+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

характеристики, свойства и сферы применения

Одним из самых востребованных металлов в отраслях промышленности является медь. Наиболее широкое распространение она получила в электрике и электронике. Чаще всего ее применяют при изготовлении обмоток для электродвигателей и трансформаторов. Основная причина использования именно этого материала заключается в том, что медь обладает самым низким из существующих в настоящий момент материалов удельным электрическим сопротивлением. Пока не появится новый материал с более низкой величиной этого показателя, можно с уверенностью говорить о том, что замены у меди не будет.

Общая характеристика меди

Говоря про медь, необходимо сказать, что еще на заре электрической эры она стала использоваться в производстве электротехники. Применять ее стали во многом по причине уникальных свойств, которыми обладает этот сплав. Сам по себе он представляет материал, отличающийся высокими свойствами в плане пластичности и обладающий хорошей ковкостью.

Наряду с теплопроводностью меди, одним из самых главных ее достоинств является высокая электропроводность. Именно благодаря этому свойству медь и

получила широкое распространение в энергетических установках, в которых она выступает в качестве универсального проводника. Наиболее ценным материалом является электролитическая медь, обладающая высокой степенью чистоты -99,95%. Благодаря этому материалу появляется возможность для производства кабелей.

Плюсы использования электролитической меди

Применение электролитической меди позволяет добиться следующего:
  • Обеспечить высокую электропроводность;
  • Добиться отличной способности к уложению;
  • Обеспечить высокую степень пластичности.

Сферы применения

Кабельная продукция, изготавливаемая из электролитической меди, получила широкое распространение в различных отраслях.
Чаще всего она применяется в следующих сферах:
  • электроиндустрия;
  • электроприборы;
  • автомобилестроение;
  • производство компьютерной техники.

Чему равно удельное сопротивление?

Чтобы понимать, что собой представляет медь и его характеристики, необходимо разобраться с основным параметром этого металла — удельным сопротивлением. Его следует знать и использовать при выполнении расчетов.

Под удельным сопротивлением принято понимать физическую величину, которая характеризуется как способность металла проводить электрический ток.

Знать эту величину необходимо еще и для того, чтобы правильно произвести расчет электрического сопротивления проводника. При расчетах также ориентируются на его геометрические размеры. При проведении расчетов используют следующую формулу:

R = р l / S

Это формула многим хорошо знакома. Пользуясь ею, можно легко рассчитать сопротивление медного кабеля, ориентируясь только на характеристики электрической сети. Она позволяет вычислить мощность, которая неэффективно расходуется на нагрев сердечника кабеля. Кроме этого, подобная формула позволяет выполнить расчеты сопротивления любого кабеля. При этом не имеет значения, какой материал использовался для изготовления кабеля — медь, алюминий или какой-то другой сплав.

Такой параметр, как удельное электрическое сопротивление измеряется в Ом*мм2/м. Этот показатель для медной проводки, проложенной в квартире, составляет 0,0175 Ом*мм2/м. Если попробовать поискать альтернативу меди — материал, который можно было бы использовать вместо нее, то
единственным подходящим можно считать только серебро
, у которого удельное сопротивление составляет 0,016 Ом*мм2/м. Однако необходимо обращать внимание при выборе материала не только на удельное сопротивление, но еще и на обратную проводимость. Эта величина измеряется в Сименсах (См).

Сименс = 1/ Ом.

У меди любого веса этот параметр состав равен 58 100 000 См/м. Что касается серебра, то величина обратной проводимости у нее равна 62 500 000 См/м.

В нашем мире высоких технологий, когда в каждом доме имеется большое количество электротехнических устройств и установок, значение такого материала, как медь просто неоценимо. Этот

материал используют для изготовления проводки, без которой не обходится ни одно помещение. Если бы меди не существовало, тогда человеку пришлось использовать провода из других доступных материалов, например, из алюминия. Однако в этом случае пришлось бы столкнуться с одной проблемой. Все дело в том, что у этого материала удельная проводимость гораздо меньше, чем у медных проводников.

Удельное сопротивление

Использование материалов с низкой электро- и теплопроводностью любого веса ведет к большим потерям электроэнергии. А это влияет на потерю мощности у используемого оборудования. Большинство специалистов в качестве основного материала для изготовления проводов с изоляцией называют медь. Она является главным материалом, из которого изготавливаются отдельные элементы оборудования, работающего от электрического тока.
  • Платы, устанавливаемые в компьютерах, оснащаются протравленными медными дорожками.
  • Медь также используется для изготовления самых разных элементов, применяемых в электронных устройствах.
  • В трансформаторах и электродвигателях она представлена обмоткой, которая изготавливается из этого материала.

Можно не сомневаться, что расширение сфер применения этого материала будет происходить с дальнейшим развитием технического прогресса. Хотя, кроме меди, существуют и другие материалы, но все же конструктора при создании оборудования и различных установок используют медь. Главная причина востребованности этого материала заключается в хорошей электрической и теплопроводности этого металла, которую он обеспечивает в условиях комнатной температуры.

Температурный коэффициент сопротивления

Свойством уменьшения проводимости с повышением температуры обладают все металлы с любой теплопроводностью. При понижении температуры проводимость возрастает. Особенно интересным специалисты называют свойство уменьшения сопротивления с понижением температуры. Ведь в этом случае, когда в комнате температура снижается до определенной величины, у проводника может исчезнуть электрическое сопротивление и он перейдет в класс сверхпроводников.

Для того чтобы определить показатель сопротивления конкретного проводника определенного веса в условиях комнатной температуры, существует коэффициент критического сопротивления. Он представляет собой величину, которая показывает изменение сопротивления участка цепи при изменении температуры на один Кельвин. Для выполнения расчета электрического сопротивления медного проводника в определенном временном промежутке используют следующую формулу:

ΔR = α*R*ΔT, где α — температурный коэффициент электрического сопротивления.

Заключение

Медь — материал, который широко применяют в электронике. Его используют не только в обмотке и схемах, но и в качестве металла для изготовления кабельной продукции. Чтобы техника и оборудование работали эффективно, необходимо правильно рассчитать удельное сопротивление проводки, прокладываемой в квартире. Для этого существует определенная формула. Зная её, можно произвести расчет, который позволяет узнать оптимальную величину сечения кабеля. В этом случае можно избежать потери мощности оборудования и обеспечить эффективность его использования.

Оцените статью: Поделитесь с друзьями!

Удельное сопротивление и сверхпроводимость

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

На опыте установлено, что сопротивление R металлического проводника прямо пропорционально его длине L и обратно пропорционально площади его поперечного сечения А:

R = ?L/А       (26. 4)

где коэффициент ? называется удельным сопротивлением и служит характеристикой вещества, из которого изготовлен проводник. Это соответствует здравому смыслу: сопротивление толстого провода должно быть меньше, чем тонкого, поскольку в толстом проводе электроны могут перемещаться по большей площади. И можно ожидать роста сопротивления с увеличением длины проводника, так как увеличивается количество препятствий на пути потока электронов.

Типичные значения ? для разных материалов приведены в первом столбце табл. 26.2. (Реальные значения зависят от чистоты вещества, термической обработки, температуры и других факторов.)

Таблица 26.2.
Удельное сопротивление и температурный коэффициент сопротивления (ТКС) (при 20 °С)
Вещество Удельное сопротивление ?,Ом·м ТКС ?,°C
-1
Проводники
Серебро 1,59·10-8 0,0061
Медь 1,68·10-8 0,0068
Алюминий 2,65·10-8 0,00429
Вольфрам 5,6·10-8 0,0045
Железо 9,71·10-8 0,00651
Платина 10,6·10-8 0,003927
Ртуть 98·10-8 0,0009
Нихром (сплав Ni, Fe, Сг) 100·10-8 0,0004
Полупроводники 1)
Углерод (графит) (3-60)·10-5 -0,0005
Германий (1-500)·10-5 -0,05
Кремний 0,1 — 60 -0,07
Диэлектрики
Стекло 109 — 1012
Резина твердая 1013 — 1015
1) Реальные значения сильно зависят от наличия даже малого количества примесей.

 

Самым низким удельным сопротивлением обладает серебро, которое оказывается, таким образом, наилучшим проводником; однако оно дорого. Немногим уступает серебру медь; ясно, почему провода чаще всего изготовляют из меди.

Удельное сопротивление алюминия выше, чем у меди, однако он имеет гораздо меньшую плотность, и в некоторых случаях ему отдают предпочтение (например, в линиях электропередач), поскольку сопротивление проводов из алюминия той же массы оказывается меньше, чем у медных. Часто пользуются величиной, обратной удельному сопротивлению: 

? = 1/?       (26.5)

 ? называемой удельной проводимостью. Удельная  проводимость измеряется в единицах (Ом·м) -1

Удельное сопротивление вещества зависит от  температуры. Как правило, сопротивление металлов возрастает с температурой. Этому не следует удивляться: с  повышением температуры атомы движутся быстрее, их  расположение становится менее упорядоченным, и можно ожидать, что они будут сильнее мешать движению потока электронов. В узких диапазонах изменения температуры удельное сопротивление металла увеличивается с  температурой практически линейно: 

 

 где ?T — удельное сопротивление при температуре Т?0 — удельное сопротивление при стандартной  температуре Т0, а — температурный коэффициент сопротивления (ТКС). Значения а приведены в табл. 26.2. Заметим, что у полупроводников ТКС может быть отрицательным. Это очевидно, поскольку с ростом температуры увеличивается число свободных электронов и они улучшают проводящие свойства вещества. Таким образом, сопротивление  полупроводника с повышением температуры может  уменьшаться (хотя и не всегда). 

Значения а зависят от температуры, поэтому следует обращать внимание на диапазон температур, в пределах которого справедливо данное значение (например, по справочнику физических величин). Если диапазон  изменения температуры окажется широким, то линейность будет нарушаться, и вместо (26. 6) надо использовать выражение, содержащее члены, которые зависят от  второй и третьей степеней температуры:

?T = ?0(1++ + 2 + 3),

где коэффициенты ? и ? обычно очень малы (мы положили Т0 = 0°С), но при больших Т вклад этих членов становится существенным. 

При очень низких температурах удельное  сопротивление некоторых металлов, а также сплавов и соединений падает в пределах точности современных измерений до нуля. Это свойство называют сверхпроводимостью;  впервые его наблюдал нидерландский физик Гейке Камер-линг-Оннес (1853-1926) в 1911 г. при охлаждении ртути ниже 4,2 К. При этой температуре электрическое  сопротивление ртути внезапно падало до нуля.  

Сверхпроводники переходят в сверхпроводящее состояние ниже  температуры перехода, составляющей обычно несколько градусов Кельвина (чуть выше абсолютного нуля). Наблюдался электрический ток в сверхпроводящем кольце, который практически не ослабевал в отсутствие напряжения в течение нескольких лет.

 В последние годы сверхпроводимость интенсивно  исследуется с целью выяснить ее механизм и найти  материалы, обладающие сверхпроводимостью при более высоких температурах, чтобы уменьшить стоимость и неудобства, обусловленные необходимостью охлаждения до очень низких температур. Первую успешную теорию сверхпроводимости создали Бардин, Купер и Шриффер в 1957 г. Сверхпроводники уже используются в больших  магнитах, где магнитное поле создается электрическим током (см. гл. 28), что значительно снижает расход  электроэнергии. Разумеется, для поддержания сверхпроводника при низкой температуре тоже затрачивается энергия.

Продолжение следует: Мощность.

Альтернативные статьи: Электрический ток, Закон Ома.


Замечания и предложения принимаются и приветствуются!

Удельное сопротивление меди в системе си. Удельное сопротивление и другие свойства меди

Сопротивление меди действительно меняется с температурой, но сначала нужно определиться, имеется ли в виду удельное электрическое сопротивление проводников (омическое сопротивление), что важно для питания по Ethernet, использующего постоянный ток, или же речь идет о сигналах в сетях передачи данных, и тогда мы говорим о вносимых потерях при распространении электромагнитной волны в среде витой пары и о зависимости затухания от температуры (и частоты, что не менее важно).

Удельное сопротивление меди

В международной системе СИ удельное сопротивление проводников измеряется в Ом∙м. В сфере ИТ чаще используется внесистемная размерность Ом∙мм 2 /м, более удобная для расчетов, поскольку сечения проводников обычно указаны в мм 2 . Величина 1 Ом∙мм 2 /м в миллион раз меньше 1 Ом∙м и характеризует удельное сопротивление вещества, однородный проводник из которого длиной 1 м и с площадью поперечного сечения 1 мм 2 дает сопротивление в 1 Ом.

Удельное сопротивление чистой электротехнической меди при 20°С составляет 0,0172 Ом∙мм 2 /м . В различных источниках можно встретить значения до 0,018 Ом∙мм 2 /м, что тоже может относиться к электротехнической меди. Значения варьируются в зависимости от обработки, которой подвергнут материал. Например, отжиг после вытягивания («волочения») проволоки уменьшает удельное сопротивление меди на несколько процентов, хотя проводится он в первую очередь ради изменения механических, а не электрических свойств.

Удельное сопротивление меди имеет непосредственное значение для реализации приложений питания по Ethernet. Лишь часть исходного постоянного тока, поданного в проводник, достигнет дальнего конца проводника – определенные потери по пути неизбежны. Так, например, PoE Type 1 требует, чтобы из 15,4 Вт, поданных источником, до запитываемого устройства на дальнем конце дошло не менее 12,95 Вт.

Удельное сопротивление меди изменяется с температурой, но для температур, характерных для сферы ИТ, эти изменения невелики. Изменение удельного сопротивления рассчитывается по формулам:

ΔR = α · R · ΔT

R 2 = R 1 · (1 + α · (T 2 — T 1))

где ΔR – изменение удельного сопротивления, R – удельное сопротивление при температуре, принятой в качестве базового уровня (обычно 20°С), ΔT – градиент температур, α – температурный коэффициент удельного сопротивления для данного материала (размерность °С -1). В диапазоне от 0°С до 100°С для меди принят температурный коэффициент 0,004 °С -1 . Рассчитаем удельное сопротивление меди при 60°С.

R 60°С = R 20°С · (1 + α · (60°С — 20°С)) = 0,0172 · (1 + 0,004 · 40) ≈ 0,02 Ом∙мм 2 /м

Удельное сопротивление при увеличении температуры на 40°С возросло на 16%. При эксплуатации кабельных систем, разумеется, витая пара не должна находиться при высоких температурах, этого не следует допускать. При правильно спроектированной и установленной системе температура кабелей мало отличается от обычных 20°С, и тогда изменение удельного сопротивления будет невелико. По требованиям телекоммуникационных стандартов сопротивление медного проводника длиной 100 м в витой паре категорий 5e или 6 не должно превышать 9,38 Ом при 20°С. На практике производители с запасом вписываются в это значение, поэтому даже при температурах 25°С ÷ 30°С сопротивление медного проводника не превышает этого значения.

Затухание сигнала в витой паре / Вносимые потери

При распространении электромагнитной волны в среде медной витой пары часть ее энергии рассеивается по пути от ближнего конца к дальнему. Чем выше температура кабеля, тем сильнее затухает сигнал. На высоких частотах затухание сильнее, чем на низких, и для более высоких категорий допустимые пределы при тестировании вносимых потерь строже. При этом все предельные значения заданы для температуры 20°С. Если при 20°С исходный сигнал приходил на дальний конец сегмента длиной 100 м с уровнем мощности P, то при повышенных температурах такая мощность сигнала будет наблюдаться на более коротких расстояниях. Если необходимо обеспечить на выходе из сегмента ту же мощность сигнала, то либо придется устанавливать более короткий кабель (что не всегда возможно), либо выбирать марки кабелей с более низким затуханием.

  • Для экранированных кабелей при температурах выше 20°С изменение температуры на 1 градус приводит к изменению затухания на 0.2%
  • Для всех типов кабелей и любых частот при температурах до 40°С изменение температуры на 1 градус приводит к изменению затухания на 0.4%
  • Для всех типов кабелей и любых частот при температурах от 40°С до 60°С изменение температуры на 1 градус приводит к изменению затухания на 0. 6%
  • Для кабелей категории 3 может наблюдаться изменение затухания на уровне 1,5% на каждый градус Цельсия

Уже в начале 2000 гг. стандарт TIA/EIA-568-B.2 рекомендовал уменьшать максимально допустимую длину постоянной линии/канала категории 6, если кабель устанавливался в условиях повышенных температур, и чем выше температура, тем короче должен быть сегмент.

Если учесть, что потолок частот в категории 6А вдвое выше, чем в категории 6, температурные ограничения для таких систем будут еще жестче.

На сегодняшний день при реализации приложений PoE речь идет о максимум 1-гигабитных скоростях. Когда же используются 10-гигабитные приложения, питание по Ethernet не применяется, по крайней мере, пока. Так что в зависимости от ваших потребностей при изменении температуры вам нужно учитывать либо изменение удельного сопротивления меди, либо изменение затухания. Разумнее всего и в том, и в другом случае обеспечить кабелям нахождение при температурах, близких к 20°С.

Электрическое сопротивление, выражаемое в омах, отличается от понятия «удельное сопротивление». Чтобы понять, что такое удельное сопротивление, надо связать его с физическими свойствами материала.

Об удельной проводимости и удельном сопротивлении

Поток электронов не перемещается беспрепятственно через материал. При постоянной температуре элементарные частицы качаются вокруг состояния покоя. Кроме того, электроны в зоне проводимости мешают друг другу взаимным отталкиванием из-за аналогичного заряда. Таким образом возникает сопротивление.

Удельная проводимость является собственной характеристикой материалов и количественно определяет легкость, с которой заряды могут двигаться, когда вещество подвергается воздействию электрического поля. Удельное сопротивление является обратной величиной и характеризуется степенью трудности, которую электроны встречают при своих перемещениях внутри материала, давая представление о том, насколько хорош или плох проводник.

Важно! Удельное электрическое сопротивление с высоким значением указывает на то, что материал плохо проводящий, а с низким значением – определяет хорошее проводящее вещество.

Удельная проводимость обозначается буквой σ и рассчитывается по формуле:

Удельное сопротивление ρ, как обратный показатель, можно найти так:

В этом выражении E является напряженностью создаваемого электрического поля (В/м), а J – плотностью электротока (А/м²). Тогда единица измерения ρ будет:

В/м х м²/А = ом м.

Для удельной проводимости σ единицей, в которой она измеряется, служит См/м или сименс на метр.

Типы материалов

В соответствии с удельным сопротивлением материалов, их можно классифицировать на несколько типов:

  1. Проводники. К ним относятся все металлы, сплавы, растворы, диссоциированные на ионы, а также термически возбужденные газы, включая плазму. Из неметаллов можно привести в пример графит;
  2. Полупроводники, фактически представляющие собой непроводящие материалы, кристаллические решетки которых целенаправленно легированы включением чужеродных атомов с большим или меньшим числом связанных электронов. В результате в структуре решетки образуются квазисвободные избыточные электроны или дырки, которые вносят вклад в проводимость тока;
  3. Диэлектрики или изоляторы диссоциированные – все материалы, которые в нормальных условиях не имеют свободных электронов.

Для транспортировки электрической энергии или в электроустановках бытового и промышленного назначения часто используемый материал – медь в виде одножильных или многожильных кабелей. Альтернативно применяется металл алюминий, хотя удельное сопротивление меди составляет 60% от такого же показателя для алюминия. Но он гораздо легче меди, что предопределило его использование в линиях электропередач сетей высокого напряжения. Золото в качестве проводника применяется в электроцепях специального назначения.

Интересно. Электропроводность чистой меди была принята Международной электротехнической комиссией в 1913 году в качестве стандарта по этой величине. Согласно определению, проводимость меди, измеренная при 20°, равна 0,58108 См/м. Это значение называется 100% LACS, а проводимость остальных материалов выражается как определенный процент LACS.

Большинство металлов имеют значение проводимости меньше 100% LACS. Однако есть исключения, такие как серебро или специальная медь с очень высокой проводимостью, обозначенные С-103 и С-110, соответственно.

Диэлектрики не проводят электричество и используются в качестве изоляторов. Примеры изоляторов:

  • стекло,
  • керамика,
  • пластмасса,
  • резина,
  • слюда,
  • воск,
  • бумага,
  • сухая древесина,
  • фарфор,
  • некоторые жиры для промышленного и электротехнического использования и бакелит.

Между тремя группами переходы являются текучими. Известно точно: абсолютно непроводящих сред и материалов нет. Например, воздух – изолятор при комнатной температуре, но в условиях мощного сигнала низкой частоты он может стать проводником.

Определение удельной проводимости

Если сравнивать удельное электрическое сопротивление различных веществ, требуются стандартизированные условия измерения:

  1. В случае жидкостей, плохих проводников и изоляторов, используют кубические образцы с длиной ребра 10 мм;
  2. Величины удельного сопротивления почв и геологических образований определяются на кубах с длиной каждого ребра 1 м;
  3. Проводимость раствора зависит от концентрации его ионов. Концентрированный раствор менее диссоциирован и имеет меньше носителей заряда, что снижает проводимость. По мере увеличения разведения увеличивается число ионных пар. Концентрация растворов устанавливается в 10%;
  4. Для определения удельного сопротивления металлических проводников используются провода метровой длины и сечения 1 мм².

Если материал, такой как металл, может обеспечить свободные электроны, то когда приложить разность потенциалов, по проводу потечет электрический ток. По мере увеличения напряжения большее количество электронов перемещается через вещество во временную единицу. Если все дополнительные параметры (температура, площадь поперечного сечения, длина и материал провода) неизменны, то отношение силы тока к приложенному напряжению тоже постоянно и именуется проводимостью:

Соответственно, электросопротивление будет:

Результат получается в ом.

В свою очередь, проводник может быть разных длины, размеров сечения и изготавливаться из различных материалов, от чего зависит значение R. Математически эта зависимость выглядит так:

Фактор материала учитывает коэффициент ρ.

Отсюда можно вывести формулу для удельного сопротивления:

Если значения S и l соответствуют заданным условиям сравнительного расчета удельного сопротивления, т. е. 1 мм² и 1 м, то ρ = R. При изменении габаритов проводника количество омов тоже меняется.

Электрическое сопротивление физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

Вещество

p , Ом*мм 2 /2

α,10 -3 1/K

Алюминий

0.0271

Вольфрам

0.055

Железо

0.098

Золото

0.023

Латунь

0.025-0.06

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

Никель

Константан

0.44-0.52

0.02

Нихром

0.15

Серебро

0.016

Цинк

0.059

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций


При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 — температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Электрический ток I в любом веществе создается движением заряженных частиц в определенном направлении за счет приложения внешней энергии (разности потенциалов U). Каждое вещество обладает индивидуальными свойствами, по-разному влияющими на прохождение тока в нем. Эти свойства оцениваются электрическим сопротивлением R.

Георг Ом эмпирическим путем определил факторы, влияющие на величину электрического сопротивления вещества, вывел от напряжения и тока, которая названа его именем. Единица измерения сопротивления в международной системе СИ названа его именем. 1 Ом — это величина сопротивления, замеренного при температуре 0 О С у однородного ртутного столба длиной 106,3 см с площадью поперечного сечения в 1 мм 2 .


Определение

Чтобы оценить и применять на практике материалы для изготовления электротехнических устройств, введен термин «удельное сопротивление проводника» . Добавленное прилагательное «удельное» указывает на фактор использования эталонной величины объема, принятой для рассматриваемого вещества. Это позволяет оценивать электрические параметры разных материалов.

При этом учитывают, что сопротивление проводника возрастает при увеличении его длины и уменьшении поперечного сечения. В системе СИ используется объем однородного проводника с длиной 1 метр и поперечным сечением 1м 2 . В технических расчетах применяется устаревшая, но удобная внесистемная единица объема, состоящая из длины 1 метр и площади 1мм 2 . Формула удельного сопротивления ρ представлена на рисунке.


Для определения электрических свойств веществ, введена еще одна характеристика — удельная проводимость б. Она обратно пропорциональна значению удельного сопротивления, определяет способность материала проводить электрический ток: б =1/ρ.

Как удельное сопротивление зависит от температуры

На величину проводимости материала влияет его температура. Разные группы веществ ведут себя не одинаково при нагреве или охлаждении. Это свойство учитывают в электрических проводах, работающих на открытом воздухе в жару и холод.


Материал и удельное сопротивление провода подбираются с учетом условий его эксплуатации.

Возрастание сопротивления проводников прохождению тока при нагреве объясняется тем, что с повышением температуры металла в нем увеличивается интенсивность передвижения атомов и носителей электрических зарядов во всех направлениях, что создает лишние препятствия для движения заряженных частиц в одну сторону, снижает величину их потока.

Если уменьшать температуру металла, то условия для прохождения тока улучшаются. При охлаждении до критической температуры во многих металлах проявляется явление сверхпроводимости, когда их электрическое сопротивление практически равно нулю. Это свойство широко используется в мощных электромагнитах.

Влияние температуры на проводимость металла используется электротехнической промышленностью при изготовлении обыкновенных ламп накаливания. Их при прохождении тока нагревается до такого состояния, что излучает световой поток. В обычных условиях удельное сопротивление нихрома составляет около 1,05÷1,4 (ом ∙мм 2)/м.

При включении лампочки под напряжение через нить проходит большой ток, который очень быстро разогревает металл. Одновременно возрастает сопротивление электрической цепи, ограничивающее первоначальный ток до номинального значения, необходимого для получения освещения. Таким способом осуществляется простое регулирование силы тока через нихромовую спираль, отпадает необходимость применения сложной пускорегулирующей аппаратуры, используемой в светодиодных и люминесцентных источниках.

Как используется удельное сопротивление материалов в технике

Цветные благородные металлы обладают лучшими свойствами электрической проводимости. Поэтому ответственные контакты в электротехнических устройствах выполняют из серебра. Но это увеличивает конечную стоимость всего изделия. Наиболее приемлемый вариант — использование более дешевых металлов. Например, удельное сопротивление меди, равное 0,0175 (ом ∙мм 2)/м, вполне подходит для таких целей.

Благородные металлы — золото, серебро, платина, палладий, иридий, родий, рутений и осмий, получившие название главным образом благодаря высокой химической стойкости и красивому внешнему виду в ювелирных изделиях. Кроме того, золото, серебро и платина обладают высокой пластичностью, а металлы платиновой группы — тугоплавкостью и, как и золото, химической инертностью. Эти достоинства благородных металлов сочетаются.

Медные сплавы, обладающие хорошей проводимостью, используются для изготовления шунтов, ограничивающих протекание больших токов через измерительную головку мощных амперметров.

Удельное сопротивление алюминия 0,026÷0,029 (ом ∙мм 2)/м чуть выше, чем у меди, но производство и стоимость этого металла ниже. К тому он же легче. Это объясняет его широкое применение в энергетике для изготовления проводов, работающих на открытом воздухе, и жил кабелей.

Удельное сопротивление железа 0,13 (ом ∙мм 2)/м также допускает его применение для передачи электрического тока, но при этом возникают бо́льшие потери мощности. Стальные сплавы обладают повышенной прочностью. Поэтому в алюминиевые воздушные провода высоковольтных линий электропередач вплетают стальные нити, которые предназначены для противостояния нагрузкам, действующим на разрыв.

Особенно актуально это при образовании наледи на проводах или сильных порывах ветра.

Часть сплавов, например, константин и никелин обладают термостабильными резистивными характеристиками в определенном диапазоне. У никелина удельное электрическое сопротивление практически не меняется от 0 до 100 градусов по Цельсию. Поэтому спирали для реостатов изготавливают из никелина.

В измерительных приборах широко применяется свойство строгого изменения значений удельного сопротивления платины от ее температуры. Если через платиновый проводник пропускать электрический ток от стабилизированного источника напряжения и вычислять значение сопротивления, то оно будет указывать температуру платины. Это позволяет градуировать шкалу в градусах, соответствующих значениям Омам. Этот способ позволяет измерять температуру с точностью до долей градусов.


Иногда для решения практических задач требуется узнать полное или удельное сопротивление кабеля . Для этого в справочниках на кабельную продукцию приводятся значения индуктивного и активного сопротивления одной жилы для каждого значения поперечного сечения. С их помощью рассчитываются допустимые нагрузки, выделяемая теплота, определяются допустимые условия эксплуатации и подбираются эффективные защиты.

На удельную проводимость металлов оказывает влияние способ их обработки. Использование давления для пластической деформации нарушает структуру кристаллической решетки, увеличивает число дефектов и повышает сопротивление. Для его уменьшения применяют рекристаллизационный отжиг.

Растяжения или сжатия металлов вызывают в них упругую деформацию, от которой уменьшаются амплитуды тепловых колебаний электронов, а сопротивление несколько снижается.

При проектировании систем заземления необходимо учитывать . Оно имеет отличия в определении от вышеперечисленного метода и измеряется в единицах системы СИ — Ом∙метр. С его помощью оценивают качество растекания электрического тока внутри земли.



На удельную проводимость грунта влияют многие факторы, включая влажность почвы, плотность, размеры ее частиц, температуру, концентрацию солей, кислот и щелочей.

Сопротивление меди — Энциклопедия по машиностроению XXL

В том, что электрическое сопротивление металлов обусловлено взаимодействиями электронов проводимости с различными дефектами решетки, убеждает и тот факт, что удельное сопротивление кристаллов металлов сильно зависит от наличия в них примесей. Например, введение 1% примеси марганца увеличивает удельное сопротивление меди в три раза.  [c.152]
Рис, 4.5. Зависимость удельного сопротивления меди от температуры  [c.116]

При достижении температуры плавления (для меди она составляет 1083 °С) увеличивается объем металла, т. е. уменьшается его плотность, а вместе с ней и концентрация носителей. В результате сопротивление меди возрастет примерно в 2,4 раза. Для металлов, уменьшающих свой объем при плавлении (галлий, висмут, сурьма), значение удельного сопротивления имеет тенденцию к уменьшению.  [c.116]

Заметное влияние на указа -ные характеристики меди оказывает и температура. При нагревании (особенно выше 200 °С) в результате процесса рекристаллизации (рис. 4.7) механические характеристики и удельное сопротивление меди резко изменяются.  [c.120]

ОКОЛО 800° С и, следовательно, Ра 10 ОМ.-М., р= 1. Удельное сопротивление меди принято равным 2-10 ом-м.  [c.174]

В диапазоне температур от —50 до 180 °С сопротивление меди находится в линейной зависимости от температуры  [c.455]

Коэффициент подсчитан по литературным значениям удельных сопротивлений меди [2] и натрия [3]. Расчеты показали, что в стенке трубы выделяется около 97(% тепла и эта доля практически не меняется с температурой. Некоторая возможная неточность в величинах удельных сопротивлений влияет на коэффициент К слабо, и нет необходимости учитывать разность температур между стенкой и жидкостью для выбора соответствующих значений удельных сопротивлений.  [c.14]

Медь — металл красного, в изломе розового цвета. Температура плавления 1083 °С. Кристаллическая решетка ГЦК с периодом а = 0,31607 нм. Плотность меди 8,94 г/см . Медь обладает высокими электропроводимостью и теплопроводностью Удельное электрическое сопротивление меди 0,0175 мкОм.м. В зависимости от чистоты медь изготовляют следующих марок МОО (99,99 % Си), МО (99,97 % Си), М1 (99,9 % Си), М2 (99,7 % Си), М3 (99,50 % Си). Присутствующие в меди примеси оказывают большое влияние на ее свойства.  [c.406]

Сопротивление меди, как и других металлов зависит от температуры и определяется температурным коэффициентом сопротивления. Для определения коэффициента изменения сопротивления можно воспользоваться табл. 1.7. В таблице вертикальный столбец соответствует температуре в десятках градусов, а верхняя горизонтальная строка — в единицах градусов. Изменение сопротивление меди при 15 °С принято за единицу. Коэффициент для произвольной температуры соответствует пересечению соответствующих строки и столбца. Например, изменение сопротивления меди при 86 °С составляет 1,2284. Это означает, что сопротивление проводника, измеренное при 15 С, работающего при температуре 86 С, надо умножить на 1,2284.  [c.16]


Д. Мп-бронзы. Содержат 25 % Мп. Высокая жаропрочность и электрическое сопротивление. Медь в твердом состоянии растворяет до 30 % Мп поэтому структура этих бронз — гомогенные а-твердые растворы.  [c.51]

ТКС определяется по сопротивлениям Rf и Rt чувствительного элемента медного ТС, измеренных соответственно при точке таяния льда и кипения воды. В диапазоне температур от —50 до 200 °С зависимость сопротивления меди от температуры носит линейный характер R = Ro (1 + ai).  [c.138]

Стальная оцинкованная проволока. Сталь наиболее дешевый из проводниковых материалов, который в отдельных случаях может быть использован в качестве проводника тока. Сталь обладает высокой механической прочностью. Удельное электрическое сопротивление стали значительно выше удельного электрического сопротивления меди и алюминия. Для проводников тока обычно применяется мягкая сталь, содержащая 0,10-0,15% углерода. Основные характеристики мягкой стали  [c.247]

Удельное сопротивление меди при температуре г, С (( = 30 -f 60 =С)  [c.509]

Реле и контакторы, работающие на постоянном токе, конструктивно ничем не отличаются от рассмотренных. Различие их заключается в том, что магнитопровод изготавливается сплошным из специальной электротехнической стали с высокой магнитной проницаемостью. Катушка электроаппарата, работающего на постоянном токе, имеет в несколько раз большее число витков, чем катушка электроаппарата, работающего на переменном токе. Это объясняется тем, что полное сопротивление катушки электроаппарата, работающего на переменном токе, слагается из двух составляющих — активного и индуктивного сопротивлений. В начальный момент после подачи напряжения пусковой ток в катушке превышает номинальный в несколько раз и созданный им магнитный поток достаточен для притягивания якоря. После замыкания магнитопровода усиливается магнитный поток, увеличивается общее сопротивление катушки за счет увеличения индуктивного, ток в катушке резко падает и достигает значения, достаточного для длительной работы электроаппарата без перегрева. Если катушки электроаппаратов питаются постоянным током, индуктивное сопротивление катушки отсутствует и ток в цепи ограничивается только сопротивлением меди катушки. Чтобы снизить силу тока, протекающего в катушке, необходимо увеличить ее сопротивление, а это приводит к увеличению длины провода и, следовательно, числа витков.  [c.177]

Лучшими проводниками электрического тока являются металлы с наименьшим сопротивлением — медь, алюминий и т. д.  [c.286]

В табл. 1 приведены величины удельного электрического сопротивления некоторых технических металлов. Лучшими проводниками электрического тока являются металлы с наименьшим электрическим сопротивлением — медь, алюминий и т. д.  [c.39]

Для постоянного тока сопротивление реактора (если пренебречь небольшим сопротивлением меди его катушки) почти равно нулю, и ток силовой цепи свободно пройдет через него. Для токов же высокой частоты, например / = 0,16 МГц (160 000 Гц), сопротивление реактора У . = 2.3,14-160 000-0,63 = 633 024 Ом.  [c.249]

Жесткие излучения могут влиять и на другие, помимо электроизоляционных, электротехнические материалы так, под их действием может возрастать удельное электрическое сопротивление меди и других проводников, нарушаться работоспособность полупроводниковых приборов и др.  [c.31]

С возрастанием содержания примесей удельное сопротивление меди возрастает в следующем порядке  [c.257]

СТИ сопротивления меди от температуры в интервале от —50 до 200 . Эта зависимость выражается уравнением  [c.77]


Мендоза и Томас [92, 298] исследовали также несколько других металлов. Образец серебра обнаружил минпмум сопротивления, подобный минимуму для золота. Сопротивление меди в области гелиевых температур оставалось постоянным, но при температурах ниже 1″ К несколько возрастало. Образцы магния, хотя п были вырезаны нз одного и того же куска проволоки, обнаружили минимумы, расположенные во всей области телшератур между 0,7 и 25° К.  [c.585]

С соответственно. Угол между направлением потока воздуха и осью трубы ср =60°. Вычислить допустимую силу тока в электрическом проводе, если температура резиновой изоляции не должна превышать 70° С. Определить критический диаметр тепловой изоляции. Удельное электрическое сопротивление меди р =0,0175 Om-mmVm теплопроводность резиновой изоляции Хр = 0,15 Вт/(м-К)-  [c.230]

Медь. Вторым после серебра металлом с низким сопротивлением является медь. Для проводников используется электролитическая медь с содержанием Си 99,9% и кислорода 0,08%. Высокой вязкостью и пластичностью обладает бескислородная медь, содержащая кислорода не более 0,02%. Температура плавления меди 1084° С, температура рекристаллизации — около 270° С. При нагревании выше этой температуры резко снижается прочность и возрастает пластичность. На воздухе поверхность медного проводника быстро покрывается слоем закиси — окиси меди с высоким удельным сопротивлением. Высокочастотные медные токоведущие элементы защищают от окисления покрытием из серебра. Для обмоток маслонаполненных трансформаторов используют луженую медную проволоку. Техническая медная проволока диаметром от 0,1 до 12 мм выпускается твердая и мягкая, подвергаемая отжигу в печах без доступа воздуха. Мягкая проволока диаметром до 3 мм имеет временное сопротивление в среднем 0р = 27 /сГ/лл для твердой проволоки больше (Ор = 39 кГ мм% удельное сопротивление для твердой проволоки р = 0,018 ом -мм 1м, а для мягкой р = 0,0175 ом-мм м. Температурный коэффициент сопротивления меди TKR =4-45-10″ Ijapad. Твердую медь применяют для контактных проводэв, коллекторов и т. п. Во всех этих  [c.274]

Для компенсацпи температурной погрешности из-за изменения Яя сопротивление 1R3 сделано из медной ироволоки. Практически полная темиературная компенсация нроисходит при давлении газа, соответствующем равенству сопротивлений Rn=давления газа от указанного возникает дополнительная погрешность, равная (считая температурные коэффициенты сопротивления меди и молибдена равными и пренебрегая малыми составляющими погрешности)  [c.43]

Повышение температуры приводит к увеличению сопротивления меди обмотки дросселя, т.е. к повышению сопротивления правого плеча делителя. Поэтому напряжение генератора, при котором напряжение на стабилитроне достигает стабилизации, увеличрггся, т.е. величина регулируемого напряжения в горячем состоянии возрастает. Повышение уровня регулируемого напряжения при нагреве способствует и некоторому изменению характеристик стабилитрона, так как напряжение стабилизации с увеличением температуры несколько возрастает.  [c.10]

Температура плавления меди 1083 °С, плотность 8,94 Mг/м Она обла- 1ает Г1ЦС решеткой, диамагнитна и не имеет полиморфизма. Удельное электрическое сопротивление меди равно 0,0178 мкОм м. Нашей промышленностью производится И марок меди с различным содержанием примесей. В электронике применяют бескислородную (б) медь марок МООб (99,99% Си) и МОб (99,97% Си), в электротехнике и металлургии МО (99,95% Си), М1 (99,9% Си) М2 (99,7% Си) и др.  [c.199]

Медь — металл красного цвета, розовый в изломе, обладает лучшей после серебра электропроводностью. Плотность меди 8890…8940кг/м , предел прочности при растяжении 256…409 МПа, температура плавления 1083 °С. Удельное электрическое сопротивление меди при 20 °С находится в пределах 0,01724…0,0180 мкОм м, удельная проводимость при 20 С в пределах 58…55,5 МСм/м.  [c.10]

Ряд металлов и сплавов и иных материалов при весьма низких температурах, близких к абсолютному нулю, резко снижают свое удельное сопротивление, которое может принимать SHaneHHfr порядка 10 Ом-м, что в 10 раз- меньше, чем сопротивление меди, а плотность тока более 10 А/м-. Свойство материалов, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охла15кдении ниже определенной критической температуры КР > характерной для данного материала, называют сверхпроводимостью. На состояние сверхпроводимости влияет тгкже величина магнитной индукции, наибольшее допустимое значение которой также называют критической.  [c.341]

Чем вызваны столь характерные изменения постоянной кристаллической решетки металлов при трении в поверхностно-ак-тивных смазочных средах Совершенно очевидно, что при трении в инактивных смазочных средах, когда роль смазки проявляется в том, что действующие нагрузки воспринимаются металлом распределенными через слой смазки, равномерное по глубине зоны деформации уменьшение периода решетки определяют макронапряжения в поверхностных слоях. Остаточные напряжения I рода ст = Eh) tg 0 А0, где А0 = MId) tg О,, здесь Е — модуль упругости V — коэффициент Пуассона, Adid — относительное изменение межплоскостного расстояния. Оценка остаточных напряжений по этой формуле дает величину о 1300 МПа, что в несколько раз превышает временное сопротивление меди. Эти результаты хорошо согласуются с данными работы [15], где показано, что в процессе трения могут возникать напряжения, намного большие, чем в условиях статического или динамического деформирования. Оценка о для никеля и железа также указывает на превышение временного сопротивления.  [c.127]


Из оксидированного алюминия изготовляют различные катушки, работающие при высокой температуре возможность нагрузки провода большей плотностью тока при малой толщине изоляции позволяет во многих случаях заменять медь алюминием, несмотря на, его более высокое удельное сопротивление (медь — 0,0172, алюминий — 0,028 ом мм 1м). Для получения медного провода с весьма высокой пагревостойкостью изоляции иногда покрывают медь алюминием, а затем поверхность алюминия оксидируют.  [c.548]

На кранах применяют резисторы из фехралевой или, реже, констан-тановой проволоки или из фехралевой ленты. Константан и фехраль — это сплавы, обладающие большим удельным сопротивлением у кон-стантана более чем в 25 раз, а у фехраля, в 75 раз превышающим удельное сопротивление меди. Величина сопротивления этих сплавов почти не изменяется от температуры. Они рассчитаны на работу при высоких температурах так, для константана предельная температура равна 300, а для фехраля — 350°С.  [c.351]


Удельное сопротивление (при 20° C)

Вещество Уровень удельного сопротивления, мкОм • мм2
Алюминий 0,028
Вольфрам 0,055
Железо 0,098
Золото 0,023
Константан 0,44−0,52
Латунь 0,025−0,06
Манганин 0,42−0,48
Медь 0,0175
Молибден 0,057
Никелин 0,39−0,45
Никель 0,100
Олово 0,115
Ртуть 0,958
Свинец 0,221
Серебро 0,016
Тантал 0,155
Фехраль 1,1−1,3
Хром 0,027
Цинк 0,059
Вещество К Вещество К
Алюминий 0,0042 Олово 0,0042
Вольфрам 0,0048 Платина 0,004
Константан 0,2 Ртуть 0,0009
Латунь 0,001 Свинец 0,004
Медь 0,0043 Серебро 0,0036
Манганин 0,3 Сталь 0,006
Молибден 0,0033 Тантал 0,0031
Никель 0,005 Хром 0,006
Никелин 0,0001 Фехраль 0,0002
Нихром 0,0001 Цинк 0,004

Сплавы сопротивления

  • Константан (58,8 Cu, 40 Ni, 1,2 Mn)
  • Манганин (85 Cu, 12 Mn, 3 Ni)
  • Нейзильбер (65 Cu, 20 Zn, 15 Ni)
  • Никелин (54 Cu, 20 Zn, 26 Ni)
  • Нихром (67,5 Ni, 15 Cr, 16 Fe, 1,5 Mn)
  • Реонат (84Cu, 12Mn, 4 Zn)
  • Фехраль (80 Fe, 14 Cr, 6 Al)

Удельное сопротивление нихрома

Рассмотрим электронную теорию данного явления. При движении по проводнику свободные электроны постоянно встречают на своем пути другие электроны и атомы. Взаимодействуя с ними, свободный электрон теряет часть своего заряда. Таким образом, электроны сталкиваются с сопротивлением со стороны материала проводника. Каждое тело имеет свою атомную структуру, которая оказывает электрическому току разное сопротивление. Единицей сопротивления принято считать Ом.

Сопротивление каждого отдельно взятого проводника (обозначается R или r.) зависит от свойств материала, из которого он изготовлен. Для точной характеристики электрического сопротивления того или иного материала было введено понятие — удельное сопротивление (нихрома, алюминия и т. д.). Удельным считается сопротивление проводника длиной до 1 м, сечение которого — 1 кв. мм. Этот показатель обозначается буквой p. Каждый материал, использующийся в производстве проводника, обладает своим удельным сопротивлением. Для примера рассмотрим удельное сопротивление нихрома и фехрали.

  • Х15Н60 — 1.13 Ом* мм2
  • Х23Ю5Т — 1.39 Ом* мм2
  • Х20Н80 — 1.12 Ом* мм2
  • ХН70Ю — 1.30 Ом* мм2
  • ХН20ЮС — 1.02 Ом* мм2

Применение

Высокий уровень удельное сопротивления нихрома, фехрали позволяет использовать эти материалы в произвгоодстве нагревательных элементов. Самая распространенная продукция — нихромовая нить, лента, полоса Х15Н60 и Х20Н80, а также фехралевая проволока Х23Ю5Т. для приборов теплового действия, бытовых приборов и электронагревательных элементов промышленных печей.

Удельное сопротивление железа, алюминия и других проводников

Передача электроэнергии на дальние расстояния требует заботиться о минимизации потерь, происходящих от преодоления током сопротивления проводников, составляющих электрическую линию. Разумеется, это не значит, что подобные потери, происходящие уже конкретно в цепях и устройствах потребления, не играют роли.

Пожалуй, даже наоборот, но только в устройствах имеют значение не потери энергии как таковые, а другие эффекты, связанные с сопротивлением: нагревание проводников от активных сопротивлений, «размазывание» сигналов от паразитных реактивных сопротивлений. И их минимизация связана не с экономическим последствием потери энергии, а с правильной работой и работоспособностью электрических и электронных схем. Потому что в компактных устройствах большую роль играет защита от перегрева схем или отдельных высокоинтегрированных компонент, а не потеря энергии, которая в абсолютном выражении в общем-то невелика. И вообще, оплачивается потребителями.

Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.
В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики — то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление — это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ).  Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации — при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей. 

Виды удельного сопротивления

Так как сопротивление бывает:

  • активное — или омическое, резистивное, — происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
  • реактивное — емкостное или индуктивное, — которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП — активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.

Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin — кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.

Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.

Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса — играющих роль проводов других фаз, нулевых, заземляющих.  

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление —порядка ом *10-6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления — обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Железо как проводник в электротехнике

Железо — самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

 Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

 

 

 

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

, где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

 , будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Итак,

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10-6. Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм2.

  1. Медь              
  2. Вольфрам               
  3. Никелин               
  4. Железо               

Как видим, сопротивление железа достаточно большое, проволока получается толстая. 

Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Похожие статьи:

Удельное электрическое сопротивление | Мир сварки

 Удельное электрическое сопротивление материалов

Удельное электрическое сопротивление (удельное сопротивление) – способность вещества препятствовать прохождению электрического тока.

Единица измерения (СИ) – Ом·м; также измеряется в Ом·см и Ом·мм2/м.

1 Ом·м = 1·106 Ом·мм2

Таблица — Удельное электрическое сопротивление материалов
Материал Температура, °С Удельное электрическое
сопротивление, Ом·м
 Металлы
Алюминий 20 0,028·10-6
Бериллий 20 0,036·10-6
Бронза фосфористая 20 0,08·10-6
Ванадий 20 0,196·10-6
Вольфрам 20 0,055·10-6
Гафний 20 0,322·10-6
Дюралюминий 20 0,034·10-6
Железо 20 0,097·10-6
Золото 20 0,024·10-6
Иридий 20 0,063·10-6
Кадмий 20 0,076·10-6
Калий 20 0,066·10-6
Кальций 20 0,046·10-6
Кобальт 20 0,097·10-6
Кремний 27 0,58·10-4
Латунь 20 0,075·10-6
Магний 20 0,045·10-6
Марганец 20 0,050·10-6
Медь 20 0,017·10-6
Магний 20 0,054·10-6
Молибден 20 0,057·10-6
Натрий 20 0,047·10-6
Никель 20 0,073·10-6
Ниобий 20 0,152·10-6
Олово 20 0,113·10-6
Палладий 20 0,107·10-6
Платина 20 0,110·10-6
Родий 20 0,047·10-6
Ртуть 20 0,958·10-6
Свинец 20 0,221·10-6
Серебро 20 0,016·10-6
Сталь 20 0,12·10-6
Тантал 20 0,146·10-6
Титан 20 0,54·10-6
Хром 20 0,131·10-6
Цинк 20 0,061·10-6
Цирконий 20 0,45·10-6
Чугун 20 0,65·10-6
 Пластмассы
Гетинакс 20 109–1012
Капрон 20 1010–1011
Лавсан 20 1014–1016
Органическое стекло 20 1011–1013
Пенопласт 20 1011
Поливинилхлорид 20 1010–1012
Полистирол 20 1013–1015
Полиэтилен 20 1015
Стеклотекстолит 20 1011–1012
Текстолит 20 107–1010
Целлулоид 20 109
Эбонит 20 1012–1014
 Резины
Резина 20 1011–1012
 Жидкости
Масло трансформаторное 20 1010–1013
 Газы
Воздух 0 1015–1018
 Дерево
Древесина сухая 20 109–1010
 Минералы
Кварц 230 109
Слюда 20 1011–1015
 Различные материалы
Стекло 20 109–1013

 Литература

  1. Альфа и омега. Краткий справочник / Таллин: Принтэст, 1991 – 448 с.
  2. Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
  3. Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1990. 512 с.

Таблица удельного сопротивления

000 000 48,2 9007 9007
Материал Удельное сопротивление ρ
(Ом · м)
Температура
Коэффициент α
на градус C
Электропроводность σ
x 10 7 / Ом · м
Ref
Серебро

07

73 1,59 x -8

.0038 6,29 3
Медь 1,68 x10 -8 .00386 5.95 3
Медь, отожженная 1,72 x10 -8 .00393 5,81 2
.00429 3.77 1
Вольфрам 5.6 x10 -8 .0045 1.79 1
Железо 71 x10 -8 .00651 1,03 1
Платина 10,6 x10 -8 .003927 x10 -8 .000002 0,207 1
Свинец 22 x10 -8 0,45 0,45 98 x10 -8 .0009 0,10 1
Нихром
(сплав Ni, Fe, Cr)
100 x10 -8 .0004 0,10 1 2 000 000 x10 -8 0,20 1
Углерод *
(графит)
3-60 x10 -5 -.0005 1
Германий * 1-500 x10 -3 -.05 1
Кремний * 0,1-60 -.07 1
Стекло 1-10000 x10 9 1
Кварц
(плавленый)
7,5 x10 17 1
Твердая резина 1-100 x10 13 1

* Удельное сопротивление полупроводников сильно зависит от наличия примесей в материале, что делает их полезными в твердотельной электронике.

Ссылки:

1. Джанколи, Дуглас К., Физика, 4-е изд., Прентис Холл, (1995).

2. Справочник CRC по химии и физике, 64-е изд.

3. Википедия, Удельное электрическое сопротивление и проводимость.

Индекс

Таблицы

Ссылка
Giancoli

Таблица удельного сопротивления / Диаграмма для обычных материалов

Таблица удельного электрического сопротивления материалов, которые могут использоваться в электрических и электронных компонентах, включая удельное сопротивление меди, удельное сопротивление латуни и удельное сопротивление алюминия.


Resistance Tutorial:
Что такое сопротивление Закон Ома Омические и неомические проводники Сопротивление лампы накаливания Удельное сопротивление Таблица удельного сопротивления для распространенных материалов Температурный коэффициент сопротивления Электрическая проводимость Последовательные и параллельные резисторы Таблица параллельных резисторов


Таблица удельного электрического сопротивления ниже содержит значения удельного сопротивления для многих веществ, широко используемых в электронике.В частности, он включает удельное сопротивление меди, удельное сопротивление алюминия, золота и серебра.

Удельное электрическое сопротивление особенно важно, поскольку оно определяет его электрические характеристики и, следовательно, пригодность его для использования во многих электрических компонентах. Например, будет видно, что удельное сопротивление меди, удельное сопротивление алюминия и серебра и золота определяет, где используются эти металлы.

Чтобы сравнить способность различных материалов проводить электрический ток, используются значения удельного сопротивления.

Что означают цифры удельного сопротивления

Для того, чтобы иметь возможность сравнивать удельное сопротивление различных материалов, таких как медь и серебро, и других металлов и веществ, включая висмут, латунь и даже полупроводники, необходимо использовать стандартное измерение.

Определение удельного сопротивления гласит, что удельное сопротивление вещества — это сопротивление куба этого вещества, имеющего края единичной длины, при том понимании, что ток течет перпендикулярно противоположным граням и равномерно распределяется по ним.

Удельное сопротивление обычно измеряется в Омметрах. Это означает, что удельное сопротивление измеряется для куба материала размером метр в каждом направлении.

Таблица удельного сопротивления для обычных материалов

В таблице ниже приведены значения удельного сопротивления для различных материалов, в частности металлов, используемых в качестве проводящих электричество.

Значения удельного сопротивления даны для материалов, включая медь, серебро, золото, алюминий, латунь и т.п.


Таблица удельного электрического сопротивления обычных материалов
Материал Удельное электрическое сопротивление при 20 ° C
Ом · м
Алюминий 2.8 х 10 -8
Сурьма 3,9 x 10 -7
висмут 1,3 x 10 -6
Латунь ~ 0,6 — 0,9 x 10 -7
Кадмий 6 x 10 -8
Кобальт 5.6 х 10 -8
Медь 1,7 x 10 -8
Золото 2,4 х 10 -8
Углерод (графит) 1 х 10 -5
Германий 4,6 х 10 -1
Утюг 1.0 х 10 -7
Свинец 1,9 x 10 -7
Манганин 4,2 х 10 -7
Нихром 1,1 x 10 -6
Никель 7 x 10 -8
Палладий 1,0 x 10 -7
Платина 0.98 х 10 -7
Кварц 7 х 10 17
Кремний 6,4 х 10 2
Серебро 1,6 x 10 -8
Тантал 1,3 x 10 -7
Олово 1,1 x 10 -7
Вольфрам 4.9 х 10 -8
цинк 5,5 x 10 -8

Удельное сопротивление материалов — лучшее

Можно видеть, что удельное сопротивление меди и удельное сопротивление латуни низкое, и ввиду их стоимости по сравнению с серебром и золотом они становятся экономически эффективными материалами для использования в производстве многих проводов. Удельное сопротивление меди и простота ее использования означают, что она также используется почти исключительно в качестве проводящего материала на печатных платах.

Алюминий иногда и особенно медь используются из-за их низкого удельного сопротивления. Большая часть проводов, используемых в наши дни для межсоединений, сделана из меди, так как она обеспечивает низкий уровень удельного сопротивления при приемлемой стоимости.

Удельное сопротивление золота также важно, потому что золото используется в некоторых критических областях, несмотря на его стоимость. Часто позолота встречается на высококачественных слаботочных разъемах, где оно обеспечивает наименьшее контактное сопротивление. Золотое покрытие очень тонкое, но даже в этом случае оно способно обеспечить требуемые характеристики в разъемах.

Серебро имеет очень низкий уровень удельного сопротивления, но оно не так широко используется из-за его стоимости и тусклости, что может привести к более высокому контактному сопротивлению. Оксид может действовать как выпрямитель при некоторых обстоятельствах, которые могут вызвать некоторые неприятные проблемы в радиочастотных цепях, генерируя так называемые пассивные продукты интермодуляции.

Однако он использовался в некоторых катушках для радиопередатчиков, где низкое электрическое сопротивление серебра уменьшало потери. При использовании в этом приложении он обычно наносился только на существующий медный провод — скин-эффект, влияющий на высокочастотные сигналы, означал, что только поверхность провода использовалась для проведения высокочастотных электрических токов.Покрытие проволоки серебром значительно снизило затраты по сравнению с сплошной серебряной проволокой без какого-либо значительного снижения производительности.

Другие материалы в таблице удельного электрического сопротивления могут не иметь такого очевидного применения. Тантал присутствует в таблице, потому что он используется в конденсаторах — никель и палладий используются в торцевых соединениях многих компонентов для поверхностного монтажа, таких как конденсаторы.

Кварц находит основное применение в качестве пьезоэлектрического резонансного элемента. Кристаллы кварца используются в качестве элементов определения частоты во многих генераторах, где его высокое значение Q позволяет создавать схемы с очень стабильной частотой.Они аналогичным образом используются в высокопроизводительных фильтрах. Кварц имеет очень высокий уровень удельного сопротивления и не является хорошим проводником электричества, будучи классифицированным как изолятор.

Классификация удельного сопротивления проводников, изоляторов, полупроводников

Существует три широких классификации материалов с точки зрения их удельного сопротивления: проводники, полупроводники и изоляторы.


Сравнение удельного сопротивления проводников, полупроводников и изоляторов
Материал Типичный диапазон удельного сопротивления (Ом · м)
Проводники 10 -2 -10 -8
Полупроводники 10 -6 -10 6
Изоляторы 10 11 — 10 19

Эти цифры являются ориентировочными.Показатели для полупроводников будут сильно зависеть от уровня легирования.

Удельное электрическое сопротивление материалов является ключевым электрическим параметром. Он определяет, можно ли эффективно использовать материалы во многих электрических и электронных приложениях. Это ключевой параметр, который используется для определения материалов, которые будут использоваться в электрических и электронных элементах.

Дополнительные концепции и руководства по основам электроники:
Voltage Текущий Власть Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
Вернуться в меню «Основные понятия электроники».. .

Удельное сопротивление и проводимость — температурные коэффициенты для обычных материалов

Удельное сопротивление — это

  • электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

Калькулятор сопротивления проводника

Этот калькулятор можно использовать для расчета электрического сопротивления проводника.

Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)

Площадь поперечного сечения проводника (мм 2 ) — Калибр провода AWG

Латунь — 58% Cu o Кобальт -8
Алюминий 20007 .65 x 10 -8 3,8 x 10 -3 3,77 x 10 7
Алюминиевый сплав 3003, прокат 3,7 x 10 -8
Алюминиевый сплав 2014, отожженный 3,4 x 10 -8
Алюминиевый сплав 360 7,5 x 10 -8
Алюминиевая бронза 12 x 10 -8 9700007
Животный жир 14 x 10 -2
Животный мускул 0.35
Сурьма 41,8 x 10 -8
Барий (0 o C) 30,2 x 10 -8 9007 22
9007
4,0 x 10 -8
Бериллий-медь 25 7 x 10 -8
Висмут 115 x 10 -8 5.9 x 10 -8 1,5 x 10 -3
Латунь — 63% Cu 7,1 x 10 -8 1,5 x 10 -3
Кадмий 7,4 x 10 -8
Цезий (0 o C) 18,8 x 10 -8
Кальций (0 o C) 9000 3,11 x 10 -8
Углерод (графит) 1) 3-60 x 10 -5 -4.8 x 10 -4
Чугун 100 x 10 -8
Церий (0 o C) 73 x 10 -8
Хромель (сплав хрома и алюминия) 0,58 x 10 -3
Хром 13 x 10 -8

73

Константин 49 x 10 -8 3 x 10 -5 0.20 x 10 7
Медь 1,724 x 10 -8 4,29 x 10 -3 5,95 x 10 7
Мельхиор 55-45 (константан) 43 x 10 -8
Диспрозий (0 o C) 89 x 10 -8
Эрбий (0 o C) 81 x 10 -8
Эврика 0.1 x 10 -3
Европий (0 o C) 89 x 10 -8
Гадолий 126 x 10 -8 4 3.35K) 418 900 ) 1 x 10 13 8 и хрома .01 x 10 -8
Галлий (1,1K) 13,6 x 10 -8
Германий 1) 1 — 500 x 10 -3 -50 x 10 -3
Стекло 1 — 10000 x 10 9 10 -12
Золото 2.24 x 10 -8
Графит 800 x 10 -8 -2,0 x 10 -4
Гафний (0,35K) 30,4 x 10 — 8
Hastelloy C 125 x 10 -8
Гольмий (0 o C) 90 x 10 -8
8 x 10 -8
Инконель 103 x 10 -8
Иридий 5,3 x 10 -8 9000 Железо 9,71 x 10 -8 6,41 x 10 -3 1,03 x 10 7
Лантан (4,71K) 54 x 10 -8
Свинец 20.6 x 10 -8 0,45 x 10 7
Литий 9,28 x 10 -8
Лютеций 54 x 10 -8
Магний 4,45 x 10 -8
Магниевый сплав AZ31B 9 x 10 -8
Марганец 185 x 1.0 x 10 -5
Mercury 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
Mica (
Низкоуглеродистая сталь 15 x 10 -8 6,6 x 10 -3
Молибден 5,2 x 10000 -8
Монель 58 x 10 -8
Неодим 61 x 10 -8
Нихром (сплав никеля 1000003) х 10 -8 0.40 x 10 -3
Никель 6,85 x 10 -8 6,41 x 10 -3
Никелин 50 x 10 -8 10 -4
Ниобий (Columbium) 13 x 10 -8
Осмий 9 x 10 -8 000 Pall 10.5 x 10 -8
Фосфор 1 x 10 12
Платина 10,5 x 10 -8 3,93 x 10 7 3,93 x 10 7 x 10 7
Плутоний 141,4 x 10 -8
Полоний 40 x 10 -8
Празеодим 65 x 10 -8
Прометий 50 x 10 -8 K) 17,7 x 10 -8
Кварц (плавленый) 7,5 x 10 17
Рений (1,7 K) 17.2 x 10 -8
Родий 4,6 x 10 -8
Твердая резина 1 — 100 x 10 13 Рубидий 11,5 x 10 -8
Рутений (0,49K) 11,5 x 10 -8
Самарий 91,418 9022 900 03 Нержавеющая сталь 907 10 6 9007 x 10 -8
Скандий 50.5 x 10 -8
Селен 12,0 x 10 -8
Кремний 1) 0,1-60 -70 x 10
Серебро 1,59 x 10 -8 6,1 x 10 -3 6,29 x 10 7
Натрий 4,2 x 10 -8
Грунт, типичный грунт 10 -2 -10 -4
Припой 15 x 10 -8
Стронций 12.3 x 10 -8
Сера 1 x 10 17
Тантал 12,4 x 10 -8
Таллий (2.37K) 15 x 10 -8
Торий 18 x 10 -8 Тулий 67 x 10 -8
Олово 11.0 x 10 -8 4,2 x 10 -3
Титан 43 x 10 -8
Вольфрам 5.65 900 x 10 4,5 x 10 -3 1,79 x 10 7
Уран 30 x 10 -8
Ванадий 2518
Вода, дистиллированная 10 -4
Вода пресная 10 -2
Вода соленая 90 03
Иттербий 27.7 x 10 -8
Иттрий 55 x 10 -8
Цинк 5,92 x 10 -8 3,7 x 10 -9 3 3,7 x 10 -3
Цирконий (0,55K) 38,8 x 10 -8

1) Примечание! — удельное сопротивление сильно зависит от наличия примесей в материале.

2 ) Примечание! — удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на эталоне 20 o C.

Электрическое сопротивление в проводе

Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

R = ρ L / A (1)

, где

R = сопротивление (Ом, ). Ом )

ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)

L = длина провода (м)

A = площадь поперечного сечения провода (м 2 )

Фактором сопротивления, учитывающим природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления проволоки заданной геометрии при различных температурах.

Обратное сопротивление называется проводимостью и может быть выражено как:

σ = 1 / ρ (2)

где

σ = проводимость (1 / Ом м)

Пример — сопротивление алюминиевого провода

Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,09 Ом

Сопротивление

Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:

R = U / I (3)

где

R = сопротивление (Ом)

U = напряжение (В)

I = ток (A)

Закон Ома

Если сопротивление постоянно диапазон напряжения, затем закон Ома,

I = U / R (4)

можно использовать для прогнозирования поведения материала.

Зависимость удельного сопротивления от температуры

Изменение удельного сопротивления от температуры можно рассчитать как

= ρ α dt (5)

где

dρ = изменение удельного сопротивления ( Ом м 2 / м)

α = температурный коэффициент (1/ o C)

dt = изменение температуры ( dt = изменение температуры C)

Пример — изменение удельного сопротивления

Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом · м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

dρ = (2,65 10 -8 Ом · м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) — (20 o C))

= 0.8 10 -8 Ом · м 2 / м

Окончательное удельное сопротивление можно рассчитать как

ρ = (2,65 10 -8 Ом · м 2 / м) + (0,8 10 -8 Ом · м 2 / м)

= 3,45 10 -8 Ом · м 2 / м

Калькулятор зависимости коэффициента удельного сопротивления от температуры

использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.

ρ — Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

α температурный коэффициент (10 -3 1 / o C)

dt изменение температуры ( o C)

Сопротивление и температура

Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления может быть выражено как

dR / R s = α dT (6)

, где

dR = изменение сопротивления (Ом)

с = стандартное сопротивление согласно справочным таблицам (Ом)

α = температурный коэффициент сопротивления ( o C -1 )

dT = изменение температура от эталонной температуры ( o C, K)

(5) может быть изменена на:

dR = α dT R s (6b)

«Температурный коэффициент сопротивления» — α — материала — это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0665 1 o С .

Пример — сопротивление медного провода в жаркую погоду

Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C нагревается в жаркую солнечную погоду до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) — (20 o C) ) (0.5 кОм)

= 0,13 (кОм)

Результирующее сопротивление медного провода в жаркую погоду будет

R = (0,5 кОм) + (0,13 кОм)

= 0,63 ( кОм)

= 630 (Ом)

Пример — сопротивление угольного резистора при изменении температуры

Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 o С .Температурный коэффициент для углерода отрицательный. -4,8 x 10 -4 (1/ o C) — сопротивление уменьшается с повышением температуры.

Изменение сопротивления можно рассчитать как

dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) — (20 o C) ) (1 кОм)

= — 0,048 (кОм)

Результирующее сопротивление резистора будет

R = (1 кОм) — (0.048 кОм)

= 0,952 (кОм)

= 952 (Ом)

Калькулятор зависимости сопротивления от температуры

Этот счетчик можно использовать для расчета сопротивления проводника в зависимости от температуры.

R с сопротивление (10 3 (Ом)

α температурный коэффициент (10 -3

C) 1/ o

dt изменение температуры ( o C)

Температурные поправочные коэффициенты для сопротивления проводника

(° C) Преобразовать в 20 ° C 0, 9000
Температура проводника
(° C)
Обратно в преобразовать из 20 ° C
5 1.064 0,940
6 1,059 0,944
7 1,055 0,948
8 1,050
10 1.042 0.960
11 1.037 0.964
12 1.033 0.968
13 1.029 0.972
14 1.025 0,976
15 1.020 0.980
1,012 0,988
18 1,008 0,992
19 1,004 0,996
20 1.000 1.000
21 0,996 1.004
22 0,992 1.008
23 0.988 1.012 1.012 1.012
25 0,980 1,020
26 0,977 1,024
27 0,973 1.028
28 0,969 1,032
29 0,965 1,036
30 0,962 1.040
0,954 1,048
33 0,951 1,052

Сопротивление и удельное сопротивление | Физика II

Цели обучения

К концу этого раздела вы сможете:

  • Объясните понятие удельного сопротивления.
  • Используйте удельное сопротивление для расчета сопротивления материала указанной конфигурации.
  • Используйте термический коэффициент удельного сопротивления, чтобы вычислить изменение сопротивления в зависимости от температуры.

Зависимость сопротивления от материала и формы

Сопротивление объекта зависит от его формы и материала, из которого он сделан. Цилиндрический резистор на Рисунке 1 легко анализировать, и, таким образом, мы можем получить представление о сопротивлении более сложных форм.Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L , подобно сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, как поток жидкости по трубе). Фактически, R обратно пропорционален площади поперечного сечения цилиндра A .

Рисунок 1.Однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Сопротивление данной формы зависит от материала, из которого изготовлен объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем сопротивление ρ вещества так, чтобы сопротивление R объекта было прямо пропорционально ρ .Удельное сопротивление ρ — это внутреннее свойство материала, независимо от его формы или размера. Сопротивление R однородного цилиндра длиной L , площадью поперечного сечения A , изготовленного из материала с удельным сопротивлением ρ , составляет

[латекс] R = \ frac {\ rho L} {A} \\ [/ латекс].

В таблице 1 приведены репрезентативные значения ρ . Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельных сопротивлений.У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют различную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Таблица 1. Удельное сопротивление ρ различных материалов при 20º C
Материал Удельное сопротивление ρ ( Ом м )
Проводники
Серебро 1. 59 × 10 −8
Медь 1. 72 × 10 −8
Золото 2. 44 × 10 −8
Алюминий 2.65 × 10 −8
Вольфрам 5. 6 × 10 −8
Утюг 9. 71 × 10 −8
Платина 10. 6 × 10 −8
Сталь 20 × 10 −8
Свинец 22 × 10 −8
Манганин (сплав Cu, Mn, Ni) 44 × 10 −8
Константан (сплав Cu, Ni) 49 × 10 −8
Меркурий 96 × 10 −8
Нихром (сплав Ni, Fe, Cr) 100 × 10 −8
Полупроводники
Углерод (чистый) 3.5 × 10 5
Углерод (3,5 — 60) × 10 5
Германий (чистый) 600 × 10 −3
Германий (1−600) × 10 −3
Кремний (чистый) 2300
Кремний 0,1–2300
Изоляторы
Янтарь 5 × 10 14
Стекло 10 9 — 10 14
Люсит > 10 13
Слюда 10 11 — 10 15
Кварц (плавленый) 75 × 10 16
Резина (твердая) 10 13 — 10 16
Сера 10 15
Тефлон > 10 13
Дерево 10 8 — 10 11

Пример 1.Расчет диаметра резистора: нить накала фары

Нить накала автомобильной фары изготовлена ​​из вольфрама и имеет сопротивление холоду 0,350 Ом. Если нить представляет собой цилиндр длиной 4,00 см (ее можно свернуть в бухту для экономии места), каков ее диаметр?

Стратегия

Мы можем переписать уравнение [латекс] R = \ frac {\ rho L} {A} \\ [/ latex], чтобы найти площадь поперечного сечения A нити на основе данной информации. Тогда его диаметр можно определить, предположив, что он имеет круглое поперечное сечение.{-5} \ text {m} \ end {array} \\ [/ latex].

Обсуждение

Диаметр чуть меньше десятой миллиметра. Он состоит только из двух цифр, потому что ρ известен только из двух цифр.

Температурное изменение сопротивления

Удельное сопротивление всех материалов зависит от температуры. Некоторые даже становятся сверхпроводниками (нулевое сопротивление) при очень низких температурах. (См. Рисунок 2.)

Рис. 2. Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник до примерно 4.2 К. Выше этой критической температуры его сопротивление делает резкий скачок, а затем почти линейно увеличивается с температурой.

И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, совершают больше столкновений, эффективно увеличивая удельное сопротивление. При относительно небольших изменениях температуры (около 100 ° C или менее) удельное сопротивление ρ изменяется с изменением температуры Δ T , как выражается в следующем уравнении

ρ = ρ 0 (1 + α Δ T ),

, где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления .(См. Значения α в Таблице 2 ниже.) Для более значительных изменений температуры α может измениться, или может потребоваться нелинейное уравнение, чтобы найти ρ . Обратите внимание, что α положительно для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. У манганина (который состоит из меди, марганца и никеля), например, α близок к нулю (до трех цифр на шкале в таблице 2), и поэтому его удельное сопротивление незначительно изменяется в зависимости от температуры.Это полезно, например, для создания не зависящего от температуры эталона сопротивления.

Таблица 2. Температурные коэффициенты удельного сопротивления α
Материал Коэффициент (1 / ° C)
Проводники
Серебро 3,8 × 10 −3
Медь 3,9 × 10 −3
Золото 3.4 × 10 −3
Алюминий 3,9 × 10 −3
Вольфрам 4,5 × 10 −3
Утюг 5,0 × 10 −3
Платина 3,93 × 10 −3
Свинец 3,9 × 10 −3
Манганин (сплав Cu, Mn, Ni) 0,000 × 10 −3
Константан (сплав Cu, Ni) 0.002 × 10 −3
Меркурий 0,89 × 10 −3
Нихром (сплав Ni, Fe, Cr) 0,4 × 10 −3
Полупроводники
Углерод (чистый) −0,5 × 10 −3
Германий (чистый) −50 × 10 −3
Кремний (чистый) −70 × 10 −3

Также обратите внимание, что α отрицательно для полупроводников, перечисленных в таблице 2, что означает, что их удельное сопротивление уменьшается с повышением температуры.Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках. Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ . Для цилиндра мы знаем, что R = ρL / A , и поэтому, если L и A не сильно изменяются с температурой, R будет иметь такую ​​же температурную зависимость, как ρ .(Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ .) Таким образом,

R = R 0 (1 + α Δ T )

— это температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры Δ T .Многие термометры основаны на влиянии температуры на сопротивление. (См. Рис. 3.) Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Рис. 3. Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.(Источник: Biol, Wikimedia Commons)

Пример 2. Расчет сопротивления: сопротивление горячей нити

Хотя следует соблюдать осторожность при применении ρ = ρ 0 (1 + α Δ T ) и R = R 0 (1 + α Δ T ) для изменений температуры более 100 ° C, для вольфрама уравнения достаточно хорошо работают при очень больших изменениях температуры. Каково же сопротивление вольфрамовой нити в предыдущем примере, если ее температура повышается с комнатной температуры (20ºC) до типичной рабочей температуры 2850ºC?

Стратегия

Это прямое применение R = R 0 (1 + α Δ T ), поскольку исходное сопротивление нити было задано равным R 0 = 0.{-3} / º \ text {C} \ right) \ left (2830º \ text {C} \ right) \ right] \\ & = & {4.8 \ Omega} \ end {array} \\ [/ latex] .

Обсуждение

Это значение соответствует примеру сопротивления фары в Законе Ома: сопротивление и простые цепи.

Исследования PhET: сопротивление в проводе

Узнайте о физике сопротивления в проводе. Измените его удельное сопротивление, длину и площадь, чтобы увидеть, как они влияют на сопротивление провода. Размеры символов в уравнении меняются вместе со схемой провода.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Сопротивление R цилиндра длиной L и площадью поперечного сечения A составляет [латекс] R = \ frac {\ rho L} {A} \ [/ латекс], где ρ — удельное сопротивление материала.
  • Значения ρ в таблице 1 показывают, что материалы делятся на три группы — проводники, полупроводники и изоляторы .
  • Температура влияет на удельное сопротивление; для относительно небольших изменений температуры Δ T , удельное сопротивление равно [латекс] \ rho = {\ rho} _ {0} \ left (\ text {1} + \ alpha \ Delta T \ right) \\ [/ latex], где ρ 0 — исходное удельное сопротивление, а [латекс] \ text {\ alpha} [/ latex] — температурный коэффициент удельного сопротивления.
  • В таблице 2 приведены значения для α , температурного коэффициента удельного сопротивления.
  • Сопротивление R объекта также зависит от температуры: [латекс] R = {R} _ {0} \ left (\ text {1} + \ alpha \ Delta T \ right) \\ [/ latex], где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры.

Концептуальные вопросы

1. В каком из трех полупроводниковых материалов, перечисленных в Таблице 1, примеси дают свободные заряды? (Подсказка: изучите диапазон удельного сопротивления для каждого из них и определите, имеет ли чистый полупроводник большую или меньшую проводимость.)

2. Зависит ли сопротивление объекта от пути тока, проходящего через него? Рассмотрим, например, прямоугольный стержень — одинаково ли его сопротивление по длине и по ширине? (См. Рисунок 5.)

Рис. 5. Встречается ли ток, проходящий двумя разными путями через один и тот же объект, с разным сопротивлением?

3. Если алюминиевый и медный провода одинаковой длины имеют одинаковое сопротивление, какой из них имеет больший диаметр? Почему?

4. Объясните, почему [латекс] R = {R} _ {0} \ left (1+ \ alpha \ Delta T \ right) \\ [/ latex] для температурного изменения сопротивления R объекта равен не так точен, как [латекс] \ rho = {\ rho} _ {0} \ left ({1} + \ alpha \ Delta T \ right) \\ [/ latex], что дает температурное изменение удельного сопротивления ρ .

Задачи и упражнения

1. Каково сопротивление отрезка медного провода 12-го калибра длиной 20,0 м и диаметром 2,053 мм?

2. Диаметр медного провода нулевого сечения составляет 8,252 мм. Найдите сопротивление такого провода длиной 1,00 км, используемого для передачи энергии.

3. Если вольфрамовая нить диаметром 0,100 мм в лампочке должна иметь сопротивление 0,200 Ом при 20 ° C, какой длины она должна быть?

4. Найдите отношение диаметра алюминиевого провода к медному, если они имеют одинаковое сопротивление на единицу длины (как в бытовой электропроводке).

5. Какой ток протекает через стержень из чистого кремния диаметром 2,54 см и длиной 20,0 см при приложении к нему 1,00 × 10 3 В? (Такой стержень может быть использован, например, для изготовления детекторов ядерных частиц.)

6. (a) До какой температуры нужно нагреть медный провод, изначально равный 20,0 ° C, чтобы удвоить его сопротивление, не обращая внимания на любые изменения размеров? (б) Происходит ли это в бытовой электропроводке при обычных обстоятельствах?

7. Резистор из нихромовой проволоки используется там, где его сопротивление не может изменяться более чем на 1.00% от его значения при 20,0ºC. В каком температурном диапазоне его можно использовать?

8. Из какого материала изготовлен резистор, если его сопротивление на 40,0% больше при 100 ° C, чем при 20,0 ° C?

9. Электронное устройство, предназначенное для работы при любой температуре в диапазоне от –10,0 ° C до 55,0 ° C, содержит резисторы из чистого углерода. В какой степени их сопротивление увеличивается в этом диапазоне?

10. (a) Из какого материала сделана проволока, если она имеет длину 25,0 м, диаметр 0,100 мм и сопротивление 77.7 Ом при 20,0 ° C? (б) Каково его сопротивление при 150 ° C?

11. Если принять постоянный температурный коэффициент удельного сопротивления, каков максимальный процент уменьшения сопротивления константановой проволоки, начиная с 20,0 ° C?

12. Проволока протягивается через матрицу, растягивая ее в четыре раза по сравнению с исходной длиной. По какому фактору увеличивается его сопротивляемость?

13. Медный провод имеет сопротивление 0,500 Ом при 20,0 ° C, а железный провод имеет сопротивление 0,525 Ом при той же температуре.При какой температуре их сопротивления равны?

14. (a) Цифровые медицинские термометры определяют температуру путем измерения сопротивления полупроводникового устройства, называемого термистором (который имеет α, = –0,0600 / ºC), когда он находится при той же температуре, что и пациент. Какова температура пациента, если сопротивление термистора при этой температуре составляет 82,0% от его значения при 37,0 ° C (нормальная температура тела)? (b) Отрицательное значение для α может не поддерживаться при очень низких температурах.Обсудите, почему и так ли здесь. (Подсказка: сопротивление не может стать отрицательным.)

15. Integrated Concepts (a) Повторите упражнение 2 с учетом теплового расширения вольфрамовой нити. Вы можете принять коэффициент теплового расширения 12 × 10 −6 / ºC. б) На какой процент ваш ответ отличается от приведенного в примере?

16. Необоснованные результаты (a) До какой температуры нужно нагреть резистор из константана, чтобы удвоить его сопротивление, при условии постоянного температурного коэффициента удельного сопротивления? б) разрезать пополам? (c) Что необоснованного в этих результатах? (d) Какие предположения необоснованны или какие посылки несовместимы?

Сноски

  1. 1 Значения сильно зависят от количества и типа примесей
  2. 2 значения при 20 ° C.

Глоссарий

удельное сопротивление:
внутреннее свойство материала, независимо от его формы или размера, прямо пропорциональное сопротивлению, обозначаемое ρ
температурный коэффициент удельного сопротивления:
эмпирическая величина, обозначаемая α , которая описывает изменение сопротивления или удельного сопротивления материала при температуре

Избранные решения проблем и упражнения

1.0,104 Ом

3. 2,8 × 10 −2 м

5. 1,10 × 10 −3 A

7. от −5ºC до 45ºC

9. 1.03

11. 0,06%

13. −17ºC

15. (a) 4,7 Ом (всего) (b) уменьшение на 3,0%


Электроопорные сплавы меди, марганца и алюминия

% PDF-1.4 % 160 0 объект > эндобдж 155 0 объект > поток application / pdf

  • Журнал исследований Национального института стандартов и технологий — это издание U.С. Правительство. Документы находятся в общественном достоянии и не защищены авторским правом в США. Тем не менее, обратите особое внимание на отдельные работы, чтобы убедиться, что не указаны ограничения авторского права. Для отдельных работ может потребоваться получение других разрешений от первоначального правообладателя.
  • Электроопорные сплавы меди, марганца и алюминия
  • Thomas, J.L.
  • Подключаемый модуль Adobe Acrobat 9.13 Paper Capture2011-02-17T16: 07: 34-05: 00 Adobe Acrobat 9.02012-06-22T08: 16: 33-04: 002012-06-22T08: 16: 33-04: 00uuid: 7c7becaf-6cef-4f84-a3a3-b59bd14aebbduuid: 2bfa3b99-2b73-4431-871d-c809c0029087beucaf-6c7becaf 4f84-a3a3-b59bd14aebbddefault1
  • convertuuid: 6f93cd63-21a4-42c8-bc8d-6690f7b40064 преобразовано в PDF / A-1bpdfaPilot2012-06-22T08: 16: 29-04: 00
  • False1B
  • http://ns.adobe.com/pdf/1.3/pdfAdobe PDF Schema
  • internal Объект имени, указывающий, был ли документ изменен для включения информации о треппинге TrappedText
  • http: // ns.adobe.com/xap/1.0/mm/xmpMMXMP Media Management
  • внутренний идентификатор на основе UUID для конкретного воплощения документа InstanceIDURI
  • internal Общий идентификатор для всех версий и представлений документа. OriginalDocumentIDURI
  • http://www.aiim.org/pdfa/ns/id/pdfaidPDF/A ID Schema
  • internalPart of PDF / A standardpartInteger
  • внутренняя Поправка к стандарту PDF / A amdText
  • внутренний Уровень соответствия стандарту PDF / A Текст
  • конечный поток эндобдж 125 0 объект > эндобдж 156 0 объект [>] эндобдж 152 0 объект > эндобдж 149 0 объект > эндобдж 150 0 объект > эндобдж 151 0 объект > эндобдж 153 0 объект > эндобдж 154 0 объект > эндобдж 27 0 объект > / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 34 0 объект > / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 41 0 объект > / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 48 0 объект > / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 54 0 объект > / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 61 0 объект > / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 62 0 объект [63 0 R 64 0 R 65 0 R] эндобдж 66 0 объект > поток

    Электрическое сопротивление — Гипертекст по физике

    Обсуждение

    введение

    Йех! Что за беспорядок.

    Проводимость: С. Грей, 1729 — Сопротивление: Георг Симон Ом, 1827.

    Обычная версия…

    I В

    . .
    I = В В = ИК R = В
    R Я

    Вариабельность…

    • количество: сопротивление R
      единица: Ом [Ом] Георг Ом (1787–1854) Германия

    Причудливая версия (магнитогидродинамическая версия?)…

    J E

    .
    J = σ E E = ρ J

    Добро пожаловать в символ ада…

    Электрические характеристики
    количество символ единица СИ символ собственности…
    сопротивление R Ом Ом объектов
    проводимость г siemens S
    удельное сопротивление ρ Омметр Ом · м материалов
    проводимость σ сименса на метр См / м

    Закон Ома не является серьезным законом.Это непростая физика. Разумные материалы и устройства подчиняются ему, но есть множество мошенников, которые этого не делают.

    резисторы

    Плохая выпивка портит наши молодые кишки, но водка идет хорошо.

    Лучше постройте крышу над гаражом, пока фургон не намок.

    Коды маркировки резисторов и конденсаторов
    цвет цифра множитель допуск tcr (10 −6 / К)
    нет ± 20%
    розовый 10 −3
    серебро 10 -2 ± 10%
    золото 10 -1 ± 5%
    черный 0 10 0+ ± 250
    коричневый 1 10 1+ ± 1% ± 100
    красный 2 10 2+ ± 2% ± 50
    оранжевый 3 10 3+ ± 0.05% ± 15
    желтый 4 10 4+ ± 0,02% ± 25
    зеленый 5 10 5+ ± 0,50% ± 20
    синий 6 10 6+ ± 0,25% ± 10
    фиолетовый 7 ± 0.10% ± 5
    серый 8 ± 0,01% ± 1
    белый 9

    материалы

    Сопротивление и удельное сопротивление. Факторы, влияющие на сопротивление в проводящем проводе.

    Проводники и изоляторы

    Лучшие электрические проводники: серебро, медь, золото, алюминий, кальций, бериллий, вольфрам

    Сопротивление и проводимость взаимны.

    Электропроводность металлов — это статистическая / термодинамическая величина.

    Сопротивление определяется рассеянием электронов. Чем больше рассеяние, тем выше сопротивление.

    где…

    σ = Электропроводность [См / м]
    n = плотность свободных электронов [э / м 3 ]
    e = заряд электрона (1.60 × 10 −19 Кл)
    м e = масса электрона (9.11 × 10 −31 кг)
    v среднеквадратичное значение = Среднеквадратичная скорость электронов [м / с]
    ℓ = средняя длина свободного пробега [м]

    Графит

    Кому принадлежит эта идея? Нихром был изобретен в 1906 году, что сделало возможным электрические тостеры.

    Полимеры электропроводящие.

    Удельное сопротивление выбранных материалов (~ 300 K)
    (Обратите внимание на разницу в единицах измерения между металлами и неметаллами.)

    металлы ρ (нОм м)
    алюминий 26,5
    латунь 64
    хром 126
    медь 17,1
    золото 22,1
    утюг 96,1
    свинец 208
    литий 92.8
    ртуть (0 ° C) 941
    марганец 1440
    нихром 1500
    никель 69,3
    палладий 105,4
    платина 105
    плутоний 1414
    серебро 15,9
    припой 150
    сталь, гладкая 180
    сталь, нержавеющая 720
    тантал 131
    банка (0 ° C) 115
    титан (0 ° C) 390
    вольфрам 52.8
    уран (0 ° C) 280
    цинк 59
    неметаллы ρ (Ом м)
    оксид алюминия (14 ° C) 1 × 10 14
    оксид алюминия (300 ° C) 3 × 10 11
    оксид алюминия (800 ° C) 4 × 10 6
    углерод аморфный 0.35
    карбон, алмаз 2,7
    углерод, графит 650 × 10 −9
    Оксид индия и олова, тонкая пленка 2000 × 10 −9
    германий 0,46
    пирекс 7740 40 000
    кварцевый 75 × 10 16
    кремний 640
    диоксид кремния (20 ° C) 1 × 10 13
    диоксид кремния (600 ° C) 70 000
    диоксид кремния (1300 ° C) 0.004
    вода, жидкость (0 ° C) 861 900
    вода, жидкость (25 ° C) 181 800
    вода, жидкость (100 ° C) 12,740

    температура

    Общее правило — удельное сопротивление увеличивается с увеличением температуры в проводниках и уменьшается с увеличением температуры в изоляторах. К сожалению, не существует простой математической функции для описания этих отношений.

    Температурную зависимость удельного сопротивления (или обратной проводимости) можно понять только с помощью квантовой механики. Точно так же, как материя представляет собой совокупность микроскопических частиц, называемых атомами, а луч света — это поток микроскопических частиц, называемых фотонами, тепловые колебания в твердом теле представляют собой рой микроскопических частиц, называемых фононами . Электроны пытаются дрейфовать к положительному полюсу батареи, но фононы продолжают врезаться в них.Случайное направление этих столкновений нарушает попытку организованного движения электронов против электрического поля. Отклонение или рассеяние электронов на фононах — один из источников сопротивления. С повышением температуры количество фононов увеличивается, а вместе с ним и вероятность столкновения электронов и фононов. Таким образом, когда температура повышается, сопротивление повышается.

    Для некоторых материалов удельное сопротивление линейно зависит от температуры.

    ρ = ρ 0 (1 + α ( T T 0 ))

    Удельное сопротивление проводника увеличивается с температурой.В случае меди зависимость между удельным сопротивлением и температурой примерно линейна в широком диапазоне температур.

    Для других материалов лучше работает соотношение сил.

    ρ = ρ 0 ( T / T 0 ) μ

    Удельное сопротивление проводника увеличивается с температурой. В случае вольфрама зависимость между удельным сопротивлением и температурой лучше всего описывается соотношением мощности.

    см. Также: сверхпроводимость

    разное

    магнитосопротивление

    фотопроводимость

    жидкости

    электролиты

    газы

    пробой диэлектрика

    плазма

    микрофоны

    Угольный микрофон — ничто задом наперед

    Микрофоны и принцип их работы
    тип звуков производят
    изменений в…
    , что вызывает
    изменений…
    , в результате чего
    изменений…
    углерод Плотность гранул сопротивление напряжение
    конденсатор сепаратор пластин емкость напряжение
    динамический Расположение змеевика флюс напряжение
    пьезоэлектрический компрессия поляризация напряжение

    Интернет-ресурс с информацией о материалах — MatWeb

    MatWeb, ваш источник информации о материалах

    Что такое MatWeb? MatWeb’s база данных свойств материалов с возможностью поиска включает паспорта термопластов и термореактивных полимеров, таких как АБС, нейлон, поликарбонат, полиэстер, полиэтилен и полипропилен; металлы, такие как алюминий, кобальт, медь, свинец, магний, никель, сталь, суперсплавы, сплавы титана и цинка; керамика; плюс полупроводники, волокна и другие инженерные материалы.

    Преимущества регистрации в MatWeb
    Премиум-членство Характеристика: — Данные о материалах экспорт в программы CAD / FEA, включая:

    Как найти данные о собственности в MatWeb

    Нажмите здесь, чтобы узнать, как войти материалы вашей компании в MatWeb.

    У нас есть более 150 000 материалы в нашей базе данных, и мы постоянно добавляем к этому количеству, чтобы обеспечить Вам доступен самый полный бесплатный источник данных о собственности материалов в Интернете. Для вашего удобства в MatWeb также есть несколько конвертеров. и калькуляторы, которые делают общие инженерные задачи доступными одним щелчком мыши. кнопки. MatWeb находится в стадии разработки.Мы постоянно стремимся найти лучшее способы служить инженерному сообществу. Пожалуйста, не стесняйтесь свяжитесь с нами с любыми комментариями или предложениями.

    База данных MatWeb состоит в основном из предоставленных таблиц данных и спецификаций. производителями и дистрибьюторами — сообщите им, что вы видели их данные о материалах на MatWeb.


    Рекомендуемый материал:
    Ламинат меламинового арамида




    . Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *