+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА

силовой трансформатор   радиотехнические расчеты    радио калькулятор

        РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА

В радиолюбительской практике иногда возникает необходимость в изготовлении трансформатора с нестандартными значениями напряжения и тока.

Хорошо, если удается подобрать готовый трансформатор с нужными обмотками, в противном случае трансформатор приходится изготавливать самостоятельно.

Эта страничка посвящена изготовлению силового трансформатора своими силами. В промышленных условиях расчет трансформатора — весьма трудоемкая работа, но для радиолюбителей созданы упрощенные методики расчета.

С одной из таких методик я и хочу вас познакомить.

Перед началом расчета нам нужно определиться с выходными данными будущего трансформатора.

Во-первых - номинальная мощность (P). Мощность трансформатора определяется как сумма мощностей всех вторичных обмоток. Мощность любой из вторичных обмоток определяем из произведения напряжения на вторичной обмотке и снимаемого с нее тока (напряжение для расчета берем в Вольтах, а ток — в Амперах).

Исходя из полученной номинальной мощности трансформатора можно вычислить минимальное сечение сердечника (S) (измеряется в квадратных сантиметрах). При выборе сердечника руководствуются шириной центральной пластины сердечника и толщиной набора. Площадь сечения сердечника определяется как произведение ширины пластины на толщину набора.

 

S серд = L*T  (все величины берутся в Сантиметрах!)

S окна = h*b

Также полезно сразу рассчитать площадь окна выбранного нами сердечника. Эта величина будет использоваться для проверки коэффициента заполнения окна ( проще говоря — поместятся все обмотки на данном трансформаторе, или нет). 

Далее — приступаем к вычислению коэффициента N. Этот коэффициент показывает, сколько витков нужно намотать для получения напряжения на обмотке в 1 вольт.

Дальнейший расчет сводится к умножению напряжения на обмотке на это коэффициент (N). Эта процедура для всех обмоток одинакова.

Далее — рассчитываем рабочий ток в сетевой обмотке исходя из мощности трансформатора и сетевого напряжения.

Диаметр провода в обмотках рассчитывается по приведенным формулам (ток берется в Миллиамперах !). Иногда не удается приобрести провод нужного сечения (но есть провод меньшего диаметра) — для этого случая полезно воспользоваться следующей табличкой:

Как пользоваться табличкой? Предположим, в результате расчета диаметр провода обмотки у нас получился равным 0,51 миллиметра. Для получения эквивалентного по сечению провода нам нужно взять либо 2 провода, диаметром 0,31 миллиметра, либо 3 провода с диаметром 0,29 миллиметров. Соответственно, обмотка будет состоять не из расчетного провода, а из нескольких, вместе сложенных проводов меньшего сечения.

Надеюсь, что пример довольно понятный для понимания…

В конце расчета проверяем коэффициент заполнения окна обмотками. Если этот коэффициент не превышает 0,5 — всё в порядке — можно приступать к намотке, в противном случае придется использовать сердечник с большей площадью сечения и произвести весь расчет заново…

Сборка сердечника  у силового трансформатора производится «в перекрышку» — так как показано на рисунке внизу:

Если у вас найдется готовый силовой трансформатор с номинальной мощностью не ниже, чем необходимо, то можно сетевую обмотку не перематывать, а ограничиться расчетом только вторичной обмотки.

Для примера : нам нужен силовой трансформатор для зарядки автомобильного аккумулятора с номинальным током зарядки 5 ампер.

Таким образом - мощность такого трансформатора должна быть не менее 90 ватт (18 вольт помноженное на 5 ампер).

В данном случае можно использовать силовой трансформатор типа ТС180 от лампового черно-белого телевизора. Переделка такого трансформатора сводится только к перемотке вторичной обмотки. Данный трансформатор изготовлен с применением так называемого «О» - образного сердечника и имеет две катушки. Все обмотки такого трансформатора разделены пополам и наматываются на обе катушки. Для переделки разбираем аккуратно сердечник (предварительно пометив одну из сторон сердечника, так как половинки при сборке трансформатора пришлифовываются друг к другу), сматываем все обмотки, кроме помеченных цифрами 1-3. Во время сматывания накальной обмотки (она намотана самым толстым проводом) нужно сосчитать число витков.
Полученное число витков делим на 6,5 - получаем количество витков обмотки данного трансформатора на 1 вольт. Затем умножаем это число на 18 и получаем нужное число витков вторичной обмотки. По формуле рассчитываем диаметр провода вторичной обмотки. При данном токе обмотки диаметр провода должен быть не менее, чем 1,42 миллиметра. Если вы найдете такой провод, то вторичную обмотку нужно разделить на 2 части и наматывать на каждый каркас, после чего соединить обмотки последовательно. Можно использовать провод меньшего диаметра (например 1,0 миллиметра). В этом случае на каждый каркас наматываем полное число витков и обмотки соединяем параллельно.   

Ниже приведена табличка для изготовления силового трансформатора с «типовыми» размерами  сердечника:

Пользование табличкой, думаю, не составит трудностей. ..

Расчет тороидального сетевого трансформатора

Исходные данные для расчета: напряжение/ток всех вторичных обмоток. Исходя из этих данных получаем минимальную габаритную мощность трансформатора. Пример: нужен трансформатор с двумя вторичными обмотками . Первая — на 14 вольт при токе в 1 ампер, вторая — 30 вольт при токе 0,05 ампера. Получаем сумму мощности во вторичных обмотках (14*1)+(30*0,05)=15,5 ватт. Главный качественный показатель силового трансформатора для радиоаппаратуры — это его надежность. Следствие надежности — это минимальный нагрев трансформатора при работе и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть «жестким»).

В расчетах примем КПД трансформатора 0,95 . Учитывая то, что нам нужен надежный трансформатор, и учитывая то, что напряжение в сети может иметь отклонения от 220 вольт до 10%, принимаем В=1,2 Тл
Плотность тока принимаем 3,5 А/мм2
Коэффициент заполнения сердечника сталью принимаем 0,95
Коэффициент заполнения окна принимаем 0,45
Исходя из принятых допущений, формула для расчета габаритной мощности у нас примет вид:

Р=1.

9 * Sc * So

Далее считаем количество витков первичной (сетевой) обмотки — оно равно n1=40 * 220 / Sc
Где: Sc — площадь поперечного сечения сердечника, соответственно [кв. см]; 220 — напряжение первичной обмотки [В]; Количество витков во вторичных обмотках считаем по той же формуле, но учитываем падение напряжения под нагрузкой — добавляем примерно 5 % к расчитанному количеству.

Диаметр провода всех обмоток расчитываем по формулам

— для меди         

— для алюминия

Простой расчет силового трансформатора | hardware

На этой страничке приведен простой метод расчета параметров трансформатора для сетей питания промышленной частоты (для России это 220V 50 Гц). Это может понадобиться для радиолюбительского творчества, ремонта и модификации трансформаторов. Обратите внимание, что даже если приведенный метод расчета и некоторые уравнения могли быть обобщены, здесь для упрощения вычислений принимались во внимание только классические сердечники трансформаторов с закрытым магнитным потоком, составленные из стальных пластин.

[Шаг 1. Определение размеров магнитопровода]

Когда разрабатывается трансформатор, первый шаг в разработке состоит в выборе подходящего сердечника, чтобы трансформатор мог передать необходимую мощность. Обычно чем больше мощность, тем больше должны быть размеры трансформатора. В действительности нет теоретических или физических ограничений на то, чтобы трансформатор меньшего размера мог передавать большую мощность. Но по практическим соображениям на сердечнике малого размера недостаточно места для размещения всех обмоток, поэтому можно выбрать только лишь сердечник не меньше определенного размера. Хороший базовый выбор может дать следующая эмпирическая формула (для рабочей частоты трансформатора 50 Гц):

P = η * S2 / 14000

Это выражение связывает (допустимую) мощность P трансформатора с площадью поверхности поперечного сечения S, с учетом эффективности сердечника η (греческая буква «eta»). При измерении поверхности поперечного сечения следует удалить 5%, чтобы учесть толщину лака на ферромагнитных пластинах, составляющих сердечник трансформатора. Площадь поперечного сечения S соответствует минимальному сечению магнитного потока в трансформаторе, и S можно определить по размерам участка магнитопровода, на котором расположены обмотки, как показано на рисунке ниже:

S=a*b

Рисунок выше показывает сердечник с двумя петлями магнитного потока, который применяется чаще всего из-за незначительного магнитного поля рассеивания, небольшого размера и технологичности в изготовлении трансформатора. Это так называемый Ш-образный сердечник. Две петли магнитного потока получаются потому, что обмотки в таком трансформаторе находятся в середине трансформатора, и их магнитное поле разветвляется на 2 половины справа и слева от обмотки. Если в Вашем трансформаторе одна петля магнитного потока (это трансформатор наподобие тороидального), то тогда не имеет значения, в каком месте сердечника определять площадь его поперечного сечения.

Эффективность η зависит от материала сердечника, и если Вы не знаете значение этого параметра, то следующая таблица даст грубую подсказку:

Таблица 1. Значение эффективности η и плотности магнитного потока φ для некоторых типов сердечника.

Материал сердечника η (коэффициент) φ (единицы Wb/m2)
Холоднокатаная текстурированная сталь, легированная кремнием (grain-oriented silicon steel), M5 0. 88 1.3
То же самое, толщина пластин 0.35 мм, M6 0.84 1.2
Обычная сталь, легированная кремнием, толщина пластин 0.5 мм, M7 0.82 1.1
Обычная кремниевая сталь (или сталь для повышенной прочности) 0.80 1.0
Мягкая низкоуглеродистая сталь (mild steel) 0.70 0.8

Чтобы упростить расчет трансформатора, ниже вставлен онлайн-калькулятор:

В этом калькуляторе уже учтены 5% для уменьшения площади сечения сердечника из-за их лакового покрытия.

[Шаг 2. Определение плотности магнитного потока в сердечнике]

После того, как были определены размеры сердечника, нужно определить плотность магнитного потока φ (греческая буква «phi»). Она тоже зависит от типа материала сердечника, и если Вы не знаете этот параметр, то можно снова воспользоваться таблицей 1. Если предполагается, что трансформатор будет непрерывно работать долгое время, или условия его работы подразумевают плохой теплообмен (плохую вентиляцию), то следует немного снизить плотность магнитного потока (например на 10%). Это снизит потери и трансформатор будет меньше нагреваться, но повысятся затраты на железо сердечника и медь для обмоток, хотя учет подобных затрат может быть важен только для промышленного производства, но не для радиолюбительской практики. Противоположное решение (без снижения плотности магнитного потока) может быть принято если важны затраты на материалы трансформатора, и только если трансформатор не предназначен для работы длительное время на полной мощности.

Как только плотность магнитного потока была определена, по следующей формуле можно вычислить константу трансформатора γ, выражающую количество витков на 1 вольт:

γ = 106 * sqrt(2) / (2 * pi * f * φ * S)

Множитель 106 учитывает, что площадь поперечного сечения сердечника S выражена в мм2. Следует сделать еще несколько замечаний по этой формуле: например, низкие частоты требуют больше витков, и поэтому трансформаторы на 60 Гц обычно получаются меньшего размера, чем трансформаторы на 50 Гц. Таким образом, сниженная плотность магнитного потока (и сниженные потери в сердечнике) потребует больше витков, даже если это кажется парадоксальным. И конечно, чем больше размер сердечника, тем меньше требуется витков: если Вы когда-нибудь видели большие, мощные высоковольтные трансформаторы, используемые энергетическими компаниями для своих высоковольтных линий, то у них имеется всего лишь несколько сотен витков для преобразования многих киловольт, в то время как маленький трансформатор на 230V в Вашем маленьком будильнике содержит тысячи витков.

[Шаг 3. Вычисление числа витков]

Теперь мы знает константу трансформатора γ, и по ней можно очень просто вычислить количество витков N для каждой обмотки трансформатора в зависимости от напряжения обмотки U:

N = γ * U

Обратите внимание, что все напряжения и токи учитываются в СКЗ (эта аббревиатура соответствует английской RMS), в то время как плотность магнитного потока выражена в своем пиковом значении, чтобы избежать насыщения. Этот факт объясняет наличие корня из 2 в формуле вычисления константы трансформатора γ.

Для вторичной обмотки хорошей практикой будет увеличить количество витков примерно на 5%, что скомпенсирует потери энергии в трансформаторе.

Чтобы упростить все расчеты, можно использовать следующий онлайн-калькулятор:

В этом калькуляторе уже учтена поправка 5% для количества витков вторичной обмотки.

Как уже отмечалось, количество витков в трансформаторе зависит от размеров сердечника и плотности магнитного потока в нем, но не от мощности трансформатора. Таким образом, если Ваш трансформатор требует больше одной вторичной обмотки, просто повторите описанное вычисление количества витков для каждой обмотки. Однако в этом случае может потребоваться выбор сердечника большего размера, чтобы на нем поместились все обмотки, или другими словами, следует выбирать размер сердечника по общей мощности, снимаемой со всех вторичных обмоток. Также используйте площадь сечения сердечника достаточно большую, чтобы трансформатор мог передавать требуемую мощность.

[Шаг 4. Как правильно выбрать провода для обмоток трансформатора]

На последнем шаге следует вычислить диаметр провода для каждой обмотки. Чтобы сделать это, для провода выбирается плотность тока c. Хорошим компромиссом будет выбор 2.5 A/мм2. Если выбрать значение c меньше, то для обмоток понадобится больше меди, но в трансформаторе будет меньше потерь: этот вариант подойдет для мощных трансформаторов. Выбор значения c больше приведет к меньшим затратам на провод и удешевит трансформатор, но он будет больше нагреваться, и это может быть допустимо только когда трансформатор используется недолго на своей полной мощности, или на полной мощности понадобится дополнительное охлаждение. Обычно выбирают значение в диапазоне 2..3 A/мм2. Как только была определена плотность тока в проводе, то диаметр провода может быть вычислен по следующей формуле:

d = 2 * sqrt( I / (pi * c) )

Или для c = 2.5 A/мм2:

d = 0. 72 * sqrt(I)

Чтобы упростить расчет диаметра провода, используйте следующий онлайн-калькулятор:

[Практика в изготовлении трансформатора]

Теперь, когда все вычисления завершены, начинаются сложности: поместятся ли вычисленные витки обмоток на выбранном сердечнике трансформатора? Ответ непростой, и зависит от множества факторов: сечения и вида провода, качества намотки (виток к витку или «внавал»), наличия и толщины изоляции между слоями обмотки и отдельными обмотками, и так далее. Другими словами, тут некоторый опыт окажется полезнее, чем множество уравнений.

Обычно сложно купить пустой сердечник трансформатора, и поэтому домашние проекты часто начинаются с перемотки старого трансформатора. Не все трансформаторы можно разобрать: некоторые сердечники проклеены смолой, которая слишком прочна, чтобы её удалить, не изгибая пластины сердечника. К счастью, многие трансформаторы можно разобрать, если снять с них верхний кожух, который скрепляет пластины. Кожух обычно снимается, если отогнуть или зашлифовать ушки крепления. Иногда сердечники имеют специальные не залитые краской винты, стягивающие сердечник, такой трансформатор разобрать проще всего. Каждая пластина сердечника должна быть аккуратно удалена, чтобы получить доступ к обмоткам трансформатора. Изогнутые или поцарапанные пластины сердечника следует выбросить, потому что они будут производить лишние потери и дополнительный шум в работе трансформатора.

Если получится, то можно использовать готовую первичную обмотку трансформатора, перемотав только вторичные обмотки. Это возможно, когда первичная обмотка намотана первой, и не закрывает собой вторичные обмотки трансформатора. В принятии решения, стоит ли перематывать или снимать конкретную обмотку, или она должна быть сохранена, полезно узнать количество витков этой обмотки, однако это невозможно, не разматывая её, если обмотка намотана в несколько слоев или «внавал». К счастью, есть трюк для определения количества витков обмоток: перед разборкой сердечника нужно намотать временную обмотку из малого количества витков изолированного провода (например, 10 витков), подключить трансформатор к сети, и измерить напряжение на полученной тестовой обмотке. По измеренному напряжению можно просто рассчитать количество витков на 1 вольт, и по нему достаточно точно вычислить количество витков каждой обмотки по её напряжению, без необходимости разматывать обмотки и считать их витки.

После того, как новые обмотки намотаны, время снова собрать трансформатор, поместив пластины сердечника на свое место. Бывает сложно без дополнительных усилий вернуть все пластины обратно на место, однако даже если одна или две пластины не будут вставлены, то все равно трансформатор будет нормально работать. Но по этой причине при выборе сердечника по площади поперечного сечения следует немного повысить требования к его размерам. Когда на трансформатор подано напряжение сети, важно, чтобы все пластины были при этом плотно сжаты или склеены друг с другом, иначе сердечник трансформатора будет вибрировать и издавать неприятный шум.

Многие трансформаторы имеют пластины сердечника в форме букв E и I (в России их называют Ш-образными сердечниками), наподобие таких, как показаны на картинке выше. Когда собираете трансформатор, такие пластины следует вставлять друг в друга с чередованием E-I на одном слое и I-E на следующем, и так далее. Это минимизирует воздушный зазор в магнитном потоке и повышает взаимосвязь обмоток.

Для обмоток всегда используйте эмалированный провод. Использовать провод в изоляции ПВХ (PVC, это обычные электрические провода) очень плохая идея, потому что слой изоляции у них слишком толстый, будет потеряно слишком много пространства под обмотки. Также ПВХ-изоляция очень плохо проводит тепло и может даже оплавиться, что приведет к замыканиям. Ваш трансформатор быстро перегреется и может выйти из строя.

Всегда размещайте слой изоляции между первичной и вторичной обмотками, чтобы снизить риск удара током при касании вторичных электрических цепей. Для изоляции используйте тонкие материалы, желательно негорючие, которые служат хорошим изолятором и проводником тепла. Часто для межвитковой изоляции используют лакоткань, слюду и пропитанную воском бумагу. Я использую ленту Каптона, и иногда обычную матерчатую изоленту.

Изоляция эмалированного провода хорошо выдерживает напряжение до 1000V (пиковое значение. Когда это возможно, обращайтесь к спецификации производителя. Если напряжение обмоток превышает это значение, то лучше поделить обмотку на несколько слоев, проложив изоляцию между ними.

[Общие выводы]

Самостоятельная намотка или перемотка трансформаторов требуется в специальных случаях ремонта, или когда требуется получить напряжения, которых нет в готовом трансформаторе. Но перед тем, как разбирать трансформатор, делать на нем новые обмотки и собирать его обратно, лучше всего провести некоторые расчеты, чтобы получить нужные результаты с первой попытки и не тратить лишнее время.

[Используемые символы]

Символ Описание Единица измерения
S Площадь поперечного сечения мм2
d Диаметр провода мм
f Рабочая частота трансформатора Гц
I СКЗ тока обмотки A
N Количество витков обмотки количество
P Передаваемая трансформатором мощность VA (Вт)
U СКЗ напряжения обмотки V
γ Количество витков на 1 вольт витков/V
η Эффективность сердечника коэффициент
φ Плотность магнитного потока в сердечнике Wb/m2

Примечание: 1 Wb/m2 = 1 T = 10000 Gauss

[Ссылки]

1. Calculating mains frequency power transformers site:giangrandi.ch.
2. Coil and transformer calculator site:dicks-website.eu.
3. РАСЧЕТ СЕТЕВОГО ТРАНСФОРМАТОРА site:rcl-radio.ru.

Как рассчитать количество витков и сечение провода трансформатора?


Как рассчитать количество витков и диаметр провода обмоткок трнасформатора? FAQ Часть 3

В статье Вы найдёте формулы для самого простого расчёта габаритной мощности, количества витков и диаметра провода силового трансформатора. Каждый расчёт дополнен наглядным примером.


Самые интересные ролики на Youtube

Близкие темы.

Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.

Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

Оглавление статьи.

  1. Как определить необходимую мощность силового трансформатора для питания УНЧ?
  2. Какую схему питания УНЧ выбрать?
  3. Расчёт выходного напряжения (переменного тока) трансформатора работающего на холостом ходу или без существенной нагрузки.
  4. Расчёт напряжения (постоянного тока) на выходе блока питания работающего при максимальной нагрузке.
  5. Типы магнитопроводов силовых трансформаторов.
  6. Как определить габаритную мощность трансформатора?
  7. Где взять исходный трансформатор?
  8. Как подключить неизвестный трансформатор к сети?
  9. Как сфазировать обмотки трансформатора?
  10. Как определить количество витков вторичной обмотки?
  11. Как рассчитать диаметр провода для любой обмотки?
  12. Как измерить диаметр провода?
  13. Как рассчитать количество витков первичной обмотки?
  14. Как разобрать и собрать трансформатор?
  15. Как намотать трансформатор?
  16. Как закрепить выводы обмоток трансформатора?
  17. Как изменить напряжение на вторичной обмотке не разбирая трансформатор?
  18. Программы для расчёта силовых трансформаторов.
  19. Дополнительные материалы к статье.

Страницы 1 2 3 4


Как определить количество витков вторичной обмотки?

Для расчёта количества витков вторичной обмотки необходимо знать, сколько витков приходится на один Вольт. Если количество витков первичной обмотки неизвестно, то это значение можно получить одним из предложенных ниже способов.

Первый способ.

Перед удалением вторичных обмоток с каркаса трансформатора, нужно замерить на холостом ходу (без нагрузки) напряжение сети и напряжение на одной из самых длинных вторичных обмоток. При размотке вторичных обмоток, нужно посчитать количество витков той обмотки, на которой был произведён замер.

Имея эти данные, можно легко рассчитать, сколько витков провода приходится на один Вольт напряжения.


Второй способ.

Этот способ можно применить, когда вторичная обмотка уже удалена, а количество витков не посчитано. Тогда можно намотать в качестве вторичной обмотки 50 -100 витков любого провода и сделать необходимые замеры. То же самое можно сделать, если используется трансформатор, имеющий всего несколько витков во вторичной обмотке, например, трансформатор для точечной сварки. Тогда временная измерительная обмотка позволит значительно увеличить точность расчётов.

Когда данные получены, можно воспользоваться простой формулой:

ω1 / U1 = ω 2 / U2

ω 1 – количество витков в первичной обмотке,

ω 2 – количество витков во вторичной обмотке,

U1 – напряжение на первичной обмотке,

U2 – напряжение на вторичной обмотке.

Пример:

Я раздобыл вот такой трансформатор без вторичной обмотки и опознавательных знаков.

Намотал в качестве временной вторичной обмотки – 100 витков.

Намотал я эту обмотку тонким проводом, который не жалко и которого у меня больше всего. Намотал «в навал», что значит, как попало.

Результаты теста.

Напряжение сети во время замера – 216 Вольт.

Напряжение на вторичной обмотке – 20,19 Вольт.

Определяем количество витков на вольт при 216V:

100 / 20,19 = 4,953 вит./Вольт

Здесь на точности не стоит экономить, так как погрешность набегает при замерах. Благо, считаем-то не на бумажке.

Рассчитываем число витков первичной обмотки:

4,953 * 216 = 1070 вит.

Теперь можно определить количество витков на вольт при 220V.

1070 / 220 = 4,864 вит./Вольт

Рассчитываем количество витков во вторичных обмотках.

Для моего трансформатора нужно рассчитать три обмотки. Две одинаковые «III» и «IV» по 12,8 Вольт и одну «II» на 14,3 Вольта.

4,864 * 12,8 = 62 вит.

4,864 * 14,3 = 70 вит.

Вернуться наверх к меню


Как рассчитать диаметр провода для любой обмотки?

Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы подобрать оптимальный диаметр провода из имеющихся в наличии.

Рассчитать ток катушки можно по формуле:

I = P / U

I – ток обмотки,

P – мощность потребляемая от данной обмотки,

U – действующее напряжение данной обмотки.

Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками «III» и «IV».

31 / (12,8+12,8) = 1,2 Ампер

Диаметр провода можно вычислить по формуле:

D = 1,13 √(I / j)

D – диаметр провода в мм,

I – ток обмотки в Амперах,

j – плотность тока в Ампер/мм².


При этом плотность тока можно выбрать по таблице.
Конструкция трансформатора Плотность тока (а/мм2) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Однокаркасная 3,0-4,0 2,5-3,0 2,0-2,5 1,7-2,0 1,4-1,7
Двухкаркасная 3,5-4,0 2,7-3,5 2,4-2,7 2,0-2,5 1,7-2,3
Кольцевая 4,5-5,0 4,0-4,5 3,5-4,5 3,0-3,5 2,5-3,0

Пример:

Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.

А плотность тока я выбрал – 2,5 А/ мм².

1,13√ (1,2 / 2,5) = 0,78 мм

У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.

На картинке два варианта конструкции каркаса: А – обычная, В– секционная.


  1. Количество витков в одном слое.
  2. Количество слоёв.

Ширина моего несекционированного каркаса 40мм.

Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.

124 * 1,08 * 1,1 : 40 3,68 слоя

1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.

Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.

Определяем толщину обмотки:

1,08 * 4 4,5 мм

У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.

Ток катушки «II» вряд ли будет больше чем – 100мА.

1,13√ (0,1 / 2,5) = 0,23 мм

Диметр провода катушки «II» – 0,23мм.

Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.

Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.

Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.

Длина проводов будет равна:

L = p * ω * 1,2

L – длина провода,

p – периметр каркаса в середине намотки,

ω – количество витков,

1,2* – коэффициент.


* Укладывать обмотку при намотке в несколько проводов сложно и утомительно, поэтому лучше перестраховаться и использовать этот коэффициент, компенсирующий ошибки расчёта и неаккуратной укладки.

Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.

Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.

Закрепить конец провода можно обычными нитками.

Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.

Если катушка разделена на секции для первичных и вторичных обмоток, то тогда и вовсе можно обойтись без изоляционных прокладок.

Вернуться наверх к меню


Как измерить диаметр провода.

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.


Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.


Таблица данных обмоточных проводов.
Диаметр без изоляции, мм Сечение меди, мм² Сопротив-ление 1м при 20ºС, Ом Допустимая нагрузка при плотности тока 2А/мм² Диаметр с изоляцией, мм Вес 100м с изоляцией, гр
0,03 0,0007 24,704 0,0014 0,045 0,8
0,04 0,0013 13,92 0,0026 0,055 1,3
0,05 0,002 9,29 0,004 0,065 1,9
0,06 0,0028 6,44 0,0057 0,075 2,7
0,07 0,0039 4,73 0,0077 0,085 3,6
0,08 0,005 3,63 0,0101 0,095 4,7
0,09 0,0064 2,86 0,0127 0,105 5,9
0,1 0,0079 2,23 0,0157 0,12 7,3
0,11 0,0095 1,85 0,019 0,13 8,8
0,12 0,0113 1,55 0,0226 0,14 10,4
0,13 0,0133 1,32 0,0266 0,15 12,2
0,14 0,0154 1,14 0,0308 0,16 14,1
0,15 0,0177 0,99 0,0354 0,17 16,2
0,16 0,0201 0,873 0,0402 0,18 18,4
0,17 0,0227 0,773 0,0454 0,19 20,8
0,18 0,0255 0,688 0,051 0,2 23,3
0,19 0,0284 0,618 0,0568 0,21 25,9
0,2 0,0314 0,558 0,0628 0,225 28,7
0,21 0,0346 0,507 0,0692 0,235 31,6
0,23 0,0416 0,423 0,0832 0,255 37,8
0,25 0,0491 0,357 0,0982 0,275 44,6
0,27 0,0573 0,306 0,115 0,31 52,2
0,29 0,0661 0,2бб 0,132 0,33 60,1
0,31 0,0755 0,233 0,151 0,35 68,9
0,33 0,0855 0,205 0,171 0,37 78
0,35 0,0962 0,182 0,192 0,39 87,6
0,38 0,1134 0,155 0,226 0,42 103
0,41 0,132 0,133 0,264 0,45 120
0,44 0,1521 0,115 0,304 0,49 138
0,47 0,1735 0,101 0,346 0,52 157
0,49 0,1885 0,0931 0,378 0,54 171
0,51 0,2043 0,0859 0,408 0,56 185
0,53 0,2206 0,0795 0,441 0,58 200
0,55 0,2376 0,0737 0,476 0,6 216
0,57 0,2552 0,0687 0,51 0,62 230
0,59 0,2734 0,0641 0,547 0,64 248
0,62 0,3019 0,058 0,604 0,67 273
0,64 0,3217 0,0545 0,644 0,69 291
0,67 0,3526 0,0497 0,705 0,72 319
0,69 0,3739 0,0469 0,748 0,74 338
0,72 0,4072 0,043 0,814 0,78 367
0,74 0,4301 0,0407 0,86 0,8 390
0,77 0,4657 0,0376 0,93 0,83 421
0,8 0,5027 0,0348 1,005 0,86 455
0,83 0,5411 0,0324 1,082 0,89 489
0. 86 0,5809 0,0301 1,16 0,92 525
0,9 0,6362 0,0275 1,27 0,96 574
0,93 0,6793 0,0258 1,36 0,99 613
0,96 0,7238 0,0242 1,45 1,02 653
1 0,7854 0,0224 1,57 1,07 710
1,04 0,8495 0,0206 1,7 1,12 764
1,08 0,9161 0,0191 1,83 1,16 827
1,12 0,9852 0,0178 1,97 1,2 886
1,16 1,057 0,0166 2,114 1,24 953
1,2 1,131 0,0155 2,26 1,28 1020
1,25 1,227 0,0143 2,45 1,33 1110
1,3 1,327 0,0132 2,654 1,38 1190
1,35 1,431 0,0123 2,86 1,43 1290
1,4 1,539 0,0113 3,078 1,48 1390
1,45 1,651 0,0106 3,3 1,53 1490
1,5 1,767 0,0098 3,534 1,58 1590
1,56 1,911 0,0092 3,822 1,64 1720
1,62 2,061 0,0085 4,122 1,71 1850
1,68 2,217 0,0079 4,433 1,77 1990
1,74 2,378 0,0074 4,756 1,83 2140
1,81 2,573 0,0068 5,146 1,9 2310
1,88 2,777 0,0063 5,555 1,97 2490
1,95 2,987 0,0059 5,98 2,04 2680
2,02 3,205 0,0055 6,409 2,12 2890
2,1 3,464 0,0051 6,92 2,2 3110
2,26 4,012 0,0044 8,023 2,36 3620
2,44 4,676 0,0037 9,352 2,54 4220

Вернуться наверх к меню


Как рассчитать количество витков первичной обмотки?

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом.

Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пор, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то можно рассчитать количество витков по приведённой формуле. Эта формула валидна для частоты 50 Герц.

ω = 44 / (T * S)

ω – число витков на один вольт,

44 – постоянный коэффициент,

T – величина индукции в Тесла,

S – сечение магнитопровода в квадратных сантиметрах.

Пример.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / (1,5 * 6,25) = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.


Величину индукции можно определить по таблице.
Тип магнитопровода Магнитная индукция max (Тл) при мощности трансформатора (Вт)
5-15 15-50 50-150 150-300 300-1000
Броневой штампованный 1,1-1,3 1,3 1,3-1,35 1,35 1,35-1,2
Броневой витой 1,55 1,65 1,65 1,65 1,65
Тороидальный витой 1,7 1,7 1,7 1,65 1,6

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Вернуться наверх к меню


Страницы 1 2 3 4


Силовые трансформаторы, простой расчет — Радиомастер инфо

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

 

 

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и  токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см2) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см2.

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

N = (50 ÷70)/S (см2)

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

N = 60/13,5 = 4,44

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

D(мм) = (0,7÷0,8)√I(А)

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Калькулятор расчета трансформатора

Результаты расчета

Мощность:

Первичная обмотка

Ток (A):

Количество витков (Шт):

Диаметр провода (мм):

Вторичная обмотка

Ток (A):

Количество витков (Шт):

Диаметр провода (мм):

Трансформаторы часто используются для питания цепей управления, для освещения и в различных электронных устройствах. С такой задачей, как расчет трансформатора тока, сталкиваются не только специалисты в данных областях, но и обычные любители. Поэтому очень часто мы сталкиваемся с проблемой, когда не знаем, как производится простой расчет трансформатора и расчет параметров трансформатора. К счастью существует решение этой проблемы.

Расчет трансформатора онлайн

Существует формула расчета трансформатора, которая помогает совершить расчет трансформатора питания. Чтобы упростить себе жизнь и избежать ошибок в вычислениях, вы можете воспользоваться данной программой. Она позволит вам конструировать трансформаторы на различные напряжения и мощности очень быстро и без проблем. Это очень удобный калькулятор для радиолюбителей и профессионалов. Он поможет не только рассчитать трансформатор, но и поможет изучить его устройство, как всё работает. Это самый простой и быстрый способ всё рассчитать. Для этого нужно заполнить все известные вам данные и нажать кнопку. Получается вам нужно нажать одну кнопку, чтобы произвести расчет трансформатора!

Достоинство и плюсы этого способа

  • Вам не нужно ничего считать
  • Вы можете самостоятельно мотать трансформатор для своих целей
  • По размеру сердечника можно определить необходимые расчёты
  • Упрощенный расчет трансформатора
  • Всё понятно даже для новичков
  • Есть инструкция
  • Для расчёта нужно нажать всего одну кнопку!

Магнит проводы бывают трёх конструкций: броневая, тороидальная и стержневая. Существует и другие более редкие конструкция, но обычно для их расчёта требуются всегда: входное напряжение, частота, выходное напряжение, выходной ток, габаритные размеры магнитопровода.

Мы получаем рабочий онлайн калькулятор трансформатора, способный решить наши задачи по формулам расчёта. Если вы взяли старый, отработавший свой срок трансформатор, теперь вы сможете всё рассчитать для безопасной работы с ним. Полученные расчёты окажутся оптимальными, скорее даже идеальными, поэтому провода подходящего диаметра может просто не быть. Поэтому подбирайте максимально близкое значение к оптимальному.

Расчет силовых трансформаторов при произвольных законах изменения напряжения и тока

Расчету трансформаторов посвящено много работ, например [1–5]. В данной статье представлен подход к их расчету,
основанный на обеспечении:

  • заданного нагрева магнитопровода (МП) при намагничивании его переменным напряжением произвольной формы и нагрева обмоток рабочим током произвольной формы;

  • получения заданной индуктивности рассеивания, то есть получения заданного значения напряжения короткого замыкания или заданной длительности фронта импульса.

Первый подход хорошо зарекомендовал себя при расчете дросселей с магнитопроводом при произвольной форме тока [6]. Созданная теория подтверждалась результатами статистической обработки значений удельной энергии промышленных дросселей, которая выявила зависимость удельной энергии дросселя как степень 1/7 от значения самой энергии в широких пределах изменения энергий от долей до тысяч джоулей.

Далее не рассматривается расчет «строчных» трансформаторов, которые по виду выполняемых функций являются двухобмоточными дросселями.

В трансформаторе закон изменения индукции задается напряжением, в дросселе — током. Другими словами, сердечник трансформатора намагничивается напряжением, а дросселя — током. Можно выделить несколько типичных несинусоидальных режимов работы трансформатора.

  1. Минимальное и максимальное значения напряжения близки по абсолютному значению, но имеют противоположные знаки
    (рис. 1а). Имеет место режим переменного тока.

  2. Минимальное и максимальное значения напряжения намного отличаются друг от друга, например,
    одно равно 5–10% другого (рис. 1б). Время действия положительного и отрицательного напряжения сильно отличаются.
    Режим принято называть импульсным. Разность между максимальным и минимальным значением индукции называют перепадом ΔB
    (иногда размахом), а половину этого значения — амплитудой переменной составляющей Bm.

В обоих режимах постоянная составляющая индуктированного напряжения равна нулю. В противном случае индукция в магнитопроводе стала бы непрерывно нарастать.

Дроссель и трансформатор состоят из одинаковых частей: магнитопровода и обмоток. Задачей конструктивного расчета трансформатора и дросселя является определение основных геометрических размеров магнитопровода, числа витков обмоток, сечения проводов обмоток, а для дросселя — еще и определение размеров воздушного зазора.

Исходными данными для расчета трансформатора являются:

  1. Закон изменения напряжения u(t) и тока i(t) с заданными параметрами: средним
    значением напряжения Uср, эффективным значением тока I или амплитудой Im
    и коэффициентом амплитуды импульса ka = Im/I, а также скважностью импульсов
    ν = τи/T (рис. 1б).

  2. Ls — индуктивность рассеивания, или напряжение короткого замыкания uк,
    или τs = Ls/Rн — постоянная времени, где Rн — сопротивление нагрузки
    трансформатора.

Если трансформатор работает совместно с формирующей линией, то при вычислении постоянной времени сопротивление
нагрузки должно быть удвоено, так как сопротивление нагрузки и, как правило, равное ему волновое сопротивление
линии включены последовательно с индуктивностью рассеивания трансформатора.

Далее будут рассмотрены броневые и стержневые типы трансформаторов. Самые плохие условия охлаждения, ввиду закрытости
магни-топровода катушками, имеет стержневой тип с катушками на обоих стержнях. Стержневой тип трансформатора с двумя
катушками эквивалентен тороидальному трансформатору. Удельные потери для этих магнитопроводов, как правило, должны
составлять 3–5 Вт/кг, а для остальных — 7–10 Вт/кг.

Предварительно по принятому значению удельных потерь в магнитопроводе при известном законе изменения индукции
определяют допустимую амплитуду переменной составляющей индукции Вmc или перепад индукции
ΔBи.

Рассмотрим выбор и расчет режима работы магнитопроводов.

Самым простым является выбор рабочей индукции для работы на очень низких частотах — 10–20 Гц.
В этом случае могут быть применены шихтованные или витые магнитопро-воды из обычных трансформаторных
сталей с толщиной листа или ленты 0,3–0,5 мм. Для импульсных трансформаторов перепад индукций может
быть близким к значению 2Вs. Для обеспечения такого режима должно быть применено смещение рабочей
точки на кривой намагничивания путем подмагничивания МП постоянным током.

На частотах в десятки и сотни герц должен быть проведен традиционный выбор материалов и режимов работы.

На частотах несколько десятков килогерц потери в МП являются определяющими в выборе марки и толщины магнитного
материала. На этих частотах вихревые потери можно регулировать выбором толщины материала. Особо тонкими выпускаются
ленты из пермаллоев (толщиной 10–20 мк) и аморфные или нанокристаллические материалы (25 мк). Гистерезисные потери
не зависят от толщины материала, а на высоких частотах становятся определяющими. Необходимо выбирать материалы с
узкой петлей гистерезиса или с высокой начальной магнитной проницаемостью. Здесь МП из аморфных сплавов практически
не имеют преимуществ по сравнению с МП из высоколегированных сплавов (пермаллоев).

Радикальный способ снижения потерь — это уменьшение рабочего значения индукции вплоть до десятых долей тесла.
Повышенное значение индукции насыщения материала часто оказывается невостребованным. При малом значении индукции
размеры магнитопровода и трансформатора сильно возрастают.

Для повышения индукции и уменьшения размеров трансформатора может быть применен интенсивный обдув или масляное
охлаждение, повышающие теплосъем с поверхностей в 1,5-2 раза. Ферритовые сердечники при естественном охлаждении
позволяют работать с индукцией 0,3-0,4 Тл.

Выше 10-15 кГц — область работы ферри-товых сердечников или обычных сплавов с очень низкими значениями рабочей
индукции или принудительным охлаждением. К сожалению, изготовление ферритовых сердечников больших размеров связано
с технологическими трудностями. Выбор рабочей индукции производится расчетным путем или по графикам справочных
материалов [7, 8].

Объективным способом контроля качества расчета является экспериментальная проверка теплового режима магнитопровода
при выбранной рабочей индукции на опытном сердечнике или его модели. На сердечник наматывается контрольная обмотка
из тонкого провода с числом витков, обеспечивающим выбранное значение индукции при известной амплитуде импульса
контрольного генератора w=Uг × τи/(s × ΔВи).

Такой генератор имеет небольшую мощность, так как обеспечивает намагничивание сердечника только на холостом ходу.
Те участки сердечника, на которых будет располагаться обмотка, могут быть закрыты теплоизоляционным материалом.

Пример результатов проверки приведен на графиках (рис. 2). Выбором магнитного материала и величины рабочей индукции заканчивается первый этап расчета трансформатора.

В последующих выводах принято допущение, что тепловой режим магнитопровода не влияет на тепловой режим катушки. При тепловом расчете магнитопровода и катушек не должны учитываться поверхности их соприкосновения.

Второй этап — расчет обмоток. За основную переменную величину принимаем сечение магнитопровода (первая строка таблицы).
Сечение — единственный геометрический параметр, входящий в формулу закона электромагнитной индукции. Закон инвариантен
по отношению к форме сечения. Через сечение при выбранной конфигурации трансформатора могут быть определены все
остальные размеры трансформатора, например, короткая сторона сечения a=0,5×s1/2 (вторая строка таблицы), длинная
сторона в=2а, высота окна h=4,6а, длина средней силовой линии lc=(4,6+4,6+2+2+3,14)×а=k2×s1/2
(третья строка таблицы), длина витка lм=k4×s1/2 , сечение окна
sок=k6×s. При вычислении площади охлаждения катушек участки поверхности,
соприкасающиеся с маг-нитопроводом, исключены из общей площади охлаждения.

В таблице приведены данные об отношении открытой для охлаждения поверхности магнитопровода к его объему (k12),
определяющие допустимые удельные потери в сердечнике Вт·м/кг.

Выбор в качестве аргумента сечения s удобен тем, что после определения основных геометрических размеров трансформатора
стержень с прямоугольным сечением может быть заменен стержнем любой формы (например, круглым, ступенчатым) с
равновеликим сечением при сохранении основных электрических параметров трансформатора. В таблице представлен ряд
типовых конструкций трансформаторов броневого и стержневого типов. Два первых — броневые с квадратным и прямоугольным
сечением магнитопровода, два следующих — стержневые с квадратным и прямоугольным сечением магнитопровода с катушками
на каждом стержне, и два последних — тоже стержневые с катушкой на одном стержне.

Проблема рассматривается без учета нелинейности вебер-амперных характеристик и при предположении, что в обмотках
отсутствуют дополнительные каналы охлаждения.

Напряжение, индукция, сечение магнитопровода и число витков связаны законом электромагнитной индукции:

  • при переменном напряжении:

    отсюда может быть найдено число витков:

  • при синусоидальном напряжении:

  • при импульсном напряжении:

    где ΔBи=2Bmc — перепад индукций, Bmc — максимальное
    значение индукции в материале сердечника.

Видно, что при произвольном законе изменения напряжения роль импульса намагничивания играет среднее значение
напряжения за ту часть периода, в которой напряжение выше (или ниже) нуля; эффективное значение тока вычисляется
за целый период. Импульсный режим отличается от периодического, в первую очередь, наличием скважности, отличием
амплитуд и длительностей положительной и отрицательной частей кривой напряжения.

Умножая левую и правую части первых уравнений при переменном режиме на I, а при импульсном режиме на Iи,
с учетом того, что I=Im/ka√v и T=1/f, получим:

  • при переменном напряжении:

  • при синусоидальном напряжении:

  • при импульсном напряжении:

Покажем, что МДС (Iw)1 катушек каждого магнитопровода имеет некоторое предельное значение, ограниченное
нагревом катушек. Пусть в окне сердечника площадью sок размещается w витков обмотки, коэффициент заполнения
окна проводниковым материалом kм=0,35, тогда активное сопротивление обмотки:

где lм1 — средняя длина одного витка обмотки, ρ=1,85 × 10–8 Ом·м — удельное
сопротивление медного провода.

Для того чтобы сопротивление обмотки и выделяющаяся мощность не увеличивались с ростом рабочей частоты (кГц)
трансформатора, его обмотки должны быть намотаны проводом типа литцендрат. Жила провода литцендрат состоит из
многих изолированных проводников. Диаметр одного проводника (мм) не должен превышать значения [9]:

Мощность, выделяемая в катушке и рассеиваемая ее поверхностью:

где sохл — поверхность охлаждения обмотки, то есть поверхность обмотки за исключением частей,
обращенных к стержню; q=650 Вт/м2 — допустимая плотность теплового потока при превышении температуры
поверхности обмотки над окружающим воздухом на 55 °С.

Для уменьшения индуктивности рассеивания (см. далее) бывает целесообразно при заданной площади окна снизить
толщину намотки, то есть занять обмоткой лишь часть ширины окна. Эта же задача возникает при необходимости
разместить в окне высоковольтную изоляцию первичной или вторичной обмотки.

Введем параметр ß

Предельная МДС зависит от геометрических размеров катушки, коэффициента теплоотдачи с ее поверхности,
удельного сопротивления провода и коэффициента использования ширины окна.

Поверхность охлаждения, площадь окна, площадь сечения сердечника, средняя длина витка для выбранной
формы сердечника могут быть выражены через сечение зазора s, и поэтому

для распространенных геометрических форм магнитопроводов приведены в таблице (при расчетах предполагается
использование системы СИ).

В каждой катушке стержня трансформатора имеется минимум две обмотки, их магнитодвижущие силы равны:
(Iw)1=(Iw)2=(Iw)пред/2. С учетом этого уравнения (3) и (4) примут вид:

  • при переменном напряжении:
  • при синусоидальном напряжении:
  • при импульсном напряжении:

Это первая группа формул для определения сечения магнитопровода проектируемого трансформатора. Затем могут
быть определены остальные размеры, например, короткая сторона сечения магнитопровода a=√s при
квадратной или a=√(s/2) при прямоугольной форме сечения, высота окна h=4a и т. д.

Обратим внимание, что исходными данными для расчета трансформатора на переменном токе являются среднее напряжение
за полпериода и эффективный ток обмоток без учета фазы их взаимного расположения во времени. Другими словами,
размеры трансформатора зависят не от передаваемой активной мощности, а от полной или кажущейся мощности S.

Однако если производить расчет трансформатора исходя только из условий охлаждения, то может оказаться, что
индуктивность рассеивания Ls обмоток будет очень большой, что приведет к недопустимо большому падению напряжения
uк при синусоидальном режиме работы трансформатора, искажению формы кривой при другом законе изменения напряжения
или к недопустимо большой длительности фронта τsи в импульсном режиме.

Значение индуктивности рассеивания Ls пропорционально площади сечения катушек трансформатора в плоскости,
перпендикулярной оси катушек, и обратно пропорционально их длине. Если одна обмотка короче другой, то индуктивность
рассеивания резко возрастает, поэтому длины обмоток должны совпадать. При малом числе витков для выполнения этого
условия секции с малым числом витков должны быть повторены необходимое число раз, а затем соединены параллельно.
Эффективная площадь рассеивания ss представляет сумму третьей части от площади сечения обмоток и полной площади
сечения зазора между обмотками. Если обмотки занимают не всю ширину окна, то:

Значения коэффициента kLs приведены в таблице.

У стержневого трансформатора с двумя катушками длина катушек вдвое больше, чем у трансформаторов остальных видов,
а их толщина вдвое меньше. Индуктивность рассеивания получается примерно в 4 раза меньше, чем у других видов.
Она сопоставима с индуктивностью рассеивания трансформатора, выполненного на тороидальном сердечнике с обмоткой,
расположенной не по всей длине средней силовой линии МП (из-за необходимости выполнить выводы от нижней обмотки).
Однако, если на высоких частотах из-за плохого охлаждения сердечника придется вдвое снизить индукцию, то потребуется
вдвое увеличивать число витков, в четыре раза возрастет индуктивность рассеивания. Преимущества тороидальной конструкции
полностью теряются.

Подставим в формулу (12) значения витков (1) и (2) для обоих режимов и получим:

  • при переменном напряжении
  • при импульсном напряжении

Мы получили вторую пару формул для определения размеров трансформатора. Она определяет размеры трансформатора при
любой форме кривой напряжения. Предполагается, что известно значение индуктивности рассеивания и напряжение той
обмотки, относительно которой определяется эта индуктивность.

Если значение Ls неизвестно, то размеры могут быть определены через относительные величины: напряжение короткого
замыкания для синусоидального режима (понятие напряжение короткого замыкания существует только для синусоидального
режима, когда существует величина — круговая частота ω=2πf) или относительную длительность фронта импульса для
импульсного режима.

Умножим левую и правую части уравнения (13) для синусоидального режима на I, а для импульсного режима
(15) — на Iи и после несложных преобразований получим:

  • при синусоидальном напряжении
  • при импульсном напряжении

где uк=100ω>LsI/U — напряжение короткого замыкания в %, а
для импульсного режима τsи — относительная длительность фронта импульса.

Таким образом, мы получили третью пару формул для определения площади сечения магнитопровода.

Если известны Ls и uк или τsи,
то вторая и третья группы формул дают одинаковый результат. Из найденных по (9-11) сечения s1
и по (14, 16-18) сечения s2 должно быть выбрано большее по величине,
и с ним проведены расчеты остальных геометрических параметров, чисел витков и др. Однако, если сечение,
найденное из (14, 16-18), окажется много больше сечения, полученного из (9-11) с учетом только тепловой
нагрузки трансформатора (через kIw),, то должен быть произведен повторный расчет с β s20/21 ≡ s1) значение р может быть принято равным отношению полученных на первом шаге
сечений s1/s2.

Тепловыделение внутри обмоток трансформатора, поверхность охлаждения и принятая допустимая температура поверхности
катушек определяют максимально допустимую плотность тока в проводах обмоток:

Значения коэффициента kΔ также приведены в таблице.

С учетом найденных соотношений могут быть определены объемы меди обмотки и стали сердечника.

Зная плотность меди и стали, предполагая массу конструктивных элементов (10%), найдем массу этих частей и
общую массу трансформатора, кг:

Значения коэффициентов kg , kg и kg приведены в таблице.

В формулу для определения общей массы трансформатора mТ (21) может быть подставлено
значение сечения из (9). Получим выражение для вычисления массы трансформатора без учета влияния индуктивности
рассеивания:

Используя формулу (17), найдем выражение для массы через полную мощность и напряжение короткого замыкания:

Используя формулу (18), определим массу трансформатора при одновременном задании энергии импульса и постоянной времени цепи нагрузки:

Значения коэффициентов kgSu=kgWz приведены в таблице.

При анализе этих коэффициентов видно, что если проектировать трансформатор с одинаковым уровнем индукции
(если позволяют условия охлаждения МП), то самым легким является стержневой трансформатор с прямоугольным
сечением магнитопровода.

Порядок применения формул для инженерных расчетов покажем на примерах.

Пример 1

Требуется спроектировать трансформатор, работающий от генератора напряжения прямоугольной формы («меандр») с
амплитудой 375 В. Ток нагрузки в виде резонансного контура обуславливает синусоидальную форму тока с эффективным
значением I=Im/(ka√v) = 43 А, рабочая частота 15 кГц, индуктивность рассеивания
должна составлять 9,5 мкГн.

Высокая рабочая частота заставляет сразу обраться к применению ферритового магнитопровода. Коэффициент заполнения
материалом сердечника kc=1. В соответствии с приведенным на рис. 2 графиком выбираем уровень рабочей индукции
Bcm=0,22 Тл.

Выбираем магнитопровод стержневого типа с прямоугольным сечением. Рассчитываем сечение магнитопровода без учета
требований к напряжению короткого замыкания по (9), первоначально с Β=1.

Теперь с учетом требований к индуктивности рассеивания рассчитаем по (16):

Очевидно, трансформатор должен быть выполнен на магнитопроводе с большим сечением — 8,6 см2. По найденному сечению
могут быть определены остальные размеры трансформатора. Например, а=0,71√s=0,02 м,
высота окна h=4a=0,08м; ширина окна 1,6а=0,032м; площадь окна 0,0026 м2 и т. д.
Число витков рассчитываем по формуле (1):

Плотность тока вычисляем по формуле (19):

Сечение провода 43/2,9 = 14,8 мм2, или иначе:

Диаметр составляющих литцендрат проводников по (6) составит 1/√15 = 0,26 мм.

Число витков и сечение другой обмотки будут отличаться в коэффициент трансформации раз.

Масса трансформатора составит mТ= kgs((β+1)/2)s3/2,
mТ=1,40×105×1×(8,6×104)3/2 = 3,5 кг.

Пример 2

Требуется рассчитать трансформатор, работающий совместно с формирующей линией, импульсным напряжением 40 кВ,
током 300 А (импульсная мощность 12 МВт), длительностью импульса 360 мкс, длительностью фронта tф = 10% и частотой
повторения импульсов 1 Гц.

Скважность импульсов 1/0,00036 = 2780. Трансформатор, работающий на активную нагрузку без формирующей линии,
будет иметь постоянную времени фронта вдвое больше — 20%. Длительность фронта — 360×0,2 = 72 мкс = 3τs.
Постоянная времени фронта трансформатора тs составит 72/3=24 мкс. При этом сопротивление нагрузки
Rн=40 000/300=133 Ом, и индуктивность рассеивания LssRн=24×133 = 3200 мкГ.

Расчет начинаем с выбора режима работы магнитного материала сердечника. При частоте повторения 1 Гц можно использовать
любой магнитомягкий материал — листовую трансформаторную сталь. Максимальное значение индукции может
быть ΔВи=2Bs=2,4 Тл.

Выбираем стержневой магнитопровод с квадратным (круглым, ступенчатым) сечением стержня с двумя катушками.

Рассчитываем сечение магнитопровода по энергии импульса без учета требований к длительности фронта (11)
первоначально β=1.

Теперь по энергии импульса с учетом требований к длительности фронта (18) находим s:

Масса трансформатора с сечением 255·10–4 м2 составит в соответствии с (21):

Редкие импульсы не могут сильно нагреть обмотки, поэтому первое сечение и магнитопровод получаются небольшими.
Второе большое сечение является следствием требований, связанных с длительностью фронта, то есть с индуктивностью
рассеивания. Два полученных сечения отличаются примерно в пять раз. Можно в 2-3 раза уменьшить толщину обмотки.
Проведем расчет по тем же формулам (11) и (18) при β=0,4:

Дальнейшие вычисления необходимо производить с этим значением сечения, например, масса трансформатора будет не 1006 кг, а:

Значение В может быть еще уменьшено.

Пример 3

Оценим размеры трансформатора с прямоугольной формой кривых рабочего напряжения и тока (меандр) 50 В, ток 1 А (эфф.) для работы на частоте 50 кГц.

Предполагаем применение ферритового броневого магнитопровода (Ш-образного) с индукцией 200 мТл.

По формуле (9) находим необходимое сечение магнитопровода: 0,31 см2 = 31 мм2.

По формуле (22) его массу: 0,012 кг =12 г и т. д.

Далее могут быть проанализированы другие варианты конструкций, иные соотношения размеров с целью проведения уточнений при той или иной оптимизации (по массе, объему, стоимости, введению каналов охлаждения и т. п.).

Расчет по разработанным формулам типовых, выпускаемых промышленностью рядов трансформаторов серии ТН, ОСМ дает совпадение расчетных параметров с фактическими.

Одинаково успешный расчет и малых, и больших трансформаторов при различных законах изменения напряжения и тока указывает на фундаментальность приведенной теории расчета.

Литература


1. Тихомиров П. М. Расчет трансформаторов. М.: Госэнергоиздат, 1953.

2. Ицхоки Я. С. Импульсная техника. М.: Советское радио, 1949.

3. Булгаков Н. И. Расчет трансформаторов. М.: Госэнергоиздат, 1950.

4. Ицхоки Я. С. Импульсные устройства. М.: Советское радио, 1959.

5. Черкашин Ю. С. Определение условий эквивалентности электрических режимов мощных силовых и импульсных трансформаторов // Электричество. 1966. № 5.

6. Черкашин Ю. С. Расчет дросселей с маг-нитопроводом при произвольной форме тока // Силовая электроника. 2008. № 3.

7. Черкашин Ю. С. Процесс и энергия намагничивания листового магнитопровода при прямоугольном напряжении // Электричество. 1978. № 6.

8. Бабин С. В., Карасев В. В., Филиппов Ф. Е. Характеристики магнитопроводов трансформаторов тока при одновременном воздействии постоянного и переменного магнитного поля // Электротехническая промышленность. 1981. Вып. 6.

9. Черкашин Ю. С. Проектирование катушек индуктивности для мощных радиотехнических устройств // Радиотехника. 1986. № 6.

Простейший расчет силового трансформатора

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Калькулятор первичного и вторичного тока трансформатора

и кВА согласно I

Калькулятор тока трансформатора:

Просто введите количество фаз, мощность трансформатора в ВА / кВА / МВА, напряжение первичной обмотки или первичный ток, затем нажмите кнопку расчета, чтобы получить вторичный и первичный ток.
Также вы можете найти тип трансформатора: понижающий или понижающий.

Кнопка сброса используется для сброса значения по умолчанию 20 кВА. Вы можете изменить значение по умолчанию на текущее для расчета.

Результаты

Первичный ток полной нагрузки:

Вторичный ток полной нагрузки:

Передаточное число:

Тип трансформатора: однофазный повышающий трансформатор

Трансформатор — это статическое устройство, которое помогает преобразовывать энергию без изменения ее характера и частоты. Он работает по принципу фарадеевской электромагнитной индукции. Ток протекает через первичную обмотку, а вторичная обмотка сокращает поток, создаваемый первичной обмоткой, следовательно, во вторичной обмотке будет индуцироваться ЭДС.

Допустим,

I (первичный) = первичный ток в амперах

I (вторичный) = вторичный ток в амперах

В (первичный) = первичное напряжение в вольтах

В (вторичный) = вторичное напряжение в вольтах

Расчет тока трансформатора:

Коэффициент трансформации трансформатора,

В (первичный) * I (первичный) = В (вторичный) * I (вторичный)

Первичное напряжение равно произведению вторичного напряжения и первичного тока, разделенных на вторичный ток.

В (первичный) = В (вторичный) * I (первичный) / I (вторичный)

Вторичное напряжение равно произведению первичного напряжения и первичного тока, разделенных на вторичный ток.

В (вторичный) = В (первичный) * I (первичный) / I (вторичный)

Первичный ток равен произведению вторичного напряжения и вторичного тока, разделенных на первичный ток.

I (первичный) = V (вторичный) * I (вторичный) / V (первичный)

Вторичный ток равен произведению первичного напряжения и первичного тока, разделенных на вторичное напряжение.

I (вторичный) = V (первичный) * I (первичный) / V (вторичный)

Трансформатор кВА к токовым расчетам:

кВА = В (первичный) * I (первичный)

Отсюда

I (первичный) = кВА / В (первичный)

Следовательно, первичный ток трансформатора равен кВА, деленному на первичное напряжение трансформатора

Схемы трансформатора

Для напряжения питания
вольт при Гц и первичной индуктивности
L 1 = 1 Генри.
Первичные витки: N P =
Вторичные витки: N S =
Вторичное напряжение: 5 В S 15 =
Предполагая идентичную геометрию, вторичная индуктивность L 2 = H.
Предполагая идеальную связь, взаимную индуктивность M = H
Сопротивление первичной обмотки 1 R 900 = Ом
Сопротивление вторичной обмотки R 2 = Ом
Сопротивление вторичной нагрузки R S = Ом
С указанными выше параметрами рассчитываются следующие значения:
Эффективное первичное сопротивление R P = Ом
Эффективное первичное реактивное сопротивление X P = Ом
Первичное сопротивление Z P = Ом при °
Вторичный импеданс Z 2 = Ом при °
Мощность, рассеиваемая в первичной обмотке = W =% мощности.
Мощность, рассеиваемая во вторичной обмотке = W =% мощности.
Мощность, передаваемая на нагрузку = Вт =% от мощности.
Примечания: Значения могут быть введены для любого параметра трансформатора. Для неуказанных значений будут введены значения по умолчанию, но они могут быть изменены в процессе исследования. Щелкните за пределами любого поля данных, чтобы начать расчет.
Числовой пример График типичных результатов
Обсуждение нагруженного трансформатора Уравнения схемы
Индекс

Концепции трансформатора

Концепции закона Фарадея

Концепции индуктивности

Расчет силовых трансформаторов частоты сети

Расчет силовых трансформаторов частоты сети

Введение

На этой странице простой метод расчета частоты сети с закрытым сердечником. силовые трансформаторы.Он предназначен для домашнего пивоварения, ремонта и модификации трансформаторов. Обратите внимание, что даже если этот метод и некоторые уравнения могут быть обобщенно, в расчет принимаются только классические сердечники, составленные из стальных пластин. учетная запись.


Размер сердечника

При проектировании трансформатора питания с замкнутым сердечником первым шагом является чтобы выбрать подходящий сердечник по мощности, устройство должно ручка. Обычно для большой мощности требуются большие жилы.На самом деле нет никаких теоретических или физических причин, препятствующих маленькому ядру от обработки большой мощности, но по практическим соображениям на малом ядре, не хватает места для всех обмоток: большой сердечник — единственный выбор. Для того, чтобы с самого начала выбрать довольно хорошее ядро, следующие эмпирическая формула (для рабочей частоты 50 Гц) может помочь:

Это уравнение связывает (полную) мощность P с поперечным сечением жилы. поверхность А с учетом КПД сердечника η (греч. «эта»).При измерении поперечного сечения жилы следует удалить около 5%, чтобы учесть толщину лака на ферромагнитных пластинах составляя ядро. Сечение А — минимальное сечение магнитного цепь, обычно измеряемая там, где расположены обмотки, как показано на рисунок ниже:

На приведенной выше диаграмме показан сердечник с двойной петлей, который на сегодняшний день является наиболее распространенным. тип сердечника из-за его низкого потока утечки и небольших размеров.Это называется «двойной петлей», потому что магнитное поле, создаваемое витки в середине сердечника петляют половину на левой части сердечника и половина в правой части. В этом случае важно измерить поперечное сечение жилы внутри обмотки (как показано), где поток не делится пополам. Если ваш трансформатор имеет одну магнитную петлю, например тороидальный трансформатор, чем поперечное сечение одинаковое по всему сердечнику и не имеет значения, где вы это измеряете.

Эффективность зависит от материала, из которого изготовлена ​​сердцевина; если неизвестно, таблица ниже даст общее представление:

Основной материал плиты Плотность магнитного потока φ
[Вт / м 2 ]
КПД сердечника η
[1/1]
Текстурированная кремнистая сталь (C-образная), M5 1.3 0,88
Текстурированная кремнистая сталь (пластины 0,35 мм), M6 1,2 0,84
Неориентированная кремнистая сталь среднего размера (пластины 0,5 мм), M7 1,1 0,82
Стандартная кремниевая сталь без ориентированной зернистости (или для тяжелых условий эксплуатации) 1,0 0,80
Низкоуглеродистая сталь 0,8 0,70

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

В этом калькуляторе уже учтено уменьшение ядра на 5%. поперечное сечение.


Плотность потока в активной зоне

Затем необходимо определить плотность потока сердечника φ (греч. «фи»). Опять же, это зависит от материала, и, если он не известен, та же таблица будет Помогите. Если трансформатор должен работать непрерывно или в плохо вентилируемом помещении. окружающей среде, небольшое уменьшение плотности потока (например, на 10%) приведет к уменьшить потери и сохранить трансформатор в холодном состоянии за счет большего количества железа и больше меди. Для снижения затрат на материалы трансформаторов можно рассмотреть обратное. используется только в течение коротких периодов времени или не предназначен для работы на полной мощности непрерывно.

После определения плотности потока можно рассчитать трансформатор постоянная γ , выражающая количество витков на вольт всех обмотки по следующей формуле:

Коэффициент 10 6 учитывает, что поперечное сечение жилы равно выражается в мм 2 . По поводу этой формулы следует отметить еще несколько моментов: например, низкий частоты требуют больше витков, и вы могли заметить, что 60 Гц трансформаторы, которые обычно немного меньше эквивалентных 50 Гц ед.Более того, низкая магнитная индукция также требует большего количества витков, что означает, что для уменьшения потока в сердечнике (и уменьшения потерь) приходится наматывать больше витков, даже если это кажется нелогичным. И последнее замечание: большие сердечники требуют нескольких оборотов: если вы когда-нибудь смотрели внутри огромных трансформаторов высокого напряжения, используемых энергетическими компаниями для своих высоковольтные линии электропередач, у них всего несколько сотен витков для многих киловольт, а небольшой трансформатор 230 В внутри вашего будильника тысячи поворотов.


Расчет обмоток

Теперь, когда мы знаем постоянную трансформатора γ , легко рассчитайте количество витков N для каждой обмотки по формуле:

Обратите внимание, что все напряжения и токи являются среднеквадратичными значениями, а плотность потока выражается ее пиковым значением, чтобы избежать насыщения: это объясняет член √2 в уравнении постоянной трансформатора.

Для вторичных обмоток рекомендуется немного увеличить количество витков, скажем, на 5% или около того, чтобы компенсировать потери в трансформаторе.

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

Этот калькулятор уже учитывает фактор 5% для вторичного оказывается.

Вы могли заметить, что количество витков зависит от размера сердечника и магнитного потока. плотность, но не по мощности. Итак, если вашему трансформатору требуется более одной вторичной обмотки, просто повторите расчет обмоток на каждую вторичную.Но в этом случае выбирайте сердечник достаточно большой, чтобы вместить все обмотки или, в Другими словами, выберите размер сердечника в соответствии с общей мощностью всех вторичные обмотки. Также используйте первичный провод с поперечным сечением, достаточно большим, чтобы выдержать общую мощность.


Выбор правильного провода

Последний шаг — рассчитать диаметр провода для каждой обмотки. Для этого необходимо выбрать плотность тока в проводнике c . Хороший компромисс — 2,5 А / мм 2 .Более низкое значение потребует больше меди, но приведет к меньшим потерям: это подходит для тяжелых трансформаторов. Более высокое значение потребует меньше меди и сделает трансформатор более дешевым, но из-за повышенного нагрева это будет приемлемо только при кратковременном использовании время работы на полной мощности или может потребоваться охлаждение. Стандартные значения составляют от 2 до 3 А / мм 2 . После определения плотности тока можно рассчитать диаметр проволоки. используя следующее уравнение:

Или для c = 2.5 А / мм 2 :

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:


На практике

Теперь, когда вычисления окончены, начинается самое сложное: будет ли рассчитанные обмотки подходят на выбранный сердечник? Что ж, ответ непростой и зависит от большого количества факторов: сечение и форма провода, радиус изгиба провода, качество намотки, наличие изолирующей фольги между слоями обмотки и т. д.С другой стороны, некоторый опыт будет полезнее, чем много уравнения.

Купить пустой сердечник трансформатора сложно, и обычно начинаются домашние проекты. от старого трансформатора, чтобы раскрутить и восстановить. Не все трансформаторы можно разобрать: некоторые склеены смола, которая слишком сильна, чтобы ее можно было удалить без изгиба основных пластин. К счастью, многие трансформаторы можно разобрать, сняв крышку. который скрепляет все пластины вместе или шлифованием двух сварных швов поперек все тарелки.Затем каждую пластину необходимо осторожно снять, чтобы получить доступ к обмотки. Гнутые или поцарапанные пластины следует выбросить.

Если повезет, можно повторно использовать первичную обмотку и восстановить только вторичный, если первичный не наматывается на вторичный или не имеет неподходящее количество оборотов. Решая, следует ли оставить обмотку как есть или нет, полезно определить его количество витков, но подсчитать их без разматывая катушку. К счастью, есть способ определить количество витков: до разбирая сердечник, просто намотайте несколько витков (скажем, 5 или около того) изолированного провода вокруг обмоток и измерьте напряжение, наведенное в этом самодельном вторичный при нормальном питании трансформатора. По этому значению легко рассчитать количество витков на вольт трансформатора. и подсчитайте количество витков каждой обмотки без фактического подсчета их.

После того, как новые обмотки намотаны, самое время восстановить сердечник, ставим все пластины на место.Без силового пресса их все вернуть будет сложно, но если на в конце остается одна-две пластины, трансформатор все равно будет работать нормально. Но по этой причине следует немного увеличить размер трансформатора при выполнении расчеты, выбрав меньшее поперечное сечение жилы. Когда трансформатор запитан, сила на пластинах сердечника значительна. и важно их крепко держать или склеивать; в противном случае ядро будет вибрировать и будет очень шумно.

Многие трансформаторы имеют пластины сердечника E-I, как показано на рисунке выше. При восстановлении сердечника пластины должны быть скрещены: E-I для одной слой и I-E для следующего и так далее. Это минимизирует воздушный зазор и помогает поддерживать высокий коэффициент связи.

Всегда используйте эмалированный медный провод для всех обмоток. Изолированный провод из ПВХ (обычный электрический провод) — очень плохая идея, потому что слой изоляции очень толстый, занимает много места в сердечнике и является очень плохой проводник тепла: ваш трансформатор очень быстро перегреется.

Всегда кладите слой изолирующей фольги между первичной и вторичной обмотками. если они расположены близко друг к другу, чтобы предотвратить опасность поражения электрическим током в случае нарушение изоляции провода.Используйте что-нибудь тонкое, не горит, и это хороший изолятор. Я использую каптоновую ленту, но может подойти и обычная изолента.

Изоляция эмалированного медного провода обычно составляет до 1000 В (пик ценность). Если возможно, ознакомьтесь со спецификациями проводов, предоставленными его производитель. Если напряжение на крыле превышает это значение, лучше разделить намотка на два или более слоев, разделенных изолирующей фольгой между ними.


Заключение

Представлен простой метод расчета сетевых силовых трансформаторов. и я надеюсь, что это поможет домашним пивоварам в разработке собственных трансформаторов. в соответствии с их конкретными потребностями.Намотка собственных трансформаторов часто является единственным доступным выбором, когда требуются необычные напряжения. Но разобрав трансформатор, сделайте новые обмотки и вставьте обратно вместе — это много работы, поэтому перед тем, как получится с первой попытки.


Используемые символы

Символ Описание Установка
A Поперечное сечение жил мм 2
д Диаметр проволоки мм
f Рабочая частота Гц
I Действующий ток обмотки А
N Число витков 1/1
П Полная мощность трансформатора ВА
U Действующее значение напряжения обмотки В
γ Число витков на V витка / В
η Эффективность сердечника 1/1
φ Плотность магнитного потока сердечника Вт / м 2

Примечание: 1 Вт / м 2 = 1 T = 10’000 Гаусс


Библиография

  • Nuova Elettronica, Vol. 6, 134,
  • Nuova Elettronica, Riv 179, p66


Как рассчитать падение напряжения на трансформаторе


Введение

Падение напряжения на трансформаторе важно знать, поскольку это один из факторов, влияющих на производительность электрической системы, в которой оно установлено. Очевидно, что высокое падение напряжения в трансформаторе может привести к низкому напряжению на стороне нагрузки системы.

Formula

Однофазный трансформатор: Vd = I (R cos theta + X sin theta)
Трехфазный трансформатор: Vd = sqrt (3) x I (R cos theta + X theta)

где:

Vd = падение напряжения
R = сопротивление
X = реактивное сопротивление
тета = угол коэффициента мощности

Считывание: какова важность отношения X / R? Пример 1 (однофазный трансформатор)

Найдите падение напряжения на однофазном трансформаторе, питающем двигатель мощностью 50 л.с. с коэффициентом мощности 0. 2
Трансформатор
кВА

R фактическое = 10 (2.2 >> использовать вторичную обмотку 230 В в качестве основного напряжения
100 кВА

X фактическое = 0,0182 Ом >> значение фактического реактивного сопротивления

Определите значение тока

P = 50 л.с. x 746 Вт = 37,300 Вт
л.с.

I = P / VL * pf
I = 37,300 Вт / 230 В * 0,7
I = 231 Ампер

cos theta = 0,7
sin theta = 0,7

Vd = I (R cos theta + X sin theta)
Vd = 231 A x [(0.01185) (0,7) + (0,0182) (0,7)]

Vd = 4,85 В или

% Vd = (4,85 В) x 100 = 2,11%
База 230 В


Пример 2 (трехфазный трансформатор)

Найдите падение напряжения трехфазного трансформатора, питающего нагрузку 100 кВА с коэффициентом мощности 0,80. Трансформатор имеет рейтинг производителя, указанный ниже.

  • номинальное напряжение = 12. 2 >> использовать вторичную обмотку 230 В в качестве основного напряжения
    100 кВА

    X фактическое = 0,0047 Ом >> значение фактического реактивного сопротивления

    Определите значение тока

    I = S / (1,73 x VL)
    I = 100000 ВА / (1,73 x 230)
    I = 251 Ампер

    cos theta = 0,8
    sin theta = 0. 6

    Vd = 1,73 x I (R cos theta + X sin theta)
    Vd = 1,73 x 251 A x [(0,0031) (0,8) + (0,0047) (0,6)]

    Vd = 2.30 В или

    % Vd = (2,30 В) x 100 = 1,0%
    База 230 В

    Расчеты повышающего трансформатора

    Производитель Модель Усиление (дБ) X-фактор Собственное сопротивление Рекомендуемый импеданс
    Ортофон Т5 26 20,0 118,1 3-40 Ом
    Т10 32 39,8 29,7 2-4 Ом
    Т10 МК2 28 25,1 74,5 2-6 Ом
    T20 32 39,8 29,7 2-4 Ом
    Т20МКИИ 28 25,1 74,5 2-6 Ом
    СПУ-Т100 26 20,0 118,1 1-6 Ом
    Т1000 26 20,0 118,1 2-6 Ом
    T2000 35 56,2 14,9 3
    T3000 30 31,6 47,0 2-10 Ом
    Fidelity Research FRT-4 31 35,5 37,3 3
    26 20,0 118,1 10
    25 17,8 148,6 30
    20 10,0 470,0 100
    FR XF-1 30 31,6 47,0 4-18 Ом
    FRT-3 26 20,0 118,1 30
    31 год 35,5 37,3 10
    XG5 34 50,1 18,7 <3 Ом
    26 20,0 118,1 3-18 Ом
    22 12,6 296,5 18-40
    X1-M 30 31,6 47,0 4-18 Ом
    X1-H 25 17,8 148,6 19-40 Ом
    X1-L 36 63,1 11,8 3
    Denon 320 австралийских долларов 31,1 36 36 3
    20,0 10 470 40
    340 австралийских долларов 30,4 33 43 3
    20,0 10 470 40
    AU310 20,0 10 470 40
    AUS1 22,3 13 278 3-40 Ом
    AU300LC 20,0 10 470 40
    Audio Technica AT700T 34 50,1 18,7 3
    26 20,0 118,1 20
    23 14,1 235,6 40
    EAR MC4 29,5 30 52,2 3
    27,6 24 81,6 6
    25,1 18 145,1 12
    20,0 10 470,0 40
    MC3 29,5 30 52 4
    26,0 20 118 12
    20,0 10 470 40
    Супекс SDT 3300 28,5 26,6 66,4 2-10 Ом
    Bryston TF1 22,5 13,3 264,3 5-35 Ом
    16,5 6,7 1052,2 40-250 Ом
    Накамичи MCB100 26,0 20 117,5 2-20 Ом
    Sony HA-T110 26 20 117,5 3-40 Ом

    Консультации — Специалист по спецификациям | Как правильно подобрать трансформатор

    Зия Салями, Ph. D., CDM Smith, Charlotte, NC; Лилли Ванг, CDM Smith, Роли, Северная Каролина; и Адриан Хендельс, CDM Smith, Бока-Ратон, Флорида. 24 декабря 2019 г.,

    Таблица 2: Отдельные нагрузки с соответствующими параметрами системы, такими как номинальная мощность, коэффициент мощности, КПД и коэффициент нагрузки 1, сведены в таблицу для определения размера трансформатора среднего напряжения. Предоставлено: CDM Smith

    Цели обучения
    • Изучите основные характеристики, применение и параметры трансформатора.
    • Понимать основные критерии и подходы к определению правильного размера трансформатора.
    • Узнайте, как использовать программное обеспечение системы электроснабжения для выполнения моделирования.

    Трансформатор является основным компонентом системы распределения электроэнергии, оказывающим наибольшее влияние на производительность системы во время установившейся (нормальной) работы и во время системных нарушений, таких как неисправность. Следовательно, инженеры должны убедиться, что трансформатор имеет соответствующий размер для конкретного применения и может подавать адекватную мощность на нагрузки при расчетных условиях и стандартных нормативах.

    Типичные области применения такого основного оборудования — промышленные предприятия, коммерческие здания, больницы, офисные здания, торговые центры, школы, многоквартирные дома и т. Д. В статье рассматриваются сухие трансформаторы, такие как вентилируемые с самоохлаждением, с принудительным воздушным охлаждением, невентилируемые силовые трансформаторы с самоохлаждением и герметичные с самоохлаждением менее 30 мегавольт ампер и 34,5 киловольта.

    В целом трансформаторы сухого типа менее воспламеняемы (т. Е. Не содержат жидкости или масла) и несут меньшую опасность возгорания, что делает их более подходящими для использования в зданиях и рядом с ними.Этот тип трансформатора имеет более высокую рабочую температуру и обычно требует большей площади основания. Поскольку сухим трансформаторам требуется воздух для охлаждения, необходимо обеспечить систему вентиляции соответствующего размера для тепла, выделяемого трансформатором.

    Общий подход к определению размеров трансформаторов и связанных с ними воздействий на систему одинаков для всех типов трансформаторов с разными классами охлаждения.

    Рис. 1: Показаны наиболее типичные соединения обмоток (фаз) силовых трансформаторов, включая угловое смещение между высоким и низким напряжением.Предоставлено: CDM Smith

    Расположение площадки трансформатора

    При выборе правильного места для трансформатора необходимо внимательно отнестись к нему. Некоторые детали, включая тип трансформатора, размер, вентиляцию, атмосферное давление, высоту, уровень напряжения и зазор, будут иметь решающее значение при выборе идеального места для трансформатора, необходимого для данной установки.

    Инженер должен знать об ограничениях, связанных с выбранным расположением трансформатора.Как правило, номинальные значения в киловольт-амперах основаны на температуре, не превышающей 40 ° C, температуре окружающей среды (или температуре окружающей среды 30 ° C, усредненной за 24-часовой период, в противном случае произойдет некоторое снижение ожидаемого срока службы), а также при установке ниже 3300 футов на уровне моря.

    Если какое-либо из этих условий не выполняется, трансформатор следует снизить. В таком случае киловольт-ампер трансформатора следует снизить на 8% на каждые 10 ° C выше 40 ° C (при воздушном охлаждении для сухих трансформаторов), а также на 0.3% на каждые 330 футов на высоте более 3300 футов). Более подробная информация для рассмотрения на месте обсуждается в NFPA 70: Статьи 450.8, 450.21 и 450.22 Национального электрического кодекса.

    Рисунок 2: Показана модель трехфазной системы распределения электроэнергии ETAP для типичного промышленного объекта, такого как водоочистная установка. Предоставлено: CDM Smith

    Класс напряжения

    Класс напряжения обычно выбирается на основе доступного напряжения источника (например, сетевого источника) и требуемого напряжения нагрузки, если нагрузка предназначена для работы в одно- или трехфазной системе.Стандартные номинальные параметры высоковольтных трансформаторов: 2400, 4160, 4800, 6900, 7 200, 12 000, 13 200, 13 800, 23 000 и 34 500 вольт. В низковольтную сторону входят 208, 480, 2400 и 4160.

    Рисунок 3: Показан поток мощности (киловольт-ампер) для каждой ветви, включая процентное напряжение (от номинального значения) и ток повреждения для главного распределительного устройства и центра управления двигателями. Предоставлено: CDM Smith

    Подключение обмотки трансформатора и полное сопротивление

    Стандартные схемы подключения и маркировка клемм включены в стандарты для отдельных типов трансформаторов в соответствии со стандартом IEEE C57.12,70. Наиболее типичные соединения обмоток (фаз) для силовых трансформаторов, включая угловое смещение между высоким и низким напряжением, показано на рисунке 1. На основании этого стандарта угловое смещение трехфазных трансформаторов с треугольником-треугольником или звездой-звездой соединения должны иметь угол 0 градусов, а соединения звезда-треугольник или треугольник-звезда должны быть 30 градусов.

    В общем, выбор соединений обмоток в основном основан на общей конструкции системы, требуемом параметре системы (например, способности выдерживать ток короткого замыкания оборудования) и особенно схеме заземления нейтрали системы. Кроме того, соединение звездой можно настроить как один из типов заземления, таких как разомкнутый (незаземленный), сплошной (сплошное заземление, отсутствие преднамеренного импеданса в цепи заземления нейтрали), резистор (резистор используется в цепи заземления нейтрали), реактор (реактор используется в цепи заземления нейтрали) и несколько других менее применимых вариантов.

    Конфигурация и схема заземления зависят от общей системы заземления нейтрали на объекте. Твердозаземленный трансформатор звездой (вторичная обмотка) — это типичное применение на объектах низковольтной системы (например.г., 4,16 кВ: 0,480 кВ).

    Кроме того, Z (сопротивление, основанное на номинальных киловольт-амперных характеристиках самоохлаждаемого трансформатора) обычно указывается на паспортной табличке, которая прикреплена к передней или внутренней части корпуса трансформатора. Это значение сильно влияет на параметры системы распределения электроэнергии, такие как падение напряжения, доступное короткое замыкание и падающая энергия. Например, выбор трансформатора с более высоким сопротивлением (т. Е. От 5,5% до 7,5%) может снизить доступный ток короткого замыкания, позволяя использовать оборудование с более низкими амперными номиналами отключения, если нет проблем с системным напряжением на объекте.

    ANSI C57.12.10 определяет типичные значения импеданса для трансформаторов более 500 киловольт-ампер. Это значение зависит от номинальных значений киловольт-ампер, а также номинальных значений напряжения трансформатора на стороне высокого и низкого напряжения. Например,% Z для трансформатора со стороной высокого напряжения менее 34,5 кВ составляет от 5,5% до 7,5%. Обратите внимание, что типичный% Z для 13,8 киловольт (или меньше) на высокой стороне и 2,4 киловольта (или меньше) на нижней стороне составляет 5,75%.

    Большинство промышленных силовых трансформаторов входят в этот диапазон уровней напряжения.Для трансформатора менее или равного 500 кВ типичный импеданс% Z может варьироваться от 2,3% до 5,2% в зависимости от уровня напряжения. Например, трансформатор на 100 киловольт-ампер с 8,32 киловольт (или меньше) на стороне высокого напряжения имеет типичное значение импеданса 2,6%.

    Рисунок 4: Поток мощности и результаты короткого замыкания для системы, основанные на фактических операциях системы, были рассчитаны с использованием ETAP. Предоставлено: CDM Smith

    Расчет трансформатора для новых систем

    В связи с тем, что трансформаторы играют важную роль в электрических распределительных системах, важно, чтобы трансформатор имел правильные размеры, чтобы он мог соответствовать всем применимым условиям нагрузки.Если он слишком мал, это может вызвать проблемы в системах распределения электроэнергии, включая потерю нагрузки. В общем, расчет трансформатора можно выполнить двумя способами:

    • Подключенная нагрузка.
    • Рабочая нагрузка.

    В обоих случаях следует учитывать рост нагрузки и будущие модификации оборудования и факторы снижения номинальных характеристик, такие как температура окружающей среды и высота над уровнем моря. Фактор роста обычно зависит от конструкции каждой системы и может варьироваться; От 110% до 130% — разумный диапазон.В обоих методах определение размеров выполняется от системы ниже по потоку к главному трансформатору (т. Е. Снизу вверх).

    Разница между этими двумя методами состоит в том, чтобы определить общую подключенную киловольт-амперную нагрузку. Существует несколько факторов, которые определят, какой метод использовать, например, требуемый расчетный запас, спецификация проекта, стоимость, доступность места и влияние на падение напряжения и доступный ток короткого замыкания.

    Электрическая распределительная система типичного промышленного объекта, такого как водоочистные сооружения, показана на Рисунке 2.Задача состоит в том, чтобы оценить размер нового вентилируемого трансформатора с самоохлаждением (или оценить размер существующего), исходя из требуемых нагрузок, используя два ранее упомянутых метода.

    Таблица 1: Отдельные нагрузки с соответствующими параметрами системы, такими как номинальная мощность, коэффициент мощности, КПД и коэффициент нагрузки 1, сведены в таблицу для определения размера низковольтного трансформатора. Предоставлено: CDM Smith

    При выборе параметров для всех подключенных нагрузок консервативный метод учитывает все подключенные нагрузки независимо от их рабочего состояния и функции системы.Подбор параметров выполняется от трансформатора ниже по потоку к основному. Как показано на рисунке 3, выходной трансформатор (LV XFMR) является трехфазным на напряжение от 4,16 до 0,480 киловольт, а главный трансформатор (служебный XFMR) — трехфазным, питающим от 13,8 до 4,16 киловольт на различные типы нагрузок (например, нагрузки двигателя, частотно-регулируемые приводы, статические нагрузки, распределительный щит).

    Отдельные нагрузки с соответствующими параметрами системы, такими как номинальная мощность, коэффициент мощности, КПД и коэффициент нагрузки, приведены в таблицах 1 и 2.Рассчитывается общий киловольт-ампер подключенной системы с расчетным запасом, а затем будет выбран следующий доступный типоразмер.

    Типичный киловольт-ампер стандартного размера для трехфазного трансформатора в соответствии с ANSI C57. 12.00 обычно находится в диапазоне от 15 до 100 000 кВА, в зависимости от выходной мощности трансформатора. Ожидается, что входной киловольт-ампер будет выше на 1–5% (т. Е. Относится к КПД трансформатора) из-за потерь трансформатора в его сердечнике и обмотках, рассеиваемых в виде тепла.Эти потоки для каждого трансформатора показаны на рисунках 3 и 4.

    В целом, если не указано иное, трансформаторы не должны подвергаться перегрузке и должны быть одобрены производителем для любых кратковременных перегрузок из-за более низкой температуры окружающей среды.

    Оценка данных и выбранного размера киловольт-амперного трансформатора, приведенная в таблицах, подтверждена и проанализирована путем выполнения анализа потока нагрузки с использованием электрического программного обеспечения ETAP. Поток мощности (киловольт-ампер) для каждой ветви, включая процентное напряжение (от номинального значения) и ток повреждения для главного распределительного устройства и центра управления двигателями, показан на рисунке 3.

    Таблица 2: Отдельные нагрузки с соответствующими параметрами системы, такими как номинальная мощность, коэффициент мощности, КПД и коэффициент нагрузки 1, сведены в таблицу для определения размера трансформатора среднего напряжения. Предоставлено: CDM Smith

    Для определения размеров на основе фактических операций системы, все подключенные нагрузки будут учитываться в зависимости от их рабочих условий (т. Е. Коэффициентов нагрузки). Как и в случае подключенных нагрузок, определение размеров выполняется от трансформатора, расположенного ниже по потоку, к основной в том же процессе.Общее количество киловольт-ампер, включая расчетный запас, коэффициенты нагрузки и выбранный размер трансформатора, рассчитано и показано в таблицах 3 и 4.

    Оценка той же системы с трансформаторами разных размеров показана на рисунке 4. Поток мощности для каждой ветви, включая процентное напряжение и ток повреждения, также показаны для главного распределительного устройства и MCC.

    Кроме того, есть несколько результатов, которые следует отметить при сравнении рисунков 3 и 4. Во-первых, метод подключенных нагрузок является более консервативным подходом при определении размеров трансформатора и обеспечивает лучший профиль напряжения системы на вторичной стороне, но он генерирует и вводит больше тока короткого замыкания.Это в основном связано с более высоким номиналом трансформатора в киловольт-амперах и, как следствие, более высокой инжекцией короткого замыкания в систему.

    Таблица 3: Отдельные нагрузки с соответствующими параметрами системы, такими как номинальная мощность, коэффициент мощности, КПД с различными коэффициентами нагрузки, сведены в таблицу для определения размера низковольтного трансформатора. Предоставлено: CDM Smith

    Во-вторых, типичные силовые трансформаторы оснащены фиксированными ответвлениями (т. Е. Двумя ответвлениями на 2,5% выше номинального напряжения и двумя 2.Отводы на 5% ниже номинального напряжения), которые предназначены для регулировки напряжения трансформатора на первичной или вторичной стороне. Поэтому рекомендуется использовать эту возможность для увеличения (или уменьшения) напряжения системы, если это необходимо.

    Например, при желании напряжение на шине MCC на Рисунке 4 может быть увеличено на 2,5% или 5%. Однако разработчик системы должен быть осторожен, чтобы не решить одну проблему (т. Е. Профиль напряжения системы) и одновременно создать другую проблему (т. Е. Подавать больше тока повреждения за счет увеличения напряжения системы).В дополнение к фиксированным ответвлениям трансформатор может быть оснащен автоматическим переключателем ответвлений, который обеспечивает более широкий диапазон, обычно от -10% до + 10% киловольт обмотки с меньшим шагом (0,625%) для регулировки и управления напряжением на шине на основе желаемого значения напряжения. .

    Таблица 4: Отдельные нагрузки с соответствующими параметрами системы, такими как номинальная мощность, коэффициент мощности, КПД с различными коэффициентами нагрузки, сведены в таблицу для определения размера трансформатора среднего напряжения. Предоставлено: CDM Smith

    Также важно отметить, что трансформатор с номинальным коэффициентом К рекомендуется для определения размера трансформатора из-за тепловыделения, если объект содержит источники, генерирующие высокие гармоники, обычно более 15% общего гармонического искажения.K-фактор будет определять, насколько трансформатор должен быть понижен или увеличен для работы в такой системе. Обратитесь к ANSI / IEEE C57.110 для получения более подробной информации.

    Трансформаторы играют решающую роль в обеспечении надлежащей работы энергосистемы. Их следует тщательно выбирать и выбирать при проектировании и анализе системы распределения электроэнергии, чтобы обеспечить надежную и безопасную работу энергосистемы. При выборе подходящего размера трансформатора следует учитывать применимые факторы снижения номинальных характеристик, такие как температура окружающей среды и высота над уровнем моря, а также влияние на напряжение системы распределения электроэнергии и ток короткого замыкания.

    Инструмент расчета потерь трансформатора

    Инструмент расчета потерь трансформатора DNV GL рассчитывает потери для различных типов трансформаторов с учетом выбросов CO2.

    Важно иметь представление об энергоэффективности трансформатора в течение срока его службы. Инструмент расчета потерь трансформатора DNV GL рассчитывает потери для различных типов трансформаторов с учетом выбросов CO2. Это дает вам информацию о наиболее энергоэффективном трансформаторе в течение всего срока службы.Оценка наиболее экономичного трансформатора будет производиться по капитализированной стоимости, сроку окупаемости и внутренней норме прибыли. Таким образом, этот инструмент дает вам дополнительную информацию об оценке холостого хода и потерь нагрузки (коэффициенты A и B), если они не известны заранее.

    Наш инструмент предоставляет информацию о потерях в трансформаторе при наличии гармоник в нагрузке. Результаты (в виде сводной таблицы и графиков, см. Пример здесь) предоставляют обзор потерь энергии и капитализированных затрат для выбранного трансформатора (ов).Они хранятся в docx-файле, который можно открыть, например, программой Microsoft Office Word.

    Наш инструмент доступен для загрузки, предоставляя вам актуальную информацию о потерях в трансформаторе при наличии гармоник в нагрузке. Обратите внимание, что это исполняемая программа, которую можно использовать только на компьютерах с Windows.

    Инструмент, включающий собственный графический пользовательский интерфейс (GUI), построен на Python. В самом инструменте вы можете выбрать версию на английском, китайском, испанском или португальском языках.Ссылка для загрузки инструмента будет отправлена ​​вам по электронной почте. ZIP-файл с инструментом потери трансформатора составляет прибл. 60 МБ.

    Если у Вас возникнут вопросы, свяжитесь с нами. Мы более чем рады помочь вам. Наши FAQ и Руководство пользователя также могут ответить на любые ваши вопросы.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован.