Трехфазные системы | CyberPower
Трехфазные системы
Трехфазный ИБП для обеспечения параллельного резервирования питания для критически важных потребителей
Сравнение продуктовЭкспертный узел энергетического решения
В списке Data Center 100 и в Топ 20 поставщиков инфраструктуры по итогам CRN
Быстро развивающийся в среде корпоративных решений
Технология энергосбережения GreenPower UPS™
Расширение бизнеса на европейский рынок
Учреждена собственная лаборатория мирового уровня
Лидеры рынка после Интернет-революции
Начало ведения бизнеса в США
Взяв курс на достижение успеха за счет применения самых передовых технологий в ИБП системах, CyberPower снискала значительный успех в США и Европе, и на сегодняшний день продолжает предоставлять свои услуги во всем мире. С помощью команды инженеров выдающегося мастерства и за счет применения стандартов качества CyberPower стала лидером, как одна из самых быстро развивающихся компаний-производителей систем защиты источников электропитания в сфере ИТ.- Более 100 дистрибьюторов и розничных торговых точек по всему миру
- С 2013 года три раза подряд входила в рейтинг Data Center 100 и в Топ-20 поставщиков инфраструктуры по итогам CRN
- Получила первое в мире свидетельство Energy Star от группы CSA и была награждена званием производителя энергоэффективных ИТ-систем по итогам Green IT Best Practice Award 2012
- Запустила продуктовую линейку ИБП систем Datacenter и добилась программной совместимости с важнейшими партнерами в области виртуализационных технологий, среди которых VMware, Hyper-V, Red Hat, и Citrix
- Открыла офис в Японии и начала осуществлять продажи через каналы в Австралии с целью расширения своего бизнес-присутствия в Азиатско-Тихоокеанском регионе
- CyberPower сделала первое публичное предложение (ППП) акций на Тайваньской фондовой бирже
- Выпустила первый высокочастотный энергосберегающий ИБП с технологией повышенной эффективности
- Признана «Лучшим Новым Продавцом Года» по мнению Ingram Micro — самого крупного в мире дистрибьютора компьютеров и продуктов высоких технологий
- Разработан и выпущен ИБП DC для сферы телекоммуникаций
- Начало сотрудничества с крупнейшим в мире дистрибьютором ИТ-технологий и поставщиком глобальных сетевых технологий — Tech Data и Tellabs
- Прошла сертификацию либоратории «UL» на предоставления услуг усовершенствованной тестовой среды
- Выполнены испытания на безопасность, получена сертификация EMI и пройдено предварительное тестирование для активизации разработок и повышения инженерного мастерства
- Выпустила ИБП Power98 — первый ИБП, разработанный для совместимости с Windows 98
- Продукция компании появилась в крупнейших мировых и мультинациональных розничных торговых сетях: Walmart, BestBuy и Fry’s
Благодаря своей специализации в области систем защиты энергопитания и резервных батарей, CyberPower сделала свой вклад в развитие сферы ИБП на американском рынке.
Трёхфазная система электроснабжения — Четырех и трехпроводная…
Трехфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определенный фазовый угол . В трехфазной системе этот угол равен 2π/3 (120°).
Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трехфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C
Распространенные обозначения фазных проводов:
Россия, EC (выше 1000 В) | Россия, ЕС (ниже 1000 В) | Германия | Дания |
---|---|---|---|
А | L1 | L1 | R |
B | L2 | L2 | S |
C | L3 | L3 | T |
Кроме фазных проводников в сетях до 1000 вольт применяется нейтральный провод (N — «нейтраль» или «ноль»). Он позволяет использовать трехфазную сеть для питания однофазной нагрузки фазным напряжением.
Преимущества
- Экономичность.
- Экономичность передачи электроэнергии на значительные расстояния.
- Меньшая материалоемкость 3-фазных трансформаторов.
- Меньшая материалоемкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
- Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок ее службы.
- Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
- Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или « треугольник ».
- Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путем размещения в одном светильнике трех ламп (или групп ламп), питающихся от разных фаз.
Возможная схема разводки трехфазной сети в многоквартирных жилых домах
Благодаря этим преимуществам, трехфазные системы наиболее распространены в современной электроэнергетике.
Схемы соединений трехфазных цепей
Звезда
Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.
Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.
То есть, линейный провод — это фазный провод в трехфазных цепях
Трехфазная цепь, имеющая нейтральный провод, называется четырехпроводной. Если нейтрального провода нет — трехпроводной.
Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.
Линейные и фазные величины
Напряжение между фазным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя фазными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
Несложно показать, что линейное напряжение сдвинуто по фазе на относительно фазных:
Мощность трехфазного тока
Для соединения обмоток звездой, при симметричной нагрузке, мощность трехфазной сети равна
Последствия отгорания (обрыва) нулевого провода в трехфазных сетях
Шины для раздачи нулевых проводов (синяя) и проводов заземления (зеленая)При симметричной нагрузке в трехфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода . Об этом говорит сайт https://intellect.icu . Несмотря на это, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.
Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах
Проблема гармоник, кратных третьей
Современная техника все чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создает повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1. 07.2014), ОСТ 45.188-2001.
Треугольник
Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.
Соотношение между линейными и фазными токами и напряжениями
Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
Мощность трехфазного тока при соединении треугольником
Для соединения обмоток треугольником, при симметричной нагрузке, мощность трехфазного тока равна:
Распространенные стандарты напряжений
Страна | Частота, Гц | Напряжение (фазное/линейное), Вольт |
---|---|---|
Россия | 50 | 230/400 (бытовые сети) 230/400, 380/660, 400/690, 3000, 6000, 10000 (промышленные сети) |
Страны ЕС | 50 | 230/400, 400/690 (промышленные сети) 660 450 |
Япония | 50 (60) | 100/208 |
США | 60 | 120/208, 277/480 240 (только треугольник) |
четырехпроводная трехфазная цепь широко применяется для электроснабжения промышленных предприятий, заводов, жилых домов.
Провода, соединяющие фазы генератора и приемника, называются линейными (провода А-А, В-В, С-С). Точка О – нулевая (нейтральная) точка генератора, соответственно точка, О’ – нулевая (нейтральная) точка приемника, потребителя. Провод, соединяющий точки О – О’, называется нулевым, или нейтральным.
Напряжение между началом и концом фазы называется фазным напряжением (UА, UB, UС). Ток, протекающий по фазе, называется фазным током (IА, IВ, IС). Напряжение между двумя любыми линейными проводами называется линейным напряжением (UAB, UBC, UCA).
Ток, протекающий по линейному проводу, называют линейным (IА, IB, IС). Как видно из схемы рис. 3.4, если потребители соединены в звезду с нулевым проводом, то фазный ток равен линейному току (Iф = Iл), а напряжения отличаются в раз (). В данной схеме могут быть два напряжения, отличающиеся в раз, поэтому ГОСТ установил следующие номинальные напряжения приемников переменного тока — 127, 220, 380, 660 В, соответственно применяется три системы 220/127; 380/220 и 660/380.
Линейные напряжения равны разности фазных напряжений:
.
Рис. 3.4. Схема четырехпроводной трехфазной цепи
Симметричный режим работы четырехпроводной трехфазной цепи
Если три фазы потребителя имеют одинаковые сопротивления zA = zB = zС, то в этом случае наступает симметричный режим работы цепи, который является основным рабочим режимом. В качестве примера симметричной нагрузки можно назвать трехфазные трансформаторы, трехфазные асинхронные двигатели.
Токи в фазах равны и определяются по закону Ома:
.
Углы сдвига по фазе определяются отдельно для каждой фазы:
.
Ток в нейтральном проводе в данном случает будет равен нулю:
.
Напряжение между нейтралями генератора и приемника также равно нулю:
,
где – проводимость трехфазных и одного нейтрального провода.
Векторная диаграмма для случая симметричной нагрузки строится следующим образом (рис. 3.5).
Рис. 3.5. Векторная диаграмма для режима симметричной нагрузки при соединении потребителей в звезду
Откладываем три вектора фазных напряжений под углом 120° друг относительно друга. Векторы фазных токов отстают от векторов соответствующих напряжений на углы φA,φB,φC (активно-индуктивная нагрузка). Звезда линейных напряжений опережает звезду фазных напряжений на угол 30°.
Несимметричный режим работы четырехпроводной трехфазной цепи
Если три фазы потребителя имеют разные сопротивления zA ≠ zB ≠ zC , то токи также будут неравны IA ≠ IB ≠ IC . Ток в нулевом проводе определяется по векторной диаграмме (рис. 3.6) или аналитическим путем. Напряжение между нейтралями генератора и приемника U00 ≠ 0. Нейтральный провод служит для поддержания постоянного напряжения на фазах приемника, поэтому в нейтральном проводе запрещается установка предохранителей и выключателей.
Рис. 3.6. Векторная диаграмма для режима несимметричной нагрузки при соединении потребителей в звезду
Обрыв одного линейного провода в четырехпроводной трехфазной цепи
При обрыве одного из линейных проводов (перегоранием предохранителя, отключением фазы от сети и т.д.), например, провода А, две другие фазы работают в том же режиме, в котором работали UB = UC = Uф. Поскольку IA = 0, то ток в нулевом проводе
.
Цветовые коды Маркировка
Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования — фазировка (чередование фаз, то есть очередность протекания токов по фазам) принципиальна, так как от нее зависит направление вращения трехфазных двигателей, правильная работа управляемых трехфазных выпрямителей и некоторых других устройств. В разных странах маркировка проводников имеет свои различия, однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.
Проводники трехфазной системы обычно обозначаются цветовым кодом, чтобы обеспечить сбалансированную нагрузку и обеспечить правильное чередование фаз для двигателей . Используемые цвета могут соответствовать международному стандарту IEC 60446 (позже IEC 60445 ), более старым стандартам или вообще не соответствовать стандарту и могут отличаться даже в пределах одной установки. Например, в США и Канаде для заземленных (заземленных) и незаземленных систем используются разные цветовые коды.
Страна | Фазы | Нейтральный, N |
Защитное заземление, PE |
||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | |||||||||
Австралия и Новая Зеландия (AS / NZS 3000: 2007, рис. 3.2, или IEC 60446, утвержденный AS: 3000) |
Красный или коричневый | Белый; пред. желтый | Темно-синий или серый | Черный или синий |
Зеленые / желто-полосатые; очень старые установки, зеленые |
||||||
Канада | Обязательно | Красный | Черный | Синий | Белый или серый |
Зеленый, возможно, с желтыми полосами, или без теплоизоляции |
|||||
Изолированные системы | оранжевый | Коричневый | Желтый | Белый или серый |
Зеленый возможно желто-полосатый |
||||||
Европейский CENELEC ( Европейский Союз и другие; с апреля 2004 г. , IEC 60446 , позже IEC 60445-2017), Великобритания (с 31 марта 2004 г.), Гонконг (с июля 2007 г.), Сингапур (с марта 2009 г.), Россия (с 2009 г. ; ГОСТ Р 50462), Аргентина, Украина, Беларусь, Казахстан |
Коричневый | Черный | Серый | Синий | Зеленые / желтые полосы | ||||||
Старые европейские (до IEC 60446 , в зависимости от страны) [примечание 7] | |||||||||||
Великобритания (до апреля 2006 г.), Гонконг (до апреля 2009 г.), ЮАР, Малайзия, Сингапур (до февраля 2011 г.) |
Красный | Желтый | Синий | Черный |
Зеленые / желто-полосатые; перед c. 1970, зеленый |
||||||
Индия | Красный | Желтый | Синий | Черный |
Зеленый возможно желто-полосатый |
||||||
Чили — NCH 4/2003 | Синий | Черный | Красный | Белый |
Зеленый возможно желто-полосатый |
||||||
Бывший СССР (Россия, Украина, Казахстан; до 2009 г.), Китайская Народная Республика (GB 50303-2002, раздел 15.2.2) |
Желтый | Зеленый | Красный | Голубой | Зеленый / желто-полосатый | ||||||
Норвегия (до принятия CENELEC) | Черный | Белый / серый | Коричневый | Синий |
Желто-зеленая полоска; пред. желтый или неизолированный |
||||||
Соединенные Штаты |
Обычная практика |
Черный | Красный | Синий | Белый или серый |
Зеленый, возможно, с желтыми полосами, ли неизолированный |
|||||
Альтернативная практика |
Коричневый | Оранжевый (дельта ) | Желтый | Серый или белый | Зеленый | ||||||
Фиолетовый (уай) |
В моделизме
В низковольтных высокочастотных электронных регуляторах хода, применяемых в транспортном моделизме, используются другие системы маркировки:
Нулевой и заземляющий проводники, как правило, отсутствуют по причине симметричности нагрузки и безопасности напряжения.
См. также
На этом все! Теперь вы знаете все про четырехпроводная трехфазная цепь, Помните, что это теперь будет проще использовать на практике. Надеюсь, что теперь ты понял что такое четырехпроводная трехфазная цепь,четырехпроводная цепь,трехфазный ток,линейный провод и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электротехника, Схемотехника, Аналоговые устройства
Трехфазная система — Большая Энциклопедия Нефти и Газа, статья, страница 1
Трехфазная система
Cтраница 1
Трехфазная система называется симметричной, если эдс н нагрузки во всех фазах имеют одинаковые значения. [2]
Трехфазная система называется симметричной, если эдс и нагрузки во всех фазах имеют одинаковые значения. [4]
Трехфазная система, изобретенная выдающимся русским инженером М. О. Доливо-Добровольским в 80 — х годах прошлого столетия, применяется во всем мире для передачи и распределения электрической энергии. Она обеспечивает наиболее экономичную передачу энергии и позволяет создать надежные в работе и простые по устройству электродвигатели, генераторы и трансформаторы. [6]
Трехфазная система позволяет получить вращающийся магнитный поток. [7]
Трехфазные системы, а также случаи ненулевых начальных условий рассматриваются отдельно. [8]
Трехфазные системы изображаются в виде сфеноэдров, единственные криволинейные ребра которых представляют растворы, насыщенные двумя солями, а противолежащие прямолинейные ребра — состав твердых фаз, состоящих из этих солей. [9]
Трехфазная система, изобретенная выдающимся русским инженером М. О. Доливо-Добровольским в 80 — х годах прошлого столетия, применяется во всем мире для передача и распределения электрической энергии. Она обеспечивает наиболее экономичную передачу энергии и позволяет создать надежные в работе и простые по устройству электродвигатели, генераторы и трансформаторы. [11]
Трехфазные системы являются частным случаем многофазных систем; распространение их объясняется технико-экономическими преимуществами. [13]
Трехфазная система газ — шлак — металл не равновесна в условиях сталеплавильной печи. Химический потенциал кислорода оказывается наибольшим в первой фазе и наименьшим в последней. В силу этого кислород переходит из печных газов в шлак, а из него в металл. [14]
Страницы: 1 2 3 4
Трёхфазные системы.
Достоинства и недостатки трёхфазной системы по отношению к однофазной1. Трёхфазные системы
2. Достоинства и недостатки трёхфазной системы по отношению к однофазной
1. Ещё большая экономия электроэнергии припередаче;
2. Ещё большее упрощение конструкции
электрических машин;
3. Экономия электроматериалов;
4. Возможность получения вращающегося
магнитного поля;
5. Возможность получения от одного источника двух
эксплуатационных напряжений .
1. Усложнение системы;
2. Усложнение расчётов электрических цепей.
3. Получение трёхфазной системы
EAEС
ZA
EB
ZC
E A E B EC
ZB
Соединение звезда-звезда
A
N
EС
C
U CA
UA
EA
a
U AB
U nN
EB
I nN
Za
n
Zс
c
UC
UB
B
I I
Zb
b
U BC
eA EmSin ω t
Sin ω t — 240
e B E mSin ω t -120
eC E m
A, B, C – выводы (зажимы) фаз генератора;
a, b, c – выводы (зажимы) фаз нагрузки;
N – нейтральная (нулевая) точка генератора;
n – нейтральная (нулевая) точка нагрузки;
Aa, Bb, Cc – линейные провода;
Nn – нейтральный (нулевой) провод;
Чередование фаз генератора, где амплитудное
значение ЭДС достигает сначала в фазе А, потом в В,
затем в С называется прямым (А-В-С-А-В-С-А…).
Чередование фаз А-С-В-А-С-В-А… называется
обратным и может быть получено изменением
направления вращения ротора генератора или
сменой любых двух выводов (зажимов) генератора.
На рисунке указаны принятые положительные
направления ЭДС (E A , E B , E C ) и фазных напряжений
(U A , U B , UC ) .
Фазное напряжение – это напряжение между началом
и концом каждой фазы. В данном случае – между
выводом фазы и нулевой точкой N.
Если пренебречь внутренним сопротивлением обмоток
генератора, то можно считать, что
UA E A ;
UB E B ;
UC E C .
Линейное напряжение – это напряжение между
началами двух фаз. Положительное направление их
принято от А к В, от В к С, от С к А (U AB , U BC , U CA ).
7. Векторная диаграмма фазных и линейных напряжений
U A U B UCА
U СA
U AB
UA UB UC 0
UA
N
UС
С
U BС
3
UB
2
2
120
60
UB
30
U BС
U Λ 3U
I Λ IΦ
В
8. Соединение треугольником
AEAB UAB ; EBC UBC ; ECA UCA .
UAB UBC UCA
EСA
EAB
U AB U BC U CA 0
U СA U AB
U Λ U
U BС
C
E BС
Соотношение I Λ 3 I
симметричной нагрузки.
B
I Λ 3 IΦ
справедливо только для
9. Виды соединений генератора и нагрузки в трёхфазных системах
ГенераторНагрузка
1.
Четырёхпроводная звезда
(звезда-звезда с нулевым проводом)
2.
Трёхпроводная звезда
(звезда-звезда без нулевого провода)
3.
Звезда – треугольник
4.
Треугольник – звезда
5.
Треугольник – треугольник
10. Характеристики нагрузок трёхфазного генератора
1. Нагрузка бывает однофазной и трёхфазной;2. Нагрузка называется однородной, если сдвиг фаз
всех трёх потребителей одинаков по величине и
по знаку
a b c
3. Нагрузка называется симметричной, если полное
сопротивление всех трёх потребителей и сдвиги
фаз одинаковы
Za Zb Zc ;
a b c
4. Нагрузка называется несимметричной, если одно
из этих условий не выполняется.
11. Назначение нейтрального провода
NIA
EA
ZA
I nN
IB
IC
EC
EB
ZC
ZB
Z nN
y E y E y
E
B b
C c
A a
U
nN
y a y b y c y nN
Здесь y a ; y b ; y c полные проводимости
всех четырёх ветвей схемы
n
Если нейтральный провод есть, то y nN и U nN 0
Если нейтрального провода нет, то y nN 0
Тогда U nN 0, если ya yb yc , т.е. когда нагрузка
симметричная, и U nN 0, если y a y b y c , т.е. когда
нагрузка несимметричная.
Во всех случаях, когда U nN 0
Ua U A ; U b U B ; Uc UC
Но так как в исправном генераторе
UA UB UC , то Ua Ub Uc
Отсюда можно сделать вывод о назначении
нейтрального провода – он выравнивает фазные
напряжения в нагрузке.
13. Режимы работы потребителя, соединённого звездой
1.2.
3.
4.
Симметричный
Несимметричный
Обрыв фазы
Короткое замыкание фазы
Все режимы рассматриваются с
нейтральным проводом (четырёхпроводная
звезда) или без него (трёхпроводная звезда)
14. Правила построения векторных диаграмм нагрузки
1. Строится равносторонний треугольник линейныхнапряжений нагрузки,
2. Отмечается положение нулевой точки источника
(находится в центре треугольника),
3. Определяется местоположение нулевой точки
приёмника (если имеется нулевой провод, или
нагрузка симметричная, то точка n совпадает с
точкой N),
4. Рисуются фазные напряжения приёмника (между
выводом фазы и точкой n),
5. Определяются величины токов и отмечаются на
диаграмме,
6. Определяются U nN (если отсутствует нулевой провод)
или I nN (если нулевой провод имеется) и отображаются
на диаграмме.
a
U ca
N
На рисунке отображены
первые две позиции
построения векторной
диаграммы. Эти две позиции
неизменны и присутствуют
на любой диаграмме ( при
любых видах нагрузки)
U ab
c
U bc
b
16. Симметричная нагрузка
Za Z b Zc ; a b ca
Нулевой провод имеется,
n совпадает с N
U ca
Iс
c
Ua U A ; U b U B ; Uc UC .
Ia
Ua
Ub
Uc
Ia
; Ib
; Ic .
Za
Zb
Zc
N n
Ib
U bc
U ab
b
Ia I b Ic I nN 0
=0
Так как I nN 0 , то нулевой провод не нужен.
I nN 0
17. Несимметричная нагрузка
Za Z b Zc ; a b ca
Нулевой провод имеется,
n совпадает с N
U ca
I
a
Iс
c
U bc
Ua U A ; U b U B ; Uc UC .
Ua
Ub
Uc
Ia
; Ib
; Ic .
Za
Zb
Zc
N n
I nN
Ib
U ab
b
Ia I b Ic I nN 0
≠0
I nN ( Ia I b Ic )
Za Z b Zc ; a b c
a
U ca
Нулевого провода нет,
n не совпадает с N
Ua U A ; U b U B ; Uc UC .
Ia
N
Iс
c
U bc
n
U nN
Ib
Ua
Ub
Uc
Ia
; Ib
; Ic .
Za
Zb
Zc
U ab
b
Ia I b Ic 0
y E y E y
E
B b
C c
U A a
nN
y a y b y c
19. Обрыв фазы
Za ; Z b Zc ; b ca
U ca
Iс
c
Нулевой провод имеется,
n совпадает с N
I nN
Ub
Uc
I a 0; I b
; Ic .
Zb
Zc
N n
Ib
U bc
Ua U A ; U b U B ; Uc UC .
U ab
I b Ic I nN 0
b
I nN ( I b Ic )
Za ; Z b Zc ; b c
a
U ca
Нулевого провода нет,
n не совпадает с N
Ua U A ; U b U B ; Uc UC .
I a 0; Ib Ic .
U bc
Ib Ic
Z b Zc
N
U nN I
b
c
U bc
Ic
n
U ab
b
U b I b Z b ; U c I c Zc
y U y
U
c c
U nN b b
y b y c
21. Короткое замыкание фазы
Ian a
Iс
U ca
Za 0 ; Z b Zc ; b c
Нулевого провода нет,
n не совпадает с N
Ua U A ; U b U B ; Uc UC .
Ib
U ab
U ca
Ib
; Ic
.
Zb
Zc
N U nN
Ia I b Ic 0
U ab
c
U bc
b
I a ( I b I c )
22. Режимы работы потребителя, соединённого треугольником
1.2.
3.
4.
Симметричный
Несимметричный
Обрыв фазы
Обрыв линии
23. Линейные токи
IaA
a
U ca
B Ib
I ab
Zca
Ia Ica Iab 0;
Zab
I b Iab I bc 0;
Ic I bc Ica 0.
I ca
C
c
Ic
U ab
Zbc
U bc
b
I bc
24. Симметричная нагрузка
Zab Zbc Zca ; ab bc caa
U ca
— I bc
Ia
Ic
I ca
Uab U AB; U bc U BC ; Uca UCA .
I ab
— Ica
Ib
c
U bc
U ab
U bc
U ca
I ab
; I bc
; I ca
.
Zab
Zbc
Zca
U ab
— Iab
b
I bc
Ia Iab — Ica ;
Ib Ibc — Iab ;
Ic Ica — Ibc .
25. Несимметричная нагрузка
Zab Zbc Zca ; ab bc caa
U ca
— I bc
Uab UAB; Ubc UBC ; Uca UCA .
I ab
Ic
I ca
Ia
Ib
c
U ab
U bc
U ca
I ab
; I bc
; I ca
.
Zab
Zbc
Zca
U bc
— Ica
U ab
b
— Iab
I bc
Ia Iab — Ica ;
Ib Ibc — Iab ;
Ic Ica — Ibc .
26. Обрыв фазы
aU ca
— I bc
Zab ; Zbc Zca ; ab bc ca
Uab U AB; U bc U BC ; Uca UCA .
U bc
U ca
I ab 0; I bc
; I ca
.
Z bc
Zca
Ia Ica
Ia -Ica ;
Ic
I ca
U ab
c
b
U bc
Ib Ibc
I b I bc ;
Ic Ica — I bc .
27. Обрыв линии
Zab Zbc Zca ; ab bc caUab U AB; U bc U BC ; Uca UCA .
U bc
U bc
I ab I ca
; I bc
.
Zab Zca
Zbc
Ic I b
c
b
a
Ib Ibc Iba
Обрыв линии «а»
U ab Iab Zab ;
U ca Ica Zca ;
Ia 0;
Ib Ibc Iba ;
Ic I b .
28. Применение комплексных чисел
NIA
IB
IC
Известны:
E Φ 220B ;
EA
EB
EC
Za R 50 OM ;
ZA
ZB
ZC
Zb Zc R 100 OM
n
Определить
E nN
y E y E y
E
B b
C c
U nN A a
y a y b y c
E A 220e j0 ; E B 220e -j120 ; E C 220e j120 ;
c
+J
y a 0,02e j0 0,02 J0 ;
y b 0,01e 0,01 J0 ;
j0
y c 0,01e j0 0,01 J0 ;
0 N
+1
a
y a y b y c 0,04 J0 0,04e
b
j0
;
c
E y 4,4e j0 4,4 J0 ;
A a
E y 2,2e- j120 1,1 — J 3 1,1 ;
B b
E C y c 2,2e j120 -1,1 J 3 1,1 ;
+J
0 N
n
+1
a
E y E y E y 2,2 J0 2,2e j0 ;
A a
B b
C c
b
j0
2,2e
j0
U nN
55e 55 J0 ;
j0
0,04e
31. Приём задолженностей каждую пятницу
Корпус Кабинет Время7
1004
15.30 – 18.40
32. Последовательное соединение элементов
RP0
L
Q L0 QC0
S
С
S2 P02 (Q L0 Q C0 ) 2
R
R
L
Одно и трехфазные сети. Трёхфазная система электроснабжения
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока , в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол . В трёхфазной системе этот угол равен 2π/3 (120°).
Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Тесла . Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский , который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем .
Описание
Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C .
Распространённые обозначения фазных проводов:
Россия, EC (выше 1000 В) | Россия, ЕС (ниже 1000 В) | Германия | Дания |
---|---|---|---|
А | L1 | L1 | R |
B | L2 | L2 | S |
C | L3 | L3 | T |
Преимущества
- Экономичность.
- Экономичность передачи электроэнергии на значительные расстояния.
- Меньшая материалоёмкость 3-фазных трансформаторов.
- Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
- Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку , что значительно снижает срок её службы.
- Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
- Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
- Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.
Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.
Схемы соединений трехфазных цепей
Звезда
Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью . Концы фаз обмоток потребителя (M) также соединяют в общую точку.
Провода, соединяющие начала фаз генератора и потребителя, называются линейными . Провод, соединяющий две нейтрали, называется нейтральным .
Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.
Если сопротивления Z a , Z b , Z c потребителя равны между собой, то такую нагрузку называют симметричной .
Линейные и фазные величины
Напряжение между фазным проводом и нейтралью (U a , U b , U c) называется фазным. Напряжение между двумя фазными проводами (U AB , U BC , U CA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
I L = I F ; U L = 3 × U F {\displaystyle I_{L}=I_{F};\qquad U_{L}={\sqrt {3}}\times {U_{F}}}
Несложно показать, что линейное напряжение сдвинуто по фазе на π / 6 {\displaystyle \pi /6} относительно фазных:
U L a b = u F a − u F b = U F [ cos (ω t) − cos (ω t − 2 π / 3) ] = 2 U F sin (− π / 3) sin (ω t − π / 3) = 3 U F cos (ω t + π − π / 3 − π / 2) {\displaystyle u_{L}^{ab}=u_{F}^{a}-u_{F}^{b}=U_{F}[\cos(\omega t)-\cos(\omega t-2\pi /3)]=2U_{F}\sin(-\pi /3)\sin(\omega t-\pi /3)={\sqrt {3}}U_{F}\cos(\omega t+\pi -\pi /3-\pi /2)}
U L = 3 U F cos (ω t + π / 6) {\displaystyle u_{L}={\sqrt {3}}U_{F}\cos(\omega t+\pi /6)}
Мощность трёхфазного тока
Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:
P = 3 U F I F c o s φ = 3 U L 3 I L c o s φ = 3 U L I L c o s φ {\displaystyle P=3U_{F}I_{F}cos\varphi =3{\frac {U_{L}}{\sqrt {3}}}I_{L}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }
Последствия отгорания (обрыва) нулевого провода в трехфазных сетях
При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода . Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз », в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах , который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.
Проблема гармоник, кратных третьей
Современная техника всё чаще оснащается импульсными сетевыми . Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя . Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.
Треугольник
Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.
Соотношение между линейными и фазными токами и напряжениями
Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
I L = 3 × I F ; U L = U F {\displaystyle I_{L}={\sqrt {3}}\times {I_{F}};\qquad U_{L}=U_{F}}
Мощность трёхфазного тока
Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:
P = 3 U F I F c o s φ = 3 U L I L 3 c o s φ = 3 U L I L c o s φ {\displaystyle P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }
Распространённые стандарты напряжений
Маркировка
Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.
Цвета фаз
Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).
Страна | L1 | L2 | L3 | Нейтраль / ноль | Земля / защитное заземление |
---|---|---|---|---|---|
Россия, Украина, Казахстан (до 2009), Китай | Жёлтый | Зелёный | Красный | Голубой | Жёлто/зелёный (в полоску) |
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, Аргентина | Коричневый | Чёрный | Серый | Голубой | Жёлто/зелёный (в полоску) |
Европейский союз до апреля 2004 | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску) |
Индия, Пакистан, Великобритания до апреля 2006, Гон-Конг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011 | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску) (зелёный в установках до 1970) |
Фазное напряжение и линейное, соединение звездой и треугольником. В разговорах профессиональных электриков можно нередко слышать эти слова. Но даже не всякий электрик знает точное их значение. Так что же означают эти термины? Попробуем разобраться.
На заре развития электротехники энергия электрических генераторов и батарей передавалась потребителям по сетям постоянного тока. В США главным апологетом этой идеи был знаменитый изобретатель Томас Эдисон и крупнейшие на то время энергетические компании, подчиняясь авторитету «гиганта инженерной мысли», беспрекословно внедряли её в жизнь.
Однако, когда встал вопрос о создании разветвлённой электрической сети потребителей, питающейся от расположенного на большом расстоянии генератора, что потребовало создания первой линии электропередачи, победил проект никому тогда неизвестного сербского эмигранта Николы Теслы.
Он кардинально изменил саму идею системы электроснабжения, применив в ней вместо постоянного, генератор и электрические линии переменного тока. что позволило значительно снизить потери энергии, расход материалов и повысить энергоэффективность.
В этой системе использовался созданный Теслой трёхфазный генератор переменного тока, а передача энергии осуществлялась с помощью трансформаторов напряжения, изобретённых русским учёным П. Н. Яблочковым.
Другой русский инженер М. О. Доливо‑Добровольский уже через год не только создал подобную систему электроснабжения в России, но и значительно усовершенствовал её.
У Теслы для генерации и передачи энергии использовались шесть проводов, Добровольский предложил путём видоизменения подключения генератора сократить это количество до четырех.
Экспериментируя над созданием генератора, он попутно изобрёл асинхронный электродвигатель с короткозамкнутым ротором, находящий и поныне самое широкое применение в промышленности.
Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.
Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.
Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.
Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.
В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.
Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.
В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.
Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.
Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.
За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.
Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.
В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.
Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.
Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.
Разберёмся что такое фазное напряжение
Для создания таких сетей требуется провести от генератора к потребителям линию электропередачи, состоящую из трёх проводов фазных и одного нулевого. Конечно, в реальных сетях для уменьшения потерь в проводах на обоих концах линий подключаются ещё и повышающие и понижающие трансформаторы, но реальной картины работы сети это не меняет.
Нулевой провод нужен, чтобы зафиксировать передать к потребителю потенциал общего вывода генератора, ведь именно по отношению к нему создаётся напряжение в каждом фазном проводе.
Таким образом, фазное напряжение образуется и измеряется относительно общей точки соединения обмоток — нулевого провода. В хорошо сбалансированной по нагрузкам трёхфазной сети через нулевой провод течет минимальный ток.
На выходе трёхфазной линии электропередачи имеются три фазных провода: L1, L2, L3 и один нулевой — N. По существующим евростандартам они должны иметь цветовые обозначения:
Такие линии подводятся к большим серьёзным потребителям: предприятиям, городским микрорайонам и т. п. Но маломощным конечным потребителям, как правило, не нужны три источника напряжения, поэтому они подключаются к однофазным сетям, где имеется только один фазный и один нулевой провод.
Равномерным распределением нагрузок в каждой из трёх однофазных линий обеспечивается баланс фаз в трёхфазной системе электроснабжения.
Таким образом, для организации однофазных сетей используется напряжение одного из фазных проводов относительно нулевого. Такое напряжение и называется фазным.
По принятому в большинстве стран стандарту для конечных потребителей оно должно составлять 220 В. На него рассчитывается и выпускается практически все бытовое электрооборудование. В США и некоторых странах Латинской Америки для однофазных сетей принято стандартное напряжение 127 В, а кое‑где и 110 В.
Что такое линейное напряжение сети
Преимущества однофазной сети в том, что один из проводов имеет потенциал, близкий к потенциалу Земли.
Это, во‑первых, помогает обеспечивать электробезопасность оборудования, когда риск поражения электротоком представляет только один, фазный провод.
Во‑вторых, такая схема удобна для разводки сетей, расчета и понимания их работы, проведения измерений. Так, для нахождения фазного провода не нужны специальные измерительные приборы, достаточно иметь индикаторную отвёртку.
Но от трёхфазных сетей можно получить и ещё одно напряжение, если подключить нагрузку между двумя фазными проводами. Оно будет по значению выше фазного напряжения, потому что будет представлять собой проекцию на координатную ось не одного вектора, а двух, расположенных под углом в 120° друг к другу.
Этот «довесок» и будет давать прирост примерно в 73%, или √3–1. По существующему стандарту линейное напряжение в трёхфазной сети должно быть равно 380 В.
Каково основное отличие этих напряжений
Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».
Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».
Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».
При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.
Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.
Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.
Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.
Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.
Сущность явления
Причины возникновения
Последствия
Способы устранения перекоса фаз
Альтернативная технология.
Диапазон изменения фазных напряжений.
Практическое применение.
Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью напряжением до 1000 В.
Как правило, низковольтная трехфазная электрическая сеть напряжением 400 В (0,4 кВ)
содержит источники электроэнергии, обмотки которых соединены в «звезду» с выведенным нулем.
Если трехфазная сеть четырехпроводная, то нулевой проводник выполняет две функции. Первая функция: нулевой рабочий проводник служит для подключения однофазных электроприемников. Вторая функция: нулевой рабочий проводник служит для работы защиты.
В пятипроводной сети, каждой из двух перечисленных функций соответствует свой провод.
В низковольтных сетях различают первичные и вторичные источники электроэнергии (источники питания) независимо от способа получения электрической энергии.
К первичным источникам относятся те, которые непосредственно вырабатывают электроэнергию, например электрические генераторы (в качестве привода в них могут быть использованы гидроагрегаты, паровые турбины, дизели, газовые двигатели).
К вторичным источникам относятся те, которые преобразуют электрическую энергию первичных источников, как правило, это трансформаторы, установленные в трансформаторных подстанциях (ТП).
Идеальную модель, отображающую взаимосвязь и взаиморасположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и центром «0».
Векторы АВ, ВС и CA (лежащие на сторонах треугольника) — это линейные напряжения (380В).
Векторы, проведенные из центра треугольника к его вершинам — 0A, 0B и 0С — это фазные напряжения.
В идеале они равны между собой 0A=0B=0С и сдвинуты друг относительно друга на угол 120°, то есть└A0B=└B0C=└C0A=120°.
Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.
Так как к трансформаторам ТП подключают множество потребителей, в том числе однофазных, то в каждый случайный момент времени можно ожидать, что нагрузки в различных фазах будут различны.
Причем если даже однофазные нагрузки по величине одинаковы, то их включение под нагрузку или отключение не может происходить синхронно. Возникает ситуация RA > RB > RC ≠ 0, где «R» – это сопротивление нагрузки, и, соответственно, «RA» — это спротивление нагрузки на фазе А, «RB» — это спротивление нагрузки на фазе B, «RC» — это спротивление нагрузки на фазе C.
Различие фазных нагрузок по величине и характеру создает условия для возниконовения перекоса фазных напряжений.
Если обратиться к описанному выше равностороннему треугольнику, то графически это будет выглядеть следущим образом: точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220В 0A, 0B и 0С, — смещается относительно центра треугольника. Назовем ее 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений 0’A, 0’B и 0’С не равны между собой, 0’A ≠ 0’B ≠ 0’С.
Напряжение на каждой из фаз меняется с величины в 220 В например на 190В, 240В и 230В соответственно.
Такая ситуация называется перекосом фазных напряжений.
Если бы сопротивления нагрузки были равны, то токи, через них протекающие так же были равны между собой.
Учитывая то, что угол сдвига между ними равен 120°, то их геометрическая сумма равнялась бы нулю.
Однако при их неравенстве в результате суммирования возникает ток I00′, который называется уравнительным. А, следовательно, напряжение U00′, которое называется напряжением смещения.
Перекос фаз (фазных напряжений), как правило, характеризуется неизменностью или одинаковостью линейных напряжений источника и значительным различием по величине фазных напряжений. То есть равносторонний треугольник, образуемый векторами линейных напряжений остается равносторонним треугольником, это означает, что значение трех линейных напряжений соответствует 380В, возможны незначительные отклонения значений, которые называются являются допустимыми.
Значительно смещаются векторы фазных напряжений внутри треугольника, которые соединяют точку внутри треугольника с его вершинами, меняется величина фазных напряжений и угол сдвига между ними.
Условно причины возникновения перекоса фаз можно разделить на внешние и внутренние.
Внутренние причины связаны с потребителями электроэнергии, которые неравномерно загружают фазы сети без учета мощности
однофазных электроприемников, коэффициента одновременности их включения,
подключают мощные двухфазные электроприемники к бытовым розеткам.
В реальной жизни причиной перекоса фаз является неравномерность загрузки не только по величине, но и по характеру нагрузки.
Нагрузка может быть активной (резистивной) — (R) или реактивной: индуктивной (L) или емкостной (С).
Внешние причины возникновения перекоса фаз могут быть связаны с неисправностями
в распределительной сети (например, в высоковольтных линиях электропередач (ЛЭП)
при высокой влажности и дефектах в гирляндах изоляторов или разрядников отдельных фаз) или наличием мощных потребителей, включенных на две фазы, т.е. на линейное напряжение (например, потребители тяговых сетей или электродвигатели электропоездов).
Также причины могут быть комбинированными (внешними и внутренними).
Последствия перекоса фазПоследствия перекоса фаз проявляются в увеличении электропотребление из сети; в неправильной работе электроприемников, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции.
Условно негативные последствия перекоса фаз можно разделить на три группы:
1. Последствия для электроприемников (приборов, оборудования), связанные с их повреждениями, отказами, увеличением износа, уменьшением периода эксплуатации.
а) последствия для однофазных электроприемников
Низкое напряжение вызывает неправильную работу однофазных потребителей: тусклый свет осветительных приборов, длительный нагрев нагревательных приборов, длительный запуск двигательных приборов, сбои в работе компьютеров и т.д. Высокое напряжение вызывает отказы электроприемников из-за износа изоляции, отключение их защитными устройствами, перегорание предохранителей.
б) последствия перекоса фаз для трехфазных электроприемников
Основную часть трехфазных потребителей (потребителей, питающихся от линейного напряжения) составляют электродвигатели, которые приводят в действие погружные и фекальные насосы, приводы автоматических ворот, станочное оборудование и т.д.
Система управления и контроля запуска таких трехфазных потребителей, как правило, подключается к фазному напряжению. При перекосах фаз система управления запуском (СУЗ) электродвигателя, которая контролирует длительность и факт запуска, работает неустойчиво, т.е. спонтанно выдает команды на его пуск или останов. Диапазон изменения фазного напряжения жестко регламентируется эксплуатационной документацией (как правило, не допускается перекос более ± 7,5 ÷ 10 % от номинала). Если перекос превысил допустимый предел, то СУЗ дает сбой. При восстановлении уровня фазного напряжения происходит очередной запуск и так далее.
Известно, что режим «пуска в ход» асинхронного двигателя характеризуется кратковременной работой обмоток статора в режиме короткого замыкания (КЗ), т.е. в момент включения двигатель потребляет гораздо больше энергии, чем в процессе работы. Естественно, что частые повторные пуски будут вызывать значительный перегрев изоляции и существенно увеличивать электропотребление из сети.
Возможные негативные последствия такого режима работы — либо отказ в запуске, либо отказ оборудования вследствие перегорания обмоток двигателя.
2. Последствия для источников электроэнергии: увеличение энергопотребления, увеличение потерь электроэнергии при питании от госсети; при питании от трехфазного автономного источника – механические повреждения (повреждения подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовывание форсунок), уменьшение периода эксплуатации источника, увеличение его износа, повышенный расход топлива, масла, охлаждающей жидкости.
3. Последствия для потребителей, связанные с безопасностью, так как ухудшение качества изоляции может привести к:
— электротравматизму;
— возгоранию электропроводки или электроприемников;
а также последствия, связанные с увеличением расходов на:
— электроэнергию;
— расходные материалы для генератора;
— ремонт электроприемников, поврежденных вследствие перекоса фаз;
— приобретение новых электроприемников, отказавших вследствие перекоса фаз.
Централизованное решение, позволяющее устранить перекос фаз, отсутствует, так как невозможно обязать всех потребителей подключать одновременно нагрузки, равные по величине и характеру.
Традиционно для обеспечения заданного напряжения на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиты отдельных электроприемников или небольшой их группы.
В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые конструктивно состоят из трех однофазных стабилизаторов напряжения.
Принцип их действия таков, что они реагируют на отклонения на каждой отдельно взятой фазе и поднимают или опускают напряжение до необходимого уровня на своей фазе, провоцируя изменения напряжений на двух других фазах и являясь, таким образом, вторичной причиной возникновения перекоса фаз.
Из изложенного выше ясно, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют значительных сервисных расходов, так как обладают низкой надежностью – и электромеханические, и электронные стабилизаторы напряжения имеют быстроизнашивающиеся и часто отказывающие детали.
Для решения задачи по устранению перекоса фазных напряжений и обеспечения заданного фазного напряжения необходимо использовать технологию, которая позволит выравнивать напряжение не на каждой из фаз по отдельности, а симметрировать фазы между собой, то есть симметрировать всю трехфазную систему — симметрируюзщий трансформатор.
Такое устройство обладает значительно большей эффективностью, оно не только само потребляет меньше электроэнергии, но и снижает электропотребление из сети для электроприемников.
Симметрирующий трансформатор допускает 100%-ый перекос нагрузки и устраняет перекос фазных напряжений во всем диапазоне их изменений независимо от причины перекоса:
(1) перекос в подводящей питающей сети, вызванный неисправностями в распределительной сети,
(2) неравномерное распределение фазных нагрузок,
(3) подключение мощного потребителя,
(4) комбинированные причины.
Прикладные задачи, решаемые с помощью применения симметрирующего трансформатора:
Устранение перекоса фазных напряжений, т.е. выравнивание фаз сети друг относительно друга.
Равномерное распределение нагрузок по фазам.
Обеспечение заданной величины фазных напряжений.
Преобразование трехфазной сети в одно-(двух)фазную:
— с гальванической развязкой
— без гальванической развязки питающей сети и потребителя;
— с изменением (увеличением или уменьшением) выходного напряжения;
Преобразование трехфазной трехпроводной сети в трехфазную четырехпроводную (т.е. формирование нулевого рабочего проводника для возможности подключения фазной нагрузки).
Возможность снимать до 50% трехфазной мощности с одной фазы.
Возможность использования менее мощных генераторов для той же группы потребителей.
Возможность подключать более мощные электропримники при питании от автономного источника либо при ограничениях на потребляемую мощность из госсети.
Отогрев конструкций и коммуникаций (при обледенении проводов, промерзании трубопроводов и т.д.).
военный энергетик, кандидат технических наук Евдокимов Владимир Викторович
Электрическая сеть — совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории. Возможно другое определение: совокупность подстанций и распределительных устройств и соединяющих их электрических линий, размещенных на территории района, населенного пункта, потребителя электроэнергии.
Электростанции России объединены в федеральную энергосистему, являющуюся источником электрической энергии для всех ее потребителей. Передача и распределение электроэнергии осуществляется с помощью воздушных линий электропередачи, пересекающих всю страну. Для уменьшения потерь при передаче электроэнергии в линиях электропередач применяется очень высокое напряжение — десятки и (чаще) сотни киловольт.
В силу своей экономичности при передаче энергии применяется изобретенная русским инженером М.О. Доливо-Добровольским трехфазная система переменного тока, при которой электроэнергия передается с помощью четырех проводов. Три из этих проводов называются линейными или фазными, а четвертый — нейтральным проводом или просто нейтралью.
Рассчитаны на более низкие напряжения, чем напряжение в энергосистеме. Понижение напряжения производится в два этапа. Сначала на понижающей подстанции, являющейся частью энергосистемы, напряжение понижается до 6-10 кВ (киловольт). Дальнейшее понижение напряжение производится на . Их знакомые всем стандартные «трансформаторные будки» во множестве разбросаны по предприятиям и жилым массивам. После трансформаторной подстанции напряжение понижается до 220-380 В.
Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Номинальное в России равно 380 В (вольт). Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Его номинальное значение в России равно 220 В.
Источником тока для энергосистемы являются трехфазные генераторы переменного тока, установленные на электростанциях. Каждая из обмоток генератора индуцирует линейное напряжение. Обмотки симметрично расположены по окружности генератора. Соответственно и линейные напряжения сдвинуты друг относительно друга по фазе. Этот фазовый сдвиг постоянен и равен 120 градусам.
Трехфазная система переменного тока
После трансформаторной подстанции напряжение через распределительные щитки или (на предприятиях) распределительные пункты поступает к потребителям.
Некоторые потребители (электродвигатели, промышленное оборудование, большие ЭВМ и мощное коммуникационное оборудование) рассчитаны на непосредственное подключение к трехфазной электрической сети. К ним подводятся четыре провода (не считая защитного заземления).
Маломощные потребители (персональные компьютеры, бытовые приборы, офисная техника и т.д.) рассчитаны на однофазную электрическую сеть. К ним подводят два провода (не считая защитного заземления). В подавляющем числе случаев один из этих проводов — линейный, а другой — нейтральный. Напряжение между ними по стандарту равно 220 В.
Приведенные выше действующие значения напряжения не исчерпывают полностью параметры электрической сети. Переменный характеризуется также частотой. Номинальное стандартное значение частоты в России равно 50 Гц (Герц).
Реальные значения напряжения и частоты электрической сети конечно могут отличаться от номинальных значений.
К сети постоянно подключаются новые потребители электроэнергии (ток или нагрузка в сети увеличивается) или отключаются какие-либо потребители (в результате ток или нагрузка сети уменьшается). При увеличении нагрузки напряжение в сети падает, а при уменьшении нагрузки напряжение в сети возрастает.
Для уменьшения влияния изменения нагрузки на напряжение, на понижающих подстанциях существует автоматическая . Она предназначена для поддержания постоянного (в определенных пределах и с определенной точностью) напряжения при изменении нагрузки в сети. Регулирование осуществляется за счет перекоммутации обмоток мощных понижающих трансформаторов.
Задается частотой вращения генераторов на электростанциях. При увеличении нагрузки частота стремится слегка уменьшиться, система регулирования электростанции увеличивает расход рабочего тела через турбину, и частота вращения генератора восстанавливается.
Разумеется ни одна система регулирования (напряжения или частоты) не может работать идеально, и в любом случае пользователю электрической сети нужно смириться с некоторыми отклонениями характеристик сети от номинальных значений.
В России требования к качеству электрической энергии стандартизованы. ГОСТ 23875-88 дает определения , а ГОСТ 13109-87 устанавливает значения этих показателей. Этим стандартом установлены значения показателей в точках подключения потребителей электроэнергии. Для пользователя это означает, что он может требовать от энергоснабжающей организации, чтобы установленные нормы соблюдались не где-то в энергосистеме, а непосредственно в его розетке.
Наиболее важные показатели качества электроэнергии — это отклонение напряжения от номинального значения, коэффициент несинусоидальности напряжения, отклонение частоты от 50 Гц.
Согласно стандарту в течение не менее 95 % времени каждых суток фазное напряжение должно находиться в диапазоне 209-231 В (отклонение 5 %), частота в пределах 49.8-50.2 Гц, а коэффициент несинусоидальности не должен превышать 5 %.
Остальные 5 или менее процентов времени каждых суток напряжение может изменяться от 198 до 242 В (отклонение 10 %), частота от 49.6 до 50.4 Гц, а коэффициент несинусоидальности должен быть не более 10 %. Допускаются также более сильные изменения частоты: от 49.5 Гц до 51 Гц, но общая длительность таких изменений не должна превышать 90 часов за год.
Авариями электроснабжения называются ситуации, когда показатели качества электроэнергии кратковременно выходят за установленные пределы. Частота может отклоняться на 5 Гц от номинального значения. Напряжение может снижаться до нуля. В дальнейшем показатели качества должны восстанавливаться.
А.А.Лопухин Источники бесперебойного питания без секретов
Трехфазный ток
Трехфазный токТрехфазный ток лежит в основе производства и распределения энергии в современной электроиндустрии. Трехфазная система образуется при трех одинаковых по амплитуде и частоте переменных токах, которые сдвинуты относительно друг друга на одну треть периода или 120°. В трехфазной системе существует два способа соединения фаз генератора и токоприемников — соединение звездой и соединение треугольником. Для того чтобы соединить три фазы источника электропитания с тремя нагрузками необходимо шесть проводов. Такая система электроцепи называется несвязной. В наши дни она не применяется, так как ее использование экономически нецелесообразно.
Соединение трехфазной системы по схеме «звезда» подразумевает под собой соединение в общую точку всех обмоток фаз источника питания. В нагрузке производят такое же соединение. После этого все обратные провода соединяются в один и подключаются к общим точкам токоприемника, являющимся источником нагрузки. Соответственно по полученному проводу протекает суммарный ток всех трех фаз. В случае протекания во всех фазах одинаковых токов и их сдвиге относительно друг друга на 1/3 (120°), сумма токов будет равна нулю. В связи с этим в общем проводе ток протекать не будет. Данный провод называется нулевым или нейтральным. Остальные провода, которые соединяют фазы генератора с токоприемниками, называются линейными.
Нагрузка, при которой выполняется условие равенства по величине токов во всех фазах, а так же одинаковых сдвигов фаз по отношению к фазным электродвижущим силам, называется симметричной. При соединении трехфазной системы по схеме «звезда» с симметричной нагрузкой нейтральный (нулевой) провод отсутствует, в связи с тем, что в нем нет необходимости. Такая система является трехпроводной. В других случаях применяется система с нейтральным проводом, которая называется четырехпроводной.
Фазными напряжениями в трехфазной системе являются напряжения между началом и концом фазных обмоток, а напряжения между линейными проводами называются линейными. Токи, которые протекают в обмотках фаз генератора или токоприемника, называются фазными токами, а токи в линейных проводах, линейными соответственно.
Между линейными и фазными величинами при соединении по схеме «звезда» при симметричной нагрузке существует связь. При соединении треугольником обмотки фаз источников питания подключаются последовательно так, чтобы начало первой обмотки соединялось с концом следующей. Все общие точки каждой из пар фазных обмоток генератора соединяются проводами, которые называют линейными, с общими точками каждой пары ветвей электроприемника. Также нетрудно убедиться в том, что соединение треугольником в трехфазной системе можно также получить из трехфазной несвязанной цепи с помощью объединения друг с другом вычерченных рядом проводов. При симметричной нагрузке электросистемы, которая соединяется в треугольник, фазные напряжения равны линейным напряжениям, а линейные токи больше фазных токов в √3-раз. При соединении фаз генератора треугольником из-за более высокого напряжения в фазах генератора требуется увеличение числа витков и усиление изоляции для обмоточного провода, что в свою очередь влияет на увеличение размеров и стоимость машины. В связи с этим фазы трехфазных генераторов в большинстве случаев соединяют по схеме «звезда».
Приемники электроэнергии могут быть включены либо треугольником, либо звездой независимо от способа соединения обмоток генератора. Выбор способа соединения определяется номинальным напряжением приемников и величиной напряжения сети.
freewriters.narod.ru|freewriters.narod.ru|*none* В многоконтурной электрической цепи действуют несколько источников питания, котоые имеют одинаковую частоту, но сдвинуты по фазе один относительно другого. Источники называют симметричными, если они имеют одинаковые амплитуды ЭДС (токов) и углы сдвига фаз. Если симметричны также токи и напряжения потребителей, то система в целом называется симметричной многофазной электрической цепью, системой или сетью. Многофазные симметричные шести- или двадцатифазные системы, у которых ЭДС сдвинуты между собой на 600 или 300, применяются во вторичных источниках питания. Двухфазные системы, в которых две синусоидальные ЭДС одной частоты сдвинуты по фазе на 900, применяются в автоматизированном электроприводе для питания исполнительных микромашин. Наиболее распространенное применение нашла трехфазная симметричная система. Такая система относительно однофазной имеет ряд преимуществ: экономия материалов проводов линии электропередачи; эффективность, простота и экономичность двигателей и генераторов; возможность у потребителя электроэнергии, используя трансформаторы, иметь два разных напряжения и т.д. Процесс генерирования трехфазной системы ЭДС рассмотрим на упрощенном макете (рис. 1). Рис. 1. Постоянный магнит, находящийся на валу, имеет два полюса N и S. Они заканчиваются полюсными наконечниками, благодаря которым магнитная индукция магнитного поля между полюсами и цилиндром статора имеет синусоидальное распределение вдоль периметра статора: Пусть слева от вала на горизонтали. В цилиндре статора три паза, в которых размещены медные стержни длиной l. Начала a, b, c и концы x, y, z замкнуты на лампу накаливания. Во время вращения магнита по часовой стрелке с угловой скоростью (рад/c) магнитный поток будет двигаться относительно стержней со скоростью , где r — радиус ротора. Можно считать, что поток неподвижный, а двигаются относительно него против часовой стрелки стержни статора. Тогда по закону электромагнитной индукции и правилом правой руки для момента, изображенного на рис., в стержне АХ наводится ЭДС eA , направленная от Х к А, в BY и CZ — наоборот. Условно подставим ладонь правой руки в воздушный зазор так, чтобы линии магнитной индукции В входили в ладонь, большой палец указывал направление движения стержня, четыре оставшихся — направление ЭДС и тока в цепи, который совпадает с ЭДС, поскольку нагрузка активная. Вследствие взаимоперпендикулярности . Если отсчитывать время t с момента, когда угол соответственно . Максимальной ЭДС в каждой фазе будет, если полюс N проходит под стержнем. Для выбранных положительных направлений ЭДС, начального момента и направления вращения, получим: На рис. 2 приведены различные положения ротора при равномерном движении и соответствующую им систему трех ЭДС в виде графика мгновенных значений и векторной диаграммы комплексных действующих значений этих ЭДС: Рис. 2. Построим векторные диаграммы цепей на комплексной плоскости с вертикальной — действительной и горизонтальной — мнимой осями (Рис. 3). Рис. 3. В реальном генераторе вместо одного стержня укладывается витков проводника, называемые обмоткой. Подключим к каждой обмотке трехфазного синхронного генератора отдельный потребитель (рис. 4). Рис. 4. Будем иметь несвязанную трехфазную систему, состоящую из трех автономных однофазных цепей, так называемых фаз трехфазной системы. Термином «фаза» также называют и автономную часть многофазной разветвленной цепи. Выводы обмоток генератора А, В, С и потребителя a, b, c называются началами обмоток, а выводы X, Y, Z генератора и x, y, z потребителя — концами. Напряжения между началами и концами потребителя Ua, Ub, Uc называют фазными напряжениями потребителя и обозначают буквой с одним индексом. Если пренебречь сопротивлением соединительных проводов, то фазные напряжения генератора и потребителя одинаковы . Поскольку фазы независимы одна от другой, то фазные токи в каждой из них тоже не зависят один от другого. Стрелками показаны положительные направления ЭДС, напряжений и токов. Напряжения генератора практически равняются ЭДС: , поскольку сопротивлениями обмоток статора, как правило, можно пренебречь. В несвязанной трехфазной системе генератор и потребитель соединены шестью проводами. Такая ситема не имеет преимуществ в сравнении с однофазной. Если концы X, Y, Z обмоток генератора (рис. 4,а) соединить в узел, то электрическое состояние не изменится, поскольку токи в фазах зависят от разности потенциалов , а не от абсолютного значения потенциалов точек X, Y, Z. Сделаем такие же соединения у потребителей. Тогда вместо шестипроводной получим четырехпроводную трехфазную систему «звезда — звезда» («Y — Y»). Если обмотки генератора соединить по схеме (рис. 4, б): начало А — конец Z, начало В — конец X, начало С — конец Y, то такое соединение называют «треугольник» . Если аналогично соединены фазы потребителя, то такая система называется «треугольник — треугольник» . В ней используется всего три провода. Возможны также смешанные варианты соединений . |
Что такое трехфазная система? Определение и типы
Определение: Система с тремя фазами, т.е. ток будет проходить через три провода, и будет один нейтральный провод для передачи тока замыкания на землю, известна как трехфазная система. Другими словами, система, которая использует три провода для генерации, передачи и распределения, известна как трехфазная система. Трехфазная система также используется как однофазная, если от нее отсоединены одна из их фазы и нейтральный провод.Сумма линейных токов в 3-х фазной системе равна нулю, а их фазы различаются под углом 120º
Трехфазная система состоит из четырех проводов, т. Е. Трех токоведущих проводов и одной нейтрали. Площадь поперечного сечения нейтрального проводника составляет половину живого провода. Ток в нейтральном проводе равен сумме линейного тока трех проводов и, следовательно, равен √3, умноженному на составляющие тока нулевой последовательности фаз.
Трехфазная система имеет несколько преимуществ, например, она требует меньше проводов по сравнению с однофазной системой.Он также обеспечивает непрерывное питание нагрузки. Трехфазная система имеет более высокий КПД и минимальные потери.
Трехфазная система индуцирует в генераторе трехфазное напряжение равной величины и частоты. Он обеспечивает бесперебойное питание, т. Е. Если одна фаза системы нарушена, то оставшиеся две фазы системы продолжают подавать питание. Величина тока в одной фазе равна сумме тока в двух других. фазы системы.
Разность фаз трех фаз 120º необходима для правильной работы системы. В противном случае система выйдет из строя
Типы соединений в трехфазной системе
Трехфазные системы подключаются двумя способами: звездой и треугольником. Их подробное объяснение показано ниже.
Звездное соединение
Для соединения звездой требуется четыре провода, в которых есть три фазных провода и один нейтральный провод.Такой тип подключения в основном используется для передачи на большие расстояния, поскольку он имеет нейтральную точку. Нейтральная точка передает несимметричный ток на землю и, следовательно, уравновешивает систему.
Трехфазные системы, соединенные звездой, выдают два разных напряжения, то есть 230 В и 440 В. Напряжение между одной фазой и нейтралью составляет 230 В, а напряжение между двумя фазами равно 440 В.
Соединение треугольником
Соединение в треугольник имеет три провода, нейтральная точка отсутствует.Соединение треугольником показано на рисунке ниже. Линейное напряжение при соединении треугольником равно фазному напряжению.
Подключение нагрузок в трехфазной системе
Нагрузки в трехфазной системе также могут подключаться по схеме звезды или треугольника. Трехфазные нагрузки, подключенные по схеме треугольник и звезда, показаны на рисунке ниже.
Трехфазная нагрузка может быть сбалансированной или несбалансированной. Если три нагрузки (импедансы) Z 1 , Z 2 и Z 3 имеют одинаковую величину и фазовый угол, тогда трехфазная нагрузка считается сбалансированной.В состоянии баланса все фазы и линейные напряжения равны по величине.
Трехфазная система— обзор
2 Многоуровневые модели: общая разработка
Рассмотрим трехфазную систему, схематически показанную на рисунке 1, в которой межфазные поверхности между фазами сложны и могут изменяться во времени. Пусть характерные масштабы длины фаз, называемых α- β- и γ-фазами соответственно, существенно отличаются друг от друга. Тогда по отношению к фазам α и β -фаза γ считается непрерывной, а β-фаза называется дисперсной, но, в свою очередь, по отношению к β- и γ-фазам, β-фаза является непрерывной, а γ-фаза считается дисперсной.Пусть ψ будет скалярной величиной, которая в фазах обозначается как ψ α , ψ β и ψ γ . Изменение ψ внутри фаз описывается уравнениями баланса
Рисунок 1. Трехфазная система с трехуровневой пространственной иерархией
(1) ρi∂ψi∂t + ∇∘ (ji) = πi, i = α, β, γ
, где j i — плотность потока, а π i — объемная плотность источника ψ .Транспорт через интерфейсы αβ, — и βγ — описывается граничными условиями
(2) nij∘ (ji − ρiψiwij) + nij∘ (ji − ρjψjwij) = σij, i, j = α, βandi , j = β, γ
, где W ij — скорость интерфейса ij , σ ij обозначает количественную плотность поверхностного источника ψ на ij -интерфейс, а n nJ — нормальный единичный вектор к интерфейсу ij .
Предположим, что можно определить такие объемы пространственного усреднения
(3) Vα = constantLα3 и Vβ = constantLβ3.
для фаз α, — и β , связанных с координатами x α и x β , что условия
(4) λα≪Lα≪∧αиλβ≪ Lβ≪∧β
(5) β∞λαи∧λ∞λβ
удовлетворяются. Затем, следуя процедуре, представленной Lakatos (2001) для двухуровневой модели, молекулярная (одноуровневая) математическая модель системы может быть преобразована в трехуровневую с помощью модифицированной техники объемного усреднения.В этом случае среднее фазовое 〈..〉 α интенсивного количества ψ в α -фазе определяется обычным образом (Whitaker, 1967, Slattery, 1967, Gray, 1975)
( 6) 〈ψα〉 α (xα, t) = 1Vα∫VααψαdV
, где V α = V αα + V βα , V αα и Vp βα — парциальные объемы фаз α- и β в V α , соответственно.Среднее по фазе 〈..〉 α количества ψ в фазе β принимает вид
(7) 〈ψβ〉 α (xα, t) = ∫0vβmax 〈ψβ〉 pnβ (Vβ, xα , t) VβdVβ
, где 〈.〉 P обозначает среднее значение ψ A по β-фазовому элементу (частице):
(8) 〈ψβ〉 p = 1Vβ∫VβψβdV⋅
В уравнении (7) ) функция nβ: R0 + × R3 × R0 + → R0 + называется функцией плотности заселенности β-частиц, которая в данном случае определяется следующим образом: nβ — такая функция, что равенство
(9 ) ∫0Vβmaxg (Vβ) nβ (Vβ, t, xα) dVβ = 1K∑k = 1Kg (Vβk)
выполняется для каждой непрерывной и ограниченной функции g (.), где K — количество β-частиц. С помощью этой функции V α n β (V β , t, x α ) dV β выражает количество частиц, имеющих объем ( V β , V β + dV β ) в момент времени t в объеме усреднения V α , связанном с координатой x α . Пространственное усреднение 〈..〉 β p относительно β- и γ- фаз выводится аналогично.
Применяя теперь по очереди операторы усреднения 〈..〉 α и 〈..〉 β к уравнениям (1) — (2), и учитывая, что в силу соотношений (3) — (5),
(10) 〈〈 ..〉 α〉 β = 〈..〉 α
, а также соответствующие теоремы об усреднении объема и общие теоремы переноса, мы получаем следующую иерархию уравнений модели. Движение ψ в фазе α , т.е.е. на a-уровне описывается уравнением
(11) 〈ρα〉 α∂ 〈ψα〉 α∂t + 〈ρα〉 α∇∘ 〈jα〉 α− 〈πα〉 α = −∫0vβmax 〈ψβ〉 pdVβdtnβdVβ + + ∫0Vβmaxnβ∫Aβ (Vβ) 〈jβ〉 β∘nβdAdVβ − ∫0Vβmaxnβ∫Aβ (Vβ) 〈σαβ〉 βnβ∘dAdVβ
, где члены левой части уравнения (11) описывают изменение количества ψ в фазе α- , а члены в правой части описывают изменения I ψ из-за изменения объема β-частиц, перенос ψ через интерфейс αβ и производство ψ по плотности поверхностного источника σ αβ соответственно.Здесь функция плотности населения определяется уравнением баланса населения
(12) ∂nβ∂t + ∇∘ (〈vβ〉 pnβ) + ∂∂Vβ (dVβdtnβ) = 〈πβ〉 pnβ
, описывающим поведение β -частицы, представленные на уровне α в виде точечных стоков, погруженных в воду и движущихся в α-фазе. Аналогично, уравнения на β-уровне:
(13) 〈ρβ〉 β∂ 〈ψβ〉 ∂t + 〈ρβ〉 β∇∘ 〈jβ〉 β− 〈πβ〉 β = −∫0Vγmax 〈ψγ〉 PdVγdtnγdVγ ++ ∫ 0Vγmaxnγ∫Aγ (Vγ) jγ∘nγdAdVγ − ∫0Vγmaxnγ∫Aγ (Vγ) σβγnγ∘dAdVγ
и
(14) ∂nγ∂t + ∇∘ (〈vγ〉 Pnγ) + ∂∂Vγ (dV) 〉 Pnγ.
Наконец, уравнение на уровне γ
(15) ργ∂ψγ∂t + ∇∘ (vγργψγ + qγ) = πγ
описывает изменение количества ψ внутри γ -частиц. Здесь q γ обозначает неконвективную составляющую плотности потока, которая может иметь сложную природу в зависимости от структуры частиц. Уравнения (11) — (15) дополняются соответствующими граничными и начальными условиями. Граничные условия для уравнений (13) — (14) описывают связь системы с окружающей средой, в то время как граничные условия для уравнения.(15) описывают связь между внутренним миром γ -частицы и ее непрерывным фазовым окружением.
Описание однофазной и трехфазной системы
В этом руководстве рассматриваются однофазные и трехфазные системы, а также соединения звезда (звезда) и треугольник. Также подробно обсуждаются преимущества трехфазной системы и процесс синхронизации.
Генератор переменного тока может быть разработан для генерации однофазных или многофазных переменного напряжения. На рисунке 1 показаны основные конфигурации, используемые для генерации однофазного, двухфазного и трехфазного переменного напряжения.
Катушка или катушки статора обеспечивают выходное напряжение и ток, а ротор на самом деле является вращающимся электромагнитом, обеспечивающим как магнитное поле, так и относительное движение.
Рисунок 1 Генерация однофазных и многофазных напряжений.
Однофазная системаЭлектроснабжение , подаваемое в жилой дом, обычно состоит из однофазного (1Ø) источника напряжения с центральным трансформатором ответвления, как показано на Рисунок 2 .
Центральный ответвитель допускает два разных напряжения (120/240 В) от однофазного источника питания. Этот тип источника напряжения обычно подходит для большинства осветительных и электрических приборов в доме. Она также известна как однофазная трехпроводная система питания и двухфазная система . Его Основное преимущество заключается в том, что он экономит материал проводника по сравнению с однофазной однофазной системой.
Трансформатор , питающий трехпроводную распределительную систему, имеет однофазную входную (первичную) обмотку.Выходная (вторичная) обмотка имеет центральный отвод, а центральный отвод соединен с заземленной нейтралью. Напряжение вторичного трансформатора составляет 120 вольт по обе стороны от центрального ответвления, что дает 240 вольт между двумя токоведущими проводниками.
Рисунок 2 Однофазная трехпроводная система питания.
Для большинства коммерческих и промышленных электроустановок требуется трехфазных распределительных систем . Трехфазный источник питания (3Ø) представляет собой комбинацию трех однофазных напряжений.Однофазное напряжение, подаваемое в жилые дома, фактически является одной из фаз, взятых из трехфазной распределительной системы. По мере увеличения требований к нагрузке использование однофазного питания становится нецелесообразным.
Трехфазная системаПреимущества трехфазной системы включают:
- По сравнению с эквивалентной однофазной системой трехфазная система передает на 73 процента больше мощности, но использует только на 50 процентов больше проводов.
- Мощность, выдаваемая однофазным источником, является пульсирующей, тогда как мощность, выдаваемая трехфазной системой, относительно постоянна в любое время.Это означает, что даже если мощность в каждой фазе пульсирует, общая мощность в любой момент будет относительно постоянной. Следовательно, по рабочим характеристикам трехфазные машины будут превосходить однофазные устройства с аналогичными характеристиками.
- Двигатель или трансформатор могут иметь одинаковый физический размер, но номинальная мощность трехфазных двигателей и номинальная мощность в киловольтах-амперах трехфазных трансформаторов на 150 процентов больше, чем у однофазных двигателей и трансформаторов.
- Трехфазная распределительная система может использоваться как для трехфазной, так и для однофазной сети.
Трехфазный генератор переменного тока содержит три набора катушек, расположенных на расстоянии 120 градусов друг от друга, а его выходное напряжение состоит из трех волн напряжения 120 электрических градусов, разнесенных . Порядок, в котором эти напряжения сменяют друг друга, называется чередованием фаз или чередованием фаз.
Что касается формы волны трехфазного напряжения, показанной на Рисунок 3 :
- Фаза A начинает расти в положительном направлении при нулевом электрическом градусе.
- 120 электрических градусов спустя фаза B начинает увеличиваться в положительном направлении.
- Фаза C следует с другим интервалом в 120 градусов.
- Последовательность фаз для этой системы: A, B, C, A, B, C . . .
- Чередование фаз может быть изменено на противоположное, изменив направление вращения генератора на противоположное или поменяв местами соединения любых двух из трех проводов, используемых для передачи трехфазного напряжения.
- Если две фазы питания трехфазного асинхронного двигателя поменять местами, двигатель изменит направление вращения на противоположное. Тестер чередования фаз можно использовать для измерения чередования фаз, когда трехфазные источники питания используются для питания двигателей, приводов и электрических систем.
Рисунок 3 Чередование фаз в трехфазной системе
Синхронизация генератора — это процесс подключения трехфазного генератора переменного тока к другому генератору переменного тока или к электросети.При параллельном подключении трехфазного генератора переменного тока к другому генератору переменного тока или к системе электросети должны соблюдаться следующие условия:
- Последовательность фаз или чередование машины должны быть такими же, как и в системе.
- Напряжение генератора должно быть равно напряжению системы.
- Напряжение генератора должно совпадать по фазе с напряжением системы.
- Частота генератора должна быть равна системной частоте.
На рисунке 4 показан метод синхронизации генератора переменного тока с трехфазной системой с использованием метода трех темных ламп.Операция процесса синхронизации резюмируется следующим образом:
- Три лампы, по одной для каждой фазы, подключены для определения того, когда направление чередования фаз генератора переменного тока совпадает с направлением чередования фаз трехфазного источника.
- Если все три лампы мигают и гаснут в унисон, чередование фаз у них совпадает.
- Если они не мигают одновременно, они не совпадают.
- Когда две лампы находятся в фазе и синхронизированы друг с другом, а напряжения совпадают, три лампы не горят или не горят.
- На этом этапе контакты параллельного контактора могут быть замкнуты. Когда напряжение на лампах равно нулю, разница напряжений между двумя системами будет равна нулю.
Рисунок 4 Синхронизация генератора.
Раньше синхронизация выполнялась вручную по методу с тремя лампами . Сегодня синхронизация выполняется более точно в точный момент синхронизма с помощью синхроскопа . Дисплей измерителя синхроскопа покажет, есть ли несоответствие скорости / частоты и / или несоответствие напряжения между двумя параллельными источниками.
Поскольку движение измерителя синхроскопа может перемещаться в направлении на 360 градусов, при внесении изменений, влияющих на выходную частоту и напряжение, эффекты этих изменений можно наблюдать по мере их внесения.
Энергетические генераторы регулярно подключаются и отключаются от большой электросети в ответ на запросы потребителей. Такая сеть называется бесконечной шиной, потому что она содержит так много генераторов, по существу соединенных параллельно, что ни ее напряжение, ни ее частота не могут быть изменены.При несоблюдении надлежащих процедур синхронизации могут возникнуть значительные нарушения в электрической системе и повреждение обмоток генератора.
Трехфазный генератор переменного тока содержит три набора катушек статора, расположенных на расстоянии 120 градусов друг от друга. Выход этих катушек представляет собой три отдельных напряжения с одинаковой частотой и величиной, но разнесенными на 120 электрических градусов.
Три обмотки генератора переменного тока соединены так, что для передачи трехфазного напряжения требуется только три или четыре провода вместо шести.Три набора катушек статора трехфазного генератора переменного тока могут быть соединены по схеме звезда (также известная как звезда) или треугольник, , как показано на рис. 5 .
Рисунок 5 Соединение звезды и треугольника в трехфазной системе
Соединение звездой выполняется путем соединения одного конца каждой из обмоток трехфазного генератора вместе. Рисунок 6 показывает пример напряжений и токов при соединении звездой.
Напряжение и ток через одну обмотку или фазу известны как фазное напряжение (E , фаза , ) и фазный ток (I , фаза ). Аналогичным образом, напряжение между линейными проводами и ток через них известны как линейное напряжение (E , строка , ) и линейный ток (I , строка ).
Рисунок 6 Напряжения и токи в конфигурации звездой в трехфазной системе
Расчет напряжения и тока в схеме звездочки ПримерПроблема: Измерения напряжения и тока для трехфазной сети На выходе генератора, соединенном звездой, указано фазное напряжение 240 вольт и линейный ток 30 ампер.Какое значение имеет линейное напряжение и фазный ток?
Решение:
Соединение звезда (звезда)
В соединении звездой линейный ток и фазный ток одинаковы, поскольку они действуют последовательно друг с другом: I строка = I фаза . Однако фазное напряжение меньше линейного на коэффициент квадратного корня из 3, что равно 1,73. Это связано с тем, что напряжение каждой фазы имеет задержку или сдвиг на 120 градусов, которые необходимо учитывать:
Или
Трехфазная четырехпроводная система звезды очень распространена и является стандартной. система, поставляемая многими энергокомпаниями коммерческим и промышленным потребителям.
На рисунке 7 показан четырехпроводной генератор переменного тока с соединением звездой , способный подавать электроэнергию в здание. Он может подавать как однофазное, так и трехфазное питание и 208 В и 120 В без использования трансформатора.
Рисунок 7 Трехфазная четырехпроводная система «звезда».
Фазовые обмотки соединения треугольником все соединены последовательно и напоминают греческую букву дельта (Δ). На рисунке 8 показан пример напряжений и токов в конфигурации , соединенной треугольником. Поскольку фазные обмотки образуют замкнутый контур, может показаться, что через обмотки будет постоянно течь большой ток, даже если нагрузка не подключена.
Фактически, из-за разницы фаз между тремя генерируемыми напряжениями в обмотках без нагрузки протекает незначительный ток или ток отсутствует.
Рисунок 8 В Напряжения и токи при соединении треугольником в трехфазной системе
Соединение треугольником
При соединении треугольником линейное напряжение и фазное напряжение одинаковы, потому что они действуют в параллельно друг другу: E линия = E фаза . Однако линейный ток и фазный ток отличаются. Линейный ток при соединении треугольником выше фазного тока в 3 или 1,73 раза. Это связано с тем, что ток каждой фазы имеет задержку или сдвиг на 120 градусов, которые необходимо учитывать:
Расчет напряжения и тока в примере соединения треугольникомПроблема: Измерения напряжения и тока, выполненные для Трехфазный выход генератора переменного тока, соединенный треугольником, показывает линейное напряжение 480 вольт и линейный ток 100 ампер.Каково значение напряжения в каждой фазе и тока в каждой фазе?
Решение:
Контрольные вопросы
- Какие два однофазных напряжения доступны в стандартных жилых помещениях?
- Сравните использование однофазных и трехфазных систем в отношении:
- Количество провода, необходимого для нагрузки эквивалентного размера.
- Изменение количества мощности, передаваемой нагрузке.
- Физический размер трехфазных и однофазных двигателей с эквивалентным номиналом.
- Как чередование фаз влияет на направление вращения трехфазного асинхронного двигателя?
- Какие условия должны быть соблюдены при подключении трехфазного генератора переменного тока к электросети?
- На сколько градусов друг от друга расположены три обмотки статора трехфазного генератора переменного тока?
- Назовите два основных типа соединений обмотки статора трехфазного генератора.
- Как соотносятся линейные и фазные напряжения и токи генератора переменного тока, подключенного звездой?
- Как соотносятся линейные и фазные напряжения и токи генератора переменного тока, подключенного по схеме треугольника?
- Измерения напряжения и тока, проведенные для трехфазного генератора переменного тока, соединенного звездой, показывают, что напряжение в сети составляет 208 вольт, а ток в сети — 20 ампер. Какое значение имеет фазное напряжение и фазный ток?
- Измерения напряжения и тока, проведенные для трехфазного генератора переменного тока, соединенного треугольником, показывают фазное напряжение 240 вольт и линейный ток 10 ампер.Какое значение имеет линейное напряжение и фазный ток?
Обзорные вопросы — ответы
- 120 В и 240 В.
- (a) Трехфазная система передает на 73% больше мощности, но использует только на 50% больше проводов.
- (b) Мощность, выдаваемая однофазным источником, пульсирует, тогда как мощность, выдаваемая трехфазной системой, относительно постоянна.
- (c) Трехфазные двигатели намного меньше по размеру, чем сопоставимые однофазные двигатели.
- Если две фазы питания трехфазного асинхронного двигателя поменять местами, двигатель изменит направление вращения на противоположное.
- Чередование фаз или чередование машины должно быть таким же, как и в системе. Напряжение генератора должно быть равно напряжению системы. Напряжение генератора должно совпадать по фазе с напряжением системы. Частота генератора должна быть равна системной частоте.
- 120 °
- Уай и Дельта.
- I строка = I фаза , E строка = E фаза x 1,73
- E строка = E фаза , I строка = I фаза x 1.73
- I фаза = 20 A, E фаза = 120 В
- E линия = 240 В, I фаза = 5,8 A
Преимущества трехфазной системы перед однофазной
Преимущества Трехфазная система питания по сравнению с однофазной системой
Трехфазная система выработки, передачи и распределения электроэнергии очень распространена во всем мире из-за существенных преимуществ перед однофазными и другими многофазными системами.
Однофазная система
Синусоидальное переменное напряжение , имеющее определенный период времени и частоту, генерируемое однообмоточным генератором переменного тока в качестве напряжения источника, известно как однофазная система питания .Цепь, питаемая этими напряжениями, называется однофазной цепью переменного тока. Другими словами, цепь A содержит один переменный ток, а напряжение идентифицируется как цепь 1-Φ.
Трехфазная система
Система содержит более одной фазы, известную как многофазная система или многофазная система . Система 3-Ф содержит три фазы , имеющие одинаковую частоту, где существует фиксированный угол 120 ° между напряжениями источника, генерируемыми генератором переменного тока с тремя обмотками.Точно так же существует разность углов 90 ° между двумя фазами в двухфазной системе питания.
Основные преимущества системы 3-Φ перед системой 1-ΦМногофазный или трехфазный источник питания имеет следующие преимущества перед однофазной системой питания.
- Для передачи определенной мощности на определенное расстояние при заданном номинальном напряжении трехфазной системе требуется меньше проводникового материала по сравнению с однофазной системой.
- Размер машины, работающей от трехфазной системы, меньше, чем размер машины, работающей от однофазного напряжения и имеющей такую же номинальную выходную мощность.
- В трехфазной системе питания меньшее падение напряжения происходит от источника к точкам нагрузки,
- Трехфазное питание создает однородное вращающееся магнитное поле, поэтому трехфазные двигатели проще по конструкции, имеют небольшие размеры и могут запускаться автоматически с плавной работой.
- Многофазная система вырабатывает мощность с постоянной скоростью в нагрузке.
- Трехфазная система может передавать больше мощности по сравнению с однофазной системой.
- КПД устройств и приборов с трехфазным питанием выше, чем у машин с однофазным питанием.
- Трехфазные машины дешевле и эффективнее.
- Трехфазная система обеспечивает постоянную мощность, в то время как однофазная система обеспечивает пульсирующую мощность, что приводит к плавной и безвибрационной работе машины 3-Φ по сравнению с машинами 1-Φ с шумом и вибрацией.
- Номинальную мощность машин можно увеличить, увеличив количество фаз в системе.
- Трехфазная машина с таким же номиналом занимает меньше места по сравнению с однофазной машиной.
- Однофазное питание может быть получено от трехфазного источника для работы однофазных машин. Трехфазная машина не может работать от однофазного напряжения питания.
- Трехфазный источник питания может быть легко преобразован в однофазный источник питания, в то время как для преобразования однофазного источника питания в трехфазное питание требуется сложная система. выключить. В случае трехфазного повреждения одной линии, две другие линии обеспечивают питание других подключенных к ним точек однофазной нагрузки.
- Многофазный или трехфазный двигатель обеспечивает равномерный крутящий момент, в то время как однофазные двигатели (кроме коллекторных двигателей) обеспечивают пульсирующий крутящий момент.
- Трехфазные двигатели запускаются автоматически, а однофазные двигатели не запускаются автоматически.
- Если размер рамы трехфазного генератора переменного тока, двигателя или трансформатора такой же, как у однофазного двигателя, генератора переменного тока или трансформатора, мощность трехфазных машин будет выше, чем у однофазных машин.
- Многофазный генератор переменного тока может быть легко соединен в пару и работать в параллельном режиме по сравнению с однофазными генераторами переменного тока, имеющими пульсирующую реакцию якоря.
- Коэффициент пульсаций выпрямленного напряжения постоянного тока от источника 3-Ф составляет 4%, а коэффициент пульсаций выпрямленного напряжения постоянного тока от источника 1-Ф составляет 48%. Следовательно, стоимость преобразователя для выпрямленного постоянного тока из источника 3-Ф меньше, чем у преобразователя, используемого для выпрямленного постоянного напряжения из источника 1-Ф, из-за меньшего количества фильтров, используемых в выпрямлении системы питания 3-Ф.
- Трехфазные двигатели имеют лучший коэффициент мощности по сравнению с однофазными двигателями.
Связанное сообщение: Разница между однофазным и трехфазным асинхронным двигателем
На следующих рисунках показана однородная мощность, вырабатываемая при единичном коэффициенте мощности трехфазным источником питания, когда мощность, производимая однофазным двигателем, пульсирует .
Приведенное выше объяснение показывает, почему трехфазная система электроснабжения более эффективна, удобна, экономична и надежна по сравнению с однофазной системой электроснабжения. Из-за вышеупомянутых преимуществ трехфазной системы перед однофазной, большинство стран мира выбрали ее вместо однофазной или других многофазных систем.
Связанные сообщения:
Обзор трехфазных систем
Обзор трехфазного питанияВ трехфазной сети есть три напряжения фазоры, разделенные на 120 электрических градусов.{\ circ} \ end {выровнен} \]
В симметричных трехфазных системах возможно подключение источников питания. {\ circ} \ right) \ end {выровнен} \]
Мгновенный поток мощности в каждой ветви нагрузки — это произведение мгновенного напряжения и тока:
\ [ \ begin {выровнено} p_A (t) & = VI \ left \ {\ cos \ theta + \ cos \ left (2 \ omega t + \ theta \ right) \ right \} \\ p_B (t) & = VI \ left \ {\ cos \ theta + \ cos \ left (2 \ omega t — \ frac {4 \ pi} {3} + \ theta \ right) \ right \} \\ p_C (t) & = VI \ left \ {\ cos \ theta + \ cos \ left (2 \ omega t + \ frac {4 \ pi} {3} + \ theta \ right) \ right \} \ end {выровнен} \]
, а общий поток мощности можно найти из суммы мощности в каждую ногу.* \\ S & = 3VI \\ Q & = 3VI \ sin \ theta \ end {выровнен} \]
До этого момента трехфазная система рассматривалась в с точки зрения отдельных фазных звеньев нагрузки. Количество линий энергосистемы можно найти по количеству фаз в зависимости от конфигурации нагрузки. В При нагрузке звездой линейный ток равен фазному току. Отношение между фазное напряжение и линейное напряжение можно определить математически или графически. {\ circ} \\ I_x & = \ sqrt {3} I \ end {выровнен} \]
Уравнения трехфазной мощности
Поток мощности в трехфазной системе можно определить в терминах количество фаз или линий:
\ [ \ begin {array} {ll} S = 3V_ {p} I_ {p} & = \ sqrt 3 V_ {LL} I_ {Line} \\ P = 3V_ {p} I_ {p} \ cos \ theta & = \ sqrt 3 V_ {LL} I_ {Line} \ cos \ theta \\ Q = 3V_ {p} I_ {p} \ sin \ theta & = \ sqrt 3 V_ {LL} I_ {Line} \ sin \ theta \ end {массив} \]
Что такое трехфазное питание и какие преимущества оно дает
Трехфазный переменный ток обычно используется для подачи электроэнергии в центры обработки данных, а также в коммерческие и промышленные здания, в которых размещается энергоемкое оборудование.Для этого есть веская причина, потому что трехфазное питание может обеспечить большую мощность с большей эффективностью, чем однофазное питание переменного тока. Однофазный переменный ток — это тип, который обычно используется в большинстве бытовых и легких коммерческих приложений, таких как освещение и мелкие бытовые приборы. На этой странице мы объясним, почему это так, а также основные различия между однофазными и трехфазными системами питания.
Зачем нужно трехфазное питание
Способность обеспечивать постоянно растущее количество энергии особенно важно, поскольку центры обработки данных и серверные комнаты продолжают видеть более высокую плотность.Более мощные вычислительные системы размещаются в тех же помещениях, где когда-то размещались серверы, потреблявшие лишь часть электроэнергии, необходимой современным компьютерам и сетям.
Не так давно одна ИТ-стойка из 10 серверов потребляла в общей сложности пять киловатт (кВт) энергии. Сегодня эта же стойка может содержать десятки серверов, которые в совокупности потребляют от 20 до 30 кВт. На таких уровнях вы, естественно, хотите повысить эффективность, поскольку даже небольшое процентное улучшение энергопотребления будет означать значительную экономию долларов с течением времени.
Проводка — еще одна проблема. Рассмотрим стойку на 15 кВт. При использовании однофазного источника питания переменного тока 120 вольт (VAC) для питания стойки требуется 125 ампер, для чего потребуется провод диаметром почти четверть дюйма (AWG 4) — слишком толстый, чтобы с ним легко работать, не говоря уже о дорого. Поскольку 3-фазный более эффективен, он может выдавать ту же мощность (или больше), используя меньшую проводку. Для поддержки той же стойки мощностью 15 кВт, использующей трехфазное питание, требуется три провода, способных подавать 42 А (AWG 10), что составляет небольшую часть размера — каждый менее одной десятой дюйма в диаметре.
Описание источника однофазного переменного тока
Итак, что такое трехфазное питание? И где его использовать?
Прежде чем углубляться в это обсуждение, полезно начать с понимания однофазного переменного тока.
Однофазный источник питания переменного тока использует трехпроводную систему подачи, состоящую из одного «горячего» провода, нулевого провода и заземления. При питании от сети переменного тока силовой ток или напряжение периодически меняются на противоположные, протекая в одном направлении по горячему проводу, который подает мощность на нагрузку, а в другом — по нейтральному проводу.Полный цикл питания происходит во время изменения фазы на 360 градусов, и напряжение меняется на противоположное 50 или 60 раз в секунду, в зависимости от системы, используемой в разных частях мира. В Северной Америке это 60 раз или 60 герц (Гц).
Важно отметить, что две токоведущие ноги всегда разнесены на 180 градусов. Чтобы визуализировать это, представьте, что мощность движется по волне, технически это синусоида с определенной частотой и амплитудой. В каждом цикле волны на каждом проводе дважды проходят через нулевую амплитуду (см. Рисунок 1).В этих случаях на нагрузку не подается питание.
Рисунок 1
Эти очень короткие прерывания не имеют значения для жилых и коммерческих зданий, таких как офисные помещения, но имеют серьезные последствия для двигателей, которые приводят в действие большое оборудование, а также компьютеры и другое ИТ-оборудование.
Погружение в 3-х фазное питание
Как следует из названия, трехфазные системы питания обеспечивают три отдельных тока, каждый из которых разделен на одну треть времени, необходимого для завершения полного цикла.Но, в отличие от однофазного, где две горячие ножки всегда разнесены на 180 градусов, в трехфазном токи разделены на 120 градусов.
На Рисунке 2 ниже вы увидите, что когда одна линия имеет пиковый ток, две другие нет. Например, когда фаза 1 находится на своем положительном пике, фазы 2 и 3 обе при -0,5. Это означает, что, в отличие от однофазного тока, нет точки, в которой мощность не подается на нагрузку. Фактически, в шести различных положениях в каждой фазе одна из линий находится в положительном или отрицательном положении пика.
Для практических целей это означает, что совокупная мощность, подаваемая всеми тремя токами, остается постоянной; у вас нет циклических пиков и спадов, как в однофазном.
Компьютеры и многие двигатели, используемые в тяжелой технике, разработаны с учетом этого. Они могут потреблять постоянный поток постоянной мощности, вместо того, чтобы учитывать колебания, присущие однофазной мощности переменного тока. В результате они потребляют меньше энергии.
В качестве аналогии подумайте о одноцилиндровом и трехцилиндровом двигателях.Оба работают на четырехтактной модели (впуск, компрессия, мощность, выпуск). В одноцилиндровом двигателе вы получаете только один «силовой» цикл на каждые четыре такта цилиндра, что обеспечивает довольно неравномерную подачу мощности. Трехтактный двигатель, напротив, будет обеспечивать мощность в трех чередующихся фазах (снова разделенных на 120 градусов) для более плавной, постоянной и эффективной мощности.
Рисунок 2
Преимущества трехфазного питания
Среди преимуществ, которые дает трехфазное питание, — способность обеспечивать почти вдвое большую мощность по сравнению с однофазными системами, не требуя вдвое большего количества проводов.Это не в три раза больше, чем можно было бы ожидать, потому что на практике вы обычно берете одну горячую линию и подключаете ее к другой горячей линии.
Чтобы понять, как 3-фазное питание обеспечивает большую мощность, нужно посчитать. Формула для однофазной мощности: мощность = напряжение (В) x ток (I) x коэффициент мощности (PF). Если предположить, что нагрузка в цепи только резистивная, коэффициент мощности равен единице (или единице), что сокращает формулу до P = V x I. Если мы рассмотрим схему на 120 В, поддерживающую 20 А, мощность будет равна 2400 Вт. .
Формула мощности трехфазной цепи: мощность = напряжение (В) x ток (I) x коэффициент мощности (PF) x квадратный корень из трех. Если предположить, что нагрузка в цепи является только резистивной, коэффициент мощности равен единице (или единице), что сокращает формулу до P = V x I x квадратный корень из трех. Если мы рассмотрим трехфазную схему на 120 вольт, и каждая фаза поддерживает 20 ампер, формула будет работать до 120 вольт x 20 ампер x 1,732 = 4 157 ватт. Таким образом, трехфазные сети могут обеспечить почти вдвое большую мощность, чем однофазные системы.Это упрощенный пример, но его можно использовать для исследования дополнительной мощности, доступной от цепей, поддерживающих более высокие напряжения (например, 208 или 480 вольт) или токи (например, 30 ампер или больше).
Такая емкость пригодится, когда дело доходит до питания стоек ИТ-оборудования. Если раньше использование однофазного питания в стойке было нормой, то по мере увеличения плотности ИТ-стоек это становится все менее осуществимым и практичным. Все кабели, проводники и розетки становятся больше, дороже, и работать с ними становится все труднее.
Подача трехфазного питания непосредственно в серверную стойку позволяет использовать менее дорогие кабели и другие компоненты, обеспечивая при этом большую мощность. Однако это требует внимания к нагрузке в каждой цепи, чтобы убедиться, что они сбалансированы и не превышают пропускную способность цепи.
Чтобы узнать больше о том, как работает трехфазное питание и какие преимущества оно дает, посетите: https://www.vertiv.com/en-us/products-catalog/critical-power/uninterruptible-power-supplies-ups.
Введение в сбалансированную трехфазную систему
Привет, студенты, добро пожаловать в новый учебник.В этом посте мы обсудим сбалансированную трехфазную систему . Есть 3 фазы, которые используются для передачи энергии из одного места в другое в электрической системе. Система, которая имеет одинаковое значение тока и напряжения в каждом проводе, называется сбалансированной системой, но эти ток и напряжение имеют разность фаз в двадцать градусов.
В этом посте мы рассмотрим все подробные параметры, относящиеся к сбалансированной трехфазной системе, и посмотрим, насколько они важны для электрической системы
Введение в сбалансированную трехфазную систему
- В случае системы баланса фаз значения текущего напряжения могут быть найдены в любом месте системы с помощью эквивалентной схемы.
- Это явление упоминается здесь.
- На приведенной ниже диаграмме показано, что в этой схеме генератор передает мощность на такую нагрузку, которая также находится в схемах соединения звездой, таких как генератор.
- В случае сбалансированной системы можно использовать нейтральный провод, но это повлияет на систему из-за протекания тока 0 системы балансировки в этом проводе. Можно увидеть на схеме, обозначенной как b
- Мы видим, что каждая фаза имеет одно и то же значение с угловой разницей в один-двадцать градусов.
- В этой системе легко обсудить поведение одной фазы, а затем сравнить ее с другими фазами, чтобы увидеть похожие результаты.
- Этот процесс показан на рисунке выше и обозначен как c .
- Здесь нейтральный провод — это перемычка для передачи тока в генератор от нагрузки.
- Но если нет необходимости в этом проводе при соединении треугольником
- Основной метод заключается в изменении импеданса со звезды на треугольник.
- В случае определенных нагрузок, которые находятся в состоянии балансировки для преобразования преобразования звезды в треугольник, существуют такие же значения импеданса, имеющие значение Z, и, как и для нагрузки соединения звездой, имеющей значение полного сопротивления для каждой фазы, равное Z / 3
- Ее эквивалент e означает, что если нагрузка, подключенная к этой системе, будет иметь одинаковые значения для тока вольта и мощности
- В сбалансированной трехфазной системе провода настроены так, что одна нагрузка и один источник питания подключен к одной линии.
- Эти 3 фазы имеют одинаковое значение тока и напряжения с одним изменением фазы на двадцать градусов.
- Благодаря одинаковым значениям фаз, легко выполнить проект или линейку системы для трех фаз.
- На этой однолинейной схеме представлен подробный обзор всех компонентов, используемых в системе.
- В этой строке показаны все компоненты, связанные с системой, такие как двигатель, генераторы, линии, трансформатор.
Что такое треугольник силы
- Предположим, что для нашей линии передачи значение импеданса равно нулю, поэтому были предприняты определенные меры.
- Эти условия будут выполнены для использования реальной и реактивной мощности в случае каждой нагрузки, чтобы найти ток и p.f, выходящие в разных точках системы
- Например, предположим, что электрическая сеть показана над диаграммой. Если в линии передачи в этой энергосистеме нет потерь мощности, то напряжение на стороне нагрузки будет похоже на напряжение на стороне генератора.
- Если есть заданное значение для напряжения на генераторе, то с использованием этих значений параметры для P.F и другие значения тока и вольт. Используя эти точки
- Определяет, что напряжение для передачи и концов нагрузки будет иметь то же значение, что и отсутствие потерь в линии.
- находит реальную и реактивную мощность для каждой нагрузки.
- На третьем шаге найдите чистую активную и реактивную мощность, передаваемую на нагрузку
- Находит p.f сети с помощью треугольника мощности.
Вот и все о сбалансированной трехфазной системе, если у вас есть дополнительные вопросы, спрашивайте в комментариях.Спасибо за чтение, хорошего дня
Автор: Генри
http://www.theengineeringknowledge.comЯ профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях. Я также пишу технический контент, мое хобби — изучать новые вещи и делиться ими с миром.