«Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)» — ГОСТ Р 50571. 22-2000 п. 3.14.

«Функциональное заземление может выполняться путём использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

«Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его к главной заземляющей шине (ГЗШ)» — ГОСТ Р 50571.21-2000 п. 548.3.1

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2) заземляющий проводник, присоединённый к заземляющему устройству электроустановки, в системах IT и TT;

3) заземляющий проводник, присоединённый к заземлителю повторного заземления на вводе в здание;

4)металлические трубы коммуникаций, входящих в здание…

5) металлические части каркаса здания;

6) металлические части централизованных систем вентиляции и кондиционирования….

7) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8) заземляющий проводник функционального (рабочего) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов — ПУЭ п. 1.7.82.

Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток — ПУЭ п. 1.7.83. ГОСТ Р 50571.3-94.

Система местного уравнивания потенциалов.

Незаземлённая система местного уравнивания потенциалов предназначена для предотвращения появления опасного напряжения прикосновения.

Все открытые проводящие части и сторонние проводящие части, одновременно доступные для прикосновения, должны быть объединены.

Система местного уравнивания потенциалов не должна иметь связи с землёй ни непосредственно, ни посредством открытых или сторонних проводящих частей.

Обозначения:

РЕ — защитное заземление

FE — рабочее (функциональное, технологическое) заземление

Функциональное заземление применительно к учреждениям ЛПУ — для обеспечения нормальной, без помех работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования

(электрокардиограф, электроэнцефалограф, реограф, рентгеновский компьютерный томограф и тп. ) в помещениях операционных, реанимационных, родовых, палатах интенсивной терапии, кабинетах функциональной диагностики и других помещениях при установке в них указанной аппаратуры.

При отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.

Где ГЗШ — главная заземляющая шина защитного заземления.

ГШФЗ — главная шина функционального (рабочего) заземления.

Вариант «А» , с точки зрения электробезопасности, допустим только при условии, что аппаратура питается от разделительного трансформатора (IT — сеть).

Использовать данный вариант для сетей типа TNS категорически не рекомендуется!


Рис.2. Схема протекания тока замыкания на корпус аппарата при использовании независимого функциональног заземления в сети типа TN.

Так как функциональное заземление в отличие от защитного не имеет точки соединения с ГЗШ, а соответственно с нейтралью, то токи короткого замыкания составят не сотни и тысячи ампер, как это происходит при защитном заземлении, а всего лишь десятки ампер. Ситуация усугубится при условии, что FE по заданию выполнено 10 Ом, а в цепи отсутствует УЗО (вычислительная техника, томографы, рентгеновское оборудование и тд.).

Максимальный ток короткого замыкания составит 15,7А.

I кз = 220(В) / (4 + 10)(Ом) = 15,7(А)

При данной схеме питания лучше воспользоваться вариантом «В» или «С», особенно если речь идет о мощном стационарном оборудовании (рентгенаппараты, МРТ и тд.).

Помимо сказанного выше, ситуация (с точки зрения электробезопасности) осложняется вероятностью возникновения разности потенциалов на раздельных системах заземления, тем более если эти системы заземления находятся в пределах одного помещения см. рис.3.

  1. Шаговое напряжение при срабатывании системы молниезащиты.
  2. КЗ на корпус в сети ТN-S до срабатывания системы защиты
  3. Внешние электромагнитные поля.

Вариант «В» удобен при реконструкции уже действующих объектов. Функциональное заземление при этом нередко выполняют с использованием составного, глубинного заземлителя. Второй положительный момент — функциональные заземлители и заземлители защитного заземления связанные между собой проводником уравнивания потенциала взаимно дублируют друг друга увеличивая надежность системы заземления.

Со временем здания приобретают все более широкую и усложненную систему электрооборудования. Тем самым потребители с низким вольтажом могут получить больший урон от перенапряжений, вызванных грозой и возникающих из-за воздействия электрических импульсов и уменьшения разделяющего опасного пространства между электрическими предметами и молниеприемником. Объемная система электропроводящих сетей организуется информационным снабжением, антенными конструкциями, коммуникациями централизованного отопления, водоподводящими, газовыми и силовыми системами. Единственная молниезащита при воздействии электромагнитного импульса не способна предотвратить повреждение достаточно слабого оснащения. Поэтому должна формироваться сеть общей молниезащиты, и в первую очередь основная система уравнивания потенциалов.

Для чего применяется

Уравнивание потенциалов используется для обеспечения выравнивания во всех металлических частях здания, связанных между собой, то есть для формирования эквипотенциальной поверхности. В этом случае при попадании в дом повышенного потенциала на всех конструкциях из металла он увеличивается синхронно, за счет чего не развивается опасная разница в напряжении и не образуется искрение и прохождение опасных токов.

Соединяющие элементы

Важным защитным мероприятием является создание главной системы уравнивания потенциалов. Соединяется ею заземляющая основная шина, основная магистраль заземления, защитная основная магистраль и проводящие элементы, к которым относятся:

  • арматурные детали конструкций с железобетонным основанием;
  • элементы зданий из металла, климатические системы, централизованное отопление;
  • стальные трубопроводы системного питания.

Чаще всего у системы выравнивания потенциалов присутствует только один способ вывода. В помещении распределительного элемента монтируется главная шина на максимально близком расстоянии от точки введения.

Система молниезащиты

Из-за быстроты нарастания тока и его большой силы при ударе молнии создается огромная разница потенциалов, намного превышающая ту, которая возникает в связи с утечкой тока. Поэтому требуется выравнивание потенциалов для защиты от влияния токов молний.

Для предотвращения неконтролируемого замыкания должны быть сторонне или напрямую совмещены молниезащитная конструкция, заземляющая система, оснастка из металла, электроустановки с защитными механизмами.

Шина уравнивания потенциалов с открытым доступом для проверочных работ должна иметь соединение с уравнивающей системой. Также шина обладает соединением с заземлением. В больших зданиях их может быть несколько, если они будут обладать соединением между собой.

Выравнивание потенциалов в молниезащитной системе осуществляется в месте попадания проводников в помещение и там, где нарушены безопасные дистанции, на уровне почвы или в подвале.

Дом, построенный с использованием стального каркаса или железобетонного основания либо с отдельным помещением для внешней молниезащиты, должен обладать уравниванием потенциалов на уровне грунта. В домах с высотой более 30 м оно выполняется каждые 20 м.

Молниепроводящие детали устанавливаются на безопасном расстоянии для предотвращения появления импульсных реакций. При невозможности соблюдения безопасной дистанции системы уравнивания потенциалов, устройство отведения молнии и приемник формируют между собой дополняющие связи. Стоит отметить, что они способны привести к занесению в строение повышенного потенциала.

Дополняющее устройство

Создается дополнительная система уравнивания потенциалов, ПУЭ которой определяет форму и применение, в точках расположения электрооборудования, в которых имеющиеся условия могут быть опасными, и в случае, если нормы свидетельствуют о необходимости в ней. Она образует связь между всеми частями имеющегося оборудования и сторонними проводниками, которые находятся рядом с ними.

Типичными помещениями и объектами, в которых должны использоваться дополняющие меры безопасности, являются антенное оборудование, объекты молниезащиты, сооружения удаленной связи, участки с повышенной взрывоопасностью, госпитали, фонтаны, аквапарки, ванные комнаты. Компания, которая занимается выполнением монтажных работ, должна осуществлять их в соответствии с указаниями ПУЭ-7.

Потенциалы защиты от молний и оснастка

Должно производиться соединение системы защиты от молний и деталей оснастки, к которой причисляются воздуховоды климатических и вентиляционных устройств, крановые каркасы, направляющие элементы лифта, трубопроводы таких систем, как пожаротушение, теплообеспечение, газо- и водоподведение. При наличии возможности каждая металлическая конструкция соединяется с шинами уравнивания. Электропроводящие трубы могут выступать в роли соединительных линий (исключение составляет газопровод).

Если имеется изолированный участок на водо- и газопроводе, используются для шунтирования проводники системы уравнивания потенциалов. Специальное соединение с устройством защиты от молний не нужно для подземных трубопроводов из металла, находящихся рядом с заземлением. То же самое касается железнодорожных рельсов. Если без объединения не обойтись, то предварительно оно согласовывается с эксплуатирующей компанией.

Заземление

Работает заземляющее повторное устройство при помощи двух вертикальных электродов с длиной не менее 5 м, между собой они скреплены горизонтальным заземлителем. В роли последнего выступает стальная полоса, также она применяется для формирования проводника, соединяющего ГЗШ и дополнительный заземлитель. Полоса должна быть не меньше 4 мм толщиной с площадью поперечного сечения 75 мм 2 . Нормирование сопротивления повторного заземлителя отсутствует.

Сечение питающего кабеля оказывает влияние на подбор проводника выравнивания потенциала, он не должен быть меньше половины сечения кабеля. Наибольшее распространение приобрела проводка ПВ1 и стальная полоса, также используется одножильный кабель. Специальные сжимы зачастую применяются при ответвлении магистрали при помощи провода.

Техническое оборудование и молниезащита

В соответствии с тезисами ПУЭ-7 и при соблюдении границ сечения проводников выполняются все соединения для выравнивания потенциалов конструкций защиты от молний. Должны разделяться соединения непосредственные и осуществляемые через искровые разделяющие промежутки.

Система молниезащиты может иметь непосредственное объединение со следующими устройствами:

  • заземляющие элементы системы защиты от высокого напряжения сооружений охранного типа;
  • антенные приспособления;
  • линии заземления, находящиеся под землей в удалении от систем коммуникации и защиты от превышения напряжения;
  • заземление силовых конструкций, мощность которых превышает 1 кВт, при этом должна отсутствовать возможность занесения в заземлители высокого потенциала;
  • предохраняющие связи в сетях типа ТТ для защиты от удара током при косвенных контактах.

При проведении в металлических трубах или экранизации информационных либо силовых линий дополнительная система уравнивания потенциалов не нужна.

Искровые промежутки

Контрольные испытания должны осуществляться при получении доступа к искровым разъединительным пространствам. Благодаря правильной проектировке и установке механизма внутренней защиты от молний минимизируются повреждения, вызванные разностью потенциалов и импульсами перенапряжения.

Соединение через искровые промежуточные разделения осуществляется для следующих элементов:

  • заземление измеряющих систем при условии отдельного проектирования;
  • установки, защищенные от утечки тока и имеющие антикоррозионную катодную защиту;
  • обратный провод тягового элемента постоянного тока, а также переменного при отсутствии возможности выполнения непосредственного объединения по сигнально-техническим доводам;
  • вспомогательные заземляющие детали защитного отключения, которое срабатывает при опасном напряжении.

Установка

Во время строительства здания должен выполняться монтаж СУП, так как есть некоторые сложности при использовании в готовых строениях. Дополнительная коробка уравнивания потенциалов запрещена к применению в зданиях, имеющих заземление вида TN-C. При несоблюдении данного правила во время разрыва нулевого провода есть вероятность поражения током жильцов, которые не устанавливали ДСУП. Относится данное ограничение в основном к старому многоэтажному жилому фонду.

Заземляющая система другого типа позволяет избавиться от такой проблемы: для этого выполняется заземляющий контур и присоединяется медной проводкой к защемляющей главной шине.

Пластиковые трубы

Сегодня имеет достаточное распространение проведение коммуникаций с использованием пластмассовых труб, для которого не нужно объединение с системой уравнивания. При этом, если в существующей ДСУП заменить трубы из металла на пластиковые, отличающиеся токопроводящими свойствами, возникнет нарушение связи между металлическими частями в помещении (полотенцесушитель, батареи) и заземляющей шиной, из-за чего они становятся опасными при одновременном касании.

При создании коммуникаций с помощью труб из пластика объединение с системой уравнивания осуществляется с применением металлических гребенок, кранов и обратных клапанов для закрепления проводников. При наличии диэлектрических вставок в металлических трубах они добавляются к главной системе после вставок внутри строения.

Что нужно знать

В соответствии со строительными правилами и нормами, сегодня уделяется повышенное внимание грамотной установке системы уравнивания потенциалов. В первую очередь осуществляются при сдаче здания в эксплуатацию осмотр и проверка на соответствие проекту. Создание электрического объединения всех проводящих элементов, доступных для касания, с помощью специальных проводников обеспечивает должную электробезопасность. В качестве дополнения выступает коробка уравнивания потенциалов в местах с высокой возможностью поражения током.

Стоит учитывать то, что ДСУП может создаваться только в зданиях, которые имеют систему заземления с раздельным прокладыванием проводников N- и PE-типа.

Между частями СУП должна устанавливаться металлическая прочная связь, если они подключены в соответствии с радиальной схемой и необходимым сечением защитного проводника.

Система выравнивания потенциалов. Назначение, схема и как сделать

По законам физики каждый проводник  обладает определенным электрическим потенциалом. Но сам по себе он не опасен, а опасность несет разность потенциалов между различными металлическими предметами. И чем эта разница выше, тем выше риск поражения электрическим током.

Выравнивание потенциалов и его назначение

Разность потенциалов может быть вызвана различными явлениями: атмосферные перенапряжения, блуждающие токи, статическое электричество и т. п. Но особо опасны случаи возникновения утечек тока из электропроводки через металлические предметы в доме или корпуса  электроприборов. Например,  Вы находитесь в ванной и, прикасаясь к металлической водопроводной трубе, получаете поражение электрическим током, потому что у трубы другой потенциал, вызванный утечкой тока через нее из-за повреждения изоляции электропроводов в квартире этажами ниже.

Так вот, что бы избежать возможности возникновения разности потенциалов все металлические трубы, корпуса бытовой техники, светильников и т. д. соединяются металлическими проводниками между собой. В результате возникающей между ними электрической связи- у всех металлических предметов потенциал становится одинаковой величины.

Но только этого недостаточно, необходимо так же энергию электрического тока, возникающую в непредвиденных обстоятельствах отвести безопасно в землю, поэтому все металлические части объединяются проводами на шине заземления и дополнительно на нее проводится проводник с шины заземления PE электрощита.
Если этого не сделать, то например в случае пробоя изоляции и если на корпусе стиральной машины появится фаза, то человека ударит током не при соприкосновении с другими металлическими предметами, а с любым из них, стоя на земле. То есть возникнет электрическая цепь, проходящая через тело человека на землю. А если же все предметы заземлены через шину PE электрощита, тогда ток пойдет по пути наименьшего сопротивления через заземляющий проводник. А через человека пройдет пропорционально его достаточно большому сопротивлению- безопасной величины ток.

В многоквартирном доме обязательно выполняется при строительстве основная система выравнивания потенциалов. В подвале и на крыше все металлические лестницы, двери, трубы, металлоконструкции, корпуса электрощитов и т .д. заземляется.
Но к сожалению, эта связь может обрываться или быть не эффективной по законам электротехники из-за длинных расстояний, поэтому  в каждой квартире делается обязательно дополнительная система уравнивания потенциалов.

Схема выравнивания потенциалов

Ввиду того, что ванная относится к особо опасному типу помещений по электробезопасности из-за влажных условий и концентрации там металлических труб, именно в ней или сразу возле нее в санузле ставится пластиковая коробка с шиной.  Под болтики шины заземления и зажимаются все проводники, подключенные  на болтовое соединение или хомут ко всем металлическим частям ванной.

Внимание, на каждый металлический предмет ведется от коробки отдельный проводник- нельзя подключать одним проводом последовательно несколько металлических частей. В исключительных случаях можно сделать лишь одно последовательное соединение, но без разрыва проводника.

Необходимо соединять вместе отдельными проводами не только корпуса ванной, светильников, водопроводных труб и отопления, но и заземляющие контакты розеток и коробку металлических дверей в ванной.

Как правило, коробка с шиной заземления устанавливается либо в ванной, но чаще- в санузле за зашивкой труб, там проходящих. Доступ к ней как и счетчикам воды всегда можно получить через дверцу в зашивке.

По современным требованиям по междуэтажному стояку с трубами ведется дополнительно заземленная полоса шириной 50 миллиметров или оцинкованная проволока диаметром не менее 6 мм, к которой отдельным медным проводником подключается коробка выравнивания потенциалов.  Благодаря этому создается кольцо между электрощитом и заземлителем дома, а это двойная надежность.

Как сделать дополнительную систему выравнивания потенциалов

Систему выравнивания потенциалов легко будет сделать самостоятельно в своем частном доме или квартире, не обращаясь к специалистам.
Пошаговая инструкция:

  1. Устанавливаем коробку с шиной заземления.
  2. Прокладываем и подключаем с шины PE заземления электрощита медный провод в изоляции сечением 4 или 6 квадратных миллиметров.
  3. Прокладываем в штробе отдельные провода сечением 4 кв. мм. от коробки  к светильникам, розеткам, ванне, трубам и другим металлическим предметам в ванной комнате.
  4. Прикручиваем под болтики провода в коробке.
  5. Подключаем проводники к ванной, светильникам и розеткам под специальные болты, на них расположенные. К трубам присоединения делаем при помощи обхватывающих хомутов. Покупайте только оцинкованные, что бы избежать коррозии в будущем.

 

Вот и все готово! Раз в год или несколько лет проверяйте надежность и  подтягивайте все контакты.

Склеивание и заземление | Корпорация Lightning Master

Связывание — это просто взять все электрические и металлические массы в объекте и соединить (связать) их проводниками, доведя их до одного и того же электрического потенциала. Основная причина связывания — безопасность персонала, поэтому кто-то, прикоснувшись к двум частям оборудования одновременно, не получит шока, став путем выравнивания. По той же причине соединение защищает людей, оно защищает оборудование, уменьшая нежелательное протекание тока по проводам питания и данных и контролируя искрение между частями оборудования с разными потенциалами.

В частности, на объектах нефтедобычи, электрическая дуга является основной причиной возгораний. Следовательно, склеивание имеет решающее значение. ЭМИ и вторичный эффект могут вызывать разницу в потенциале между массами. Эту разницу потенциалов можно уравновесить за счет искрения. Если дуга возникает в легковоспламеняющейся смеси, вероятно возгорание. Следовательно, склеивание имеет решающее значение.

СВЯЗЬ

Заземление — это доведение массы подключенного оборудования до потенциала поверхности земли, которую оно занимает.Опять же, основная причина — безопасность персонала, а второстепенная — защита оборудования.

Когда дело доходит до заземления, нам необходимо рассмотреть два типа заземления: заземление конструкций с низким импедансом и одноточечное определение потенциала земли для услуг и оборудования.

Заземление конструкции. Конструкция — это все, что может быть поражено молнией и требует нескольких путей с низким сопротивлением к системе заземления для максимально быстрой передачи энергии молнии от конструкции в землю.Поскольку молния имеет очень высокую частоту, ключевым фактором является низкий импеданс, а не просто низкое сопротивление. Чем выше импеданс, который «видит» энергия молнии, тем больше увеличивается напряжение. Чем выше напряжение, тем больше вероятность возникновения дуги или нежелательного пути к земле. Следовательно, важно обеспечить несколько путей с хорошей геометрией непосредственно к заземляющим электродам в системе заземления.

Услуги и заземление оборудования. Среди всех переменных, участвующих в проектировании системы, мы обнаружили, что наиболее важным фактором в эффективной молниезащите
является не просто соединение и заземление оборудования и услуг, но и правильное подключение подсистемы соединения услуг и оборудования к сети. система заземления.Изменение потенциала само по себе не приводит к повреждению оборудования. Это разница потенциалов на вашем оборудовании, вызывающая протекание тока через оборудование, которое вызывает повреждение. Если потенциал всей системы изменяется одновременно и с одинаковой скоростью, а оборудование не имеет другого источника опорного потенциала
заземления, ток не протекает и не происходит никаких повреждений. Оборудование даже не осознает свой изменившийся потенциал без повторной ссылки.

Текущий разделяет и проходит все пути.Величина тока, протекающего по любому пути, пропорциональна импульсному сопротивлению этого пути по отношению к общему импульсному сопротивлению всех путей. Даже если прочные соединительные ленты
предусмотрены между заземлениями в качестве основного намеченного пути уравнивания, часть тока будет проходить по непредусмотренным путям; через другие проводники и оборудование. Следовательно, очень важно довести все службы и заземление оборудования на объекте до одного и того же потенциала, прежде чем они подключатся к системе заземления, исключив возможность протекания тока.

В типичном объекте мы должны иметь дело с несколькими различными потенциалами земли. Первый набор потенциалов земли связан с услугами к объекту, то есть с питанием переменного тока, TELCO, линиями передачи данных и RF от антенн
. Если часть оборудования подключена как к линии передачи данных, так и к источнику питания, и существует разница потенциалов заземления между этими двумя служебными заземлениями, эта разница потенциалов может уравняться внутри оборудования, вызывая повреждение или ускоренный износ.Это состояние заземления показано на верхнем рисунке.

Правильная конфигурация заземления показана на нижнем рисунке. При наличии только одной точки отсчета потенциала земли не может быть тока.

Второй набор потенциалов связан с заземлением шасси различного электрического и электронного оборудования. Если две части оборудования связываются друг с другом через линию передачи данных, и если между двумя частями оборудования существует разность потенциалов, этот потенциал может уравновешиваться через линии передачи данных в одной или обеих частях оборудования (см. Иллюстрацию ниже).Когда мы говорим об оборудовании объекта, важно отметить, что мы имеем в виду только электрическое или электронное оборудование, но не дверные рамы, воздуховоды системы кондиционирования, различные массы индуктивности и т. Д.

Второй набор потенциалов связан с заземлением шасси различного электрического и электронного оборудования. Если две части оборудования связываются друг с другом через линию передачи данных, и если между двумя частями оборудования существует разность потенциалов, этот потенциал может уравновешиваться через линии передачи данных в одной или обеих частях оборудования (см. Иллюстрацию ниже).Когда мы говорим об оборудовании объекта
, важно отметить, что мы имеем в виду только электрическое или электронное оборудование, но не дверные рамы, воздуховоды системы кондиционирования, различные массы индуктивности и т. Д.

ЗАЗЕМЛЕНИЕ

Если оборудование заземлено, как показано выше, любая разница потенциалов земли между оборудованием будет уравновешена через линию передачи данных, что приведет к нежелательному протеканию тока и повреждению оборудования.

СОЕДИНЕНИЕ И МНОГОТОЧЕЧНОЕ ЗАЗЕМЛЕНИЕ

Соединение и заземление, как показано выше, является усовершенствованием, поскольку часть тока будет проходить через соединительный провод, опять же пропорционально импульсному сопротивлению линии передачи данных по отношению к соединительному проводнику.Однако даже при большом проводе заземления по линии передачи данных будет протекать ток, вызывающий повреждение оборудования.

СОЕДИНЕНИЕ И ОДНОТОЧЕЧНОЕ ЗАЗЕМЛЕНИЕ

Соединение и заземление, как показано выше, предоставят наилучшие возможности для устранения протекания тока через линии передачи данных. Поскольку обе части оборудования измеряют потенциал земли в одном и только в одном месте, при изменении потенциала земли оба будут расти и падать одновременно и с одинаковой скоростью. Поскольку нет другого источника справки, оборудование не будет знать, что оно изменило потенциал, поэтому не будет тока.

Чтобы упростить концепцию, представьте себе воображаемую плоскость на уровне пола помещения или чуть ниже него. Все оборудование и службы площадки должны быть надлежащим образом соединены вместе над этой плоскостью и подключены к соответствующей системе заземления через единственное отверстие в этой воображаемой плоскости.

Использование этого метода гарантирует, что все оборудование на площадке будет иметь потенциал земли в этой единой точке. Эту концепцию обычно называют «одноточечным заземлением» или, точнее, «привязкой к одноточечному заземлению».

Свяжитесь с нами, чтобы узнать больше о том, как MAGS® может стать клеевым решением для ваших резервуаров EFR.

Рекомендуемые правила заземления — Национальный институт молниезащиты

Раздел 5.3.1

Выдающиеся инженеры в области молнии и основные технические нормы и стандарты согласитесь с правилами заземления. Мы представляем краткое изложение тех общепринятые конструкции.

1.От Golde, Lightning, Academic Press, NY, 1977, т. 2, глава 19 Х. Баатца, Штутгарт, Германия, стр. 611 :

«Уравнивание потенциалов должно производиться для всех металлических инсталляции. Для молниезащиты конструкции больше важнее, чем сопротивление заземления …

Наилучшим способом выравнивания потенциалов является подходящее заземление. система в виде кольца или фундаментной земли.Токоотводы приклеены к такой кольцевой земле; дополнительные заземляющие электроды могут быть ненужное… »

2. From Sunde, Earth Conduction Effects in Transmission Systems, Van Ностранд, штат Нью-Йорк, 1949, стр. 66:

«Для надлежащего заземления обычно требуется сопротивление земля на рассматриваемой частоте будет мала по сравнению с сопротивление цепи, в которую он включен.По этому критерию в некоторых случаях может быть допустимо иметь заземление с высоким сопротивлением, несколько тысяч Ом, как в случае с «электростатическим» аппаратом заземление, полное сопротивление относительно земли изолированных корпусов аппаратуры обычно довольно высоко. Однако в других [ситуациях] сопротивление лишь нескольких для эффективного заземления может потребоваться сопротивление ».

3. Из Хорват, Расчет молниезащиты, Исследования Press, Лондон, 1991, стр.20:

«Заземление молниезащиты распределяет ток молнии в почве, не вызывающий опасной разности потенциалов. Для этого наиболее эффективное заземление огораживает объект. быть защищенным. Потенциал увеличивается на заземлении и на всех заземленных металлические части объекта относительно нулевого потенциала на удаленном точка. Может достигать очень высокого значения, но не представляет опасности. если потенциальные различия внутри защищаемого объекта ограничены.Выравнивание потенциалов достигается склеиванием всего протяженного металла. объекты »

4. From Hasse, Защита от перенапряжения систем низкого напряжения, Питер Peregrinus Press, Лондон, 1992, стр. 56.

» Полное выравнивание потенциалов молниезащиты является основным основа для реализации внутренней молниезащиты; то есть защита от грозового перенапряжения для электрических, а также средства и устройства электронной передачи данных в зданиях.В при ударе молнии потенциал всех установок в пострадавшем здании (включая токоведущие проводники в электрическом системы с разрядниками) будет увеличено до значения, эквивалентного возникающие в системе заземления — никаких опасных перенапряжений не будет. генерируется в системе…

В настоящее время рассматривается уравнение потенциалов молниезащиты. незаменим. Обеспечивает подключение всех металлических подводящих линий, входящих в здание, включая силовые и коммуникационные кабели, до молнии система защиты и заземления путем прямого перехода через разъединение искровые разрядники или разрядники в случае токоведущих проводов.«

5. Из IEEE Emerald Book, Питание и заземление чувствительных электронных устройств Оборудование, IEEE Std 1100-1992, IEEE, NY, 1995, стр. 216:

«Важно обеспечить заземление и соединение с низким сопротивлением. существуют соединения между телефоном и оборудованием для передачи данных, мощность переменного тока системы заземления электробезопасности и заземления здания электродная система. Эта рекомендация дополняет любое заземление. электроды, такие как кольцо заземления молнии.Несоблюдение каких-либо часть этого требования к заземлению может привести к опасному потенциалу разрабатывается между телефонным (информационным) оборудованием и другим заземленным предметы, с которыми персонал может находиться рядом или с которыми может одновременно контактировать «.

6. Из международного стандарта IEC 1024-1, Защита конструкций. Против молний, ​​Международная электротехническая комиссия, Женева, 1991, стр. 23:

«Для того, чтобы рассеять ток молнии по земле без вызывающие опасные перенапряжения, форма и размеры заземляющего устройства системы более важны, чем конкретное значение сопротивления заземляющий электрод.Однако в целом низкое сопротивление заземления является допустимым. рекомендуемые.

С точки зрения молниезащиты единая интегрированная конструкция заземление предпочтительнее и подходит для всех целей (т. е. молниезащита, низковольтные энергосистемы, телекоммуникационные системы).

Системы заземления, которые должны быть отделены по другим причинам должен быть подключен к встроенному путем уравнивания потенциалов… »

7.Из FAA-STD-019b, Молниезащита, заземление, соединение и Требования к экранированию объектов, Федеральное управление гражданской авиации, Вашингтон, округ Колумбия, 1990, стр. 20:

«Защита электронного оборудования от разности потенциалов. и накопление статического заряда должно обеспечиваться соединением всех нетоковедущие металлические предметы к многоточечной электронной системе заземления система, которая эффективно связана с системой заземляющих электродов.«

8. Из MIL-STD-188-124B, Заземление, соединение и экранирование, Департамент of Defense, Вашингтон, округ Колумбия, 1992 г., стр. 6 и стр. 8:

«Система заземления объекта образует прямой путь известного низкого напряжения. сопротивление между землей и различным силовым и коммуникационным оборудованием. Это эффективно сводит к минимуму перепады напряжения на земле. которые превышают значение, вызывающее шум или помехи для связи схемы.»(стр.6)

«Сопротивление заземления подсистемы заземляющих электродов должно не более 10 Ом на стационарных стационарных объектах »(стр. 8)

9. Из MIL-STD-1542B (USAF), электромагнитная совместимость и заземление Требования к объектам космических систем, Министерство обороны, Вашингтон DC, 1991, стр. 19:

«Этот стандарт, MIL-HDBK-419 и MIL-STD-188-124 не рекомендуют использование глубоких колодцев для достижения более низкого сопротивления земли.Глубокие скважины достигают низкого сопротивления постоянному току, но имеют очень небольшой выигрыш в снижение импеданса переменного тока. Назначение подсистемы заземляющих электродов заключается в уменьшении потенциалов переменного и постоянного тока между оборудованием и внутри него. Если глубоко скважины используются в составе заземления подсистемы заземляющих электродов net, другая часть сети заземления объекта должна быть подключена им. »

10. Из Национального электротехнического кодекса , NEC-70-1996, Национальная противопожарная защита. Association, Куинси, Массачусетс, 1996, статья 250 — Заземление, стр.120 и стр. 144:

«Системы и проводники цепей заземлены для ограничения напряжений. из-за молнии, скачков напряжения в сети или непреднамеренного контакта с высоким напряжением линий и для стабилизации напряжения относительно земли во время нормальной работы. Заземляющие провода оборудования подключаются к заземленному проводу системы. чтобы обеспечить путь с низким сопротивлением для тока короткого замыкания, что облегчит работа устройств максимального тока в условиях замыкания на землю.» (стр.120)

«Труба подземная металлическая. Труба подземная металлическая. в прямом контакте с землей на расстоянии 10 футов (3,05 м) или более (включая любая металлическая обсадная труба, эффективно соединенная с трубой) и электрически непрерывный (или сделан электрически непрерывным путем соединения вокруг изоляционного стыков или секций или изоляционной трубы) к точкам соединения провод заземляющего электрода и заземляющие проводники.Непрерывность заземляющего тракта или клеевого соединения с внутренним трубопроводом. не полагайтесь на счетчики воды, фильтрующие устройства и подобное оборудование. К металлическому подземному водопроводу необходимо добавить дополнительный электрод типа, указанного в Разделах 250-81 или 250-83. Допускается подключение дополнительного электрода к заземлению. провод электрода, заземленный ввод служебного провода, заземленный служебный канал или любой заземленный служебный корпус.»(стр. 145)

11. Из MIL-HDBK-419A, Заземление, соединение и экранирование для электроники Оборудование и средства, Министерство обороны, Вашингтон, округ Колумбия, 1987 г., п. 1-2, стр. 1-6, с. 1-102 и с. 1-173:

«Значение сопротивления заземляющего электрода 10 Ом, рекомендованное в Раздел 1.2.3.1a представляет собой тщательно продуманный компромисс между общие требования к защите от коротких замыканий и молний и расчетные относительная стоимость достижения сопротивления в типичных ситуациях.» (стр. 1-2)

«На стационарных объектах C-E подсистема заземляющих электродов должна иметь сопротивление относительно земли не более 10 Ом »(стр.1-6)

«Все металлические трубы и трубки (и трубопроводы) и их опоры. должны быть электрически непрерывными и должны быть подключены к объекту система заземления хотя бы в одной точке »(стр. 1-102)

«Водопроводные трубы и кабелепровод должны быть подсоединены к заземляющему электроду. подсистема для предотвращения попадания токов заземления в конструкцию.» (стр. 1-173)

Опасности статического электричества, генерация и заземление в промышленности

Что такое статическое электричество?

Все предметы, проводящие или непроводящие, имеют электрический заряд. Объекты, соединенные друг с другом хорошим проводником, имеют одинаковый электрический заряд, по крайней мере, в точке рядом с соединением. Объекты с одинаковым электрическим зарядом не могут вызвать электростатический разряд (ЭСР), то есть искру.

Статическое электричество означает наличие ненейтрального электрического заряда на объекте.Этот заряд может быть положительным, что означает, что у объекта больше протонов, чем электронов, или отрицательным, что означает, что у объекта больше электронов, чем протонов. Статическое электричество может возникнуть, когда два объекта из разных материалов входят в фрикционный контакт, что приводит к обмену электронами, известному как трибоэлектрический эффект.

Если предоставляется возможность, более отрицательно заряженный объект захочет отправить свой избыток электронов более положительно заряженному объекту таким образом, чтобы уравнять заряды обоих объектов.Это аналогично тому, как жидкость в контейнере хочет стечь в контейнер, который находится под ней. Если оба контейнера находятся на ровной поверхности с трубкой между ними, то уровень жидкости в каждом контейнере будет одинаковым. То же самое происходит, когда два объекта электрически связаны друг с другом — оба объекта имеют одинаковый электрический заряд.

Разница в заряде между двумя объектами напрямую связана с величиной, называемой разностью электрических потенциалов или напряжением, измеряемой в вольтах (В).Чем больше разница в заряде, тем выше напряжение и тем больше энергии выделяется при электростатическом разряде. Разность потенциалов можно сравнить с высотой одного контейнера с водой над другим — чем выше падает вода, тем больше кинетической энергии она имеет, когда достигает второй емкости.

Опасности статического электричества в промышленности

В промышленных процессах обычно напряжение превышает 30 кВ (для сравнения, батареи во многих распространенных электронных устройствах имеют номинальное напряжение от 3 до 5 В).Если два объекта с разным потенциалом поднести друг к другу достаточно близко и их разность потенциалов достаточно велика, произойдет самопроизвольный разряд электронов, называемый искрой. Эта искра выравнивает потенциал между объектами, как если бы они были соединены проводом.

Искры, вызванные статическим электричеством, являются основным источником пожаров и взрывов во многих отраслях промышленности. Искры выделяют энергию, которая может воспламенить легковоспламеняющиеся или взрывоопасные материалы. В то время как опасность возгорания может быть очевидна при использовании легковоспламеняющихся химикатов, отрасли промышленности, где много пыли, например, мукомольные заводы, также могут подвергаться риску взрыва из-за электростатических искр.

Искры могут не только вызвать возгорание или взрыв, но и вызвать серьезные ожоги или остановить сердце.

Опасность статического электричества можно свести к минимуму, приняв соответствующие меры безопасности для контроля накопления статических зарядов. Одним из важных способов борьбы с накоплением электростатического заряда является правильное заземление и соединение оборудования и контейнеров.

В промышленности статический заряд может создаваться оборудованием, имеющим какое-либо трение или контакт и разделение, а также в случаях, когда происходят быстрые изменения температуры.Люди могут накапливать свои собственные заряды просто за счет трения, возникающего при ходьбе, поэтому, когда они двигаются в непосредственной близости от машины, они могут получить удар током, или искра может воспламенить легковоспламеняющиеся материалы.

Некоторые конкретные источники статического электричества в промышленности будут обсуждаться более подробно в этом техническом документе. Большая часть статического электричества в промышленности возникает в результате операций, связанных с трением, например:

  • Жидкость или порошок, протекающие по трубе, шлангу или отверстию
  • Смешивание или смешивание
  • Распыление или покрытие
  • Фасовочные операции
  • Конвейерные ленты

Ниже приведено видео, на котором показан взрыв на косметической фабрике в Нью-Йорке, вызванный статическим электричеством.На видео рабочий протирает резервуар для химикатов, прежде чем статическое электричество воспламенит легковоспламеняющуюся жидкость из резервуара. Через несколько секунд танк охвачен пламенем, а части одежды рабочего загорелись от взрыва.

Обзор

Выработку статического электричества невозможно остановить, но скорость его накопления и рассеивания можно контролировать с помощью надлежащей разработки оборудования, трубопроводов и систем фильтрации, а также путем использования надлежащего оборудования для соединения и заземления.Чтобы предотвратить накопление статического электричества в проводящем оборудовании, необходимо минимизировать сопротивление пути к земле (земле).

Земля — ​​это точка с нулевым электрическим потенциалом, названная так потому, что ее часто принимают за физическую землю или Землю. Электрический потенциал объекта можно понять только по отношению к другому электрическому потенциалу; по этой причине необходимо иметь общую контрольную точку (землю), от которой будут определяться все напряжения в конкретной системе.В гравитационной аналогии вы не можете просто указать, что объект имеет высоту 5 м; вы также должны указать точку, с которой вы начали измерения (по совпадению, земля также является подходящей точкой отсчета здесь).

Если объект имеет ненулевое напряжение, он каким-то образом отделен от земли. Если он разделен проводником, то электроны могут течь между объектом и землей, и между ними возникает сопротивление. Эти три величины — напряжение, ток (поток электронов) и сопротивление — связаны между собой формулой, называемой законом Ома:

В = напряжение, в вольтах

I = ток в кулонах в секунду, т.е.е., Ампер

R = сопротивление, Ом

Надо работать, чтобы рассеять статическое электричество, создавая путь для прохождения электронов. Для этого пути обычно считается достаточным сопротивление 1 мегаом или меньше. Когда металл составляет систему соединения / заземления, сопротивление обычно составляет менее 10 Ом. Сопротивление более 10 Ом означает, что путь к земле не является непрерывным, и обычно указывает на наличие грязи, усталости системы, изношенных или ослабленных соединений, а также на возможность выхода системы из строя.Любая система заземления, которая считается приемлемой для молниезащиты или защиты силовой цепи, вполне подходит для решения по заземлению статического электричества.

Вот некоторые методы, которые мы обсудим для статического контроля:

  • Склеивание
  • Заземление
  • Влажность
  • Добавки
  • Одежда и материалы
  • Скорость заполнения

Соединение соединяет два или более проводящего оборудования вместе с помощью проводов, кабелей или других соединителей, чтобы уравновесить их статический заряд.Искры не могут возникать между объектами с одинаковым электростатическим потенциалом. Емкости необходимо соединять, даже если они соприкасаются, потому что краска или другие покрытия могут снизить проводимость. Простое прикосновение к другому объекту не гарантирует эффективного соединения для передачи статического заряда.

Заземление (или заземление) — лучший и самый безопасный способ снять накопившийся статический заряд. Заземлить объект — значит подключить его к земле через заземляющий стержень или электрод, воткнутый в землю.Заземление отводит статические заряды по мере их образования, удаляя избыточный заряд за счет передачи электронов между объектом и землей. В этом случае токопроводящие материалы или предметы соединяются с землей с помощью проводов, зажимов, кабелей и зажимов. Это похоже на склеивание, за исключением того, что одним из объектов является сама земля.

Хорошие соединения очень важны для заземления и соединения. Любой заземленный или связанный объект нуждается в проводящем пути для движения заряженных электронов.Заземление предотвращает искрение между должным образом заземленными объектами и токопроводящим оборудованием.

В потенциально опасных или воспламеняющихся ситуациях все предметы, которые являются проводящими, но отделены от земли непроводящим оборудованием (например, прокладки, шланги и трубопроводы, распылительные форсунки, термометры и зонды), должны быть скреплены. Когда предмет изолирован от земли или заземления, он может стать достаточно заряженным, чтобы вызвать статическую искру.

Заземляющие узлы, кабели и зажимы

На проводимость таких предметов, как бочки и резервуары, могут влиять краски, покрытия или скопления продукта.Эти покрытия могут быть достаточно толстыми, чтобы электростатические заряды не рассеивались полностью. Решение состоит в том, чтобы использовать заземляющий узел с зажимами, которые могут прокалывать краску для хорошего соединения металла с металлом.

На фотографии слева показан один тип узла заземления Мюллера с зажимом для пробивания краски на одном конце и медным зажимом на другом. Существует множество различных конфигураций заземляющих / соединительных узлов, включая различные типы зажимов, зажимов и проводов, которые выбираются в зависимости от элементов и материалов для соединения / заземления.

Некоторые важные критерии, которые следует помнить при выборе узла заземления / заземления:

  • Есть ли на заземляемом элементе краска или покрытие, которое необходимо проткнуть для хорошего соединения?
  • В какой среде это используется? Насколько прочной должна быть сборка?
  • Какой тип зажима нужен? (плоский, с ямочками или зубцами?)
  • Заземляемые объекты неподвижны или их нужно переместить?
  • Какая длина провода нужна?
  • Важна ли очищающая способность?
  • Нужно ли выдерживать тепло?
  • Провод должен быть изолированным или неизолированным?
  • Должен ли провод быть токопроводящим для протекания дополнительного тока?

Что вам нужно знать — Провод заземления оборудования

Заземление оборудования в целях безопасности

Где бы мы были без электричества? С того момента, как мы встаем утром и до того, как ложимся спать, мы переключаем переключатели, не задумываясь об этом.Но электричество — один из самых опасных элементов, которые мы используем в повседневной жизни. Чтобы использовать его безопасно, нам нужно принять меры предосторожности.

Система заземления для создания безопасного пути

В целях безопасности персонала и оборудования все электрические системы должны быть заземлены. Мы заземляем электрические системы, чтобы ограничить дополнительное напряжение, наложенное на них молнией, скачками напряжения в сети, контактом с линиями высокого напряжения или замыканиями на землю. Система заземления помогает эффективно направлять электрические токи через электрические системы и стабилизировать уровни напряжения, чтобы цепи не перегружались и не взрывались.Используя низковольтную проводку и системы заземления, мы можем предотвратить дальнейшее возникновение проблем.

Избыточное или рассеянное электричество всегда идет по пути наименьшего сопротивления, и земля является идеальным проводником или приемником этого электричества. Согласно Национальному электротехническому кодексу, «земля» определяется как проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли.«Заземленное» оборудование подключается к земле или к какому-либо проводящему телу, которое служит вместо земли ».

Раздел 150-51 NEC гласит, что эффективный путь электрического заземления должен выполнять четыре задачи. Он должен быть постоянным и непрерывным, иметь способность безопасно проводить любые вероятные токи короткого замыкания, иметь достаточно низкий импеданс и иметь дополнительный заземляющий провод электрического оборудования, который выполняет ту же функцию, что и земля. Заземляющие проводники оборудования, проводники заземляющих электродов и заземленные проводники являются проводящими объектами, которые расширяют заземление.

Заземляющий провод оборудования выполняет три очень важные функции, когда речь идет о системе электробезопасности. Он создает путь для электричества, связывает оборудование вместе и контролирует аномальные электрические события. Электрический заземляющий проводник — это металлический провод, металлический стержень или аналогичный предмет, который выполняет роль проводника, соединяющего оборудование с землей через заземляющий электрод. Чтобы заземлить оборудование, соедините металлические части на каждой части, которая не проводит ток, вместе, а затем подключите их к заземленному проводу системы, проводнику заземляющего электрода или к обоим.Токоведущий провод, по которому течет ток в нормальных условиях, обычно подключается к земле, поэтому электричество рассеивается в земле, эффективно заземляя оборудование.

Заземление при нулевом электрическом потенциале

Помимо заземления, заземляющие проводники оборудования также связывают оборудование. Соединение означает соединение двух проводящих частей, например двух частей электронного оборудования. Склеивание очень важно в системах передачи данных, телекоммуникаций или управления процессами.Шкафы для оборудования, корпуса и конструкционная сталь — все должно быть склеено. В противном случае разница в напряжении между ними может нарушить качество потока данных, и это может привести к полной остановке сети.

Соединение выполняется путем соединения всех металлических частей, которые не должны проводить ток (при нормальных условиях эксплуатации) в двух соединяемых элементах. Этот процесс выравнивает их электрический потенциал, поэтому они работают при одном и том же электрическом опорном напряжении заземления.Когда они соединены, между ними не будет протекать ток, поэтому разряда не произойдет. Уменьшение тока между двумя частями оборудования с разными потенциалами защищает как оборудование, так и людей.

Одна вещь, которую процесс соединения не выполняет, — это защита любого элемента от накопления электрической энергии. Этот тип защиты исходит от процесса заземления. Но если один из элементов был заземлен, так что у него нулевой электрический потенциал, элемент, к которому он подключен, также будет заземлен.

Склеивание электрического оборудования также помогает обеспечить безопасность и защиту сотрудников, которые могут работать с оборудованием или находиться рядом с ним. Например, если два элемента оборудования связаны друг с другом и сотрудник одновременно касается кожухов оборудования обоих элементов, он не получит электрошока. Если эти два элемента не связаны, сотрудник может стать путем выравнивания электричества и получить неприятный шок.

Еще одна причина, по которой соединение так важно, заключается в том, что оно помогает создать обратный путь с низким сопротивлением к источнику.Когда электричество находится на пути с низким сопротивлением, ток может течь свободно. Эти большие токи могут отключить автоматический выключатель и устранить неисправность.

Лучший способ соединения оборудования — это проложить заземляющий провод по тому же маршруту, что и силовой и нейтральный проводники, от источника к машине.

Контроль аномальных событий

Основная цель заземления электрических систем — обеспечить защиту от электрических неисправностей.Электрическая неисправность — это дефект в электрической системе, который отклоняет или прерывает нормальный поток электрического тока от предполагаемого пути. Если его не остановить, это может привести к повреждению электрического оборудования.

Различные типы электрических неисправностей, такие как замыкание на землю, могут вызвать повреждение. Девяносто пять процентов неисправностей — это замыкания на землю. Замыкание на землю происходит, когда паразитные электрические токи проходят мимо проводки цепи и текут прямо на землю. Замыкания на землю часто вызваны ухудшением механической изоляции, которое может произойти во влажной, влажной и пыльной среде.Нерегулярное или дуговое замыкание на землю может вызвать повышение напряжения в электрической системе, ухудшение изоляции и создание напряжения, в шесть раз превышающего номинальное напряжение системы. Эффективная система заземления оборудования гарантирует, что все части останутся в рабочем состоянии при замыкании на землю.

Сохранение правильности терминологии

Часто возникает путаница вокруг «нейтральных» проводов или проводников, «заземленных» проводов или проводников и «заземляющих» проводов или проводников.Заземленные провода или проводники на самом деле то же самое, что и нулевые провода или проводники. Заземляющие провода очень разные, но термины «заземляющий провод» и «заземляющий провод» часто используются как синонимы.

Заземляющий провод легко отличить от нейтрального по цвету. Национальный электрический кодекс (NFPA 70 NEC) требует, чтобы заземляющий провод был оголенным. Если это изолированный провод, он должен быть зеленого или зеленого цвета с желтой полосой изоляции. Нейтральные провода белого или серого цвета.Стандартные цвета помогают упростить монтаж электропроводки и повысить безопасность.

Нейтральный (заземленный) провод или проводник выполняет две важные функции. Он служит точкой отсчета нулевого напряжения в электрической цепи и обеспечивает обратный путь для тока, подаваемого через проводник под напряжением.

Подобно нейтральному проводу или проводнику, заземляющий провод или проводник также работает с нулевым напряжением. Однако его основная функция — обеспечить заземленное соединение всего оборудования.Нейтральный проводник несет все возвратные токи, но в нормальных условиях заземляющий провод не пропускает электрический ток. Однако, когда происходит короткое замыкание в линии (условия короткого замыкания или другие потенциально опасные ситуации), заземляющий провод или проводник служит альтернативным путем для безопасного протекания тока короткого замыкания обратно к источнику.

Что произойдет, если не использовать заземляющий провод? Неисправность не отключается, и оборудование может оказаться под напряжением, если к нему прикоснется токоведущий провод.Это означает, что любой, кто прикоснется к находящемуся под напряжением оборудованию, получит удар электрическим током.

Поскольку и заземляющий, и нейтральный проводники работают с нулевым напряжением, большинство устройств будут работать правильно, если провода поменять местами, однако работа будет нарушать электрические нормы.

Вы работаете в строительной отрасли? В таком случае наше программное обеспечение электрического котрактора может помочь оптимизировать ваши проекты и повысить эффективность с самого начала.Чтобы узнать больше о нашем программном обеспечении, загляните в наш блог или позвоните одному из наших профессионалов сегодня.

(PDF) Потенциалы поверхности земли и GPR заземления подстанций

21-я Международная конференция CIRED по распределению электроэнергии Франкфурт, 6-9 июня 2011 г.

Документ 0020

Документ № 0020 6/6

сеть уменьшается, и минимальные потенциалы земной поверхности

для сети увеличиваются, а затем разность потенциалов

между каждыми двумя проводниками будет уменьшаться, поэтому профиль напряжения

будет более однородным.

 Распределение проводов с неравномерными промежутками

с более плотными проводниками по краям обеспечивает наиболее эффективную конструкцию

.

 В заключение, для решеток, заглубленных в двухслойный грунт,

степень сжатия, удовлетворяющая самому низкому напряжению касания

, будет отличаться в зависимости от параметров грунта.

 Переходные характеристики заземляющих сетей

сложные, а их переходные GPR и импеданс

содержат колебания, на которые влияют значения емкости и индуктивности сети

, а не сопротивление сети

.

Рис. 18 Переходное сопротивление

Рис. 19 Форма волны напряжения для георадара

СПРАВОЧНАЯ ИНФОРМАЦИЯ

[1] Ду Чжундун, Яо Чжэньюй, Вэнь Сишань и Сюй

Хун, «Оптимальный дизайн большой сети заземления

» Подстанция », Труды XIV

Международного симпозиума по высокому напряжению

Engineering, Университет Цинхуа, Пекин, Китай,

август 2005 г.

[2] A. Puttarach N.Чакпитак Т. Касирават и К.

Понгсриват, Департамент электротехники,

Университет Чиангмая, «Глубина наземного слоя и эффект

георадара», IEEE PES Power Africa 2007

Конференция и выставка, июль 2007.

[3] Ив Раджот, Жан Де Стив, Жоус Фортин, Ричард

Лео, Жорж Симар, «Влияние повышения потенциала земли

вблизи высоковольтных подстанций в сельских районах», CIRED

(Турин) 2005.Июнь 2005 г.

[4] BHARAT SANCHAR NIGAM LIMITED, A Govt. of

India Enterprise, «Зона повышения потенциала земли

(EPR)», № EPR / A-002, CGM and Technical

и Development Circle, выпуск № 01, количество страниц.

06, 18-03-2005.

[5] B. Phithakwong, N. Kraisnachinda, S. Banjongjit, C.

Chompoo-Inwai, M. Kando, «Новые методы компьютерного проектирования

для заземления подстанций»,

Power Engineering Society Winter Встреча, 2000.

IEEE, Vol. 3, pp. 2011-2015, Jan. 2000.

[6] Л. Хуанг, X. Чен и Х. Ян, «Исследование неравномерно разнесенных

и

сеток заземления», IEEE Trans. Power Del.,

Vol. 10, No. 2, pp. 716–722, Apr. 1995.

[7] J. He, R. Zeng, Y. Gao, Y. Tu, W. Sun, J. Zou, and Z.

Гуань, «Оптимальная конструкция системы заземления

с учетом влияния сезонного мерзлого слоя

грунта», IEEE Trans. Мощность Del., Т.20, нет. 1, январь

2005.

[8] W.Sun, JinglingHe, Yanqing Gao, R.Zeng, W.Wu и

Qi Su: «Анализ оптимальной конструкции заземляющих сетей

для подстанций, построенных в не- однородная почва », IEEE,

Пер. Энергетические аппараты и системы, 2000, стр.1455-

1460.

[9] А. Табет: «Системы заземления электрических подстанций

в неоднородной структуре земли с новым анализом»,

M. Sc. Диссертация, Высший институт энергетики, Асуан, 2002 г.

[10] E.A. Ибрагим: «Заземление атомных электростанций

с использованием заземляющих сетей», докторская диссертация, факультет инженерии

, Каирский университет, 1993.

[11] TMEl-Khodragy: «Оптимальный дизайн заземления

» Система подстанций с использованием искусственной нейронной сети

», докторская диссертация, технический факультет, Каирский университет

, 2007.

205 Заземление и соединение с системой выравнивания потенциалов

Любые металлические корпуса элементов оборудования в искробезопасной системе должны быть подключены к местным стальным конструкциям и выравниванию потенциалов.

(соединение) таким же образом, как указано выше, как и корпуса аппаратов, использующих все другие концепции защиты.Аналогичным образом следует обрабатывать броню, применяемую к кабелям искробезопасных систем, металлическим оболочкам кабелей и трубопроводам (см. Главу 18).

К соединениям между искробезопасной цепью и любыми экранами, используемыми на кабелях, нужно относиться совершенно иначе. Поскольку искрение на клеммах и в других местах установки разрешено в рамках концепции искробезопасности, акцент смещается с безопасности соединения на предотвращение множественных соединений на систему выравнивания потенциалов, поскольку во время сбоев питания потенциал на разных частях выравнивания потенциалов системы могут отличаться друг от друга.Если это так, и если существует более одного соединения между искробезопасной системой и системой выравнивания потенциалов, разница в напряжении между ними может увеличивать напряжение искробезопасной системы, что может затем вызвать интенсивное искрение при нормальной работе. или в условиях неисправности. На рисунке 20.11 показана ситуация, которая может возникнуть, если искробезопасная цепь, подключенная к уравнению потенциалов в ее источнике, подключена таким образом, что токи короткого замыкания, возникающие в других электрических цепях, вызывают подъем точки подключения даже на небольшое напряжение.Это напряжение будет добавлено к напряжению искробезопасной цепи, и если неисправность системы выравнивания потенциалов произойдет в другом месте цепи, где нет возвышения, искрение может быть воспламеняющим. Это наиболее важно для

Рис. 20.11 Влияние изменения напряжения в системе выравнивания потенциалов. Примечания: (1) i = ток электрического короткого замыкания, v = разность потенциалов между точкой подключения искробезопасной цепи к проводу защитного заземления и основной точкой заземления из-за ‘/’ и сопротивления проводника защитного заземления Y.(2) Потенциал заземления (PE-провод) в точке, где происходит замыкание на землю (PE) в проводке искробезопасной цепи, равен потенциалу на основном соединении. (3) Ток неисправности l / S равен (V + v) / R. Это может быть воспламенение из-за добавления v

Рис. 20.11 Эффект изменения напряжения в системе выравнивания потенциалов. Примечания: (1) i = ток электрического короткого замыкания, v = разность потенциалов между точкой подключения искробезопасной цепи к проводу защитного заземления и основной точкой заземления из-за ‘/’ и сопротивления проводника защитного заземления Y.(2) Потенциал заземления (PE-провод) в точке, где происходит замыкание на землю (PE) в проводке искробезопасной цепи, равен потенциалу на основном соединении. (3) Ток неисправности l / S равен (V + v) / R. Это может быть способным к воспламенению из-за добавления v

= li + l2 + l3 + U + U +> 6 lg = токи утечки и замыкания на землю от смонтированного на месте оборудования lr + ly + lb = токи питания l0 = ток на трансформаторе звездная точка

Рис. 20.12 Протекание тока на питающем трансформаторе.

— источник системы, поскольку именно здесь собираются все обратные токи, включая токи короткого замыкания, и, таким образом, повышение уровня намного более вероятно.

На рис. 20.12 показана общая схема протекания тока в электроустановке.

Таким образом, основные критерии для искробезопасных электрических цепей следующие.

1. Их желательно изолировать от системы выравнивания потенциалов с помощью соединения с высоким сопротивлением (скажем, 0,5–1 Ом), чтобы предотвратить накопление заряда из-за образования статического электричества.

2. Они должны быть подключены к системе выравнивания потенциалов только в одном месте, а в другом месте должны быть изолированы от этой системы с изоляцией, способной выдержать испытание изоляции 500 В (среднеквадратичное значение).

3. Точка подключения к системе выравнивания потенциалов, если таковая существует, должна быть такой, где потенциал системы, скорее всего, будет находиться при таком же напряжении, что и общая система выравнивания потенциалов, и, следовательно, задействованные структурные металлоконструкции и земля.

20.5.1 Типовые искробезопасные цепи для Зоны 1 и Зоны 21 с заземляющим соединением во взрывоопасной зоне

Самый общий тип искробезопасной системы — это система, в которой фактически требуется заземление цепи, и, следовательно, типичная для цепи, описанной в пункте 2 списка на предыдущей странице. Это дает значительные финансовые преимущества по сравнению с типом схемы, описанной в 1, и при правильной установке подходит для использования в Зоне 1 и 21. (Ситуация с Зонами 0 и 20 будет описана в Разделе 20.5.5 данной главы). Эта схема обычно имеет до трех элементов, требующих подключения к системе выравнивания потенциалов, и все они находятся в соответствующем аппарате. Обычно это корпус, экран в сетевом трансформаторе и искробезопасная цепь.

Корпус

Корпус часто бывает металлическим, и в этом случае его необходимо заземлить, чтобы обеспечить работу устройств защиты цепи в случае неисправности и обеспечить защиту персонала от поражения электрическим током.Обычно он устанавливается на стальную конструкцию, на которой также устанавливается другое электрическое оборудование, в том числе такие вещи, как освещение и неискробезопасное устройство управления, индикации и переключения, включая неискробезопасные части связанного устройства, которые сами могут генерировать значительные токи короткого замыкания. Таким образом, он будет подвергаться токам короткого замыкания от всего установленного на нем оборудования и, по этой причине, должен быть подключен к системе выравнивания (соединения) потенциалов, чтобы гарантировать срабатывание электрической защиты и исключить риск поражения электрическим током.Однако это соединение будет иметь много разных токов, протекающих по нему из-за множества устройств, с которыми оно контактирует (см. Рис. 20.13).

Интерфейс искробезопасной цепи

Часто это трансформатор (см. Рис. 20.13), который образует интерфейс, обеспечивающий управление первичным напряжением для искробезопасной цепи. Вероятно, он будет оснащен экраном между обмотками, питающими искробезопасные цепи, и другими обмотками, и это будет пропускать ток, если в трансформаторе происходит короткое замыкание, поскольку его цель — обеспечить срабатывание защиты трансформатора до того, как произойдет какой-либо прорыв экрана.Сердечник трансформатора будет соединен с общей системой выравнивания потенциалов, обычно через корпус устройства, и если экран соединен с сердечником, то его соединение уже определено. Если это не так, то экран будет удовлетворять основным требованиям к изоляции для связанного оборудования, и он все равно должен быть соединен таким образом, поскольку его цель — отводить первичный ток от искробезопасной цепи. Искробезопасная цепь будет подключена ко вторичной обмотке трансформатора и почти всегда будет подключена к системе выравнивания потенциалов для предотвращения

Сопутствующий аппарат

Искробезопасная цепь

Заземление искробезопасной цепи

Шина заземления искробезопасной цепи (выравнивание потенциалов) (изолирована от общей шины и местных металлоконструкций)

Шина заземления искробезопасной цепи (выравнивание потенциалов) (изолирована от общей шины и местных металлоконструкций)

Поставка

Рама

Экран (Примечание)

Общая земля (выравнивание потенциалов) бар

К основной (распределительной) шине заземления (подключенной как можно ближе к соединительной части главного трансформатора питания / главной шины.)

Общая земля (выравнивание потенциалов) бар

К главной (распределительной) шине заземления

К главной (распределительной) шине заземления

Рис. 20.13 Типичная система выравнивания потенциалов (заземления) связанного аппарата.

Примечание Экран можно подключить вместо этого к искробезопасной шине заземления цепи, но предпочтительнее соединение, указанное выше.

, вызывающий проблемы в работе и, поскольку большинство цепей в основном асимметричны, предотвращает короткое замыкание устройств ограничения тока из-за замыканий на землю (см.рис.20.14). Это соединение очень важно, поскольку оно имеет значение для самой искробезопасной цепи, и подключение к общей системе выравнивания потенциалов вместе с экраном трансформатора и корпусом обычно неприемлемо из-за возможных токов короткого замыкания. Идеальным вариантом является прямое соединение с точкой звезды главного трансформатора питания, поскольку это точка, в которой токи короткого замыкания выравниваются и не происходит повышения напряжения. Обычно невозможно обеспечить подключение к самому трансформатору, но опыт показал, что основная шина заземления в главном распределительном помещении является адекватной и именно там обычно выполняется подключение.Это соединение используется в других случаях, когда искробезопасная цепь напрямую задействована, например, в цепях с шунтирующими барьерами безопасности на стабилитронах.

(1) Возможная вторичная / экранная неисправность

(1) Возможное повреждение вторичной обмотки / экрана

К общей шине заземления

Читать здесь: 1

Была ли эта статья полезной?

Уплотнения Roxtec для соединения и заземления обеспечивают электробезопасность

Решения Roxtec BG ™ и BG ™ B

Семейство продуктов Roxtec BG ™ и BG ™ B предназначено для безопасного и эффективного соединения или заземления армированных или экранированных кабелей и металлических труб через один вырез.Каждый модуль в системе Roxtec BG ™ или BG ™ B имеет отдельную проводящую склеивающую оплетку, которая напрямую или через соседние модули контактирует с металлической рамой. Каждый кабель или труба, проходящие через систему, могут быть индивидуально связаны через модуль. В этом случае рама действует как промежуточная шина заземления при подключении к обычной системе заземления.

Решения Roxtec BG ™ B на 70% более эффективны по площади, чем кабельные вводы, и являются прямой заменой кабельных вводов, соединяющих кабели с металлической оболочкой и армированные кабели.С одним кабельным вводом вы можете изолировать один или несколько кабелей разного диаметра, обеспечивая при этом сертифицированное соединение или заземление. Решения эффективны и гибки, а благодаря простоте системы их легко установить.

Модуль Roxtec BG ™ состоит из двух идентичных половинок, которые при установке образуют единый блок. Цилиндрические концентрические слои резины составляют его центр, и они съемные, чтобы обеспечить плотное прилегание к кабелю. Резиновые слои позволяют адаптировать его как к диаметру оболочки кабеля для защиты окружающей среды, так и к броне кабеля для защиты от электричества.

Модули Roxtec BG ™ B имеют часть, обеспечивающую электрическую безопасность с одной стороны и защиту окружающей среды с другой, и являются идеальным решением для шкафов и электрических шкафов.

Модули Roxtec BG ™ имеют часть, обеспечивающую электробезопасность в центре, и защиту окружающей среды с обеих сторон. Решение Roxtec BG ™ работает в полах или стенах, где требуется сквозное соединение.

Решения Roxtec BG ™ и BG ™ B сертифицированы для:

  • Электробезопасность
  • Опасные (Ex) зоны
  • Соединение и заземление
  • Противопожарная, газо- и водонепроницаемость

Испытание системы Roxtec BG ™

Решения

Roxtec BG ™ разработаны для приложений, в которых могут возникать высокие токи.Ток, соответствующий указанному уровню устойчивости, направляется через модуль к корпусу и его оконечному разъему. Текущий уровень определяется применимыми электрическими стандартами и зависит от размера маршрутизируемой услуги. Система Roxtec BG ™ справляется с этим, поскольку площадь поперечного сечения оплетки увеличивается с увеличением размера модуля.

В таблице показано поперечное сечение меди для каждого размера модуля и уровень тока, на котором он был протестирован. Это пример информации, которую можно найти в технических характеристиках.

Данные оплетки для каждого размера модуля
Устойчивость к току и скачкам напряжения для каждого размера модуля

Ошибка загрузки видео

Испытания в Roxtec — Заземление от короткого замыкания

Как проверить работоспособность соединения и заземления

Во всех электрических установках необходимо проверить работоспособность. Чтобы проверить электрическую функциональность решений Roxtec BG ™, мы рекомендуем вам проверить контактное сопротивление 4-полюсным методом с минимум 10 АЦП в соответствии с национальным законодательством.

Проверка установки систем Roxtec BG ™

Решения Roxtec BG ™ для защиты от молний

Система молниезащиты, LPS, предназначена для отвода переходных токов, вызванных ударами молнии, на землю.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *